1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
|
#include "erfa.h"
int eraPmsafe(double ra1, double dec1, double pmr1, double pmd1,
double px1, double rv1,
double ep1a, double ep1b, double ep2a, double ep2b,
double *ra2, double *dec2, double *pmr2, double *pmd2,
double *px2, double *rv2)
/*
** - - - - - - - - - -
** e r a P m s a f e
** - - - - - - - - - -
**
** Star proper motion: update star catalog data for space motion, with
** special handling to handle the zero parallax case.
**
** Given:
** ra1 double right ascension (radians), before
** dec1 double declination (radians), before
** pmr1 double RA proper motion (radians/year), before
** pmd1 double Dec proper motion (radians/year), before
** px1 double parallax (arcseconds), before
** rv1 double radial velocity (km/s, +ve = receding), before
** ep1a double "before" epoch, part A (Note 1)
** ep1b double "before" epoch, part B (Note 1)
** ep2a double "after" epoch, part A (Note 1)
** ep2b double "after" epoch, part B (Note 1)
**
** Returned:
** ra2 double right ascension (radians), after
** dec2 double declination (radians), after
** pmr2 double RA proper motion (radians/year), after
** pmd2 double Dec proper motion (radians/year), after
** px2 double parallax (arcseconds), after
** rv2 double radial velocity (km/s, +ve = receding), after
**
** Returned (function value):
** int status:
** -1 = system error (should not occur)
** 0 = no warnings or errors
** 1 = distance overridden (Note 6)
** 2 = excessive velocity (Note 7)
** 4 = solution didn't converge (Note 8)
** else = binary logical OR of the above warnings
**
** Notes:
**
** 1) The starting and ending TDB epochs ep1a+ep1b and ep2a+ep2b are
** Julian Dates, apportioned in any convenient way between the two
** parts (A and B). For example, JD(TDB)=2450123.7 could be
** expressed in any of these ways, among others:
**
** epNa epNb
**
** 2450123.7 0.0 (JD method)
** 2451545.0 -1421.3 (J2000 method)
** 2400000.5 50123.2 (MJD method)
** 2450123.5 0.2 (date & time method)
**
** The JD method is the most natural and convenient to use in cases
** where the loss of several decimal digits of resolution is
** acceptable. The J2000 method is best matched to the way the
** argument is handled internally and will deliver the optimum
** resolution. The MJD method and the date & time methods are both
** good compromises between resolution and convenience.
**
** 2) In accordance with normal star-catalog conventions, the object's
** right ascension and declination are freed from the effects of
** secular aberration. The frame, which is aligned to the catalog
** equator and equinox, is Lorentzian and centered on the SSB.
**
** The proper motions are the rate of change of the right ascension
** and declination at the catalog epoch and are in radians per TDB
** Julian year.
**
** The parallax and radial velocity are in the same frame.
**
** 3) Care is needed with units. The star coordinates are in radians
** and the proper motions in radians per Julian year, but the
** parallax is in arcseconds.
**
** 4) The RA proper motion is in terms of coordinate angle, not true
** angle. If the catalog uses arcseconds for both RA and Dec proper
** motions, the RA proper motion will need to be divided by cos(Dec)
** before use.
**
** 5) Straight-line motion at constant speed, in the inertial frame, is
** assumed.
**
** 6) An extremely small (or zero or negative) parallax is overridden
** to ensure that the object is at a finite but very large distance,
** but not so large that the proper motion is equivalent to a large
** but safe speed (about 0.1c using the chosen constant). A warning
** status of 1 is added to the status if this action has been taken.
**
** 7) If the space velocity is a significant fraction of c (see the
** constant VMAX in the function eraStarpv), it is arbitrarily set
** to zero. When this action occurs, 2 is added to the status.
**
** 8) The relativistic adjustment carried out in the eraStarpv function
** involves an iterative calculation. If the process fails to
** converge within a set number of iterations, 4 is added to the
** status.
**
** Called:
** eraSeps angle between two points
** eraStarpm update star catalog data for space motion
**
** Copyright (C) 2013-2016, NumFOCUS Foundation.
** Derived, with permission, from the SOFA library. See notes at end of file.
*/
{
/* Minimum allowed parallax (arcsec) */
const double PXMIN = 5e-7;
/* Factor giving maximum allowed transverse speed of about 1% c */
const double F = 326.0;
int jpx, j;
double pm, px1a;
/* Proper motion in one year (radians). */
pm = eraSeps(ra1, dec1, ra1+pmr1, dec1+pmd1);
/* Override the parallax to reduce the chances of a warning status. */
jpx = 0;
px1a = px1;
pm *= F;
if (px1a < pm) {jpx = 1; px1a = pm;}
if (px1a < PXMIN) {jpx = 1; px1a = PXMIN;}
/* Carry out the transformation using the modified parallax. */
j = eraStarpm(ra1, dec1, pmr1, pmd1, px1a, rv1,
ep1a, ep1b, ep2a, ep2b,
ra2, dec2, pmr2, pmd2, px2, rv2);
/* Revise and return the status. */
if ( !(j%2) ) j += jpx;
return j;
/* Finished. */
}
/*----------------------------------------------------------------------
**
**
** Copyright (C) 2013-2016, NumFOCUS Foundation.
** All rights reserved.
**
** This library is derived, with permission, from the International
** Astronomical Union's "Standards of Fundamental Astronomy" library,
** available from http://www.iausofa.org.
**
** The ERFA version is intended to retain identical functionality to
** the SOFA library, but made distinct through different function and
** file names, as set out in the SOFA license conditions. The SOFA
** original has a role as a reference standard for the IAU and IERS,
** and consequently redistribution is permitted only in its unaltered
** state. The ERFA version is not subject to this restriction and
** therefore can be included in distributions which do not support the
** concept of "read only" software.
**
** Although the intent is to replicate the SOFA API (other than
** replacement of prefix names) and results (with the exception of
** bugs; any that are discovered will be fixed), SOFA is not
** responsible for any errors found in this version of the library.
**
** If you wish to acknowledge the SOFA heritage, please acknowledge
** that you are using a library derived from SOFA, rather than SOFA
** itself.
**
**
** TERMS AND CONDITIONS
**
** Redistribution and use in source and binary forms, with or without
** modification, are permitted provided that the following conditions
** are met:
**
** 1 Redistributions of source code must retain the above copyright
** notice, this list of conditions and the following disclaimer.
**
** 2 Redistributions in binary form must reproduce the above copyright
** notice, this list of conditions and the following disclaimer in
** the documentation and/or other materials provided with the
** distribution.
**
** 3 Neither the name of the Standards Of Fundamental Astronomy Board,
** the International Astronomical Union nor the names of its
** contributors may be used to endorse or promote products derived
** from this software without specific prior written permission.
**
** THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
** "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
** LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
** FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
** COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
** INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
** BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
** LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
** CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
** LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
** ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
** POSSIBILITY OF SUCH DAMAGE.
**
*/
|