summaryrefslogtreecommitdiffstats
path: root/ast/erfa/starpv.c
blob: c79fe775ffcfbf98623d531369553849bca6f689 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
#include "erfa.h"

int eraStarpv(double ra, double dec,
              double pmr, double pmd, double px, double rv,
              double pv[2][3])
/*
**  - - - - - - - - - -
**   e r a S t a r p v
**  - - - - - - - - - -
**
**  Convert star catalog coordinates to position+velocity vector.
**
**  Given (Note 1):
**     ra     double        right ascension (radians)
**     dec    double        declination (radians)
**     pmr    double        RA proper motion (radians/year)
**     pmd    double        Dec proper motion (radians/year)
**     px     double        parallax (arcseconds)
**     rv     double        radial velocity (km/s, positive = receding)
**
**  Returned (Note 2):
**     pv     double[2][3]  pv-vector (AU, AU/day)
**
**  Returned (function value):
**            int           status:
**                              0 = no warnings
**                              1 = distance overridden (Note 6)
**                              2 = excessive speed (Note 7)
**                              4 = solution didn't converge (Note 8)
**                           else = binary logical OR of the above
**
**  Notes:
**
**  1) The star data accepted by this function are "observables" for an
**     imaginary observer at the solar-system barycenter.  Proper motion
**     and radial velocity are, strictly, in terms of barycentric
**     coordinate time, TCB.  For most practical applications, it is
**     permissible to neglect the distinction between TCB and ordinary
**     "proper" time on Earth (TT/TAI).  The result will, as a rule, be
**     limited by the intrinsic accuracy of the proper-motion and
**     radial-velocity data;  moreover, the pv-vector is likely to be
**     merely an intermediate result, so that a change of time unit
**     would cancel out overall.
**
**     In accordance with normal star-catalog conventions, the object's
**     right ascension and declination are freed from the effects of
**     secular aberration.  The frame, which is aligned to the catalog
**     equator and equinox, is Lorentzian and centered on the SSB.
**
**  2) The resulting position and velocity pv-vector is with respect to
**     the same frame and, like the catalog coordinates, is freed from
**     the effects of secular aberration.  Should the "coordinate
**     direction", where the object was located at the catalog epoch, be
**     required, it may be obtained by calculating the magnitude of the
**     position vector pv[0][0-2] dividing by the speed of light in
**     AU/day to give the light-time, and then multiplying the space
**     velocity pv[1][0-2] by this light-time and adding the result to
**     pv[0][0-2].
**
**     Summarizing, the pv-vector returned is for most stars almost
**     identical to the result of applying the standard geometrical
**     "space motion" transformation.  The differences, which are the
**     subject of the Stumpff paper referenced below, are:
**
**     (i) In stars with significant radial velocity and proper motion,
**     the constantly changing light-time distorts the apparent proper
**     motion.  Note that this is a classical, not a relativistic,
**     effect.
**
**     (ii) The transformation complies with special relativity.
**
**  3) Care is needed with units.  The star coordinates are in radians
**     and the proper motions in radians per Julian year, but the
**     parallax is in arcseconds; the radial velocity is in km/s, but
**     the pv-vector result is in AU and AU/day.
**
**  4) The RA proper motion is in terms of coordinate angle, not true
**     angle.  If the catalog uses arcseconds for both RA and Dec proper
**     motions, the RA proper motion will need to be divided by cos(Dec)
**     before use.
**
**  5) Straight-line motion at constant speed, in the inertial frame,
**     is assumed.
**
**  6) An extremely small (or zero or negative) parallax is interpreted
**     to mean that the object is on the "celestial sphere", the radius
**     of which is an arbitrary (large) value (see the constant PXMIN).
**     When the distance is overridden in this way, the status,
**     initially zero, has 1 added to it.
**
**  7) If the space velocity is a significant fraction of c (see the
**     constant VMAX), it is arbitrarily set to zero.  When this action
**     occurs, 2 is added to the status.
**
**  8) The relativistic adjustment involves an iterative calculation.
**     If the process fails to converge within a set number (IMAX) of
**     iterations, 4 is added to the status.
**
**  9) The inverse transformation is performed by the function
**     eraPvstar.
**
**  Called:
**     eraS2pv      spherical coordinates to pv-vector
**     eraPm        modulus of p-vector
**     eraZp        zero p-vector
**     eraPn        decompose p-vector into modulus and direction
**     eraPdp       scalar product of two p-vectors
**     eraSxp       multiply p-vector by scalar
**     eraPmp       p-vector minus p-vector
**     eraPpp       p-vector plus p-vector
**
**  Reference:
**
**     Stumpff, P., 1985, Astron.Astrophys. 144, 232-240.
**
**  Copyright (C) 2013-2014, NumFOCUS Foundation.
**  Derived, with permission, from the SOFA library.  See notes at end of file.
*/
{
/* Smallest allowed parallax */
   static const double PXMIN = 1e-7;

/* Largest allowed speed (fraction of c) */
   static const double VMAX = 0.5;

/* Maximum number of iterations for relativistic solution */
   static const int IMAX = 100;

   int i, iwarn;
   double w, r, rd, rad, decd, v, x[3], usr[3], ust[3],
          vsr, vst, betst, betsr, bett, betr,
          dd, ddel, ur[3], ut[3],
          d = 0.0, del = 0.0,       /* to prevent */
          odd = 0.0, oddel = 0.0,   /* compiler   */
          od = 0.0, odel = 0.0;     /* warnings   */


/* Distance (AU). */
   if (px >= PXMIN) {
      w = px;
      iwarn = 0;
   } else {
      w = PXMIN;
      iwarn = 1;
   }
   r = ERFA_DR2AS / w;

/* Radial velocity (AU/day). */
   rd = ERFA_DAYSEC * rv * 1e3 / ERFA_DAU;

/* Proper motion (radian/day). */
   rad = pmr / ERFA_DJY;
   decd = pmd / ERFA_DJY;

/* To pv-vector (AU,AU/day). */
   eraS2pv(ra, dec, r, rad, decd, rd, pv);

/* If excessive velocity, arbitrarily set it to zero. */
   v = eraPm(pv[1]);
   if (v / ERFA_DC > VMAX) {
      eraZp(pv[1]);
      iwarn += 2;
   }

/* Isolate the radial component of the velocity (AU/day). */
   eraPn(pv[0], &w, x);
   vsr = eraPdp(x, pv[1]);
   eraSxp(vsr, x, usr);

/* Isolate the transverse component of the velocity (AU/day). */
   eraPmp(pv[1], usr, ust);
   vst = eraPm(ust);

/* Special-relativity dimensionless parameters. */
   betsr = vsr / ERFA_DC;
   betst = vst / ERFA_DC;

/* Determine the inertial-to-observed relativistic correction terms. */
   bett = betst;
   betr = betsr;
   for (i = 0; i < IMAX; i++) {
      d = 1.0 + betr;
      del = sqrt(1.0 - betr*betr - bett*bett) - 1.0;
      betr = d * betsr + del;
      bett = d * betst;
      if (i > 0) {
         dd = fabs(d - od);
         ddel = fabs(del - odel);
         if ((i > 1) && (dd >= odd) && (ddel >= oddel)) break;
         odd = dd;
         oddel = ddel;
      }
      od = d;
      odel = del;
   }
   if (i >= IMAX) iwarn += 4;

/* Replace observed radial velocity with inertial value. */
   w = (betsr != 0.0) ? d + del / betsr : 1.0;
   eraSxp(w, usr, ur);

/* Replace observed tangential velocity with inertial value. */
   eraSxp(d, ust, ut);

/* Combine the two to obtain the inertial space velocity. */
   eraPpp(ur, ut, pv[1]);

/* Return the status. */
   return iwarn;

}
/*----------------------------------------------------------------------
**  
**  
**  Copyright (C) 2013-2014, NumFOCUS Foundation.
**  All rights reserved.
**  
**  This library is derived, with permission, from the International
**  Astronomical Union's "Standards of Fundamental Astronomy" library,
**  available from http://www.iausofa.org.
**  
**  The ERFA version is intended to retain identical functionality to
**  the SOFA library, but made distinct through different function and
**  file names, as set out in the SOFA license conditions.  The SOFA
**  original has a role as a reference standard for the IAU and IERS,
**  and consequently redistribution is permitted only in its unaltered
**  state.  The ERFA version is not subject to this restriction and
**  therefore can be included in distributions which do not support the
**  concept of "read only" software.
**  
**  Although the intent is to replicate the SOFA API (other than
**  replacement of prefix names) and results (with the exception of
**  bugs;  any that are discovered will be fixed), SOFA is not
**  responsible for any errors found in this version of the library.
**  
**  If you wish to acknowledge the SOFA heritage, please acknowledge
**  that you are using a library derived from SOFA, rather than SOFA
**  itself.
**  
**  
**  TERMS AND CONDITIONS
**  
**  Redistribution and use in source and binary forms, with or without
**  modification, are permitted provided that the following conditions
**  are met:
**  
**  1 Redistributions of source code must retain the above copyright
**    notice, this list of conditions and the following disclaimer.
**  
**  2 Redistributions in binary form must reproduce the above copyright
**    notice, this list of conditions and the following disclaimer in
**    the documentation and/or other materials provided with the
**    distribution.
**  
**  3 Neither the name of the Standards Of Fundamental Astronomy Board,
**    the International Astronomical Union nor the names of its
**    contributors may be used to endorse or promote products derived
**    from this software without specific prior written permission.
**  
**  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
**  "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
**  LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
**  FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
**  COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
**  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
**  BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
**  LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
**  CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
**  LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
**  ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
**  POSSIBILITY OF SUCH DAMAGE.
**  
*/