summaryrefslogtreecommitdiffstats
path: root/ast/erfa/atoiq.c
blob: d5501a7c8839309fca7754dcfe9f1778f30ec92c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
#include "erfa.h"

void eraAtoiq(const char *type,
              double ob1, double ob2, eraASTROM *astrom,
              double *ri, double *di)
/*
**  - - - - - - - - -
**   e r a A t o i q
**  - - - - - - - - -
**
**  Quick observed place to CIRS, given the star-independent astrometry
**  parameters.
**
**  Use of this function is appropriate when efficiency is important and
**  where many star positions are all to be transformed for one date.
**  The star-independent astrometry parameters can be obtained by
**  calling eraApio[13] or eraApco[13].
**
**  Given:
**     type   char[]     type of coordinates: "R", "H" or "A" (Note 1)
**     ob1    double     observed Az, HA or RA (radians; Az is N=0,E=90)
**     ob2    double     observed ZD or Dec (radians)
**     astrom eraASTROM* star-independent astrometry parameters:
**      pmt    double       PM time interval (SSB, Julian years)
**      eb     double[3]    SSB to observer (vector, au)
**      eh     double[3]    Sun to observer (unit vector)
**      em     double       distance from Sun to observer (au)
**      v      double[3]    barycentric observer velocity (vector, c)
**      bm1    double       sqrt(1-|v|^2): reciprocal of Lorenz factor
**      bpn    double[3][3] bias-precession-nutation matrix
**      along  double       longitude + s' (radians)
**      xpl    double       polar motion xp wrt local meridian (radians)
**      ypl    double       polar motion yp wrt local meridian (radians)
**      sphi   double       sine of geodetic latitude
**      cphi   double       cosine of geodetic latitude
**      diurab double       magnitude of diurnal aberration vector
**      eral   double       "local" Earth rotation angle (radians)
**      refa   double       refraction constant A (radians)
**      refb   double       refraction constant B (radians)
**
**  Returned:
**     ri     double*    CIRS right ascension (CIO-based, radians)
**     di     double*    CIRS declination (radians)
**
**  Notes:
**
**  1) "Observed" Az,El means the position that would be seen by a
**     perfect geodetically aligned theodolite.  This is related to
**     the observed HA,Dec via the standard rotation, using the geodetic
**     latitude (corrected for polar motion), while the observed HA and
**     RA are related simply through the Earth rotation angle and the
**     site longitude.  "Observed" RA,Dec or HA,Dec thus means the
**     position that would be seen by a perfect equatorial with its
**     polar axis aligned to the Earth's axis of rotation.  By removing
**     from the observed place the effects of atmospheric refraction and
**     diurnal aberration, the CIRS RA,Dec is obtained.
**
**  2) Only the first character of the type argument is significant.
**     "R" or "r" indicates that ob1 and ob2 are the observed right
**     ascension and declination;  "H" or "h" indicates that they are
**     hour angle (west +ve) and declination;  anything else ("A" or
**     "a" is recommended) indicates that ob1 and ob2 are azimuth (north
**     zero, east 90 deg) and zenith distance.  (Zenith distance is used
**     rather than altitude in order to reflect the fact that no
**     allowance is made for depression of the horizon.)
**
**  3) The accuracy of the result is limited by the corrections for
**     refraction, which use a simple A*tan(z) + B*tan^3(z) model.
**     Providing the meteorological parameters are known accurately and
**     there are no gross local effects, the predicted observed
**     coordinates should be within 0.05 arcsec (optical) or 1 arcsec
**     (radio) for a zenith distance of less than 70 degrees, better
**     than 30 arcsec (optical or radio) at 85 degrees and better than
**     20 arcmin (optical) or 30 arcmin (radio) at the horizon.
**
**     Without refraction, the complementary functions eraAtioq and
**     eraAtoiq are self-consistent to better than 1 microarcsecond all
**     over the celestial sphere.  With refraction included, consistency
**     falls off at high zenith distances, but is still better than
**     0.05 arcsec at 85 degrees.
**
**  4) It is advisable to take great care with units, as even unlikely
**     values of the input parameters are accepted and processed in
**     accordance with the models used.
**
**  Called:
**     eraS2c       spherical coordinates to unit vector
**     eraC2s       p-vector to spherical
**     eraAnp       normalize angle into range 0 to 2pi
**
**  Copyright (C) 2013-2016, NumFOCUS Foundation.
**  Derived, with permission, from the SOFA library.  See notes at end of file.
*/
{
   int c;
   double c1, c2, sphi, cphi, ce, xaeo, yaeo, zaeo, v[3],
          xmhdo, ymhdo, zmhdo, az, sz, zdo, refa, refb, tz, dref,
          zdt, xaet, yaet, zaet, xmhda, ymhda, zmhda,
          f, xhd, yhd, zhd, xpl, ypl, w, hma;


/* Coordinate type. */
   c = (int) type[0];

/* Coordinates. */
   c1 = ob1;
   c2 = ob2;

/* Sin, cos of latitude. */
   sphi = astrom->sphi;
   cphi = astrom->cphi;

/* Standardize coordinate type. */
   if ( c == 'r' || c == 'R' ) {
      c = 'R';
   } else if ( c == 'h' || c == 'H' ) {
      c = 'H';
   } else {
      c = 'A';
   }

/* If Az,ZD, convert to Cartesian (S=0,E=90). */
   if ( c == 'A' ) {
      ce = sin(c2);
      xaeo = - cos(c1) * ce;
      yaeo = sin(c1) * ce;
      zaeo = cos(c2);

   } else {

   /* If RA,Dec, convert to HA,Dec. */
      if ( c == 'R' ) c1 = astrom->eral - c1;

   /* To Cartesian -HA,Dec. */
      eraS2c ( -c1, c2, v );
      xmhdo = v[0];
      ymhdo = v[1];
      zmhdo = v[2];

   /* To Cartesian Az,El (S=0,E=90). */
      xaeo = sphi*xmhdo - cphi*zmhdo;
      yaeo = ymhdo;
      zaeo = cphi*xmhdo + sphi*zmhdo;
   }

/* Azimuth (S=0,E=90). */
   az = ( xaeo != 0.0 || yaeo != 0.0 ) ? atan2(yaeo,xaeo) : 0.0;

/* Sine of observed ZD, and observed ZD. */
   sz = sqrt ( xaeo*xaeo + yaeo*yaeo );
   zdo = atan2 ( sz, zaeo );

/*
** Refraction
** ----------
*/

/* Fast algorithm using two constant model. */
   refa = astrom->refa;
   refb = astrom->refb;
   tz = sz / zaeo;
   dref = ( refa + refb*tz*tz ) * tz;
   zdt = zdo + dref;

/* To Cartesian Az,ZD. */
   ce = sin(zdt);
   xaet = cos(az) * ce;
   yaet = sin(az) * ce;
   zaet = cos(zdt);

/* Cartesian Az,ZD to Cartesian -HA,Dec. */
   xmhda = sphi*xaet + cphi*zaet;
   ymhda = yaet;
   zmhda = - cphi*xaet + sphi*zaet;

/* Diurnal aberration. */
   f = ( 1.0 + astrom->diurab*ymhda );
   xhd = f * xmhda;
   yhd = f * ( ymhda - astrom->diurab );
   zhd = f * zmhda;

/* Polar motion. */
   xpl = astrom->xpl;
   ypl = astrom->ypl;
   w = xpl*xhd - ypl*yhd + zhd;
   v[0] = xhd - xpl*w;
   v[1] = yhd + ypl*w;
   v[2] = w - ( xpl*xpl + ypl*ypl ) * zhd;

/* To spherical -HA,Dec. */
   eraC2s(v, &hma, di);

/* Right ascension. */
   *ri = eraAnp(astrom->eral + hma);

/* Finished. */

}
/*----------------------------------------------------------------------
**  
**  
**  Copyright (C) 2013-2016, NumFOCUS Foundation.
**  All rights reserved.
**  
**  This library is derived, with permission, from the International
**  Astronomical Union's "Standards of Fundamental Astronomy" library,
**  available from http://www.iausofa.org.
**  
**  The ERFA version is intended to retain identical functionality to
**  the SOFA library, but made distinct through different function and
**  file names, as set out in the SOFA license conditions.  The SOFA
**  original has a role as a reference standard for the IAU and IERS,
**  and consequently redistribution is permitted only in its unaltered
**  state.  The ERFA version is not subject to this restriction and
**  therefore can be included in distributions which do not support the
**  concept of "read only" software.
**  
**  Although the intent is to replicate the SOFA API (other than
**  replacement of prefix names) and results (with the exception of
**  bugs;  any that are discovered will be fixed), SOFA is not
**  responsible for any errors found in this version of the library.
**  
**  If you wish to acknowledge the SOFA heritage, please acknowledge
**  that you are using a library derived from SOFA, rather than SOFA
**  itself.
**  
**  
**  TERMS AND CONDITIONS
**  
**  Redistribution and use in source and binary forms, with or without
**  modification, are permitted provided that the following conditions
**  are met:
**  
**  1 Redistributions of source code must retain the above copyright
**    notice, this list of conditions and the following disclaimer.
**  
**  2 Redistributions in binary form must reproduce the above copyright
**    notice, this list of conditions and the following disclaimer in
**    the documentation and/or other materials provided with the
**    distribution.
**  
**  3 Neither the name of the Standards Of Fundamental Astronomy Board,
**    the International Astronomical Union nor the names of its
**    contributors may be used to endorse or promote products derived
**    from this software without specific prior written permission.
**  
**  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
**  "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
**  LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
**  FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
**  COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
**  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
**  BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
**  LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
**  CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
**  LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
**  ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
**  POSSIBILITY OF SUCH DAMAGE.
**  
*/