summaryrefslogtreecommitdiffstats
path: root/ast/erfa/pvstar.c
blob: 3a4e00bf7d3e25eff6ead56fd9a1e5deb76e64a2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
#include "erfa.h"

int eraPvstar(double pv[2][3], double *ra, double *dec,
              double *pmr, double *pmd, double *px, double *rv)
/*
**  - - - - - - - - - -
**   e r a P v s t a r
**  - - - - - - - - - -
**
**  Convert star position+velocity vector to catalog coordinates.
**
**  Given (Note 1):
**     pv     double[2][3]   pv-vector (AU, AU/day)
**
**  Returned (Note 2):
**     ra     double         right ascension (radians)
**     dec    double         declination (radians)
**     pmr    double         RA proper motion (radians/year)
**     pmd    double         Dec proper motion (radians/year)
**     px     double         parallax (arcsec)
**     rv     double         radial velocity (km/s, positive = receding)
**
**  Returned (function value):
**            int            status:
**                              0 = OK
**                             -1 = superluminal speed (Note 5)
**                             -2 = null position vector
**
**  Notes:
**
**  1) The specified pv-vector is the coordinate direction (and its rate
**     of change) for the date at which the light leaving the star
**     reached the solar-system barycenter.
**
**  2) The star data returned by this function are "observables" for an
**     imaginary observer at the solar-system barycenter.  Proper motion
**     and radial velocity are, strictly, in terms of barycentric
**     coordinate time, TCB.  For most practical applications, it is
**     permissible to neglect the distinction between TCB and ordinary
**     "proper" time on Earth (TT/TAI).  The result will, as a rule, be
**     limited by the intrinsic accuracy of the proper-motion and
**     radial-velocity data;  moreover, the supplied pv-vector is likely
**     to be merely an intermediate result (for example generated by the
**     function eraStarpv), so that a change of time unit will cancel
**     out overall.
**
**     In accordance with normal star-catalog conventions, the object's
**     right ascension and declination are freed from the effects of
**     secular aberration.  The frame, which is aligned to the catalog
**     equator and equinox, is Lorentzian and centered on the SSB.
**
**     Summarizing, the specified pv-vector is for most stars almost
**     identical to the result of applying the standard geometrical
**     "space motion" transformation to the catalog data.  The
**     differences, which are the subject of the Stumpff paper cited
**     below, are:
**
**     (i) In stars with significant radial velocity and proper motion,
**     the constantly changing light-time distorts the apparent proper
**     motion.  Note that this is a classical, not a relativistic,
**     effect.
**
**     (ii) The transformation complies with special relativity.
**
**  3) Care is needed with units.  The star coordinates are in radians
**     and the proper motions in radians per Julian year, but the
**     parallax is in arcseconds; the radial velocity is in km/s, but
**     the pv-vector result is in AU and AU/day.
**
**  4) The proper motions are the rate of change of the right ascension
**     and declination at the catalog epoch and are in radians per Julian
**     year.  The RA proper motion is in terms of coordinate angle, not
**     true angle, and will thus be numerically larger at high
**     declinations.
**
**  5) Straight-line motion at constant speed in the inertial frame is
**     assumed.  If the speed is greater than or equal to the speed of
**     light, the function aborts with an error status.
**
**  6) The inverse transformation is performed by the function eraStarpv.
**
**  Called:
**     eraPn        decompose p-vector into modulus and direction
**     eraPdp       scalar product of two p-vectors
**     eraSxp       multiply p-vector by scalar
**     eraPmp       p-vector minus p-vector
**     eraPm        modulus of p-vector
**     eraPpp       p-vector plus p-vector
**     eraPv2s      pv-vector to spherical
**     eraAnp       normalize angle into range 0 to 2pi
**
**  Reference:
**
**     Stumpff, P., 1985, Astron.Astrophys. 144, 232-240.
**
**  Copyright (C) 2013-2016, NumFOCUS Foundation.
**  Derived, with permission, from the SOFA library.  See notes at end of file.
*/
{
   double r, x[3], vr, ur[3], vt, ut[3], bett, betr, d, w, del,
          usr[3], ust[3], a, rad, decd, rd;


/* Isolate the radial component of the velocity (AU/day, inertial). */
   eraPn(pv[0], &r, x);
   vr = eraPdp(x, pv[1]);
   eraSxp(vr, x, ur);

/* Isolate the transverse component of the velocity (AU/day, inertial). */
   eraPmp(pv[1], ur, ut);
   vt = eraPm(ut);

/* Special-relativity dimensionless parameters. */
   bett = vt / ERFA_DC;
   betr = vr / ERFA_DC;

/* The inertial-to-observed correction terms. */
   d = 1.0 + betr;
   w = 1.0 - betr*betr - bett*bett;
   if (d == 0.0 || w < 0) return -1;
   del = sqrt(w) - 1.0;

/* Apply relativistic correction factor to radial velocity component. */
   w = (betr != 0) ? (betr - del) / (betr * d) : 1.0;
   eraSxp(w, ur, usr);

/* Apply relativistic correction factor to tangential velocity */
/* component.                                                  */
   eraSxp(1.0/d, ut, ust);

/* Combine the two to obtain the observed velocity vector (AU/day). */
   eraPpp(usr, ust, pv[1]);

/* Cartesian to spherical. */
   eraPv2s(pv, &a, dec, &r, &rad, &decd, &rd);
   if (r == 0.0) return -2;

/* Return RA in range 0 to 2pi. */
   *ra = eraAnp(a);

/* Return proper motions in radians per year. */
   *pmr = rad * ERFA_DJY;
   *pmd = decd * ERFA_DJY;

/* Return parallax in arcsec. */
   *px = ERFA_DR2AS / r;

/* Return radial velocity in km/s. */
   *rv = 1e-3 * rd * ERFA_DAU / ERFA_DAYSEC;

/* OK status. */
   return 0;

}
/*----------------------------------------------------------------------
**  
**  
**  Copyright (C) 2013-2016, NumFOCUS Foundation.
**  All rights reserved.
**  
**  This library is derived, with permission, from the International
**  Astronomical Union's "Standards of Fundamental Astronomy" library,
**  available from http://www.iausofa.org.
**  
**  The ERFA version is intended to retain identical functionality to
**  the SOFA library, but made distinct through different function and
**  file names, as set out in the SOFA license conditions.  The SOFA
**  original has a role as a reference standard for the IAU and IERS,
**  and consequently redistribution is permitted only in its unaltered
**  state.  The ERFA version is not subject to this restriction and
**  therefore can be included in distributions which do not support the
**  concept of "read only" software.
**  
**  Although the intent is to replicate the SOFA API (other than
**  replacement of prefix names) and results (with the exception of
**  bugs;  any that are discovered will be fixed), SOFA is not
**  responsible for any errors found in this version of the library.
**  
**  If you wish to acknowledge the SOFA heritage, please acknowledge
**  that you are using a library derived from SOFA, rather than SOFA
**  itself.
**  
**  
**  TERMS AND CONDITIONS
**  
**  Redistribution and use in source and binary forms, with or without
**  modification, are permitted provided that the following conditions
**  are met:
**  
**  1 Redistributions of source code must retain the above copyright
**    notice, this list of conditions and the following disclaimer.
**  
**  2 Redistributions in binary form must reproduce the above copyright
**    notice, this list of conditions and the following disclaimer in
**    the documentation and/or other materials provided with the
**    distribution.
**  
**  3 Neither the name of the Standards Of Fundamental Astronomy Board,
**    the International Astronomical Union nor the names of its
**    contributors may be used to endorse or promote products derived
**    from this software without specific prior written permission.
**  
**  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
**  "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
**  LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
**  FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
**  COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
**  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
**  BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
**  LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
**  CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
**  LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
**  ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
**  POSSIBILITY OF SUCH DAMAGE.
**  
*/