summaryrefslogtreecommitdiffstats
path: root/ast/cmpmap.c
blob: d0210ec7a61e85a3a093bc8e1568a62368959571 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
/*
*class++
*  Name:
*     CmpMap

*  Purpose:
*     Compound Mapping.

*  Constructor Function:
c     astCmpMap
f     AST_CMPMAP

*  Description:
*     A CmpMap is a compound Mapping which allows two component
*     Mappings (of any class) to be connected together to form a more
*     complex Mapping. This connection may either be "in series"
*     (where the first Mapping is used to transform the coordinates of
*     each point and the second mapping is then applied to the
*     result), or "in parallel" (where one Mapping transforms the
*     earlier coordinates for each point and the second Mapping
*     simultaneously transforms the later coordinates).
*
*     Since a CmpMap is itself a Mapping, it can be used as a
*     component in forming further CmpMaps. Mappings of arbitrary
*     complexity may be built from simple individual Mappings in this
*     way.

*  Inheritance:
*     The CmpMap class inherits from the Mapping class.

*  Attributes:
*     The CmpMap class does not define any new attributes beyond those
*     which are applicable to all Mappings.

*  Functions:
c     The CmpMap class does not define any new functions beyond those
f     The CmpMap class does not define any new routines beyond those
*     which are applicable to all Mappings.

*  Copyright:
*     Copyright (C) 1997-2006 Council for the Central Laboratory of the
*     Research Councils

*  Licence:
*     This program is free software: you can redistribute it and/or
*     modify it under the terms of the GNU Lesser General Public
*     License as published by the Free Software Foundation, either
*     version 3 of the License, or (at your option) any later
*     version.
*
*     This program is distributed in the hope that it will be useful,
*     but WITHOUT ANY WARRANTY; without even the implied warranty of
*     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
*     GNU Lesser General Public License for more details.
*
*     You should have received a copy of the GNU Lesser General
*     License along with this program.  If not, see
*     <http://www.gnu.org/licenses/>.

*  Authors:
*     RFWS: R.F. Warren-Smith (Starlink)

*  History:
*     1-FEB-1996 (RFWS):
*        Original version.
*     25-SEP-1996 (RFWS):
*        Implemented external interface and I/O facilities.
*     12-DEC-1996 (RFWS):
*        Over-ride the astMapList method.
*     13-DEC-1996 (RFWS):
*        Over-ride the astSimplify method.
*     4-JUN-1997 (RFWS):
*        Eliminate any simplification when MapList is used. Instead,
*        over-ride the MapMerge method and implement all
*        simplification in this.
*     24-MAR-1998 (RFWS):
*        Fixed bug in testing of simplified invert flag in Simplify.
*     15-APR-1998 (RFWS):
*        Improved the MapMerge method to allow parallel combinations
*        of series CmpMaps to be replaced by series combinations of
*        parallel CmpMaps, and vice versa.
*     26-SEP-2001 (DSB):
*        Over-ride the astDecompose method.
*     8-JAN-2003 (DSB):
*        - Changed private InitVtab method to protected astInitCmpMapVtab
*        method.
*     8-JAN-2003 (DSB):
*        - Modified MapMerge so that a parallel CmpMap can swap with a
*        suitable PermMap lower neighbour.
*     23-APR-2004 (DSB):
*        - Modified Simplify to avoid infinite loops.
*     27-APR-2004 (DSB):
*        - Correction to MapMerge to prevent segvio if CmpMap and PermMap
*        cannot be swapped.
*     4-OCT-2004 (DSB):
*        Modify astMapList to return flag indicating presence of inverted
*        CmpMaps in supplied Mapping.
*     20-APR-2005 (DSB):
*        Modify MapMerge so that it will attempt to merge the first
*        and second CmpMaps in a list of series CmpMaps.
*     8-FEB-2006 (DSB):
*        Corrected logic within MapMerge for cases where a PermMap is
*        followed by a parallel CmpMap.
*     14-FEB-2006 (DSB):
*        Override astGetObjSize.
*     14-MAR-2006 (DSB):
*        - When checking for patterns in the simplification process,
*        require at least 30 samples in the waveform for evidence of a
*        pattern.
*        - Override astEqual.
*        - The constructor no longer reports an error if the resulting
*	 CmpMap cannot transform points in either direction. This is
*	 because it may be possible to simplify such a CmpMap and the
*	 simplified Mapping may have defined transformations. E.g. if a
*	 Mapping which has only a forward transformation is combined in
*	 series with its own inverse, the combination will simplify to a
*	 UnitMap (usually).
*     9-MAY-2006 (DSB):
*        - In Simplify, remove checks for patterns in the number of atomic
*        mappings when calling astSimplify recursively.
*     23-AUG-2006 (DSB):
*        - In Simplify, add checks for re-appearance of a Mapping that is
*        already being simplified at a higher levelin the call stack.
*     18-APR-2007 (DSB):
*        In Simplify: if the returned Mapping is not a CmpMap, always copy
*        the returned component Mapping (rather than cloning it) so that
*        the returned Mapping is not affected if user code subsequently
*        inverts the component Mapping via some other pointer.
*     12-MAR-2008 (DSB):
*        Modify MapSplit so that attempts to split the inverse
*        transformation if it cannot split the forward transformation.
*     30-JUL-2009 (DSB):
*        Ensure the PermMap has equal number of inputs and outputs when
*        swapping a PermMap and a CmpMap in astMapMerge.
*     3-JAN-2011 (DSB):
*        In MapSplit, certain classes of Mapping (e.g. PermMaps) can
*        produce a returned Mapping with zero outputs. Consider such
*        Mappings to be unsplitable.
*     11-JAN-2011 (DSB):
*        Improve simplification of serial combinations of parellel CmpMaps.
*     25-JAN-2011 (DSB):
*        Big improvement to the efficiency of the astMapSplit method.
*     24-JAN-2012 (DSB):
*        If efficient MapSplit fails to split (e.g. due to the presence
*        of PermMaps), then revert to the older slower method.
*     5-FEB-2013 (DSB):
*        Take account of Invert flags when combining parallel CmpMaps in
*        series.
*     29-APR-2013 (DSB):
*        In MapList, use the astDoNotSimplify method to check that it is
*        OK to expand the CmpMap.
*     23-APR-2015 (DSB):
*        In Simplify, prevent mappings that are known to cause infinite
*        loops from being nominated for simplification.
*class--
*/

/* Module Macros. */
/* ============== */
/* Set the name of the class we are implementing. This indicates to
   the header files that define class interfaces that they should make
   "protected" symbols available. */
#define astCLASS CmpMap

/* Include files. */
/* ============== */
/* Interface definitions. */
/* ---------------------- */

#include "error.h"               /* Error reporting facilities */
#include "memory.h"              /* Memory allocation facilities */
#include "object.h"              /* Base Object class */
#include "pointset.h"            /* Sets of points/coordinates */
#include "mapping.h"             /* Coordinate Mappings (parent class) */
#include "channel.h"             /* I/O channels */
#include "permmap.h"             /* Coordinate permutation Mappings */
#include "unitmap.h"             /* Unit transformations */
#include "cmpmap.h"              /* Interface definition for this class */
#include "frameset.h"            /* Interface definition for FrameSets */
#include "globals.h"             /* Thread-safe global data access */

/* Error code definitions. */
/* ----------------------- */
#include "ast_err.h"             /* AST error codes */

/* C header files. */
/* --------------- */
#include <stdarg.h>
#include <stddef.h>
#include <string.h>
#include <stdio.h>

/* Module Variables. */
/* ================= */

/* Address of this static variable is used as a unique identifier for
   member of this class. */
static int class_check;

/* Pointers to parent class methods which are extended by this class. */
static int (* parent_getobjsize)( AstObject *, int * );
static AstPointSet *(* parent_transform)( AstMapping *, AstPointSet *, int, AstPointSet *, int * );
static int (* parent_maplist)( AstMapping *, int, int, int *, AstMapping ***, int **, int * );
static int *(* parent_mapsplit)( AstMapping *, int, const int *, AstMapping **, int * );

#if defined(THREAD_SAFE)
static int (* parent_managelock)( AstObject *, int, int, AstObject **, int * );
#endif


/* Define macros for accessing each item of thread specific global data. */
#ifdef THREAD_SAFE

/* Define how to initialise thread-specific globals. */
#define GLOBAL_inits \
   globals->Class_Init = 0; \
   globals->Simplify_Depth = 0; \
   globals->Simplify_Stackmaps = NULL;

/* Create the function that initialises global data for this module. */
astMAKE_INITGLOBALS(CmpMap)

#define class_init astGLOBAL(CmpMap,Class_Init)
#define class_vtab astGLOBAL(CmpMap,Class_Vtab)
#define simplify_depth astGLOBAL(CmpMap,Simplify_Depth)
#define simplify_stackmaps astGLOBAL(CmpMap,Simplify_Stackmaps)



/* If thread safety is not needed, declare and initialise globals at static
   variables. */
#else

static int simplify_depth  = 0;
static AstMapping **simplify_stackmaps = NULL;


/* Define the class virtual function table and its initialisation flag
   as static variables. */
static AstCmpMapVtab class_vtab;   /* Virtual function table */
static int class_init = 0;       /* Virtual function table initialised? */

#endif

/* External Interface Function Prototypes. */
/* ======================================= */
/* The following functions have public prototypes only (i.e. no
   protected prototypes), so we must provide local prototypes for use
   within this module. */
AstCmpMap *astCmpMapId_( void *, void *, int, const char *, ... );

/* Prototypes for Private Member Functions. */
/* ======================================== */
static AstMapping *CombineMaps( AstMapping *, int, AstMapping *, int, int, int * );
static AstMapping *RemoveRegions( AstMapping *, int * );
static AstMapping *Simplify( AstMapping *, int * );
static AstPointSet *Transform( AstMapping *, AstPointSet *, int, AstPointSet *, int * );
static double Rate( AstMapping *, double *, int, int, int * );
static int *MapSplit( AstMapping *, int, const int *, AstMapping **, int * );
static int *MapSplit0( AstMapping *, int, const int *, AstMapping **, int, int * );
static int *MapSplit1( AstMapping *, int, const int *, AstMapping **, int * );
static int *MapSplit2( AstMapping *, int, const int *, AstMapping **, int * );
static int Equal( AstObject *, AstObject *, int * );
static int GetIsLinear( AstMapping *, int * );
static int MapList( AstMapping *, int, int, int *, AstMapping ***, int **, int * );
static int MapMerge( AstMapping *, int, int, int *, AstMapping ***, int **, int * );
static int PatternCheck( int, int, int **, int *, int * );
static void Copy( const AstObject *, AstObject *, int * );
static void Decompose( AstMapping *, AstMapping **, AstMapping **, int *, int *, int *, int * );
static void Delete( AstObject *, int * );
static void Dump( AstObject *, AstChannel *, int * );
static int GetObjSize( AstObject *, int * );

#if defined(THREAD_SAFE)
static int ManageLock( AstObject *, int, int, AstObject **, int * );
#endif


/* Member functions. */
/* ================= */
static int Equal( AstObject *this_object, AstObject *that_object, int *status ) {
/*
*  Name:
*     Equal

*  Purpose:
*     Test if two CmpMaps are equivalent.

*  Type:
*     Private function.

*  Synopsis:
*     #include "cmpmap.h"
*     int Equal( AstObject *this, AstObject *that, int *status )

*  Class Membership:
*     CmpMap member function (over-rides the astEqual protected
*     method inherited from the astMapping class).

*  Description:
*     This function returns a boolean result (0 or 1) to indicate whether
*     two CmpMaps are equivalent.

*  Parameters:
*     this
*        Pointer to the first Object (a CmpMap).
*     that
*        Pointer to the second Object.
*     status
*        Pointer to the inherited status variable.

*  Returned Value:
*     One if the CmpMaps are equivalent, zero otherwise.

*  Notes:
*     - A value of zero will be returned if this function is invoked
*     with the global status set, or if it should fail for any reason.
*/

/* Local Variables: */
   AstCmpMap *that;
   AstCmpMap *this;
   AstMapping **that_map_list;
   AstMapping **this_map_list;
   int *that_invert_list;
   int *this_invert_list;
   int i;
   int result;
   int that_inv;
   int that_nmap;
   int this_inv;
   int this_nmap;

/* Initialise. */
   result = 0;

/* Check the global error status. */
   if ( !astOK ) return result;

/* Obtain pointers to the two CmpMap structures. */
   this = (AstCmpMap *) this_object;
   that = (AstCmpMap *) that_object;

/* Check the second object is a CmpMap. We know the first is a
   CmpMap since we have arrived at this implementation of the virtual
   function. */
   if( astIsACmpMap( that ) ) {

/* Check they are both either parallel or series. */
      if( that->series == that->series ) {

/* Decompose the first CmpMap into a sequence of Mappings to be applied in
   series or parallel, as appropriate, and an associated list of
   Invert flags. */
         this_nmap = 0;
         this_map_list = NULL;
         this_invert_list = NULL;
         astMapList( (AstMapping *) this, this->series, astGetInvert( this ),
                     &this_nmap, &this_map_list, &this_invert_list );

/* Similarly decompose the second CmpMap. */
         that_nmap = 0;
         that_map_list = NULL;
         that_invert_list = NULL;
         astMapList( (AstMapping *) that, that->series, astGetInvert( that ),
                     &that_nmap, &that_map_list, &that_invert_list );

/* Check the decompositions yielded the same number of component
   Mappings. */
         if( that_nmap == this_nmap ) {

/* Check equality of every component. */
            for( i = 0; i < this_nmap; i++ ) {

/* Temporarily set the Mapping Invert flags to the required values,
   saving the original values so that they can be re-instated later.*/
               this_inv = astGetInvert( this_map_list[ i ] );
               astSetInvert( this_map_list[ i ], this_invert_list[ i ] );
               that_inv = astGetInvert( that_map_list[ i ] );
               astSetInvert( that_map_list[ i ], that_invert_list[ i ] );

/* Compare the two component Mappings for equality. */
               result = astEqual( this_map_list[ i ], that_map_list[ i ] );

/* Re-instate the original Invert flags. */
               astSetInvert( this_map_list[ i ], this_inv );
               astSetInvert( that_map_list[ i ], that_inv );

/* Leave the loop if the Mappings are not equal. */
               if( !result ) break;
            }
         }

/* Free resources */
         for( i = 0; i < this_nmap; i++ ) {
            this_map_list[ i ] = astAnnul( this_map_list[ i ] );
         }
         this_map_list = astFree( this_map_list );
         this_invert_list = astFree( this_invert_list );

         for( i = 0; i < that_nmap; i++ ) {
            that_map_list[ i ] = astAnnul( that_map_list[ i ] );
         }
         that_map_list = astFree( that_map_list );
         that_invert_list = astFree( that_invert_list );

      }
   }

/* If an error occurred, clear the result value. */
   if ( !astOK ) result = 0;

/* Return the result, */
   return result;
}

static int GetIsLinear( AstMapping *this_mapping, int *status ){
/*
*  Name:
*     GetIsLinear

*  Purpose:
*     Return the value of the IsLinear attribute for a CmpMap.

*  Type:
*     Private function.

*  Synopsis:
*     #include "mapping.h"
*     void GetIsLinear( AstMapping *this, int *status )

*  Class Membership:
*     CmpMap member function (over-rides the protected astGetIsLinear
*     method inherited from the Mapping class).

*  Description:
*     This function returns the value of the IsLinear attribute for a
*     Frame, which is one if both component Mappings have a value of 1
*     for the IsLinear attribute.

*  Parameters:
*     this
*        Pointer to the CmpqMap.
*     status
*        Pointer to the inherited status variable.
*/
   AstCmpMap *this;
   this = (AstCmpMap *) this_mapping;
   return astGetIsLinear( this->map1 ) && astGetIsLinear( this->map2 );
}

static int GetObjSize( AstObject *this_object, int *status ) {
/*
*  Name:
*     GetObjSize

*  Purpose:
*     Return the in-memory size of an Object.

*  Type:
*     Private function.

*  Synopsis:
*     #include "cmpmap.h"
*     int GetObjSize( AstObject *this, int *status )

*  Class Membership:
*     CmpMap member function (over-rides the astGetObjSize protected
*     method inherited from the parent class).

*  Description:
*     This function returns the in-memory size of the supplied CmpMap,
*     in bytes.

*  Parameters:
*     this
*        Pointer to the CmpMap.
*     status
*        Pointer to the inherited status variable.

*  Returned Value:
*     The Object size, in bytes.

*  Notes:
*     - A value of zero will be returned if this function is invoked
*     with the global status set, or if it should fail for any reason.
*/

/* Local Variables: */
   AstCmpMap *this;         /* Pointer to CmpMap structure */
   int result;                /* Result value to return */

/* Initialise. */
   result = 0;

/* Check the global error status. */
   if ( !astOK ) return result;

/* Obtain a pointers to the CmpMap structure. */
   this = (AstCmpMap *) this_object;

/* Invoke the GetObjSize method inherited from the parent class, and then
   add on any components of the class structure defined by thsi class
   which are stored in dynamically allocated memory. */
   result = (*parent_getobjsize)( this_object, status );

   result += astGetObjSize( this->map1 );
   result += astGetObjSize( this->map2 );

/* If an error occurred, clear the result value. */
   if ( !astOK ) result = 0;

/* Return the result, */
   return result;
}

static AstMapping *CombineMaps( AstMapping *mapping1, int invert1,
                                AstMapping *mapping2, int invert2,
                                int series, int *status ) {
/*
*  Name:
*     CombineMaps

*  Purpose:
*     Combine two Mappings with specified Invert flags into a CmpMap.

*  Type:
*     Private function.

*  Synopsis:
*     #include "cmpmap.h"
*     AstMapping *CombineMaps( AstMapping *mapping1, int invert1,
*                              AstMapping *mapping2, int invert2,
*                              int series, int *status )

*  Class Membership:
*     CmpMap member function.

*  Description:
*     This function combines two Mappings into a CmpMap (compound
*     Mapping) as if their Invert flags were set to specified values
*     when the CmpMap is created. However, the individual Mappings are
*     returned with their Invert flag values unchanged from their
*     original state.

*  Parameters:
*     mapping1
*        Pointer to the first Mapping.
*     invert1
*        The (boolean) Invert flag value required for the first Mapping.
*     mapping2
*        Pointer to the second Mapping.
*     invert2
*        The (boolean) Invert flag value required for the second Mapping.
*     series
*        Whether the Mappings are to be combined in series (as opposed to
*        in parallel).
*     status
*        Pointer to the inherited status variable.

*  Returned Value:
*     A pointer to the resulting compound Mapping (a CmpMap).

*  Notes:
*     - This function is a wrap-up for the astCmpMap constructor and
*     temporarily assigns the required Invert flag values while
*     creating the required CmpMap. However, it also takes account of
*     the possibility that the two Mapping pointers supplied may point
*     at the same Mapping.
*     - A null Object pointer (AST__NULL) will be returned if this
*     function is invoked with the AST error status set, or if it
*     should fail for any reason.
*/

/* Local Variables: */
   AstMapping *map1;             /* First temporary Mapping pointer */
   AstMapping *map2;             /* Second temporary Mapping pointer */
   AstMapping *result;           /* Pointer to result Mapping */
   int copy;                     /* Copy needed? */
   int inv1;                     /* First original Invert flag value */
   int inv2;                     /* Second original Invert flag value */
   int set1;                     /* First Invert flag originally set? */
   int set2;                     /* Second Invert flag originally set? */

/* Initialise */
   result = NULL;

/* Check the global error status. */
   if ( !astOK ) return result;

/* Limit incoming values to 0 or 1. */
   invert1 = ( invert1 != 0 );
   invert2 = ( invert2 != 0 );

/* Obtain the Invert flag values for each Mapping. */
   inv1 = astGetInvert( mapping1 );
   inv2 = astGetInvert( mapping2 );

/* Also determine if these values are explicitly set. */
   set1 = astTestInvert( mapping1 );
   set2 = astTestInvert( mapping2 );

/* If both Mappings are actually the same but we need different Invert
   flag values to be set, then this can only be achieved by making a
   copy. Note if this is necessary. */
   copy = ( ( mapping1 == mapping2 ) && ( invert1 != invert2 ) );

/* Clone the first Mapping pointer. Do likewise for the second but
   make a copy instead if necessary. */
   map1 = astClone( mapping1 );
   map2 = copy ? astCopy( mapping2 ) : astClone( mapping2 );

/* If the Invert value for the first Mapping needs changing, make the
   change. */
   if ( invert1 != inv1 ) {
      if ( invert1 ) {
         astSetInvert( map1, 1 );
      } else {
         astClearInvert( map1 );
      }
   }

/* Similarly, change the Invert flag for the second Mapping if
   necessary. */
   if ( invert2 != inv2 ) {
      if ( invert2 ) {
         astSetInvert( map2, 1 );
      } else {
         astClearInvert( map2 );
      }
   }

/* Combine the two Mappings into a CmpMap. */
   result = (AstMapping *) astCmpMap( map1, map2, series, "", status );

/* If the first Mapping's Invert value was changed, restore it to its
   original state. */
   if ( invert1 != inv1 ) {
      if ( set1 ) {
         astSetInvert( map1, inv1 );
      } else {
         astClearInvert( map1 );
      }
   }

/* Similarly, restore the second Mapping's Invert value if
   necessary. This step is not needed, however, if a copy was made. */
   if ( ( invert2 != inv2 ) && !copy ) {
      if ( set2 ) {
         astSetInvert( map2, inv2 );
      } else {
         astClearInvert( map2 );
      }
   }

/* Annul the temporary Mapping pointers. */
   map1 = astAnnul( map1 );
   map2 = astAnnul( map2 );

/* If an error occurred, then annul the result pointer. */
   if ( !astOK ) result = astAnnul( result );

/* Return the result. */
   return result;
}

static void Decompose( AstMapping *this_mapping, AstMapping **map1,
                       AstMapping **map2, int *series, int *invert1,
                       int *invert2, int *status ) {
/*
*
*  Name:
*     Decompose

*  Purpose:
*     Decompose a Mapping into two component Mappings.

*  Type:
*     Private function.

*  Synopsis:
*     #include "mapping.h"
*     void Decompose( AstMapping *this, AstMapping **map1,
*                     AstMapping **map2, int *series,
*                     int *invert1, int *invert2, int *status )

*  Class Membership:
*     CmpMap member function (over-rides the protected astDecompose
*     method inherited from the Mapping class).

*  Description:
*     This function returns pointers to two Mappings which, when applied
*     either in series or parallel, are equivalent to the supplied Mapping.
*
*     Since the Frame class inherits from the Mapping class, Frames can
*     be considered as special types of Mappings and so this method can
*     be used to decompose either CmpMaps or CmpFrames.

*  Parameters:
*     this
*        Pointer to the Mapping.
*     map1
*        Address of a location to receive a pointer to first component
*        Mapping.
*     map2
*        Address of a location to receive a pointer to second component
*        Mapping.
*     series
*        Address of a location to receive a value indicating if the
*        component Mappings are applied in series or parallel. A non-zero
*        value means that the supplied Mapping is equivalent to applying map1
*        followed by map2 in series. A zero value means that the supplied
*        Mapping is equivalent to applying map1 to the lower numbered axes
*        and map2 to the higher numbered axes, in parallel.
*     invert1
*        The value of the Invert attribute to be used with map1.
*     invert2
*        The value of the Invert attribute to be used with map2.
*     status
*        Pointer to the inherited status variable.

*  Notes:
*     - Any changes made to the component Mappings using the returned
*     pointers will be reflected in the supplied Mapping.

*-
*/


/* Local Variables: */
   AstCmpMap *this;              /* Pointer to CmpMap structure */

/* Check the global error status. */
   if ( !astOK ) return;

/* Obtain a pointer to the CmpMap structure. */
   this = (AstCmpMap *) this_mapping;

/* First deal with series mappings. */
   if( this->series ) {
      if( series ) *series = 1;

/* If the CmpMap has been inverted, return the Mappings in reverse
   order with inverted Invert falgs. */
      if( astGetInvert( this ) ) {
         if( map1 ) *map1 = astClone( this->map2 );
         if( map2 ) *map2 = astClone( this->map1 );
         if( invert1 ) *invert1 = this->invert2 ? 0 : 1;
         if( invert2 ) *invert2 = this->invert1 ? 0 : 1;

/* If the CmpMap has not been inverted, return the Mappings in their
   original order with their original Invert flags. */
      } else {
         if( map1 ) *map1 = astClone( this->map1 );
         if( map2 ) *map2 = astClone( this->map2 );
         if( invert1 ) *invert1 = this->invert1;
         if( invert2 ) *invert2 = this->invert2;
      }

/* Now deal with parallel mappings. */
   } else {
      if( series ) *series = 0;

/* The mappings are returned in their original order whether or not the
   CmpMap has been inverted. */
      if( map1 ) *map1 = astClone( this->map1 );
      if( map2 ) *map2 = astClone( this->map2 );

/* If the CmpMap has been inverted, return inverted Invert flags. */
      if( astGetInvert( this ) ) {
         if( invert1 ) *invert1 = this->invert1 ? 0 : 1;
         if( invert2 ) *invert2 = this->invert2 ? 0 : 1;

/* If the CmpMap has not been inverted, return the original Invert flags. */
      } else {
         if( invert1 ) *invert1 = this->invert1;
         if( invert2 ) *invert2 = this->invert2;
      }

   }
}

void astInitCmpMapVtab_(  AstCmpMapVtab *vtab, const char *name, int *status ) {
/*
*+
*  Name:
*     astInitCmpMapVtab

*  Purpose:
*     Initialise a virtual function table for a CmpMap.

*  Type:
*     Protected function.

*  Synopsis:
*     #include "cmpmap.h"
*     void astInitCmpMapVtab( AstCmpMapVtab *vtab, const char *name )

*  Class Membership:
*     CmpMap vtab initialiser.

*  Description:
*     This function initialises the component of a virtual function
*     table which is used by the CmpMap class.

*  Parameters:
*     vtab
*        Pointer to the virtual function table. The components used by
*        all ancestral classes will be initialised if they have not already
*        been initialised.
*     name
*        Pointer to a constant null-terminated character string which contains
*        the name of the class to which the virtual function table belongs (it
*        is this pointer value that will subsequently be returned by the Object
*        astClass function).
*-
*/

/* Local Variables: */
   astDECLARE_GLOBALS            /* Pointer to thread-specific global data */
   AstMappingVtab *mapping;      /* Pointer to Mapping component of Vtab */
   AstObjectVtab *object;        /* Pointer to Object component of Vtab */

/* Check the local error status. */
   if ( !astOK ) return;

/* Get a pointer to the thread specific global data structure. */
   astGET_GLOBALS(NULL);

/* Initialize the component of the virtual function table used by the
   parent class. */
   astInitMappingVtab( (AstMappingVtab *) vtab, name );

/* Store a unique "magic" value in the virtual function table. This
   will be used (by astIsACmpMap) to determine if an object belongs to
   this class.  We can conveniently use the address of the (static)
   class_check variable to generate this unique value. */
   vtab->id.check = &class_check;
   vtab->id.parent = &(((AstMappingVtab *) vtab)->id);

/* Initialise member function pointers. */
/* ------------------------------------ */
/* Store pointers to the member functions (implemented here) that
   provide virtual methods for this class. */

/* None. */

/* Save the inherited pointers to methods that will be extended, and
   replace them with pointers to the new member functions. */
   object = (AstObjectVtab *) vtab;
   mapping = (AstMappingVtab *) vtab;
   parent_getobjsize = object->GetObjSize;
   object->GetObjSize = GetObjSize;

#if defined(THREAD_SAFE)
   parent_managelock = object->ManageLock;
   object->ManageLock = ManageLock;
#endif

   parent_maplist = mapping->MapList;
   mapping->MapList = MapList;

   parent_transform = mapping->Transform;
   mapping->Transform = Transform;

   parent_mapsplit = mapping->MapSplit;
   mapping->MapSplit = MapSplit;

/* Store replacement pointers for methods which will be over-ridden by
   new member functions implemented here. */
   object->Equal = Equal;
   mapping->Decompose = Decompose;
   mapping->MapMerge = MapMerge;
   mapping->Simplify = Simplify;
   mapping->RemoveRegions = RemoveRegions;
   mapping->GetIsLinear = GetIsLinear;

/* For some reason the CmpMap implementation of astRate can be immensely
   slow for complex Mapping, so it's currently disable until such time as
   I have time to sort it out.

   mapping->Rate = Rate;
*/

/* Declare the copy constructor, destructor and class dump function. */
   astSetCopy( vtab, Copy );
   astSetDelete( vtab, Delete );
   astSetDump( vtab, Dump, "CmpMap", "Compound Mapping" );

/* If we have just initialised the vtab for the current class, indicate
   that the vtab is now initialised, and store a pointer to the class
   identifier in the base "object" level of the vtab. */
   if( vtab == &class_vtab ) {
      class_init = 1;
      astSetVtabClassIdentifier( vtab, &(vtab->id) );
   }
}

#if defined(THREAD_SAFE)
static int ManageLock( AstObject *this_object, int mode, int extra,
                       AstObject **fail, int *status ) {
/*
*  Name:
*     ManageLock

*  Purpose:
*     Manage the thread lock on an Object.

*  Type:
*     Private function.

*  Synopsis:
*     #include "object.h"
*     AstObject *ManageLock( AstObject *this, int mode, int extra,
*                            AstObject **fail, int *status )

*  Class Membership:
*     CmpMap member function (over-rides the astManageLock protected
*     method inherited from the parent class).

*  Description:
*     This function manages the thread lock on the supplied Object. The
*     lock can be locked, unlocked or checked by this function as
*     deteremined by parameter "mode". See astLock for details of the way
*     these locks are used.

*  Parameters:
*     this
*        Pointer to the Object.
*     mode
*        An integer flag indicating what the function should do:
*
*        AST__LOCK: Lock the Object for exclusive use by the calling
*        thread. The "extra" value indicates what should be done if the
*        Object is already locked (wait or report an error - see astLock).
*
*        AST__UNLOCK: Unlock the Object for use by other threads.
*
*        AST__CHECKLOCK: Check that the object is locked for use by the
*        calling thread (report an error if not).
*     extra
*        Extra mode-specific information.
*     fail
*        If a non-zero function value is returned, a pointer to the
*        Object that caused the failure is returned at "*fail". This may
*        be "this" or it may be an Object contained within "this". Note,
*        the Object's reference count is not incremented, and so the
*        returned pointer should not be annulled. A NULL pointer is
*        returned if this function returns a value of zero.
*     status
*        Pointer to the inherited status variable.

*  Returned Value:
*    A local status value:
*        0 - Success
*        1 - Could not lock or unlock the object because it was already
*            locked by another thread.
*        2 - Failed to lock a POSIX mutex
*        3 - Failed to unlock a POSIX mutex
*        4 - Bad "mode" value supplied.

*  Notes:
*     - This function attempts to execute even if an error has already
*     occurred.
*/

/* Local Variables: */
   AstCmpMap *this;       /* Pointer to CmpMap structure */
   int result;            /* Returned status value */

/* Initialise */
   result = 0;

/* Check the supplied pointer is not NULL. */
   if( !this_object ) return result;

/* Obtain a pointers to the CmpMap structure. */
   this = (AstCmpMap *) this_object;

/* Invoke the ManageLock method inherited from the parent class. */
   if( !result ) result = (*parent_managelock)( this_object, mode, extra,
                                                fail, status );

/* Invoke the astManageLock method on any Objects contained within
   the supplied Object. */
   if( !result ) result = astManageLock( this->map1, mode, extra, fail );
   if( !result ) result = astManageLock( this->map2, mode, extra, fail );

   return result;

}
#endif

static int MapList( AstMapping *this_mapping, int series, int invert,
                     int *nmap, AstMapping ***map_list, int **invert_list, int *status ) {
/*
*  Name:
*     MapList

*  Purpose:
*     Decompose a CmpMap into a sequence of simpler Mappings.

*  Type:
*     Private function.

*  Synopsis:
*     #include "mapping.h"
*     int MapList( AstMapping *this, int series, int invert, int *nmap,
*                  AstMapping ***map_list, int **invert_list )

*  Class Membership:
*     CmpMap member function (over-rides the protected astMapList
*     method inherited from the Maping class).

*  Description:
*     This function decomposes a CmpMap into a sequence of simpler
*     Mappings which may be applied in sequence to achieve the same
*     effect. The CmpMap is decomposed as far as possible, but it is
*     not guaranteed that this will necessarily yield any more than
*     one Mapping, which may actually be the original CmpMap supplied.
*
*     This function is provided to support both the simplification of
*     CmpMaps, and the analysis of CmpMap structure so that particular
*     forms can be recognised.

*  Parameters:
*     this
*        Pointer to the CmpMap to be decomposed (the CmpMap is not
*        actually modified by this function).
*     series
*        If this value is non-zero, an attempt will be made to
*        decompose the CmpMap into a sequence of equivalent Mappings
*        which can be applied in series (i.e. one after the other). If
*        it is zero, the decomposition will instead yield Mappings
*        which can be applied in parallel (i.e. on successive sub-sets
*        of the input/output coordinates).
*     invert
*        The value to which the CmpMap's Invert attribute is to be
*        (notionally) set before performing the
*        decomposition. Normally, the value supplied here will be the
*        actual Invert value obtained from the CmpMap (e.g. using
*        astGetInvert).  Sometimes, however, when a CmpMap is
*        encapsulated within another structure, that structure may
*        retain an Invert value (in order to prevent external
*        interference) which should be used instead.
*
*        Note that the actual Invert value of the CmpMap supplied is
*        not used (or modified) by this function.
*     nmap
*        The address of an int which holds a count of the number of
*        individual Mappings in the decomposition. On entry, this
*        should count the number of Mappings already in the
*        "*map_list" array (below). On exit, it is updated to include
*        any new Mappings appended by this function.
*     map_list
*        Address of a pointer to an array of Mapping pointers. On
*        entry, this array pointer should either be NULL (if no
*        Mappings have yet been obtained) or should point at a
*        dynamically allocated array containing Mapping pointers
*        ("*nmap" in number) which have been obtained from a previous
*        invocation of this function.
*
*        On exit, the dynamic array will be enlarged to contain any
*        new Mapping pointers that result from the decomposition
*        requested. These pointers will be appended to any previously
*        present, and the array pointer will be updated as necessary
*        to refer to the enlarged array (any space released by the
*        original array will be freed automatically).
*
*        The new Mapping pointers returned will identify a sequence of
*        Mappings which, when applied in order, will perform a forward
*        transformation equivalent to that of the original CmpMap
*        (after its Invert flag has first been set to the value
*        requested above). The Mappings should be applied in series or
*        in parallel according to the type of decomposition requested.
*
*        All the Mapping pointers returned by this function should be
*        annulled by the caller, using astAnnul, when no longer
*        required. The dynamic array holding these pointers should
*        also be freed, using astFree.
*     invert_list
*        Address of a pointer to an array of int. On entry, this array
*        pointer should either be NULL (if no Mappings have yet been
*        obtained) or should point at a dynamically allocated array
*        containing Invert attribute values ("*nmap" in number) which
*        have been obtained from a previous invocation of this
*        function.
*
*        On exit, the dynamic array will be enlarged to contain any
*        new Invert attribute values that result from the
*        decomposition requested. These values will be appended to any
*        previously present, and the array pointer will be updated as
*        necessary to refer to the enlarged array (any space released
*        by the original array will be freed automatically).
*
*        The new Invert values returned identify the values which must
*        be assigned to the Invert attributes of the corresponding
*        Mappings (whose pointers are in the "*map_list" array) before
*        they are applied. Note that these values may differ from the
*        actual Invert attribute values of these Mappings, which are
*        not relevant.
*
*        The dynamic array holding these values should be freed by the
*        caller, using astFree, when no longer required.

*  Returned Value:
*     A non-zero value is returned if the supplied Mapping contained any
*     inverted CmpMaps.

*  Notes:
*     - It is unspecified to what extent the original CmpMap and the
*     individual (decomposed) Mappings are
*     inter-dependent. Consequently, the individual Mappings cannot be
*     modified without risking modification of the original CmpMap.
*     - If this function is invoked with the global error status set,
*     or if it should fail for any reason, then the *nmap value, the
*     list of Mapping pointers and the list of Invert values will all
*     be returned unchanged.
*/

/* Local Variables: */
   AstCmpMap *this;              /* Pointer to CmpMap structure */
   int invert1;                  /* Invert flag for first component Mapping */
   int invert2;                  /* Invert flag for second component Mapping */
   int r1;                       /* Value returned from first map list */
   int r2;                       /* Value returned from second map list */
   int result;                   /* Returned value */

/* Check the global error status. */
   if ( !astOK ) return 0;

/* Obtain a pointer to the CmpMap structure. */
   this = (AstCmpMap *) this_mapping;

/* Check if the CmpMap combines its component Mappings in the same way
   (series or parallel) as the decomposition requires. Also, do not
   expand CmpMaps that are not appropriate for simplification. */
   if ( this->series == series && !astDoNotSimplify( this ) ) {

/* If so, obtain the Invert attribute values to be applied to each
   component Mapping. */
      invert1 = this->invert1;
      invert2 = this->invert2;

/* If the CmpMap itself is inverted, also invert the Invert values to be
   applied to its components. */
      if ( invert ) {
         invert1 = !invert1;
         invert2 = !invert2;
      }

/* If the component Mappings are applied in series, then concatenate
   the Mapping lists obtained from each of them. Do this in reverse
   order if the CmpMap is inverted, since the second Mapping would be
   applied first in this case. */
      if ( series ) {
         if ( !invert ) {
            r1 = astMapList( this->map1, series, invert1,
                             nmap, map_list, invert_list );
            r2 = astMapList( this->map2, series, invert2,
                             nmap, map_list, invert_list );
         } else {
            r1 = astMapList( this->map2, series, invert2,
                             nmap, map_list, invert_list );
            r2 = astMapList( this->map1, series, invert1,
                             nmap, map_list, invert_list );
         }

/* If the component Mappings are applied in parallel, then concatenate
   the Mapping lists obtained from each of them. In this case,
   inverting the CmpMap has no effect on the order in which they are
   applied. */
      } else {
         r1 = astMapList( this->map1, series, invert1,
                          nmap, map_list, invert_list );
         r2 = astMapList( this->map2, series, invert2,
                          nmap, map_list, invert_list );
      }

/* Did we find any inverted CmpMaps? */
      result = invert || r1 || r2;

/* If the CmpMap does not combine its components in the way required
   by the decomposition (series or parallel), then we cannot decompose
   it. In this case it must be appended to the Mapping list as a
   single entity. We can use the parent class method to do this. */
   } else {
      result = ( *parent_maplist )( this_mapping, series, invert, nmap,
                                    map_list, invert_list, status );
   }

   return result;
}

static int MapMerge( AstMapping *this, int where, int series, int *nmap,
                     AstMapping ***map_list, int **invert_list, int *status ) {
/*
*  Name:
*     MapMerge

*  Purpose:
*     Simplify a sequence of Mappings containing a CmpMap.

*  Type:
*     Private function.

*  Synopsis:
*     #include "mapping.h"
*     int MapMerge( AstMapping *this, int where, int series, int *nmap,
*                   AstMapping ***map_list, int **invert_list )

*  Class Membership:
*     CmpMap method (over-rides the protected astMapMerge method
*     inherited from the Mapping class).

*  Description:
*     This function attempts to simplify a sequence of Mappings by
*     merging a nominated CmpMap in the sequence with its neighbours,
*     so as to shorten the sequence if possible.
*
*     In many cases, simplification will not be possible and the
*     function will return -1 to indicate this, without further
*     action.
*
*     In most cases of interest, however, this function will either
*     attempt to replace the nominated CmpMap with one which it
*     considers simpler, or to merge it with the Mappings which
*     immediately precede it or follow it in the sequence (both will
*     normally be considered). This is sufficient to ensure the
*     eventual simplification of most Mapping sequences by repeated
*     application of this function.
*
*     In some cases, the function may attempt more elaborate
*     simplification, involving any number of other Mappings in the
*     sequence. It is not restricted in the type or scope of
*     simplification it may perform, but will normally only attempt
*     elaborate simplification in cases where a more straightforward
*     approach is not adequate.

*  Parameters:
*     this
*        Pointer to the nominated CmpMap which is to be merged with
*        its neighbours. This should be a cloned copy of the CmpMap
*        pointer contained in the array element "(*map_list)[where]"
*        (see below). This pointer will not be annulled, and the
*        CmpMap it identifies will not be modified by this function.
*     where
*        Index in the "*map_list" array (below) at which the pointer
*        to the nominated CmpMap resides.
*     series
*        A non-zero value indicates that the sequence of Mappings to
*        be simplified will be applied in series (i.e. one after the
*        other), whereas a zero value indicates that they will be
*        applied in parallel (i.e. on successive sub-sets of the
*        input/output coordinates).
*     nmap
*        Address of an int which counts the number of Mappings in the
*        sequence. On entry this should be set to the initial number
*        of Mappings. On exit it will be updated to record the number
*        of Mappings remaining after simplification.
*     map_list
*        Address of a pointer to a dynamically allocated array of
*        Mapping pointers (produced, for example, by the astMapList
*        method) which identifies the sequence of Mappings. On entry,
*        the initial sequence of Mappings to be simplified should be
*        supplied.
*
*        On exit, the contents of this array will be modified to
*        reflect any simplification carried out. Any form of
*        simplification may be performed. This may involve any of: (a)
*        removing Mappings by annulling any of the pointers supplied,
*        (b) replacing them with pointers to new Mappings, (c)
*        inserting additional Mappings and (d) changing their order.
*
*        The intention is to reduce the number of Mappings in the
*        sequence, if possible, and any reduction will be reflected in
*        the value of "*nmap" returned. However, simplifications which
*        do not reduce the length of the sequence (but improve its
*        execution time, for example) may also be performed, and the
*        sequence might conceivably increase in length (but normally
*        only in order to split up a Mapping into pieces that can be
*        more easily merged with their neighbours on subsequent
*        invocations of this function).
*
*        If Mappings are removed from the sequence, any gaps that
*        remain will be closed up, by moving subsequent Mapping
*        pointers along in the array, so that vacated elements occur
*        at the end. If the sequence increases in length, the array
*        will be extended (and its pointer updated) if necessary to
*        accommodate any new elements.
*
*        Note that any (or all) of the Mapping pointers supplied in
*        this array may be annulled by this function, but the Mappings
*        to which they refer are not modified in any way (although
*        they may, of course, be deleted if the annulled pointer is
*        the final one).
*     invert_list
*        Address of a pointer to a dynamically allocated array which,
*        on entry, should contain values to be assigned to the Invert
*        attributes of the Mappings identified in the "*map_list"
*        array before they are applied (this array might have been
*        produced, for example, by the astMapList method). These
*        values will be used by this function instead of the actual
*        Invert attributes of the Mappings supplied, which are
*        ignored.
*
*        On exit, the contents of this array will be updated to
*        correspond with the possibly modified contents of the
*        "*map_list" array.  If the Mapping sequence increases in
*        length, the "*invert_list" array will be extended (and its
*        pointer updated) if necessary to accommodate any new
*        elements.

*  Returned Value:
*     If simplification was possible, the function returns the index
*     in the "map_list" array of the first element which was
*     modified. Otherwise, it returns -1 (and makes no changes to the
*     arrays supplied).

*  Notes:
*     - A value of -1 will be returned if this function is invoked
*     with the global error status set, or if it should fail for any
*     reason.
*/

/* Local Variables: */
   AstCmpMap *cmpmap1;           /* Pointer to first CmpMap */
   AstCmpMap *cmpmap2;           /* Pointer to second CmpMap */
   AstCmpMap *cmpmap;            /* Pointer to nominated CmpMap */
   AstCmpMap *new_cm;            /* Pointer to new CmpMap */
   AstMapping **map_list1;       /* Pointer to list of cmpmap1 component Mappings */
   AstMapping **map_list2;       /* Pointer to list of cmpmap2 component Mappings */
   AstMapping **new_map_list;    /* Extended Mapping list */
   AstMapping *map;              /* Pointer to nominated CmpMap */
   AstMapping *new1;             /* Pointer to new CmpMap */
   AstMapping *new2;             /* Pointer to new CmpMap */
   AstMapping *new;              /* Pointer to replacement Mapping */
   AstMapping *simp1;            /* Pointer to simplified Mapping */
   AstMapping *simp2;            /* Pointer to simplified Mapping */
   AstMapping *submap1;          /* A subset of mappings from cmpmap1 */
   AstMapping *submap2;          /* A subset of mappings from cmpmap2 */
   AstMapping *tmap2;            /* Temporary Mapping */
   AstMapping *tmap;             /* Temporary Mapping */
   AstPermMap *new_pm;           /* Pointer to new PermMap */
   AstPermMap *permmap1;         /* Pointer to first PermMap */
   AstUnitMap *unit;             /* UnitMap that feeds const PermMap i/p's */
   const char *class;            /* Pointer to Mapping class string */
   double *conperm;              /* Pointer to PermMap constants array */
   double *const_new;            /* Pointer to new PermMap constants array */
   double *p;                    /* Pointer to PermMap input position */
   double *q;                    /* Pointer to PermMap output position */
   double *qa;                   /* Pointer to 1st component output position */
   double *qb;                   /* Pointer to 2nd component output position */
   int *inperm;                  /* Pointer to copy of PermMap inperm array */
   int *inperm_new;              /* Pointer to new PermMap inperm array */
   int *invert_list1;            /* Pointer to list of cmpmap1 invert values */
   int *invert_list2;            /* Pointer to list of cmpmap2 invert values */
   int *new_invert_list;         /* Extended Invert flag list */
   int *outperm;                 /* Pointer to copy of PermMap outperm array */
   int *outperm_new;             /* Pointer to new PermMap outperm array */
   int aconstants;               /* Are all 1st component outputs constant? */
   int bconstants;               /* Are all 2nd component outputs constant? */
   int canswap;                  /* Can nominated Mapping swap with lower neighbour? */
   int i;                        /* Coordinate index */
   int iconid;                   /* Constant identifier in supplied PermMap */
   int imap1;                    /* Index of first Mapping */
   int imap2;                    /* Index of second Mapping */
   int imap;                     /* Loop counter for Mappings */
   int invert1;                  /* Invert flag for first CmpMap */
   int invert1a;                 /* Invert flag for sub-Mapping */
   int invert1b;                 /* Invert flag for sub-Mapping */
   int invert2;                  /* Invert flag for second CmpMap */
   int invert2a;                 /* Invert flag for sub-Mapping */
   int invert2b;                 /* Invert flag for sub-Mapping */
   int invert;                   /* Invert attribute value */
   int j;                        /* Coordinate index */
   int jmap1;                    /* Index of next component Mapping in cmpmap1 */
   int jmap2;                    /* Index of next component Mapping in cmpmap2 */
   int new_invert;               /* New Invert attribute value */
   int nin2a;                    /* No. input coordinates for sub-Mapping */
   int nin2b;                    /* No. input coordinates for sub-Mapping */
   int nmap1;                    /* Number of Mappings in cmpmap1 */
   int nmap2;                    /* Number of Mappings in cmpmap2 */
   int nout2a;                   /* No. of outputs for 1st component Mapping */
   int nout2b;                   /* No. of outputs for 2nd component Mapping */
   int npin;                     /* No. of inputs for original PermMap */
   int npin_new;                 /* No. of inputs for new PermMap */
   int npout;                    /* No. of outputs for original PermMap */
   int npout_new;                /* No. of outputs for new PermMap */
   int nunit;                    /* No. of PermMap i/p's fed by UnitMap */
   int oconid;                   /* Constant identifier in returned PermMap */
   int result;                   /* Result value to return */
   int set;                      /* Invert attribute set? */
   int simpler;                  /* Simplification possible? */
   int subin2;                   /* Number of inputs of submap2 */
   int subinv1;                  /* Invert attribute to use with submap1 */
   int subinv2;                  /* Invert attribute to use with submap2 */
   int subout1;                  /* Number of outputs of submap1 */

/* Initialise.*/
   result = -1;

/* Check the inherited status. */
   if ( !astOK ) return result;

/* Simplify the CmpMap on its own. */
/* =============================== */
/* Obtain a pointer to the nominated Mapping (which is a CmpMap). */
   map = ( *map_list )[ where ];
   cmpmap = (AstCmpMap *) map;

/* Determine if the Mapping's Invert attribute is set and obtain its
   value. */
   set = astTestInvert( map );
   invert = astGetInvert( map );

/* If necessary, change the Invert attribute to the value we want. We
   do this so that simplification (below) has a chance to absorb a
   non-zero Invert value into the implementation of the simplified
   Mapping (the preference being to have an Invert value of zero after
   simplification, if possible). */
   if ( invert != ( *invert_list )[ where ] ) {
      astSetInvert( map, ( *invert_list )[ where ] );
   }

/* Simplify the Mapping and obtain the new Invert value. */
   new = astSimplify( map );
   new_invert = astGetInvert( new );

/* If necessary, restore the original Mapping's Invert attribute to
   its initial state. */
   if ( invert != ( *invert_list )[ where ] ) {
      if ( set ) {
         astSetInvert( map, invert );
      } else {
         astClearInvert( map );
      }
   }

/* We must now determine if simplification has occurred. Since this is
   internal code, we can compare the two Mapping pointers directly to
   see whether "astSimplify" just cloned the pointer we gave it. If it
   did, then simplification was probably not possible, but check to
   see if the Invert attribute has changed to be sure. */
   if ( astOK ) {
      simpler = ( new != map ) || ( new_invert != ( *invert_list )[ where ] );

/* If simplification was successful, annul the original pointer in the
   Mapping list and replace it with the new one, together with its
   invert flag. */
      if ( simpler ) {
         (void) astAnnul( ( *map_list )[ where ] );
         ( *map_list )[ where ] = new;
         ( *invert_list )[ where ] = new_invert;

/* Return the result. */
         result = where;

/* Otherwise, annul the new Mapping pointer. */
      } else {
         new = astAnnul( new );

/* If the nominated CmpMap is a series CmpMap and the sequence of
   Mappings are being combined in series, or if the nominated CmpMap is
   a parallel CmpMap and the sequence of Mappings are being combined in
   parallel, replace the single CmpMap with the two component Mappings. */
         if( ( series && cmpmap->series ) ||
             ( !series && !cmpmap->series ) ) {

/* We are increasing the number of Mappings in the list, so we need to create
   new, larger, arrays to hold the list of Mapping pointers and invert flags. */
            new_map_list = astMalloc( ( *nmap + 1 )*sizeof( AstMapping * ) );
            new_invert_list = astMalloc( ( *nmap + 1 )*sizeof( int ) );
            if( astOK ) {

/* Copy the values prior to the nominated CmpMap. */
               for( i = 0; i < where; i++ ) {
                  new_map_list[ i ] = astClone( ( *map_list )[ i ] );
                  new_invert_list[ i ] = ( *invert_list )[ i ];
               }

/* Next insert the two components of the nominated CmpMap */
               new_map_list[ where ] = astClone( cmpmap->map1 );
               new_invert_list[ where ] = cmpmap->invert1;
               new_map_list[ where + 1 ] = astClone( cmpmap->map2 );
               new_invert_list[ where + 1 ] = cmpmap->invert2;

/* Now copy any values after the nominated CmpMap. */
               for( i = where + 1; i < *nmap; i++ ) {
                  new_map_list[ i + 1 ] = astClone( ( *map_list )[ i ] );
                  new_invert_list[ i + 1 ] = ( *invert_list )[ i ];
               }

/* Now annul the Object pointers in the supplied map list. */
               for( i = 0; i < *nmap; i++ ) {
                  (* map_list )[ i ] = astAnnul( ( *map_list )[ i ] );
               }

/* Free the memory holding the supplied Mapping and invert flag lists. */
               astFree( *map_list );
               astFree( *invert_list );

/* Return pointers to the new extended lists. */
               *map_list = new_map_list;
               *invert_list = new_invert_list;

/* Increase the number of Mappings in the list, and the index of
   the first modified Mapping. */
               (*nmap)++;
               result = where;

/* Indicate some simplification has taken place */
               simpler = 1;
            }
         }
      }

/* If no simplification has been done, merge adjacent CmpMaps. */
/* ========================================================== */
/* If the CmpMap would not simplify on its own, we now look for a
   neighbouring CmpMap with which it might merge. We use the previous
   Mapping, if suitable, since this will normally also have been fully
   simplified on its own. Check if a previous Mapping exists. */
      if( !simpler ) {
         if ( astOK && *nmap > 1 ) {

/* Obtain the indices of the two potential Mappings to be merged. imap1
   is the first Mapping, imap2 is the second. imapc is the CmpMap, imapn is
   the neighbouring Mapping. */
            if( where == 0 ) {
               imap1 = 0;
               imap2 = 1;
            } else {
               imap1 = where - 1;
               imap2 = where;
            }

/* Obtain the Class string of the neighbouring Mapping and determine if it
   is a CmpMap. */
            class = astGetClass( ( *map_list )[ (where>0)?where-1:1 ] );
            if ( astOK && !strcmp( class, "CmpMap" ) ) {

/* If suitable, obtain pointers to the two CmpMaps. */
               cmpmap1 = (AstCmpMap *) ( *map_list )[ imap1 ];
               cmpmap2 = (AstCmpMap *) ( *map_list )[ imap2 ];

/* Obtain the associated invert flag values. */
               invert1 = ( *invert_list )[ imap1 ];
               invert2 = ( *invert_list )[ imap2 ];

/* Extract the invert flags associated with each CmpMap sub-Mapping
   and combine these with the flag values obtained above so as to give
   the invert flag to be used with each individual sub-Mapping. */
               invert1a = cmpmap1->invert1;
               invert1b = cmpmap1->invert2;
               if ( invert1 ) {
                  invert1a = !invert1a;
                  invert1b = !invert1b;
               }
               invert2a = cmpmap2->invert1;
               invert2b = cmpmap2->invert2;
               if ( invert2 ) {
                  invert2a = !invert2a;
                  invert2b = !invert2b;
               }

/* Series CmpMaps in parallel. */
/* =========================== */
/* Now check if the CmpMaps can be merged. This may be possible if we
   are examining a list of Mappings combined in parallel and the two
   adjacent CmpMaps both combine their sub-Mappings in series. */
               if ( !series && cmpmap1->series && cmpmap2->series ) {

/* Form two new parallel CmpMaps with the sub-Mappings re-arranged so
   that when combined in series these new CmpMaps are equivalent to
   the original ones. In doing this, we must take account of the
   invert flags which apply to each sub-Mapping and also of the fact
   that the order in which the sub-Mappings are applied depends on the
   invert flags of the original CmpMaps. */
                  new1 = CombineMaps( invert1 ? cmpmap1->map2 : cmpmap1->map1,
                                      invert1 ? invert1b      : invert1a,
                                      invert2 ? cmpmap2->map2 : cmpmap2->map1,
                                      invert2 ? invert2b      : invert2a, 0, status );
                  new2 = CombineMaps( invert1 ? cmpmap1->map1 : cmpmap1->map2,
                                      invert1 ? invert1a      : invert1b,
                                      invert2 ? cmpmap2->map1 : cmpmap2->map2,
                                      invert2 ? invert2a      : invert2b, 0, status );

/* Having converted the parallel combination of series CmpMaps into a
   pair of equivalent parallel CmpMaps that can be combined in series,
   try and simplify each of these new CmpMaps. */
                  simp1 = astSimplify( new1 );
                  simp2 = astSimplify( new2 );

/* Test if either could be simplified by checking if its pointer value
   has changed. Also check if the Invert attribute has changed (not
   strictly necessary, but a useful safety feature in case of any
   rogue code which just changes this attribute instead of issuing a
   new pointer). */
                  simpler = ( simp1 != new1 ) || ( simp2 != new2 ) ||
                            astGetInvert( simp1 ) || astGetInvert( simp2 );

/* If either CmpMap was simplified, then combine the resulting
   Mappings in series to give the replacement CmpMap. */
                  if ( simpler ) new =
                               (AstMapping *) astCmpMap( simp1, simp2, 1, "", status );

/* Annul the temporary Mapping pointers. */
                  new1 = astAnnul( new1 );
                  new2 = astAnnul( new2 );
                  simp1 = astAnnul( simp1 );
                  simp2 = astAnnul( simp2 );

/* Parallel CmpMaps in series. */
/* =========================== */
/* A pair of adjacent CmpMaps can also potentially be merged if we are
   examining a list of Mappings combined in series and the two
   adjacent CmpMaps both combine their sub-Mappings in parallel. */
               } else if ( series && !cmpmap1->series && !cmpmap2->series ) {

/* Expand each of the two adjacent CmpMaps into a list of Mappings to be
   combined in parallel. */
                  map_list1 = map_list2 = NULL;
                  invert_list1 = invert_list2 = NULL;
                  nmap1 = nmap2 = 0;
                  (void) astMapList( (AstMapping *) cmpmap1, 0, invert1,
                                     &nmap1, &map_list1, &invert_list1 );
                  (void) astMapList( (AstMapping *) cmpmap2, 0, invert2,
                                     &nmap2, &map_list2, &invert_list2 );

/* We want to divide each of these lists into N sub-lists so that the
   outputs of the Mappings in the i'th sub-list from cmpmap1 can feed
   (i.e. equal in number) the inputs of the Mappings in the i'th sub-list
   from cmpmap2. If such a sub-list contains more than one Mapping we
   combine them together into a parallel CmpMap. Initialise a flag to
   indicate that we have not yet found any genuine simplification. */
                  simpler = 0;

/* Initialise the index of the next Mapping to be added into each
   sublist. */
                  jmap1 = jmap2 = 0;

/* Indicate both sublists are currently empty. */
                  subout1 = subin2 = 0;
                  new = submap1 = submap2 = NULL;
                  subinv1 = subinv2 = 0;

/* Loop round untill all Mappings have been used. */
                  while( jmap1 <= nmap1 && jmap2 <= nmap2 && astOK ) {

/* Note the number of outputs from submap1 and the number of inputs to
   submap2. If the Invert flag is not set to the required value for
   either Mapping, then inputs become outputs and vice-versa, so swap Nin
   and Nout. */
                     if( !submap1 ) {
                        subout1 = 0;
                     } else if( subinv1 == astGetInvert( submap1 ) ) {
                        subout1 = astGetNout( submap1 );
                     } else {
                        subout1 = astGetNin( submap1 );
                     }

                     if( !submap2 ) {
                        subin2 = 0;
                     } else if( subinv2 == astGetInvert( submap2 ) ) {
                        subin2 = astGetNin( submap2 );
                     } else {
                        subin2 = astGetNout( submap2 );
                     }

/* If sublist for cmpmap1 has too few outputs, add the next Mapping from
   the cmpmap1 list into the submap1 sublist. */
                     if( subout1 < subin2 ) {
                        tmap = CombineMaps( submap1, subinv1,
                                            map_list1[ jmap1 ],
                                            invert_list1[ jmap1 ], 0, status );
                        (void) astAnnul( submap1 );
                        submap1 = tmap;
                        subinv1 = 0;
                        jmap1++;

/* If sublist for cmpmap2 has too few inputs, add the next Mapping from
   the cmpmap2 list into the submap2 sublist. */
                     } else if( subin2 < subout1 ) {
                        tmap = CombineMaps( submap2, subinv2,
                                            map_list2[ jmap2 ],
                                            invert_list2[ jmap2 ], 0, status );
                        (void) astAnnul( submap2 );
                        submap2 = tmap;
                        subinv2 = 0;
                        jmap2++;

/* If submap1 can now feed submap2, combine them in series, and attempt to
   simplify it. */
                     } else {

/* Check this is not the first pass (when we do not have a submap1 or
   submap2). */
                        if( submap1 && submap2 ) {

/* Combine the Mappings in series and simplify. */
                           tmap = CombineMaps( submap1, subinv1, submap2,
                                               subinv2, 1, status );
                           submap1 = astAnnul( submap1 );
                           submap2 = astAnnul( submap2 );
                           tmap2 = astSimplify( tmap );
                           tmap = astAnnul( tmap );

/* Note if any simplification took place. */
                           if( tmap != tmap2 ||
                               astGetInvert( tmap ) != astGetInvert( tmap2 ) )
                                           simpler = 1;

/* Add the simplifed Mapping into the total merged Mapping (a parallel
   CmpMap). */
                           if( !new ) {
                              new = tmap2;
                           } else {
                              tmap = (AstMapping *) astCmpMap( new, tmap2, 0,
                                                               " ", status );
                              tmap2 = astAnnul( tmap2 );
                              (void) astAnnul( new );
                              new = tmap;
                           }
                        }

/* Reset submap1 to be the next Mapping from the cmpmap1 map list. First,
   save its old Invert flag and set it to the required value. */
                        if( jmap1 < nmap1 ) {
                           submap1 = astClone( map_list1[ jmap1 ] );
                           subinv1 = invert_list1[ jmap1 ];
                           jmap1++;
                        } else {
                           break;
                        }

/* Do the same for the second list. */
                        if( jmap2 < nmap2 ) {
                           submap2 = astClone( map_list2[ jmap2 ] );
                           subinv2 = invert_list2[ jmap2 ];
                           jmap2++;
                        } else {
                           break;
                        }
                     }
                  }

/* Free the lists of Mapping pointers and invert flags. */
                  if( map_list1 ) {
                     for( jmap1 = 0; jmap1 < nmap1; jmap1++ ) {
                        map_list1[ jmap1 ] = astAnnul( map_list1[ jmap1 ] );
                     }
                     map_list1 = astFree( map_list1 );
                  }
                  invert_list1 = astFree( invert_list1 );

                  if( map_list2 ) {
                     for( jmap2 = 0; jmap2 < nmap2; jmap2++ ) {
                        map_list2[ jmap2 ] = astAnnul( map_list2[ jmap2 ] );
                     }
                     map_list2 = astFree( map_list2 );
                  }
                  invert_list2 = astFree( invert_list2 );

               }
            }

/* Update Mapping list. */
/* ==================== */
/* If adjacent CmpMaps can be combined, then annul the original pointers. */
            if ( astOK && simpler ) {
               ( *map_list )[ imap1 ] = astAnnul( ( *map_list )[ imap1 ] );
               ( *map_list )[ imap2 ] = astAnnul( ( *map_list )[ imap2 ] );

/* Insert the pointer to the replacement CmpMap and initialise its
   invert flag. */
               ( *map_list )[ imap1 ] = new;
               ( *invert_list )[ imap1 ] = 0;

/* Loop to close the resulting gap by moving subsequent elements down
   in the arrays. */
               for ( imap = imap2 + 1; imap < *nmap; imap++ ) {
                  ( *map_list )[ imap - 1 ] = ( *map_list )[ imap ];
                  ( *invert_list )[ imap - 1 ] = ( *invert_list )[ imap ];
               }

/* Clear the vacated elements at the end. */
               ( *map_list )[ *nmap - 1 ] = NULL;
               ( *invert_list )[ *nmap - 1 ] = 0;

/* Decrement the Mapping count and return the index of the first
   modified element. */
               ( *nmap )--;
               result = imap1;
            }
         }
      }
   }

/* If we are merging the Mappings in series, and if the nominated CmpMap
   is a parallel CmpMap, and if the lower neighbour is a PermMap, it may
   be possible to swap the PermMap and the CmpMap. This may allow one of
   the two swapped Mappings to merge with its new neighbour.
   ==================================================================== */

/* Only do this if no simplification occurred above, and if the Mappings
   are being merged in series, and if the nominated Mapping is not the
   first in the list. */
   if( result == -1 && where > 0 ){

/* Obtain the indices of the two potential Mappings to be swapped. */
      imap1 = where - 1;
      imap2 = where;

/* Obtain a pointer to the CmpMap. */
      cmpmap2 = (AstCmpMap *) ( *map_list )[ imap2 ];

/* Obtain the Class string of the first (previous) Mapping and
   determine if it is a PermMap. Also check that the nominated Mapping is
   a parallel CmpMap. */
      class = astGetClass( ( *map_list )[ imap1 ] );
      if ( astOK && !strcmp( class, "PermMap" ) && !cmpmap2->series) {

/* Indicate we have no new Mapping to store. */
         new = NULL;

/* If suitable, obtain a pointer to the PermMap. */
         permmap1 = (AstPermMap *) ( *map_list )[ imap1 ];

/* Obtain the current values of the Invert attribute in the Mappings. */
         invert1 = astGetInvert( permmap1 );
         invert2 = astGetInvert( cmpmap2 );

/* Temporarily set the Invert attributes of both Mappings to the values
   supplied in the "invert_list" parameter. */
         astSetInvert( permmap1, ( *invert_list )[ imap1 ] );
         astSetInvert( cmpmap2, ( *invert_list )[ imap2 ] );

/* Get the number of inputs and outputs for the PermMap.*/
         npout = astGetNout( permmap1 );
         npin = astGetNin( permmap1 );

/* Get the number of inputs and outputs for the two components of the
   nominated parallel CmpMap. */
         nin2a = astGetNin( cmpmap2->map1 );
         nin2b = astGetNin( cmpmap2->map2 );
         nout2a = astGetNout( cmpmap2->map1 );
         nout2b = astGetNout( cmpmap2->map2 );

/* Get the input and output axis permutation arrays and the constants
   array from the PermMap */
         inperm =astGetInPerm( permmap1 );
         outperm =astGetOutPerm( permmap1 );
         conperm = astGetConstants( permmap1 );

/* In order to swap the Mappings, the PermMap outputs which feed the
   inputs of the first component of the parallel CmpMap must be copied
   from a contiguous block at the end of the list of PermMap inputs, or
   must all be assigned constant values. Likewise, the PermMap outputs which
   feed the inputs of the second component of the parallel CmpMap must be
   copied from a contiguous block at the beggining of the list of PermMap
   inputs or must be assigned constant values. Also, there must be a
   one-to-one correspondance between inputs and outputs in the PermMap.
   Check that the first block of nin2a PermMap outputs are copied from
   the last block of nin2a PermMap inputs (and vica-versa) or are constant. */
         canswap = ( npin == npout );
         aconstants = ( outperm[ 0 ] < 0 );

         for( i = 0, j = npin - nin2a; i < nin2a; i++, j++ ) {
            if( aconstants ) {
               if( outperm[ i ] >= 0 ) {
                  canswap = 0;
                  break;
               }

            } else if( outperm[ i ] != j || inperm[ j ] != i ) {
               canswap = 0;
               break;
            }
         }

/* Check that the first block of nin2b PermMap inputs are copied from
   the last block of nin2b PermMap outputs, and vica-versa. */
         bconstants = ( outperm[ nin2a ] < 0 );
         for( i = 0, j = npout - nin2b; i < nin2b; i++, j++ ) {
            if( bconstants ) {
               if( outperm[ j ] >= 0 ) {
                  canswap = 0;
                  break;
               }
            } else if( inperm[ i ] != j || outperm[ j ] != i ) {
               canswap = 0;
               break;
            }
         }

/* If the Mappings can be swapped.. */
         new_pm = NULL;
         new_cm = NULL;
         qa = NULL;
         qb = NULL;
         if( canswap ) {

/* Temporarily set the Invert attributes of the component Mappings to the
   values they had when the CmpMap was created. */
            invert2a = astGetInvert( cmpmap2->map1 );
            invert2b = astGetInvert( cmpmap2->map2 );
            astSetInvert( cmpmap2->map1, cmpmap2->invert1 );
            astSetInvert( cmpmap2->map2, cmpmap2->invert2 );

/* If any PermMap outputs are constant, we will need the results of
   transforming these constants using the CmpMap which follows. */
            if( aconstants || bconstants ) {

/* Transform a set of bad inputs using the PermMap. This will assign the
   PermMap constant to any fixed outputs. */
               p = astMalloc( sizeof( double )*(size_t) npin );
               q = astMalloc( sizeof( double )*(size_t) npout );
               qa = astMalloc( sizeof( double )*(size_t) nout2a );
               qb = astMalloc( sizeof( double )*(size_t) nout2b );
               if( astOK ) {
                  for( i = 0; i < npin; i++ ) p[ i ] = AST__BAD;
                  astTranN( permmap1, 1, npin, 1, p, 1, npout, 1, q );

/* Transform the PermMap outputs using the two component Mappings in the
   CmpMap. */
                  astTranN( cmpmap2->map1, 1, nin2a, 1, q, 1, nout2a, 1, qa );
                  astTranN( cmpmap2->map2, 1, nin2b, 1, q + nin2a, 1, nout2b, 1, qb );

               }
               p = astFree( p );
               q = astFree( q );
            }

/* If necessary, create a UnitMap to replace a Mapping which has constant
   outputs. The number of axes for the UnitMap is chosen to give the
   correct total number of inputs for the final parallel CmpMap. At the
   same time determine the number of inputs needed by the final PermMap. */
            if( aconstants ) {
               nunit = npin - nin2b;
               npin_new = nout2b + nunit;
            } else if( bconstants ) {
               nunit = npin - nin2a;
               npin_new = nout2a + nunit;
            } else {
               nunit = 0;
               npin_new = nout2a + nout2b;
            }
            unit = nunit ? astUnitMap( nunit, "", status ) : NULL;

/* Determine the number of outputs for the final PermMap and allocate memory
   for its permutation arrays. */
            npout_new = nout2a + nout2b;
            outperm_new = astMalloc( sizeof( int )*(size_t) npout_new );
            inperm_new = astMalloc( sizeof( int )*(size_t) npin_new );
            const_new = astMalloc( sizeof( double )*(size_t) ( npout_new + npin_new ) );
            if( astOK ) {
               oconid = 0;

/* First assign permutations for the second component Mapping, if used. */
               if( !bconstants ) {
                  for( i = 0, j = npout_new - nout2b; i < nout2b; i++,j++ ) {
                     inperm_new[ i ] = j;
                     outperm_new[ j ] = i;
                  }

/* Otherwise, store constants */
               } else {

                  for( i = 0; i < nunit; i++ ){
                     iconid = inperm[ i ];
                     if( iconid >= npout ) {
                        inperm_new[ i ] = npout_new;

                     } else if( iconid >= 0 ) {
                        astError( AST__INTER, "astMapMerge(CmpMap): Swapped PermMap "
                                  "input is not constant (internal AST programming "
                                  "error)." , status);
                        break;

                     } else {
                        inperm_new[ i ] = --oconid;
                        const_new[ -( oconid + 1 ) ] = conperm[ -( iconid + 1 ) ];
                     }
                  }

                  for( i = 0, j = npout_new - nout2b; i < nout2b; i++,j++ ) {
                     outperm_new[ j ] = --oconid;
                     const_new[ -( oconid + 1 ) ] = qb[ i ];
                  }

               }

/* Now assign permutations for the first component Mapping, if used. */
               if( !aconstants ) {
                  for( i = 0, j = npin_new - nout2a; i < nout2a; i++,j++ ) {
                     inperm_new[ j ] = i;
                     outperm_new[ i ] = j;
                  }

/* Otherwise, store constants */
               } else {

                  for( i = nout2b; i < npin_new; i++ ){
                     iconid = inperm[ i - nout2b + nin2b ];
                     if( iconid >= npout ) {
                        inperm_new[ i ] = npout_new;

                     } else if( iconid >= 0 ) {
                        astError( AST__INTER, "astMapMerge(CmpMap): Swapped PermMap "
                                  "input is not constant (internal AST programming "
                                  "error)." , status);
                        break;

                     } else {
                        inperm_new[ i ] = --oconid;
                        const_new[ -( oconid + 1 ) ] = conperm[ -( iconid + 1 ) ];
                     }
                  }

                  for( i = 0; i < nout2a; i++ ) {
                     outperm_new[ i ] = --oconid;
                     const_new[ -( oconid + 1 ) ] = qa[ i ];
                  }

               }

/* Create the new PermMap */
               new_pm = astPermMap( npin_new, inperm_new, npout_new,
                                    outperm_new, const_new, "", status );

/* Create the new CmpMap.*/
               if( aconstants ) {
                  if( unit ) {
                     new_cm = astCmpMap( cmpmap2->map2, unit, 0, "", status );
                  } else {
                     new_cm = astCopy( cmpmap2->map2 );
                  }

               } else if( bconstants ) {
                  if( unit ) {
                     new_cm = astCmpMap( unit, cmpmap2->map1, 0, "", status );
                  } else {
                     new_cm = astCopy( cmpmap2->map1 );
                  }

               } else{
                  new_cm = astCmpMap( cmpmap2->map2, cmpmap2->map1, 0, "", status );
               }

            }

/* Free Memory. */
            if( unit ) unit = astAnnul( unit );
            outperm_new = astFree( outperm_new );
            inperm_new = astFree( inperm_new );
            const_new = astFree( const_new );
            if( aconstants || bconstants ) {
               qa = astFree( qa );
               qb = astFree( qb );
            }

/* Re-instate the original Invert attributes in the component Mappings. */
            astSetInvert( cmpmap2->map1, invert2a );
            astSetInvert( cmpmap2->map2, invert2b );

         }

/* Release the arrays holding the input and output permutation arrays
   and constants copied from the PermMap. */
         inperm = astFree( inperm );
         outperm = astFree( outperm );
         conperm = astFree( conperm );

/* Re-instate the original values of the Invert attributes of both
   Mappings. */
         astSetInvert( permmap1, invert1 );
         astSetInvert( cmpmap2, invert2 );

/* If the Mappings can be swapped... */
         if( astOK && canswap ) {

/* Annul the supplied pointer to the two Mappings. */
            ( *map_list )[ imap1 ] = astAnnul( ( *map_list )[ imap1 ] );
            ( *map_list )[ imap2 ] = astAnnul( ( *map_list )[ imap2 ] );

/* Store the new PermMap pointer in the slot previously occupied by the
   nominated CmpMap pointer. Likewise, store the invert flag. */
            ( *map_list )[ imap2 ] = (AstMapping *) new_pm;
            ( *invert_list )[ imap2 ] = astGetInvert( new_pm );

/* Store the new PermMap pointer in the slot previously occupied by the
   nominated CmpMap pointer. Likewise, store the invert flag. */
            ( *map_list )[ imap1 ] = (AstMapping *) new_cm;
            ( *invert_list )[ imap1 ] = astGetInvert( new_cm );

/* Return the index of the first modified element. */
            result = imap1;

         }
      }
   }

/* If an error occurred, clear the result value. */
   if ( !astOK ) result = -1;

/* Return the result. */
   return result;
}

static int *MapSplit1( AstMapping *this, int nin, const int *in, AstMapping **map, int *status ){
/*
*  Name:
*     MapSplit1

*  Purpose:
*     Create a Mapping representing a subset of the inputs of an existing
*     Mapping.

*  Type:
*     Private function.

*  Synopsis:
*     #include "cmpmap.h"
*     int *MapSplit1( AstMapping *this, int nin, const int *in, AstMapping **map )

*  Class Membership:
*     CmpMap method

*  Description:
*     This function performs the work for the astMapSplit method. It
*     first invokes the astMapSplit method to see if the forward
*     transformation of the supplied Mapping (not necessarily a CmpMap)
*     can be split as requested. If this is not possible it invokes MapSplit2
*     which attempts an inverse approach to the problem. For each possible
*     sub-sets of the Mapping outputs it call astMapSplit to see if the
*     sub-set of outputs are generated from the selected inputs.

*  Parameters:
*     this
*        Pointer to the Mapping to be split. It is not assumed to be a CmpMap.
*     nin
*        The number of inputs to pick from "this".
*     in
*        Pointer to an array of indices (zero based) for the inputs which
*        are to be picked. This array should have "nin" elements. If "Nin"
*        is the number of inputs of the supplied Mapping, then each element
*        should have a value in the range zero to Nin-1.
*     map
*        Address of a location at which to return a pointer to the new
*        Mapping. This Mapping will have "nin" inputs (the number of
*        outputs may be different to "nin"). A NULL pointer will be
*        returned if the supplied Mapping has no subset of outputs which
*        depend only on the selected inputs.

*  Returned Value:
*     A pointer to a dynamically allocated array of ints. The number of
*     elements in this array will equal the number of outputs for the
*     returned Mapping. Each element will hold the index of the
*     corresponding output in the supplied Mapping. The array should be
*     freed using astFree when no longer needed. A NULL pointer will
*     be returned if no output Mapping can be created.

*  Notes:
*     - If this function is invoked with the global error status set,
*     or if it should fail for any reason, then NULL values will be
*     returned as the function value and for the "map" pointer.
*/

/* Local Variables: */
   int *result;       /* Axis order to return */

/* Initialise */
   result = NULL;
   *map = NULL;

/* Check the global error status. */
   if ( !astOK ) return result;

/* First see if the forward transformation can be split as requested. */
   result = astMapSplit( this, nin, in, map );

/* If forward transformation could not be split, we attempt to split the
   inverse transformation by selecting every possible sub-set of Mapping
   outputs until one is found which is fed by the requested mapping inputs. */
   if( !result ) result = MapSplit2( this, nin, in, map, status );

/* Free returned resources if an error has occurred. */
   if( !astOK ) {
      result = astFree( result );
      *map = astAnnul( *map );
   }

/* Return the list of output indices. */
   return result;
}

static int *MapSplit2( AstMapping *this, int nin, const int *in, AstMapping **map, int *status ){
/*
*  Name:
*     MapSplit2

*  Purpose:
*     Create a Mapping representing a subset of the inputs of an existing
*     Mapping.

*  Type:
*     Private function.

*  Synopsis:
*     #include "cmpmap.h"
*     int *MapSplit2( AstMapping *this, int nin, const int *in, AstMapping **map )

*  Class Membership:
*     CmpMap method

*  Description:
*     This function attempts to split the supplied Mapping using an
*     inverse approach to the problem. For each possible sub-sets of the
*     Mapping outputs it call astMapSplit to see if the sub-set of outputs
*     are generated from the selected inputs.

*  Parameters:
*     this
*        Pointer to the Mapping to be split. It is not assumed to be a CmpMap.
*     nin
*        The number of inputs to pick from "this".
*     in
*        Pointer to an array of indices (zero based) for the inputs which
*        are to be picked. This array should have "nin" elements. If "Nin"
*        is the number of inputs of the supplied Mapping, then each element
*        should have a value in the range zero to Nin-1.
*     map
*        Address of a location at which to return a pointer to the new
*        Mapping. This Mapping will have "nin" inputs (the number of
*        outputs may be different to "nin"). A NULL pointer will be
*        returned if the supplied Mapping has no subset of outputs which
*        depend only on the selected inputs.

*  Returned Value:
*     A pointer to a dynamically allocated array of ints. The number of
*     elements in this array will equal the number of outputs for the
*     returned Mapping. Each element will hold the index of the
*     corresponding output in the supplied Mapping. The array should be
*     freed using astFree when no longer needed. A NULL pointer will
*     be returned if no output Mapping can be created.

*  Notes:
*     - If this function is invoked with the global error status set,
*     or if it should fail for any reason, then NULL values will be
*     returned as the function value and for the "map" pointer.
*/

/* Local Variables: */
   AstMapping *map2;  /* Subset Mapping */
   AstMapping *this2; /* Inverted copy of the supplied Mapping */
   int *out;          /* Selected output indices */
   int *result;       /* Axis order to return */
   int *result2;      /* Axis order for current output subset */
   int i;             /* Loop count */
   int iscmp;         /* Is "this" a CmpMap? */
   int j;             /* Loop count */
   int mout;          /* Number of selected outputs */
   int nin2;          /* Number of inputs fed by current outputs */
   int nout;          /* The number of outputs from the supplied Mapping */
   int ok;            /* Are all required inputs fed by current outputs? */

/* Initialise */
   result = NULL;
   *map = NULL;

/* Check the global error status. */
   if ( !astOK ) return result;

/* Get the number of Mapping outputs. */
   nout = astGetNout( this );

/* Get an inverted copy of the Mapping. We do this rather than inverting
   the supplied Maping in case an error occurs which may leave the
   supplied Mapping inverted. */
   this2 = astCopy( this );
   astInvert( this2 );

/* Note if the Mapping is a CmpMap. */
   iscmp = astIsACmpMap( this );

/* Allocate memory to hold the selected output indices. */
   out = astMalloc( nout*sizeof( int ) );

/* Loop round all useful subset sizes. */
   if( out ) {
      for( mout = 1; mout < nout && !result; mout++ ) {

/* Initialise the first subset of outputs to check at the current subset
   size. */
         for( i = 0; i < mout; i++ ) out[ i ] = 0;

/* Loop round all ways of picking a subset of "mout" outputs from the total
   available "nout" outputs. */
         while( ! result ) {

/* Skip this subset if it refers to any axis index more than once. */
            ok = 1;
            for( i = 1; i < mout && ok; i++ ) {
               for( j = 0; j < i; j++ ) {
                  if( out[ i ] == out[ j ] ) {
                     ok = 0;
                     break;
                  }
               }
            }
            if( ok ) {

/* Attempt to split the inverted Mapping using the current subset of
   outputs. Take care to avoid an infinite loop if "this" is a CmpMap. */
               if( iscmp ) {
                  result2 = MapSplit0( this2, mout, out, &map2, 1, status );
               } else {
                  result2 = astMapSplit( this2, mout, out, &map2 );
               }

/* If succesful... */
               if( result2 ) {

/* See if the inputs that feed the current subset of outputs are the same
   as the inputs specified by the caller (and in the same order). */
                  nin2 = astGetNout( map2 );
                  ok = ( nin2 == nin );
                  if( ok ) {
                     for( i = 0; i < nin; i++ ) {
                        if( in[ i ] != result2[ i ] ) {
                           ok = 0;
                           break;
                        }
                     }
                  }

/* If so, set up the values returned to the caller. */
                  if( ok ) {
                     result = astStore( result, out, mout*sizeof(int) );
                     astInvert( map2 );
                     *map = astClone( map2 );
                  }

/* Free resources. */
                  result2 = astFree( result2 );
                  map2 = astAnnul( map2 );
               }
            }

/* Increment the first axis index. */
            i = 0;
            out[ i ]++;

/* If the incremented axis index is now too high, reset it to zero and
   increment the next higher axis index. Do this until an incremented axis
   index is not too high. */
            while( out[ i ] == nout ) {
               out[ i++ ] = 0;

               if( i < mout ) {
                  out[ i ]++;
               } else {
                  break;
               }
            }

/* If all subsets have been checked break out of the loop. */
            if( i == mout ) break;

         }
      }
   }

/* Free resources. */
   out = astFree( out );
   this2 = astAnnul( this2 );

/* Free returned resources if an error has occurred. */
   if( !astOK ) {
      result = astFree( result );
      *map = astAnnul( *map );
   }

/* Return the list of output indices. */
   return result;
}

static int *MapSplit0( AstMapping *this_mapping, int nin, const int *in,
                       AstMapping **map, int reentry, int *status ){
/*
*  Name:
*     MapSplit0

*  Purpose:
*     Create a Mapping representing a subset of the inputs of an existing
*     CmpMap.

*  Type:
*     Private function.

*  Synopsis:
*     #include "cmpmap.h"
*     int *MapSplit0( AstMapping *this, int nin, const int *in,
*                     AstMapping **map, int reentry, int *status )

*  Class Membership:
*     CmpMap method

*  Description:
*     This function creates a new Mapping by picking specified inputs from
*     an existing CmpMap. This is only possible if the specified inputs
*     correspond to some subset of the CmpMap outputs. That is, there
*     must exist a subset of the CmpMap outputs for which each output
*     depends only on the selected CmpMap inputs, and not on any of the
*     inputs which have not been selected. If this condition is not met
*     by the supplied CmpMap, then a NULL Mapping is returned.

*  Parameters:
*     this
*        Pointer to the CmpMap to be split (the CmpMap is not actually
*        modified by this function).
*     nin
*        The number of inputs to pick from "this".
*     in
*        Pointer to an array of indices (zero based) for the inputs which
*        are to be picked. This array should have "nin" elements. If "Nin"
*        is the number of inputs of the supplied CmpMap, then each element
*        should have a value in the range zero to Nin-1.
*     map
*        Address of a location at which to return a pointer to the new
*        Mapping. This Mapping will have "nin" inputs (the number of
*        outputs may be different to "nin"). A NULL pointer will be
*        returned if the supplied CmpMap has no subset of outputs which
*        depend only on the selected inputs.
*     reentry
*        Set to zero if this is a top level entry, and non-zero if it is
*        a recursive entry.
*     status
*        Pointer to the inherited status variable.

*  Returned Value:
*     A pointer to a dynamically allocated array of ints. The number of
*     elements in this array will equal the number of outputs for the
*     returned Mapping. Each element will hold the index of the
*     corresponding output in the supplied CmpMap. The array should be
*     freed using astFree when no longer needed. A NULL pointer will
*     be returned if no output Mapping can be created.

*  Notes:
*     - If this function is invoked with the global error status set,
*     or if it should fail for any reason, then NULL values will be
*     returned as the function value and for the "map" pointer.
*/

/* Local Variables: */
   AstCmpMap *this;
   AstMapping **map_list;
   AstMapping *amap;
   AstMapping *bmap;
   AstPermMap *pmap;
   int *aout;
   int *cin;
   int *cout;
   int *inp;
   int *invert_list;
   int *outp;
   int *p;
   int *result;
   int doperm;
   int i;
   int ibot;
   int ibotout;
   int iin;
   int imap;
   int iout;
   int itop;
   int j;
   int naout;
   int ncin;
   int ncout;
   int nmap;
   int npin;
   int npout;
   int ok;
   int old_inv;
   int t;


/* Initialise */
   result = NULL;
   *map = NULL;

/* Check the global error status. */
   if ( !astOK ) return result;

/* Get a pointer to the CmpMap structure. */
   this = (AstCmpMap *) this_mapping;

/* Get the number of inputs and outputs in the supplied CmpMap. */
   npin = astGetNin( this );
   npout = astGetNout( this );

/* Check all input axis indices are valid. */
   ok = 1;
   for( i = 0; i < nin; i++ ) {
      if( in[ i ] < 0 || in[ i ] >= npin ) {
         ok = 0;
         break;
      }
   }

/* If OK, proceed. */
   if( ok ) {

/* Initialise dynamic arrays of Mapping pointers and associated Invert
   flags. */
      nmap = 0;
      map_list = NULL;
      invert_list = NULL;

/* Decompose the CmpMap into a sequence of Mappings to be applied in
   series or parallel, as appropriate, and an associated list of
   Invert flags. */
      (void) astMapList( this_mapping, this->series, astGetInvert( this ),
                         &nmap, &map_list, &invert_list );

/* First handle lists of Mapping in series. */
      if( this->series ) {

/* Initialise the array of inputs to be split from the next component
   Mapping. */
         ncin = nin;
         cin = astStore( NULL, in, sizeof( int )*nin );

/* Loop round all the component Mappings that are combined in series to form
   the supplied CmpMap. */
         for( imap = 0; imap < nmap && cin; imap++ ) {

/* Temporarily reset the Invert attribute within the commponent Mapping back
   to the value it had when the CmpMap was created. */
            old_inv = astGetInvert( map_list[ imap ] );
            astSetInvert(  map_list[ imap ], invert_list[ imap ] );

/* Attempt to split the component Mapping using the current list of
   inputs. */
            cout = MapSplit1( map_list[ imap ], ncin, cin, &amap, status );

/* If the split could be done... */
            if( amap ) {

/* The outputs that correspond to the picked inputs become the inputs to
   be picked from the next component Mapping. */
               (void) astFree( cin );
               cin = cout;
               ncin = astGetNout( amap );

/* Combine the split Mapping in series with the earlier split Mappings. */
               if( *map ) {
                  bmap = (AstMapping *) astCmpMap( *map, amap, 1, " ", status );
                  amap = astAnnul( amap );
                  (void) astAnnul( *map );
                  *map = bmap;
               } else {
                  *map = amap;
               }

/* If the split could not be done, free the array of Mapping inputs to
   indicate that no more component Mappings need be checked. */
            } else {
               cin = astFree( cin );
               cout = astFree( cout );
            }

/* Re-instate the original value of the Invert attribute within the
   commponent Mapping. */
            astSetInvert(  map_list[ imap ], old_inv );
         }

/* Return the final array of output indices. */
         result = cin;

/* Now handle lists of Mapping in parallel. */
      } else {

/* Allocate work space. */
         outp = astMalloc( sizeof(int)*(size_t)nin );
         inp = astMalloc( sizeof(int)*(size_t)nin );
         cin = astMalloc( sizeof(int)*(size_t)npin );
         cout = astMalloc( sizeof(int)*(size_t)npout );
         if( astOK ) {

/* The caller may have selected the Mapping inputs in any order, so we
   need to create a PermMap which will permute the inputs from the
   requested order to the order used by the CmpMap. First fill the outperm
   work array with its own indices. */
            for( i = 0; i < nin; i++ ) outp[ i ] = i;

/* Sort the outperm work array so that it accesses the array of input indices
   in ascending order */
            for( j = nin - 1; j > 0; j-- ) {
               p = outp;
               for( i = 0; i < j; i++,p++ ) {
                  if( in[ p[0] ] > in[ p[1] ] ) {
                     t = p[0];
                     p[0] = p[1];
                     p[1] = t;
                  }
               }
            }

/* Create the inperm array which is the inverse of the above outperm
   array. Note if the permutation is necessary. */
            doperm = 0;
            for( i = 0; i < nin; i++ ) {
               if( outp[ i ] != i ) doperm = 1;
               inp[ outp[ i ] ] = i;
            }

/* Create a PermMap which reorders the inputs into ascending order. */
            pmap = doperm ? astPermMap( nin, inp, nin, outp, NULL, "", status ) : NULL;

/* Store the sorted input indices in the inp work array. */
            for( i = 0; i < nin; i++ ) {
               inp[ i ] = in[ outp[ i ] ];
            }

/* Initialise the index within the supplied CmpMap of the last (highest)
   input in the current component Mapping. */
            itop = -1;

/* Initialise the index within the supplied CmpMap of the first (lowest)
   output for the current component Mapping. */
            ibotout = 0;

/* Initialise the index within the supplied CmpMap of the current picked input. */
            iin = 0;

/* Initialise the index of the next returned output index. */
            ncout = 0;

/* Loop round all the component Mappings that are combined in series to form
   the supplied CmpMap. */
            for( imap = 0; imap < nmap && cout; imap++ ) {

/* Temporarily reset the Invert attribute within the component Mapping back
   to the value it had when the CmpMap was created. */
               old_inv = astGetInvert( map_list[ imap ] );
               astSetInvert(  map_list[ imap ], invert_list[ imap ] );

/* Get the index within the supplied CmpMap of the first (lowest) input in
   the current component Mapping. */
               ibot = itop + 1;

/* Get the index within the supplied CmpMap of the last (highest) input in
   the current component Mapping. */
               itop += astGetNin( map_list[ imap ] );

/* Get the zero-based indices of the required inputs that feed the current
   component Mapping. */
               ncin = 0;
               while( iin < nin && inp[ iin ] <= itop ) {
                  cin[ ncin++ ] = inp[ iin++ ] - ibot;
               }

/* Skip components from which no inputs are being picked. */
               if( ncin > 0 ) {

/* Attempt to split the component Mapping using the current list of inputs. */
                  aout = MapSplit1( map_list[ imap ], ncin, cin, &amap,
                                    status );

/* If successful... */
                  if( amap ) {

/* Correct the output indices so that they refer to the numbering scheme
   of the total CmpMap, and append to the total list of output indices. */
                     naout = astGetNout( amap );
                     for( iout = 0; iout < naout; iout++ ) {
                        cout[ ncout++ ] = aout[ iout ] + ibotout;
                     }

/* Combine the split Mapping in parallel with the earlier split Mappings. */
                     if( *map ) {
                        bmap = (AstMapping *) astCmpMap( *map, amap, 0, " ",
                                                         status );
                        amap = astAnnul( amap );
                        (void) astAnnul( *map );
                        *map = bmap;
                     } else {
                        *map = amap;
                     }

/* If the component Mapping could not be split, free the cout array to
   indicate that no more component Mappings need be considered. */
                  } else {
                     cout = astFree( cout );
                  }

/* Free remaining resources. */
                  aout = astFree( aout );
               }

/* Update the index within the supplied CmpMap of the first (lowest) output in
   the next component Mapping. */
               ibotout += astGetNout( map_list[ imap ] );

/* Re-instate the original value of the Invert attribute within the
   commponent Mapping. */
               astSetInvert(  map_list[ imap ], old_inv );
            }

/* If the requested inputs could be split from the total CmpMap, add in any
   PermMap needed to re-order the inputs. */
            if( cout && ncout ){
               if( doperm ) {
                  bmap = (AstMapping *) astCmpMap( pmap, *map, 1, "", status );
                  (void) astAnnul( *map );
                  *map = bmap;
               }

/* Also return the list of output indices. */
               result = cout;
               cout = NULL;
            }

/* Free remaining resources. */
            if( pmap ) pmap = astAnnul( pmap );
         }
         outp = astFree( outp );
         inp = astFree( inp );
         cin = astFree( cin );
         cout = astFree( cout );
      }

/* Loop to annul all the Mapping pointers in the list. */
      for ( i = 0; i < nmap; i++ ) map_list[ i ] = astAnnul( map_list[ i ] );

/* Free the dynamic arrays. */
      map_list = astFree( map_list );
      invert_list = astFree( invert_list );

   }

/* Mappings that have no outputs cannot be used. */
   if( !result && *map ) *map = astAnnul( *map );

/* If the above method failed to split the CmpMap, we attempt to split the
   inverse transformation by selecting every possible sub-set of Mapping
   outputs until one is found which is fed by the requested mapping inputs. */
   if( !result && !reentry ) result = MapSplit2( this_mapping, nin, in, map,
                                                 status );

/* Free returned resources if an error has occurred. */
   if( !astOK ) {
      result = astFree( result );
      *map = astAnnul( *map );
   }

/* Return the list of output indices. */
   return result;
}

static int *MapSplit( AstMapping *this, int nin, const int *in,
                      AstMapping **map, int *status ){
/*
*  Name:
*     MapSplit

*  Purpose:
*     Create a Mapping representing a subset of the inputs of an existing
*     CmpMap.

*  Type:
*     Private function.

*  Synopsis:
*     #include "cmpmap.h"
*     int *MapSplit( AstMapping *this, int nin, const int *in,
*                    AstMapping **map, int *status )

*  Class Membership:
*     CmpMap method (over-rides the protected astMapSplit method
*     inherited from the Mapping class).

*  Description:
*     This function is the main entry point for the astMapSplit method.
*     It is a simple wrapper for MapSplit0 which calls MapSplit0
*     indicating that this is a top-level entry.

*  Parameters:
*     this
*        Pointer to the CmpMap to be split (the CmpMap is not actually
*        modified by this function).
*     nin
*        The number of inputs to pick from "this".
*     in
*        Pointer to an array of indices (zero based) for the inputs which
*        are to be picked. This array should have "nin" elements. If "Nin"
*        is the number of inputs of the supplied CmpMap, then each element
*        should have a value in the range zero to Nin-1.
*     map
*        Address of a location at which to return a pointer to the new
*        Mapping. This Mapping will have "nin" inputs (the number of
*        outputs may be different to "nin"). A NULL pointer will be
*        returned if the supplied CmpMap has no subset of outputs which
*        depend only on the selected inputs.
*     status
*        Pointer to the inherited status variable.

*  Returned Value:
*     A pointer to a dynamically allocated array of ints. The number of
*     elements in this array will equal the number of outputs for the
*     returned Mapping. Each element will hold the index of the
*     corresponding output in the supplied CmpMap. The array should be
*     freed using astFree when no longer needed. A NULL pointer will
*     be returned if no output Mapping can be created.

*  Notes:
*     - If this function is invoked with the global error status set,
*     or if it should fail for any reason, then NULL values will be
*     returned as the function value and for the "map" pointer.
*/
   return MapSplit0( this, nin, in, map, 0, status );
}

static int PatternCheck( int val, int check, int **list, int *list_len, int *status ){
/*
*  Name:
*     Looping

*  Purpose:
*     Check for repeating patterns in a set of integer values.

*  Type:
*     Private function.

*  Synopsis:
*     #include "cmpmap.h"
*     int PatternCheck( int val, int nmap, int **mlist, int **nlist, int *list_len )

*  Class Membership:
*     CmpMap member function.

*  Description:
*     This function appends a supplied integer to a dynamic list, creating
*     or expanding the list if necessary.It then optionally, check the
*     list for evidence of repeating patterns. If such a pattern is
*     found, its wavelength is returned.

*  Parameters:
*     val
*        The integer value to add to the list.
*     check
*        Should a check for reating patterns be performed?
*     list
*        Address of a location at which is stored a pointer to an array
*        holding the values supplied on previous invocations of this
*        function. If a NULL pointer is supplied a new array is allocated.
*        On exit, the supplied value is appended to the end of the array. The
*        array is extended as necessary. The returned pointer should be
*        freed using astFree when no longer needed.
*     list_len
*        Address of a location at which is stored the number of elements
*        in the "list" array.

*  Returned Value:
*     A non-zero "wavelength" value is returned if there is a repeating
*     pattern is found in the "list" array. Otherwise, zero is returned.
*     The "wavelength" is the number of integer values which constitute a
*     single instance of the pattern.

*  Notes:
*     - A value of 1 is returned if this function is invoked with the AST
*     error status set, or if it should fail for any reason.
*/

/* Local Variables: */
   int *wave[ 30 ];          /* Pointers to start of waves */
   int iat;                  /* Index of elements added by this invocation */
   int jat;                  /* Index of element condiered next */
   int jlo;                  /* Earliest "mlist" entry to consider */
   int k;                    /* Index of element within pattern */
   int mxwave;               /* Max pattern length to consider */
   int iwave;                /* Index of current wave */
   int nwave;                /* Number of waves required to mark a pattern */
   int result;               /* Returned flag */
   int wavelen;              /* Current pattern length */

/* Check the global status. */
   if ( !astOK ) return 1;

/* Initialise */
   result = 0;

/* If no array has been supplied, create a new array. */
   if( !(*list) ) {
      *list = astMalloc( 100*sizeof( int ) );
      *list_len = 0;
   }

/* Store the new value in the array, extending it if necessary. */
   iat = (*list_len)++;
   *list = astGrow( *list, *list_len, sizeof( int ) );
   if( astOK ) {
      (*list)[ iat ] = val;

/* If required, determine the maximum "wavelength" for looping patterns to be
   checked, and store the earliest list entry to consider. We take 3 complete
   patterns as evidence of looping, but we only do the check when the
   list length is at least 30. */
      if( check && *list_len > 29 ){
         mxwave = iat/3;
         if( mxwave > 50 ) mxwave = 50;
         jlo = iat - 3*mxwave;

/* Search backwards from the end of "list" looking for the most recent
   occurence of the supplied "val" value. Limit the search to
   wavelengths of no more than the above limit. */
         jat = iat - 1;
         while( jat >= jlo ) {
            if( (*list)[ jat ] == val ) {

/* When an earlier occurrence of "val" is found, see if the values
   which precede it are the same as the values which precede the new
   element if "list" added by this invocation. We use 3 complete
   patterns as evidence of looping, unless the wavelength is 1 in which
   case we use 30 patterns (this is because wavelengths of 1 can occur
   in short sequences legitamately). */
               wavelen = iat - jat;

               if( wavelen == 1 ) {
                  nwave = 30;
                  if( nwave > iat ) nwave = iat;
               } else {
                  nwave = 3;
               }

               if( nwave*wavelen <= *list_len ) {
                  result = wavelen;
                  wave[ 0 ] = *list + *list_len - wavelen;
                  for( iwave = 1; iwave < nwave; iwave++ ) {
                     wave[ iwave ] = wave[ iwave - 1 ] - wavelen;
                  }

                  for( k = 0; k < wavelen; k++ ) {
                     for( iwave = 1; iwave < nwave; iwave++ ) {
                        if( *wave[ iwave ] != *wave[ 0 ] ) {
                           result = 0;
                           break;
                        }
                        wave[ iwave ]++;
                     }
                     wave[ 0 ]++;
                  }
               }

/* Break if we have found a repeating pattern. */
               if( result ) break;

            }
            jat--;
         }
      }
   }

   if( !astOK ) result= 1;

/* Return the result.*/
   return result;
}

static double Rate( AstMapping *this, double *at, int ax1, int ax2, int *status ){
/*
*  Name:
*     Rate

*  Purpose:
*     Calculate the rate of change of a Mapping output.

*  Type:
*     Private function.

*  Synopsis:
*     #include "cmpmap.h"
*     result = Rate( AstMapping *this, double *at, int ax1, int ax2, int *status )

*  Class Membership:
*     CmpMap member function (overrides the astRate method inherited
*     from the Mapping class ).

*  Description:
*     This function returns the rate of change of a specified output of
*     the supplied Mapping with respect to a specified input, at a
*     specified input position.

*  Parameters:
*     this
*        Pointer to the Mapping to be applied.
*     at
*        The address of an array holding the axis values at the position
*        at which the rate of change is to be evaluated. The number of
*        elements in this array should equal the number of inputs to the
*        Mapping.
*     ax1
*        The index of the Mapping output for which the rate of change is to
*        be found (output numbering starts at 0 for the first output).
*     ax2
*        The index of the Mapping input which is to be varied in order to
*        find the rate of change (input numbering starts at 0 for the first
*        input).
*     status
*        Pointer to the inherited status variable.

*  Returned Value:
*     The rate of change of Mapping output "ax1" with respect to input
*     "ax2", evaluated at "at", or AST__BAD if the value cannot be
*     calculated.

*/

/* Local Variables: */
   AstMapping *c1;
   AstMapping *c2;
   AstCmpMap *map;
   double result;
   int old_inv1;
   int old_inv2;
   int nin1;
   int nin2;
   double *at2;
   double r1;
   double r2;
   int nout1;
   int i;

/* Check inherited status */
   if( !astOK ) return AST__BAD;

/* Get a pointer to the CmpMap structure. */
   map = (AstCmpMap *) this;

/* Note the current Invert flags of the two component Mappings. */
   old_inv1 = astGetInvert( map->map1 );
   old_inv2 = astGetInvert( map->map2 );

/* Temporarily reset them to the values they had when the CmpMap was
   created. */
   astSetInvert( map->map1, map->invert1 );
   astSetInvert( map->map2, map->invert2 );

/* If the CmpMap itself has been inverted, invert the component Mappings.
   Also note the order in which the Mappings should be applied if in series. */
   if( !astGetInvert( this ) ) {
      c1 = map->map1;
      c2 = map->map2;
   } else {
      c1 = map->map2;
      c2 = map->map1;
      astInvert( c1 );
      astInvert( c2 );
   }

/* First deal with Mappings in series. */
   if( map->series ) {

/* Get the number of inputs to the two component Mappings. */
      nin1 = astGetNin( c1 );
      nin2 = astGetNin( c2 );

/* Allocate workspace to hold the result of transforming the supplied "at"
   position using the first component. */
      at2 = astMalloc( sizeof( double )*(size_t) nin2 );

/* Transform the supplied "at" position using the first component. */
      astTranN( c1, 1, nin1, 1, at, 1, nin2, 1, at2 );

/* The required rate of change is the sum of the products of the rate of
   changes of the two component mappings, summed over all the output axes
   of the first componment. */
      result = 0.0;
      for( i = 0; i < nin2; i++ ) {

/* Find the rate of change of output "i" of the first component with
   respect to input "ax2" at the supplied "at" position. */
         r1 = astRate( c1, at, i, ax2 );

/* Find the rate of change of output "ax1" of the second component with
   respect to input "i" at the transformed "at2" position. */
         r2 = astRate( c2, at2, ax1, i );

/* If both are good, increment the ryunning total by the product of the
   two rates. Otherwise, break. */
         if( r1 != AST__BAD && r2 != AST__BAD ) {
            result += r1*r2;
         } else {
            result = AST__BAD;
            break;
         }
      }

/* Free the workspace. */
      at2 = astFree( at2 );

/* Now deal with Mappings in parallel. */
   } else {

/* Get the number of inputs and outputs for the lower component Mappings. */
      nin1 = astGetNin( map->map1 );
      nout1 = astGetNout( map->map1 );

/* If both input and output relate to the lower component Mappings, use its
   astRate method. */
      if( ax1 < nout1 && ax2 < nin1 ) {
         result = astRate( map->map1, at, ax1, ax2 );

/* If both input and output relate to the upper component Mappings, use its
   astRate method. */
      } else if( ax1 >= nout1 && ax2 >= nin1 ) {
         result = astRate( map->map2, at + nin1, ax1 - nout1, ax2 - nin1 );

/* If input and output relate to different component Mappings, return
   zero. */
      } else {
         result = 0.0;
      }
   }

/* Reinstate the original Invert flags of the component Mappings .*/
   astSetInvert( map->map1, old_inv1 );
   astSetInvert( map->map2, old_inv2 );

/* Return the result. */
   return result;
}

static AstMapping *RemoveRegions( AstMapping *this_mapping, int *status ) {
/*
*  Name:
*     RemoveRegions

*  Purpose:
*     Remove any Regions from a Mapping.

*  Type:
*     Private function.

*  Synopsis:
*     #include "cmpmap.h"
*     AstMapping *RemoveRegions( AstMapping *this, int *status )

*  Class Membership:
*     CmpMap method (over-rides the astRemoveRegions method inherited
*     from the Mapping class).

*  Description:
*     This function searches the supplied Mapping (which may be a
*     compound Mapping such as a CmpMap) for any component Mappings
*     that are instances of the AST Region class. It then creates a new
*     Mapping from which all Regions have been removed. If a Region
*     cannot simply be removed (for instance, if it is a component of a
*     parallel CmpMap), then it is replaced with an equivalent UnitMap
*     in the returned Mapping.
*
*     The implementation provided by the CmpMap class invokes the
*     astRemoveRegions method on the two component Mappings, and joins
*     the results together into a new CmpMap.

*  Parameters:
*     this
*        Pointer to the original Region.
*     status
*        Pointer to the inherited status variable.

*  Returned Value:
*     A pointer to the modified mapping.

*  Notes:
*     - A NULL pointer value will be returned if this function is
*     invoked with the AST error status set, or if it should fail for
*     any reason.
*/

/* Local Variables: */
   AstCmpMap *new;               /* Pointer to new CmpMap */
   AstCmpMap *this;              /* Pointer to CmpMap structure */
   AstMapping *newmap1;          /* New first component Mapping */
   AstMapping *newmap2;          /* New second component Mapping */
   AstMapping *result;           /* Result pointer to return */
   int nax;                      /* Number of Frame axes */
   int unit1;                    /* Is new first Mapping a UnitMap? */
   int unit2;                    /* Is new second Mapping a UnitMap? */

/* Initialise. */
   result = NULL;

/* Check the global error status. */
   if ( !astOK ) return result;

/* Get a pointer to the CmpMap. */
   this = (AstCmpMap *) this_mapping;

/* Invoke the astRemoveRegions method on the two component Mappings. */
   newmap1 = astRemoveRegions( this->map1 );
   newmap2 = astRemoveRegions( this->map2 );

/* If neither component was modified, just return a clone of the supplied
   pointer. */
   if( this->map1 == newmap1 && this->map2 == newmap2 ) {
      result = astClone( this );

/* Otherwise, we need to create a new Mapping to return. */
   } else {

/* The implementation of the astRemoveRegions method provided by the
   Region class returns a Frame rather than a UnitMap. But we need
   Mappings here, not Frames. So if either of these new Mappings is
   a Frame, replace it with an equivalent UnitMap. Also, get flags
   indicating if either Mapping is a UnitMap.*/
      if( astIsAFrame( newmap1 ) ) {
         nax = astGetNin( newmap1 );
         (void) astAnnul( newmap1 );
         newmap1 = (AstMapping *) astUnitMap( nax, " ", status );
         unit1 = 1;
      } else {
         unit1 = astIsAUnitMap( newmap1 );
      }

      if( astIsAFrame( newmap2 ) ) {
         nax = astGetNin( newmap2 );
         (void) astAnnul( newmap2 );
         newmap2 = (AstMapping *) astUnitMap( nax, " ", status );
         unit2 = 1;
      } else {
         unit2 = astIsAUnitMap( newmap2 );
      }

/* First handle series CmpMaps. */
      if( this->series ) {

/* Otherwise, if the second new Mapping is a UnitMap, return a copy of the
   first new Mapping (with the original Invert attribute) since the second
   one will have no effect. */
         if( unit1 ) {
            result = astCopy( newmap2 );
            astSetInvert( result, this->invert2 );
            if( astGetInvert( this ) ) astInvert( result );

/* Otherwise, if the second new Mapping is a UnitMap, return a copy of the
   first new Mapping (with the original Invert attribute) since the second
   one will have no effect. */
         } else if( unit2 ) {
            result = astCopy( newmap1 );
            astSetInvert( result, this->invert1 );
            if( astGetInvert( this ) ) astInvert( result );

/* If neither of the new Mappings is a UnitMap, return a new CmpMap
   containing the two new Mappings. We take a deep copy of the supplied
   CmpMap and then modify the Mappings os that we retain any extra
   information (such as invert flags) in the supplied CmpMap. */
         } else {
            new = astCopy( this );
            (void) astAnnul( new->map1 );
            (void) astAnnul( new->map2 );
            new->map1 = astClone( newmap1 );
            new->map2 = astClone( newmap2 );
            result = (AstMapping *) new;
         }

/* Now handle parallel CmpMaps. */
      } else {

/* If both new Mappings are UnitMaps, return an equivalent UnitMap. */
         if( unit1 && unit2 ) {
            result = (AstMapping *) astUnitMap( astGetNin( newmap1 ) +
                                                astGetNin( newmap2 ), " ",
                                                status );

/* Otherwise, return a new CmpMap containing the two new Mappings. */
         } else {
            new = astCopy( this );
            (void) astAnnul( new->map1 );
            (void) astAnnul( new->map2 );
            new->map1 = astClone( newmap1 );
            new->map2 = astClone( newmap2 );
            result = (AstMapping *) new;
         }
      }
   }

/* Free resources. */
   newmap1 = astAnnul( newmap1 );
   newmap2 = astAnnul( newmap2 );

/* Annul the returned Mapping if an error has occurred. */
   if( !astOK ) result = astAnnul( result );

/* Return the result. */
   return result;
}

static AstMapping *Simplify( AstMapping *this_mapping, int *status ) {
/*
*  Name:
*     Simplify

*  Purpose:
*     Simplify a Mapping.

*  Type:
*     Private function.

*  Synopsis:
*     #include "mapping.h"
*     AstMapping *Simplify( AstMapping *this, int *status )

*  Class Membership:
*     CmpMap method (over-rides the astSimplify method inherited from
*     the Mapping class).

*  Description:
*     This function simplifies a CmpMap to eliminate redundant
*     computational steps, or to merge separate steps which can be
*     performed more efficiently in a single operation.

*  Parameters:
*     this
*        Pointer to the original Mapping.
*     status
*        Pointer to the inherited status variable.

*  Returned Value:
*     A new pointer to the (possibly simplified) Mapping.

*  Notes:
*     - A NULL pointer value will be returned if this function is
*     invoked with the AST error status set, or if it should fail for
*     any reason.
*/

/* Local Variables: */
   astDECLARE_GLOBALS            /* Pointer to thread-specific global data */
   AstCmpMap *this;              /* Pointer to CmpMap structure */
   AstMapping **map_list;        /* Mapping array pointer */
   AstMapping *map;              /* Pointer to cloned Mapping pointer */
   AstMapping *result;           /* Result pointer to return */
   AstMapping *tmp;              /* Temporary Mapping pointer */
   int *invert_list;             /* Invert array pointer */
   int *mlist;                   /* Point to list of modified Mapping indices */
   int *nlist;                   /* Point to list of Mapping counts */
   int i;                        /* Loop counter for Mappings */
   int improved;                 /* Simplification achieved? */
   int invert;                   /* Invert attribute value */
   int invert_n;                 /* Invert value for final Mapping */
   int mlist_len;                /* No. of entries in mlist */
   int nlist_len;                /* No. of entries in nlist */
   int modified;                 /* Index of first modified Mapping */
   int nmap;                     /* Mapping count */
   int nominated;                /* Index of nominated Mapping */
   int set;                      /* Invert attribute set? */
   int set_n;                    /* Invert set for final Mapping? */
   int simpler;                  /* Simplification possible? */
   int t;                        /* Temporary storage */
   int wlen1;                    /* Pattern wavelength for "modified" values */
   int wlen2;                    /* Pattern wavelength for "nmap" values */

/* Initialise. */
   result = NULL;

/* Check the global error status. */
   if ( !astOK ) return result;

/* Get a pointer to the thread specific global data structure. */
   astGET_GLOBALS(this_mapping);

/* It is possible for the astSimplify method to be called recursively from
   within astSimplify. It is also possible that the Mapping being
   simplified by the current invocation is the same as the Mapping being
   simplified by some recursive invocation higher up the call stack. If
   this happens we will get into an infinite loop, since we already know
   that simplifying the supplied Mapping will involve (eventually) a
   recursive call to astSimplify with the same Mapping. To avoid this
   looping, we note the Mappings supplied at each depth and first compare
   the supplied Mapping with the Mappings which are currently being
   simplified higher up the call stack. If the supplied Mapping is
   already being simplified at a higher level, then we return immediately
   without doing any simplification. Otherwise, we record the supplied
   Mapping pointer in a static list so that it is available to subsequent
   recursive invocations of this function. First compare the supplied
   Mapping with the Mappingsbeing simpliied higher up. Return without
   action if a match is found. */
   for( i = 0; i < simplify_depth; i++ ) {
      if( astEqual( this_mapping, simplify_stackmaps[ i ] ) ) {
         return astClone( this_mapping );
      }
   }

/* We have further work to do, so increment the recursion depth, extend
   the simplify_stackmaps array, and store the new Mapping in it for future use. */
   simplify_depth++;
   simplify_stackmaps = astGrow( simplify_stackmaps, simplify_depth, sizeof( AstMapping * ) );
   if( astOK ) {
      simplify_stackmaps[ simplify_depth - 1 ] = astClone( this_mapping );
   }

/* Obtain a pointer to the CmpMap structure. */
   this = (AstCmpMap *) this_mapping;

/* Initialise dynamic arrays of Mapping pointers and associated Invert
   flags. */
   nmap = 0;
   map_list = NULL;
   invert_list = NULL;

/* Decompose the CmpMap into a sequence of Mappings to be applied in
   series or parallel, as appropriate, and an associated list of
   Invert flags. If any inverted CmpMaps are found in the Mapping, then
   we can at least simplify the returned Mapping by swapping and
   inverting the components. Set "simpler" to indicate this. */
   simpler = astMapList( this_mapping, this->series, astGetInvert( this ), &nmap,
                         &map_list, &invert_list );

/* Each Mapping has a flag that indicates if the mapping is frozen (i.e. cannot
   be nominated for simplification). Mappings become frozen if nominating them
   would create an infinite loop in which neighbouring mappings argue as to
   their form. Freezing a mapping prevents the frozen mapping contributing any
   further to the argument, so the other Mapping "wins" the argument.
   Ensure no Mappings are frozen to begin with. */
   for( i = 0; i < nmap; i++ ) {
      map_list[ i ]->flags &= ~AST__FROZEN_FLAG;
   }

/* Initialise pointers to memory used to hold lists of the modified
   Mapping index and the number of mappings after each call of
   astMapMerge. */
   mlist = NULL;
   nlist = NULL;

/* Loop to simplify the sequence until a complete pass through it has
   been made without producing any improvement. */
   improved = 1;
   while ( astOK && improved ) {
      improved = 0;

/* Loop to nominate each Mapping in the sequence in turn. */
      nominated = 0;
      while ( astOK && ( nominated < nmap ) ) {

/* If the current nominated mapping has been frozen, then we do not allow
   it to suggest changes to the mapping sequence. Instead, just increment
   the index of the next mapping to be checked and continue on to the next
   pass round the while loop. */
         if( map_list[ nominated ]->flags & AST__FROZEN_FLAG ) {
            nominated++;
            continue;
         }

/* Clone a pointer to the nominated Mapping and attempt to merge it
   with its neighbours. Annul the cloned pointer afterwards. */
         map = astClone( map_list[ nominated ] );
         modified = astMapMerge( map, nominated, this->series,
                                 &nmap, &map_list, &invert_list );
         map = astAnnul( map );

/* Move on to nominate the next Mapping in the sequence. */
         nominated++;

/* Note if any simplification occurred above. */
         if( modified >= 0 && astOK ) {

/* Append the index of the first modified Mapping in the list and and check
   that there is no repreating pattern in the list. If there is, we are
   probably in a loop where one mapping class is making a change, and another
   is undoing the change. The Looping function returns the "wavelength"
   of any pattern found. If a pattern was discovered, we ignore it unless
   there is also a pattern in the "nmap" values - the wavelengths of the
   two patterns must be related by a integer factor. */
            wlen1 = PatternCheck( modified, 1, &mlist, &mlist_len, status );
            wlen2 = PatternCheck( nmap, wlen1, &nlist, &nlist_len, status );
            if( wlen1 && wlen2 ) {

/* Ensure wlen2 is larger than or equal to wlen1. */
               if( wlen1 > wlen2 ) {
                  t = wlen1;
                  wlen1 = wlen2;
                  wlen2 = t;
               }

/* See if wlen2 is an integer multiple of wlen1. If not, ignore the
   patterns. */
               if( ( wlen2 % wlen1 ) != 0 ) wlen1 = 0;
            }

/* If a repeating pattern is occurring, set the frozen flag in order to
   prevent the modified mapping from being modified any more. */
            if( wlen1 > 0 ) {
               map_list[ modified ]->flags |= AST__FROZEN_FLAG;

/* Otherwise, indicate we have improved the mapping and go round to test
   the next nominated mapping. */
            } else {
               improved = 1;
               simpler = 1;

/* If the simplification resulted in modification of an earlier
   Mapping than would normally be considered next, then go back to
   consider the modified one first. */
               if ( modified < nominated ) nominated = modified;
            }
         }
      }
   }

/* Free resources */
   mlist = astFree( mlist );
   nlist = astFree( nlist );

/* Construct the output Mapping. */
/* ============================= */
/* If no simplification occurred above, then simply clone a pointer to
   the original Mapping. */
   if ( astOK ) {
      if ( !simpler ) {
         result = astClone( this );

/* Otherwise, we must construct the result from the contents of the
   Mapping list. */
      } else {

/* If the simplified Mapping list has only a single element, then the
   output Mapping will not be a CmpMap. In this case, we cannot
   necessarily set the Invert flag of the Mapping to the value we want
   (because we must not modify the Mapping itself. */
         if ( nmap == 1 ) {

/* We must make a copy. Cloning is no good (even if the Mapping already
   has the Invert attribute value we want), since we want the returned
   Mapping to be independent of the original component Mappings, so that
   if user code inverts a component Mapping (via some other pre-existing
   pointer), the returned simplified Mapping is not affected. */
            result = astCopy( map_list[ 0 ] );

/* Either clear the copy's Invert attribute, or set it to 1, as
   required. */
            if ( invert_list[ 0 ] ) {
               astSetInvert( result, 1 );
            } else {
               astClearInvert( result );
            }

/* If the simplified Mapping sequence has more than one element, the
   output Mapping will be a CmpMap. In this case, we can set each
   individual Mapping element to have the Invert attribute value we
   want, so long as we return these attribute values to their original
   state again afterwards (once a Mapping is encapsulated inside a
   CmpMap, further external changes to its Invert attribute do not
   affect the behaviour of the CmpMap). */
         } else {

/* Determine if the Invert attribute for the last Mapping is set, and
   obtain its value. */
            set_n = astTestInvert( map_list[ nmap - 1 ] );
            invert_n = astGetInvert( map_list[ nmap - 1 ] );

/* Set this attribute to the value we want. */
            astSetInvert( map_list[ nmap - 1 ], invert_list[ nmap - 1 ] );

/* Loop through the Mapping sequence in reverse to merge it into an
   equivalent CmpMap. */
            for ( i = nmap - 1; i >= 0; i-- ) {

/* Simply clone the pointer to the last Mapping in the sequence (which
   will be encountered first). */
              if ( !result ) {
                  result = astClone( map_list[ i ] );

/* For subsequent Mappings, test if the Invert attribute is set and
   save its value. */
               } else {
                  set = astTestInvert( map_list[ i ] );
                  invert = astGetInvert( map_list[ i ] );

/* Set this attribute to the value required. */
                  astSetInvert( map_list[ i ], invert_list[ i ] );

/* Combine the Mapping with the CmpMap formed so far and replace the
   result pointer with the new pointer this produces, annulling the
   previous pointer. */
                  tmp = (AstMapping *) astCmpMap( map_list[ i ], result,
                                                  this->series, "", status );
                  (void) astAnnul( result );
                  result = tmp;

/* Restore the Invert attribute of the Mapping to its original
   state. */
                  if ( !set ) {
                     astClearInvert( map_list[ i ] );
                  } else {
                     astSetInvert( map_list[ i ], invert );
                  }
               }
            }

/* When all the Mappings have been merged into the CmpMap, restore the
   state of the Invert attribute for the final Mapping in the
   sequence. */
            if ( !set_n ) {
               astClearInvert( map_list[ nmap - 1  ] );
            } else {
               astSetInvert( map_list[ nmap - 1 ], invert_n );
            }
         }
      }
   }

/* Clean up. */
/* ========= */
/* Loop to annul all the Mapping pointers in the simplified list. */
   for ( i = 0; i < nmap; i++ ) map_list[ i ] = astAnnul( map_list[ i ] );

/* Free the dynamic arrays. */
   map_list = astFree( map_list );
   invert_list = astFree( invert_list );

/* Decrement the recursion depth and free the pointer to the supplied
   Mapping currently stored at the end of the simplify_stackmaps array. */
   simplify_depth--;
   if( astOK ) {
      simplify_stackmaps[ simplify_depth ] = astAnnul( simplify_stackmaps[ simplify_depth ] );
   }

/* If we are now at depth zero, free the simplify_stackmaps array. */
   if( simplify_depth == 0 ) simplify_stackmaps = astFree( simplify_stackmaps );

/* If an error occurred, annul the returned Mapping. */
   if ( !astOK ) result = astAnnul( result );

/* Return the result. */
   return result;
}

static AstPointSet *Transform( AstMapping *this, AstPointSet *in,
                               int forward, AstPointSet *out, int *status ) {
/*
*  Name:
*     Transform

*  Purpose:
*     Apply a CmpMap to transform a set of points.

*  Type:
*     Private function.

*  Synopsis:
*     #include "cmpmap.h"
*     AstPointSet *Transform( AstMapping *this, AstPointSet *in,
*                             int forward, AstPointSet *out, int *status )

*  Class Membership:
*     CmpMap member function (over-rides the astTransform method inherited
*     from the Mapping class).

*  Description:
*     This function takes a CmpMap and a set of points encapsulated in a
*     PointSet and transforms the points so as to apply the required Mapping.
*     This implies applying each of the CmpMap's component Mappings in turn,
*     either in series or in parallel.

*  Parameters:
*     this
*        Pointer to the CmpMap.
*     in
*        Pointer to the PointSet associated with the input coordinate values.
*     forward
*        A non-zero value indicates that the forward coordinate transformation
*        should be applied, while a zero value requests the inverse
*        transformation.
*     out
*        Pointer to a PointSet which will hold the transformed (output)
*        coordinate values. A NULL value may also be given, in which case a
*        new PointSet will be created by this function.
*     status
*        Pointer to the inherited status variable.

*  Returned Value:
*     Pointer to the output (possibly new) PointSet.

*  Notes:
*     -  A null pointer will be returned if this function is invoked with the
*     global error status set, or if it should fail for any reason.
*     -  The number of coordinate values per point in the input PointSet must
*     match the number of coordinates for the CmpMap being applied.
*     -  If an output PointSet is supplied, it must have space for sufficient
*     number of points and coordinate values per point to accommodate the
*     result. Any excess space will be ignored.
*/

/* Local Variables: */
   AstCmpMap *map;               /* Pointer to CmpMap to be applied */
   AstPointSet *result;          /* Pointer to output PointSet */
   AstPointSet *temp1;           /* Pointer to temporary PointSet */
   AstPointSet *temp2;           /* Pointer to temporary PointSet */
   AstPointSet *temp;            /* Pointer to temporary PointSet */
   int forward1;                 /* Use forward direction for Mapping 1? */
   int forward2;                 /* Use forward direction for Mapping 2? */
   int ipoint1;                  /* Index of first point in batch */
   int ipoint2;                  /* Index of last point in batch */
   int nin1;                     /* No. input coordinates for Mapping 1 */
   int nin2;                     /* No. input coordinates for Mapping 2 */
   int nin;                      /* No. input coordinates supplied */
   int nout1;                    /* No. output coordinates for Mapping 1 */
   int nout2;                    /* No. output coordinates for Mapping 2 */
   int nout;                     /* No. output coordinates supplied */
   int np;                       /* Number of points in batch */
   int npoint;                   /* Number of points to be transformed */

/* Local Constants: */
   const int nbatch = 2048;      /* Maximum points in a batch */

/* Check the global error status. */
   if ( !astOK ) return NULL;

/* Obtain a pointer to the CmpMap. */
   map = (AstCmpMap *) this;

/* Apply the parent Mapping using the stored pointer to the Transform member
   function inherited from the parent Mapping class. This function validates
   all arguments and generates an output PointSet if necessary, but does not
   actually transform any coordinate values. */
   result = (*parent_transform)( this, in, forward, out, status );

/* We now extend the parent astTransform method by applying the component
   Mappings of the CmpMap to generate the output coordinate values. */

/* Determine whether to apply the forward or inverse Mapping, according to the
   direction specified and whether the Mapping has been inverted. */
   if ( astGetInvert( map ) ) forward = !forward;

/* Check if either component Mapping's inversion flag has changed since it was
   used to construct the CmpMap. Set a "forward" flag for each Mapping to
   change the direction we will use, to compensate if necessary. (Such changes
   may have occurred if other pointers to the component Mappings are in
   circulation). */
   forward1 = forward;
   forward2 = forward;
   if ( map->invert1 != astGetInvert( map->map1 ) ) forward1 = !forward1;
   if ( map->invert2 != astGetInvert( map->map2 ) ) forward2 = !forward2;

/* Determine the number of points being transformed. */
   npoint = astGetNpoint( in );

/* Mappings in series. */
/* ------------------- */
/* If required, use the two component Mappings in series. To do this, we must
   apply one Mapping followed by the other, which means storing an intermediate
   result. Since this function may be invoked recursively and have to store an
   intermediate result on each occasion, the memory required may become
   excessive when transforming large numbers of points. To overcome this, we
   split the points up into smaller batches. */
   if ( astOK ) {
      if ( map->series ) {

/* Obtain the numbers of input and output coordinates. */
         nin = astGetNcoord( in );
         nout = astGetNcoord( result );

/* Loop to process all the points in batches, of maximum size nbatch points. */
         for ( ipoint1 = 0; ipoint1 < npoint; ipoint1 += nbatch ) {

/* Calculate the index of the final point in the batch and deduce the number of
   points (np) to be processed in this batch. */
            ipoint2 = ipoint1 + nbatch - 1;
            if ( ipoint2 > npoint - 1 ) ipoint2 = npoint - 1;
            np = ipoint2 - ipoint1 + 1;

/* Create temporary PointSets to describe the input and output points for this
   batch. */
            temp1 = astPointSet( np, nin, "", status );
            temp2 = astPointSet( np, nout, "", status );

/* Associate the required subsets of the input and output coordinates with the
   two PointSets. */
            astSetSubPoints( in, ipoint1, 0, temp1 );
            astSetSubPoints( result, ipoint1, 0, temp2 );

/* Apply the two Mappings in sequence and in the required order and direction.
   Store the intermediate result in a temporary PointSet (temp) which is
   created by the first Mapping applied. */
            if ( forward ) {
               temp = astTransform( map->map1, temp1, forward1, NULL );
               (void) astTransform( map->map2, temp, forward2, temp2 );
            } else {
               temp = astTransform( map->map2, temp1, forward2, NULL );
               (void) astTransform( map->map1, temp, forward1, temp2 );
            }

/* Delete the temporary PointSets after processing each batch of points. */
            temp = astDelete( temp );
            temp1 = astDelete( temp1 );
            temp2 = astDelete( temp2 );

/* Quit processing batches if an error occurs. */
            if ( !astOK ) break;
         }

/* Mappings in parallel. */
/* --------------------- */
/* If required, use the two component Mappings in parallel. Since we do not
   need to allocate any memory to hold intermediate coordinate values here,
   there is no need to process the points in batches. */
      } else {

/* Get the effective number of input and output coordinates per point for each
   Mapping (taking account of the direction in which each will be used to
   transform points). */
         nin1 = forward1 ? astGetNin( map->map1 ) : astGetNout( map->map1 );
         nout1 = forward1 ? astGetNout( map->map1 ) : astGetNin( map->map1 );
         nin2 = forward2 ? astGetNin( map->map2 ) : astGetNout( map->map2 );
         nout2 = forward2 ? astGetNout( map->map2 ) : astGetNin( map->map2 );

/* Create temporary PointSets to describe the input and output coordinates for
   the first Mapping. */
         temp1 = astPointSet( npoint, nin1, "", status );
         temp2 = astPointSet( npoint, nout1, "", status );

/* Associate the required subsets of the input and output coordinates with
   these PointSets. */
         astSetSubPoints( in, 0, 0, temp1 );
         astSetSubPoints( result, 0, 0, temp2 );

/* Use the astTransform method to apply the coordinate transformation described
   by the first Mapping. */
         (void) astTransform( map->map1, temp1, forward1, temp2 );

/* Delete the temporary PointSets. */
         temp1 = astDelete( temp1 );
         temp2 = astDelete( temp2 );

/* Create a new pair of temporary PointSets to describe the input and output
   coordinates for the second Mapping, and associate the required subsets of
   the input and output coordinates with these PointSets. */
         temp1 = astPointSet( npoint, nin2, "", status );
         temp2 = astPointSet( npoint, nout2, "", status );
         astSetSubPoints( in, 0, nin1, temp1 );
         astSetSubPoints( result, 0, nout1, temp2 );

/* Apply the coordinate transformation described by the second Mapping. */
         (void) astTransform( map->map2, temp1, forward2, temp2 );

/* Delete the two temporary PointSets. */
         temp1 = astDelete( temp1 );
         temp2 = astDelete( temp2 );
      }
   }

/* If an error occurred, clean up by deleting the output PointSet (if
   allocated by this function) and setting a NULL result pointer. */
   if ( !astOK ) {
      if ( !out ) result = astDelete( result );
      result = NULL;
   }

/* Return a pointer to the output PointSet. */
   return result;
}

/* Copy constructor. */
/* ----------------- */
static void Copy( const AstObject *objin, AstObject *objout, int *status ) {
/*
*  Name:
*     Copy

*  Purpose:
*     Copy constructor for CmpMap objects.

*  Type:
*     Private function.

*  Synopsis:
*     void Copy( const AstObject *objin, AstObject *objout, int *status )

*  Description:
*     This function implements the copy constructor for CmpMap objects.

*  Parameters:
*     objin
*        Pointer to the object to be copied.
*     objout
*        Pointer to the object being constructed.
*     status
*        Pointer to the inherited status variable.

*  Returned Value:
*     void

*  Notes:
*     -  This constructor makes a deep copy, including a copy of the component
*     Mappings within the CmpMap.
*/

/* Local Variables: */
   AstCmpMap *in;                /* Pointer to input CmpMap */
   AstCmpMap *out;               /* Pointer to output CmpMap */

/* Check the global error status. */
   if ( !astOK ) return;

/* Obtain pointers to the input and output CmpMaps. */
   in = (AstCmpMap *) objin;
   out = (AstCmpMap *) objout;

/* For safety, start by clearing any references to the input component
   Mappings from the output CmpMap. */
   out->map1 = NULL;
   out->map2 = NULL;

/* Make copies of these Mappings and store pointers to them in the output
   CmpMap structure. */
   out->map1 = astCopy( in->map1 );
   out->map2 = astCopy( in->map2 );
}

/* Destructor. */
/* ----------- */
static void Delete( AstObject *obj, int *status ) {
/*
*  Name:
*     Delete

*  Purpose:
*     Destructor for CmpMap objects.

*  Type:
*     Private function.

*  Synopsis:
*     void Delete( AstObject *obj, int *status )

*  Description:
*     This function implements the destructor for CmpMap objects.

*  Parameters:
*     obj
*        Pointer to the object to be deleted.
*     status
*        Pointer to the inherited status variable.

*  Returned Value:
*     void

*  Notes:
*     This function attempts to execute even if the global error status is
*     set.
*/

/* Local Variables: */
   AstCmpMap *this;              /* Pointer to CmpMap */

/* Obtain a pointer to the CmpMap structure. */
   this = (AstCmpMap *) obj;

/* Annul the pointers to the component Mappings. */
   this->map1 = astAnnul( this->map1 );
   this->map2 = astAnnul( this->map2 );

/* Clear the remaining CmpMap variables. */
   this->invert1 = 0;
   this->invert2 = 0;
   this->series = 0;
}

/* Dump function. */
/* -------------- */
static void Dump( AstObject *this_object, AstChannel *channel, int *status ) {
/*
*  Name:
*     Dump

*  Purpose:
*     Dump function for CmpMap objects.

*  Type:
*     Private function.

*  Synopsis:
*     void Dump( AstObject *this, AstChannel *channel, int *status )

*  Description:
*     This function implements the Dump function which writes out data
*     for the CmpMap class to an output Channel.

*  Parameters:
*     this
*        Pointer to the CmpMap whose data are being written.
*     channel
*        Pointer to the Channel to which the data are being written.
*     status
*        Pointer to the inherited status variable.
*/

/* Local Variables: */
   AstCmpMap *this;              /* Pointer to the CmpMap structure */
   int ival;                     /* Integer value */
   int set;                      /* Attribute value set? */

/* Check the global error status. */
   if ( !astOK ) return;

/* Obtain a pointer to the CmpMap structure. */
   this = (AstCmpMap *) this_object;

/* Write out values representing the instance variables for the CmpMap
   class.  Accompany these with appropriate comment strings, possibly
   depending on the values being written.*/

/* In the case of attributes, we first use the appropriate (private)
   Test...  member function to see if they are set. If so, we then use
   the (private) Get... function to obtain the value to be written
   out.

   For attributes which are not set, we use the astGet... method to
   obtain the value instead. This will supply a default value
   (possibly provided by a derived class which over-rides this method)
   which is more useful to a human reader as it corresponds to the
   actual default attribute value.  Since "set" will be zero, these
   values are for information only and will not be read back. */

/* Series. */
/* ------- */
   ival = this->series;
   set = ( ival == 0 );
   astWriteInt( channel, "Series", set, 0, ival,
                ival ? "Component Mappings applied in series" :
                       "Component Mappings applied in parallel" );

/* First Invert flag. */
/* ------------------ */
   ival = this->invert1;
   set = ( ival != 0 );
   astWriteInt( channel, "InvA", set, 0, ival,
                ival ? "First Mapping used in inverse direction" :
                       "First Mapping used in forward direction" );

/* Second Invert flag. */
/* ------------------- */
   ival = this->invert2;
   set = ( ival != 0 );
   astWriteInt( channel, "InvB", set, 0, ival,
                ival ? "Second Mapping used in inverse direction" :
                       "Second Mapping used in forward direction" );

/* First Mapping. */
/* -------------- */
   astWriteObject( channel, "MapA", 1, 1, this->map1,
                   "First component Mapping" );

/* Second Mapping. */
/* --------------- */
   astWriteObject( channel, "MapB", 1, 1, this->map2,
                   "Second component Mapping" );
}

/* Standard class functions. */
/* ========================= */
/* Implement the astIsACmpMap and astCheckCmpMap functions using the
   macros defined for this purpose in the "object.h" header file. */
astMAKE_ISA(CmpMap,Mapping)
astMAKE_CHECK(CmpMap)

AstCmpMap *astCmpMap_( void *map1_void, void *map2_void, int series,
                       const char *options, int *status, ...) {
/*
*+
*  Name:
*     astCmpMap

*  Purpose:
*     Create a CmpMap.

*  Type:
*     Protected function.

*  Synopsis:
*     #include "cmpmap.h"
*     AstCmpMap *astCmpMap( AstMapping *map1, AstMapping *map2, int series,
*                           const char *options, ... )

*  Class Membership:
*     CmpMap constructor.

*  Description:
*     This function creates a new CmpMap and optionally initialises its
*     attributes.

*  Parameters:
*     map1
*        Pointer to the first Mapping.
*     map2
*        Pointer to the second Mapping.
*     series
*        If a non-zero value is given, the two Mappings will be connected
*        together in series. A zero value requests that they be connected in
*        parallel.
*     options
*        Pointer to a null terminated string containing an optional
*        comma-separated list of attribute assignments to be used for
*        initialising the new CmpMap. The syntax used is the same as for the
*        astSet method and may include "printf" format specifiers identified
*        by "%" symbols in the normal way.
*     ...
*        If the "options" string contains "%" format specifiers, then an
*        optional list of arguments may follow it in order to supply values to
*        be substituted for these specifiers. The rules for supplying these
*        are identical to those for the astSet method (and for the C "printf"
*        function).

*  Returned Value:
*     A pointer to the new CmpMap.

*  Notes:
*     - A null pointer will be returned if this function is invoked
*     with the global error status set, or if it should fail for any
*     reason.
*-

*  Implementation Notes:
*     - This function implements the basic CmpMap constructor which is
*     available via the protected interface to the CmpMap class.  A
*     public interface is provided by the astCmpMapId_ function.
*     - Because this function has a variable argument list, it is
*     invoked by a macro that evaluates to a function pointer (not a
*     function invocation) and no checking or casting of arguments is
*     performed before the function is invoked. Because of this, the
*     "map1" and "map2" parameters are of type (void *) and are
*     converted and validated within the function itself.
*/

/* Local Variables: */
   astDECLARE_GLOBALS            /* Pointer to thread-specific global data */
   AstCmpMap *new;               /* Pointer to new CmpMap */
   AstMapping *map1;             /* Pointer to first Mapping structure */
   AstMapping *map2;             /* Pointer to second Mapping structure */
   va_list args;                 /* Variable argument list */

/* Initialise. */
   new = NULL;

/* Get a pointer to the thread specific global data structure. */
   astGET_GLOBALS(NULL);

/* Check the global status. */
   if ( !astOK ) return new;

/* Obtain and validate pointers to the Mapping structures provided. */
   map1 = astCheckMapping( map1_void );
   map2 = astCheckMapping( map2_void );
   if ( astOK ) {

/* Initialise the CmpMap, allocating memory and initialising the
   virtual function table as well if necessary. */
      new = astInitCmpMap( NULL, sizeof( AstCmpMap ), !class_init, &class_vtab,
                           "CmpMap", map1, map2, series );

/* If successful, note that the virtual function table has been
   initialised. */
      if ( astOK ) {
         class_init = 1;

/* Obtain the variable argument list and pass it along with the
   options string to the astVSet method to initialise the new CmpMap's
   attributes. */
         va_start( args, status );
         astVSet( new, options, NULL, args );
         va_end( args );

/* If an error occurred, clean up by deleting the new object. */
         if ( !astOK ) new = astDelete( new );
      }
   }

/* Return a pointer to the new CmpMap. */
   return new;
}

AstCmpMap *astCmpMapId_( void *map1_void, void *map2_void, int series,
                         const char *options, ... ) {
/*
*++
*  Name:
c     astCmpMap
f     AST_CMPMAP

*  Purpose:
*     Create a CmpMap.

*  Type:
*     Public function.

*  Synopsis:
c     #include "cmpmap.h"
c     AstCmpMap *astCmpMap( AstMapping *map1, AstMapping *map2, int series,
c                           const char *options, ... )
f     RESULT = AST_CMPMAP( MAP1, MAP2, SERIES, OPTIONS, STATUS )

*  Class Membership:
*     CmpMap constructor.

*  Description:
*     This function creates a new CmpMap and optionally initialises
*     its attributes.
*
*     A CmpMap is a compound Mapping which allows two component
*     Mappings (of any class) to be connected together to form a more
*     complex Mapping. This connection may either be "in series"
*     (where the first Mapping is used to transform the coordinates of
*     each point and the second mapping is then applied to the
*     result), or "in parallel" (where one Mapping transforms the
*     earlier coordinates for each point and the second Mapping
*     simultaneously transforms the later coordinates).
*
*     Since a CmpMap is itself a Mapping, it can be used as a
*     component in forming further CmpMaps. Mappings of arbitrary
*     complexity may be built from simple individual Mappings in this
*     way.

*  Parameters:
c     map1
f     MAP1 = INTEGER (Given)
*        Pointer to the first component Mapping.
c     map2
f     MAP2 = INTEGER (Given)
*        Pointer to the second component Mapping.
c     series
f     SERIES = LOGICAL (Given)
c        If a non-zero value is given for this parameter, the two
c        component Mappings will be connected in series. A zero
c        value requests that they are connected in parallel.
f        If a .TRUE. value is given for this argument, the two
f        component Mappings will be connected in series. A
f        .FALSE. value requests that they are connected in parallel.
c     options
f     OPTIONS = CHARACTER * ( * ) (Given)
c        Pointer to a null-terminated string containing an optional
c        comma-separated list of attribute assignments to be used for
c        initialising the new CmpMap. The syntax used is identical to
c        that for the astSet function and may include "printf" format
c        specifiers identified by "%" symbols in the normal way.
f        A character string containing an optional comma-separated
f        list of attribute assignments to be used for initialising the
f        new CmpMap. The syntax used is identical to that for the
f        AST_SET routine.
c     ...
c        If the "options" string contains "%" format specifiers, then
c        an optional list of additional arguments may follow it in
c        order to supply values to be substituted for these
c        specifiers. The rules for supplying these are identical to
c        those for the astSet function (and for the C "printf"
c        function).
f     STATUS = INTEGER (Given and Returned)
f        The global status.

*  Returned Value:
c     astCmpMap()
f     AST_CMPMAP = INTEGER
*        A pointer to the new CmpMap.

*  Notes:
*     - If the component Mappings are connected in series, then using
*     the resulting CmpMap to transform coordinates will cause the
*     first Mapping to be applied, followed by the second Mapping. If
*     the inverse CmpMap transformation is requested, the two
*     component Mappings will be applied in both the reverse order and
*     the reverse direction.
*     - When connecting two component Mappings in series, the number
*     of output coordinates generated by the first Mapping (its Nout
*     attribute) must equal the number of input coordinates accepted
*     by the second Mapping (its Nin attribute).
*     - If the component Mappings of a CmpMap are connected in
*     parallel, then the first Mapping will be used to transform the
*     earlier input coordinates for each point (and to produce the
*     earlier output coordinates) and the second Mapping will be used
*     simultaneously to transform the remaining input coordinates (to
*     produce the remaining output coordinates for each point). If the
*     inverse transformation is requested, each Mapping will still be
*     applied to the same coordinates, but in the reverse direction.
*     - When connecting two component Mappings in parallel, there is
*     no restriction on the number of input and output coordinates for
*     each Mapping.
c     - Note that the component Mappings supplied are not copied by
c     astCmpMap (the new CmpMap simply retains a reference to
c     them). They may continue to be used for other purposes, but
c     should not be deleted. If a CmpMap containing a copy of its
c     component Mappings is required, then a copy of the CmpMap should
c     be made using astCopy.
f     - Note that the component Mappings supplied are not copied by
f     AST_CMPMAP (the new CmpMap simply retains a reference to
f     them). They may continue to be used for other purposes, but
f     should not be deleted. If a CmpMap containing a copy of its
f     component Mappings is required, then a copy of the CmpMap should
f     be made using AST_COPY.
*     - A null Object pointer (AST__NULL) will be returned if this
c     function is invoked with the AST error status set, or if it
f     function is invoked with STATUS set to an error value, or if it
*     should fail for any reason.
*--

*  Implementation Notes:
*     - This function implements the external (public) interface to
*     the astCmpMap constructor function. It returns an ID value
*     (instead of a true C pointer) to external users, and must be
*     provided because astCmpMap_ has a variable argument list which
*     cannot be encapsulated in a macro (where this conversion would
*     otherwise occur).
*     - Because no checking or casting of arguments is performed
*     before the function is invoked, the "map1" and "map2" parameters
*     are of type (void *) and are converted from an ID value to a
*     pointer and validated within the function itself.
*     - The variable argument list also prevents this function from
*     invoking astCmpMap_ directly, so it must be a re-implementation
*     of it in all respects, except for the conversions between IDs
*     and pointers on input/output of Objects.
*/

/* Local Variables: */
   astDECLARE_GLOBALS            /* Pointer to thread-specific global data */
   AstCmpMap *new;               /* Pointer to new CmpMap */
   AstMapping *map1;             /* Pointer to first Mapping structure */
   AstMapping *map2;             /* Pointer to second Mapping structure */
   va_list args;                 /* Variable argument list */

   int *status;                  /* Pointer to inherited status value */

/* Get a pointer to the thread specific global data structure. */
   astGET_GLOBALS(NULL);

/* Initialise. */
   new = NULL;

/* Get a pointer to the inherited status value. */
   status = astGetStatusPtr;

/* Check the global status. */
   if ( !astOK ) return new;

/* Obtain the Mapping pointers from the ID's supplied and validate the
   pointers to ensure they identify valid Mappings. */
   map1 = astVerifyMapping( astMakePointer( map1_void ) );
   map2 = astVerifyMapping( astMakePointer( map2_void ) );
   if ( astOK ) {

/* Initialise the CmpMap, allocating memory and initialising the
   virtual function table as well if necessary. */
      new = astInitCmpMap( NULL, sizeof( AstCmpMap ), !class_init, &class_vtab,
                           "CmpMap", map1, map2, series );

/* If successful, note that the virtual function table has been initialised. */
      if ( astOK ) {
         class_init = 1;

/* Obtain the variable argument list and pass it along with the
   options string to the astVSet method to initialise the new CmpMap's
   attributes. */
         va_start( args, options );
         astVSet( new, options, NULL, args );
         va_end( args );

/* If an error occurred, clean up by deleting the new object. */
         if ( !astOK ) new = astDelete( new );
      }
   }

/* Return an ID value for the new CmpMap. */
   return astMakeId( new );
}

AstCmpMap *astInitCmpMap_( void *mem, size_t size, int init,
                           AstCmpMapVtab *vtab, const char *name,
                           AstMapping *map1, AstMapping *map2, int series, int *status ) {
/*
*+
*  Name:
*     astInitCmpMap

*  Purpose:
*     Initialise a CmpMap.

*  Type:
*     Protected function.

*  Synopsis:
*     #include "cmpmap.h"
*     AstCmpMap *astInitCmpMap( void *mem, size_t size, int init,
*                               AstCmpMapVtab *vtab, const char *name,
*                               AstMapping *map1, AstMapping *map2,
*                               int series )

*  Class Membership:
*     CmpMap initialiser.

*  Description:
*     This function is provided for use by class implementations to initialise
*     a new CmpMap object. It allocates memory (if necessary) to
*     accommodate the CmpMap plus any additional data associated with the
*     derived class. It then initialises a CmpMap structure at the start
*     of this memory. If the "init" flag is set, it also initialises the
*     contents of a virtual function table for a CmpMap at the start of
*     the memory passed via the "vtab" parameter.

*  Parameters:
*     mem
*        A pointer to the memory in which the CmpMap is to be initialised.
*        This must be of sufficient size to accommodate the CmpMap data
*        (sizeof(CmpMap)) plus any data used by the derived class. If a
*        value of NULL is given, this function will allocate the memory itself
*        using the "size" parameter to determine its size.
*     size
*        The amount of memory used by the CmpMap (plus derived class
*        data). This will be used to allocate memory if a value of NULL is
*        given for the "mem" parameter. This value is also stored in the
*        CmpMap structure, so a valid value must be supplied even if not
*        required for allocating memory.
*     init
*        A logical flag indicating if the CmpMap's virtual function table
*        is to be initialised. If this value is non-zero, the virtual function
*        table will be initialised by this function.
*     vtab
*        Pointer to the start of the virtual function table to be associated
*        with the new CmpMap.
*     name
*        Pointer to a constant null-terminated character string which contains
*        the name of the class to which the new object belongs (it is this
*        pointer value that will subsequently be returned by the Object
*        astClass function).
*     map1
*        Pointer to the first Mapping.
*     map2
*        Pointer to the second Mapping.
*     series
*        If a non-zero value is given, the two Mappings will be connected
*        together in series. A zero value requests that they be connected in
*        parallel.

*  Returned Value:
*     A pointer to the new CmpMap.

*  Notes:
*     -  A null pointer will be returned if this function is invoked with the
*     global error status set, or if it should fail for any reason.
*-
*/

/* Local Variables: */
   AstCmpMap *new;               /* Pointer to new CmpMap */
   int map_f;                    /* Forward transformation defined? */
   int map_i;                    /* Inverse transformation defined? */
   int nin2;                     /* No. input coordinates for Mapping 2 */
   int nin;                      /* No. input coordinates for CmpMap */
   int nout1;                    /* No. output coordinates for Mapping 1 */
   int nout;                     /* No. output coordinates for CmpMap */

/* Check the global status. */
   if ( !astOK ) return NULL;

/* If necessary, initialise the virtual function table. */
   if ( init ) astInitCmpMapVtab( vtab, name );

/* Initialise. */
   new = NULL;

/* Determine in which directions each component Mapping is able to transform
   coordinates. Combine these results to obtain a result for the overall
   CmpMap. */
   map_f = astGetTranForward( map1 ) && astGetTranForward( map2 );
   map_i = astGetTranInverse( map1 ) && astGetTranInverse( map2 );
   if ( astOK ) {

/* If connecting the Mappings in series, check that the number of coordinates
   are compatible and report an error if they are not. */
      if ( series ) {
         nout1 = astGetNout( map1 );
         nin2 = astGetNin( map2 );
         if ( astOK && ( nout1 != nin2 ) ) {
            astError( AST__INNCO, "astInitCmpMap(%s): The number of output "
                      "coordinates per point (%d) for the first Mapping "
                      "supplied does not match the number of input "
                      "coordinates (%d) for the second Mapping.", status, name, nout1,
                      nin2 );
         }
      }
   }

/* If OK, determine the total number of input and output coordinates per point
   for the CmpMap. */
   if ( astOK ) {
      if ( series ) {
         nin = astGetNin( map1 );
         nout = astGetNout( map2 );
      } else {
         nin = astGetNin( map1 ) + astGetNin( map2 );
         nout = astGetNout( map1 ) + astGetNout( map2 );
      }

   } else {
      nin = 0;
      nout = 0;
   }

/* Initialise a Mapping structure (the parent class) as the first component
   within the CmpMap structure, allocating memory if necessary. Specify
   the number of input and output coordinates and in which directions the
   Mapping should be defined. */
   if ( astOK ) {
      new = (AstCmpMap *) astInitMapping( mem, size, 0,
                                          (AstMappingVtab *) vtab, name,
                                          nin, nout, map_f, map_i );

      if ( astOK ) {

/* Initialise the CmpMap data. */
/* --------------------------- */
/* Store pointers to the component Mappings. Extract Mappings if
   FrameSets are provided. */
         if( astIsAFrameSet( map1 ) ) {
            new->map1 = astGetMapping( (AstFrameSet *) map1, AST__BASE,
                                       AST__CURRENT );
         } else {
            new->map1 = astClone( map1 );
         }

         if( astIsAFrameSet( map2 ) ) {
            new->map2 = astGetMapping( (AstFrameSet *) map2, AST__BASE,
                                       AST__CURRENT );
         } else {
            new->map2 = astClone( map2 );
         }


/* Save the initial values of the inversion flags for these Mappings. */
         new->invert1 = astGetInvert( new->map1 );
         new->invert2 = astGetInvert( new->map2 );

/* Note whether the Mappings are joined in series (instead of in parallel),
   constraining this flag to be 0 or 1. */
         new->series = ( series != 0 );

/* If an error occurred, clean up by annulling the Mapping pointers and
   deleting the new object. */
         if ( !astOK ) {
            new->map1 = astAnnul( new->map1 );
            new->map2 = astAnnul( new->map2 );
            new = astDelete( new );
         }
      }
   }

/* Return a pointer to the new object. */
   return new;
}

AstCmpMap *astLoadCmpMap_( void *mem, size_t size,
                           AstCmpMapVtab *vtab, const char *name,
                           AstChannel *channel, int *status ) {
/*
*+
*  Name:
*     astLoadCmpMap

*  Purpose:
*     Load a CmpMap.

*  Type:
*     Protected function.

*  Synopsis:
*     #include "cmpmap.h"
*     AstCmpMap *astLoadCmpMap( void *mem, size_t size,
*                               AstCmpMapVtab *vtab, const char *name,
*                               AstChannel *channel )

*  Class Membership:
*     CmpMap loader.

*  Description:
*     This function is provided to load a new CmpMap using data read
*     from a Channel. It first loads the data used by the parent class
*     (which allocates memory if necessary) and then initialises a
*     CmpMap structure in this memory, using data read from the input
*     Channel.
*
*     If the "init" flag is set, it also initialises the contents of a
*     virtual function table for a CmpMap at the start of the memory
*     passed via the "vtab" parameter.


*  Parameters:
*     mem
*        A pointer to the memory into which the CmpMap is to be
*        loaded.  This must be of sufficient size to accommodate the
*        CmpMap data (sizeof(CmpMap)) plus any data used by derived
*        classes. If a value of NULL is given, this function will
*        allocate the memory itself using the "size" parameter to
*        determine its size.
*     size
*        The amount of memory used by the CmpMap (plus derived class
*        data).  This will be used to allocate memory if a value of
*        NULL is given for the "mem" parameter. This value is also
*        stored in the CmpMap structure, so a valid value must be
*        supplied even if not required for allocating memory.
*
*        If the "vtab" parameter is NULL, the "size" value is ignored
*        and sizeof(AstCmpMap) is used instead.
*     vtab
*        Pointer to the start of the virtual function table to be
*        associated with the new CmpMap. If this is NULL, a pointer to
*        the (static) virtual function table for the CmpMap class is
*        used instead.
*     name
*        Pointer to a constant null-terminated character string which
*        contains the name of the class to which the new object
*        belongs (it is this pointer value that will subsequently be
*        returned by the astGetClass method).
*
*        If the "vtab" parameter is NULL, the "name" value is ignored
*        and a pointer to the string "CmpMap" is used instead.

*  Returned Value:
*     A pointer to the new CmpMap.

*  Notes:
*     - A null pointer will be returned if this function is invoked
*     with the global error status set, or if it should fail for any
*     reason.
*-
*/

/* Local Variables: */
   astDECLARE_GLOBALS            /* Pointer to thread-specific global data */
   AstCmpMap *new;               /* Pointer to the new CmpMap */

/* Initialise. */
   new = NULL;

/* Check the global error status. */
   if ( !astOK ) return new;

/* Get a pointer to the thread specific global data structure. */
   astGET_GLOBALS(channel);

/* If a NULL virtual function table has been supplied, then this is
   the first loader to be invoked for this CmpMap. In this case the
   CmpMap belongs to this class, so supply appropriate values to be
   passed to the parent class loader (and its parent, etc.). */
   if ( !vtab ) {
      size = sizeof( AstCmpMap );
      vtab = &class_vtab;
      name = "CmpMap";

/* If required, initialise the virtual function table for this class. */
      if ( !class_init ) {
         astInitCmpMapVtab( vtab, name );
         class_init = 1;
      }
   }

/* Invoke the parent class loader to load data for all the ancestral
   classes of the current one, returning a pointer to the resulting
   partly-built CmpMap. */
   new = astLoadMapping( mem, size, (AstMappingVtab *) vtab, name,
                         channel );

   if ( astOK ) {

/* Read input data. */
/* ================ */
/* Request the input Channel to read all the input data appropriate to
   this class into the internal "values list". */
      astReadClassData( channel, "CmpMap" );

/* Now read each individual data item from this list and use it to
   initialise the appropriate instance variable(s) for this class. */

/* In the case of attributes, we first read the "raw" input value,
   supplying the "unset" value as the default. If a "set" value is
   obtained, we then use the appropriate (private) Set... member
   function to validate and set the value properly. */

/* Series. */
/* ------- */
      new->series = astReadInt( channel, "series", 1 );
      new->series = ( new->series != 0 );

/* First Invert flag. */
/* ------------------ */
      new->invert1 = astReadInt( channel, "inva", 0 );
      new->invert1 = ( new->invert1 != 0 );

/* Second Invert flag. */
/* ------------------- */
      new->invert2 = astReadInt( channel, "invb", 0 );
      new->invert2 = ( new->invert2 != 0 );

/* First Mapping. */
/* -------------- */
      new->map1 = astReadObject( channel, "mapa", NULL );

/* Second Mapping. */
/* --------------- */
      new->map2 = astReadObject( channel, "mapb", NULL );

/* If an error occurred, clean up by deleting the new CmpMap. */
      if ( !astOK ) new = astDelete( new );
   }

/* Return the new CmpMap pointer. */
   return new;
}

/* Virtual function interfaces. */
/* ============================ */
/* These provide the external interface to the virtual functions defined by
   this class. Each simply checks the global error status and then locates and
   executes the appropriate member function, using the function pointer stored
   in the object's virtual function table (this pointer is located using the
   astMEMBER macro defined in "object.h").

   Note that the member function may not be the one defined here, as it may
   have been over-ridden by a derived class. However, it should still have the
   same interface. */

/* None. */