summaryrefslogtreecommitdiffstats
path: root/ast/mathmap.c
blob: f3a21f97f4771dd20a9d686a7011a07b18ee2a0b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
/*
*class++
*  Name:
*     MathMap

*  Purpose:
*     Transform coordinates using mathematical expressions.

*  Constructor Function:
c     astMathMap
f     AST_MATHMAP

*  Description:
c     A MathMap is a Mapping which allows you to specify a set of forward
c     and/or inverse transformation functions using arithmetic operations
c     and mathematical functions similar to those available in C. The
c     MathMap interprets these functions at run-time, whenever its forward
c     or inverse transformation is required. Because the functions are not
c     compiled in the normal sense (unlike an IntraMap), they may be used to
c     describe coordinate transformations in a transportable manner. A
c     MathMap therefore provides a flexible way of defining new types of
c     Mapping whose descriptions may be stored as part of a dataset and
c     interpreted by other programs.
f     A MathMap is a Mapping which allows you to specify a set of forward
f     and/or inverse transformation functions using arithmetic operations
f     and mathematical functions similar to those available in Fortran. The
f     MathMap interprets these functions at run-time, whenever its forward
f     or inverse transformation is required. Because the functions are not
f     compiled in the normal sense (unlike an IntraMap), they may be used to
f     describe coordinate transformations in a transportable manner. A
f     MathMap therefore provides a flexible way of defining new types of
f     Mapping whose descriptions may be stored as part of a dataset and
f     interpreted by other programs.

*  Inheritance:
*     The MathMap class inherits from the Mapping class.

*  Attributes:
*     In addition to those attributes common to all Mappings, every
*     MathMap also has the following attributes:
*     - Seed: Random number seed
*     - SimpFI: Forward-inverse MathMap pairs simplify?
*     - SimpIF: Inverse-forward MathMap pairs simplify?

*  Functions:
c     The MathMap class does not define any new functions beyond those
f     The MathMap class does not define any new routines beyond those
*     which are applicable to all Mappings.

*  Copyright:
*     Copyright (C) 1997-2006 Council for the Central Laboratory of the
*     Research Councils

*  Licence:
*     This program is free software: you can redistribute it and/or
*     modify it under the terms of the GNU Lesser General Public
*     License as published by the Free Software Foundation, either
*     version 3 of the License, or (at your option) any later
*     version.
*     
*     This program is distributed in the hope that it will be useful,
*     but WITHOUT ANY WARRANTY; without even the implied warranty of
*     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
*     GNU Lesser General Public License for more details.
*     
*     You should have received a copy of the GNU Lesser General
*     License along with this program.  If not, see
*     <http://www.gnu.org/licenses/>.

*  Authors:
*     RFWS: R.F. Warren-Smith (Starlink)

*  History:
*     3-SEP-1999 (RFWS):
*        Original version.
*     8-JAN-2003 (DSB):
*        Changed private InitVtab method to protected astInitMathMapVtab
*        method.
*     14-FEB-2006 (DSB):
*        Override astGetObjSize.
*     14-MAR-2006 (DSB):
*        - Add QIF function.
*        - Override astEqual method.
*     20-NOV-2006 (DSB):
*        Re-implement the Equal method to avoid use of astSimplify.
*     30-AUG-2012 (DSB):
*        Fix bug in undocumented Gaussian noise function.
*class--
*/

/* Module Macros. */
/* ============== */
/* Set the name of the class we are implementing. This indicates to
   the header files that define class interfaces that they should make
   "protected" symbols available. */
#define astCLASS MathMap

/* Allocate pointer array. */
/* ----------------------- */
/* This macro allocates an array of pointers. If successful, each element
   of the array is initialised to NULL. */
#define MALLOC_POINTER_ARRAY(array_name,array_type,array_size) \
\
/* Allocate the array. */ \
   (array_name) = astMalloc( sizeof(array_type) * (size_t) (array_size) ); \
   if ( astOK ) { \
\
/* If successful, loop to initialise each element. */ \
      int array_index_; \
      for ( array_index_ = 0; array_index_ < (array_size); array_index_++ ) { \
         (array_name)[ array_index_ ] = NULL; \
      } \
   }

/* Free pointer array. */
/* ------------------- */
/* This macro frees a dynamically allocated array of pointers, each of
   whose elements may point at a further dynamically allocated array
   (which is also to be freed). It also allows for the possibility of any
   of the pointers being NULL. */
#define FREE_POINTER_ARRAY(array_name,array_size) \
\
/* Check that the main array pointer is not NULL. */ \
   if ( (array_name) ) { \
\
/* If OK, loop to free each of the sub-arrays. */ \
      int array_index_; \
      for ( array_index_ = 0; array_index_ < (array_size); array_index_++ ) { \
\
/* Check that each sub-array pointer is not NULL before freeing it. */ \
         if ( (array_name)[ array_index_ ] ) { \
            (array_name)[ array_index_ ] = \
               astFree( (array_name)[ array_index_ ] ); \
         } \
      } \
\
/* Free the main pointer array. */ \
      (array_name) = astFree( (array_name) ); \
   }

/* SizeOf pointer array. */
/* --------------------- */
/* This macro increments "result" by the number of bytes allocated for an
   array of pointers, each of whose elements may point at a further
   dynamically allocated array (which is also to be included). It also
   allows for the possibility of any of the pointers being NULL. */
#define SIZEOF_POINTER_ARRAY(array_name,array_size) \
\
/* Check that the main array pointer is not NULL. */ \
   if ( (array_name) ) { \
\
/* If OK, loop to measure each of the sub-arrays. */ \
      int array_index_; \
      for ( array_index_ = 0; array_index_ < (array_size); array_index_++ ) { \
\
/* Check that each sub-array pointer is not NULL before measuring it. */ \
         if ( (array_name)[ array_index_ ] ) { \
            result += astTSizeOf( (array_name)[ array_index_ ] ); \
         } \
      } \
\
/* Include the main pointer array. */ \
      result += astTSizeOf( (array_name) ); \
   }

/* Header files. */
/* ============= */
/* Interface definitions. */
/* ---------------------- */
#include "channel.h"             /* I/O channels */

#include "globals.h"             /* Thread-safe global data access */
#include "error.h"               /* Error reporting facilities */
#include "mapping.h"             /* Coordinate mappings (parent class) */
#include "cmpmap.h"              /* Compound Mappings */
#include "mathmap.h"             /* Interface definition for this class */
#include "memory.h"              /* Memory allocation facilities */
#include "globals.h"             /* Thread-safe global data access */
#include "object.h"              /* Base Object class */
#include "pointset.h"            /* Sets of points */
#include "unitmap.h"             /* Unit Mapping */

/* Error code definitions. */
/* ----------------------- */
#include "ast_err.h"             /* AST error codes */

/* C header files. */
/* --------------- */
#include <ctype.h>
#include <errno.h>
#include <limits.h>
#include <math.h>
#include <stddef.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>

/* Module Variables. */
/* ================= */
/* This type is made obscure since it is publicly accessible (but not
   useful). Provide shorthand for use within this module. */
typedef AstMathMapRandContext_ Rcontext;



/* Address of this static variable is used as a unique identifier for
   member of this class. */
static int class_check;

/* Pointers to parent class methods which are extended by this class. */
static int (* parent_getobjsize)( AstObject *, int * );
static AstPointSet *(* parent_transform)( AstMapping *, AstPointSet *, int, AstPointSet *, int * );
static const char *(* parent_getattrib)( AstObject *, const char *, int * );
static int (* parent_testattrib)( AstObject *, const char *, int * );
static void (* parent_clearattrib)( AstObject *, const char *, int * );
static void (* parent_setattrib)( AstObject *, const char *, int * );

/* This declaration enumerates the operation codes recognised by the
   EvaluateFunction function which evaluates arithmetic expressions. */
typedef enum {

/* User-supplied constants and variables. */
   OP_LDCON,                     /* Load constant */
   OP_LDVAR,                     /* Load variable */

/* System constants. */
   OP_LDBAD,                     /* Load bad value (AST__BAD) */
   OP_LDDIG,                     /* Load # decimal digits (AST__DBL_DIG) */
   OP_LDEPS,                     /* Load relative precision (DBL_EPSILON) */
   OP_LDMAX,                     /* Load largest value (DBL_MAX) */
   OP_LDMAX10E,                  /* Max. decimal exponent (DBL_MAX_10_EXP) */
   OP_LDMAXE,                    /* Load maximum exponent (DBL_MAX_EXP) */
   OP_LDMDIG,                    /* Load # mantissa digits (DBL_MANT_DIG) */
   OP_LDMIN,                     /* Load smallest value (DBL_MIN) */
   OP_LDMIN10E,                  /* Min. decimal exponent (DBL_MIN_10_EXP) */
   OP_LDMINE,                    /* Load minimum exponent (DBL_MIN_EXP) */
   OP_LDRAD,                     /* Load floating radix (FLT_RADIX) */
   OP_LDRND,                     /* Load rounding mode (FLT_ROUNDS) */

/* Mathematical constants. */
   OP_LDE,                       /* Load e (base of natural logarithms) */
   OP_LDPI,                      /* Load pi */

/* Functions with one argument. */
   OP_ABS,                       /* Absolute value (sign removal) */
   OP_ACOS,                      /* Inverse cosine (radians) */
   OP_ACOSD,                     /* Inverse cosine (degrees) */
   OP_ACOSH,                     /* Inverse hyperbolic cosine */
   OP_ACOTH,                     /* Inverse hyperbolic cotangent */
   OP_ACSCH,                     /* Inverse hyperbolic cosecant */
   OP_ASECH,                     /* Inverse hyperbolic secant */
   OP_ASIN,                      /* Inverse sine (radians) */
   OP_ASIND,                     /* Inverse sine (degrees) */
   OP_ASINH,                     /* Inverse hyperbolic sine */
   OP_ATAN,                      /* Inverse tangent (radians) */
   OP_ATAND,                     /* Inverse tangent (degrees) */
   OP_ATANH,                     /* Inverse hyperbolic tangent */
   OP_CEIL,                      /* C ceil function (round up) */
   OP_COS,                       /* Cosine (radians) */
   OP_COSD,                      /* Cosine (degrees) */
   OP_COSH,                      /* Hyperbolic cosine */
   OP_COTH,                      /* Hyperbolic cotangent */
   OP_CSCH,                      /* Hyperbolic cosecant */
   OP_EXP,                       /* Exponential function */
   OP_FLOOR,                     /* C floor function (round down) */
   OP_INT,                       /* Integer value (round towards zero) */
   OP_ISBAD,                     /* Test for bad value */
   OP_LOG,                       /* Natural logarithm */
   OP_LOG10,                     /* Base 10 logarithm */
   OP_NINT,                      /* Fortran NINT function (round to nearest) */
   OP_POISS,                     /* Poisson random number */
   OP_SECH,                      /* Hyperbolic secant */
   OP_SIN,                       /* Sine (radians) */
   OP_SINC,                      /* Sinc function [= sin(x)/x] */
   OP_SIND,                      /* Sine (degrees) */
   OP_SINH,                      /* Hyperbolic sine */
   OP_SQR,                       /* Square */
   OP_SQRT,                      /* Square root */
   OP_TAN,                       /* Tangent (radians) */
   OP_TAND,                      /* Tangent (degrees) */
   OP_TANH,                      /* Hyperbolic tangent */

/* Functions with two arguments. */
   OP_ATAN2,                     /* Inverse tangent (2 arguments, radians) */
   OP_ATAN2D,                    /* Inverse tangent (2 arguments, degrees) */
   OP_DIM,                       /* Fortran DIM (positive difference) fn. */
   OP_GAUSS,                     /* Gaussian random number */
   OP_MOD,                       /* Modulus function */
   OP_POW,                       /* Raise to power */
   OP_RAND,                      /* Uniformly distributed random number */
   OP_SIGN,                      /* Transfer of sign function */

/* Functions with three arguments. */
   OP_QIF,                       /* C "question mark" operator "a?b:c" */

/* Functions with variable numbers of arguments. */
   OP_MAX,                       /* Maximum of 2 or more values */
   OP_MIN,                       /* Minimum of 2 or more values */

/* Unary arithmetic operators. */
   OP_NEG,                       /* Negate (change sign) */

/* Unary boolean operators. */
   OP_NOT,                       /* Boolean NOT */

/* Binary arithmetic operators. */
   OP_ADD,                       /* Add */
   OP_DIV,                       /* Divide */
   OP_MUL,                       /* Multiply */
   OP_SUB,                       /* Subtract */

/* Bit-shift operators. */
   OP_SHFTL,                     /* Shift bits left */
   OP_SHFTR,                     /* Shift bits right */

/* Relational operators. */
   OP_EQ,                        /* Relational equal */
   OP_GE,                        /* Greater than or equal */
   OP_GT,                        /* Greater than */
   OP_LE,                        /* Less than or equal */
   OP_LT,                        /* Less than */
   OP_NE,                        /* Not equal */

/* Bit-wise operators. */
   OP_BITAND,                    /* Bit-wise AND */
   OP_BITOR,                     /* Bit-wise OR */
   OP_BITXOR,                    /* Bit-wise exclusive OR */

/* Binary boolean operators. */
   OP_AND,                       /* Boolean AND */
   OP_EQV,                       /* Fortran logical .EQV. operation */
   OP_OR,                        /* Boolean OR */
   OP_XOR,                       /* Boolean exclusive OR */

/* Null operation. */
   OP_NULL                       /* Null operation */
} Oper;

/* This structure holds a description of each symbol which may appear
   in an expression. */
typedef struct {
   const char *text;             /* Symbol text as it appears in expressions */
   const int size;               /* Size of symbol text */
   const int operleft;           /* An operator when seen from the left? */
   const int operright;          /* An operator when seen from the right? */
   const int unarynext;          /* May be followed by a unary +/- ? */
   const int unaryoper;          /* Is a unary +/- ? */
   const int leftpriority;       /* Priority when seen from the left */
   const int rightpriority;      /* Priority when seen from the right */
   const int parincrement;       /* Change in parenthesis level */
   const int stackincrement;     /* Change in evaluation stack size */
   const int nargs;              /* Number of function arguments */
   const Oper opcode;            /* Resulting operation code */
} Symbol;

/* This initialises an array of Symbol structures to hold data on all
   the supported symbols. The order is not important, but symbols are
   arranged here in approximate order of descending evaluation
   priority. The end of the array is indicated by an element with a NULL
   "text" component. */
static const Symbol symbol[] = {

/* User-supplied constants and variables. */
   { ""            ,  0,  0,  0,  0,  0, 19, 19,  0,  1,  0,  OP_LDCON    },
   { ""            ,  0,  0,  0,  0,  0, 19, 19,  0,  1,  0,  OP_LDVAR    },

/* System constants. */
   { "<bad>"       ,  5,  0,  0,  0,  0, 19, 19,  0,  1,  0,  OP_LDBAD    },
   { "<dig>"       ,  5,  0,  0,  0,  0, 19, 19,  0,  1,  0,  OP_LDDIG    },
   { "<epsilon>"   ,  9,  0,  0,  0,  0, 19, 19,  0,  1,  0,  OP_LDEPS    },
   { "<mant_dig>"  , 10,  0,  0,  0,  0, 19, 19,  0,  1,  0,  OP_LDMDIG   },
   { "<max>"       ,  5,  0,  0,  0,  0, 19, 19,  0,  1,  0,  OP_LDMAX    },
   { "<max_10_exp>", 12,  0,  0,  0,  0, 19, 19,  0,  1,  0,  OP_LDMAX10E },
   { "<max_exp>"   ,  9,  0,  0,  0,  0, 19, 19,  0,  1,  0,  OP_LDMAXE   },
   { "<min>"       ,  5,  0,  0,  0,  0, 19, 19,  0,  1,  0,  OP_LDMIN    },
   { "<min_10_exp>", 12,  0,  0,  0,  0, 19, 19,  0,  1,  0,  OP_LDMIN10E },
   { "<min_exp>"   ,  9,  0,  0,  0,  0, 19, 19,  0,  1,  0,  OP_LDMINE   },
   { "<radix>"     ,  7,  0,  0,  0,  0, 19, 19,  0,  1,  0,  OP_LDRAD    },
   { "<rounds>"    ,  8,  0,  0,  0,  0, 19, 19,  0,  1,  0,  OP_LDRND    },

/* Mathematical constants. */
   { "<e>"         ,  3,  0,  0,  0,  0, 19, 19,  0,  1,  0,  OP_LDE      },
   { "<pi>"        ,  4,  0,  0,  0,  0, 19, 19,  0,  1,  0,  OP_LDPI     },

/* Functions with one argument. */
   { "abs("        ,  4,  0,  1,  1,  0, 19,  1,  1,  0,  1,  OP_ABS      },
   { "acos("       ,  5,  0,  1,  1,  0, 19,  1,  1,  0,  1,  OP_ACOS     },
   { "acosd("      ,  6,  0,  1,  1,  0, 19,  1,  1,  0,  1,  OP_ACOSD    },
   { "acosh("      ,  6,  0,  1,  1,  0, 19,  1,  1,  0,  1,  OP_ACOSH    },
   { "acoth("      ,  6,  0,  1,  1,  0, 19,  1,  1,  0,  1,  OP_ACOTH    },
   { "acsch("      ,  6,  0,  1,  1,  0, 19,  1,  1,  0,  1,  OP_ACSCH    },
   { "aint("       ,  5,  0,  1,  1,  0, 19,  1,  1,  0,  1,  OP_INT      },
   { "asech("      ,  6,  0,  1,  1,  0, 19,  1,  1,  0,  1,  OP_ASECH    },
   { "asin("       ,  5,  0,  1,  1,  0, 19,  1,  1,  0,  1,  OP_ASIN     },
   { "asind("      ,  6,  0,  1,  1,  0, 19,  1,  1,  0,  1,  OP_ASIND    },
   { "asinh("      ,  6,  0,  1,  1,  0, 19,  1,  1,  0,  1,  OP_ASINH    },
   { "atan("       ,  5,  0,  1,  1,  0, 19,  1,  1,  0,  1,  OP_ATAN     },
   { "atand("      ,  6,  0,  1,  1,  0, 19,  1,  1,  0,  1,  OP_ATAND    },
   { "atanh("      ,  6,  0,  1,  1,  0, 19,  1,  1,  0,  1,  OP_ATANH    },
   { "ceil("       ,  5,  0,  1,  1,  0, 19,  1,  1,  0,  1,  OP_CEIL     },
   { "cos("        ,  4,  0,  1,  1,  0, 19,  1,  1,  0,  1,  OP_COS      },
   { "cosd("       ,  5,  0,  1,  1,  0, 19,  1,  1,  0,  1,  OP_COSD     },
   { "cosh("       ,  5,  0,  1,  1,  0, 19,  1,  1,  0,  1,  OP_COSH     },
   { "coth("       ,  5,  0,  1,  1,  0, 19,  1,  1,  0,  1,  OP_COTH     },
   { "csch("       ,  5,  0,  1,  1,  0, 19,  1,  1,  0,  1,  OP_CSCH     },
   { "exp("        ,  4,  0,  1,  1,  0, 19,  1,  1,  0,  1,  OP_EXP      },
   { "fabs("       ,  5,  0,  1,  1,  0, 19,  1,  1,  0,  1,  OP_ABS      },
   { "floor("      ,  6,  0,  1,  1,  0, 19,  1,  1,  0,  1,  OP_FLOOR    },
   { "int("        ,  4,  0,  1,  1,  0, 19,  1,  1,  0,  1,  OP_INT      },
   { "isbad("      ,  6,  0,  1,  1,  0, 19,  1,  1,  0,  1,  OP_ISBAD    },
   { "log("        ,  4,  0,  1,  1,  0, 19,  1,  1,  0,  1,  OP_LOG      },
   { "log10("      ,  6,  0,  1,  1,  0, 19,  1,  1,  0,  1,  OP_LOG10    },
   { "nint("       ,  5,  0,  1,  1,  0, 19,  1,  1,  0,  1,  OP_NINT     },
   { "poisson("    ,  8,  0,  1,  1,  0, 19,  1,  1,  0,  1,  OP_POISS    },
   { "sech("       ,  5,  0,  1,  1,  0, 19,  1,  1,  0,  1,  OP_SECH     },
   { "sin("        ,  4,  0,  1,  1,  0, 19,  1,  1,  0,  1,  OP_SIN      },
   { "sinc("       ,  5,  0,  1,  1,  0, 19,  1,  1,  0,  1,  OP_SINC     },
   { "sind("       ,  5,  0,  1,  1,  0, 19,  1,  1,  0,  1,  OP_SIND     },
   { "sinh("       ,  5,  0,  1,  1,  0, 19,  1,  1,  0,  1,  OP_SINH     },
   { "sqr("        ,  4,  0,  1,  1,  0, 19,  1,  1,  0,  1,  OP_SQR      },
   { "sqrt("       ,  5,  0,  1,  1,  0, 19,  1,  1,  0,  1,  OP_SQRT     },
   { "tan("        ,  4,  0,  1,  1,  0, 19,  1,  1,  0,  1,  OP_TAN      },
   { "tand("       ,  5,  0,  1,  1,  0, 19,  1,  1,  0,  1,  OP_TAND     },
   { "tanh("       ,  5,  0,  1,  1,  0, 19,  1,  1,  0,  1,  OP_TANH     },

/* Functions with two arguments. */
   { "atan2("      ,  6,  0,  1,  1,  0, 19,  1,  1, -1,  2,  OP_ATAN2    },
   { "atan2d("     ,  7,  0,  1,  1,  0, 19,  1,  1, -1,  2,  OP_ATAN2D   },
   { "dim("        ,  4,  0,  1,  1,  0, 19,  1,  1, -1,  2,  OP_DIM      },
   { "fmod("       ,  5,  0,  1,  1,  0, 19,  1,  1, -1,  2,  OP_MOD      },
   { "gauss("      ,  6,  0,  1,  1,  0, 19,  1,  1, -1,  2,  OP_GAUSS    },
   { "mod("        ,  4,  0,  1,  1,  0, 19,  1,  1, -1,  2,  OP_MOD      },
   { "pow("        ,  4,  0,  1,  1,  0, 19,  1,  1, -1,  2,  OP_POW      },
   { "rand("       ,  5,  0,  1,  1,  0, 19,  1,  1, -1,  2,  OP_RAND     },
   { "sign("       ,  5,  0,  1,  1,  0, 19,  1,  1, -1,  2,  OP_SIGN     },

/* Functions with two arguments. */
   { "qif("        ,  4,  0,  1,  1,  0, 19,  1,  1, -2,  3,  OP_QIF      },

/* Functions with variable numbers of arguments. */
   { "max("        ,  4,  0,  1,  1,  0, 19,  1,  1, -1, -2,  OP_MAX      },
   { "min("        ,  4,  0,  1,  1,  0, 19,  1,  1, -1, -2,  OP_MIN      },

/* Parenthesised expressions. */
   { ")"           ,  1,  1,  0,  0,  0,  2, 19, -1,  0,  0,  OP_NULL     },
   { "("           ,  1,  0,  1,  1,  0, 19,  1,  1,  0,  0,  OP_NULL     },

/* Unary arithmetic operators. */
   { "+"           ,  1,  0,  1,  1,  1, 17, 16,  0,  0,  0,  OP_NULL     },
   { "-"           ,  1,  0,  1,  1,  1, 17, 16,  0,  0,  0,  OP_NEG      },

/* Unary boolean operators. */
   { "!"           ,  1,  0,  1,  1,  0, 17, 16,  0,  0,  0,  OP_NOT      },
   { ".not."       ,  5,  0,  1,  1,  0, 17, 16,  0,  0,  0,  OP_NOT      },

/* Binary arithmetic operators. */
   { "**"          ,  2,  1,  1,  1,  0, 18, 15,  0, -1,  0,  OP_POW      },
   { "*"           ,  1,  1,  1,  1,  0, 14, 14,  0, -1,  0,  OP_MUL      },
   { "/"           ,  1,  1,  1,  1,  0, 14, 14,  0, -1,  0,  OP_DIV      },
   { "+"           ,  1,  1,  1,  1,  0, 13, 13,  0, -1,  0,  OP_ADD      },
   { "-"           ,  1,  1,  1,  1,  0, 13, 13,  0, -1,  0,  OP_SUB      },

/* Bit-shift operators. */
   { "<<"          ,  2,  1,  1,  1,  0, 12, 12,  0, -1,  0,  OP_SHFTL    },
   { ">>"          ,  2,  1,  1,  1,  0, 12, 12,  0, -1,  0,  OP_SHFTR    },

/* Relational operators. */
   { "<"           ,  1,  1,  1,  1,  0, 11, 11,  0, -1,  0,  OP_LT       },
   { ".lt."        ,  4,  1,  1,  1,  0, 11, 11,  0, -1,  0,  OP_LT       },
   { "<="          ,  2,  1,  1,  1,  0, 11, 11,  0, -1,  0,  OP_LE       },
   { ".le."        ,  4,  1,  1,  1,  0, 11, 11,  0, -1,  0,  OP_LE       },
   { ">"           ,  1,  1,  1,  1,  0, 11, 11,  0, -1,  0,  OP_GT       },
   { ".gt."        ,  4,  1,  1,  1,  0, 11, 11,  0, -1,  0,  OP_GT       },
   { ">="          ,  2,  1,  1,  1,  0, 11, 11,  0, -1,  0,  OP_GE       },
   { ".ge."        ,  4,  1,  1,  1,  0, 11, 11,  0, -1,  0,  OP_GE       },
   { "=="          ,  2,  1,  1,  1,  0, 10, 10,  0, -1,  0,  OP_EQ       },
   { ".eq."        ,  4,  1,  1,  1,  0, 10, 10,  0, -1,  0,  OP_EQ       },
   { "!="          ,  2,  1,  1,  1,  0, 10, 10,  0, -1,  0,  OP_NE       },
   { ".ne."        ,  4,  1,  1,  1,  0, 10, 10,  0, -1,  0,  OP_NE       },

/* Bit-wise operators. */
   { "&"           ,  1,  1,  1,  1,  0,  9,  9,  0, -1,  0,  OP_BITAND   },
   { "^"           ,  1,  1,  1,  1,  0,  8,  8,  0, -1,  0,  OP_BITXOR   },
   { "|"           ,  1,  1,  1,  1,  0,  7,  7,  0, -1,  0,  OP_BITOR    },

/* Binary boolean operators. */
   { "&&"          ,  2,  1,  1,  1,  0,  6,  6,  0, -1,  0,  OP_AND      },
   { ".and."       ,  5,  1,  1,  1,  0,  6,  6,  0, -1,  0,  OP_AND      },
   { "^^"          ,  2,  1,  1,  1,  0,  5,  5,  0, -1,  0,  OP_XOR      },
   { "||"          ,  2,  1,  1,  1,  0,  4,  4,  0, -1,  0,  OP_OR       },
   { ".or."        ,  4,  1,  1,  1,  0,  4,  4,  0, -1,  0,  OP_OR       },
   { ".eqv."       ,  5,  1,  1,  1,  0,  3,  3,  0, -1,  0,  OP_EQV      },
   { ".neqv."      ,  6,  1,  1,  1,  0,  3,  3,  0, -1,  0,  OP_XOR      },
   { ".xor."       ,  5,  1,  1,  1,  0,  3,  3,  0, -1,  0,  OP_XOR      },

/* Separators. */
   { ","           ,  1,  1,  1,  1,  0,  2,  2,  0,  0,  0,  OP_NULL     },

/* End of symbol data. */
   { NULL          ,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  OP_NULL     }
};

/* These variables identify indices in the above array which hold
   special symbols used explicitly in the code. */
static const int symbol_ldcon = 0; /* Load a constant */
static const int symbol_ldvar = 1; /* Load a variable */

/* Define macros for accessing each item of thread specific global data. */
#ifdef THREAD_SAFE

/* Define how to initialise thread-specific globals. */
#define GLOBAL_inits \
   globals->Class_Init = 0; \
   globals->GetAttrib_Buff[ 0 ] = 0;

/* Create the function that initialises global data for this module. */
astMAKE_INITGLOBALS(MathMap)

/* Define macros for accessing each item of thread specific global data. */
#define class_init astGLOBAL(MathMap,Class_Init)
#define class_vtab astGLOBAL(MathMap,Class_Vtab)
#define getattrib_buff astGLOBAL(MathMap,GetAttrib_Buff)



static pthread_mutex_t mutex2 = PTHREAD_MUTEX_INITIALIZER;
#define LOCK_MUTEX2 pthread_mutex_lock( &mutex2 );
#define UNLOCK_MUTEX2 pthread_mutex_unlock( &mutex2 );

static pthread_mutex_t mutex3 = PTHREAD_MUTEX_INITIALIZER;
#define LOCK_MUTEX3 pthread_mutex_lock( &mutex3 );
#define UNLOCK_MUTEX3 pthread_mutex_unlock( &mutex3 );

static pthread_mutex_t mutex4 = PTHREAD_MUTEX_INITIALIZER;
#define LOCK_MUTEX4 pthread_mutex_lock( &mutex4 );
#define UNLOCK_MUTEX4 pthread_mutex_unlock( &mutex4 );

static pthread_mutex_t mutex5 = PTHREAD_MUTEX_INITIALIZER;
#define LOCK_MUTEX5 pthread_mutex_lock( &mutex5 );
#define UNLOCK_MUTEX5 pthread_mutex_unlock( &mutex5 );

static pthread_mutex_t mutex6 = PTHREAD_MUTEX_INITIALIZER;
#define LOCK_MUTEX6 pthread_mutex_lock( &mutex6 );
#define UNLOCK_MUTEX6 pthread_mutex_unlock( &mutex6 );

static pthread_mutex_t mutex7 = PTHREAD_MUTEX_INITIALIZER;
#define LOCK_MUTEX7 pthread_mutex_lock( &mutex7 );
#define UNLOCK_MUTEX7 pthread_mutex_unlock( &mutex7 );

/* If thread safety is not needed, declare and initialise globals at static
   variables. */
#else

static char getattrib_buff[ 51 ];


/* Define the class virtual function table and its initialisation flag
   as static variables. */
static AstMathMapVtab class_vtab;   /* Virtual function table */
static int class_init = 0;       /* Virtual function table initialised? */

#define LOCK_MUTEX2
#define UNLOCK_MUTEX2

#define LOCK_MUTEX3
#define UNLOCK_MUTEX3

#define LOCK_MUTEX4
#define UNLOCK_MUTEX4

#define LOCK_MUTEX5
#define UNLOCK_MUTEX5

#define LOCK_MUTEX6
#define UNLOCK_MUTEX6

#define LOCK_MUTEX7
#define UNLOCK_MUTEX7

#endif


/* External Interface Function Prototypes. */
/* ======================================= */
/* The following functions have public prototypes only (i.e. no
   protected prototypes), so we must provide local prototypes for use
   within this module. */
AstMathMap *astMathMapId_( int, int, int, const char *[], int, const char *[], const char *, ... );

/* Prototypes for Private Member Functions. */
/* ======================================== */
static AstPointSet *Transform( AstMapping *, AstPointSet *, int, AstPointSet *, int * );
static int GetObjSize( AstObject *, int * );
static const char *GetAttrib( AstObject *, const char *, int * );
static double Gauss( Rcontext *, int * );
static double LogGamma( double, int * );
static double Poisson( Rcontext *, double, int * );
static double Rand( Rcontext *, int * );
static int DefaultSeed( const Rcontext *, int * );
static int Equal( AstObject *, AstObject *, int * );
static int GetSeed( AstMathMap *, int * );
static int GetSimpFI( AstMathMap *, int * );
static int GetSimpIF( AstMathMap *, int * );
static int MapMerge( AstMapping *, int, int, int *, AstMapping ***, int **, int * );
static int TestAttrib( AstObject *, const char *, int * );
static int TestSeed( AstMathMap *, int * );
static int TestSimpFI( AstMathMap *, int * );
static int TestSimpIF( AstMathMap *, int * );
static void CleanFunctions( int, const char *[], char ***, int * );
static void ClearAttrib( AstObject *, const char *, int * );
static void ClearSeed( AstMathMap *, int * );
static void ClearSimpFI( AstMathMap *, int * );
static void ClearSimpIF( AstMathMap *, int * );
static void CompileExpression( const char *, const char *, const char *, int, const char *[], int **, double **, int *, int * );
static void CompileMapping( const char *, const char *, int, int, int, const char *[], int, const char *[], int ***, int ***, double ***, double ***, int *, int *, int * );
static void Copy( const AstObject *, AstObject *, int * );
static void Delete( AstObject *, int * );
static void Dump( AstObject *, AstChannel *, int * );
static void EvaluateFunction( Rcontext *, int, const double **, const int *, const double *, int, double *, int * );
static void EvaluationSort( const double [], int, int [], int **, int *, int * );
static void ExtractExpressions( const char *, const char *, int, const char *[], int, char ***, int * );
static void ExtractVariables( const char *, const char *, int, const char *[], int, int, int, int, int, char ***, int * );
static void ParseConstant( const char *, const char *, const char *, int, int *, double *, int * );
static void ParseName( const char *, int, int *, int * );
static void ParseVariable( const char *, const char *, const char *, int, int, const char *[], int *, int *, int * );
static void SetAttrib( AstObject *, const char *, int * );
static void SetSeed( AstMathMap *, int, int * );
static void SetSimpFI( AstMathMap *, int, int * );
static void SetSimpIF( AstMathMap *, int, int * );
static void ValidateSymbol( const char *, const char *, const char *, int, int, int *, int **, int **, int *, double **, int * );

/* Member functions. */
/* ================= */
static void CleanFunctions( int nfun, const char *fun[], char ***clean, int *status ) {
/*
*  Name:
*     CleanFunctions

*  Purpose:
*     Make a clean copy of a set of functions.

*  Type:
*     Private function.

*  Synopsis:
*     #include "mathmap.h"
*     void CleanFunctions( int nfun, const char *fun[], char ***clean, int *status )

*  Class Membership:
*     MathMap member function.

*  Description:
*     This function copies an array of strings, eliminating any white space
*     characters and converting to lower case. It is intended for cleaning
*     up arrays of function definitions prior to compilation. The returned
*     copy is stored in dynamically allocated memory.

*  Parameters:
*     nfun
*        The number of functions to be cleaned.
*     fun
*        Pointer to an array, with "nfun" elements, of pointers to null
*        terminated strings which contain each of the functions.
*     clean
*        Address in which to return a pointer to an array (with "nfun"
*        elements) of pointers to null terminated strings containing the
*        cleaned functions (i.e. this returns an array of strings).
*
*        Both the returned array of pointers, and the strings to which they
*        point, will be dynamically allocated and should be freed by the
*        caller (using astFree) when no longer required.
*     status
*        Pointer to the inherited status variable.

*  Notes:
*        - A NULL value will be returned for "*clean" if this function is
*        invoked with the global error status set, or if it should fail for
*        any reason.
*/

/* Local Variables: */
   char c;                       /* Character from function string */
   int i;                        /* Loop counter for characters */
   int ifun;                     /* Loop counter for functions */
   int nc;                       /* Count of non-blank characters */

/* Initialise. */
   *clean = NULL;

/* Check the global error status. */
   if ( !astOK ) return;

/* Allocate and initialise an array to hold the returned pointers. */
   MALLOC_POINTER_ARRAY( *clean, char *, nfun )

/* Loop through all the input functions. */
   if ( astOK ) {
      for ( ifun = 0; ifun < nfun; ifun++ ) {

/* Count the number of non-blank characters in each function string. */
         nc = 0;
         for ( i = 0; ( c = fun[ ifun ][ i ] ); i++ ) nc += !isspace( c );

/* Allocate a string long enough to hold the function with all the
   white space removed, storing its pointer in the array allocated
   earlier. Check for errors. */
         ( *clean )[ ifun ] = astMalloc( sizeof( char ) *
                                         (size_t) ( nc + 1 ) );
         if ( !astOK ) break;

/* Loop to copy the non-blank function characters into the new
   string. */
         nc = 0;
         for ( i = 0; ( c = fun[ ifun ][ i ] ); i++ ) {
            if ( !isspace( c ) ) ( *clean )[ ifun ][ nc++ ] = tolower( c );
         }

/* Null-terminate the result. */
         ( *clean )[ ifun ][ nc ] = '\0';
      }

/* If an error occurred, then free the main pointer array together
   with any strings that have been allocated, resetting the output
   value. */
      if ( !astOK ) {
         FREE_POINTER_ARRAY( *clean, nfun )
      }
   }
}

static void ClearAttrib( AstObject *this_object, const char *attrib, int *status ) {
/*
*  Name:
*     ClearAttrib

*  Purpose:
*     Clear an attribute value for a MathMap.

*  Type:
*     Private function.

*  Synopsis:
*     #include "mathmap.h"
*     void ClearAttrib( AstObject *this, const char *attrib, int *status )

*  Class Membership:
*     MathMap member function (over-rides the astClearAttrib protected
*     method inherited from the Mapping class).

*  Description:
*     This function clears the value of a specified attribute for a
*     MathMap, so that the default value will subsequently be used.

*  Parameters:
*     this
*        Pointer to the MathMap.
*     attrib
*        Pointer to a null terminated string specifying the attribute
*        name.  This should be in lower case with no surrounding white
*        space.
*     status
*        Pointer to the inherited status variable.
*/

/* Local Variables: */
   AstMathMap *this;             /* Pointer to the MathMap structure */

/* Check the global error status. */
   if ( !astOK ) return;

/* Obtain a pointer to the MathMap structure. */
   this = (AstMathMap *) this_object;

/* Check the attribute name and clear the appropriate attribute. */

/* Seed. */
/* ----- */
   if ( !strcmp( attrib, "seed" ) ) {
      astClearSeed( this );

/* SimpFI. */
/* ------- */
   } else if ( !strcmp( attrib, "simpfi" ) ) {
      astClearSimpFI( this );

/* SimpIF. */
/* ------- */
   } else if ( !strcmp( attrib, "simpif" ) ) {
      astClearSimpIF( this );

/* If the attribute is not recognised, pass it on to the parent method
   for further interpretation. */
   } else {
      (*parent_clearattrib)( this_object, attrib, status );
   }
}

static void CompileExpression( const char *method, const char *class,
                               const char *exprs, int nvar, const char *var[],
                               int **code, double **con, int *stacksize, int *status ) {
/*
*  Name:
*     CompileExpression

*  Purpose:
*     Compile a mathematical expression.

*  Type:
*     Private function.

*  Synopsis:
*     #include "mathmap.h"
*     void CompileExpression( const char *method, const char *class,
*                             const char *exprs, int nvar, const char *var[],
*                             int **code, double **con, int *stacksize )

*  Class Membership:
*     MathMap member function.

*  Description:
*     This function checks and compiles a mathematical expression. It
*     produces a sequence of operation codes (opcodes) and a set of
*     numerical constants which may subsequently be used to evaluate the
*     expression on a push-down stack.

*  Parameters:
*     method
*        Pointer to a constant null-terminated character string
*        containing the name of the method that invoked this function.
*        This method name is used solely for constructing error messages.
*     class
*        Pointer to a constant null-terminated character string containing the
*        class name of the Object being processed. This name is used solely
*        for constructing error messages.
*     exprs
*        Pointer to a null-terminated string containing the expression
*        to be compiled. This is case sensitive and should contain no white
*        space.
*     nvar
*        The number of variable names defined for use in the expression.
*     var
*        An array of pointers (with "nvar" elements) to null-terminated
*        strings. Each of these should contain a variable name which may
*        appear in the expression. These strings are case sensitive and
*        should contain no white space.
*     code
*        Address of a pointer which will be set to point at a dynamically
*        allocated array of int containing the set of opcodes (cast to int)
*        produced by this function. The first element of this array will
*        contain a count of the number of opcodes which follow.
*
*        The allocated space must be freed by the caller (using astFree) when
*        no longer required.
*     con
*        Address of a pointer which will be set to point at a dynamically
*        allocated array of double containing the set of constants
*        produced by this function (this may be NULL if no constants are
*        produced).
*
*        The allocated space must be freed by the caller (using astFree) when
*        no longer required.
*     stacksize
*        Pointer to an int in which to return the size of the push-down stack
*        required to evaluate the expression using the returned opcodes and
*        constants.

*  Algorithm:
*     The function passes through the input expression searching for
*     symbols. It looks for standard symbols (arithmetic operators,
*     parentheses, function calls and delimiters) in the next part of the
*     expression to be parsed, using identification information stored in
*     the static "symbol" array. It ignores certain symbols, according to
*     whether they appear to be operators or operands. The choice depends on
*     what the previous symbol was; for instance, two operators may not
*     occur in succession. Unary +/- operators are also ignored in
*     situations where they are not permitted.
*
*     If a standard symbol is found, it is passed to the ValidateSymbol
*     function, which keeps track of the current level of parenthesis in the
*     expression and of the number of arguments supplied to any (possibly
*     nested) function calls. This function then accepts or rejects the
*     symbol according to whether it is valid within the current context. An
*     error is reported if it is rejected.
*
*     If the part of the expression currently being parsed did not contain a
*     standard symbol, an attempt is made to parse it first as a constant,
*     then as a variable name. If either of these succeeds, an appropriate
*     symbol number is added to the list of symbols identified so far, and a
*     value is added to the list of constants - this is either the value of
*     the constant itself, or the identification number of the variable. If
*     the expression cannot be parsed, an error is reported.
*
*     When the entire expression has been analysed as a sequence of symbols
*     (and associated constants), the EvaluationSort function is
*     invoked. This sorts the symbols into evaluation order, which is the
*     order in which the associated operations must be performed on a
*     push-down arithmetic stack to evaluate the expression. This routine
*     also substitutes operation codes (defined in the "Oper" enum) for the
*     symbol numbers and calculates the size of evaluation stack which will
*     be required.

*  Notes:
*     - A value of NULL will be returned for the "*code" and "*con" pointers
*     and a value of zero will be returned for the "*stacksize" value if this
*     function is invoked with the global error status set, or if it should
*     fail for any reason.
*/

/* Local Variables: */
   double c;                     /* Value of parsed constant */
   int *argcount;                /* Array of argument count information */
   int *opensym;                 /* Array of opening parenthesis information */
   int *symlist;                 /* Array of symbol indices */
   int found;                    /* Standard symbol identified? */
   int iend;                     /* Ending index in the expression string */
   int istart;                   /* Staring index in the expression string */
   int isym;                     /* Loop counter for symbols */
   int ivar;                     /* Index of variable name */
   int lpar;                     /* Parenthesis level */
   int ncon;                     /* Number of constants generated */
   int nsym;                     /* Number of symbols identified */
   int opernext;                 /* Next symbol an operator (from left)? */
   int size;                     /* Size of symbol matched */
   int sym;                      /* Index of symbol in static "symbol" array */
   int unarynext;                /* Next symbol may be unary +/- ? */

/* Initialise. */
   *code = NULL;
   *con = NULL;
   *stacksize = 0;

/* Check the global error status. */
   if ( !astOK ) return;

/* Further initialisation. */
   argcount = NULL;
   lpar = 0;
   ncon = 0;
   nsym = 0;
   opensym = NULL;
   symlist = NULL;
   sym = 0;
   ivar = 0;

/* The first symbol to be encountered must not look like an operator
   from the left. It may be a unary + or - operator. */
   opernext = 0;
   unarynext = 1;

/* Search through the expression to classify each symbol which appears
   in it. Stop when there are no more input characters or an error is
   detected. */
   istart = 0;
   for ( istart = 0; astOK && exprs[ istart ]; istart = iend + 1 ) {

/* Compare each of the symbols in the symbol data with the next
   section of the expression, looking for the longest symbol text which
   will match. Stop if a NULL "text" value is found, which acts as the
   end flag. */
      found = 0;
      size = 0;
      for ( isym = 0; symbol[ isym ].text; isym++ ) {

/* Only consider symbols which have text associated with them and
   which look like operators or operands from the left, according to the
   setting of the "opernext" flag. Thus, if an operator or operand is
   missing from the input expression, the next symbol will not be
   identified, because it will be of the wrong type. Also exclude unary
   +/- operators if they are out of context. */
         if ( symbol[ isym ].size &&
              ( symbol[ isym ].operleft == opernext ) &&
              ( !symbol[ isym ].unaryoper || unarynext ) ) {

/* Test if the text of the symbol matches the expression at the
   current position. If so, note that a match has been found. */
            if ( !strncmp( exprs + istart, symbol[ isym ].text,
                           (size_t) symbol[ isym ].size ) ) {
               found = 1;

/* If this symbol matches more characters than any previous symbol,
   then store the symbol's index and note its size. */
               if ( symbol[ isym ].size > size ) {
                  sym = isym;
                  size = symbol[ isym ].size;

/* Calculate the index of the last symbol character in the expression
   string. */
                  iend = istart + size - 1;
               }
            }
         }
      }

/* If the symbol was identified as one of the standard symbols, then
   validate it, updating the parenthesis level and argument count
   information at the same time. */
      if ( found ) {
         ValidateSymbol( method, class, exprs, iend, sym, &lpar, &argcount,
                         &opensym, &ncon, con, status );

/* If it was not one of the standard symbols, then check if the next
   symbol was expected to be an operator. If so, then there is a missing
   operator, so report an error. */
      } else {
         if ( opernext ) {
            astError( AST__MIOPR,
                      "%s(%s): Missing or invalid operator in the expression "
                      "\"%.*s\".", status,
                      method, class, istart + 1, exprs );

/* If the next symbol was expected to be an operand, then it may be a
   constant, so try to parse it as one. */
         } else {
            ParseConstant( method, class, exprs, istart, &iend, &c, status );
            if ( astOK ) {

/* If successful, set the symbol number to "symbol_ldcon" (load
   constant) and extend the "*con" array to accommodate a new
   constant. Check for errors. */
               if ( iend >= istart ) {
                  sym = symbol_ldcon;
                  *con = astGrow( *con, ncon + 1, sizeof( double ) );
                  if ( astOK ) {

/* Append the constant to the "*con" array. */
                     ( *con )[ ncon++ ] = c;
                  }

/* If the symbol did not parse as a constant, then it may be a
   variable name, so try to parse it as one. */
               } else {
                  ParseVariable( method, class, exprs, istart, nvar, var,
                                 &ivar, &iend, status );
                  if ( astOK ) {

/* If successful, set the symbol to "symbol_ldvar" (load variable) and
   extend the "*con" array to accommodate a new constant. Check for
   errors. */
                     if ( ivar != -1 ) {
                        sym = symbol_ldvar;
                        *con = astGrow( *con, ncon + 1, sizeof( double ) );
                        if ( astOK ) {

/* Append the variable identification number as a constant to the
   "*con" array. */
                           ( *con )[ ncon++ ] = (double) ivar;
                        }

/* If the expression did not parse as a variable name, then there is a
   missing operand in the expression, so report an error. */
                     } else {
                        astError( AST__MIOPA,
                                  "%s(%s): Missing or invalid operand in the "
                                  "expression \"%.*s\".", status,
                                  method, class, istart + 1, exprs );
                     }
                  }
               }
            }
         }
      }

/* If there has been no error, then the next symbol in the input
   expression has been identified and is valid. */
      if ( astOK ) {

/* Decide whether the next symbol should look like an operator or an
   operand from the left. This is determined by the nature of the symbol
   just identified (seen from the right) - two operands or two operators
   cannot be adjacent. */
         opernext = !symbol[ sym ].operright;

/* Also decide whether the next symbol may be a unary +/- operator,
   according to the "unarynext" symbol data entry for the symbol just
   identified. */
         unarynext = symbol[ sym ].unarynext;

/* Extend the "symlist" array to accommodate the symbol just
   identified. Check for errors. */
         symlist = astGrow( symlist, nsym + 1, sizeof( int ) );
         if ( astOK ) {

/* Append the symbol's index to the end of this list. */
            symlist[ nsym++ ] = sym;
         }
      }
   }

/* If there has been no error, check the final context after
   identifying all the symbols... */
   if ( astOK ) {

/* If an operand is still expected, then there is an unsatisfied
   operator on the end of the expression, so report an error. */
      if ( !opernext ) {
         astError( AST__MIOPA,
                   "%s(%s): Missing or invalid operand in the expression "
                   "\"%s\".", status,
                   method, class, exprs );

/* If the final parenthesis level is positive, then there is a missing
   right parenthesis, so report an error. */
      } else if ( lpar > 0 ) {
         astError( AST__MRPAR,
                   "%s(%s): Missing right parenthesis in the expression "
                   "\"%s\".", status,
                   method, class, exprs );
      }
   }

/* Sort the symbols into evaluation order to produce output opcodes. */
   EvaluationSort( *con, nsym, symlist, code, stacksize, status );

/* Free any memory used as workspace. */
   if ( argcount ) argcount = astFree( argcount );
   if ( opensym ) opensym = astFree( opensym );
   if ( symlist ) symlist = astFree( symlist );

/* If OK, re-allocate the "*con" array to have the correct size (since
   astGrow may have over-allocated space). */
   if ( astOK && *con ) {
      *con = astRealloc( *con, sizeof( double ) * (size_t) ncon );
   }

/* If an error occurred, free any allocated memory and reset the
   output values. */
   if ( !astOK ) {
      *code = astFree( *code );
      *con = astFree( *con );
      *stacksize = 0;
   }
}

static void CompileMapping( const char *method, const char *class,
                            int nin, int nout,
                            int nfwd, const char *fwdfun[],
                            int ninv, const char *invfun[],
                            int ***fwdcode, int ***invcode,
                            double ***fwdcon, double ***invcon,
                            int *fwdstack, int *invstack, int *status ) {
/*
*  Name:
*     CompileMapping

*  Purpose:
*     Compile the transformation functions for a MathMap.

*  Type:
*     Private function.

*  Synopsis:
*     #include "mathmap.h"
*     void CompileMapping( const char *method, const char *class,
*                          int nin, int nout,
*                          int nfwd, const char *fwdfun[],
*                          int ninv, const char *invfun[],
*                          int ***fwdcode, int ***invcode,
*                          double ***fwdcon, double ***invcon,
*                          int *fwdstack, int *invstack, int *status )

*  Class Membership:
*     MathMap member function.

*  Description:
*     This function checks and compiles the transformation functions required
*     to create a MathMap. It produces sequences of operation codes (opcodes)
*     and numerical constants which may subsequently be used to evaluate the
*     functions on a push-down stack.

*  Parameters:
*     method
*        Pointer to a constant null-terminated character string
*        containing the name of the method that invoked this function.
*        This method name is used solely for constructing error messages.
*     class
*        Pointer to a constant null-terminated character string containing the
*        class name of the Object being processed. This name is used solely
*        for constructing error messages.
*     nin
*        Number of input variables for the MathMap.
*     nout
*        Number of output variables for the MathMap.
*     nfwd
*        The number of forward transformation functions being supplied.
*        This must be at least equal to "nout".
*     fwdfun
*        Pointer to an array, with "nfwd" elements, of pointers to null
*        terminated strings which contain each of the forward transformation
*        functions. These must be in lower case and should contain no white
*        space.
*     ninv
*        The number of inverse transformation functions being supplied.
*        This must be at least equal to "nin".
*     invfun
*        Pointer to an array, with "ninv" elements, of pointers to null
*        terminated strings which contain each of the inverse transformation
*        functions. These must be in lower case and should contain no white
*        space.
*     fwdcode
*        Address in which to return a pointer to an array (with "nfwd"
*        elements) of pointers to arrays of int containing the set of opcodes
*        (cast to int) for each forward transformation function. The number
*        of opcodes produced for each function is given by the first element
*        of the opcode array.
*
*        Both the returned array of pointers, and the arrays of int to which
*        they point, will be stored in dynamically allocated memory and should
*        be freed by the caller (using astFree) when no longer required.
*
*        If the right hand sides (including the "=" sign) of all the supplied
*        functions are absent, then this indicates an undefined transformation
*        and the returned pointer value will be NULL. An error results if
*        an "=" sign is present but no expression follows it.
*     invcode
*        Address in which to return a pointer to an array (with "ninv"
*        elements) of pointers to arrays of int containing the set of opcodes
*        (cast to int) for each inverse transformation function. The number
*        of opcodes produced for each function is given by the first element
*        of the opcode array.
*
*        Both the returned array of pointers, and the arrays of int to which
*        they point, will be stored in dynamically allocated memory and should
*        be freed by the caller (using astFree) when no longer required.
*
*        If the right hand sides (including the "=" sign) of all the supplied
*        functions are absent, then this indicates an undefined transformation
*        and the returned pointer value will be NULL. An error results if
*        an "=" sign is present but no expression follows it.
*     fwdcon
*        Address in which to return a pointer to an array (with "nfwd"
*        elements) of pointers to arrays of double containing the set of
*        constants for each forward transformation function.
*
*        Both the returned array of pointers, and the arrays of double to which
*        they point, will be stored in dynamically allocated memory and should
*        be freed by the caller (using astFree) when no longer required. Note
*        that any of the pointers to the arrays of double may be NULL if no
*        constants are associated with a particular function.
*
*        If the forward transformation is undefined, then the returned pointer
*        value will be NULL.
*     invcon
*        Address in which to return a pointer to an array (with "ninv"
*        elements) of pointers to arrays of double containing the set of
*        constants for each inverse transformation function.
*
*        Both the returned array of pointers, and the arrays of double to which
*        they point, will be stored in dynamically allocated memory and should
*        be freed by the caller (using astFree) when no longer required. Note
*        that any of the pointers to the arrays of double may be NULL if no
*        constants are associated with a particular function.
*
*        If the inverse transformation is undefined, then the returned pointer
*        value will be NULL.
*     fwdstack
*        Pointer to an int in which to return the size of the push-down stack
*        required to evaluate the forward transformation functions.
*     invstack
*        Pointer to an int in which to return the size of the push-down stack
*        required to evaluate the inverse transformation functions.
*     status
*        Pointer to the inherited status variable.

*  Notes:
*     - A value of NULL will be returned for the "*fwdcode", "*invcode",
*     "*fwdcon" and "*invcon" pointers and a value of zero will be returned
*     for the "*fwdstack" and "*invstack" values if this function is invoked
*     with the global error status set, or if it should fail for any reason.
*/

/* Local Variables: */
   char **exprs;                 /* Pointer to array of expressions */
   char **var;                   /* Pointer to array of variable names */
   const char **strings;         /* Pointer to temporary array of strings */
   int ifun;                     /* Loop counter for functions */
   int nvar;                     /* Number of variables to extract */
   int stacksize;                /* Required stack size */

/* Initialise. */
   *fwdcode = NULL;
   *invcode = NULL;
   *fwdcon = NULL;
   *invcon = NULL;
   *fwdstack = 0;
   *invstack = 0;
   nvar = 0;

/* Check the global error status. */
   if ( !astOK ) return;

/* Further initialisation. */
   exprs = NULL;
   var = NULL;

/* Compile the forward transformation. */
/* ----------------------------------- */
/* Allocate space for an array of pointers to the functions from which
   we will extract variable names. */
   strings = astMalloc( sizeof( char * ) * (size_t) ( nin + nfwd ) );

/* Fill the first elements of this array with pointers to the inverse
   transformation functions ("nin" in number) which yield the final input
   values. These will have the names of the input variables on their left
   hand sides. */
   if ( astOK ) {
      nvar = 0;
      for ( ifun = ninv - nin; ifun < ninv; ifun++ ) {
         strings[ nvar++ ] = invfun[ ifun ];
      }

/* Fill the remaining elements of the array with pointers to the
   forward transformation functions. These will have the names of any
   intermediate variables plus the final output variables on their left
   hand sides. */
      for ( ifun = 0; ifun < nfwd; ifun++ ) strings[ nvar++ ] = fwdfun[ ifun ];

/* Extract the variable names from the left hand sides of these
   functions and check them for validity and absence of duplication. */
      ExtractVariables( method, class, nvar, strings, nin, nout, nfwd, ninv, 1,
                        &var, status );
   }

/* Free the temporary array of string pointers. */
   strings = astFree( strings );

/* Extract the expressions from the right hand sides of the forward
   transformation functions. */
   ExtractExpressions( method, class, nfwd, fwdfun, 1, &exprs, status );

/* If OK, and the forward transformation is defined, then allocate and
   initialise space for an array of pointers to the opcodes for each
   expression and, similarly, for the constants for each expression. */
   if ( astOK && exprs ) {
      MALLOC_POINTER_ARRAY( *fwdcode, int *, nfwd )
      MALLOC_POINTER_ARRAY( *fwdcon, double *, nfwd )

/* If OK, loop to compile each of the expressions, storing pointers to
   the resulting opcodes and constants in the arrays allocated above. On
   each loop, we make progressively more of the variable names in "var"
   visible to the compilation function. This ensures that each expression
   can only use variables which have been defined earlier. */
      if ( astOK ) {
         for ( ifun = 0; ifun < nfwd; ifun++ ) {
            CompileExpression( method, class, exprs[ ifun ],
                               nin + ifun, (const char **) var,
                               &( *fwdcode )[ ifun ], &( *fwdcon )[ ifun ],
                               &stacksize, status );

/* If an error occurs, then report contextual information and quit. */
            if ( !astOK ) {
               astError( astStatus,
                         "Error in forward transformation function %d.", status,
                         ifun + 1 );
               break;
            }

/* If OK, calculate the maximum evaluation stack size required by any
   of the expressions. */
            *fwdstack = ( *fwdstack > stacksize ) ? *fwdstack : stacksize;
         }
      }
   }

/* Free the memory containing the extracted expressions and variables. */
   FREE_POINTER_ARRAY( exprs, nfwd )
   FREE_POINTER_ARRAY( var, nvar )

/* Compile the inverse transformation. */
/* ----------------------------------- */
/* Allocate space for an array of pointers to the functions from which
   we will extract variable names. */
   strings = astMalloc( sizeof( char * ) * (size_t) ( nout + ninv ) );

/* Fill the first elements of this array with pointers to the forward
   transformation functions ("nout" in number) which yield the final
   output values. These will have the names of the output variables on
   their left hand sides. */
   if ( astOK ) {
      nvar = 0;
      for ( ifun = nfwd - nout; ifun < nfwd; ifun++ ) {
         strings[ nvar++ ] = fwdfun[ ifun ];
      }

/* Fill the remaining elements of the array with pointers to the
   inverse transformation functions. These will have the names of any
   intermediate variables plus the final input variables on their left
   hand sides. */
      for ( ifun = 0; ifun < ninv; ifun++ ) strings[ nvar++ ] = invfun[ ifun ];

/* Extract the variable names from the left hand sides of these
   functions and check them for validity and absence of duplication. */
      ExtractVariables( method, class, nvar, strings, nin, nout, nfwd, ninv, 0,
                        &var, status );
   }

/* Free the temporary array of string pointers. */
   strings = astFree( strings );

/* Extract the expressions from the right hand sides of the inverse
   transformation functions. */
   ExtractExpressions( method, class, ninv, invfun, 0, &exprs, status );

/* If OK, and the forward transformation is defined, then allocate and
   initialise space for an array of pointers to the opcodes for each
   expression and, similarly, for the constants for each expression. */
   if ( astOK && exprs ) {
      MALLOC_POINTER_ARRAY( *invcode, int *, ninv )
      MALLOC_POINTER_ARRAY( *invcon, double *, ninv )

/* If OK, loop to compile each of the expressions, storing pointers to
   the resulting opcodes and constants in the arrays allocated above. On
   each loop, we make progressively more of the variable names in "var"
   visible to the compilation function. This ensures that each expression
   can only use variables which have been defined earlier. */
      if ( astOK ) {
         for ( ifun = 0; ifun < ninv; ifun++ ) {
            CompileExpression( method, class, exprs[ ifun ],
                               nout + ifun, (const char **) var,
                               &( *invcode )[ ifun ], &( *invcon )[ ifun ],
                               &stacksize, status );

/* If an error occurs, then report contextual information and quit. */
            if ( !astOK ) {
               astError( astStatus,
                         "Error in inverse transformation function %d.", status,
                         ifun + 1 );
               break;
            }

/* If OK, calculate the maximum evaluation stack size required by any
   of the expressions. */
            *invstack = ( *invstack > stacksize ) ? *invstack : stacksize;
         }
      }
   }

/* Free the memory containing the extracted expressions and variables. */
   FREE_POINTER_ARRAY( exprs, ninv )
   FREE_POINTER_ARRAY( var, nvar )

/* If an error occurred, then free all remaining allocated memory and
   reset the output values. */
   if ( !astOK ) {
      FREE_POINTER_ARRAY( *fwdcode, nfwd )
      FREE_POINTER_ARRAY( *invcode, ninv )
      FREE_POINTER_ARRAY( *fwdcon, nfwd )
      FREE_POINTER_ARRAY( *invcon, ninv )
      *fwdstack = 0;
      *invstack = 0;
   }
}

static int DefaultSeed( const Rcontext *context, int *status ) {
/*
*  Name:
*     DefaultSeed

*  Purpose:
*     Generate an unpredictable seed for a random number generator.

*  Type:
*     Private function.

*  Synopsis:
*     #include "mathmap.h"
*     int DefaultSeed( Rcontext *context, int *status )

*  Class Membership:
*     MathMap member function.

*  Description:
*     On each invocation this function returns an integer value which is
*     highly unpredictable. This value may be used as a default seed for the
*     random number generator associated with a MathMap, so that it
*     generates a different sequence on each occasion.

*  Parameters:
*     context
*        Pointer to the random number generator context associated with
*        the MathMap.
*     status
*        Pointer to the inherited status variable.

*  Returned Value:
*     The unpredictable integer.

*  Notes:
*     - This function does not perform error checking and will execute even
*     if the global error status is set.
*/

/* Local Constants: */
   const int nwarm = 5;          /* Number of warm-up iterations */
   const long int a = 8121L;     /* Constants for random number generator... */
   const long int c = 28411L;
   const long int m = 134456L;

/* Local Variables; */
   int iwarm;                    /* Loop counter for warm-up iterations */
   static long init = 0;         /* Local initialisation performed? */
   static long int rand;         /* Local random integer */
   unsigned long int bits;       /* Bit pattern for producing result */

/* On the first invocation, initialise a local random number generator
   to a value derived by combining bit patterns obtained from the system
   clock and the processor time used. The result needs to be positive and
   lie in the range 0 to "m-1". */
   LOCK_MUTEX5
   if ( !init ) {
      rand = (long int) ( ( (unsigned long int) time( NULL ) ^
                            (unsigned long int) clock() ) %
                          (unsigned long int) m );

/* These values will typically only change in their least significant
   bits between programs run successively, but by using the bit pattern
   as a seed, we ensure that these differences are rapidly propagated to
   other bits. To hasten this process, we "warm up" the local generator
   with a few iterations. This is a quick and dirty generator using
   constants from Press et al. (Numerical recipes). */
      for ( iwarm = 0; iwarm < nwarm; iwarm++ ) {
         rand = ( rand * a + c ) % m;
      }

/* Note that this initialisation has been performed. */
      init = 1;
   }
   UNLOCK_MUTEX5

/* Generate a new bit pattern from the system time. Apart from the
   first invocation, this will be a different time to that used above. */
   bits = (unsigned long int) time( NULL );

/* Mask in a pattern derived from the CPU time used. */
   bits ^= (unsigned long int) clock();

/* The system time may change quite slowly (e.g. every second), so
   also mask in the address of the random number generator context
   supplied. This makes the seed depend on which MathMap is in use. */
   bits ^= (unsigned long int) context;

/* Now mask in the last random integer produced by the random number
   generator whose context has been supplied. This makes the seed depend
   on the MathMap's past use of random numbers. */
   bits ^= (unsigned long int) context->random_int;

/* Finally, in order to produce different seeds when this function is
   invoked twice in rapid succession on the same object (with no
   intermediate processing), we also mask in a pseudo-random value
   generated here. Generate the next local random integer. */
   rand = ( rand * a + c ) % m;

/* We then scale this value to give an integer in the range 0 to
   ULONG_MAX and mask the corresponding bit pattern into our seed. */
   bits ^= (unsigned long int) ( ( (double) rand / (double) ( m - 1UL ) ) *
                                 ( ( (double) ULONG_MAX + 1.0 ) *
                                   ( 1.0 - DBL_EPSILON ) ) );

/* Return the integer value of the seed (which may involve discarding
   some unwanted bits). */
   return (int) bits;
}

static int Equal( AstObject *this_object, AstObject *that_object, int *status ) {
/*
*  Name:
*     Equal

*  Purpose:
*     Test if two MathMaps are equivalent.

*  Type:
*     Private function.

*  Synopsis:
*     #include "mapping.h"
*     int Equal( AstObject *this, AstObject *that, int *status )

*  Class Membership:
*     MathMap member function (over-rides the astEqual protected
*     method inherited from the Object class).

*  Description:
*     This function returns a boolean result (0 or 1) to indicate whether
*     two MathMaps are equivalent.

*  Parameters:
*     this
*        Pointer to the first Object (a MathMap).
*     that
*        Pointer to the second Object.
*     status
*        Pointer to the inherited status variable.

*  Returned Value:
*     One if the MathMaps are equivalent, zero otherwise.

*  Notes:
*     - The two MathMaps are considered equivalent if the combination of
*     the first in series with the inverse of the second simplifies to a
*     UnitMap.
*     - A value of zero will be returned if this function is invoked
*     with the global status set, or if it should fail for any reason.
*/

/* Local Variables: */
   AstMathMap *that;          /* Pointer to the second MathMap structure */
   AstMathMap *this;          /* Pointer to the first MathMap structure */
   double **that_con;         /* Lists of constants from "that" */
   double **this_con;         /* Lists of constants from "this" */
   int **that_code;           /* Lists of opcodes from "that" */
   int **this_code;           /* Lists of opcodes from "this" */
   int code;                  /* Opcode value */
   int icode;                 /* Opcode index */
   int icon;                  /* Constant index */
   int ifun;                  /* Function index */
   int ncode;                 /* No. of opcodes for current "this" function */
   int ncode_that;            /* No. of opcodes for current "that" function */
   int nin;                   /* Number of inputs */
   int nout;                  /* Number of outputs */
   int pass;                  /* Check fwd or inv */
   int result;                /* Result value to return */
   int that_nfun;             /* Number of functions from "that" */
   int this_nfun;             /* Number of functions from "this" */

/* Initialise. */
   result = 0;

/* Check the global error status. */
   if ( !astOK ) return result;

/* Obtain pointers to the two MathMap structures. */
   this = (AstMathMap *) this_object;
   that = (AstMathMap *) that_object;

/* Check the second object is a MathMap. We know the first is a
   MathMap since we have arrived at this implementation of the virtual
   function. */
   if( astIsAMathMap( that ) ) {

/* Check they have the same number of inputs and outputs */
      nin = astGetNin( this );
      nout = astGetNout( this );
      if( astGetNout( that ) == nout && astGetNin( that ) == nin ) {

/* Assume equality. */
         result = 1;

/* The first pass through this next loop compares forward functions, and
   the second pass compares inverse functions. */
         for( pass = 0; pass < 2 && result; pass++ ) {

/* On the first pass, get pointers to the lists of opcodes and constants for
   the effective forward transformations (taking into account the value
   of the Invert attribute), together with the number of such functions. */
            if( pass == 0 ) {
               if( !astGetInvert( this ) ) {
                  this_code = this->fwdcode;
                  this_con = this->fwdcon;
                  this_nfun = this->nfwd;
               } else {
                  this_code = this->invcode;
                  this_con = this->invcon;
                  this_nfun = this->ninv;
               }

               if( !astGetInvert( that ) ) {
                  that_code = that->fwdcode;
                  that_con = that->fwdcon;
                  that_nfun = that->nfwd;
               } else {
                  that_code = that->invcode;
                  that_con = that->invcon;
                  that_nfun = that->ninv;
               }

/* On the second pass, get pointers to the lists of opcodes and constants for
   the effective inverse transformations, together with the number of such
   functions. */
            } else {

               if( astGetInvert( this ) ) {
                  this_code = this->fwdcode;
                  this_con = this->fwdcon;
                  this_nfun = this->nfwd;
               } else {
                  this_code = this->invcode;
                  this_con = this->invcon;
                  this_nfun = this->ninv;
               }

               if( astGetInvert( that ) ) {
                  that_code = that->fwdcode;
                  that_con = that->fwdcon;
                  that_nfun = that->nfwd;
               } else {
                  that_code = that->invcode;
                  that_con = that->invcon;
                  that_nfun = that->ninv;
               }
            }

/* Check that "this" and "that" have the same number of functions */
            if( that_nfun != this_nfun ) result = 0;

/* Loop round each function. */
            for( ifun = 0; ifun < this_nfun && result; ifun++ ) {

/* The first element in the opcode array is the number of subsequent
   opcodes. Obtain and compare these counts. */
               ncode = this_code ? this_code[ ifun ][ 0 ] : 0;
               ncode_that = that_code ? that_code[ ifun ][ 0 ] : 0;
               if( ncode != ncode_that ) result = 0;

/* Compare the following opcodes. Some opcodes consume constants from the
   list of constants associated with the MathMap. Compare the constants
   for such opcodes. */
               icon = 0;
               for( icode = 0; icode < ncode && result; icode++ ){
                  code = this_code[ ifun ][ icode ];
                  if( that_code[ ifun ][ icode ] != code ) {
                     result = 0;

                  } else if( code == OP_LDCON ||
                             code == OP_LDVAR ||
                             code == OP_MAX ||
                             code == OP_MIN ) {

                     if( this_con[ ifun ][ icon ] !=
                         that_con[ ifun ][ icon ] ) {
                        result = 0;
                     } else {
                        icon++;
                     }
                  }
               }
            }
         }
      }
   }

/* If an error occurred, clear the result value. */
   if ( !astOK ) result = 0;

/* Return the result, */
   return result;
}

static void EvaluateFunction( Rcontext *rcontext, int npoint,
                              const double **ptr_in, const int *code,
                              const double *con, int stacksize, double *out, int *status ) {
/*
*  Name:
*     EvaluateFunction

*  Purpose:
*     Evaluate a compiled function.

*  Type:
*     Private function.

*  Synopsis:
*     #include "mathmap.h"
*     void EvaluateFunction( Rcontext *rcontext, int npoint,
*                            const double **ptr_in, const int *code,
*                            const double *con, int stacksize, double *out, int *status )

*  Class Membership:
*     MathMap member function.

*  Description:
*     This function implements a "virtual machine" which executes operations
*     on an arithmetic stack in order to evaluate transformation functions.
*     Each operation is specified by an input operation code (opcode) and
*     results in the execution of a vector operation on a stack. The final
*     result, after executing all the supplied opcodes, is returned as a
*     vector.
*
*     This function detects arithmetic errors (such as overflow and division
*     by zero) and propagates any "bad" coordinate values, including those
*     present in the input, to the output.

*  Parameters:
*     npoint
*        The number of points to be transformd (i.e. the size of the vector
*        of values on which operations are to be performed).
*     ptr_in
*        Pointer to an array of pointers to arrays of double (with "npoint"
*        elements). These arrays should contain the input coordinate values,
*        such that coordinate number "coord" for point number "point" can be
*        found in "ptr_in[coord][point]".
*     code
*        Pointer to an array of int containing the set of opcodes (cast to int)
*        for the operations to be performed. The first element of this array
*        should contain a count of the number of opcodes which follow.
*     con
*        Pointer to an array of double containing the set of constants required
*        to evaluate the function (this may be NULL if no constants are
*        required).
*     stacksize
*        The size of the stack required to evaluate the expression using the
*        opcodes and constants supplied. This value should be calculated during
*        expression compilation.
*     out
*        Pointer to an array of double (with "npoint" elements) in which to
*        return the vector of result values.
*     status
*        Pointer to the inherited status variable.
*/

/* Local Constants: */
   const int bits =              /* Number of bits in an unsigned long */
      sizeof( unsigned long ) * CHAR_BIT;
   const double eps =            /* Smallest number subtractable from 2.0 */
      2.0 * DBL_EPSILON;
   const double scale =          /* 2.0 raised to the power "bits" */
      ldexp( 1.0, bits );
   const double scale1 =         /* 2.0 raised to the power "bits-1" */
      scale * 0.5;
   const double rscale =         /* Reciprocal scale factor */
      1.0 / scale;
   const double rscale1 =        /* Reciprocal initial scale factor */
      1.0 / scale1;
   const int nblock =            /* Number of blocks of bits to process */
      ( sizeof( double ) + sizeof( unsigned long ) - 1 ) /
      sizeof( unsigned long );
   const unsigned long signbit = /* Mask for extracting sign bit */
      1UL << ( bits - 1 );

/* Local Variables: */
   double **stack;               /* Array of pointers to stack elements */
   double *work;                 /* Pointer to stack workspace */
   double *xv1;                  /* Pointer to first argument vector */
   double *xv2;                  /* Pointer to second argument vector */
   double *xv3;                  /* Pointer to third argument vector */
   double *xv;                   /* Pointer to sole argument vector */
   double *y;                    /* Pointer to result */
   double *yv;                   /* Pointer to result vector */
   double abs1;                  /* Absolute value (temporary variable) */
   double abs2;                  /* Absolute value (temporary variable) */
   double frac1;                 /* First (maybe normalised) fraction */
   double frac2;                 /* Second (maybe normalised) fraction */
   double frac;                  /* Sole normalised fraction */
   double newexp;                /* New power of 2 exponent value */
   double ran;                   /* Random number */
   double result;                /* Function result value */
   double unscale;               /* Factor for removing scaling */
   double value;                 /* Value to be assigned to stack vector */
   double x1;                    /* First argument value */
   double x2;                    /* Second argument value */
   double x3;                    /* Third argument value */
   double x;                     /* Sole argument value */
   int expon1;                   /* First power of 2 exponent */
   int expon2;                   /* Second power of 2 exponent */
   int expon;                    /* Sole power of 2 exponent */
   int iarg;                     /* Loop counter for arguments */
   int iblock;                   /* Loop counter for blocks of bits */
   int icode;                    /* Opcode value */
   int icon;                     /* Counter for number of constants used */
   int istk;                     /* Loop counter for stack elements */
   int ivar;                     /* Input variable number */
   int narg;                     /* Number of function arguments */
   int ncode;                    /* Number of opcodes to process */
   int point;                    /* Loop counter for stack vector elements */
   int sign;                     /* Argument is non-negative? */
   int tos;                      /* Top of stack index */
   static double d2r;            /* Degrees to radians conversion factor */
   static double log2;           /* Natural logarithm of 2.0 */
   static double pi;             /* Value of PI */
   static double r2d;            /* Radians to degrees conversion factor */
   static double rsafe_sq;       /* Reciprocal of "safe_sq" */
   static double safe_sq;        /* Huge value that can safely be squared */
   static int init = 0;          /* Initialisation performed? */
   unsigned long b1;             /* Block of bits from first argument */
   unsigned long b2;             /* Block of bits from second argument */
   unsigned long b;              /* Block of bits for result */
   unsigned long neg;            /* Result is negative? (sign bit) */

/* Check the global error status. */
   if ( !astOK ) return;

/* If this is the first invocation of this function, then initialise
   constant values. */
   LOCK_MUTEX2
   if ( !init ) {

/* Trigonometrical conversion factors. */
      pi = acos( -1.0 );
      r2d = 180.0 / pi;
      d2r = pi / 180.0;

/* Natural logarithm of 2.0. */
      log2 = log( 2.0 );

/* This value must be safe to square without producing overflow, yet
   large enough that adding or subtracting 1.0 from the square makes no
   difference. We also need its reciprocal. */
      safe_sq = 0.9 * sqrt( DBL_MAX );
      rsafe_sq = 1.0 / safe_sq;

/* Note that initialisation has been performed. */
      init = 1;
   }
   UNLOCK_MUTEX2

/* Allocate space for an array of pointers to elements of the
   workspace stack (each stack element being an array of double). */
   stack = astMalloc( sizeof( double * ) * (size_t) stacksize );

/* Allocate space for the stack itself. */
   work = astMalloc( sizeof( double ) *
                     (size_t) ( npoint * ( stacksize - 1 ) ) );

/* If OK, then initialise the stack pointer array to identify the
   start of each vector on the stack. The first element points at the
   output array (in which the result will be accumulated), while other
   elements point at successive vectors within the workspace allocated
   above. */
   if ( astOK ) {
      stack[ 0 ] = out;
      for ( istk = 1; istk < stacksize; istk++ ) {
         stack[ istk ] = work + ( istk - 1 ) * npoint;
      }

/* Define stack operations. */
/* ======================== */
/* We now define a set of macros for performing vector operations on
   elements of the stack. Each is in the form of a "case" block for
   execution in response to the appropriate operation code (opcode). */

/* Zero-argument operation. */
/* ------------------------ */
/* This macro performs a zero-argument operation, which results in the
   insertion of a new vector on to the stack. */
#define ARG_0(oper,setup,function) \
\
/* Test for the required opcode value. */ \
   case oper: \
\
/* Perform any required initialisation. */ \
      {setup;} \
\
/* Increment the top of stack index and obtain a pointer to the new stack \
   element (vector). */ \
      yv = stack[ ++tos ]; \
\
/* Loop to access each vector element, obtaining a pointer to it. */ \
      for ( point = 0; point < npoint; point++ ) { \
         y = yv + point; \
\
/* Perform the processing, which results in assignment to this element. */ \
         {function;} \
      } \
\
/* Break out of the "case" block. */ \
      break;

/* One-argument operation. */
/* ----------------------- */
/* This macro performs a one-argument operation, which processes the
   top stack element without changing the stack size. */
#define ARG_1(oper,function) \
\
/* Test for the required opcode value. */ \
   case oper: \
\
/* Obtain a pointer to the top stack element (vector). */ \
      xv = stack[ tos ]; \
\
/* Loop to access each vector element, obtaining its value and \
   checking that it is not bad. */ \
      for ( point = 0; point < npoint; point++ ) { \
         if ( ( x = xv[ point ] ) != AST__BAD ) { \
\
/* Also obtain a pointer to the element. */ \
            y = xv + point; \
\
/* Perform the processing, which uses the element's value and then \
   assigns the result to this element. */ \
            {function;} \
         } \
      } \
\
/* Break out of the "case" block. */ \
      break;

/* One-argument boolean operation. */
/* ------------------------------- */
/* This macro is similar in function to ARG_1 above, except that no
   checks are made for bad argument values. It is intended for use with
   boolean functions where bad values are handled explicitly. */
#define ARG_1B(oper,function) \
\
/* Test for the required opcode value. */ \
   case oper: \
\
/* Obtain a pointer to the top stack element (vector). */ \
      xv = stack[ tos ]; \
\
/* Loop to access each vector element, obtaining the argument value \
   and a pointer to the element. */ \
      for ( point = 0; point < npoint; point++ ) { \
         x = xv[ point ]; \
         y = xv + point; \
\
/* Perform the processing, which uses the element's value and then \
   assigns the result to this element. */ \
         {function;} \
      } \
\
/* Break out of the "case" block. */ \
      break;

/* Two-argument operation. */
/* ----------------------- */
/* This macro performs a two-argument operation, which processes the
   top two stack elements and produces a single result, resulting in the
   stack size decreasing by one. In this case, we first define a macro
   without the "case" block statements present. */
#define DO_ARG_2(function) \
\
/* Obtain pointers to the top two stack elements (vectors), decreasing \
   the top of stack index by one. */ \
      xv2 = stack[ tos-- ]; \
      xv1 = stack[ tos ]; \
\
/* Loop to access each vector element, obtaining the value of the \
   first argument and checking that it is not bad. */ \
      for ( point = 0; point < npoint; point++ ) { \
         if ( ( x1 = xv1[ point ] ) != AST__BAD ) { \
\
/* Also obtain a pointer to the element which is to receive the \
   result. */ \
            y = xv1 + point; \
\
/* Obtain the value of the second argument, again checking that it is \
   not bad. */ \
            if ( ( x2 = xv2[ point ] ) != AST__BAD ) { \
\
/* Perform the processing, which uses the two argument values and then \
   assigns the result to the appropriate top of stack element. */ \
               {function;} \
\
/* If the second argument was bad, so is the result. */ \
            } else { \
               *y = AST__BAD; \
            } \
         } \
      }

/* This macro simply wraps the one above up in a "case" block. */
#define ARG_2(oper,function) \
   case oper: \
      DO_ARG_2(function) \
      break;

/* Two-argument boolean operation. */
/* ------------------------------- */
/* This macro is similar in function to ARG_2 above, except that no
   checks are made for bad argument values. It is intended for use with
   boolean functions where bad values are handled explicitly. */
#define ARG_2B(oper,function) \
\
/* Test for the required opcode value. */ \
   case oper: \
\
/* Obtain pointers to the top two stack elements (vectors), decreasing \
   the top of stack index by one. */ \
      xv2 = stack[ tos-- ]; \
      xv1 = stack[ tos ]; \
\
/* Loop to access each vector element, obtaining the value of both \
   arguments and a pointer to the element which is to receive the \
   result. */ \
      for ( point = 0; point < npoint; point++ ) { \
         x1 = xv1[ point ]; \
         x2 = xv2[ point ]; \
         y = xv1 + point; \
\
/* Perform the processing, which uses the two argument values and then \
   assigns the result to the appropriate top of stack element. */ \
         {function;} \
      } \
\
/* Break out of the "case" block. */ \
      break;

/* Three-argument boolean operation. */
/* --------------------------------- */
/* This macro is similar in function to ARG_2B above, except that it
   takes three values of the stack and puts one back. It performs no
   checks for bad values. */
#define ARG_3B(oper,function) \
\
/* Test for the required opcode value. */ \
   case oper: \
\
/* Obtain pointers to the top three stack elements (vectors), decreasing \
   the top of stack index by two. */ \
      xv3 = stack[ tos-- ]; \
      xv2 = stack[ tos-- ]; \
      xv1 = stack[ tos ]; \
\
/* Loop to access each vector element, obtaining the value of all 3 \
   arguments and a pointer to the element which is to receive the \
   result. */ \
      for ( point = 0; point < npoint; point++ ) { \
         x1 = xv1[ point ]; \
         x2 = xv2[ point ]; \
         x3 = xv3[ point ]; \
         y = xv1 + point; \
\
/* Perform the processing, which uses the three argument values and then \
   assigns the result to the appropriate top of stack element. */ \
         {function;} \
      } \
\
/* Break out of the "case" block. */ \
      break;

/* Define arithmetic operations. */
/* ============================= */
/* We now define macros for performing some of the arithmetic
   operations we will require in a "safe" way - i.e. trapping numerical
   problems such as overflow and invalid arguments and translating them
   into the AST__BAD value. */

/* Absolute value. */
/* --------------- */
/* This is just shorthand. */
#define ABS(x) ( ( (x) >= 0.0 ) ? (x) : -(x) )

/* Integer part. */
/* ------------- */
/* This implements rounding towards zero without involving conversion
   to an integer (which could overflow). */
#define INT(x) ( ( (x) >= 0.0 ) ? floor( (x) ) : ceil( (x) ) )

/* Trap maths overflow. */
/* -------------------- */
/* This macro calls a C maths library function and checks for overflow
   in the result. */
#define CATCH_MATHS_OVERFLOW(function) \
   ( \
\
/* Clear the "errno" value. */ \
      errno = 0, \
\
/* Evaluate the function. */ \
      result = (function), \
\
/* Check if "errno" and the returned result indicate overflow and \
   return the appropriate result. */ \
      ( ( errno == ERANGE ) && ( ABS( result ) == HUGE_VAL ) ) ? AST__BAD : \
                                                                 result \
   )

/* Trap maths errors. */
/* ------------------ */
/* This macro is similar to the one above, except that it also checks
   for domain errors (i.e. invalid argument values). */
#define CATCH_MATHS_ERROR(function) \
   ( \
\
/* Clear the "errno" value. */ \
      errno = 0, \
\
/* Evaluate the function. */ \
      result = (function), \
\
/* Check if "errno" and the returned result indicate a domain error or \
   overflow and return the appropriate result. */ \
      ( ( errno == EDOM ) || \
        ( ( errno == ERANGE ) && ( ABS( result ) == HUGE_VAL ) ) ) ? \
                                 AST__BAD : result \
   )

/* Tri-state boolean OR. */
/* --------------------- */
/* This evaluates a boolean OR using tri-state logic. For example,
   "a||b" may evaluate to 1 if "a" is bad but "b" is non-zero, so that
   the normal rules of bad value propagation do not apply. */
#define TRISTATE_OR(x1,x2) \
\
/* Test if the first argument is bad. */ \
   ( (x1) == AST__BAD ) ? ( \
\
/* If so, test the second argument. */ \
      ( ( (x2) == 0.0 ) || ( (x2) == AST__BAD ) ) ? AST__BAD : 1.0 \
   ) : ( \
\
/* Test if the second argument is bad. */ \
      ( (x2) == AST__BAD ) ? ( \
\
/* If so, test the first argument. */ \
         ( (x1) == 0.0 ) ? AST__BAD : 1.0 \
\
/* If neither argument is bad, use the normal OR operator. */ \
      ) : ( \
         ( (x1) != 0.0 ) || ( (x2) != 0.0 ) \
      ) \
   )

/* Tri-state boolean AND. */
/* ---------------------- */
/* This evaluates a boolean AND using tri-state logic. */
#define TRISTATE_AND(x1,x2) \
\
/* Test if the first argument is bad. */ \
   ( (x1) == AST__BAD ) ? ( \
\
/* If so, test the second argument. */ \
      ( (x2) != 0.0 ) ? AST__BAD : 0.0 \
   ) : ( \
\
/* Test if the second argument is bad. */ \
      ( (x2) == AST__BAD ) ? ( \
\
/* If so, test the first argument. */ \
         ( (x1) != 0.0 ) ? AST__BAD : 0.0 \
\
/* If neither argument is bad, use the normal AND operator. */ \
      ) : ( \
         ( (x1) != 0.0 ) && ( (x2) != 0.0 ) \
      ) \
   )

/* Safe addition. */
/* -------------- */
/* This macro performs addition while avoiding possible overflow. */
#define SAFE_ADD(x1,x2) ( \
\
/* Test if the first argument is non-negative. */ \
   ( (x1) >= 0.0 ) ? ( \
\
/* If so, then we can perform addition if the second argument is \
   non-positive. Otherwise, we must calculate the most positive safe \
   second argument value that can be added and test for this (the test \
   itself is safe against overflow). */ \
      ( ( (x2) <= 0.0 ) || ( ( (DBL_MAX) - (x1) ) >= (x2) ) ) ? ( \
\
/* Perform addition if it is safe, otherwise return AST__BAD. */ \
         (x1) + (x2) \
      ) : ( \
         AST__BAD \
      ) \
\
/* If the first argument is negative, then we can perform addition if \
   the second argument is non-negative. Otherwise, we must calculate the \
   most negative second argument value that can be added and test for \
   this (the test itself is safe against overflow). */ \
   ) : ( \
      ( ( (x2) >= 0.0 ) || ( ( (DBL_MAX) + (x1) ) >= -(x2) ) ) ? ( \
\
/* Perform addition if it is safe, otherwise return AST__BAD. */ \
         (x1) + (x2) \
      ) : ( \
         AST__BAD \
      ) \
   ) \
)

/* Safe subtraction. */
/* ----------------- */
/* This macro performs subtraction while avoiding possible overflow. */
#define SAFE_SUB(x1,x2) ( \
\
/* Test if the first argument is non-negative. */ \
   ( (x1) >= 0.0 ) ? ( \
\
/* If so, then we can perform subtraction if the second argument is \
   also non-negative. Otherwise, we must calculate the most negative safe \
   second argument value that can be subtracted and test for this (the \
   test itself is safe against overflow). */ \
      ( ( (x2) >= 0.0 ) || ( ( (DBL_MAX) - (x1) ) >= -(x2) ) ) ? ( \
\
/* Perform subtraction if it is safe, otherwise return AST__BAD. */ \
         (x1) - (x2) \
      ) : ( \
         AST__BAD \
      ) \
\
/* If the first argument is negative, then we can perform subtraction \
   if the second argument is non-positive. Otherwise, we must calculate \
   the most positive second argument value that can be subtracted and \
   test for this (the test itself is safe against overflow). */ \
   ) : ( \
      ( ( (x2) <= 0.0 ) || ( ( (DBL_MAX) + (x1) ) >= (x2) ) ) ? ( \
\
/* Perform subtraction if it is safe, otherwise return AST__BAD. */ \
         (x1) - (x2) \
      ) : ( \
         AST__BAD \
      ) \
   ) \
)

/* Safe multiplication. */
/* -------------------- */
/* This macro performs multiplication while avoiding possible overflow. */
#define SAFE_MUL(x1,x2) ( \
\
/* Multiplication is safe if the absolute value of either argument is \
   unity or less. Otherwise, we must use the first argument to calculate \
   the maximum absolute value that the second argument may have and test \
   for this (the test itself is safe against overflow). */ \
   ( ( ( abs1 = ABS( (x1) ) ) <= 1.0 ) || \
     ( ( abs2 = ABS( (x2) ) ) <= 1.0 ) || \
     ( ( (DBL_MAX) / abs1 ) >= abs2 ) ) ? ( \
\
/* Perform multiplication if it is safe, otherwise return AST__BAD. */ \
      (x1) * (x2) \
   ) : ( \
      AST__BAD \
   ) \
)

/* Safe division. */
/* -------------- */
/* This macro performs division while avoiding possible overflow. */
#define SAFE_DIV(x1,x2) ( \
\
/* Division is unsafe if the second argument is zero. Otherwise, it is \
   safe if the abolute value of the second argument is unity or \
   more. Otherwise, we must use the second argument to calculate the \
   maximum absolute value that the first argument may have and test for \
   this (the test itself is safe against overflow). */ \
   ( ( (x2) != 0.0 ) && \
     ( ( ( abs2 = ABS( (x2) ) ) >= 1.0 ) || \
       ( ( (DBL_MAX) * abs2 ) >= ABS( (x1) ) ) ) ) ? ( \
\
/* Perform division if it is safe, otherwise return AST__BAD. */ \
      (x1) / (x2) \
   ) : ( \
      AST__BAD \
   ) \
)

/* Bit-shift operation. */
/* -------------------- */
/* This macro shifts the bits in a double value a specified number of
   places to the left, which simply corresponds to multiplying by the
   appropriate power of two. */
#define SHIFT_BITS(x1,x2) ( \
\
/* Decompose the value into a normalised fraction and a power of 2. */ \
   frac = frexp( (x1), &expon ), \
\
/* Calculate the new power of 2 which should apply after the shift, \
   rounding towards zero to give an integer value. */ \
   newexp = INT( (x2) ) + (double) expon, \
\
/* If the new exponent is too negative to convert to an integer, then \
   the result must underflow to zero. */ \
   ( newexp < (double) -INT_MAX ) ? ( \
      0.0 \
\
/* Otherwise, if it is too positive to convert to an integer, then the \
   result must overflow, unless the normalised fraction is zero. */ \
   ) : ( ( newexp > (double) INT_MAX ) ? ( \
      ( frac == 0.0 ) ? 0.0 : AST__BAD \
\
/* Otherwise, convert the new exponent to an integer and apply \
   it. Trap any overflow which may still occur. */ \
   ) : ( \
      CATCH_MATHS_OVERFLOW( ldexp( frac, (int) newexp ) ) \
   ) ) \
)

/* Two-argument bit-wise boolean operation. */
/* ---------------------------------------- */
/* This macro expands to code which performs a bit-wise boolean
   operation on a pair of arguments and assigns the result to the
   variable "result". It operates on floating point (double) values,
   which are regarded as if they are fixed-point binary numbers with
   negative values expressed in twos-complement notation. This means that
   it delivers the same results for integer values as the normal
   (integer) C bit-wise operations. However, it will also operate on the
   fraction bits of floating point numbers. It also offers greater
   precision (the first 53 or so significant bits of the result being
   preserved for typical IEEE floating point implementations). */
#define BIT_OPER(oper,x1,x2) \
\
/* Convert each argument to a normalised fraction in the range \
   [0.5,1.0) and a power of two exponent, removing any sign \
   information. */ \
   frac1 = frexp( ABS( (x1) ), &expon1 ); \
   frac2 = frexp( ABS( (x2) ), &expon2 ); \
\
/* Set "expon" to be the larger of the two exponents. If the two \
   exponents are not equal, divide the fraction with the smaller exponent \
   by 2 to the power of the exponent difference. This gives both \
   fractions the same effective exponent (although one of them may no \
   longer be normalised). Note that overflow is avoided because all \
   numbers remain less than 1.0, but underflow may occur. */ \
   expon = expon1; \
   if ( expon2 > expon1 ) { \
      expon = expon2; \
      frac1 = ldexp( frac1, expon1 - expon ); \
   } else if ( expon1 > expon2 ) { \
      frac2 = ldexp( frac2, expon2 - expon ); \
   } \
\
/* If either of the original arguments is negative, we now subtract \
   the corresponding fraction from 2.0. If we think of the fraction as \
   represented in fixed-point binary notation, this corresponds to \
   converting negative numbers into the twos-complement form normally used \
   for integers (the sign bit being the bit with value 1) instead \
   of having a separate sign bit as for floating point numbers. \
\
   Note that one of the fractions may have underflowed during the \
   scaling above. In that case (if the original argument was negative), \
   we must subtract the value "eps" (= 2.0 * DBL_EPSILON) from 2.0 \
   instead, so that we produce the largest number less than 2.0. In \
   twos-complement notation this represents the smallest possible \
   negative number and corresponds to extending the sign bit of the \
   original number up into more significant bits. This causes all bits to \
   be set as we require (rather than all being clear if the underflow \
   is simply ignored). */ \
   if ( (x1) < 0.0 ) frac1 = 2.0 - ( ( frac1 > eps ) ? frac1 : eps ); \
   if ( (x2) < 0.0 ) frac2 = 2.0 - ( ( frac2 > eps ) ? frac2 : eps ); \
\
/* We now extract the bits from the fraction values into integer \
   variables so that we may perform bit-wise operations on them. However, \
   since a double may be longer than any available integer, we may \
   have to handle several successive blocks of bits individually. */ \
\
/* Extract the first block of bits by scaling by the required power of \
   2 to shift the required bits to the left of the binary point. Then \
   extract the integer part. Note that this initial shift is one bit less \
   than the number of bits in an unsigned long, because we have \
   introduced an extra sign bit. */ \
   frac1 *= scale1; \
   frac2 *= scale1; \
   b1 = (unsigned long) frac1; \
   b2 = (unsigned long) frac2; \
\
/* Perform the required bit-wise operation on the extracted blocks of \
   bits. */ \
   b = b1 oper b2; \
\
/* Extract the sign bit from this initial result. This determines \
   whether the final result bit pattern should represent a negative \
   floating point number. */ \
   neg = b & signbit; \
\
/* Initialise the floating point result by setting it to the integer \
   result multipled by the reciprocal of the scale factor used to shift \
   the bits above. This returns the result bits to their correct \
   significance. */ \
   unscale = rscale1; \
   result = (double) b * unscale; \
\
/* We now loop to extract and process further blocks of bits (if \
   present). The number of blocks is determined by the relative lengths \
   of a double and an unsigned long. In practice, some bits of the double \
   will be used by its exponent, so the last block may be incomplete and \
   will simply be padded with zeros. */ \
   for ( iblock = 1; iblock < nblock; iblock++ ) { \
\
/* Subtract the integer part (which has already been processed) from \
   each fraction, to leave the bits which remain to be processed. Then \
   multiply by a scale factor to shift the next set of bits to the left \
   of the binary point. This time, we use as many bits as will fit into \
   an unsigned long. */ \
      frac1 = ( frac1 - (double) b1 ) * scale; \
      frac2 = ( frac2 - (double) b2 ) * scale; \
\
/* Extract the integer part, which contains the required bits. */ \
      b1 = (unsigned long) frac1; \
      b2 = (unsigned long) frac2; \
\
/* Perform the required bit-wise operation on the extracted blocks of \
   bits. */ \
      b = b1 oper b2; \
\
/* Update the result floating point value by adding the new integer \
   result multiplied by a scale factor to return the bits to their \
   original significance. */ \
      unscale *= rscale; \
      result += (double) b * unscale; \
   } \
\
/* If the (normalised fraction) result represents a negative number, \
   then subtract 2.0 from it (equivalent to subtracting it from 2 and \
   negating the result). This converts back to using a separate sign bit \
   instead of twos-complement notation. */ \
   if ( neg ) result -= 2.0; \
\
/* Scale by the required power of 2 to remove the initial \
   normalisation applied and assign the result to the "result" \
   variable. */ \
   result = ldexp( result, expon )

/* Gaussian random number. */
/* ----------------------- */
/* This macro expands to code which assigns a pseudo-random value to
   the "result" variable. The value is drawn from a Gaussian distribution
   with mean "x1" and standard deviation "ABS(x2)". */
#define GAUSS(x1,x2) \
\
/* Loop until a satisfactory result is obtained. */ \
   do { \
\
/* Obtain a value drawn from a standard Gaussian distribution. */ \
      ran = Gauss( rcontext, status ); \
\
/* Multiply by "ABS(x2)", trapping possible overflow. */ \
      result = ABS( (x2) ); \
      result = SAFE_MUL( ran, result ); \
\
/* If OK, add "x1", again trapping possible overflow. */ \
      if ( result != AST__BAD ) result = SAFE_ADD( result, (x1) ); \
\
/* Continue generating values until one is found which does not cause \
   overflow. */ \
   } while ( result == AST__BAD );

/* Implement the stack-based arithmetic. */
/* ===================================== */
/* Initialise the top of stack index and constant counter. */
      tos = -1;
      icon = 0;

/* Determine the number of opcodes to be processed and loop to process
   them, executing the appropriate "case" block for each one. */
      ncode = code[ 0 ];
      for ( icode = 1; icode <= ncode; icode++ ) {
         switch ( (Oper) code[ icode ] ) {

/* Ignore any null opcodes (which shouldn't occur). */
            case OP_NULL: break;

/* Otherwise, perform the required vector operation on the stack... */

/* User-supplied constants and variables. */
/* -------------------------------------- */
/* Loading a constant involves incrementing the constant count and
   assigning the next constant's value to the top of stack element. */
            ARG_0( OP_LDCON,    value = con[ icon++ ], *y = value )

/* Loading a variable involves obtaining the variable's index by
   consuming a constant (as above), and then copying the variable's
   values into the top of stack element. */
            ARG_0( OP_LDVAR,    ivar = (int) ( con[ icon++ ] + 0.5 ),
                                *y = ptr_in[ ivar ][ point ] )

/* System constants. */
/* ----------------- */
/* Loading a "bad" value simply means assigning AST__BAD to the top of
   stack element. */
            ARG_0( OP_LDBAD,    ;, *y = AST__BAD )

/* The following load constants associated with the (double) floating
   point representation into the top of stack element. */
            ARG_0( OP_LDDIG,    ;, *y = (double) AST__DBL_DIG )
            ARG_0( OP_LDEPS,    ;, *y = DBL_EPSILON )
            ARG_0( OP_LDMAX,    ;, *y = DBL_MAX )
            ARG_0( OP_LDMAX10E, ;, *y = (double) DBL_MAX_10_EXP )
            ARG_0( OP_LDMAXE,   ;, *y = (double) DBL_MAX_EXP )
            ARG_0( OP_LDMDIG,   ;, *y = (double) DBL_MANT_DIG )
            ARG_0( OP_LDMIN,    ;, *y = DBL_MIN )
            ARG_0( OP_LDMIN10E, ;, *y = (double) DBL_MIN_10_EXP )
            ARG_0( OP_LDMINE,   ;, *y = (double) DBL_MIN_EXP )
            ARG_0( OP_LDRAD,    ;, *y = (double) FLT_RADIX )
            ARG_0( OP_LDRND,    ;, *y = (double) FLT_ROUNDS )

/* Mathematical constants. */
/* ----------------------- */
/* The following load mathematical constants into the top of stack
   element. */
            ARG_0( OP_LDE,      value = exp( 1.0 ), *y = value )
            ARG_0( OP_LDPI,     ;, *y = pi )

/* Functions with one argument. */
/* ---------------------------- */
/* The following simply evaluate a function of the top of stack
   element and assign the result to the same element. */
            ARG_1( OP_ABS,      *y = ABS( x ) )
            ARG_1( OP_ACOS,     *y = ( ABS( x ) <= 1.0 ) ?
                                     acos( x ) : AST__BAD )
            ARG_1( OP_ACOSD,    *y = ( ABS( x ) <= 1.0 ) ?
                                     acos( x ) * r2d : AST__BAD )
            ARG_1( OP_ACOSH,    *y = ( x < 1.0 ) ? AST__BAD :
                                     ( ( x > safe_sq ) ? log( x ) + log2 :
                                       log( x + sqrt( x * x - 1.0 ) ) ) )
            ARG_1( OP_ACOTH,    *y = ( ABS( x ) <= 1.0 ) ? AST__BAD :
                                     0.5 * ( log( ( x + 1.0 ) /
                                                  ( x - 1.0 ) ) ) )
            ARG_1( OP_ACSCH,    *y = ( ( x == 0.0 ) ? AST__BAD :
                                       ( sign = ( x >= 0.0 ), x = ABS( x ),
                                       ( sign ? 1.0 : -1.0 ) *
                                       ( ( x < rsafe_sq ) ? log2 - log( x ) :
                                         ( x = 1.0 / x,
                                       log( x + sqrt( x * x + 1.0 ) ) ) ) ) ) )
            ARG_1( OP_ASECH,    *y = ( ( x <= 0 ) || ( x > 1.0 ) ) ? AST__BAD :
                                       ( ( x < rsafe_sq ) ? log2 - log( x ) :
                                         ( x = 1.0 / x,
                                           log( x + sqrt( x * x - 1.0 ) ) ) ) )
            ARG_1( OP_ASIN,     *y = ( ABS( x ) <= 1.0 ) ?
                                     asin( x ) : AST__BAD )
            ARG_1( OP_ASIND,    *y = ( ABS( x ) <= 1.0 ) ?
                                     asin( x ) * r2d : AST__BAD )
            ARG_1( OP_ASINH,    *y = ( sign = ( x >= 0.0 ), x = ABS( x ),
                                       ( sign ? 1.0 : -1.0 ) *
                                       ( ( x > safe_sq ) ? log( x ) + log2 :
                                         log( x + sqrt( x * x + 1.0 ) ) ) ) )
            ARG_1( OP_ATAN,     *y = atan( x ) )
            ARG_1( OP_ATAND,    *y = atan( x ) * r2d )
            ARG_1( OP_ATANH,    *y = ( ABS( x ) >= 1.0 ) ? AST__BAD :
                                     0.5 * ( log( ( 1.0 + x ) /
                                                  ( 1.0 - x ) ) ) )
            ARG_1( OP_CEIL,     *y = ceil( x ) )
            ARG_1( OP_COS,      *y = cos( x ) )
            ARG_1( OP_COSD,     *y = cos( x * d2r ) )
            ARG_1( OP_COSH,     *y = CATCH_MATHS_OVERFLOW( cosh( x ) ) )
            ARG_1( OP_COTH,     *y = ( x = tanh( x ), SAFE_DIV( 1.0, x ) ) )
            ARG_1( OP_CSCH,     *y = ( x = CATCH_MATHS_OVERFLOW( sinh( x ) ),
                                       ( x == AST__BAD ) ?
                                       0.0 : SAFE_DIV( 1.0, x ) ) )
            ARG_1( OP_EXP,      *y = CATCH_MATHS_OVERFLOW( exp( x ) ) )
            ARG_1( OP_FLOOR,    *y = floor( x ) )
            ARG_1( OP_INT,      *y = INT( x ) )
            ARG_1B( OP_ISBAD,   *y = ( x == AST__BAD ) )
            ARG_1( OP_LOG,      *y = ( x > 0.0 ) ? log( x ) : AST__BAD )
            ARG_1( OP_LOG10,    *y = ( x > 0.0 ) ? log10( x ) : AST__BAD )
            ARG_1( OP_NINT,     *y = ( x >= 0 ) ?
                                     floor( x + 0.5 ) : ceil( x - 0.5 ) )
            ARG_1( OP_POISS,    *y = Poisson( rcontext, x, status ) )
            ARG_1( OP_SECH,     *y = ( x = CATCH_MATHS_OVERFLOW( cosh( x ) ),
                                       ( x == AST__BAD ) ? 0.0 : 1.0 / x ) )
            ARG_1( OP_SIN,      *y = sin( x ) )
            ARG_1( OP_SINC,     *y = ( x == 0.0 ) ? 1.0 : sin( x ) / x )
            ARG_1( OP_SIND,     *y = sin( x * d2r ) )
            ARG_1( OP_SINH,     *y = CATCH_MATHS_OVERFLOW( sinh( x ) ) )
            ARG_1( OP_SQR,      *y = SAFE_MUL( x, x ) )
            ARG_1( OP_SQRT,     *y = ( x >= 0.0 ) ? sqrt( x ) : AST__BAD )
            ARG_1( OP_TAN,      *y = CATCH_MATHS_OVERFLOW( tan( x ) ) )
            ARG_1( OP_TAND,     *y = tan( x * d2r ) )
            ARG_1( OP_TANH,     *y = tanh( x ) )

/* Functions with two arguments. */
/* ----------------------------- */
/* These evaluate a function of the top two entries on the stack. */
            ARG_2( OP_ATAN2,    *y = atan2( x1, x2 ) )
            ARG_2( OP_ATAN2D,   *y = atan2( x1, x2 ) * r2d )
            ARG_2( OP_DIM,      *y = ( x1 > x2 ) ? x1 - x2 : 0.0 )
            ARG_2( OP_GAUSS,    GAUSS( x1, x2 ); *y = result )
            ARG_2( OP_MOD,      *y = ( x2 != 0.0 ) ?
                                     fmod( x1, x2 ) : AST__BAD )
            ARG_2( OP_POW,      *y = CATCH_MATHS_ERROR( pow( x1, x2 ) ) )
            ARG_2( OP_RAND,     ran = Rand( rcontext, status );
                                *y = x1 * ran + x2 * ( 1.0 - ran ); )
            ARG_2( OP_SIGN,     *y = ( ( x1 >= 0.0 ) == ( x2 >= 0.0 ) ) ?
                                     x1 : -x1 )

/* Functions with three arguments. */
/* ------------------------------- */
/* These evaluate a function of the top three entries on the stack. */
            ARG_3B( OP_QIF,     *y = ( ( x1 ) ? ( x2 ) : ( x3 ) ) )


/* Functions with variable numbers of arguments. */
/* --------------------------------------------- */
/* These operations take a variable number of arguments, the actual
   number being determined by consuming a constant. We then loop to
   perform a 2-argument operation on the stack (as above) the required
   number of times. */
            case OP_MAX:
               narg = (int) ( con[ icon++ ] + 0.5 );
               for ( iarg = 0; iarg < ( narg - 1 ); iarg++ ) {
                  DO_ARG_2( *y = ( x1 >= x2 ) ? x1 : x2 )
               }
               break;
            case OP_MIN:
               narg = (int) ( con[ icon++ ] + 0.5 );
               for ( iarg = 0; iarg < ( narg - 1 ); iarg++ ) {
                  DO_ARG_2( *y = ( x1 <= x2 ) ? x1 : x2 )
               }
               break;

/* Unary arithmetic operators. */
/* --------------------------- */
            ARG_1( OP_NEG,      *y = -x )

/* Unary boolean operators. */
/* ------------------------ */
            ARG_1( OP_NOT,      *y = ( x == 0.0 ) )

/* Binary arithmetic operators. */
/* ---------------------------- */
            ARG_2( OP_ADD,      *y = SAFE_ADD( x1, x2 ) )
            ARG_2( OP_SUB,      *y = SAFE_SUB( x1, x2 ) )
            ARG_2( OP_MUL,      *y = SAFE_MUL( x1, x2 ) )
            ARG_2( OP_DIV ,     *y = SAFE_DIV( x1, x2 ) )

/* Bit-shift operators. */
/* -------------------- */
            ARG_2( OP_SHFTL,    *y = SHIFT_BITS( x1, x2 ) )
            ARG_2( OP_SHFTR,    *y = SHIFT_BITS( x1, -x2 ) )

/* Relational operators. */
/* --------------------- */
            ARG_2( OP_EQ,       *y = ( x1 == x2 ) )
            ARG_2( OP_GE,       *y = ( x1 >= x2 ) )
            ARG_2( OP_GT,       *y = ( x1 > x2 ) )
            ARG_2( OP_LE,       *y = ( x1 <= x2 ) )
            ARG_2( OP_LT,       *y = ( x1 < x2 ) )
            ARG_2( OP_NE,       *y = ( x1 != x2 ) )

/* Bit-wise operators. */
/* ------------------- */
            ARG_2( OP_BITOR,    BIT_OPER( |, x1, x2 ); *y = result )
            ARG_2( OP_BITXOR,   BIT_OPER( ^, x1, x2 ); *y = result )
            ARG_2( OP_BITAND,   BIT_OPER( &, x1, x2 ); *y = result )

/* Binary boolean operators. */
/* ------------------------- */
            ARG_2B( OP_AND,     *y = TRISTATE_AND( x1, x2 ) )
            ARG_2( OP_EQV,      *y = ( ( x1 != 0.0 ) == ( x2 != 0.0 ) ) )
            ARG_2B( OP_OR,      *y = TRISTATE_OR( x1, x2 ) )
            ARG_2( OP_XOR,      *y = ( ( x1 != 0.0 ) != ( x2 != 0.0 ) ) )
         }
      }
   }

/* When all opcodes have been processed, the result of the function
   evaluation will reside in the lowest stack entry - i.e. the output
   array. */

/* Free the workspace arrays. */
   work = astFree( work );
   stack = astFree( stack );

/* Undefine macros local to this function. */
#undef ARG_0
#undef ARG_1
#undef ARG_1B
#undef DO_ARG_2
#undef ARG_2
#undef ARG_2B
#undef ABS
#undef INT
#undef CATCH_MATHS_OVERFLOW
#undef CATCH_MATHS_ERROR
#undef TRISTATE_OR
#undef TRISTATE_AND
#undef SAFE_ADD
#undef SAFE_SUB
#undef SAFE_MUL
#undef SAFE_DIV
#undef SHIFT_BITS
#undef BIT_OPER
#undef GAUSS
}

static void EvaluationSort( const double con[], int nsym, int symlist[],
                            int **code, int *stacksize, int *status ) {
/*
*  Name:
*     EvaluationSort

*  Purpose:
*     Perform an evaluation-order sort on parsed expression symbols.

*  Type:
*     Private function.

*  Synopsis:
*     #include "mathmap.h"
*     void EvaluationSort( const double con[], int nsym, int symlist[],
*                          int **code, int *stacksize, int *status )

*  Class Membership:
*     MathMap member function.

*  Description:
*     This function sorts a sequence of numbers representing symbols
*     identified in an expression. The symbols (i.e. the expression syntax)
*     must have been fully validated beforehand, as no validation is
*     performed here.
*
*     The symbols are sorted into the order in which corresponding
*     operations must be performed on a push-down arithmetic stack in order
*     to evaluate the expression. Operation codes (opcodes), as defined in
*     the "Oper" enum, are then substituted for the symbol numbers.

*  Parameters:
*     con
*        Pointer to an array of double containing the set of constants
*        generated while parsing the expression (these are required in order
*        to determine the number of arguments associated with functions which
*        take a variable number of arguments).
*     nsym
*        The number of symbols identified while parsing the expression.
*     symlist
*        Pointer to an array of int, with "nsym" elements. On entry, this
*        should contain the indices in the static "symbol" array of the
*        symbols identified while parsing the expression. On exit, the
*        contents are undefined.
*     code
*        Address of a pointer which will be set to point at a dynamically
*        allocated array of int containing the set of opcodes (cast to int)
*        produced by this function. The first element of this array will
*        contain a count of the number of opcodes which follow.
*
*        The allocated space must be freed by the caller (using astFree) when
*        no longer required.
*     stacksize
*        Pointer to an int in which to return the size of the push-down stack
*        required to evaluate the expression using the returned opcodes.
*     status
*        Pointer to the inherited status variable.

*  Notes:
*     - A value of NULL will be returned for the "*code" pointer and a value
*     of zero will be returned for the "*stacksize" value if this function is
*     invoked with the global error status set, or if it should fail for any
*     reason.
*/

/* Local Variables: */
   int flush;                    /* Flush parenthesised symbol sequence? */
   int icon;                     /* Input constant counter */
   int isym;                     /* Input symbol counter */
   int ncode;                    /* Number of opcodes generated */
   int nstack;                   /* Evaluation stack size */
   int push;                     /* Push a new symbol on to stack? */
   int sym;                      /* Variable for symbol number */
   int tos;                      /* Top of sort stack index */

/* Initialise */
   *code = NULL;
   *stacksize = 0;

/* Check the global error status. */
   if ( !astOK ) return;

/* Further initialisation. */
   flush = 0;
   icon = 0;
   isym = 0;
   ncode = 0;
   nstack = 0;
   tos = -1;

/* Loop to generate output opcodes until the sort stack is empty and
   there are no further symbols to process, or an error is detected.  */
   while ( astOK && ( ( tos > -1 ) || ( isym < nsym ) ) ) {

/* Decide whether to push a symbol on to the sort stack (which
   "diverts" it so that higher-priority symbols can be output), or to pop
   the top symbol off the sort stack and send it to the output
   stream... */

/* We must push a symbol on to the sort stack if the stack is
   currently empty. */
      if ( tos == -1 ) {
         push = 1;

/* We must pop the top symbol off the sort stack if there are no more
   input symbols to process. */
      } else if ( isym >= nsym ) {
         push = 0;

/* If the sort stack is being flushed to complete the evaluation of a
   parenthesised expression, then the top symbol (which will be the
   opening parenthesis or function call) must be popped. This is only
   done once, so reset the "flush" flag before the next loop. */
      } else if ( flush ) {
         push = 0;
         flush = 0;

/* In all other circumstances, we must push a symbol on to the sort
   stack if its evaluation priority (seen from the left) is higher than
   that of the current top of stack symbol (seen from the right). This
   means it will eventually be sent to the output stream ahead of the
   current top of stack symbol. */
      } else {
         push = ( symbol[ symlist[ isym ] ].leftpriority >
                  symbol[ symlist[ tos ] ].rightpriority );
      }

/* If a symbol is being pushed on to the sort stack, then get the next
   input symbol which is to be used. */
      if ( push ) {
         sym = symlist[ isym++ ];

/* If the symbol decreases the parenthesis level (a closing
   parenthesis), then all the sort stack entries down to the symbol which
   opened the current level of parenthesis (the matching opening
   parenthesis or function call) will already have been sent to the
   output stream as a consequence of the evaluation priority defined for
   a closing parenthesis in the symbol data. The opening parenthesis (or
   function call) must next be flushed from the sort stack, so set the
   "flush" flag which is interpreted on the next loop. Ignore the current
   symbol, which cancels with the opening parenthesis on the stack. */
         if ( symbol[ sym ].parincrement < 0 ) {
            flush = 1;

/* All other symbols are pushed on to the sort stack. The stack
   occupies that region of the "symlist" array from which the input
   symbol numbers have already been extracted. */
         } else {
            symlist[ ++tos ] = sym;
         }

/* If a symbol is being popped from the top of the sort stack, then
   the top of stack entry is transferred to the output stream. Obtain the
   symbol number from the stack. Increment the local constant counter if
   the associated operation will use a constant. */
      } else {
         sym = symlist[ tos-- ];
         icon += ( ( sym == symbol_ldvar ) || ( sym == symbol_ldcon ) );

/* If the output symbol does not represent a "null" operation,
   increase the size of the output opcode array to accommodate it,
   checking for errors. Note that we allocate one extra array element
   (the first) which will eventually hold a count of all the opcodes
   generated. */
         if ( symbol[ sym ].opcode != OP_NULL ) {
            *code = astGrow( *code, ncode + 2, sizeof( int ) );
            if ( astOK ) {

/* Append the new opcode to the end of this array. */
               ( *code )[ ++ncode ] = (int) symbol[ sym ].opcode;

/* Increment/decrement the counter representing the stack size
   required for evaluation of the expression.  If the symbol is a
   function with a variable number of arguments (indicated by a negative
   "nargs" entry in the symbol data table), then the change in stack size
   must be determined from the argument number stored in the constant
   table. */
               if ( symbol[ sym ].nargs >= 0 ) {
                  nstack += symbol[ sym ].stackincrement;
               } else {
                  nstack -= (int) ( con[ icon++ ] + 0.5 ) - 1;
               }

/* Note the maximum size of the stack. */
               *stacksize = ( nstack > *stacksize ) ? nstack : *stacksize;
            }
         }
      }
   }

/* If no "*code" array has been allocated, then allocate one simply to
   store the number of opcodes generated, i.e. zero (this shouldn't
   normally happen as this represents an invalid expression). */
   if ( !*code ) *code = astMalloc( sizeof( int ) );

/* If no error has occurred, store the count of opcodes generated in
   the first element of the "*code" array and re-allocate the array to
   its final size (since astGrow may have over-allocated space). */
   if ( astOK ) {
      ( *code )[ 0 ] = ncode;
      *code = astRealloc( *code, sizeof( int ) * (size_t) ( ncode + 1 ) );
   }

/* If an error occurred, free any memory that was allocated and reset
   the output values. */
   if ( !astOK ) {
      *code = astFree( *code );
      *stacksize = 0;
   }
}

static void ExtractExpressions( const char *method, const char *class,
                                int nfun, const char *fun[], int forward,
                                char ***exprs, int *status ) {
/*
*  Name:
*     ExtractExpressions

*  Purpose:
*     Extract and validate expressions.

*  Type:
*     Private function.

*  Synopsis:
*     #include "mathmap.h"
*     void ExtractExpressions( const char *method, const char *class,
*                              int nfun, const char *fun[], int forward,
*                              char ***exprs, int *status )

*  Class Membership:
*     MathMap member function.

*  Description:
*     This function extracts expressions from the right hand sides of a set
*     of functions. These expressions are then validated to check that they
*     are either all present, or all absent (absence indicating an undefined
*     transformation). An error is reported if anything is found to be
*     wrong.
*
*     Note that the syntax of the expressions is not checked by this function
*     (i.e. they are not compiled).

*  Parameters:
*     method
*        Pointer to a constant null-terminated character string
*        containing the name of the method that invoked this function.
*        This method name is used solely for constructing error messages.
*     class
*        Pointer to a constant null-terminated character string containing the
*        class name of the Object being processed. This name is used solely
*        for constructing error messages.
*     nfun
*        The number of functions to be analysed.
*     fun
*        Pointer to an array, with "nfun" elements, of pointers to null
*        terminated strings which contain each of the functions. These
*        strings should contain no white space.
*     forward
*        A non-zero value indicates the the MathMap's forward transformation
*        functions are being processed, while a zero value indicates processing
*        of the inverse transformation functions. This value is used solely for
*        constructing error messages.
*     exprs
*        Address in which to return a pointer to an array (with "nfun"
*        elements) of pointers to null terminated strings containing the
*        extracted expressions (i.e. this returns an array of strings).
*
*        Both the returned array of pointers, and the strings to which they
*        point, will be stored in dynamically allocated memory and should
*        be freed by the caller (using astFree) when no longer required.
*
*        If the right hand sides (including the "=" sign) of all the supplied
*        functions are absent, then this indicates an undefined transformation
*        and the returned pointer value will be NULL. An error results if
*        an "=" sign is present but no expression follows it.
*     status
*        Pointer to the inherited status variable.

*  Notes:
*        - A NULL value will be returned for "*exprs" if this function is
*        invoked with the global error status set, or if it should fail for
*        any reason.
*/

/* Local Variables: */
   char *ex;                     /* Pointer to start of expression string */
   int ifun;                     /* Loop counter for functions */
   int iud;                      /* Index of first undefined function */
   int nud;                      /* Number of undefined expressions */

/* Initialise. */
   *exprs = NULL;

/* Check the global error status. */
   if ( !astOK ) return;

/* Further initialisation. */
   nud = 0;
   iud = 0;

/* Allocate and initialise memory for the returned array of pointers. */
   MALLOC_POINTER_ARRAY( *exprs, char *, nfun )

/* Loop to inspect each function in turn. */
   if ( astOK ) {
      for ( ifun = 0; ifun < nfun; ifun++ ) {

/* Search for the first "=" sign. */
         if ( ( ex = strchr( fun[ ifun ], '=' ) ) ) {

/* If found, and there are more characters after the "=" sign, then
   find the length of the expression which follows. Allocate a string to
   hold this expression, storing its pointer in the array allocated
   above. Check for errors. */
            if ( *++ex ) {
               ( *exprs )[ ifun ] = astMalloc( strlen( ex ) + (size_t) 1 );
               if ( !astOK ) break;

/* If OK, extract the expression string. */
               (void) strcpy( ( *exprs )[ ifun ], ex );

/* If an "=" sign was found but there are no characters following it,
   then there is a missing right hand side to a function, so report an
   error and quit. */
            } else {
               astError( AST__NORHS,
                         "%s(%s): Missing right hand side in expression: "
                         "\"%s\".", status,
                         method, class, fun[ ifun ] );
               astError( astStatus,
                         "Error in %s transformation function %d.", status,
                         forward ? "forward" : "inverse", ifun + 1 );
               break;
            }

/* If no "=" sign was found, then the transformation may be undefined,
   in which case each function should only contain a variable name. Count
   the number of times this happens and record the index of the first
   instance. */
         } else {
            nud++;
            if ( nud == 1 ) iud = ifun;
         }
      }
   }

/* Either all functions should have an "=" sign (in which case the
   transformation is defined), or none of them should have (in which case
   it is undefined). If some do and some don't, then report an error,
   citing the first instance of a missing "=" sign. */
   if ( astOK && ( nud != 0 ) && ( nud != nfun ) ) {
      astError( AST__NORHS,
                "%s(%s): Missing right hand side in function: \"%s\".", status,
                method, class, fun[ iud ] );
      astError( astStatus,
                "Error in %s transformation function %d.", status,
                forward ? "forward" : "inverse", iud + 1 );
   }

/* If an error occurred, or all the expressions were absent, then free any
   allocated memory and reset the output value. */
   if ( !astOK || nud ) {
      FREE_POINTER_ARRAY( *exprs, nfun )
   }
}

static void ExtractVariables( const char *method, const char *class,
                              int nfun, const char *fun[],
                              int nin, int nout, int nfwd, int ninv,
                              int forward, char ***var, int *status ) {
/*
*  Name:
*     ExtractVariables

*  Purpose:
*     Extract and validate variable names.

*  Type:
*     Private function.

*  Synopsis:
*     #include "mathmap.h"
*     void ExtractVariables( const char *method, const char *class,
*                            int nfun, const char *fun[],
*                            int nin, int nout, int nfwd, int ninv,
*                            int forward, char ***var, int *status )

*  Class Membership:
*     MathMap member function.

*  Description:
*     This function extracts variable names from the left hand sides of a
*     set of transformation functions belonging to a MathMap. These variable
*     names are then validated to check for correct syntax and no
*     duplication. An error is reported if anything is wrong with the
*     variable names obtained.

*  Parameters:
*     method
*        Pointer to a constant null-terminated character string
*        containing the name of the method that invoked this function.
*        This method name is used solely for constructing error messages.
*     class
*        Pointer to a constant null-terminated character string containing the
*        class name of the Object being processed. This name is used solely
*        for constructing error messages.
*     nfun
*        The number of functions to be analysed.
*     fun
*        Pointer to an array, with "nfun" elements, of pointers to null
*        terminated strings which contain each of the functions. These strings
*        are case sensitive and should contain no white space.
*
*        The first elements of this array should point to the functions that
*        define the primary input/output variables (depending on direction).
*        These should be followed by any functions which define intermediate
*        variables (taken from the set of functions which transform in the
*        opposite direction to the first ones).
*     nin
*        Number of input variables for the MathMap.
*     nout
*        Number of output variables for the MathMap.
*     nfwd
*        Number of forward transformation functions for the MathMap.
*     ninv
*        Number of inverse transformation functions for the MathMap.
*     forward
*        A non-zero value indicates the the MathMap's forward transformation
*        functions are being processed, while a zero value indicates processing
*        of the inverse transformation functions. This value, together with
*        "nin", "nout", "nfwd" and "ninv" are used solely for constructing
*        error messages.
*     var
*        Address in which to return a pointer to an array (with "nfun"
*        elements) of pointers to null terminated strings containing the
*        extracted variable names (i.e. this returns an array of strings).
*
*        Both the returned array of pointers, and the strings to which they
*        point, will be stored in dynamically allocated memory and should
*        be freed by the caller (using astFree) when no longer required.
*     status
*        Pointer to the inherited status variable.

*  Notes:
*        - A NULL value will be returned for "*var" if this function is
*        invoked with the global error status set, or if it should fail for
*        any reason.
*/

/* Local Variables: */
   char *duser1;                 /* Transformation direction for function */
   char *duser2;                 /* Transformation direction for function */
   char c;                       /* Extracted character */
   int i1;                       /* Loop counter for detecting duplicates */
   int i2;                       /* Loop counter for detecting duplicates */
   int i;                        /* Loop counter for characters */
   int iend;                     /* Last character index in parsed name */
   int ifun;                     /* Loop counter for functions */
   int iuser1;                   /* Function number as known to the user */
   int iuser2;                   /* Function number as known to the user */
   int nc;                       /* Character count */
   int nextra;                   /* Number of intermediate functions */
   int nprimary;                 /* Number of primary input/output variables */

/* Initialise. */
   *var = NULL;

/* Check the global error status. */
   if ( !astOK ) return;

/* Obtain the number of primary input/output variables, depending on
   the direction of the coordinate transformation. */
   nprimary = ( forward ? nin : nout );

/* Deterine the number of extra (intermediate) functions that come
   before these primary ones. These affect the numbering of
   transformation functions as known to the user, and must be accounted
   for when reporting error messages. */
   nextra = ( forward ? ninv - nin : nfwd - nout );

/* Allocate and initialise memory for the returned array of pointers. */
   MALLOC_POINTER_ARRAY( *var, char *, nfun )

/* Loop to process each function in turn. */
   if ( astOK ) {
      for ( ifun = 0; ifun < nfun; ifun++ ) {

/* Count the number of characters appearing before the "=" sign (or in
   the entire string if the "=" is absent). */
         for ( nc = 0; ( c = fun[ ifun ][ nc ] ); nc++ ) if ( c == '=' ) break;

/* If no characters were counted, then report an appropriate error
   message, depending on whether the function string was entirely
   blank. */
         if ( !nc ) {
            if ( c ) {
               astError( AST__MISVN,
                         "%s(%s): No left hand side in expression: \"%s\".", status,
                         method, class, fun[ ifun ] );
            } else {
               astError( AST__MISVN,
                         "%s: Transformation function contains no variable "
                         "name.", status,
                         method );
            }
            break;
         }

/* If OK, allocate memory to hold the output string and check for
   errors. */
         ( *var )[ ifun ] = astMalloc( sizeof( char ) * (size_t) ( nc + 1 ) ) ;
         if ( !astOK ) break;

/* If OK, copy the characters before the "=" sign to the new
   string. */
         nc = 0;
         for ( i = 0; ( c = fun[ ifun ][ i ] ); i++ ) {
            if ( c == '=' ) break;
            ( *var )[ ifun ][ nc++] = c;
         }

/* Null terminate the result. */
         ( *var )[ ifun ][ nc ] = '\0';

/* Try to parse the contents of the extracted string as a name. */
         ParseName( ( *var )[ ifun ], 0, &iend, status );

/* If unsuccessful, or if all the characters were not parsed, then we
   have an invalid variable name, so report an error and quit. */
         if ( ( iend < 0 ) || ( *var )[ ifun ][ iend + 1 ] ) {
            astError( AST__VARIN,
                      "%s(%s): Variable name is invalid: \"%s\".", status,
                      method, class, ( *var )[ ifun ] );
            break;
         }
      }

/* If an error occurred above, then determine the function number, and
   the direction of the transformation of which it forms part, as known
   to the user. */
      if ( !astOK ) {
         if ( ifun < nprimary ) {
            iuser1 = ifun + 1 + nextra;
            duser1 = ( forward ? "inverse" : "forward" );
         } else {
            iuser1 = ifun + 1 - nprimary;
            duser1 = ( forward ? "forward" : "inverse" );
         }

/* Report a contextual error message. */
         astError( astStatus,
                   "Error in %s transformation function %d.", status,
                   duser1, iuser1 );
      }
   }

/* If there has been no error, loop to compare all the variable names
   with each other to detect duplication. */
   if ( astOK ) {
      for ( i1 = 1; i1 < nfun; i1++ ) {
         for ( i2 = 0; i2 < i1; i2++ ) {

/* If a duplicate variable name is found, report an error. */
            if ( !strcmp( ( *var )[ i1 ], ( *var )[ i2 ] ) ) {
               astError( AST__DUVAR,
                         "%s(%s): Duplicate definition of variable name: "
                         "\"%s\".", status,
                         method, class, ( *var )[ i1 ] );

/* For each transformation function involved, determine the function
   number and the direction of the transformation of which it forms part,
   as known to the user. */
               if ( i1 < nprimary ) {
                  iuser1 = i1 + 1 + nextra;
                  duser1 = ( forward ? "inverse" : "forward" );
               } else {
                  iuser1 = i1 + 1 - nprimary;
                  duser1 = ( forward ? "forward" : "inverse" );
               }
               if ( i2 < nprimary ) {
                  iuser2 = i2 + 1 + nextra;
                  duser2 = ( forward ? "inverse" : "forward" );
               } else {
                  iuser2 = i2 + 1 - nprimary;
                  duser2 = ( forward ? "forward" : "inverse" );
               }

/* Report a contextual error message. */
               astError( astStatus,
                         "Conflict between %s function %d and %s function %d.", status,
                         duser1, iuser1, duser2, iuser2 );
               break;
            }
         }
         if ( !astOK ) break;
      }
   }

/* If an error occurred, free any allocated memory and reset the
   output value. */
   if ( !astOK ) {
      FREE_POINTER_ARRAY( *var, nfun )
   }
}

static double Gauss( Rcontext *context, int *status ) {
/*
*  Name:
*     Gauss

*  Purpose:
*     Produce a pseudo-random sample from a standard Gaussian distribution.

*  Type:
*     Private function.

*  Synopsis:
*     #include "mathmap.h"
*     double Gauss( Rcontext *context, int *status )

*  Class Membership:
*     MathMap member function.

*  Description:
*     On each invocation, this function returns a pseudo-random sample drawn
*     from a standard Gaussian distribution with mean zero and standard
*     deviation unity. The Box-Muller transformation method is used.

*  Parameters:
*     context
*        Pointer to an Rcontext structure which holds the random number
*        generator's context between invocations.
*     status
*        Pointer to the inherited status variable.

*  Returned Value:
*     A sample from a standard Gaussian distribution.

*  Notes:
*     - The sequence of numbers returned is determined by the "seed"
*     value in the Rcontext structure supplied.
*     - If the seed value is changed, the "active" flag must also be cleared
*     so that this function can re-initiallise the Rcontext structure before
*     generating the next pseudo-random number. The "active" flag should
*     also be clear to force initialisation the first time an Rcontext
*     structure is used.
*     - This function does not perform error checking and does not generate
*     errors. It will execute even if the global error status is set.
*/

/* Local Variables: */
   double rsq;                   /* Squared radius */
   double s;                     /* Scale factor */
   double x;                     /* First result value */
   static double y;              /* Second result value */
   static int ysaved = 0;        /* Previously-saved value available? */

   LOCK_MUTEX7

/* If the random number generator context is not active, then it will
   be (re)initialised on the first invocation of Rand (below). Ensure
   that any previously-saved value within this function is first
   discarded. */
   if ( !context->active ) ysaved = 0;

/* If there is a previously-saved value available, then use it and
   mark it as no longer available. */
   if ( ysaved ) {
      x = y;
      ysaved = 0;

/* Otherwise, loop until a suitable new pair of values has been
   obtained. */
   } else {
      while ( 1 ) {

/* Loop to obtain two random values uniformly distributed inside the
   unit circle, while avoiding the origin (which maps to an infinite
   result). */
         do {
            x = 2.0 * Rand( context, status ) - 1.0;
            y = 2.0 * Rand( context, status ) - 1.0;
            rsq = x * x + y * y;
         } while ( ( rsq >= 1.0 ) || ( rsq == 0.0 ) );

/* Perform the Box-Muller transformation, checking that this will not
   produce overflow (which is extremely unlikely). If overflow would
   occur, we simply repeat the above steps with a new pair of random
   numbers. */
         s = -2.0 * log( rsq );
         if ( ( DBL_MAX * rsq ) >= s ) {
            s = sqrt( s / rsq );

/* Scale the original random values to give a pair of results. One will be
   returned and the second kept until next time. */
            x *= s;
            y *= s;
            break;
         }
      }

/* Note that a saved value is available. */
      ysaved = 1;
   }

   UNLOCK_MUTEX7

/* Return the current result. */
   return x;
}

static int GetObjSize( AstObject *this_object, int *status ) {
/*
*  Name:
*     GetObjSize

*  Purpose:
*     Return the in-memory size of an Object.

*  Type:
*     Private function.

*  Synopsis:
*     #include "mathmap.h"
*     int GetObjSize( AstObject *this, int *status )

*  Class Membership:
*     MathMap member function (over-rides the astGetObjSize protected
*     method inherited from the parent class).

*  Description:
*     This function returns the in-memory size of the supplied MathMap,
*     in bytes.

*  Parameters:
*     this
*        Pointer to the MathMap.
*     status
*        Pointer to the inherited status variable.

*  Returned Value:
*     The Object size, in bytes.

*  Notes:
*     - A value of zero will be returned if this function is invoked
*     with the global status set, or if it should fail for any reason.
*/

/* Local Variables: */
   AstMathMap *this;         /* Pointer to MathMap structure */
   int result;                /* Result value to return */

/* Initialise. */
   result = 0;

/* Check the global error status. */
   if ( !astOK ) return result;

/* Obtain a pointers to the MathMap structure. */
   this = (AstMathMap *) this_object;

/* Invoke the GetObjSize method inherited from the parent class, and then
   add on any components of the class structure defined by thsi class
   which are stored in dynamically allocated memory. */
   result = (*parent_getobjsize)( this_object, status );

   SIZEOF_POINTER_ARRAY( this->fwdfun, this->nfwd )
   SIZEOF_POINTER_ARRAY( this->invfun, this->ninv )
   SIZEOF_POINTER_ARRAY( this->fwdcode, this->nfwd )
   SIZEOF_POINTER_ARRAY( this->invcode, this->ninv )
   SIZEOF_POINTER_ARRAY( this->fwdcon, this->nfwd )
   SIZEOF_POINTER_ARRAY( this->invcon, this->ninv )

/* If an error occurred, clear the result value. */
   if ( !astOK ) result = 0;

/* Return the result, */
   return result;
}

static const char *GetAttrib( AstObject *this_object, const char *attrib, int *status ) {
/*
*  Name:
*     GetAttrib

*  Purpose:
*     Get the value of a specified attribute for a MathMap.

*  Type:
*     Private function.

*  Synopsis:
*     #include "mathmap.h"
*     const char *GetAttrib( AstObject *this, const char *attrib, int *status )

*  Class Membership:
*     MathMap member function (over-rides the protected astGetAttrib
*     method inherited from the Mapping class).

*  Description:
*     This function returns a pointer to the value of a specified
*     attribute for a MathMap, formatted as a character string.

*  Parameters:
*     this
*        Pointer to the MathMap.
*     attrib
*        Pointer to a null-terminated string containing the name of
*        the attribute whose value is required. This name should be in
*        lower case, with all white space removed.
*     status
*        Pointer to the inherited status variable.

*  Returned Value:
*     - Pointer to a null-terminated string containing the attribute
*     value.

*  Notes:
*     - The returned string pointer may point at memory allocated
*     within the MathMap, or at static memory. The contents of the
*     string may be over-written or the pointer may become invalid
*     following a further invocation of the same function or any
*     modification of the MathMap. A copy of the string should
*     therefore be made if necessary.
*     - A NULL pointer will be returned if this function is invoked
*     with the global error status set, or if it should fail for any
*     reason.
*/

/* Local Variables: */
   astDECLARE_GLOBALS            /* Pointer to thread-specific global data */
   AstMathMap *this;             /* Pointer to the MathMap structure */
   const char *result;           /* Pointer value to return */
   int ival;                     /* Integer attribute value */

/* Initialise. */
   result = NULL;

/* Check the global error status. */
   if ( !astOK ) return result;

/* Get a pointer to the thread specific global data structure. */
   astGET_GLOBALS(this_object);

/* Obtain a pointer to the MathMap structure. */
   this = (AstMathMap *) this_object;

/* Compare "attrib" with each recognised attribute name in turn,
   obtaining the value of the required attribute. If necessary, write
   the value into "getattrib_buff" as a null-terminated string in an appropriate
   format.  Set "result" to point at the result string. */

/* Seed. */
/* ----- */
   if ( !strcmp( attrib, "seed" ) ) {
      ival = astGetSeed( this );
      if ( astOK ) {
         (void) sprintf( getattrib_buff, "%d", ival );
         result = getattrib_buff;
      }

/* SimpFI. */
/* ------- */
   } else if ( !strcmp( attrib, "simpfi" ) ) {
      ival = astGetSimpFI( this );
      if ( astOK ) {
         (void) sprintf( getattrib_buff, "%d", ival );
         result = getattrib_buff;
      }

/* SimpIF. */
/* ------- */
   } else if ( !strcmp( attrib, "simpif" ) ) {
      ival = astGetSimpIF( this );
      if ( astOK ) {
         (void) sprintf( getattrib_buff, "%d", ival );
         result = getattrib_buff;
      }

/* If the attribute name was not recognised, pass it on to the parent
   method for further interpretation. */
   } else {
      result = (*parent_getattrib)( this_object, attrib, status );
   }

/* Return the result. */
   return result;

}

void astInitMathMapVtab_(  AstMathMapVtab *vtab, const char *name, int *status ) {
/*
*+
*  Name:
*     astInitMathMapVtab

*  Purpose:
*     Initialise a virtual function table for a MathMap.

*  Type:
*     Protected function.

*  Synopsis:
*     #include "mathmap.h"
*     void astInitMathMapVtab( AstMathMapVtab *vtab, const char *name )

*  Class Membership:
*     MathMap vtab initialiser.

*  Description:
*     This function initialises the component of a virtual function
*     table which is used by the MathMap class.

*  Parameters:
*     vtab
*        Pointer to the virtual function table. The components used by
*        all ancestral classes will be initialised if they have not already
*        been initialised.
*     name
*        Pointer to a constant null-terminated character string which contains
*        the name of the class to which the virtual function table belongs (it
*        is this pointer value that will subsequently be returned by the Object
*        astClass function).
*-
*/

/* Local Variables: */
   astDECLARE_GLOBALS            /* Pointer to thread-specific global data */
   AstMappingVtab *mapping;      /* Pointer to Mapping component of Vtab */
   AstObjectVtab *object;        /* Pointer to Object component of Vtab */

/* Check the local error status. */
   if ( !astOK ) return;

/* Get a pointer to the thread specific global data structure. */
   astGET_GLOBALS(NULL);

/* Initialize the component of the virtual function table used by the
   parent class. */
   astInitMappingVtab( (AstMappingVtab *) vtab, name );

/* Store a unique "magic" value in the virtual function table. This
   will be used (by astIsAMathMap) to determine if an object belongs
   to this class.  We can conveniently use the address of the (static)
   class_check variable to generate this unique value. */
   vtab->id.check = &class_check;
   vtab->id.parent = &(((AstMappingVtab *) vtab)->id);

/* Initialise member function pointers. */
/* ------------------------------------ */
/* Store pointers to the member functions (implemented here) that
   provide virtual methods for this class. */
   vtab->ClearSeed = ClearSeed;
   vtab->ClearSimpFI = ClearSimpFI;
   vtab->ClearSimpIF = ClearSimpIF;
   vtab->GetSeed = GetSeed;
   vtab->GetSimpFI = GetSimpFI;
   vtab->GetSimpIF = GetSimpIF;
   vtab->SetSeed = SetSeed;
   vtab->SetSimpFI = SetSimpFI;
   vtab->SetSimpIF = SetSimpIF;
   vtab->TestSeed = TestSeed;
   vtab->TestSimpFI = TestSimpFI;
   vtab->TestSimpIF = TestSimpIF;

/* Save the inherited pointers to methods that will be extended, and
   replace them with pointers to the new member functions. */
   object = (AstObjectVtab *) vtab;
   mapping = (AstMappingVtab *) vtab;
   parent_getobjsize = object->GetObjSize;
   object->GetObjSize = GetObjSize;

   parent_clearattrib = object->ClearAttrib;
   object->ClearAttrib = ClearAttrib;
   parent_getattrib = object->GetAttrib;
   object->GetAttrib = GetAttrib;
   parent_setattrib = object->SetAttrib;
   object->SetAttrib = SetAttrib;
   parent_testattrib = object->TestAttrib;
   object->TestAttrib = TestAttrib;

   parent_transform = mapping->Transform;
   mapping->Transform = Transform;

/* Store replacement pointers for methods which will be over-ridden by
   new member functions implemented here. */
   object->Equal = Equal;
   mapping->MapMerge = MapMerge;

/* Declare the copy constructor, destructor and class dump function. */
   astSetCopy( vtab, Copy );
   astSetDelete( vtab, Delete );
   astSetDump( vtab, Dump, "MathMap",
               "Transformation using mathematical functions" );

/* If we have just initialised the vtab for the current class, indicate
   that the vtab is now initialised, and store a pointer to the class
   identifier in the base "object" level of the vtab. */
   if( vtab == &class_vtab ) {
      class_init = 1;
      astSetVtabClassIdentifier( vtab, &(vtab->id) );
   }
}

static double LogGamma( double x, int *status ) {
/*
*  Name:
*     LogGamma

*  Purpose:
*     Calculate the logarithm of the gamma function.

*  Type:
*     Private function.

*  Synopsis:
*     #include "mathmap.h"
*     double LogGamma( double x, int *status )

*  Class Membership:
*     MathMap member function.

*  Description:
*     This function returns the natural logarithm of the gamma function
*     for real arguments x>0. It uses the approximation of Lanczos, with
*     constants from Press et al. (Numerical Recipes), giving a maximum
*     fractional error (on the gamma function) of less than 2e-10.

*  Parameters:
*     x
*        The function argument, which must be greater than zero.
*     status
*        Pointer to the inherited status variable.

*  Returned Value:
*     The natural logarithm of the gamma function with "x" as argument,
*     or AST__BAD if "x" is not greater than zero.

*  Notes:
*     - This function does not generate errors and does not perform error
*     reporting. It will execute even if the global error status is set.
*/

/* Local Constants: */
   const double c0 = 1.000000000190015; /* Coefficients for series sum... */
   const double c1 = 76.18009172947146;
   const double c2 = -86.50532032941677;
   const double c3 = 24.01409824083091;
   const double c4 = -1.231739572450155;
   const double c5 = 0.1208650973866179e-2;
   const double c6 = -0.5395239384953e-5;
   const double g = 5.0;

/* Local Variables: */
   double result;                /* Result value to return */
   double sum;                   /* Series sum */
   double xx;                    /* Denominator for summing series */
   static double root_twopi;     /* sqrt( 2.0 * pi ) */
   static int init = 0;          /* Initialisation performed? */

/* If initialisation has not yet been performed, calculate the
   constant required below. */
   LOCK_MUTEX3
   if ( !init ) {
      root_twopi = sqrt( 2.0 * acos( -1.0 ) );

/* Note that initialisation has been performed. */
      init = 1;
   }
   UNLOCK_MUTEX3

/* Return a bad value if "x" is not greater than zero. */
   if ( x <= 0.0 ) {
      result = AST__BAD;

/* Otherwise, form the series sum. Since we only use 6 terms, the loop
   that would normally be used has been completely unrolled here. */
   } else {
      xx = x;
      sum = c0;
      sum += c1 / ++xx;
      sum += c2 / ++xx;
      sum += c3 / ++xx;
      sum += c4 / ++xx;
      sum += c5 / ++xx;
      sum += c6 / ++xx;

/* Calculate the result. */
      result = x + g + 0.5;
      result -= ( x + 0.5 ) * log( result );
      result = log( root_twopi * sum / x ) - result;
   }

/* Return the result. */
   return result;
}

static int MapMerge( AstMapping *this, int where, int series, int *nmap,
                     AstMapping ***map_list, int **invert_list, int *status ) {
/*
*  Name:
*     MapMerge

*  Purpose:
*     Simplify a sequence of Mappings containing a MathMap.

*  Type:
*     Private function.

*  Synopsis:
*     #include "mapping.h"
*     int MapMerge( AstMapping *this, int where, int series, int *nmap,
*                   AstMapping ***map_list, int **invert_list, int *status )

*  Class Membership:
*     MathMap method (over-rides the protected astMapMerge method
*     inherited from the Mapping class).

*  Description:
*     This function attempts to simplify a sequence of Mappings by
*     merging a nominated MathMap in the sequence with its neighbours,
*     so as to shorten the sequence if possible.
*
*     In many cases, simplification will not be possible and the
*     function will return -1 to indicate this, without further
*     action.
*
*     In most cases of interest, however, this function will either
*     attempt to replace the nominated MathMap with one which it
*     considers simpler, or to merge it with the Mappings which
*     immediately precede it or follow it in the sequence (both will
*     normally be considered). This is sufficient to ensure the
*     eventual simplification of most Mapping sequences by repeated
*     application of this function.
*
*     In some cases, the function may attempt more elaborate
*     simplification, involving any number of other Mappings in the
*     sequence. It is not restricted in the type or scope of
*     simplification it may perform, but will normally only attempt
*     elaborate simplification in cases where a more straightforward
*     approach is not adequate.

*  Parameters:
*     this
*        Pointer to the nominated MathMap which is to be merged with
*        its neighbours. This should be a cloned copy of the MathMap
*        pointer contained in the array element "(*map_list)[where]"
*        (see below). This pointer will not be annulled, and the
*        MathMap it identifies will not be modified by this function.
*     where
*        Index in the "*map_list" array (below) at which the pointer
*        to the nominated MathMap resides.
*     series
*        A non-zero value indicates that the sequence of Mappings to
*        be simplified will be applied in series (i.e. one after the
*        other), whereas a zero value indicates that they will be
*        applied in parallel (i.e. on successive sub-sets of the
*        input/output coordinates).
*     nmap
*        Address of an int which counts the number of Mappings in the
*        sequence. On entry this should be set to the initial number
*        of Mappings. On exit it will be updated to record the number
*        of Mappings remaining after simplification.
*     map_list
*        Address of a pointer to a dynamically allocated array of
*        Mapping pointers (produced, for example, by the astMapList
*        method) which identifies the sequence of Mappings. On entry,
*        the initial sequence of Mappings to be simplified should be
*        supplied.
*
*        On exit, the contents of this array will be modified to
*        reflect any simplification carried out. Any form of
*        simplification may be performed. This may involve any of: (a)
*        removing Mappings by annulling any of the pointers supplied,
*        (b) replacing them with pointers to new Mappings, (c)
*        inserting additional Mappings and (d) changing their order.
*
*        The intention is to reduce the number of Mappings in the
*        sequence, if possible, and any reduction will be reflected in
*        the value of "*nmap" returned. However, simplifications which
*        do not reduce the length of the sequence (but improve its
*        execution time, for example) may also be performed, and the
*        sequence might conceivably increase in length (but normally
*        only in order to split up a Mapping into pieces that can be
*        more easily merged with their neighbours on subsequent
*        invocations of this function).
*
*        If Mappings are removed from the sequence, any gaps that
*        remain will be closed up, by moving subsequent Mapping
*        pointers along in the array, so that vacated elements occur
*        at the end. If the sequence increases in length, the array
*        will be extended (and its pointer updated) if necessary to
*        accommodate any new elements.
*
*        Note that any (or all) of the Mapping pointers supplied in
*        this array may be annulled by this function, but the Mappings
*        to which they refer are not modified in any way (although
*        they may, of course, be deleted if the annulled pointer is
*        the final one).
*     invert_list
*        Address of a pointer to a dynamically allocated array which,
*        on entry, should contain values to be assigned to the Invert
*        attributes of the Mappings identified in the "*map_list"
*        array before they are applied (this array might have been
*        produced, for example, by the astMapList method). These
*        values will be used by this function instead of the actual
*        Invert attributes of the Mappings supplied, which are
*        ignored.
*
*        On exit, the contents of this array will be updated to
*        correspond with the possibly modified contents of the
*        "*map_list" array.  If the Mapping sequence increases in
*        length, the "*invert_list" array will be extended (and its
*        pointer updated) if necessary to accommodate any new
*        elements.
*     status
*        Pointer to the inherited status variable.

*  Returned Value:
*     If simplification was possible, the function returns the index
*     in the "map_list" array of the first element which was
*     modified. Otherwise, it returns -1 (and makes no changes to the
*     arrays supplied).

*  Notes:
*     - A value of -1 will be returned if this function is invoked
*     with the global error status set, or if it should fail for any
*     reason.
*/

/* Local Variables: */
   AstMapping *new;              /* Pointer to replacement Mapping */
   AstMathMap *mathmap1;         /* Pointer to first MathMap */
   AstMathMap *mathmap2;         /* Pointer to second MathMap */
   char **fwd1;                  /* Pointer to first forward function array */
   char **fwd2;                  /* Pointer to second forward function array */
   char **inv1;                  /* Pointer to first inverse function array */
   char **inv2;                  /* Pointer to second inverse function array */
   int ifun;                     /* Loop counter for functions */
   int imap1;                    /* Index of first Mapping */
   int imap2;                    /* Index of second Mapping */
   int imap;                     /* Loop counter for Mappings */
   int invert1;                  /* Invert flag for first MathMap */
   int invert2;                  /* Invert flag for second MathMap */
   int nfwd1;                    /* No. forward functions for first MathMap */
   int nfwd2;                    /* No. forward functions for second MathMap */
   int nin1;                     /* Number input coords for first MathMap */
   int ninv1;                    /* No. inverse functions for first MathMap */
   int ninv2;                    /* No. inverse functions for second MathMap */
   int nout2;                    /* Number output coords for second MathMap */
   int result;                   /* Result value to return */
   int simplify;                 /* Mappings may simplify? */

/* Initialise the returned result. */
   result = -1;

/* Check the global error status. */
   if ( !astOK ) return result;

/* Initialise variables to avoid "used of uninitialised variable"
   messages from dumb compilers. */
   mathmap1 = NULL;
   mathmap2 = NULL;
   imap1 = 0;
   imap2 = 0;
   invert1 = 0;
   invert2 = 0;
   nfwd1 = 0;
   nin1 = 0;
   ninv1 = 0;

/* MathMaps are only worth simplifying if they occur in series. */
   simplify = series;

/* If simplification appears possible, then obtain the indices of the
   nominated mapping and of the one which follows it. Check that a
   mapping exists for the second index. */
   if ( simplify ) {
      imap1 = where;
      imap2 = imap1 + 1;
      simplify = ( imap2 < *nmap );
   }

/* If OK, check whether the class of both Mappings is "MathMap" (a
   MathMap can only combine with another MathMap). */
   if ( simplify ) {
      simplify = !strcmp( astGetClass( ( *map_list )[ imap1 ] ), "MathMap" );
   }
   if ( astOK && simplify ) {
      simplify = !strcmp( astGetClass( ( *map_list )[ imap2 ] ), "MathMap" );
   }

/* If still OK, obtain pointers to the two MathMaps and the associated
   invert flag values. */
   if ( astOK && simplify ) {
      mathmap1 = (AstMathMap *) ( *map_list )[ imap1 ];
      mathmap2 = (AstMathMap *) ( *map_list )[ imap2 ];
      invert1 = ( *invert_list )[ imap1 ];
      invert2 = ( *invert_list )[ imap2 ];

/* Depending on the invert flag values, obtain the SimpFI or SimpIF
   attribute value from each MathMap and check whether they are set so as
   to permit simplification. */
      simplify = ( ( invert1 ? astGetSimpIF( mathmap1 ) :
                               astGetSimpFI( mathmap1 ) ) &&
                   ( invert2 ? astGetSimpFI( mathmap2 ) :
                               astGetSimpIF( mathmap2 ) ) );
   }

/* If still OK, obtain the effective numbers of input coordinates for
   the first MathMap and output coordinates for the second. Take account
   of the associated invert flags and the way the Invert attribute of
   each MathMap is currently set. */
   if ( astOK && simplify ) {
      nin1 = ( invert1 == astGetInvert( mathmap1 ) ) ?
             astGetNin( mathmap1 ) : astGetNout( mathmap1 );
      nout2 = ( invert2 == astGetInvert( mathmap2 ) ) ?
              astGetNout( mathmap2 ) : astGetNin( mathmap2 );

/* Simplification is only possible if these two numbers are equal
   (otherwise the the two MathMaps cannot be identical). */
      simplify = ( nin1 == nout2 );
   }

/* If still OK, obtain the effective number of forward transformation
   functions for the first MathMap (allowing for the associated invert
   flag). Similarly, obtain the effective number of inverse
   transformation functions for the second MathMap. */
   if ( astOK && simplify ) {
      nfwd1 = !invert1 ? mathmap1->nfwd : mathmap1->ninv;
      ninv2 = !invert2 ? mathmap2->ninv : mathmap2->nfwd;

/* Check whether these values are equal. The MathMaps cannot be
   identical if they are not. */
      simplify = ( nfwd1 == ninv2 );
   }

/* As above, obtain pointers to the array of effective forward
   transformation functions for the first MathMap, and the effective
   inverse transformation functions for the second MathMap. */
   if ( astOK && simplify ) {
      fwd1 = !invert1 ? mathmap1->fwdfun : mathmap1->invfun;
      inv2 = !invert2 ? mathmap2->invfun : mathmap2->fwdfun;

/* Loop to check whether these two sets of functions are
   identical. The MathMaps cannot be merged unless they are. */
      for ( ifun = 0; ifun < nfwd1; ifun++ ) {
         simplify = !strcmp( fwd1[ ifun ], inv2[ ifun ] );
         if ( !simplify ) break;
      }
   }

/* If OK, repeat the above process to compare the effective inverse
   transformation functions of the first MathMap with the forward
   functions of the second one. */
   if ( astOK && simplify ) {
      ninv1 = !invert1 ? mathmap1->ninv : mathmap1->nfwd;
      nfwd2 = !invert2 ? mathmap2->nfwd : mathmap2->ninv;
      simplify = ( ninv1 == nfwd2 );
   }
   if ( astOK && simplify ) {
      inv1 = !invert1 ? mathmap1->invfun : mathmap1->fwdfun;
      fwd2 = !invert2 ? mathmap2->fwdfun : mathmap2->invfun;
      for ( ifun = 0; ifun < ninv1; ifun++ ) {
         simplify = !strcmp( inv1[ ifun ], fwd2[ ifun ] );
         if ( !simplify ) break;
      }
   }

/* If the two MathMaps can be merged, create a UnitMap as a
   replacement. */
   if ( astOK && simplify ) {
      new = (AstMapping *) astUnitMap( nin1, "", status );

/* If OK, annul the pointers to the original MathMaps. */
      if ( astOK ) {
         ( *map_list )[ imap1 ] = astAnnul( ( *map_list )[ imap1 ] );
         ( *map_list )[ imap2 ] = astAnnul( ( *map_list )[ imap2 ] );

/* Insert the pointer to the replacement UnitMap and store the
   associated invert flag. */
         ( *map_list )[ imap1 ] = new;
         ( *invert_list )[ imap1 ] = 0;

/* Loop to move the following Mapping pointers and invert flags down
   in their arrays to close the gap. */
         for ( imap = imap2 + 1; imap < *nmap; imap++ ) {
            ( *map_list )[ imap - 1 ] = ( *map_list )[ imap ];
            ( *invert_list )[ imap - 1 ] = ( *invert_list )[ imap ];
         }

/* Clear the final entry in each array. */
         ( *map_list )[ *nmap - 1 ] = NULL;
         ( *invert_list )[ *nmap - 1 ] = 0;

/* Decrement the Mapping count and return the index of the first
   modified element. */
         ( *nmap )--;
         result = imap1;
      }
   }

/* If an error occurred, clear the returned value. */
   if ( !astOK ) result = -1;

/* Return the result. */
   return result;
}

static void ParseConstant( const char *method, const char *class,
                           const char *exprs, int istart, int *iend,
                           double *con, int *status ) {
/*
*  Name:
*     ParseConstant

*  Purpose:
*     Parse a constant.

*  Type:
*     Private function.

*  Synopsis:
*     #include "mathmap.h"
*     void ParseConstant( const char *method, const char *class,
*                         const char *exprs, int istart, int *iend,
*                         double *con, int *status )

*  Class Membership:
*     MathMap member function.

*  Description:
*     This routine parses an expression, looking for a constant starting at
*     the character with index "istart" in the string "exprs". If it
*     identifies the constant successfully, "*con" it will return its value
*     and "*iend" will be set to the index of the final constant character
*     in "exprs".
*
*     If the characters encountered are clearly not part of a constant (it
*     does not begin with a numeral or decimal point) the function returns
*     with "*con" set to zero and "*iend" set to -1, but without reporting
*     an error. However, if the first character appears to be a constant but
*     its syntax proves to be invalid, then an error is reported.
*
*     The expression must be in lower case with no embedded white space.
*     The constant must not have a sign (+ or -) in front of it.

*  Parameters:
*     method
*        Pointer to a constant null-terminated character string
*        containing the name of the method that invoked this function.
*        This method name is used solely for constructing error messages.
*     class
*        Pointer to a constant null-terminated character string containing the
*        class name of the Object being processed. This name is used solely
*        for constructing error messages.
*     exprs
*        Pointer to a null-terminated string containing the expression
*        to be parsed.
*     istart
*        Index of the first character in "exprs" to be considered by this
*        function.
*     iend
*        Pointer to an int in which to return the index in "exprs" of the
*        final character which forms part of the constant. If no constant is
*        found, a value of -1 is returned.
*     con
*        Pointer to a double, in which the value of the constant, if found,
*        will be returned.
*     status
*        Pointer to the inherited status variable.
*/

/* Local Variables: */
   char *str;                    /* Pointer to temporary string */
   char c;                       /* Single character from the expression */
   int dpoint;                   /* Decimal point encountered? */
   int expon;                    /* Exponent character encountered? */
   int i;                        /* Loop counter for characters */
   int iscon;		         /* Character is part of the constant? */
   int n;                        /* Number of values read by astSscanf */
   int nc;                       /* Number of characters read by astSscanf */
   int numer;                    /* Numeral encountered in current field? */
   int sign;                     /* Sign encountered? */
   int valid;		         /* Constant syntax valid? */

/* Check the global error status. */
   if ( !astOK ) return;

/* Initialise. */
   *con = 0.0;
   *iend = -1;

/* Check if the expression starts with a numeral or a decimal point. */
   c = exprs[ istart ];
   numer = isdigit( c );
   dpoint = ( c == '.' );

/* If it begins with any of these, the expression is clearly intended
   to be a constant, so any failure beyond this point will result in an
   error. Otherwise, failure to find a constant is not an error. */
   if ( numer || dpoint ) {

/* Initialise remaining variables specifying the parser context. */
      expon = 0;
      sign = 0;
      valid = 1;

/* Loop to increment the last constant character position until the
   following character in the expression does not look like part of the
   constant. */
      *iend = istart;
      iscon = 1;
      while ( ( c = exprs[ *iend + 1 ] ) && iscon ) {
         iscon = 0;

/* It may be part of a numerical constant if it is a numeral, wherever
   it occurs. */
         if ( isdigit( c ) ) {
            numer = 1;
            iscon = 1;

/* Or a decimal point, so long as it is the first one and is not in
   the exponent field. Otherwise it is invalid. */
         } else if ( c == '.' ) {
            if ( !( dpoint || expon ) ) {
               dpoint = 1;
               iscon = 1;
            } else {
               valid = 0;
            }

/* Or if it is a 'd' or 'e' exponent character, so long as it is the
   first one and at least one numeral has been encountered first.
   Otherwise it is invalid. */
          } else if ( ( c == 'd' ) || ( c == 'e' ) ) {
             if ( !expon && numer ) {
                expon = 1;
                numer = 0;
                iscon = 1;
             } else {
                valid = 0;
             }

/* Or if it is a sign, so long as it is in the exponent field and is
   the first sign with no previous numerals in the same field. Otherwise
   it is invalid (unless numerals have been encountered, in which case it
   marks the end of the constant). */
          } else if ( ( c == '+' ) || ( c == '-' ) ) {
             if ( expon && !sign && !numer ) {
                sign = 1;
                iscon = 1;
             } else if ( !numer ) {
                valid = 0;
             }
          }

/* Increment the character count if the next character may be part of
   the constant, or if it was invalid (it will then form part of the
   error message). */
          if ( iscon || !valid ) ( *iend )++;
      }

/* Finally, check that the last field contained a numeral. */
      valid = ( valid && numer );

/* If the constant appears valid, allocate a temporary string to hold
   it. */
      if ( valid ) {
         str = astMalloc( (size_t) ( *iend - istart + 2 ) );
         if ( astOK ) {

/* Copy the constant's characters, changing 'd' to 'e' so that
   "astSscanf" will recognise it as an exponent character. */
            for ( i = istart; i <= *iend; i++ ) {
               str[ i - istart ] = ( exprs[ i ] == 'd' ) ? 'e' : exprs[ i ];
            }
            str[ *iend - istart + 1 ] = '\0';

/* Attempt to read the constant as a double, noting how many values
   are read and how many characters consumed. */
            n = astSscanf( str, "%lf%n", con, &nc );

/* Check that one value was read and all the characters consumed. If
   not, then the constant's syntax is invalid. */
            if ( ( n != 1 ) || ( nc < ( *iend - istart + 1 ) ) ) valid = 0;
         }

/* Free the temporary string. */
         str = astFree( str );
      }

/* If the constant syntax is invalid, and no other error has occurred,
   then report an error. */
      if ( astOK && !valid ) {
         astError( AST__CONIN,
                   "%s(%s): Invalid constant syntax in the expression "
                   "\"%.*s\".", status,
                   method, class, *iend + 1, exprs );
      }

/* If an error occurred, reset the output values. */
      if ( !astOK ) {
         *iend = -1;
         *con = 0.0;
      }
   }
}

static void ParseName( const char *exprs, int istart, int *iend, int *status ) {
/*
*  Name:
*     ParseName

*  Purpose:
*     Parse a name.

*  Type:
*     Private function.

*  Synopsis:
*     #include "mathmap.h"
*     void ParseName( const char *exprs, int istart, int *iend, int *status )

*  Class Membership:
*     MathMap member function.

*  Description:
*     This routine parses an expression, looking for a name starting at the
*     character with index "istart" in the string "exprs". If it identifies
*     a name successfully, "*iend" will return the index of the final name
*     character in "exprs". A name must begin with an alphabetic character
*     and subsequently contain only alphanumeric characters or underscores.
*
*     If the expression does not contain a name at the specified location,
*     "*iend" is set to -1. No error results.
*
*     The expression should not contain embedded white space.

*  Parameters:
*     exprs
*        Pointer to a null-terminated string containing the expression
*        to be parsed.
*     istart
*        Index of the first character in "exprs" to be considered by this
*        function.
*     iend
*        Pointer to an int in which to return the index in "exprs" of the
*        final character which forms part of the name. If no name is
*        found, a value of -1 is returned.
*     status
*        Pointer to the inherited status variable.
*/

/* Local Variables: */
   char c;                       /* Single character from expression */

/* Check the global error status. */
   if ( !astOK ) return;

/* Initialise. */
   *iend = -1;

/* Check the first character is valid for a name (alphabetic). */
   if ( isalpha( exprs[ istart ] ) ) {

/* If so, loop to inspect each subsequent character until one is found
   which is not part of a name (not alphanumeric or underscore). */
      for ( *iend = istart; ( c = exprs[ *iend + 1 ] ); ( *iend )++ ) {
         if ( !( isalnum( c ) || ( c == '_' ) ) ) break;
      }
   }
}

static void ParseVariable( const char *method, const char *class,
                           const char *exprs, int istart, int nvar,
                           const char *var[], int *ivar, int *iend, int *status ) {
/*
*  Name:
*     ParseVariable

*  Purpose:
*     Parse a variable name.

*  Type:
*     Private function.

*  Synopsis:
*     #include "mathmap.h"
*     void ParseVariable( const char *method, const char *class,
*                         const char *exprs, int istart, int nvar,
*                         const char *var[], int *ivar, int *iend, int *status )

*  Class Membership:
*     MathMap member function.

*  Description:
*     This routine parses an expression, looking for a recognised variable
*     name starting at the character with index "istart" in the string
*     "exprs". If it identifies a variable name successfully, "*ivar" will
*     return a value identifying it and "*iend" will return the index of the
*     final variable name character in "exprs". To be recognised, a name
*     must begin with an alphabetic character and subsequently contain only
*     alphanumeric characters or underscores. It must also appear in the
*     list of defined variable names supplied to this function.
*
*     If the expression does not contain a name at the specified location,
*     "*ivar" and "*iend" are set to -1 and no error results. However, if
*     the expression contains a name but it is not in the list of defined
*     variable names supplied, then an error is reported.
*
*     This function is case sensitive. The expression should not contain
*     embedded white space.

*  Parameters:
*     method
*        Pointer to a constant null-terminated character string
*        containing the name of the method that invoked this function.
*        This method name is used solely for constructing error messages.
*     class
*        Pointer to a constant null-terminated character string containing the
*        class name of the Object being processed. This name is used solely
*        for constructing error messages.
*     exprs
*        Pointer to a null-terminated string containing the expression
*        to be parsed.
*     istart
*        Index of the first character in "exprs" to be considered by this
*        function.
*     nvar
*        The number of defined variable names.
*     var
*        An array of pointers (with "nvar" elements) to null-terminated
*        strings. Each of these should contain a variable name to be
*        recognised. These strings are case sensitive and should contain
*        no white space.
*     ivar
*        Pointer to an int in which to return the index in "vars" of the
*        variable name found. If no variable name is found, a value of -1
*        is returned.
*     iend
*        Pointer to an int in which to return the index in "exprs" of the
*        final character which forms part of the variable name. If no variable
*        name is found, a value of -1 is returned.
*     status
*        Pointer to the inherited status variable.
*/

/* Local Variables: */
   int found;                    /* Variable name recognised? */
   int nc;                       /* Number of characters in variable name */

/* Check the global error status. */
   if ( !astOK ) return;

/* Initialise. */
   *ivar = -1;
   *iend = -1;

/* Determine if the characters in the expression starting at index
   "istart" constitute a valid name. */
   ParseName( exprs, istart, iend, status );

/* If so, calculate the length of the name. */
   if ( *iend >= istart ) {
      nc = *iend - istart + 1;

/* Loop to compare the name with the list of variable names
   supplied. */
      found = 0;
      for ( *ivar = 0; *ivar < nvar; ( *ivar )++ ) {
         found = ( nc == (int) strlen( var[ *ivar ] ) ) &&
                 !strncmp( exprs + istart, var[ *ivar ], (size_t) nc );

/* Break if the name is recognised. */
         if ( found ) break;
      }

/* If it was not recognised, then report an error and reset the output
   values. */
      if ( !found ) {
         astError( AST__UDVOF,
                   "%s(%s): Undefined variable or function in the expression "
                   "\"%.*s\".", status,
                   method, class, *iend + 1, exprs );
         *ivar = -1;
         *iend = -1;
      }
   }
}

static double Poisson( Rcontext *context, double mean, int *status ) {
/*
*  Name:
*     Poisson

*  Purpose:
*     Produce a pseudo-random sample from a Poisson distribution.

*  Type:
*     Private function.

*  Synopsis:
*     #include "mathmap.h"
*     double Poisson( Rcontext *context, double mean, int *status )

*  Class Membership:
*     MathMap member function.

*  Description:
*     On each invocation, this function returns a pseudo-random sample drawn
*     from a Poisson distribution with a specified mean. A combination of
*     methods is used, depending on the value of the mean. The algorithm is
*     based on that given by Press et al. (Numerical Recipes), but
*     re-implemented and extended.

*  Parameters:
*     context
*        Pointer to an Rcontext structure which holds the random number
*        generator's context between invocations.
*     mean
*        The mean of the Poisson distribution, which should not be
*        negative.
*     status
*        Pointer to the inherited status variable.

*  Returned Value:
*     A sample (which will only take integer values) from the Poisson
*     distribution, or AST__BAD if the mean supplied is negative.

*  Notes:
*     - The sequence of numbers returned is determined by the "seed"
*     value in the Rcontext structure supplied.
*     - If the seed value is changed, the "active" flag must also be cleared
*     so that this function can re-initiallise the Rcontext structure before
*     generating the next pseudo-random number. The "active" flag should
*     also be clear to force initialisation the first time an Rcontext
*     structure is used.
*     - This function does not perform error checking and does not generate
*     errors. It will execute even if the global error status is set.
*/

/* Local Constants: */
   const double small = 9.3;     /* "Small" distribution mean value */

/* Local Variables: */
   double pfract;                /* Probability of accepting sample */
   double product;               /* Product of random samples */
   double ran;                   /* Sample from Lorentzian distribution */
   double result;                /* Result value to return */
   static double beta;           /* Constant for forming acceptance ratio */
   static double huge;           /* Large mean where std. dev. is negligible */
   static double last_mean;      /* Value of "mean" on last invocation */
   static double log_mean;       /* Logarithm of "mean" */
   static double pi;             /* Value of pi */
   static double ranmax;         /* Maximum safe value of "ran" */
   static double root_2mean;     /* sqrt( 2.0 * mean ) */
   static double sqrt_point9;    /* Square root of 0.9 */
   static double thresh;         /* Threshold for product of samples */
   static int init = 0;          /* Local initialisation performed? */

   LOCK_MUTEX6

/* If initialisation has not yet been performed, then perform it
   now. */
   if ( !init ) {

/* Initialise the mean value from the previous invocation. */
      last_mean = -1.0;

/* Calculate simple constants. */
      pi = acos( -1.0 );
      sqrt_point9 = sqrt( 0.9 );

/* Calculate the value of the distribution mean for which the smallest
   representable deviation from the mean permitted by the machine
   precision is one thousand standard deviations. */
      huge = pow( 1.0e3 / DBL_EPSILON, 2.0 );

/* Calculate the largest value such that
   (0.9+(sqrt_point9*ranmax)*(sqrt_point9*ranmax)) doesn't overflow,
   allowing a small margin for rounding error. */
      ranmax = ( sqrt( DBL_MAX - 0.9 ) / sqrt( 0.9 ) ) *
               ( 1.0 - 4.0 * DBL_EPSILON );

/* Note that initialisation has been performed. */
      init = 1;
   }

/* If the distribution mean is less than zero, then return a bad
   result. */
   if ( mean < 0.0 ) {
      result = AST__BAD;

/* If the mean is zero, then the result can only be zero. */
   } else if ( mean == 0.0 ) {
      result = 0.0;

/* Otherwise, if the mean is sufficiently small, we can use the direct
   method of summing a series of exponentially distributed random samples
   and counting the number which occur before the mean is exceeded. This
   is equivalent to multiplying a series of uniformly distributed
   samples and counting the number which occur before the product
   becomes less then an equivalent threshold. */
   } else if ( mean <= small ) {

/* If the mean has changed since the last invocation, store the new
   mean and calculate a new threshold. */
      if ( mean != last_mean ) {
         last_mean = mean;
         thresh = exp( -mean );
      }

/* Initialise the product and the result. */
      product = 1.0;
      result = -1.0;

/* Multiply the random samples, counting the number needed to reach
   the threshold. */
      do {
         product *= Rand( context, status );
         result += 1.0;
      } while ( product > thresh );

/* Otherwise, if the distribution mean is large (but not huge), we
   must use an indirect rejection method. */
   } else if ( mean <= huge ) {

/* If the mean has changed since the last invocation, then
   re-calculate the constants required below. Note that because of the
   restrictions we have placed on "mean", these calculations are safe
   against overflow. */
      if ( mean != last_mean ) {
         last_mean = mean;
         log_mean = log( mean );
         root_2mean = sqrt( 2.0 * mean );
         beta = mean * log_mean - LogGamma( mean + 1.0, status );
      }

/* Loop until a suitable random sample has been generated. */
      do {
         do {

/* First transform a sample from a uniform distribution to obtain a
   sample from a Lorentzian distribution. Check that the result is not so
   large as to cause overflow later. Also check for overflow in the maths
   library. If necessary, obtain a new sample. */
            do {
               errno = 0;
               ran = tan( pi * Rand( context, status ) );
            } while ( ( ran > ranmax ) ||
                      ( ( errno == ERANGE ) &&
                        ( ( ( ran >= 0.0 ) ? ran : -ran ) == HUGE_VAL ) ) );

/* If OK, scale the sample and add a constant so that the sample's
   distribution approximates the Poisson distribution we
   require. Overflow is prevented by the check on "ran" above, together
   with the restricted value of "mean". */
            result = ran * root_2mean + mean;

/* If the result is less than zero (where the Poisson distribution has
   value zero), then obtain a new sample. */
         } while ( result < 0.0 );

/* Round down to an integer, so that the sample is valid for a Poisson
   distribution. */
         result = floor( result );

/* Calculate the ratio between the required Poisson distribution and
   the Lorentzian from which we have sampled (the factor of 0.9 prevents
   this exceeding 1.0, and overflow is again prevented by the checks
   performed above). */
         ran *= sqrt_point9;
         pfract = ( 0.9 + ran * ran ) *
                  exp( result * log_mean - LogGamma( result + 1.0, status ) - beta );

/* Accept the sample with this fractional probability, otherwise
   obtain a new sample. */
      } while ( Rand( context, status ) > pfract );

/* If the mean is huge, the relative standard deviation will be
   negligible compared to the machine precision. In such cases, the
   probability of getting a result that differs from the mean is
   effectively zero, so we can simply return the mean. */
   } else {
      result = mean;
   }

   UNLOCK_MUTEX6

/* Return the result. */
   return result;
}

static double Rand( Rcontext *context, int *status ) {
/*
*  Name:
*     Rand

*  Purpose:
*     Produce a uniformly distributed pseudo-random number.

*  Type:
*     Private function.

*  Synopsis:
*     #include "mathmap.h"
*     double Rand( Rcontext *context, int *status )

*  Class Membership:
*     MathMap member function.

*  Description:
*     On each invocation, this function returns a pseudo-random number
*     uniformly distributed in the range 0.0 to 1.0 (inclusive). The
*     underlying algorithm is that used by the "ran2" function of Press et
*     al. (Numerical Recipes), which has a long period and good statistical
*     properties. This independent implementation returns double precision
*     values.

*  Parameters:
*     context
*        Pointer to an Rcontext structure which holds the random number
*        generator's context between invocations.
*     status
*        Pointer to the inherited status variable.

*  Notes:
*     - The sequence of numbers returned is determined by the "seed"
*     value in the Rcontext structure supplied.
*     - If the seed value is changed, the "active" flag must also be cleared
*     so that this function can re-initiallise the Rcontext structure before
*     generating the next pseudo-random number. The "active" flag should
*     also be clear to force initialisation the first time an Rcontext
*     structure is used.
*     - This function does not perform error checking and does not generate
*     errors. It will execute even if the global error status is set.
*/

/* Local Constants: */
   const long int a1 = 40014L;   /* Random number generator constants... */
   const long int a2 = 40692L;
   const long int m1 = 2147483563L;
   const long int m2 = 2147483399L;
   const long int q1 = 53668L;
   const long int q2 = 52774L;
   const long int r1 = 12211L;
   const long int r2 = 3791L;
   const int ntab =              /* Size of shuffle table */
      AST_MATHMAP_RAND_CONTEXT_NTAB_;
   const int nwarm = 8;          /* Number of warm-up iterations */

/* Local Variables: */
   double result;                /* Result value to return */
   double scale;                 /* Scale factor for random integers */
   double sum;                   /* Sum for forming normalisation constant */
   int dbits;                    /* Approximate bits in double mantissa */
   int irand;                    /* Loop counter for random integers */
   int itab;                     /* Loop counter for shuffle table */
   int lbits;                    /* Approximate bits used by generators */
   long int seed;                /* Random number seed */
   long int tmp;                 /* Temporary variable */
   static double norm;           /* Normalisation constant */
   static double scale0;         /* Scale decrement for successive integers */
   static int init = 0;          /* Local initialisation performed? */
   static int nrand;             /* Number of random integers to use */

/* If the random number generator context is not active, then
   initialise it. */
   if ( !context->active ) {

/* First, perform local initialisation for this function, if not
   already done. */
      LOCK_MUTEX4
      if ( !init ) {

/* Obtain the approximate number of bits used by the random integer
   generator from the value "m1". */
         (void) frexp( (double) m1, &lbits );

/* Obtain the approximate number of bits used by the mantissa of the
   double value we want to produce, allowing for the (unlikely)
   possibility that the mantissa's radix isn't 2. */
         dbits = (int) ceil( (double) DBL_MANT_DIG *
                             log( (double) FLT_RADIX ) / log( 2.0 ) );

/* Hence determine how many random integers we need to combine to
   produce each double value, so that all the mantissa's bits will be
   used. */
         nrand = ( dbits + lbits - 1 ) / lbits;

/* Calculate the scale factor by which each successive random
   integer's contribution to the result is reduced so as to generate
   progressively less significant bits. */
         scale0 = 1.0 / (double) ( m1 - 1L );

/* Loop to sum the maximum contributions from each random integer
   (assuming that each takes the largest possible value, of "m1-1",
   from which we will later subtract 1). This produces the normalisation
   factor by which the result must be scaled so as to lie between 0.0 and
   1.0 (inclusive). */
         sum = 0.0;
         scale = 1.0;
         for ( irand = 0; irand < nrand; irand++ ) {
            scale *= scale0;
            sum += scale;
         }
         norm = 1.0 / ( sum * (double) ( m1 - 2L ) );

/* Note that local initialisation has been done. */
         init = 1;
      }
      UNLOCK_MUTEX4

/* Obtain the seed value, enforcing positivity. */
      seed = (long int) context->seed;
      if ( seed < 1 ) seed = seed + LONG_MAX;
      if ( seed < 1 ) seed = LONG_MAX;

/* Initialise the random number generators with this seed. */
      context->rand1 = context->rand2 = seed;

/* Now loop to initialise the shuffle table with an initial set of
   random values. We generate more values than required in order to "warm
   up" the generator before recording values in the table. */
      for ( itab = ntab + nwarm - 1; itab >= 0; itab-- ) {

/* Repeatedly update "rand1" from the expression "(rand1*a1)%m1" while
   avoiding overflow. */
         tmp = context->rand1 / q1;
         context->rand1 = a1 * ( context->rand1 - tmp * q1 ) - tmp * r1;
         if ( context->rand1 < 0L ) context->rand1 += m1;

/* After warming up, start recording values in the table. */
         if ( itab < ntab ) context->table[ itab ] = context->rand1;
      }

/* Record the last entry in the table as the "previous" random
   integer. */
      context->random_int = context->table[ 0 ];

/* Note the random number generator context is active. */
      context->active = 1;
   }

/* Generate a random value. */
/* ------------------------ */
/* Initialise. */
   result = 0.0;

/* Loop to generate sufficient random integers to combine into a
   double value. */
   scale = norm;
   for ( irand = 0; irand < nrand; irand++ ) {

/* Update the first generator "rand1" from the expression
   "(a1*rand1)%m1" while avoiding overflow. */
      tmp = context->rand1 / q1;
      context->rand1 = a1 * ( context->rand1 - tmp * q1 ) - tmp * r1;
      if ( context->rand1 < 0L ) context->rand1 += m1;

/* Similarly, update the second generator "rand2" from the expression
   "(a2*rand2)%m2". */
      tmp = context->rand2 / q2;
      context->rand2 = a2 * ( context->rand2 - tmp * q2 ) - tmp * r2;
      if ( context->rand2 < 0L ) context->rand2 += m2;

/* Use the previous random integer to generate an index into the
   shuffle table. */
      itab = (int) ( context->random_int /
                     ( 1L + ( m1 - 1L ) / (long int) ntab ) );

/* The algorithm left by RFWS seems to have a bug that "itab" can
   sometimes be outside the range of [0.,ntab-1] causing the context->table
   array to be addressed out of bounds. To avoid this, use the
   following sticking plaster, since I'm not sure what the correct fix is. */
      if( itab < 0 ) itab = -itab;
      itab = itab % ntab;

/* Extract the table entry and replace it with a new random value from
   the first generator "rand1". This is the Bays-Durham shuffle. */
      context->random_int = context->table[ itab ];
      context->table[ itab ] = context->rand1;

/* Combine the extracted value with the latest value from the second
   generator "rand2". */
      context->random_int -= context->rand2;
      if ( context->random_int < 1L ) context->random_int += m1 - 1L;

/* Update the scale factor to apply to the resulting random integer
   and accumulate its contribution to the result. */
      scale *= scale0;
      result += scale * (double) ( context->random_int - 1L );
   }

/* Return the result. */
   return result;
}

static void SetAttrib( AstObject *this_object, const char *setting, int *status ) {
/*
*  Name:
*     SetAttrib

*  Purpose:
*     Set an attribute value for a MathMap.

*  Type:
*     Private function.

*  Synopsis:
*     #include "mathmap.h"
*     void SetAttrib( AstObject *this, const char *setting, int *status )

*  Class Membership:
*     MathMap member function (extends the astSetAttrib method inherited from
*     the Mapping class).

*  Description:
*     This function assigns an attribute value for a MathMap, the attribute
*     and its value being specified by means of a string of the form:
*
*        "attribute= value "
*
*     Here, "attribute" specifies the attribute name and should be in lower
*     case with no white space present. The value to the right of the "="
*     should be a suitable textual representation of the value to be assigned
*     and this will be interpreted according to the attribute's data type.
*     White space surrounding the value is only significant for string
*     attributes.

*  Parameters:
*     this
*        Pointer to the MathMap.
*     setting
*        Pointer to a null terminated string specifying the new attribute
*        value.
*     status
*        Pointer to the inherited status variable.

*  Returned Value:
*     void
*/

/* Local Vaiables: */
   AstMathMap *this;             /* Pointer to the MathMap structure */
   int ival;                     /* Integer attribute value */
   int len;                      /* Length of setting string */
   int nc;                       /* Number of characters read by astSscanf */

/* Check the global error status. */
   if ( !astOK ) return;

/* Obtain a pointer to the MathMap structure. */
   this = (AstMathMap *) this_object;

/* Obtain the length of the setting string. */
   len = strlen( setting );

/* Test for each recognised attribute in turn, using "astSscanf" to parse the
   setting string and extract the attribute value (or an offset to it in the
   case of string values). In each case, use the value set in "nc" to check
   that the entire string was matched. Once a value has been obtained, use the
   appropriate method to set it. */

/* Seed. */
/* ----- */
   if ( nc = 0,
        ( 1 == astSscanf( setting, "seed= %d %n", &ival, &nc ) )
        && ( nc >= len ) ) {
      astSetSeed( this, ival );

/* SimpFI. */
/* ------- */
   } else if ( nc = 0,
               ( 1 == astSscanf( setting, "simpfi= %d %n", &ival, &nc ) )
               && ( nc >= len ) ) {
      astSetSimpFI( this, ival );

/* SimpIF. */
/* ------- */
   } else if ( nc = 0,
               ( 1 == astSscanf( setting, "simpif= %d %n", &ival, &nc ) )
               && ( nc >= len ) ) {
      astSetSimpIF( this, ival );

/* Pass any unrecognised setting to the parent method for further
   interpretation. */
   } else {
      (*parent_setattrib)( this_object, setting, status );
   }
}

static int TestAttrib( AstObject *this_object, const char *attrib, int *status ) {
/*
*  Name:
*     TestAttrib

*  Purpose:
*     Test if a specified attribute value is set for a MathMap.

*  Type:
*     Private function.

*  Synopsis:
*     #include "mathmap.h"
*     int TestAttrib( AstObject *this, const char *attrib, int *status )

*  Class Membership:
*     MathMap member function (over-rides the astTestAttrib protected
*     method inherited from the Mapping class).

*  Description:
*     This function returns a boolean result (0 or 1) to indicate whether
*     a value has been set for one of a MathMap's attributes.

*  Parameters:
*     this
*        Pointer to the MathMap.
*     attrib
*        Pointer to a null terminated string specifying the attribute
*        name.  This should be in lower case with no surrounding white
*        space.
*     status
*        Pointer to the inherited status variable.

*  Returned Value:
*     One if a value has been set, otherwise zero.

*  Notes:
*     - A value of zero will be returned if this function is invoked
*     with the global status set, or if it should fail for any reason.
*/

/* Local Variables: */
   AstMathMap *this;             /* Pointer to the MathMap structure */
   int result;                   /* Result value to return */

/* Initialise. */
   result = 0;

/* Check the global error status. */
   if ( !astOK ) return result;

/* Obtain a pointer to the MathMap structure. */
   this = (AstMathMap *) this_object;

/* Check the attribute name and test the appropriate attribute. */

/* Seed. */
/* ----- */
   if ( !strcmp( attrib, "seed" ) ) {
      result = astTestSeed( this );

/* SimpFI. */
/* ------- */
   } else if ( !strcmp( attrib, "simpfi" ) ) {
      result = astTestSimpFI( this );

/* SimpIF. */
/* ------- */
   } else if ( !strcmp( attrib, "simpif" ) ) {
      result = astTestSimpIF( this );

/* If the attribute is not recognised, pass it on to the parent method
   for further interpretation. */
   } else {
      result = (*parent_testattrib)( this_object, attrib, status );
   }

/* Return the result, */
   return result;
}

static AstPointSet *Transform( AstMapping *map, AstPointSet *in,
                               int forward, AstPointSet *out, int *status ) {
/*
*  Name:
*     Transform

*  Purpose:
*     Apply a MathMap to transform a set of points.

*  Type:
*     Private function.

*  Synopsis:
*     #include "mathmap.h"
*     AstPointSet *Transform( AstMapping *map, AstPointSet *in,
*                             int forward, AstPointSet *out, int *status )

*  Class Membership:
*     MathMap member function (over-rides the astTransform method inherited
*     from the Mapping class).

*  Description:
*     This function takes a MathMap and a set of points encapsulated in a
*     PointSet and transforms the points so as to apply the required coordinate
*     transformation.

*  Parameters:
*     map
*        Pointer to the MathMap.
*     in
*        Pointer to the PointSet holding the input coordinate data.
*     forward
*        A non-zero value indicates that the forward coordinate transformation
*        should be applied, while a zero value requests the inverse
*        transformation.
*     out
*        Pointer to a PointSet which will hold the transformed (output)
*        coordinate values. A NULL value may also be given, in which case a
*        new PointSet will be created by this function.
*     status
*        Pointer to the inherited status variable.

*  Returned Value:
*     Pointer to the output (possibly new) PointSet.

*  Notes:
*     -  A null pointer will be returned if this function is invoked with the
*     global error status set, or if it should fail for any reason.
*     -  The number of coordinate values per point in the input PointSet must
*     match the number of coordinates for the MathMap being applied.
*     -  If an output PointSet is supplied, it must have space for sufficient
*     number of points and coordinate values per point to accommodate the
*     result. Any excess space will be ignored.
*/

/* Local Variables: */
   AstMathMap *this;             /* Pointer to MathMap to be applied */
   AstPointSet *result;          /* Pointer to output PointSet */
   double **data_ptr;            /* Array of pointers to coordinate data */
   double **ptr_in;              /* Pointer to input coordinate data */
   double **ptr_out;             /* Pointer to output coordinate data */
   double *work;                 /* Workspace for intermediate results */
   int idata;                    /* Loop counter for data pointer elements */
   int ifun;                     /* Loop counter for functions */
   int ncoord_in;                /* Number of coordinates per input point */
   int ncoord_out;               /* Number of coordinates per output point */
   int ndata;                    /* Number of data pointer elements filled */
   int nfun;                     /* Number of functions to evaluate */
   int npoint;                   /* Number of points */

/* Check the global error status. */
   if ( !astOK ) return NULL;

/* Initialise variables to avoid "used of uninitialised variable"
   messages from dumb compilers. */
   work = NULL;

/* Obtain a pointer to the MathMap. */
   this = (AstMathMap *) map;

/* Apply the parent mapping using the stored pointer to the Transform member
   function inherited from the parent Mapping class. This function validates
   all arguments and generates an output PointSet if necessary, but does not
   actually transform any coordinate values. */
   result = (*parent_transform)( map, in, forward, out, status );

/* We will now extend the parent astTransform method by performing the
   transformation needed to generate the output coordinate values. */

/* Determine the numbers of points and coordinates per point from the input
   and output PointSets and obtain pointers for accessing the input and output
   coordinate values. */
   ncoord_in = astGetNcoord( in );
   ncoord_out = astGetNcoord( result );
   npoint = astGetNpoint( in );
   ptr_in = astGetPoints( in );
   ptr_out = astGetPoints( result );

/* Determine whether to apply the forward or inverse transformation, according
   to the direction specified and whether the mapping has been inverted. */
   if ( astGetInvert( this ) ) forward = !forward;

/* Obtain the number of transformation functions that must be
   evaluated to perform the transformation. This will include any that
   produce intermediate results from which the final results are
   calculated. */
   nfun = forward ? this->nfwd : this->ninv;

/* If intermediate results are to be calculated, then allocate
   workspace to hold them (each intermediate result being a vector of
   "npoint" double values). */
   if ( nfun > ncoord_out ) {
      work = astMalloc( sizeof( double) *
                        (size_t) ( npoint * ( nfun - ncoord_out ) ) );
   }

/* Also allocate space for an array to hold pointers to the input
   data, intermediate results and output data. */
   data_ptr = astMalloc( sizeof( double * ) * (size_t) ( ncoord_in + nfun ) );

/* We now set up the "data_ptr" array to locate the data to be
   processed. */
   if ( astOK ) {

/* The first elements of this array point at the input data
   vectors. */
      ndata = 0;
      for ( idata = 0; idata < ncoord_in; idata++ ) {
         data_ptr[ ndata++ ] = ptr_in[ idata ];
      }

/* The following elements point at successive vectors within the
   workspace array (if allocated). These vectors will act first as output
   arrays for intermediate results, and then as input arrays for
   subsequent calculations which use these results. */
      for ( idata = 0; idata < ( nfun - ncoord_out ); idata++ ) {
         data_ptr[ ndata++ ] = work + ( idata * npoint );
      }

/* The final elements point at the output coordinate data arrays into
   which the final results will be written. */
      for ( idata = 0; idata < ncoord_out; idata++ ) {
         data_ptr[ ndata++ ] = ptr_out[ idata ];
      }

/* Perform coordinate transformation. */
/* ---------------------------------- */
/* Loop to evaluate each transformation function in turn. */
      for ( ifun = 0; ifun < nfun; ifun++ ) {

/* Invoke the function that evaluates compiled expressions. Pass the
   appropriate code and constants arrays, depending on the direction of
   coordinate transformation, together with the required stack size. The
   output array is the vector located by successive elements of the
   "data_ptr" array (skipping the input data elements), while the
   function has access to all previous elements of the "data_ptr" array
   to locate the required input data. */
         EvaluateFunction( &this->rcontext, npoint, (const double **) data_ptr,
                           forward ? this->fwdcode[ ifun ] :
                                     this->invcode[ ifun ],
                           forward ? this->fwdcon[ ifun ] :
                                     this->invcon[ ifun ],
                           forward ? this->fwdstack : this->invstack,
                           data_ptr[ ifun + ncoord_in ], status );
      }
   }

/* Free the array of data pointers and any workspace allocated for
   intermediate results. */
   data_ptr = astFree( data_ptr );
   if ( nfun > ncoord_out ) work = astFree( work );

/* If an error occurred, then return a NULL pointer. If no output
   PointSet was supplied, also delete any new one that may have been
   created. */
   if ( !astOK ) {
      result = ( result == out ) ? NULL : astDelete( result );
   }

/* Return a pointer to the output PointSet. */
   return result;
}

static void ValidateSymbol( const char *method, const char *class,
                            const char *exprs, int iend, int sym,
                            int *lpar, int **argcount, int **opensym,
                            int *ncon, double **con, int *status ) {
/*
*  Name:
*     ValidateSymbol

*  Purpose:
*     Validate a symbol in an expression.

*  Type:
*     Private function.

*  Synopsis:
*     #include "mathmap.h"
*     void ValidateSymbol( const char *method, const char *class,
*                          const char *exprs, int iend, int sym, int *lpar,
*                          int **argcount, int **opensym, int *ncon,
*                          double **con, int *status )

*  Class Membership:
*     MathMap member function.

*  Description:
*     This function validates an identified standard symbol during
*     compilation of an expression. Its main task is to keep track of the
*     level of parenthesis in the expression and to count the number of
*     arguments supplied to functions at each level of parenthesis (for
*     nested function calls). On this basis it is able to interpret and
*     accept or reject symbols which represent function calls, parentheses
*     and delimiters. Other symbols are accepted automatically.

*  Parameters:
*     method
*        Pointer to a constant null-terminated character string
*        containing the name of the method that invoked this function.
*        This method name is used solely for constructing error messages.
*     class
*        Pointer to a constant null-terminated character string containing the
*        class name of the Object being processed. This name is used solely
*        for constructing error messages.
*     exprs
*        Pointer to a null-terminated string containing the expression
*        being parsed. This is only used for constructing error messages.
*     iend
*        Index in "exprs" of the last character belonging to the most
*        recently identified symbol. This is only used for constructing error
*        messages.
*     sym
*        Index in the static "symbol" array of the most recently identified
*        symbol in the expression. This is the symbol to be verified.
*     lpar
*        Pointer to an int which holds the current level of parenthesis. On
*        the first invocation, this should be zero. The returned value should
*        be passed to subsequent invocations.
*     argcount
*        Address of a pointer to a dynamically allocated array of int in
*        which argument count information is maintained for each level of
*        parenthesis (e.g. for nested function calls). On the first invocation,
*        "*argcount" should be NULL. This function will allocate the required
*        space as needed and update this pointer. The returned pointer value
*        should be passed to subsequent invocations.
*
*        The allocated space must be freed by the caller (using astFree) when
*        no longer required.
*     opensym
*        Address of a pointer to a dynamically allocated array of int, in which
*        information is maintained about the functions associated with each
*        level of parenthesis (e.g. for nested function calls). On the first
*        invocation, "*opensym" should be NULL. This function will allocate the
*        required space as needed and update this pointer. The returned pointer
*        value should be passed to subsequent invocations.
*
*        The allocated space must be freed by the caller (using astFree) when
*        no longer required.
*     ncon
*        Pointer to an int which holds a count of the constants associated
*        with the expression (and determines the size of the "*con" array).
*        This function will update the count to reflect any new constants
*        appended to the "*con" array and the returned value should be passed
*        to subsequent invocations.
*     con
*        Address of a pointer to a dynamically allocated array of double, in
*        which the constants associated with the expression being parsed are
*        accumulated. On entry, "*con" should point at a dynamic array with
*        at least "*ncon" elements containing existing constants (or may be
*        NULL if no constants have yet been stored). This function will
*        allocate the required space as needed and update this pointer (and
*        "*ncon") appropriately. The returned pointer value should be passed
*        to subsequent invocations.
*
*        The allocated space must be freed by the caller (using astFree) when
*        no longer required.
*     status
*        Pointer to the inherited status variable.

*  Notes:
*     - The dynamically allocated arrays normally returned by this function
*     will be freed and NULL pointers will be returned if this function is
*     invoked with the global error status set, or if it should fail for any
*     reason.
*/

/* Check the global error status, but do not return at this point
   because dynamic arrays may require freeing. */
   if ( astOK ) {

/* Check if the symbol is a comma. */
      if ( ( symbol[ sym ].text[ 0 ] == ',' ) &&
           ( symbol[ sym ].text[ 1 ] == '\0' ) ) {

/* A comma is only used to delimit function arguments. If the current
   level of parenthesis is zero, or the symbol which opened the current
   level of parenthesis was not a function call (indicated by an argument
   count of zero at the current level of parenthesis), then report an
   error. */
         if ( ( *lpar <= 0 ) || ( ( *argcount )[ *lpar - 1 ] == 0 ) ) {
            astError( AST__COMIN,
                      "%s(%s): Spurious comma encountered in the expression "
                      "\"%.*s\".", status,
                      method, class, iend + 1, exprs );

/* If a comma is valid, then increment the argument count at the
   current level of parenthesis. */
         } else {
            ( *argcount )[ *lpar - 1 ]++;
         }

/* If the symbol is not a comma, check if it increases the current
   level of parenthesis. */
      } else if ( symbol[ sym ].parincrement > 0 ) {

/* Increase the size of the arrays which hold parenthesis level
   information and check for errors. */
         *argcount = astGrow( *argcount, *lpar + 1, sizeof( int ) );
         *opensym = astGrow( *opensym, *lpar + 1, sizeof( int ) );
         if ( astOK ) {

/* Increment the level of parenthesis and initialise the argument
   count at the new level. This count is set to zero if the symbol which
   opens the parenthesis level is not a function call (indicated by a
   zero "nargs" entry in the symbol data), and it subsequently remains at
   zero. If the symbol is a function call, the argument count is
   initially set to 1 and increments whenever a comma is encountered at
   this parenthesis level. */
            ( *argcount )[ ++( *lpar ) - 1 ] = ( symbol[ sym ].nargs != 0 );

/* Remember the symbol which opened this parenthesis level. */
            ( *opensym )[ *lpar - 1 ] = sym;
         }

/* Check if the symbol decreases the current parenthesis level. */
      } else if ( symbol[ sym ].parincrement < 0 ) {

/* Ensure that the parenthesis level is not already at zero. If it is,
   then there is a missing left parenthesis in the expression being
   compiled, so report an error. */
         if ( *lpar == 0 ) {
            astError( AST__MLPAR,
                      "%s(%s): Missing left parenthesis in the expression "
                      "\"%.*s\".", status,
                      method, class, iend + 1, exprs );

/* If the parenthesis level is valid and the symbol which opened this
   level of parenthesis was a function call with a fixed number of
   arguments (indicated by a positive "nargs" entry in the symbol data),
   then we must check the number of function arguments which have been
   encountered. */
         } else if ( symbol[ ( *opensym )[ *lpar - 1 ] ].nargs > 0 ) {

/* Report an error if the number of arguments is wrong. */
            if ( ( *argcount )[ *lpar - 1 ] !=
                 symbol[ ( *opensym )[ *lpar - 1 ] ].nargs ) {
               astError( AST__WRNFA,
                         "%s(%s): Wrong number of function arguments in the "
                         "expression \"%.*s\".", status,
                         method, class, iend + 1, exprs );

/* If the number of arguments is valid, decrement the parenthesis
   level. */
            } else {
               ( *lpar )--;
            }

/* If the symbol which opened this level of parenthesis was a function
   call with a variable number of arguments (indicated by a negative
   "nargs" entry in the symbol data), then we must check and process the
   number of function arguments. */
         } else if ( symbol[ ( *opensym )[ *lpar - 1 ] ].nargs < 0 ) {

/* Check that the minimum required number of arguments have been
   supplied. Report an error if they have not. */
            if ( ( *argcount )[ *lpar - 1 ] <
                 ( -symbol[ ( *opensym )[ *lpar - 1 ] ].nargs ) ) {
               astError( AST__WRNFA,
                         "%s(%s): Insufficient function arguments in the "
                         "expression \"%.*s\".", status,
                         method, class, iend + 1, exprs );

/* If the number of arguments is valid, increase the size of the
   constants array and check for errors. */
            } else {
               *con = astGrow( *con, *ncon + 1, sizeof( double ) );
               if ( astOK ) {

/* Append the argument count to the end of the array of constants and
   decrement the parenthesis level. */
                  ( *con )[ ( *ncon )++ ] =
                     (double) ( *argcount )[ --( *lpar ) ];
               }
            }

/* Finally, if the symbol which opened this level of parenthesis was
   not a function call ("nargs" entry in the symbol data is zero), then
   decrement the parenthesis level. In this case there is no need to
   check the argument count, because it will not have been
   incremented. */
         } else {
            ( *lpar )--;
         }
      }
   }

/* If an error occurred (or the global error status was set on entry),
   then reset the parenthesis level and free any memory which may have
   been allocated. */
   if ( !astOK ) {
      *lpar = 0;
      if ( *argcount ) *argcount = astFree( *argcount );
      if ( *opensym ) *opensym = astFree( *opensym );
      if ( *con ) *con = astFree( *con );
   }
}

/* Functions which access class attributes. */
/* ---------------------------------------- */
/* Implement member functions to access the attributes associated with
   this class using the macros defined for this purpose in the
   "object.h" file. For a description of each attribute, see the class
   interface (in the associated .h file). */

/*
*att++
*  Name:
*     Seed

*  Purpose:
*     Random number seed for a MathMap.

*  Type:
*     Public attribute.

*  Synopsis:
*     Integer.

*  Description:
*     This attribute, which may take any integer value, determines the
*     sequence of random numbers produced by the random number functions in
*     MathMap expressions. It is set to an unpredictable default value when
*     a MathMap is created, so that by default each MathMap uses a different
*     set of random numbers.
*
*     If required, you may set this Seed attribute to a value of your
*     choosing in order to produce repeatable behaviour from the random
*     number functions. You may also enquire the Seed value (e.g. if an
*     initially unpredictable value has been used) and then use it to
*     reproduce the resulting sequence of random numbers, either from the
*     same MathMap or from another one.
*
*     Clearing the Seed attribute gives it a new unpredictable default
*     value.

*  Applicability:
*     MathMap
*        All MathMaps have this attribute.
*att--
*/
/* Clear the Seed value by setting it to a new unpredictable value
   produced by DefaultSeed and clearing the "seed_set" flag in the
   MathMap's random number generator context. Also clear the "active"
   flag, so that the generator will be re-initialised to use this seed
   when it is next invoked. */
astMAKE_CLEAR(MathMap,Seed,rcontext.seed,( this->rcontext.seed_set = 0,
                                           this->rcontext.active = 0,
                                           DefaultSeed( &this->rcontext, status ) ))

/* Return the "seed" value from the random number generator
   context. */
astMAKE_GET(MathMap,Seed,int,0,this->rcontext.seed)

/* Store the new seed value in the MathMap's random number generator
   context and set the context's "seed_set" flag. Also clear the "active"
   flag, so that the generator will be re-initialised to use this seed
   when it is next invoked. */
astMAKE_SET(MathMap,Seed,int,rcontext.seed,( this->rcontext.seed_set = 1,
                                             this->rcontext.active = 0,
                                             value ))

/* Test the "seed_set" flag in the random number generator context. */
astMAKE_TEST(MathMap,Seed,( this->rcontext.seed_set ))

/*
*att++
*  Name:
*     SimpFI

*  Purpose:
*     Forward-inverse MathMap pairs simplify?

*  Type:
*     Public attribute.

*  Synopsis:
*     Integer (boolean).

*  Description:
c     This attribute should be set to a non-zero value if applying a
c     MathMap's forward transformation, followed immediately by the matching
c     inverse transformation will always restore the original set of
c     coordinates. It indicates that AST may replace such a sequence of
c     operations by an identity Mapping (a UnitMap) if it is encountered
c     while simplifying a compound Mapping (e.g. using astSimplify).
f     This attribute should be set to a non-zero value if applying a
f     MathMap's forward transformation, followed immediately by the matching
f     inverse transformation will always restore the original set of
f     coordinates. It indicates that AST may replace such a sequence of
f     operations by an identity Mapping (a UnitMap) if it is encountered
f     while simplifying a compound Mapping (e.g. using AST_SIMPLIFY).
*
*     By default, the SimpFI attribute is zero, so that AST will not perform
*     this simplification unless you have set SimpFI to indicate that it is
*     safe to do so.

*  Applicability:
*     MathMap
*        All MathMaps have this attribute.

*  Notes:
*     - For simplification to occur, the two MathMaps must be in series and
*     be identical (with textually identical transformation
*     functions). Functional equivalence is not sufficient.
*     - The consent of both MathMaps is required before simplification can
*     take place. If either has a SimpFI value of zero, then simplification
*     will not occur.
*     - The SimpFI attribute controls simplification only in the case where
*     a MathMap's forward transformation is followed by the matching inverse
*     transformation. It does not apply if an inverse transformation is
*     followed by a forward transformation. This latter case is controlled
*     by the SimpIF attribute.
c     - The "forward" and "inverse" transformations referred to are those
c     defined when the MathMap is created (corresponding to the "fwd" and
c     "inv" parameters of its constructor function). If the MathMap is
c     inverted (i.e. its Invert attribute is non-zero), then the role of the
c     SimpFI and SimpIF attributes will be interchanged.
f     - The "forward" and "inverse" transformations referred to are those
f     defined when the MathMap is created (corresponding to the FWD and
f     INV arguments of its constructor function). If the MathMap is
f     inverted (i.e. its Invert attribute is non-zero), then the role of the
f     SimpFI and SimpIF attributes will be interchanged.
*att--
*/
/* Clear the SimpFI value by setting it to -INT_MAX. */
astMAKE_CLEAR(MathMap,SimpFI,simp_fi,-INT_MAX)

/* Supply a default of 0 if no SimpFI value has been set. */
astMAKE_GET(MathMap,SimpFI,int,0,( ( this->simp_fi != -INT_MAX ) ?
                                   this->simp_fi : 0 ))

/* Set a SimpFI value of 1 if any non-zero value is supplied. */
astMAKE_SET(MathMap,SimpFI,int,simp_fi,( value != 0 ))

/* The SimpFI value is set if it is not -INT_MAX. */
astMAKE_TEST(MathMap,SimpFI,( this->simp_fi != -INT_MAX ))

/*
*att++
*  Name:
*     SimpIF

*  Purpose:
*     Inverse-forward MathMap pairs simplify?

*  Type:
*     Public attribute.

*  Synopsis:
*     Integer (boolean).

*  Description:
c     This attribute should be set to a non-zero value if applying a
c     MathMap's inverse transformation, followed immediately by the matching
c     forward transformation will always restore the original set of
c     coordinates. It indicates that AST may replace such a sequence of
c     operations by an identity Mapping (a UnitMap) if it is encountered
c     while simplifying a compound Mapping (e.g. using astSimplify).
f     This attribute should be set to a non-zero value if applying a
f     MathMap's inverse transformation, followed immediately by the matching
f     forward transformation will always restore the original set of
f     coordinates. It indicates that AST may replace such a sequence of
f     operations by an identity Mapping (a UnitMap) if it is encountered
f     while simplifying a compound Mapping (e.g. using AST_SIMPLIFY).
*
*     By default, the SimpIF attribute is zero, so that AST will not perform
*     this simplification unless you have set SimpIF to indicate that it is
*     safe to do so.

*  Applicability:
*     MathMap
*        All MathMaps have this attribute.

*  Notes:
*     - For simplification to occur, the two MathMaps must be in series and
*     be identical (with textually identical transformation
*     functions). Functional equivalence is not sufficient.
*     - The consent of both MathMaps is required before simplification can
*     take place. If either has a SimpIF value of zero, then simplification
*     will not occur.
*     - The SimpIF attribute controls simplification only in the case where
*     a MathMap's inverse transformation is followed by the matching forward
*     transformation. It does not apply if a forward transformation is
*     followed by an inverse transformation. This latter case is controlled
*     by the SimpFI attribute.
c     - The "forward" and "inverse" transformations referred to are those
c     defined when the MathMap is created (corresponding to the "fwd" and
c     "inv" parameters of its constructor function). If the MathMap is
c     inverted (i.e. its Invert attribute is non-zero), then the role of the
c     SimpFI and SimpIF attributes will be interchanged.
f     - The "forward" and "inverse" transformations referred to are those
f     defined when the MathMap is created (corresponding to the FWD and
f     INV arguments of its constructor function). If the MathMap is
f     inverted (i.e. its Invert attribute is non-zero), then the role of the
f     SimpFI and SimpIF attributes will be interchanged.
*att--
*/
/* Clear the SimpIF value by setting it to -INT_MAX. */
astMAKE_CLEAR(MathMap,SimpIF,simp_if,-INT_MAX)

/* Supply a default of 0 if no SimpIF value has been set. */
astMAKE_GET(MathMap,SimpIF,int,0,( ( this->simp_if != -INT_MAX ) ?
                                   this->simp_if : 0 ))

/* Set a SimpIF value of 1 if any non-zero value is supplied. */
astMAKE_SET(MathMap,SimpIF,int,simp_if,( value != 0 ))

/* The SimpIF value is set if it is not -INT_MAX. */
astMAKE_TEST(MathMap,SimpIF,( this->simp_if != -INT_MAX ))

/* Copy constructor. */
/* ----------------- */
static void Copy( const AstObject *objin, AstObject *objout, int *status ) {
/*
*  Name:
*     Copy

*  Purpose:
*     Copy constructor for MathMap objects.

*  Type:
*     Private function.

*  Synopsis:
*     void Copy( const AstObject *objin, AstObject *objout, int *status )

*  Description:
*     This function implements the copy constructor for MathMap objects.

*  Parameters:
*     objin
*        Pointer to the object to be copied.
*     objout
*        Pointer to the object being constructed.
*     status
*        Pointer to the inherited status variable.

*  Returned Value:
*     void

*  Notes:
*     -  This constructor makes a deep copy.
*/

/* Local Variables: */
   AstMathMap *in;               /* Pointer to input MathMap */
   AstMathMap *out;              /* Pointer to output MathMap */
   int ifun;                     /* Loop counter for functions */

/* Check the global error status. */
   if ( !astOK ) return;

/* Obtain pointers to the input and output MathMaps. */
   in = (AstMathMap *) objin;
   out = (AstMathMap *) objout;

/* For safety, first clear any references to the input memory from
   the output MathMap. */
   out->fwdfun = NULL;
   out->invfun = NULL;
   out->fwdcode = NULL;
   out->invcode = NULL;
   out->fwdcon = NULL;
   out->invcon = NULL;

/* Now allocate and initialise each of the output pointer arrays
   required. */
   if ( in->fwdfun ) {
      MALLOC_POINTER_ARRAY( out->fwdfun, char *, out->nfwd )
   }
   if ( in->invfun ) {
      MALLOC_POINTER_ARRAY( out->invfun, char *, out->ninv )
   }
   if ( in->fwdcode ) {
      MALLOC_POINTER_ARRAY( out->fwdcode, int *, out->nfwd )
   }
   if ( in->invcode ) {
      MALLOC_POINTER_ARRAY( out->invcode, int *, out->ninv )
   }
   if ( in->fwdcon ) {
      MALLOC_POINTER_ARRAY( out->fwdcon, double *, out->nfwd )
   }
   if ( in->invcon ) {
      MALLOC_POINTER_ARRAY( out->invcon, double *, out->ninv )
   }

/* If OK, loop to make copies of the data (where available) associated
   with each forward transformation function, storing pointers to the
   copy in the output pointer arrays allocated above. */
   if ( astOK ) {
      for ( ifun = 0; ifun < out->nfwd; ifun++ ) {
         if ( in->fwdfun && in->fwdfun[ ifun ] ) {
            out->fwdfun[ ifun ] = astStore( NULL, in->fwdfun[ ifun ],
                                            astSizeOf( in->fwdfun[ ifun ] ) );
         }
         if ( in->fwdcode && in->fwdcode[ ifun ] ) {
            out->fwdcode[ ifun ] = astStore( NULL, in->fwdcode[ ifun ],
                                            astSizeOf( in->fwdcode[ ifun ] ) );
         }
         if ( in->fwdcon && in->fwdcon[ ifun ] ) {
            out->fwdcon[ ifun ] = astStore( NULL, in->fwdcon[ ifun ],
                                            astSizeOf( in->fwdcon[ ifun ] ) );
         }
         if ( !astOK ) break;
      }
   }

/* Repeat this process for the inverse transformation functions. */
   if ( astOK ) {
      for ( ifun = 0; ifun < out->ninv; ifun++ ) {
         if ( in->invfun && in->invfun[ ifun ] ) {
            out->invfun[ ifun ] = astStore( NULL, in->invfun[ ifun ],
                                            astSizeOf( in->invfun[ ifun ] ) );
         }
         if ( in->invcode && in->invcode[ ifun ] ) {
            out->invcode[ ifun ] = astStore( NULL, in->invcode[ ifun ],
                                            astSizeOf( in->invcode[ ifun ] ) );
         }
         if ( in->invcon && in->invcon[ ifun ] ) {
            out->invcon[ ifun ] = astStore( NULL, in->invcon[ ifun ],
                                            astSizeOf( in->invcon[ ifun ] ) );
         }
         if ( !astOK ) break;
      }
   }

/* If an error occurred, clean up by freeing all output memory
   allocated above. */
   if ( !astOK ) {
      FREE_POINTER_ARRAY( out->fwdfun, out->nfwd )
      FREE_POINTER_ARRAY( out->invfun, out->ninv )
      FREE_POINTER_ARRAY( out->fwdcode, out->nfwd )
      FREE_POINTER_ARRAY( out->invcode, out->ninv )
      FREE_POINTER_ARRAY( out->fwdcon, out->nfwd )
      FREE_POINTER_ARRAY( out->invcon, out->ninv )
   }
}

/* Destructor. */
/* ----------- */
static void Delete( AstObject *obj, int *status ) {
/*
*  Name:
*     Delete

*  Purpose:
*     Destructor for MathMap objects.

*  Type:
*     Private function.

*  Synopsis:
*     void Delete( AstObject *obj, int *status )

*  Description:
*     This function implements the destructor for MathMap objects.

*  Parameters:
*     obj
*        Pointer to the object to be deleted.
*     status
*        Pointer to the inherited status variable.

*  Returned Value:
*     void

*  Notes:
*     This function attempts to execute even if the global error status is
*     set.
*/

/* Local Variables: */
   AstMathMap *this;             /* Pointer to MathMap */

/* Obtain a pointer to the MathMap structure. */
   this = (AstMathMap *) obj;

/* Free all memory allocated by the MathMap. */
   FREE_POINTER_ARRAY( this->fwdfun, this->nfwd )
   FREE_POINTER_ARRAY( this->invfun, this->ninv )
   FREE_POINTER_ARRAY( this->fwdcode, this->nfwd )
   FREE_POINTER_ARRAY( this->invcode, this->ninv )
   FREE_POINTER_ARRAY( this->fwdcon, this->nfwd )
   FREE_POINTER_ARRAY( this->invcon, this->ninv )
}

/* Dump function. */
/* -------------- */
static void Dump( AstObject *this_object, AstChannel *channel, int *status ) {
/*
*  Name:
*     Dump

*  Purpose:
*     Dump function for MathMap objects.

*  Type:
*     Private function.

*  Synopsis:
*     void Dump( AstObject *this, AstChannel *channel, int *status )

*  Description:
*     This function implements the Dump function which writes out data
*     for the MathMap class to an output Channel.

*  Parameters:
*     this
*        Pointer to the MathMap whose data are being written.
*     channel
*        Pointer to the Channel to which the data are being written.
*     status
*        Pointer to the inherited status variable.
*/

/* Local Constants: */
#define COMMENT_LEN 150          /* Maximum length of a comment string */
#define KEY_LEN 50               /* Maximum length of a keyword */

/* Local Variables: */
   AstMathMap *this;             /* Pointer to the MathMap structure */
   char comment[ COMMENT_LEN + 1 ]; /* Buffer for comment strings */
   char key[ KEY_LEN + 1 ];      /* Buffer for keyword strings */
   int ifun;                     /* Loop counter for functions */
   int invert;                   /* MathMap inverted? */
   int ival;                     /* Integer attribute value */
   int nin;                      /* True number of input coordinates */
   int nout;                     /* True number of output coordinates */
   int set;                      /* Attribute value set? */

/* Check the global error status. */
   if ( !astOK ) return;

/* Obtain a pointer to the MathMap structure. */
   this = (AstMathMap *) this_object;

/* Determine if the MathMap is inverted and obtain the "true" number
   of input and output coordinates by un-doing the effects of any
   inversion. */
   invert = astGetInvert( this );
   nin = !invert ? astGetNin( this ) : astGetNout( this );
   nout = !invert ? astGetNout( this ) : astGetNin( this );

/* Write out values representing the instance variables for the
   MathMap class.  Accompany these with appropriate comment strings,
   possibly depending on the values being written.*/

/* In the case of attributes, we first use the appropriate (private)
   Test...  member function to see if they are set. If so, we then use
   the (private) Get... function to obtain the value to be written
   out.

   For attributes which are not set, we use the astGet... method to
   obtain the value instead. This will supply a default value
   (possibly provided by a derived class which over-rides this method)
   which is more useful to a human reader as it corresponds to the
   actual default attribute value.  Since "set" will be zero, these
   values are for information only and will not be read back. */

/* Number of forward transformation functions. */
/* ------------------------------------------- */
/* We regard this value as set if it differs from the number of output
   coordinates for the MathMap. */
   set = ( this->nfwd != nout );
   astWriteInt( channel, "Nfwd", set, 0, this->nfwd,
                "Number of forward transformation functions" );

/* Forward transformation functions. */
/* --------------------------------- */
/* Loop to write out each forward transformation function, generating
   a suitable keyword and comment for each one. */
   for ( ifun = 0; ifun < this->nfwd; ifun++ ) {
      (void) sprintf( key, "Fwd%d", ifun + 1 );
      (void) sprintf( comment, "Forward function %d", ifun + 1 );
      astWriteString( channel, key, 1, 1, this->fwdfun[ ifun ], comment );
   }

/* Number of inverse transformation functions. */
/* ------------------------------------------- */
/* We regard this value as set if it differs from the number of input
   coordinates for the MathMap. */
   set = ( this->ninv != nin );
   astWriteInt( channel, "Ninv", set, 0, this->ninv,
                "Number of inverse transformation functions" );

/* Inverse transformation functions. */
/* --------------------------------- */
/* Similarly, loop to write out each inverse transformation
   function. */
   for ( ifun = 0; ifun < this->ninv; ifun++ ) {
      (void) sprintf( key, "Inv%d", ifun + 1 );
      (void) sprintf( comment, "Inverse function %d", ifun + 1 );
      astWriteString( channel, key, 1, 1, this->invfun[ ifun ], comment );
   }

/* SimpFI. */
/* ------- */
/* Write out the forward-inverse simplification flag. */
   set = TestSimpFI( this, status );
   ival = set ? GetSimpFI( this, status ) : astGetSimpFI( this );
   astWriteInt( channel, "SimpFI", set, 0, ival,
                ival ? "Forward-inverse pairs may simplify" :
                       "Forward-inverse pairs do not simplify" );

/* SimpIF. */
/* ------- */
/* Write out the inverse-forward simplification flag. */
   set = TestSimpIF( this, status );
   ival = set ? GetSimpIF( this, status ) : astGetSimpIF( this );
   astWriteInt( channel, "SimpIF", set, 0, ival,
                ival ? "Inverse-forward pairs may simplify" :
                       "Inverse-forward pairs do not simplify" );

/* Seed. */
/* ----- */
/* Write out any random number seed value which is set. Prefix this with
   a separate flag which indicates if the seed has been set. */
   set = TestSeed( this, status );
   ival = set ? GetSeed( this, status ) : astGetSeed( this );
   astWriteInt( channel, "Seeded", set, 0, set,
                set? "Explicit random number seed set" :
                     "No random number seed set" );
   astWriteInt( channel, "Seed", set, 0, ival,
                set ? "Random number seed value" :
                      "Default random number seed used" );

/* Undefine macros local to this function. */
#undef COMMENT_LEN
#undef KEY_LEN
}

/* Standard class functions. */
/* ========================= */
/* Implement the astIsAMathMap and astCheckMathMap functions using the macros
   defined for this purpose in the "object.h" header file. */
astMAKE_ISA(MathMap,Mapping)
astMAKE_CHECK(MathMap)

AstMathMap *astMathMap_( int nin, int nout,
                         int nfwd, const char *fwd[],
                         int ninv, const char *inv[],
                         const char *options, int *status, ...) {
/*
*+
*  Name:
*     astMathMap

*  Purpose:
*     Create a MathMap.

*  Type:
*     Protected function.

*  Synopsis:
*     #include "mathmap.h"
*     AstMathMap *astMathMap( int nin, int nout,
*                             int nfwd, const char *fwd[],
*                             int ninv, const char *inv[],
*                             const char *options, ..., int *status )

*  Class Membership:
*     MathMap constructor.

*  Description:
*     This function creates a new MathMap and optionally initialises its
*     attributes.

*  Parameters:
*     nin
*        Number of input variables for the MathMap.
*     nout
*        Number of output variables for the MathMap.
*     nfwd
*        The number of forward transformation functions being supplied.
*        This must be at least equal to "nout".
*     fwd
*        Pointer to an array, with "nfwd" elements, of pointers to null
*        terminated strings which contain each of the forward transformation
*        functions.
*     ninv
*        The number of inverse transformation functions being supplied.
*        This must be at least equal to "nin".
*     inv
*        Pointer to an array, with "ninv" elements, of pointers to null
*        terminated strings which contain each of the inverse transformation
*        functions.
*     options
*        Pointer to a null terminated string containing an optional
*        comma-separated list of attribute assignments to be used for
*        initialising the new MathMap. The syntax used is the same as
*        for the astSet method and may include "printf" format
*        specifiers identified by "%" symbols in the normal way.
*     status
*        Pointer to the inherited status variable.
*     ...
*        If the "options" string contains "%" format specifiers, then
*        an optional list of arguments may follow it in order to
*        supply values to be substituted for these specifiers. The
*        rules for supplying these are identical to those for the
*        astSet method (and for the C "printf" function).

*  Returned Value:
*     A pointer to the new MathMap.

*  Notes:
*     - A NULL pointer will be returned if this function is invoked
*     with the global error status set, or if it should fail for any
*     reason.
*-

*  Implementation Notes:
*     - This function implements the basic MathMap constructor which is
*     available via the protected interface to the MathMap class.  A
*     public interface is provided by the astMathMapId_ function.
*/

/* Local Variables: */
   astDECLARE_GLOBALS            /* Pointer to thread-specific global data */
   AstMathMap *new;              /* Pointer to new MathMap */
   va_list args;                 /* Variable argument list */

/* Get a pointer to the thread specific global data structure. */
   astGET_GLOBALS(NULL);

/* Check the global status. */
   if ( !astOK ) return NULL;

/* Initialise the MathMap, allocating memory and initialising the
   virtual function table as well if necessary. */
   new = astInitMathMap( NULL, sizeof( AstMathMap ), !class_init, &class_vtab,
                         "MathMap", nin, nout, nfwd, fwd, ninv, inv );

/* If successful, note that the virtual function table has been
   initialised. */
   if ( astOK ) {
      class_init = 1;

/* Obtain the variable argument list and pass it along with the options string
   to the astVSet method to initialise the new MathMap's attributes. */
      va_start( args, status );
      astVSet( new, options, NULL, args );
      va_end( args );

/* If an error occurred, clean up by deleting the new object. */
      if ( !astOK ) new = astDelete( new );
   }

/* Return a pointer to the new MathMap. */
   return new;
}

AstMathMap *astMathMapId_( int nin, int nout,
                           int nfwd, const char *fwd[],
                           int ninv, const char *inv[],
                           const char *options, ... ) {
/*
*++
*  Name:
c     astMathMap
f     AST_MATHMAP

*  Purpose:
*     Create a MathMap.

*  Type:
*     Public function.

*  Synopsis:
c     #include "mathmap.h"
c     AstMathMap *astMathMap( int nin, int nout,
c                             int nfwd, const char *fwd[],
c                             int ninv, const char *inv[],
c                             const char *options, ... )
f     RESULT = AST_MATHMAP( NIN, NOUT, NFWD, FWD, NINV, INV, OPTIONS, STATUS )

*  Class Membership:
*     MathMap constructor.

*  Description:
*     This function creates a new MathMap and optionally initialises its
*     attributes.
*
c     A MathMap is a Mapping which allows you to specify a set of forward
c     and/or inverse transformation functions using arithmetic operations
c     and mathematical functions similar to those available in C. The
c     MathMap interprets these functions at run-time, whenever its forward
c     or inverse transformation is required. Because the functions are not
c     compiled in the normal sense (unlike an IntraMap), they may be used to
c     describe coordinate transformations in a transportable manner. A
c     MathMap therefore provides a flexible way of defining new types of
c     Mapping whose descriptions may be stored as part of a dataset and
c     interpreted by other programs.
f     A MathMap is a Mapping which allows you to specify a set of forward
f     and/or inverse transformation functions using arithmetic operations
f     and mathematical functions similar to those available in Fortran. The
f     MathMap interprets these functions at run-time, whenever its forward
f     or inverse transformation is required. Because the functions are not
f     compiled in the normal sense (unlike an IntraMap), they may be used to
f     describe coordinate transformations in a transportable manner. A
f     MathMap therefore provides a flexible way of defining new types of
f     Mapping whose descriptions may be stored as part of a dataset and
f     interpreted by other programs.

*  Parameters:
c     nin
f     NIN = INTEGER
*        Number of input variables for the MathMap. This determines the
*        value of its Nin attribute.
c     nout
f     NOUT = INTEGER
*        Number of output variables for the MathMap. This determines the
*        value of its Nout attribute.
c     nfwd
f     NFWD = INTEGER
*        The number of forward transformation functions being supplied.
c        This must be at least equal to "nout", but may be increased to
f        This must be at least equal to NOUT, but may be increased to
*        accommodate any additional expressions which define intermediate
*        variables for the forward transformation (see the "Calculating
*        Intermediate Values" section below).
c     fwd
f     FWD = CHARACTER * ( * )( NFWD )
c        An array (with "nfwd" elements) of pointers to null terminated strings
c        which contain the expressions defining the forward transformation.
f        An array which contains the expressions defining the forward
f        transformation.
*        The syntax of these expressions is described below.
c     ninv
f     NINV = INTEGER
*        The number of inverse transformation functions being supplied.
c        This must be at least equal to "nin", but may be increased to
f        This must be at least equal to NIN, but may be increased to
*        accommodate any additional expressions which define intermediate
*        variables for the inverse transformation (see the "Calculating
*        Intermediate Values" section below).
c     inv
f     INV = CHARACTER * ( * )( NINV )
c        An array (with "ninv" elements) of pointers to null terminated strings
c        which contain the expressions defining the inverse transformation.
f        An array which contains the expressions defining the inverse
f        transformation.
*        The syntax of these expressions is described below.
c     options
f     OPTIONS = CHARACTER * ( * ) (Given)
c        Pointer to a null-terminated string containing an optional
c        comma-separated list of attribute assignments to be used for
c        initialising the new MathMap. The syntax used is identical to
c        that for the astSet function and may include "printf" format
c        specifiers identified by "%" symbols in the normal way.
c        If no initialisation is required, a zero-length string may be
c        supplied.
f        A character string containing an optional comma-separated
f        list of attribute assignments to be used for initialising the
f        new MathMap. The syntax used is identical to that for the
f        AST_SET routine. If no initialisation is required, a blank
f        value may be supplied.
c     ...
c        If the "options" string contains "%" format specifiers, then
c        an optional list of additional arguments may follow it in
c        order to supply values to be substituted for these
c        specifiers. The rules for supplying these are identical to
c        those for the astSet function (and for the C "printf"
c        function).
f     STATUS = INTEGER (Given and Returned)
f        The global status.

*  Returned Value:
c     astMathMap()
f     AST_MATHMAP = INTEGER
*        A pointer to the new MathMap.

*  Defining Transformation Functions:
c     A MathMap's transformation functions are supplied as a set of
c     expressions in an array of character strings. Normally you would
c     supply the same number of expressions for the forward transformation,
c     via the "fwd" parameter, as there are output variables (given by the
c     MathMap's Nout attribute). For instance, if Nout is 2 you might use:
c     - "r = sqrt( x * x + y * y )"
c     - "theta = atan2( y, x )"
c
c     which defines a transformation from Cartesian to polar
c     coordinates. Here, the variables that appear on the left of each
c     expression ("r" and "theta") provide names for the output variables
c     and those that appear on the right ("x" and "y") are references to
c     input variables.
f     A MathMap's transformation functions are supplied as a set of
f     expressions in an array of character strings. Normally you would
f     supply the same number of expressions for the forward transformation,
f     via the FWD argument, as there are output variables (given by the
f     MathMap's Nout attribute). For instance, if Nout is 2 you might use:
f     - 'R = SQRT( X * X + Y * Y )'
f     - 'THETA = ATAN2( Y, X )'
f
f     which defines a transformation from Cartesian to polar
f     coordinates. Here, the variables that appear on the left of each
f     expression (R and THETA) provide names for the output variables and
f     those that appear on the right (X and Y) are references to input
f     variables.
*
c     To complement this, you must also supply expressions for the inverse
c     transformation via the "inv" parameter.  In this case, the number of
c     expressions given would normally match the number of MathMap input
c     coordinates (given by the Nin attribute).  If Nin is 2, you might use:
c     - "x = r * cos( theta )"
c     - "y = r * sin( theta )"
c
c     which expresses the transformation from polar to Cartesian
c     coordinates. Note that here the input variables ("x" and "y") are
c     named on the left of each expression, and the output variables ("r"
c     and "theta") are referenced on the right.
f     To complement this, you must also supply expressions for the inverse
f     transformation via the INV argument.  In this case, the number of
f     expressions given would normally match the number of MathMap input
f     coordinates (given by the Nin attribute).  If Nin is 2, you might use:
f     - 'X = R * COS( THETA )'
f     - 'Y = R * SIN( THETA )'
f
f     which expresses the transformation from polar to Cartesian
f     coordinates. Note that here the input variables (X and Y) are named on
f     the left of each expression, and the output variables (R and THETA)
f     are referenced on the right.
*
*     Normally, you cannot refer to a variable on the right of an expression
*     unless it is named on the left of an expression in the complementary
*     set of functions. Therefore both sets of functions (forward and
*     inverse) must be formulated using the same consistent set of variable
*     names. This means that if you wish to leave one of the transformations
*     undefined, you must supply dummy expressions which simply name each of
*     the output (or input) variables.  For example, you might use:
c     - "x"
c     - "y"
f     - 'X'
f     - 'Y'
*
*     for the inverse transformation above, which serves to name the input
*     variables but without defining an inverse transformation.

*  Calculating Intermediate Values:
c     It is sometimes useful to calculate intermediate values and then to
c     use these in the final expressions for the output (or input)
c     variables. This may be done by supplying additional expressions for
c     the forward (or inverse) transformation functions. For instance, the
c     following array of five expressions describes 2-dimensional pin-cushion
c     distortion:
c     - "r = sqrt( xin * xin + yin * yin )"
c     - "rout = r * ( 1 + 0.1 * r * r )"
c     - "theta = atan2( yin, xin )"
c     - "xout = rout * cos( theta )"
c     - "yout = rout * sin( theta )"
f     It is sometimes useful to calculate intermediate values and then to
f     use these in the final expressions for the output (or input)
f     variables. This may be done by supplying additional expressions for
f     the forward (or inverse) transformation functions. For instance, the
f     following array of five expressions describes 2-dimensional pin-cushion
f     distortion:
f     - 'R = SQRT( XIN * XIN + YIN * YIN )'
f     - 'ROUT = R * ( 1 + 0.1 * R * R )'
f     - 'THETA = ATAN2( YIN, XIN )',
f     - 'XOUT = ROUT * COS( THETA )'
f     - 'YOUT = ROUT * SIN( THETA )'
*
c     Here, we first calculate three intermediate results ("r", "rout"
c     and "theta") and then use these to calculate the final results ("xout"
c     and "yout"). The MathMap knows that only the final two results
c     constitute values for the output variables because its Nout attribute
c     is set to 2. You may define as many intermediate variables in this
c     way as you choose. Having defined a variable, you may then refer to it
c     on the right of any subsequent expressions.
f     Here, we first calculate three intermediate results (R, ROUT
f     and THETA) and then use these to calculate the final results (XOUT
f     and YOUT). The MathMap knows that only the final two results
f     constitute values for the output variables because its Nout attribute
f     is set to 2. You may define as many intermediate variables in this
f     way as you choose. Having defined a variable, you may then refer to it
f     on the right of any subsequent expressions.
*
c     Note that when defining the inverse transformation you may only refer
c     to the output variables "xout" and "yout".  The intermediate variables
c     "r", "rout" and "theta" (above) are private to the forward
c     transformation and may not be referenced by the inverse
c     transformation. The inverse transformation may, however, define its
c     own private intermediate variables.
f     Note that when defining the inverse transformation you may only refer
f     to the output variables XOUT and YOUT. The intermediate variables R,
f     ROUT and THETA (above) are private to the forward transformation and
f     may not be referenced by the inverse transformation. The inverse
f     transformation may, however, define its own private intermediate
f     variables.

*  Expression Syntax:
c     The expressions given for the forward and inverse transformations
c     closely follow the syntax of the C programming language (with some
c     extensions for compatibility with Fortran). They may contain
c     references to variables and literal constants, together with
c     arithmetic, boolean, relational and bitwise operators, and function
c     invocations. A set of symbolic constants is also available. Each of
c     these is described in detail below. Parentheses may be used to
c     over-ride the normal order of evaluation. There is no built-in limit
c     to the length of expressions and they are insensitive to case or the
c     presence of additional white space.
f     The expressions given for the forward and inverse transformations
f     closely follow the syntax of Fortran (with some extensions for
f     compatibility with the C language). They may contain references to
f     variables and literal constants, together with arithmetic, logical,
f     relational and bitwise operators, and function invocations. A set of
f     symbolic constants is also available. Each of these is described in
f     detail below. Parentheses may be used to over-ride the normal order of
f     evaluation. There is no built-in limit to the length of expressions
f     and they are insensitive to case or the presence of additional white
f     space.

*  Variables:
*     Variable names must begin with an alphabetic character and may contain
*     only alphabetic characters, digits, and the underscore character
*     "_". There is no built-in limit to the length of variable names.

*  Literal Constants:
c     Literal constants, such as "0", "1", "0.007" or "2.505e-16" may appear
c     in expressions, with the decimal point and exponent being optional (a
c     "D" may also be used as an exponent character for compatibility with
c     Fortran). A unary minus "-" may be used as a prefix.
f     Literal constants, such as "0", "1", "0.007" or "2.505E-16" may appear
f     in expressions, with the decimal point and exponent being optional (a
f     "D" may also be used as an exponent character). A unary minus "-" may
f     be used as a prefix.

*  Arithmetic Precision:
*     All arithmetic is floating point, performed in double precision.

*  Propagation of Missing Data:
*     Unless indicated otherwise, if any argument of a function or operator
*     has the value AST__BAD (indicating missing data), then the result of
*     that function or operation is also AST__BAD, so that such values are
*     propagated automatically through all operations performed by MathMap
*     transformations.  The special value AST__BAD can be represented in
*     expressions by the symbolic constant "<bad>".
*
*     A <bad> result (i.e. equal to AST__BAD) is also produced in response
*     to any numerical error (such as division by zero or numerical
*     overflow), or if an invalid argument value is provided to a function
*     or operator.

*  Arithmetic Operators:
*     The following arithmetic operators are available:
c     - x1 + x2: Sum of "x1" and "x2".
f     - X1 + X2: Sum of X1 and X2.
c     - x1 - x2: Difference of "x1" and "x2".
f     - X1 - X2: Difference of X1 and X2.
c     - x1 * x2: Product of "x1" and "x1".
f     - X1 * X2: Product of X1 and X2.
c     - x1 / x2: Ratio of "x1" and "x2".
f     - X1 / X2: Ratio of X1 and X2.
c     - x1 ** x2: "x1" raised to the power of "x2".
f     - X1 ** X2: X1 raised to the power of X2.
c     - + x: Unary plus, has no effect on its argument.
f     - + X: Unary plus, has no effect on its argument.
c     - - x: Unary minus, negates its argument.
f     - - X: Unary minus, negates its argument.

c  Boolean Operators:
f  Logical Operators:
c     Boolean values are represented using zero to indicate false and
c     non-zero to indicate true. In addition, the value AST__BAD is taken to
c     mean "unknown". The values returned by boolean operators may therefore
c     be 0, 1 or AST__BAD. Where appropriate, "tri-state" logic is
c     implemented. For example, "a||b" may evaluate to 1 if "a" is non-zero,
c     even if "b" has the value AST__BAD. This is because the result of the
c     operation would not be affected by the value of "b", so long as "a" is
c     non-zero.
f     Logical values are represented using zero to indicate .FALSE. and
f     non-zero to indicate .TRUE.. In addition, the value AST__BAD is taken to
f     mean "unknown". The values returned by logical operators may therefore
f     be 0, 1 or AST__BAD. Where appropriate, "tri-state" logic is
f     implemented. For example, A.OR.B may evaluate to 1 if A is non-zero,
f     even if B has the value AST__BAD. This is because the result of the
f     operation would not be affected by the value of B, so long as A is
f     non-zero.
*
c     The following boolean operators are available:
f     The following logical operators are available:
c     - x1 && x2: Boolean AND between "x1" and "x2", returning 1 if both "x1"
c     and "x2" are non-zero, and 0 otherwise. This operator implements
c     tri-state logic. (The synonym ".and." is also provided for compatibility
c     with Fortran.)
f     - X1 .AND. X2: Logical AND between X1 and X2, returning 1 if both X1
f     and X2 are non-zero, and 0 otherwise. This operator implements
f     tri-state logic. (The synonym "&&" is also provided for compatibility
f     with C.)
c     - x1 || x2: Boolean OR between "x1" and "x2", returning 1 if either "x1"
c     or "x2" are non-zero, and 0 otherwise. This operator implements
c     tri-state logic. (The synonym ".or." is also provided for compatibility
c     with Fortran.)
f     - X1 .OR. X2: Logical OR between X1 and X2, returning 1 if either X1
f     or X2 are non-zero, and 0 otherwise. This operator implements
f     tri-state logic. (The synonym "||" is also provided for compatibility
f     with C.)
c     - x1 ^^ x2: Boolean exclusive OR (XOR) between "x1" and "x2", returning
c     1 if exactly one of "x1" and "x2" is non-zero, and 0 otherwise. Tri-state
c     logic is not used with this operator. (The synonyms ".neqv." and ".xor."
c     are also provided for compatibility with Fortran, although the second
c     of these is not standard.)
f     - X1 .NEQV. X2: Logical exclusive OR (XOR) between X1 and X2,
f     returning 1 if exactly one of X1 and X2 is non-zero, and 0
f     otherwise. Tri-state logic is not used with this operator. (The
f     synonym ".XOR." is also provided, although this is not standard
f     Fortran. In addition, the C-like synonym "^^" may be used, although
f     this is also not standard.)
c     - x1 .eqv. x2: This is provided only for compatibility with Fortran
c     and tests whether the boolean states of "x1" and "x2" (i.e. true/false)
c     are equal. It is the negative of the exclusive OR (XOR) function.
c     Tri-state logic is not used with this operator.
f     - X1 .EQV. X2: Tests whether the logical states of X1 and X2
f     (i.e. .TRUE./.FALSE.) are equal. It is the negative of the exclusive OR
f     (XOR) function.  Tri-state logic is not used with this operator.
c     - ! x: Boolean unary NOT operation, returning 1 if "x" is zero, and
c     0 otherwise. (The synonym ".not." is also provided for compatibility
c     with Fortran.)
f     - .NOT. X: Logical unary NOT operation, returning 1 if X is zero, and
f     0 otherwise. (The synonym "!" is also provided for compatibility with
f     C.)

*  Relational Operators:
c     Relational operators return the boolean result (0 or 1) of comparing
c     the values of two floating point values for equality or inequality. The
c     value AST__BAD may also be returned if either argument is <bad>.
f     Relational operators return the logical result (0 or 1) of comparing
f     the values of two floating point values for equality or inequality. The
f     value AST__BAD may also be returned if either argument is <bad>.
*
*     The following relational operators are available:
c     - x1 == x2: Tests whether "x1" equals "x1". (The synonym ".eq." is
c     also provided for compatibility with Fortran.)
f     - X1 .EQ. X2: Tests whether X1 equals X2. (The synonym "==" is also
f     provided for compatibility with C.)
c     - x1 != x2: Tests whether "x1" is unequal to "x2". (The synonym ".ne."
c     is also provided for compatibility with Fortran.)
f     - X1 .NE. X2: Tests whether X1 is unequal to X2. (The synonym "!=" is
f     also provided for compatibility with C.)
c     - x1 > x2: Tests whether "x1" is greater than "x2". (The synonym
c     ".gt." is also provided for compatibility with Fortran.)
f     - X1 .GT. X2: Tests whether X1 is greater than X2. (The synonym ">" is
f     also provided for compatibility with C.)
c     - x1 >= x2: Tests whether "x1" is greater than or equal to "x2". (The
c     synonym ".ge."  is also provided for compatibility with Fortran.)
f     - X1 .GE. X2: Tests whether X1 is greater than or equal to X2. (The
f     synonym ">=" is also provided for compatibility with C.)
c     - x1 < x2: Tests whether "x1" is less than "x2". (The synonym ".lt."
c     is also provided for compatibility with Fortran.)
f     - X1 .LT. X2: Tests whether X1 is less than X2. (The synonym "<" is also
f     provided for compatibility with C.)
c     - x1 <= x2: Tests whether "x1" is less than or equal to "x2". (The
c     synonym ".le." is also provided for compatibility with Fortran.)
f     - X1 .LE. X2: Tests whether X1 is less than or equal to X2. (The synonym
f     "<=" is also provided for compatibility with C.)
*
c     Note that relational operators cannot usefully be used to compare
c     values with the <bad> value (representing missing data), because the
c     result is always <bad>. The isbad() function should be used instead.
f     Note that relational operators cannot usefully be used to compare
f     values with the <bad> value (representing missing data), because the
f     result is always <bad>. The ISBAD() function should be used instead.
f
f     Note, also, that because logical operators can operate on floating
f     point values, care must be taken to use parentheses in some cases
f     where they would not normally be required in Fortran. For example,
f     the expresssion:
f     - .NOT. A .EQ. B
f
f     must be written:
f     - .NOT. ( A .EQ. B )
f
f     to prevent the .NOT. operator from associating with the variable A.

*  Bitwise Operators:
c     The bitwise operators provided by C are often useful when operating on
c     raw data (e.g. from instruments), so they are also provided for use in
c     MathMap expressions. In this case, however, the values on which they
c     operate are floating point values rather than pure integers. In order
c     to produce results which match the pure integer case, the operands are
c     regarded as fixed point binary numbers (i.e. with the binary
c     equivalent of a decimal point) with negative numbers represented using
c     twos-complement notation. For integer values, the resulting bit
c     pattern corresponds to that of the equivalent signed integer (digits
c     to the right of the point being zero). Operations on the bits
c     representing the fractional part are also possible, however.
f     Bitwise operators are often useful when operating on raw data
f     (e.g. from instruments), so they are provided for use in MathMap
f     expressions. In this case, however, the values on which they operate
f     are floating point values rather than the more usual pure integers. In
f     order to produce results which match the pure integer case, the
f     operands are regarded as fixed point binary numbers (i.e. with the
f     binary equivalent of a decimal point) with negative numbers
f     represented using twos-complement notation. For integer values, the
f     resulting bit pattern corresponds to that of the equivalent signed
f     integer (digits to the right of the point being zero). Operations on
f     the bits representing the fractional part are also possible, however.
*
*     The following bitwise operators are available:
c     - x1 >> x2: Rightward bit shift. The integer value of "x2" is taken
c     (rounding towards zero) and the bits representing "x1" are then
c     shifted this number of places to the right (or to the left if the
c     number of places is negative). This is equivalent to dividing "x1" by
c     the corresponding power of 2.
f     - X1 >> X2: Rightward bit shift. The integer value of X2 is taken
f     (rounding towards zero) and the bits representing X1 are then
f     shifted this number of places to the right (or to the left if the
f     number of places is negative). This is equivalent to dividing X1 by
f     the corresponding power of 2.
c     - x1 << x2: Leftward bit shift. The integer value of "x2" is taken
c     (rounding towards zero), and the bits representing "x1" are then
c     shifted this number of places to the left (or to the right if the
c     number of places is negative). This is equivalent to multiplying "x1"
c     by the corresponding power of 2.
f     - X1 << X2: Leftward bit shift. The integer value of X2 is taken
f     (rounding towards zero), and the bits representing X1 are then
f     shifted this number of places to the left (or to the right if the
f     number of places is negative). This is equivalent to multiplying X1
f     by the corresponding power of 2.
c     - x1 & x2: Bitwise AND between the bits of "x1" and those of "x2"
c     (equivalent to a boolean AND applied at each bit position in turn).
f     - X1 & X2: Bitwise AND between the bits of X1 and those of X2
f     (equivalent to a logical AND applied at each bit position in turn).
c     - x1 | x2: Bitwise OR between the bits of "x1" and those of "x2"
c     (equivalent to a boolean OR applied at each bit position in turn).
f     - X1 | X2: Bitwise OR between the bits of X1 and those of X2
f     (equivalent to a logical OR applied at each bit position in turn).
c     - x1 ^ x2: Bitwise exclusive OR (XOR) between the bits of "x1" and
c     those of "x2" (equivalent to a boolean XOR applied at each bit
c     position in turn).
f     - X1 ^ X2: Bitwise exclusive OR (XOR) between the bits of X1 and
f     those of X2 (equivalent to a logical XOR applied at each bit
f     position in turn).
*
c     Note that no bit inversion operator ("~" in C) is provided. This is
c     because inverting the bits of a twos-complement fixed point binary
c     number is equivalent to simply negating it. This differs from the
c     pure integer case because bits to the right of the binary point are
c     also inverted. To invert only those bits to the left of the binary
c     point, use a bitwise exclusive OR with the value -1 (i.e. "x^-1").
f     Note that no bit inversion operator is provided. This is
f     because inverting the bits of a twos-complement fixed point binary
f     number is equivalent to simply negating it. This differs from the
f     pure integer case because bits to the right of the binary point are
f     also inverted. To invert only those bits to the left of the binary
f     point, use a bitwise exclusive OR with the value -1 (i.e. X^-1).

*  Functions:
*     The following functions are available:
c     - abs(x): Absolute value of "x" (sign removal), same as fabs(x).
f     - ABS(X): Absolute value of X (sign removal), same as FABS(X).
c     - acos(x): Inverse cosine of "x", in radians.
f     - ACOS(X): Inverse cosine of X, in radians.
c     - acosd(x): Inverse cosine of "x", in degrees.
f     - ACOSD(X): Inverse cosine of X, in degrees.
c     - acosh(x): Inverse hyperbolic cosine of "x".
f     - ACOSH(X): Inverse hyperbolic cosine of X.
c     - acoth(x): Inverse hyperbolic cotangent of "x".
f     - ACOTH(X): Inverse hyperbolic cotangent of X.
c     - acsch(x): Inverse hyperbolic cosecant of "x".
f     - ACSCH(X): Inverse hyperbolic cosecant of X.
c     - aint(x): Integer part of "x" (round towards zero), same as int(x).
f     - AINT(X): Integer part of X (round towards zero), same as INT(X).
c     - asech(x): Inverse hyperbolic secant of "x".
f     - ASECH(X): Inverse hyperbolic secant of X.
c     - asin(x): Inverse sine of "x", in radians.
f     - ASIN(X): Inverse sine of X, in radians.
c     - asind(x): Inverse sine of "x", in degrees.
f     - ASIND(X): Inverse sine of X, in degrees.
c     - asinh(x): Inverse hyperbolic sine of "x".
f     - ASINH(X): Inverse hyperbolic sine of X.
c     - atan(x): Inverse tangent of "x", in radians.
f     - ATAN(X): Inverse tangent of X, in radians.
c     - atand(x): Inverse tangent of "x", in degrees.
f     - ATAND(X): Inverse tangent of X, in degrees.
c     - atanh(x): Inverse hyperbolic tangent of "x".
f     - ATANH(X): Inverse hyperbolic tangent of X.
c     - atan2(x1, x2): Inverse tangent of "x1/x2", in radians.
f     - ATAN2(X1, X2): Inverse tangent of X1/X2, in radians.
c     - atan2d(x1, x2): Inverse tangent of "x1/x2", in degrees.
f     - ATAN2D(X1, X2): Inverse tangent of X1/X2, in degrees.
c     - ceil(x): Smallest integer value not less then "x" (round towards
c       plus infinity).
f     - CEIL(X): Smallest integer value not less then X (round towards
f       plus infinity).
c     - cos(x): Cosine of "x" in radians.
f     - COS(X): Cosine of X in radians.
c     - cosd(x): Cosine of "x" in degrees.
f     - COSD(X): Cosine of X in degrees.
c     - cosh(x): Hyperbolic cosine of "x".
f     - COSH(X): Hyperbolic cosine of X.
c     - coth(x): Hyperbolic cotangent of "x".
f     - COTH(X): Hyperbolic cotangent of X.
c     - csch(x): Hyperbolic cosecant of "x".
f     - CSCH(X): Hyperbolic cosecant of X.
c     - dim(x1, x2): Returns "x1-x2" if "x1" is greater than "x2", otherwise 0.
f     - DIM(X1, X2): Returns X1-X2 if X1 is greater than X2, otherwise 0.
c     - exp(x): Exponential function of "x".
f     - EXP(X): Exponential function of X.
c     - fabs(x): Absolute value of "x" (sign removal), same as abs(x).
f     - FABS(X): Absolute value of X (sign removal), same as ABS(X).
c     - floor(x): Largest integer not greater than "x" (round towards
c       minus infinity).
f     - FLOOR(X): Largest integer not greater than X (round towards
f       minus infinity).
c     - fmod(x1, x2): Remainder when "x1" is divided by "x2", same as
c       mod(x1, x2).
f     - FMOD(X1, X2): Remainder when X1 is divided by X2, same as
f       MOD(X1, X2).
c     - gauss(x1, x2): Random sample from a Gaussian distribution with mean
c       "x1" and standard deviation "x2".
f     - GAUSS(X1, X2): Random sample from a Gaussian distribution with mean
f       X1 and standard deviation X2.
c     - int(x): Integer part of "x" (round towards zero), same as aint(x).
f     - INT(X): Integer part of X (round towards zero), same as AINT(X).
c     - isbad(x): Returns 1 if "x" has the <bad> value (AST__BAD), otherwise 0.
f     - ISBAD(X): Returns 1 if X has the <bad> value (AST__BAD), otherwise 0.
c     - log(x): Natural logarithm of "x".
f     - LOG(X): Natural logarithm of X.
c     - log10(x): Logarithm of "x" to base 10.
f     - LOG10(X): Logarithm of X to base 10.
c     - max(x1, x2, ...): Maximum of two or more values.
f     - MAX(X1, X2, ...): Maximum of two or more values.
c     - min(x1, x2, ...): Minimum of two or more values.
f     - MIN(X1, X2, ...): Minimum of two or more values.
c     - mod(x1, x2): Remainder when "x1" is divided by "x2", same as
c       fmod(x1, x2).
f     - MOD(X1, X2): Remainder when X1 is divided by X2, same as
f       FMOD(X1, X2).
c     - nint(x): Nearest integer to "x" (round to nearest).
f     - NINT(X): Nearest integer to X (round to nearest).
c     - poisson(x): Random integer-valued sample from a Poisson
c       distribution with mean "x".
f     - POISSON(X): Random integer-valued sample from a Poisson
f       distribution with mean X.
c     - pow(x1, x2): "x1" raised to the power of "x2".
f     - POW(X1, X2): X1 raised to the power of X2.
c     - qif(x1, x2, x3): Returns "x2" if "x1" is true, and "x3" otherwise.
f     - QIF(x1, x2, x3): Returns X2 if X1 is true, and X3 otherwise.
c     - rand(x1, x2): Random sample from a uniform distribution in the
c       range "x1" to "x2" inclusive.
f     - RAND(X1, X2): Random sample from a uniform distribution in the
f       range X1 to X2 inclusive.
c     - sech(x): Hyperbolic secant of "x".
f     - SECH(X): Hyperbolic secant of X.
c     - sign(x1, x2): Absolute value of "x1" with the sign of "x2"
c       (transfer of sign).
f     - SIGN(X1, X2): Absolute value of X1 with the sign of X2
f       (transfer of sign).
c     - sin(x): Sine of "x" in radians.
f     - SIN(X): Sine of X in radians.
c     - sinc(x): Sinc function of "x" [= "sin(x)/x"].
f     - SINC(X): Sinc function of X [= SIN(X)/X].
c     - sind(x): Sine of "x" in degrees.
f     - SIND(X): Sine of X in degrees.
c     - sinh(x): Hyperbolic sine of "x".
f     - SINH(X): Hyperbolic sine of X.
c     - sqr(x): Square of "x" (= "x*x").
f     - SQR(X): Square of X (= X*X).
c     - sqrt(x): Square root of "x".
f     - SQRT(X): Square root of X.
c     - tan(x): Tangent of "x" in radians.
f     - TAN(X): Tangent of X in radians.
c     - tand(x): Tangent of "x" in degrees.
f     - TAND(X): Tangent of X in degrees.
c     - tanh(x): Hyperbolic tangent of "x".
f     - TANH(X): Hyperbolic tangent of X.

*  Symbolic Constants:
*     The following symbolic constants are available (the enclosing "<>"
*     brackets must be included):
c     - <bad>: The "bad" value (AST__BAD) used to flag missing data. Note
c     that you cannot usefully compare values with this constant because the
c     result is always <bad>. The isbad() function should be used instead.
f     - <bad>: The "bad" value (AST__BAD) used to flag missing data. Note
f     that you cannot usefully compare values with this constant because the
f     result is always <bad>. The ISBAD() function should be used instead.
c     - <dig>: Number of decimal digits of precision available in a
c     floating point (double) value.
f     - <dig>: Number of decimal digits of precision available in a
f     floating point (double precision) value.
*     - <e>: Base of natural logarithms.
*     - <epsilon>: Smallest positive number such that 1.0+<epsilon> is
*     distinguishable from unity.
c     - <mant_dig>: The number of base <radix> digits stored in the
c     mantissa of a floating point (double) value.
f     - <mant_dig>: The number of base <radix> digits stored in the
f     mantissa of a floating point (double precision) value.
c     - <max>: Maximum representable floating point (double) value.
f     - <max>: Maximum representable floating point (double precision) value.
c     - <max_10_exp>: Maximum integer such that 10 raised to that power
c     can be represented as a floating point (double) value.
f     - <max_10_exp>: Maximum integer such that 10 raised to that power
f     can be represented as a floating point (double precision) value.
c     - <max_exp>: Maximum integer such that <radix> raised to that
c     power minus 1 can be represented as a floating point (double) value.
f     - <max_exp>: Maximum integer such that <radix> raised to that
f     power minus 1 can be represented as a floating point (double precision)
f     value.
c     - <min>: Smallest positive number which can be represented as a
c     normalised floating point (double) value.
f     - <min>: Smallest positive number which can be represented as a
f     normalised floating point (double precision) value.
c     - <min_10_exp>: Minimum negative integer such that 10 raised to that
c     power can be represented as a normalised floating point (double) value.
f     - <min_10_exp>: Minimum negative integer such that 10 raised to that
f     power can be represented as a normalised floating point (double
f     precision) value.
c     - <min_exp>: Minimum negative integer such that <radix> raised to
c     that power minus 1 can be represented as a normalised floating point
c     (double) value.
f     - <min_exp>: Minimum negative integer such that <radix> raised to
f     that power minus 1 can be represented as a normalised floating point
f     (double precision) value.
*     - <pi>: Ratio of the circumference of a circle to its diameter.
c     - <radix>: The radix (number base) used to represent the mantissa of
c     floating point (double) values.
f     - <radix>: The radix (number base) used to represent the mantissa of
f     floating point (double precision) values.
*     - <rounds>: The mode used for rounding floating point results after
*     addition. Possible values include: -1 (indeterminate), 0 (toward
*     zero), 1 (to nearest), 2 (toward plus infinity) and 3 (toward minus
*     infinity). Other values indicate machine-dependent behaviour.

*  Evaluation Precedence and Associativity:
*     Items appearing in expressions are evaluated in the following order
*     (highest precedence first):
*     - Constants and variables
*     - Function arguments and parenthesised expressions
*     - Function invocations
*     - Unary + - ! .not.
*     - **
*     - * /
*     - + -
*     - << >>
*     - < .lt. <= .le. > .gt. >= .ge.
*     - == .eq. != .ne.
*     - &
*     - ^
*     - |
*     - && .and.
*     - ^^
*     - || .or
*     - .eqv. .neqv. .xor.
*
*     All operators associate from left-to-right, except for unary +,
*     unary -, !, .not. and ** which associate from right-to-left.

*  Notes:
*     - The sequence of numbers produced by the random number functions
*     available within a MathMap is normally unpredictable and different for
*     each MathMap. However, this behaviour may be controlled by means of
*     the MathMap's Seed attribute.
c     - Normally, compound Mappings (CmpMaps) which involve MathMaps will
c     not be subject to simplification (e.g. using astSimplify) because AST
c     cannot know how different MathMaps will interact. However, in the
c     special case where a MathMap occurs in series with its own inverse,
c     then simplification may be possible. Whether simplification does, in
c     fact, occur under these circumstances is controlled by the MathMap's
c     SimpFI and SimpIF attributes.
f     - Normally, compound Mappings (CmpMaps) which involve MathMaps will
f     not be subject to simplification (e.g. using AST_SIMPLIFY) because AST
f     cannot know how different MathMaps will interact. However, in the
f     special case where a MathMap occurs in series with its own inverse,
f     then simplification may be possible. Whether simplification does, in
f     fact, occur under these circumstances is controlled by the MathMap's
f     SimpFI and SimpIF attributes.
*     - A null Object pointer (AST__NULL) will be returned if this
c     function is invoked with the AST error status set, or if it
f     function is invoked with STATUS set to an error value, or if it
*     should fail for any reason.
*--

*  Implementation Notes:
*     - This function implements the external (public) interface to
*     the astMathMap constructor function. It returns an ID value
*     (instead of a true C pointer) to external users, and must be
*     provided because astMathMap_ has a variable argument list which
*     cannot be encapsulated in a macro (where this conversion would
*     otherwise occur).
*     - The variable argument list also prevents this function from
*     invoking astMathMap_ directly, so it must be a re-implementation
*     of it in all respects, except for the final conversion of the
*     result to an ID value.
*/

/* Local Variables: */
   astDECLARE_GLOBALS            /* Pointer to thread-specific global data */
   AstMathMap *new;              /* Pointer to new MathMap */
   va_list args;                 /* Variable argument list */

   int *status;                  /* Pointer to inherited status value */

/* Get a pointer to the inherited status value. */
   status = astGetStatusPtr;

/* Get a pointer to the thread specific global data structure. */
   astGET_GLOBALS(NULL);

/* Check the global error status. */
   if ( !astOK ) return NULL;

/* Initialise the MathMap, allocating memory and initialising the virtual
   function table as well if necessary. */
   new = astInitMathMap( NULL, sizeof( AstMathMap ), !class_init, &class_vtab,
                         "MathMap", nin, nout, nfwd, fwd, ninv, inv );

/* If successful, note that the virtual function table has been initialised. */
   if ( astOK ) {
      class_init = 1;

/* Obtain the variable argument list and pass it along with the options string
   to the astVSet method to initialise the new MathMap's attributes. */
      va_start( args, options );
      astVSet( new, options, NULL, args );
      va_end( args );

/* If an error occurred, clean up by deleting the new object. */
      if ( !astOK ) new = astDelete( new );
   }

/* Return an ID value for the new MathMap. */
   return astMakeId( new );
}

AstMathMap *astInitMathMap_( void *mem, size_t size, int init,
                             AstMathMapVtab *vtab, const char *name,
                             int nin, int nout,
                             int nfwd, const char *fwd[],
                             int ninv, const char *inv[], int *status ) {
/*
*+
*  Name:
*     astInitMathMap

*  Purpose:
*     Initialise a MathMap.

*  Type:
*     Protected function.

*  Synopsis:
*     #include "mathmap.h"
*     AstMathMap *astInitMathMap_( void *mem, size_t size, int init,
*                                  AstMathMapVtab *vtab, const char *name,
*                                  int nin, int nout,
*                                  int nfwd, const char *fwd[],
*                                  int ninv, const char *inv[] )

*  Class Membership:
*     MathMap initialiser.

*  Description:
*     This function is provided for use by class implementations to initialise
*     a new MathMap object. It allocates memory (if necessary) to accommodate
*     the MathMap plus any additional data associated with the derived class.
*     It then initialises a MathMap structure at the start of this memory. If
*     the "init" flag is set, it also initialises the contents of a virtual
*     function table for a MathMap at the start of the memory passed via the
*     "vtab" parameter.

*  Parameters:
*     mem
*        A pointer to the memory in which the MathMap is to be initialised.
*        This must be of sufficient size to accommodate the MathMap data
*        (sizeof(MathMap)) plus any data used by the derived class. If a value
*        of NULL is given, this function will allocate the memory itself using
*        the "size" parameter to determine its size.
*     size
*        The amount of memory used by the MathMap (plus derived class data).
*        This will be used to allocate memory if a value of NULL is given for
*        the "mem" parameter. This value is also stored in the MathMap
*        structure, so a valid value must be supplied even if not required for
*        allocating memory.
*     init
*        A logical flag indicating if the MathMap's virtual function table is
*        to be initialised. If this value is non-zero, the virtual function
*        table will be initialised by this function.
*     vtab
*        Pointer to the start of the virtual function table to be associated
*        with the new MathMap.
*     name
*        Pointer to a constant null-terminated character string which contains
*        the name of the class to which the new object belongs (it is this
*        pointer value that will subsequently be returned by the Object
*        astClass function).
*     nin
*        Number of input variables for the MathMap.
*     nout
*        Number of output variables for the MathMap.
*     nfwd
*        The number of forward transformation functions being supplied.
*        This must be at least equal to "nout".
*     fwd
*        Pointer to an array, with "nfwd" elements, of pointers to null
*        terminated strings which contain each of the forward transformation
*        functions.
*     ninv
*        The number of inverse transformation functions being supplied.
*        This must be at least equal to "nin".
*     inv
*        Pointer to an array, with "ninv" elements, of pointers to null
*        terminated strings which contain each of the inverse transformation
*        functions.

*  Returned Value:
*     A pointer to the new MathMap.

*  Notes:
*     -  This function does not attempt to ensure that the forward and inverse
*     transformations performed by the resulting MathMap are consistent in any
*     way.
*     -  This function makes a copy of the contents of the strings supplied.
*     -  A null pointer will be returned if this function is invoked with the
*     global error status set, or if it should fail for any reason.
*-
*/

/* Local Variables: */
   AstMathMap *new;              /* Pointer to new MathMap */
   char **fwdfun;                /* Array of cleaned forward functions */
   char **invfun;                /* Array of cleaned inverse functions */
   double **fwdcon;              /* Constants for forward functions */
   double **invcon;              /* Constants for inverse functions */
   int **fwdcode;                /* Code for forward functions */
   int **invcode;                /* Code for inverse functions */
   int fwdstack;                 /* Stack size for forward functions */
   int invstack;                 /* Stack size for inverse functions */

/* Initialise. */
   new = NULL;

/* Check the global status. */
   if ( !astOK ) return new;

/* If necessary, initialise the virtual function table. */
   if ( init ) astInitMathMapVtab( vtab, name );

/* Check the numbers of input and output variables for validity,
   reporting an error if necessary. */
   if ( nin < 1 ) {
      astError( AST__BADNI,
                "astInitMathMap(%s): Bad number of input coordinates (%d).", status,
                name, nin );
      astError( AST__BADNI,
                "This number should be one or more." , status);
   } else if ( nout < 1 ) {
      astError( AST__BADNO,
                "astInitMathMap(%s): Bad number of output coordinates (%d).", status,
                name, nout );
      astError( AST__BADNI,
                "This number should be one or more." , status);

/* Check that sufficient number of forward and inverse transformation
   functions have been supplied and report an error if necessary. */
   } else if ( nfwd < nout ) {
      astError( AST__INNTF,
                "astInitMathMap(%s): Too few forward transformation functions "
                "given (%d).", status,
                name, nfwd );
      astError( astStatus,
                "At least %d forward transformation functions must be "
                "supplied. ", status,
                nout );
   } else if ( ninv < nin ) {
      astError( AST__INNTF,
                "astInitMathMap(%s): Too few inverse transformation functions "
                "given (%d).", status,
                name, ninv );
      astError( astStatus,
                "At least %d inverse transformation functions must be "
                "supplied. ", status,
                nin );

/* Of OK, clean the forward and inverse functions provided. This makes
   a lower-case copy with white space removed. */
   } else {
      CleanFunctions( nfwd, fwd, &fwdfun, status );
      CleanFunctions( ninv, inv, &invfun, status );

/* Compile the cleaned functions. From the returned pointers (if
   successful), we can now tell which transformations (forward and/or
   inverse) are defined. */
      CompileMapping( "astInitMathMap", name, nin, nout,
                      nfwd, (const char **) fwdfun,
                      ninv, (const char **) invfun,
                      &fwdcode, &invcode, &fwdcon, &invcon,
                      &fwdstack, &invstack, status );

/* Initialise a Mapping structure (the parent class) as the first
   component within the MathMap structure, allocating memory if
   necessary. Specify that the Mapping should be defined in the required
   directions. */
      new = (AstMathMap *) astInitMapping( mem, size, 0,
                                           (AstMappingVtab *) vtab, name,
                                           nin, nout,
                                           ( fwdcode != NULL ),
                                           ( invcode != NULL ) );


/* If an error has occurred, free all the memory which may have been
   allocated by the cleaning and compilation steps above. */
      if ( !astOK ) {
         FREE_POINTER_ARRAY( fwdfun, nfwd )
         FREE_POINTER_ARRAY( invfun, ninv )
         FREE_POINTER_ARRAY( fwdcode, nfwd )
         FREE_POINTER_ARRAY( invcode, ninv )
         FREE_POINTER_ARRAY( fwdcon, nfwd )
         FREE_POINTER_ARRAY( invcon, ninv )
      }

/* Initialise the MathMap data. */
/* ---------------------------- */
/* Store pointers to the compiled function information, together with
   other MathMap data. */
      if ( new ) {
         new->fwdfun = fwdfun;
         new->invfun = invfun;
         new->fwdcode = fwdcode;
         new->invcode = invcode;
         new->fwdcon = fwdcon;
         new->invcon = invcon;
         new->fwdstack = fwdstack;
         new->invstack = invstack;
         new->nfwd = nfwd;
         new->ninv = ninv;
         new->simp_fi = -INT_MAX;
         new->simp_if = -INT_MAX;

/* Initialise the random number generator context associated with the
   MathMap, using an unpredictable default seed value. */
         new->rcontext.active = 0;
         new->rcontext.random_int = 0;
         new->rcontext.seed_set = 0;
         new->rcontext.seed = DefaultSeed( &new->rcontext, status );

/* If an error occurred, clean up by deleting the new object. */
         if ( !astOK ) new = astDelete( new );
      }
   }

/* Return a pointer to the new object. */
   return new;
}

AstMathMap *astLoadMathMap_( void *mem, size_t size,
                             AstMathMapVtab *vtab, const char *name,
                             AstChannel *channel, int *status ) {
/*
*+
*  Name:
*     astLoadMathMap

*  Purpose:
*     Load a MathMap.

*  Type:
*     Protected function.

*  Synopsis:
*     #include "mathmap.h"
*     AstMathMap *astLoadMathMap( void *mem, size_t size,
*                                 AstMathMapVtab *vtab, const char *name,
*                                 AstChannel *channel )

*  Class Membership:
*     MathMap loader.

*  Description:
*     This function is provided to load a new MathMap using data read
*     from a Channel. It first loads the data used by the parent class
*     (which allocates memory if necessary) and then initialises a
*     MathMap structure in this memory, using data read from the input
*     Channel.
*
*     If the "init" flag is set, it also initialises the contents of a
*     virtual function table for a MathMap at the start of the memory
*     passed via the "vtab" parameter.


*  Parameters:
*     mem
*        A pointer to the memory into which the MathMap is to be
*        loaded.  This must be of sufficient size to accommodate the
*        MathMap data (sizeof(MathMap)) plus any data used by derived
*        classes. If a value of NULL is given, this function will
*        allocate the memory itself using the "size" parameter to
*        determine its size.
*     size
*        The amount of memory used by the MathMap (plus derived class
*        data).  This will be used to allocate memory if a value of
*        NULL is given for the "mem" parameter. This value is also
*        stored in the MathMap structure, so a valid value must be
*        supplied even if not required for allocating memory.
*
*        If the "vtab" parameter is NULL, the "size" value is ignored
*        and sizeof(AstMathMap) is used instead.
*     vtab
*        Pointer to the start of the virtual function table to be
*        associated with the new MathMap. If this is NULL, a pointer
*        to the (static) virtual function table for the MathMap class
*        is used instead.
*     name
*        Pointer to a constant null-terminated character string which
*        contains the name of the class to which the new object
*        belongs (it is this pointer value that will subsequently be
*        returned by the astGetClass method).
*
*        If the "vtab" parameter is NULL, the "name" value is ignored
*        and a pointer to the string "MathMap" is used instead.

*  Returned Value:
*     A pointer to the new MathMap.

*  Notes:
*     - A null pointer will be returned if this function is invoked
*     with the global error status set, or if it should fail for any
*     reason.
*-
*/

/* Local Constants: */
   astDECLARE_GLOBALS            /* Pointer to thread-specific global data */
#define KEY_LEN 50               /* Maximum length of a keyword */

/* Local Variables: */
   AstMathMap *new;              /* Pointer to the new MathMap */
   char key[ KEY_LEN + 1 ];      /* Buffer for keyword strings */
   int ifun;                     /* Loop counter for functions */
   int invert;                   /* Invert attribute value */
   int nin;                      /* True number of input coordinates */
   int nout;                     /* True number of output coordinates */

/* Get a pointer to the thread specific global data structure. */
   astGET_GLOBALS(channel);

/* Initialise. */
   new = NULL;

/* Check the global error status. */
   if ( !astOK ) return new;

/* If a NULL virtual function table has been supplied, then this is
   the first loader to be invoked for this MathMap. In this case the
   MathMap belongs to this class, so supply appropriate values to be
   passed to the parent class loader (and its parent, etc.). */
   if ( !vtab ) {
      size = sizeof( AstMathMap );
      vtab = &class_vtab;
      name = "MathMap";

/* If required, initialise the virtual function table for this class. */
      if ( !class_init ) {
         astInitMathMapVtab( vtab, name );
         class_init = 1;
      }
   }

/* Invoke the parent class loader to load data for all the ancestral
   classes of the current one, returning a pointer to the resulting
   partly-built MathMap. */
   new = astLoadMapping( mem, size, (AstMappingVtab *) vtab, name,
                         channel );

   if ( astOK ) {

/* Read input data. */
/* ================ */
/* Request the input Channel to read all the input data appropriate to
   this class into the internal "values list". */
      astReadClassData( channel, "MathMap" );

/* Determine if the MathMap is inverted and obtain the "true" number
   of input and output coordinates by un-doing the effects of any
   inversion. */
      invert = astGetInvert( new );
      nin = invert ? astGetNout( new ) : astGetNin( new );
      nout = invert ? astGetNin( new ) : astGetNout( new );

/* Now read each individual data item from this list and use it to
   initialise the appropriate instance variable(s) for this class. */

/* In the case of attributes, we first read the "raw" input value,
   supplying the "unset" value as the default. If a "set" value is
   obtained, we then use the appropriate (private) Set... member
   function to validate and set the value properly. */

/* Numbers of transformation functions. */
/* ------------------------------------ */
/* Read the numbers of forward and inverse transformation functions,
   supplying appropriate defaults. */
      new->nfwd = astReadInt( channel, "nfwd", nout );
      new->ninv = astReadInt( channel, "ninv", nin );
      if ( astOK ) {

/* Allocate memory for the MathMap's transformation function arrays. */
         MALLOC_POINTER_ARRAY( new->fwdfun, char *, new->nfwd )
         MALLOC_POINTER_ARRAY( new->invfun, char *, new->ninv )
         if ( astOK ) {

/* Forward transformation functions. */
/* --------------------------------- */
/* Create a keyword for each forward transformation function and read
   the function's value as a string. */
            for ( ifun = 0; ifun < new->nfwd; ifun++ ) {
               (void) sprintf( key, "fwd%d", ifun + 1 );
               new->fwdfun[ ifun ] = astReadString( channel, key, "" );
            }

/* Inverse transformation functions. */
/* --------------------------------- */
/* Repeat this process for the inverse transformation functions. */
            for ( ifun = 0; ifun < new->ninv; ifun++ ) {
               (void) sprintf( key, "inv%d", ifun + 1 );
               new->invfun[ ifun ] = astReadString( channel, key, "" );
            }

/* Forward-inverse simplification flag. */
/* ------------------------------------ */
            new->simp_fi = astReadInt( channel, "simpfi", -INT_MAX );
            if ( TestSimpFI( new, status ) ) SetSimpFI( new, new->simp_fi, status );

/* Inverse-forward simplification flag. */
/* ------------------------------------ */
            new->simp_if = astReadInt( channel, "simpif", -INT_MAX );
            if ( TestSimpIF( new, status ) ) SetSimpIF( new, new->simp_if, status );

/* Random number context. */
/* ---------------------- */
/* Initialise the random number generator context. */
            new->rcontext.active = 0;
            new->rcontext.random_int = 0;

/* Read the flag that determines if the Seed value is set, and the
   Seed value itself. */
            new->rcontext.seed_set = astReadInt( channel, "seeded", 0 );
            if ( TestSeed( new, status ) ) {
               new->rcontext.seed = astReadInt( channel, "seed", 0 );
               SetSeed( new, new->rcontext.seed, status );

/* Supply an unpredictable default Seed value if necessary. */
            } else {
               new->rcontext.seed = DefaultSeed( &new->rcontext, status );
            }

/* Compile the MathMap's transformation functions. */
            CompileMapping( "astLoadMathMap", name, nin, nout,
                            new->nfwd, (const char **) new->fwdfun,
                            new->ninv, (const char **) new->invfun,
                            &new->fwdcode, &new->invcode,
                            &new->fwdcon, &new->invcon,
                            &new->fwdstack, &new->invstack, status );
         }

/* If an error occurred, clean up by deleting the new MathMap. */
         if ( !astOK ) new = astDelete( new );
      }
   }

/* Return the new MathMap pointer. */
   return new;

/* Undefine macros local to this function. */
#undef KEY_LEN
}