summaryrefslogtreecommitdiffstats
path: root/ast/erfa/c2teqx.c
blob: 57649eeb41b05a61e7c1b280771afd43c6c78c5a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
#include "erfa.h"

void eraC2teqx(double rbpn[3][3], double gst, double rpom[3][3],
               double rc2t[3][3])
/*
**  - - - - - - - - - -
**   e r a C 2 t e q x
**  - - - - - - - - - -
**
**  Assemble the celestial to terrestrial matrix from equinox-based
**  components (the celestial-to-true matrix, the Greenwich Apparent
**  Sidereal Time and the polar motion matrix).
**
**  Given:
**     rbpn   double[3][3]  celestial-to-true matrix
**     gst    double        Greenwich (apparent) Sidereal Time (radians)
**     rpom   double[3][3]  polar-motion matrix
**
**  Returned:
**     rc2t   double[3][3]  celestial-to-terrestrial matrix (Note 2)
**
**  Notes:
**
**  1) This function constructs the rotation matrix that transforms
**     vectors in the celestial system into vectors in the terrestrial
**     system.  It does so starting from precomputed components, namely
**     the matrix which rotates from celestial coordinates to the
**     true equator and equinox of date, the Greenwich Apparent Sidereal
**     Time and the polar motion matrix.  One use of the present function
**     is when generating a series of celestial-to-terrestrial matrices
**     where only the Sidereal Time changes, avoiding the considerable
**     overhead of recomputing the precession-nutation more often than
**     necessary to achieve given accuracy objectives.
**
**  2) The relationship between the arguments is as follows:
**
**        [TRS] = rpom * R_3(gst) * rbpn * [CRS]
**
**              = rc2t * [CRS]
**
**     where [CRS] is a vector in the Geocentric Celestial Reference
**     System and [TRS] is a vector in the International Terrestrial
**     Reference System (see IERS Conventions 2003).
**
**  Called:
**     eraCr        copy r-matrix
**     eraRz        rotate around Z-axis
**     eraRxr       product of two r-matrices
**
**  Reference:
**
**     McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003),
**     IERS Technical Note No. 32, BKG (2004)
**
**  Copyright (C) 2013-2014, NumFOCUS Foundation.
**  Derived, with permission, from the SOFA library.  See notes at end of file.
*/
{
   double r[3][3];


/* Construct the matrix. */
   eraCr(rbpn, r);
   eraRz(gst, r);
   eraRxr(rpom, r, rc2t);

   return;

}
/*----------------------------------------------------------------------
**  
**  
**  Copyright (C) 2013-2014, NumFOCUS Foundation.
**  All rights reserved.
**  
**  This library is derived, with permission, from the International
**  Astronomical Union's "Standards of Fundamental Astronomy" library,
**  available from http://www.iausofa.org.
**  
**  The ERFA version is intended to retain identical functionality to
**  the SOFA library, but made distinct through different function and
**  file names, as set out in the SOFA license conditions.  The SOFA
**  original has a role as a reference standard for the IAU and IERS,
**  and consequently redistribution is permitted only in its unaltered
**  state.  The ERFA version is not subject to this restriction and
**  therefore can be included in distributions which do not support the
**  concept of "read only" software.
**  
**  Although the intent is to replicate the SOFA API (other than
**  replacement of prefix names) and results (with the exception of
**  bugs;  any that are discovered will be fixed), SOFA is not
**  responsible for any errors found in this version of the library.
**  
**  If you wish to acknowledge the SOFA heritage, please acknowledge
**  that you are using a library derived from SOFA, rather than SOFA
**  itself.
**  
**  
**  TERMS AND CONDITIONS
**  
**  Redistribution and use in source and binary forms, with or without
**  modification, are permitted provided that the following conditions
**  are met:
**  
**  1 Redistributions of source code must retain the above copyright
**    notice, this list of conditions and the following disclaimer.
**  
**  2 Redistributions in binary form must reproduce the above copyright
**    notice, this list of conditions and the following disclaimer in
**    the documentation and/or other materials provided with the
**    distribution.
**  
**  3 Neither the name of the Standards Of Fundamental Astronomy Board,
**    the International Astronomical Union nor the names of its
**    contributors may be used to endorse or promote products derived
**    from this software without specific prior written permission.
**  
**  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
**  "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
**  LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
**  FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
**  COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
**  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
**  BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
**  LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
**  CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
**  LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
**  ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
**  POSSIBILITY OF SUCH DAMAGE.
**  
*/