summaryrefslogtreecommitdiffstats
path: root/ast/matrixmap.c
blob: ed9600b2752ab14e774fdbce9ee573f7984c66d8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
/*
*class++
*  Name:
*     MatrixMap

*  Purpose:
*     Map coordinates by multiplying by a matrix.

*  Constructor Function:
c     astMatrixMap
f     AST_MATRIXMAP

*  Description:
*     A MatrixMap is form of Mapping which performs a general linear
*     transformation. Each set of input coordinates, regarded as a
*     column-vector, are pre-multiplied by a matrix (whose elements
*     are specified when the MatrixMap is created) to give a new
*     column-vector containing the output coordinates. If appropriate,
*     the inverse transformation may also be performed.

*  Inheritance:
*     The MatrixMap class inherits from the Mapping class.

*  Attributes:
*     The MatrixMap class does not define any new attributes beyond
*     those which are applicable to all Mappings.

*  Functions:
c     The MatrixMap class does not define any new functions beyond those
f     The MatrixMap class does not define any new routines beyond those
*     which are applicable to all Mappings.

*  Copyright:
*     Copyright (C) 1997-2006 Council for the Central Laboratory of the
*     Research Councils
*     Copyright (C) 2009 Science & Technology Facilities Council.
*     All Rights Reserved.

*  Licence:
*     This program is free software: you can redistribute it and/or
*     modify it under the terms of the GNU Lesser General Public
*     License as published by the Free Software Foundation, either
*     version 3 of the License, or (at your option) any later
*     version.
*
*     This program is distributed in the hope that it will be useful,
*     but WITHOUT ANY WARRANTY; without even the implied warranty of
*     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
*     GNU Lesser General Public License for more details.
*
*     You should have received a copy of the GNU Lesser General
*     License along with this program.  If not, see
*     <http://www.gnu.org/licenses/>.

*  Authors:
*     DSB: D.S. Berry (Starlink)
*     RFWS: R.F. Warren-Smith (Starlink)

*  History:
*     9-FEB-1996 (DSB):
*        Original version.
*     13-NOV-1996 (DSB):
*        Updated to support attributes, I/O and an external interface.
*     3-JUN-1997 (DSB):
*        astMtrMult and astMtrRot made protected instead of public.
*     16-JUN-1997 (RFWS):
*        Tidied public prologues.
*     24-JUN-1997 (DSB):
*        Zero returned for coordinates which are indeterminate as a
*        result of using an inverted, non-square, diagonal matrix.
*     10-OCT-1997 (DSB):
*        o  The inverse matrix is no longer dumped by the Dump function.
*        Instead, it is re-calculated by the Load function.
*        o  The description of argument "form" in astMatrixMap corrected
*        to indicate that a value of 2 produces a unit matrix.
*        o  String values used to represent choices externally, instead
*        of integers.
*     24-NOV-1997 (DSB):
*        Use of error code AST__OPT replaced by AST__RDERR.
*     28-JAN-1998 (DSB):
*        Bug fix in astMtrMult: the matrix (forward or inverse) used for
*        the "a" MatrixMap was determined by the Invert flag of the other
*        ("this") MatrixMap.
*     14-APR-1998 (DSB):
*        Bug fix in Dump. Previously, matrix elements with value AST__BAD
*        were explicitly written out. Now they are not written out, since
*        AST__BAD can have different values on different machines. Missing
*        elements default to AST__BAD when read back in using astLoadMatrixMap.
*     20-APR-1998 (DSB):
*        Bug fix in astLoadMatrixMap: initialise the pointer to the inverse
*        matrix array to NULL if no inverse matrix is needed.
*     25-AUG-1998 (DSB):
*        - Transform changed so that bad input axis values are not
*        propagated to output axes which are independant of the input axis.
*        - CompressMatrix changed to allow a tolerance of DBL_EPSILON when
*        determining if a matrix is a unit matrix, or a diagonal matrix.
*        - MapMerge changed to allow MatrixMaps to swap with PermMaps
*        in order to move the MatrixMap closer to a Mapping with which it
*        could merge.
*     22-FEB-1999 (DSB):
*        Changed logic of MapMerge to avoid infinite looping.
*     5-MAY-1999 (DSB):
*        More corrections to MapMerge: Cleared up errors in the use of the
*        supplied invert flags, and corrected logic for deciding which
*        neighbouring Mapping to swap with.
*     16-JUL-1999 (DSB):
*        Fixed memory leaks in MatWin and MapMerge.
*     8-JAN-2003 (DSB):
*        Changed private InitVtab method to protected astInitatrixMapVtab
*        method.
*     11-SEP-2003 (DSB):
*        Increased tolerance on checks for unit matrices within
*        CompressMatrix. Now uses sqrt(DBL_EPSILON)*diag (previously was
*        DBL_EPSILON*DIAG ).
*     10-NOV-2003 (DSB):
*        Modified functions which swap a MatrixMap with another Mapping
*        (e.g. MatSwapPerm, etc), to simplify the returned Mappings.
*     13-JAN-2003 (DSB):
*        Modified the tolerance used by CompressMatrix when checking for
*        zero matrix elements. Old system compared each element to thre
*        size of the diagonal, but different scalings on different axes could
*        cause this to trat as zero values which should nto be treated as
*        zero.
*     23-APR-2004 (DSB):
*        Changes to simplification algorithm.
*     8-JUL-2004 (DSB):
*        astMtrMult - Report an error if either MatrixMap does not have a
*        defined forward transformation.
*     1-SEP-2004 (DSB):
*        Ensure do1 and do2 are initialised before use in MapMerge.
*     7-SEP-2005 (DSB):
*        Take account of the Invert flag when using the zoom factor from
*        a ZoomMap.
*     14-FEB-2006 (DSB):
*        Correct row/col confusion in CompressMatrix.
*     15-MAR-2006 (DSB):
*        Override astEqual.
*     15-MAR-2009 (DSB):
*        MapSplit: Only create the returned Mapping if it would have some
*        outputs. Also, do not create the returned Mapping if any output
*        depends on a mixture of selected and unselected inputs.
*     16-JUL-2009 (DSB):
*        MatPerm: Fix memory leak (mm2 was not being annulled).
*     2-OCT-2012 (DSB):
*        - Check for Infs as well as NaNs.
*        - In MapSplit do not split the MatrixMap if the resulting
*          matrix would contain only bad elements.
*        - Report an error if an attempt is made to create a MatrixMap
*          containing only bad elements.
*     4-NOV-2013 (DSB):
*        Allow a full form MatrixMap to be simplified to a diagonal form
*        MatrixMap if all the off-diagonal values are zero.
*     23-APR-2015 (DSB):
*        Improve MapMerge. If a MatrixMap can merge with its next-but-one
*        neighbour, then swap the MatrixMap with its neighbour, so that
*        it is then next its next-but-one neighbour, and then merge the
*        two Mappings into a single Mapping. Previously, only the swap
*        was performed - not the merger. And the swap was only performed
*        if the intervening neighbour could not itself merge. This could
*        result in an infinite simplification loop, which was detected by
*        CmpMap and and aborted, resulting in no useful simplification.
*     15-JUN-2017 (DSB):
*        A diagonal MatrixMap in which the diagonal elements are all zero
*        cannot be simplified to a ZoomMap, since ZoomMaps cannot have
*        zero zoom factor.
*     16-JUN-2017 (DSB):
*        Fix error checking bug in MtrMult - it was checking for the
*        inverse transformation of "this" instead of the forward
*        transformation of "a".
*     7-NOW-2017 (DSB):
*        Allow a diagonal MatrixMap to merge with a WinMap.
*     5-JUN-2018 (DSB):
*        Include the inverse matrix in the dump of a MatrixMap. Previously,
*        the inverse matrix was calculated afresh using function InvertMatrix
*        when a MatrixMap was read from a dump. However this could introduce 
*        small round-trip errors if the inverse matrix in the original 
*        MatrixMap was created by astMtrRot etc, rather than the InvertMatrix
*        function. 
*class--
*/

/* Module Macros. */
/* ============== */
/* Set the name of the class we are implementing. This indicates to
   the header files that define class interfaces that they should make
   "protected" symbols available. */
#define astCLASS MatrixMap

/* Define identifiers for the different forms of matrix storage. */
#define FULL       0
#define DIAGONAL   1
#define UNIT       2

/* Include files. */
/* ============== */
/* Interface definitions. */
/* ---------------------- */

#include "globals.h"             /* Thread-safe global data access */
#include "error.h"               /* Error reporting facilities */
#include "memory.h"              /* Memory allocation facilities */
#include "object.h"              /* Base Object class */
#include "pointset.h"            /* Sets of points/coordinates */
#include "mapping.h"             /* Coordinate mappings (parent class) */
#include "matrixmap.h"           /* Interface definition for this class */
#include "pal.h"              /* SLALIB function definitions */
#include "permmap.h"
#include "zoommap.h"
#include "unitmap.h"
#include "winmap.h"

/* Error code definitions. */
/* ----------------------- */
#include "ast_err.h"             /* AST error codes */

/* C header files. */
/* --------------- */
#include <ctype.h>
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

/* Module Variables. */
/* ================= */

/* Address of this static variable is used as a unique identifier for
   member of this class. */
static int class_check;
static const char *Form[3] = { "Full", "Diagonal", "Unit" }; /* Text values
                                   used to represent storage form externally */

/* Pointers to parent class methods which are extended by this class. */
static AstPointSet *(* parent_transform)( AstMapping *, AstPointSet *, int, AstPointSet *, int * );
static int *(* parent_mapsplit)( AstMapping *, int, const int *, AstMapping **, int * );


#ifdef THREAD_SAFE
/* Define how to initialise thread-specific globals. */
#define GLOBAL_inits \
   globals->Class_Init = 0;

/* Create the function that initialises global data for this module. */
astMAKE_INITGLOBALS(MatrixMap)

/* Define macros for accessing each item of thread specific global data. */
#define class_init astGLOBAL(MatrixMap,Class_Init)
#define class_vtab astGLOBAL(MatrixMap,Class_Vtab)


#include <pthread.h>


#else


/* Define the class virtual function table and its initialisation flag
   as static variables. */
static AstMatrixMapVtab class_vtab;   /* Virtual function table */
static int class_init = 0;       /* Virtual function table initialised? */

#endif

/* External Interface Function Prototypes. */
/* ======================================= */
/* The following functions have public prototypes only (i.e. no
   protected prototypes), so we must provide local prototypes for use
   within this module. */
AstMatrixMap *astMatrixMapId_( int, int, int, const double [], const char *, ... );

/* Prototypes for Private Member Functions. */
/* ======================================== */
static AstMatrixMap *MatMat( AstMapping *, AstMapping *, int, int, int * );
static AstMatrixMap *MatPerm( AstMatrixMap *, AstPermMap *, int, int, int, int * );
static AstMatrixMap *MatZoom( AstMatrixMap *, AstZoomMap *, int, int, int * );
static AstMatrixMap *MtrMult( AstMatrixMap *, AstMatrixMap *, int * );
static AstMatrixMap *MtrRot( AstMatrixMap *, double, const double[], int * );
static AstPointSet *Transform( AstMapping *, AstPointSet *, int, AstPointSet *, int * );
static AstWinMap *MatWin2( AstMatrixMap *, AstWinMap *, int, int, int, int * );
static double *InvertMatrix( int, int, int, double *, int * );
static double Rate( AstMapping *, double *, int, int, int * );
static int Equal( AstObject *, AstObject *, int * );
static int FindString( int, const char *[], const char *, const char *, const char *, const char *, int * );
static int Ustrcmp( const char *, const char *, int * );
static int GetTranForward( AstMapping *, int * );
static int GetIsLinear( AstMapping *, int * );
static int GetTranInverse( AstMapping *, int * );
static int CanSwap( AstMapping *, AstMapping *, int, int, int *, int * );
static int MapMerge( AstMapping *, int, int, int *, AstMapping ***, int **, int * );
static int PermOK( AstMapping *, int * );
static int ScalingRowCol( AstMatrixMap *, int, int * );
static void CompressMatrix( AstMatrixMap *, int * );
static void Copy( const AstObject *, AstObject *, int * );
static void Delete( AstObject *obj, int * );
static void Dump( AstObject *, AstChannel *, int * );
static void ExpandMatrix( AstMatrixMap *, int * );
static void MatWin( AstMapping **, int *, int, int * );
static void MatPermSwap( AstMapping **, int *, int, int * );
static void PermGet( AstPermMap *, int **, int **, double **, int * );
static void SMtrMult( int, int, int, const double *, double *, double*, int * );
static int *MapSplit( AstMapping *, int, const int *, AstMapping **, int * );

/* Member functions. */
/* ================= */
static int CanSwap( AstMapping *map1, AstMapping *map2, int inv1, int inv2,
                    int *simpler, int *status ){
/*
*  Name:
*     CanSwap

*  Purpose:
*     Determine if two Mappings could be swapped.

*  Type:
*     Private function.

*  Synopsis:
*     #include "matrixmap.h"
*     int CanSwap( AstMapping *map1, AstMapping *map2, int inv1, int inv2,
*                  int *simpler, int *status )

*  Class Membership:
*     MatrixMap member function

*  Description:
*     This function returns a flag indicating if the pair of supplied
*     Mappings could be replaced by an equivalent pair of Mappings from the
*     same classes as the supplied pair, but in reversed order. Each pair
*     of Mappings is considered to be compunded in series. The supplied
*     Mapings are not changed in any way.

*  Parameters:
*     map1
*        The Mapping to be applied first.
*     map2
*        The Mapping to be applied second.
*     inv1
*        The invert flag to use with map1. A value of zero causes the forward
*        mapping to be used, and a non-zero value causes the inverse
*        mapping to be used.
*     inv2
*        The invert flag to use with map2.
*     simpler
*        Addresss of a location at which to return a flag indicating if
*        the swapped Mappings would be intrinsically simpler than the
*        original Mappings.
*     status
*        Pointer to the inherited status variable.

*  Returned Value:
*     1 if the Mappings could be swapped, 0 otherwise.

*  Notes:
*     -  One of the supplied pair of Mappings must be a MatrixMap.
*     -  A value of 0 is returned if an error has already occurred, or if
*     this function should fail for any reason.
*/

/* Local Variables: */
   AstMatrixMap *mat;        /* Pointer to MatrixMap Mapping */
   AstMapping *nomat;        /* Pointer to non-MatrixMap Mapping */
   const char *class1;       /* Pointer to map1 class string */
   const char *class2;       /* Pointer to map2 class string */
   const char *nomat_class;  /* Pointer to non-MatrixMap class string */
   double *consts;           /* Pointer to constants array */
   int *inperm;              /* Pointer to input axis permutation array */
   int *outperm;             /* Pointer to output axis permutation array */
   int i;                    /* Loop count */
   int invert[ 2 ];          /* Original invert flags */
   int nax;                  /* No. of in/out coordinates for the MatrixMap */
   int nin;                  /* No. of input coordinates for the PermMap */
   int nout;                 /* No. of output coordinates for the PermMap */
   int ret;                  /* Returned flag */

/* Check the global error status. */
   if ( !astOK ) return 0;

/* Initialise */
   ret = 0;
   *simpler = 0;

/* Temporarily set the Invert attributes of both Mappings to the supplied
   values. */
   invert[ 0 ] = astGetInvert( map1 );
   astSetInvert( map1, inv1 );

   invert[ 1 ] = astGetInvert( map2 );
   astSetInvert( map2, inv2 );

/* Get the classes of the two mappings. */
   class1 = astGetClass( map1 );
   class2 = astGetClass( map2 );
   if( astOK ){

/* Get a pointer to the MatrixMap and non-MatrixMap Mappings. */
      if( !strcmp( class1, "MatrixMap" ) ){
         mat = (AstMatrixMap *) map1;
         nomat = map2;
         nomat_class = class2;
      } else {
         nomat = map1;
         mat = (AstMatrixMap *) map2;
         nomat_class = class1;
      }

/* Get the number of input axes for the MatrixMap. */
      nax = astGetNin( mat );

/* If it is a WinMap, the Mappings can be swapped. */
      if( !strcmp( nomat_class, "WinMap" ) ){
         ret = 1;

/* If it is a PermMap, the Mappings can be swapped so long as:
   1) all links between input and output axes in the PermMap are
   bi-directional. This does not preclude the existence of unconnected
   axes, which do not have links (bi-directional or otherwise).
   2) The MatrixMap is square, and invertable.
   3) If the permMap is applied first, then each output of the PermMap
      which is assigned a constant value must correspond to a "scaling" row
      and column in the MatrixMap. I.e. if PermMap output axis "i" is
      assigned a constant value, then row i and column i of the following
      MatrixMap must contain only zeros, EXCEPT for the diagonal term (row
      i, column i) which must be non-zero. If the Mappings are in the other
      order, then the same applies to PermMap input axes assigned a constant
      value. */

/* Check the other Mapping is a PermMap, and that the MatrixMap is square
   and has an inverse. */
      } else if( !strcmp( nomat_class, "PermMap" ) &&
                 nax == astGetNout( mat ) && ( mat->form == UNIT ||
                 ( mat->i_matrix != NULL &&
                   mat->f_matrix != NULL ) ) ) {

/* Get the number of input and output coordinates for the PermMap. */
         nin = astGetNin( nomat );
         nout = astGetNout( nomat );

/* We need to know the axis permutation arrays and constants array for
   the PermMap. */
         PermGet( (AstPermMap *) nomat, &outperm, &inperm, &consts, status );
         if( astOK ) {

/* Indicate we can swap with the PermMap. */
            ret = 1;

/* Check each output axis. If any links between axes are found which are
   not bi-directional, indicate that we cannot swap with the PermMap. */
            for( i = 0; i < nout; i++ ){
               if( outperm[ i ] >= 0 && outperm[ i ] < nin ) {
                  if( inperm[ outperm[ i ] ] != i ) {
                     ret = 0;
                     break;
                  }
               }
            }

/* Check each input axis. If any links between axes are found which are
   not bi-directional, indicate that we cannot swap with the PermMap. */
            for( i = 0; i < nin; i++ ){
               if( inperm[ i ] >= 0 && inperm[ i ] < nout ) {
                  if( outperm[ inperm[ i ] ] != i ) {
                     ret = 0;
                     break;
                  }
               }
            }

/* If the PermMap is suitable, check that any constant values fed from the
   PermMap into the MatrixMap (in either forward or inverse direction)
   are not changed by the MatrixMap. This requires the row and column for
   each constant axis to be zeros, ecept for a value of 1.0 on the
   diagonal. First deal with the cases where the PermMap is applied
   first, so the outputs of the PermMap are fed into the MatrixMap in the
   forward direction. */
            if( ret && ( nomat == map1 ) ) {

               if( nout != nax ){
                  astError( AST__RDERR, "PermMap produces %d outputs, but the following"
                            "MatrixMap has %d inputs\n", status, nout, nax );
                  ret = 0;
               }

/* Consider each output axis of the PermMap. */
               for( i = 0; i < nout && astOK ; i++ ) {

/* If this PermMap output is assigned a constant... */
                  if( outperm[ i ] < 0 || outperm[ i ] >= nin ) {

/* Check the i'th row of the MatrixMap is all zero except for the i'th
   column which must be non-zero. If not indicate that the MatrixMap cannot
   swap with the PermMap and leave the loop. */
                     if( !ScalingRowCol( mat, i, status ) ) {
                        ret = 0;
                        break;
                     }
                  }
               }
            }

/* Now deal with the cases where the PermMap is applied second, so the inputs
   of the PermMap are fed into the MatrixMap in the inverse direction. */
            if( ret && ( nomat == map2 ) ) {

               if( nin != nax ){
                  astError( AST__RDERR, "Inverse PermMap produces %d inputs, but the "
                            "preceding MatrixMap has %d outputs\n", status, nin, nax );
                  ret = 0;
               }

/* Consider each input axis of the PermMap. */
               for( i = 0; i < nin && astOK; i++ ){

/* If this PermMap input is assigned a constant (by the inverse Mapping)... */
                  if( inperm[ i ] < 0 || inperm[ i ] >= nout ) {

/* Check the i'th row of the MatrixMap is all zero except for the i'th
   column which must be non-zero. If not indicate that the MatrixMap cannot
   swap with the PermMap and leave the loop. */
                     if( !ScalingRowCol( mat, i, status ) ) {
                        ret = 0;
                        break;
                     }
                  }
               }
            }

/* If we can swap with the PermMap, the swapped Mappings may be
   intrinsically simpler than the original mappings. */
            if( ret ) {

/* If the PermMap precedes the WinMap, this will be the case if the PermMap
   has more outputs than inputs. If the WinMap precedes the PermMap, this
   will be the case if the PermMap has more inputs than outputs. */
               *simpler = ( nomat == map1 ) ? nout > nin : nin > nout;
            }

/* Free the axis permutation and constants arrays. */
            outperm = (int *) astFree( (void *) outperm );
            inperm = (int *) astFree( (void *) inperm );
            consts = (double *) astFree( (void *) consts );
         }
      }
   }

/* Re-instate the original settings of the Invert attributes for the
   supplied MatrixMaps. */
   astSetInvert( map1, invert[ 0 ] );
   astSetInvert( map2, invert[ 1 ] );

/* Return the answer. */
   return astOK ? ret : 0;
}

static void CompressMatrix( AstMatrixMap *this, int *status ){
/*
*  Name:
*     CompressMatrix

*  Purpose:
*     If possible, reduce the amount of storage needed to store a MatrixMap.

*  Type:
*     Private function.

*  Synopsis:
*     #include "matrixmap.h"
*     void CompressMatrix( AstMatrixMap *this, int *status )

*  Class Membership:
*     MatrixMap member function.

*  Description:
*     The supplid MatrixMap is converted to its most compressed form
*     (i.e no element values if it is a unit matrix, diagonal elements only
*     if it is a diagonal matrix, or all elements otherwise).

*  Parameters:
*     this
*        A pointer to the MatrixMap to be compressed.
*     status
*        Pointer to the inherited status variable.

*/

/* Local Variables: */
   double *a;                     /* Pointer to next element */
   double *colmax;                /* Pointer to array holding column max values */
   double *fmat;                  /* Pointer to compressed forward matrix */
   double *rowmax;                /* Pointer to array holding row max values */
   double mval;                   /* Matrix element value */
   int i;                         /* Loop count */
   int j;                         /* Loop count */
   int k;                         /* Loop count */
   int ncol;                      /* No. of columns in forward matrix */
   int ndiag;                     /* No. of diagonal elements in matrix */
   int new_form;                  /* Compressed storage form */
   int new_inv;                   /* New inverse requied? */
   int next_diag;                 /* Index of next diagonal element */
   int nrow;                      /* No. of rows in forward matrix */

/* Check the global error status. */
   if ( !astOK || !this ) return;

/* Initialise variables to avoid "used of uninitialised variable"
   messages from dumb compilers. */
   new_inv = 0;

/* Get the dimensions of the forward matrix. */
   if( astGetInvert( this ) ){
      nrow = astGetNin( this );
      ncol = astGetNout( this );
   } else {
      ncol = astGetNin( this );
      nrow = astGetNout( this );
   }

/* Store the number of diagonal elements in the matrix. This is the
   minimum of the number of rows and columns. */
   if( ncol < nrow ){
      ndiag = ncol;
   } else {
      ndiag = nrow;
   }

/* If the MatrixMap is already stored in UNIT form, it cannot be compressed
   any further. */
   if( this->form == UNIT){
      return;

/* Otherwise, if the MatrixMap is stored in DIAGONAL form, it could be
   compressed into a UNIT MatrixMap if all the supplied element values are
   one. */
   } else if( this->form == DIAGONAL ){
      new_form = UNIT;
      for( i = 0; i < ndiag; i++ ){
         if( !astEQUAL( (this->f_matrix)[ i ], 1.0 ) ){
            new_form = DIAGONAL;
            break;
         }
      }

/* If it can be compressed, change the storage form and free the arrays
   holding the diagonal element values. */
      if( new_form == UNIT ) {
         this->f_matrix = (double *) astFree( (void *)( this->f_matrix ) );
         this->i_matrix = (double *) astFree( (void *)( this->i_matrix ) );
         this->form = UNIT;
      }

/* Otherwise, a full MatrixMap has been supplied, but this could be stored
   in a unit or diagonal MatrixMap if the element values are appropriate. */
   } else {
      new_form = FULL;

/* Find the maximum absolute value in each column. Scale by
   sqrt(DBL_EPSILON) to be come a lower limit for non-zero values. */
      colmax = astMalloc( ncol*sizeof( double ) );
      if( colmax ) {
         for( j = 0; j < ncol; j++ ) {
            colmax[ j ] = 0.0;
            i = j;
            for( k = 0; k < nrow; k++ ) {
               mval = (this->f_matrix)[ i ];
               if( mval != AST__BAD ) {
                  mval = fabs( mval );
                  if( mval > colmax[ j ] ) colmax[ j ] = mval;
               }
               i += ncol;
            }
            colmax[ j ] *= sqrt( DBL_EPSILON );
         }
      }

/* Find the maximum absolute value in each row. Scale by
   sqrt(DBL_EPSILON) to be come a lower limit for non-zero values. */
      rowmax = astMalloc( nrow*sizeof( double ) );
      if( rowmax ) {
         for( k = 0; k < nrow; k++ ) {
            rowmax[ k ] = 0.0;
            i = k*ncol;
            for( j = 0; j < ncol; j++ ) {
               mval = (this->f_matrix)[ i ];
               if( mval != AST__BAD ) {
                  mval = fabs( mval );
                  if( mval > rowmax[ k ] ) rowmax[ k ] = mval;
               }
               i++;
            }
            rowmax[ k ] *= sqrt( DBL_EPSILON );
         }
      }

/* Check memory can be used */
      if( astOK ) {

/* Initialise a flag indicating that the inverse matrix does not need to
   be re-calculated. */
         new_inv = 0;

/* Initially assume that the forward matrix is a unit matrix. */
         new_form = UNIT;

/* Store a pointer to the next matrix element. */
         a = this->f_matrix;

/* Loop through all the rows in the forward matrix array. */
         for( k = 0; k < nrow; k++ ) {

/* Loop through all the elements in this column. */
            for( j = 0; j < ncol; j++, a++ ) {

/* If this element is bad, use full form. */
               if( *a == AST__BAD ) {
                  new_form = FULL;

/* Otherwise, if this is a diagonal term, check its value. If it is not one,
   then the matrix cannot be a unit matrix, but it could still be a diagonal
   matrix. */
               } else {
                  if( j == k ) {
                     if( *a != 1.0 && new_form == UNIT ) new_form = DIAGONAL;

/* If this is not a diagonal element, and the element value is not zero,
   then the matrix is not a diagonal matrix. Allow a tolerance of
   SQRT(DBL_EPSILON) times the largest value in the same row or column as
   the current matrix element. That is, an element must be insignificant
   to both its row and its column to be considered as effectively zero.
   Replace values less than this limit with zero. */
                  } else {
                     mval = fabs( *a );
                     if( mval <= rowmax[ k ] &&
                         mval <= colmax[ j ] ) {

/* If the element will change value, set a flag indicating that the inverse
   matrix needs to be re-calculated. */
                        if( *a != 0.0 ) new_inv = 1;

/* Ensure this element value is zero. */
                        *a = 0.0;

                     } else {
                        new_form = FULL;
                     }
                  }
               }
            }
         }
      }

/* Free memory. */
      colmax = astFree( colmax );
      rowmax = astFree( rowmax );

/* If it can be compressed into a UNIT MatrixMap, change the storage form and
   free the arrays holding the element values. */
      if( new_form == UNIT ) {
         this->f_matrix = (double *) astFree( (void *)( this->f_matrix ) );
         this->i_matrix = (double *) astFree( (void *)( this->i_matrix ) );
         this->form = UNIT;

/* Otherwise, if it can be compressed into a DIAGONAL MatrixMap, copy the
   diagonal elements from the full forward matrix into a newly allocated
   array, use this array to replace the forward matrix array in the MatrixMap,
   create a new inverse matrix, and change the storage form. */
      } else if( new_form == DIAGONAL ) {
         fmat = astMalloc( sizeof(double)*(size_t)ndiag );
         if( fmat ){

            next_diag = 0;
            for( i = 0; i < ndiag; i++ ){
               fmat[ i ] = (this->f_matrix)[ next_diag ];
               next_diag += ncol + 1;
            }

            (void) astFree( (void *) this->f_matrix );
            (void) astFree( (void *) this->i_matrix );

            this->f_matrix = fmat;
            this->i_matrix = InvertMatrix( DIAGONAL, nrow, ncol, fmat, status );
            this->form = DIAGONAL;

         }

/* Calculate a new inverse matrix if necessary. */
      } else if( new_inv ) {
         (void) astFree( (void *) this->i_matrix );
         this->i_matrix = InvertMatrix( FULL, nrow, ncol, this->f_matrix, status );
      }
   }

   return;

}

static int Equal( AstObject *this_object, AstObject *that_object, int *status ) {
/*
*  Name:
*     Equal

*  Purpose:
*     Test if two MatrixMaps are equivalent.

*  Type:
*     Private function.

*  Synopsis:
*     #include "matrixmap.h"
*     int Equal( AstObject *this, AstObject *that, int *status )

*  Class Membership:
*     MatrixMap member function (over-rides the astEqual protected
*     method inherited from the astMapping class).

*  Description:
*     This function returns a boolean result (0 or 1) to indicate whether
*     two MatrixMaps are equivalent.

*  Parameters:
*     this
*        Pointer to the first Object (a MatrixMap).
*     that
*        Pointer to the second Object.
*     status
*        Pointer to the inherited status variable.

*  Returned Value:
*     One if the MatrixMaps are equivalent, zero otherwise.

*  Notes:
*     - A value of zero will be returned if this function is invoked
*     with the global status set, or if it should fail for any reason.
*/

/* Local Variables: */
   AstMatrixMap *that;
   AstMatrixMap *this;
   double *that_matrix;
   double *this_matrix;
   int i;
   int nin;
   int nout;
   int result;

/* Initialise. */
   result = 0;

/* Check the global error status. */
   if ( !astOK ) return result;

/* Obtain pointers to the two MatrixMap structures. */
   this = (AstMatrixMap *) this_object;
   that = (AstMatrixMap *) that_object;

/* Check the second object is a MatrixMap. We know the first is a
   MatrixMap since we have arrived at this implementation of the virtual
   function. */
   if( astIsAMatrixMap( that ) ) {

/* Get the number of inputs and outputs and check they are the same for both. */
      nin = astGetNin( this );
      nout = astGetNout( this );
      if( astGetNout( that ) == nout && astGetNin( that ) == nin ) {

/* Assume the MatrixMaps are equivalent. */
         result = 1;

/* Ensure both MatrixMaps are stored in full form. */
         ExpandMatrix( this, status );
         ExpandMatrix( that, status );

/* Get pointers to the arrays holding the elements of the forward matrix
   for both MatrixMaps. */
         if( astGetInvert( this ) ) {
            this_matrix = this->i_matrix;
         } else {
            this_matrix = this->f_matrix;
         }

         if( astGetInvert( that ) ) {
            that_matrix = that->i_matrix;
         } else {
            that_matrix = that->f_matrix;
         }

/* If either of the above arrays is not available, try to get the inverse
   matrix arrays. */
         if( !this_matrix || !that_matrix ) {
            if( astGetInvert( this ) ) {
               this_matrix = this->f_matrix;
            } else {
               this_matrix = this->i_matrix;
            }

            if( astGetInvert( that ) ) {
               that_matrix = that->f_matrix;
            } else {
               that_matrix = that->i_matrix;
            }
         }

/* If both arrays are now available compare their elements. */
         if( this_matrix && that_matrix ) {
            result = 1;
            for( i = 0; i < nin*nout; i++ ) {
               if( !astEQUAL( this_matrix[ i ], that_matrix[ i ] ) ){
                  result = 0;
                  break;
               }
            }
         }

/* Ensure the supplied MatrixMaps are stored back in compressed form. */
         CompressMatrix( this, status );
         CompressMatrix( that, status );
      }
   }

/* If an error occurred, clear the result value. */
   if ( !astOK ) result = 0;

/* Return the result, */
   return result;
}

static void ExpandMatrix( AstMatrixMap *this, int *status ){
/*
*  Name:
*     ExpandMatrix

*  Purpose:
*     Ensure the MatrixMap is stored in full (non-compressed) form.

*  Type:
*     Private function.

*  Synopsis:
*     #include "matrixmap.h"
*     void ExpandMatrix( AstMatrixMap *this, int *status )

*  Class Membership:
*     MatrixMap member function.

*  Description:
*     If the supplid MatrixMap is stored in a compressed form (i.e no
*     element values if it is a unit matrix, diagonal elements only
*     if it is a diagonal matrix), it is expanded into a full MatrixMap
*     in which all elements are stored.

*  Parameters:
*     this
*        A pointer to the MatrixMap to be expanded.
*     status
*        Pointer to the inherited status variable.

*/

/* Local Variables: */
   double *fmat;                  /* Pointer to full forward matrix */
   double *imat;                  /* Pointer to full inverse matrix */
   int i;                         /* Loop count */
   int ncol;                      /* No. of columns in forward matrix */
   int ndiag;                     /* No. of diagonal elements in matrix */
   int nrow;                      /* No. of rows in forward matrix */

/* Check the global error status. Also return if the MatrixMap
   pointer is null. */
   if ( !astOK || !this ) return;

/* Return without action if the MatrixMap is already in full form. */
   if( this->form == FULL ) return;

/* Get the dimensions of the forward matrix. */
   if( astGetInvert( this ) ){
      nrow = astGetNin( this );
      ncol = astGetNout( this );
   } else {
      ncol = astGetNin( this );
      nrow = astGetNout( this );
   }

/* Store the number of diagonal elements. */
   if( nrow > ncol ){
      ndiag = ncol;
   } else {
      ndiag = nrow;
   }

/* Allocate arrays to hold the full forward and inverse matrices. */
   fmat = (double *) astMalloc( sizeof( double )*(size_t)( nrow*ncol ) );
   imat = (double *) astMalloc( sizeof( double )*(size_t)( nrow*ncol ) );
   if( imat && fmat ){

/* Fill them both with zeros. */
      for( i = 0; i < nrow*ncol; i++ ) {
         fmat[ i ] = 0.0;
         imat[ i ] = 0.0;
      }

/* If a unit MatrixMap was supplied, put ones on the diagonals. */
      if( this->form == UNIT ){
         for( i = 0; i < ndiag; i++ ) {
            fmat[ i*( ncol + 1 ) ] = 1.0;
            imat[ i*( nrow + 1 ) ] = 1.0;
         }

/* If a diagonal MatrixMap was supplied, copy the diagonal terms from
   the supplied MatrixMap. */
      } else if( this->form == DIAGONAL ){
         for( i = 0; i < ndiag; i++ ) {
            fmat[ i*( ncol + 1 ) ] = (this->f_matrix)[ i ];
            imat[ i*( nrow + 1 ) ] = (this->i_matrix)[ i ];
         }
      }

/* Free any existing arrays in the MatrixMap and store the new ones. */
      (void) astFree( (void *) this->f_matrix );
      (void) astFree( (void *) this->i_matrix );

      this->f_matrix = fmat;
      this->i_matrix = imat;

/* Update the storage form. */
      this->form = FULL;

/* If either of the new matrices could not be allocated, ensure that
   both have been freed. */
   } else {
      fmat = (double *) astFree( (void *) fmat );
      imat = (double *) astFree( (void *) imat );
   }

   return;

}

static int FindString( int n, const char *list[], const char *test,
                       const char *text, const char *method,
                       const char *class, int *status ){
/*
*  Name:
*     FindString

*  Purpose:
*     Find a given string within an array of character strings.

*  Type:
*     Private function.

*  Synopsis:
*     #include "matrix.h"
*     int FindString( int n, const char *list[], const char *test,
*                     const char *text, const char *method, const char *class, int *status )

*  Class Membership:
*     MatrixMap method.

*  Description:
*     This function identifies a supplied string within a supplied
*     array of valid strings, and returns the index of the string within
*     the array. The test option may not be abbreviated, but case is
*     insignificant.

*  Parameters:
*     n
*        The number of strings in the array pointed to be "list".
*     list
*        A pointer to an array of legal character strings.
*     test
*        A candidate string.
*     text
*        A string giving a description of the object, parameter,
*        attribute, etc, to which the test value refers.
*        This is only for use in constructing error messages. It should
*        start with a lower case letter.
*     method
*        Pointer to a string holding the name of the calling method.
*        This is only for use in constructing error messages.
*     class
*        Pointer to a string holding the name of the supplied object class.
*        This is only for use in constructing error messages.
*     status
*        Pointer to the inherited status variable.

*  Returned Value:
*     The index of the identified string within the supplied array, starting
*     at zero.

*  Notes:
*     -  A value of -1 is returned if an error has already occurred, or
*     if this function should fail for any reason (for instance if the
*     supplied option is not specified in the supplied list).

*/

/* Local Variables: */
   int ret;                /* The returned index */

/* Check global status. */
   if( !astOK ) return -1;

/* Compare the test string with each element of the supplied list. Leave
   the loop when a match is found. */
   for( ret = 0; ret < n; ret++ ) {
      if( !Ustrcmp( test, list[ ret ], status ) ) break;
   }

/* Report an error if the supplied test string does not match any element
   in the supplied list. */
   if( ret >= n ) {
      astError( AST__RDERR, "%s(%s): Illegal value '%s' supplied for %s.", status,
                method, class, test, text );
      ret = -1;
   }

/* Return the answer. */
   return ret;
}

static int GetIsLinear( AstMapping *this_mapping, int *status ){
/*
*  Name:
*     GetIsLinear

*  Purpose:
*     Return the value of the IsLinear attribute for a MatrixMap.

*  Type:
*     Private function.

*  Synopsis:
*     #include "mapping.h"
*     void GetIsLinear( AstMapping *this, int *status )

*  Class Membership:
*     MatrixMap member function (over-rides the protected astGetIsLinear
*     method inherited from the Mapping class).

*  Description:
*     This function returns the value of the IsLinear attribute for a
*     Frame, which is always one.

*  Parameters:
*     this
*        Pointer to the MatrixMap.
*     status
*        Pointer to the inherited status variable.
*/
   return 1;
}

static int Ustrcmp( const char *a, const char *b, int *status ){
/*
*  Name:
*     Ustrncmp

*  Purpose:
*     A case blind version of strcmp.

*  Type:
*     Private function.

*  Synopsis:
*     #include "matrixmap.h"
*     int Ustrcmp( const char *a, const char *b )

*  Class Membership:
*     MatrixMap member function.

*  Description:
*     Returns 0 if there are no differences between the two strings, and 1
*     otherwise. Comparisons are case blind.

*  Parameters:
*     a
*        Pointer to first string.
*     b
*        Pointer to second string.

*  Returned Value:
*     Zero if the strings match, otherwise one.

*  Notes:
*     -  This function does not consider the sign of the difference between
*     the two strings, whereas "strcmp" does.
*     -  This function attempts to execute even if an error has occurred.

*/

/* Local Variables: */
   const char *aa;         /* Pointer to next "a" character */
   const char *bb;         /* Pointer to next "b" character */
   int ret;                /* Returned value */

/* Initialise the returned value to indicate that the strings match. */
   ret = 0;

/* Initialise pointers to the start of each string. */
   aa = a;
   bb = b;

/* Loop round each character. */
   while( 1 ){

/* We leave the loop if either of the strings has been exhausted. */
      if( !(*aa ) || !(*bb) ){

/* If one of the strings has not been exhausted, indicate that the
   strings are different. */
         if( *aa || *bb ) ret = 1;

/* Break out of the loop. */
         break;

/* If neither string has been exhausted, convert the next characters to
   upper case and compare them, incrementing the pointers to the next
   characters at the same time. If they are different, break out of the
   loop. */
      } else {

         if( toupper( (int) *(aa++) ) != toupper( (int) *(bb++) ) ){
            ret = 1;
            break;
         }

      }

   }

/* Return the result. */
   return ret;

}

void astInitMatrixMapVtab_(  AstMatrixMapVtab *vtab, const char *name, int *status ) {
/*
*+
*  Name:
*     astInitMatrixMapVtab

*  Purpose:
*     Initialise a virtual function table for a MatrixMap.

*  Type:
*     Protected function.

*  Synopsis:
*     #include "matrixmap.h"
*     void astInitMatrixMapVtab( AstMatrixMapVtab *vtab, const char *name )

*  Class Membership:
*     MatrixMap vtab initialiser.

*  Description:
*     This function initialises the component of a virtual function
*     table which is used by the MatrixMap class.

*  Parameters:
*     vtab
*        Pointer to the virtual function table. The components used by
*        all ancestral classes will be initialised if they have not already
*        been initialised.
*     name
*        Pointer to a constant null-terminated character string which contains
*        the name of the class to which the virtual function table belongs (it
*        is this pointer value that will subsequently be returned by the Object
*        astClass function).
*-
*/

/* Local Variables: */
   astDECLARE_GLOBALS            /* Pointer to thread-specific global data */
   AstObjectVtab *object;        /* Pointer to Object component of Vtab */
   AstMappingVtab *mapping;      /* Pointer to Mapping component of Vtab */

/* Check the local error status. */
   if ( !astOK ) return;

/* Get a pointer to the thread specific global data structure. */
   astGET_GLOBALS(NULL);

/* Initialize the component of the virtual function table used by the
   parent class. */
   astInitMappingVtab( (AstMappingVtab *) vtab, name );

/* Store a unique "magic" value in the virtual function table. This
   will be used (by astIsAMatrixMap) to determine if an object belongs
   to this class.  We can conveniently use the address of the (static)
   class_check variable to generate this unique value. */
   vtab->id.check = &class_check;
   vtab->id.parent = &(((AstMappingVtab *) vtab)->id);

/* Initialise member function pointers. */
/* ------------------------------------ */
/* Store pointers to the member functions (implemented here) that provide
   virtual methods for this class. */
   vtab->MtrRot = MtrRot;
   vtab->MtrMult = MtrMult;

/* Save the inherited pointers to methods that will be extended, and
   replace them with pointers to the new member functions. */
   object = (AstObjectVtab *) vtab;
   mapping = (AstMappingVtab *) vtab;

   parent_transform = mapping->Transform;
   mapping->Transform = Transform;

   parent_mapsplit = mapping->MapSplit;
   mapping->MapSplit = MapSplit;

/* Store replacement pointers for methods which will be over-ridden by
   new member functions implemented here. */
   object->Equal = Equal;
   mapping->GetIsLinear = GetIsLinear;
   mapping->GetTranForward = GetTranForward;
   mapping->GetTranInverse = GetTranInverse;
   mapping->MapMerge = MapMerge;
   mapping->Rate = Rate;

/* Declare the destructor and copy constructor. */
   astSetDelete( (AstObjectVtab *) vtab, Delete );
   astSetCopy( (AstObjectVtab *) vtab, Copy );

/* Declare the class dump function. */
   astSetDump( vtab, Dump, "MatrixMap", "Matrix transformation" );

/* If we have just initialised the vtab for the current class, indicate
   that the vtab is now initialised, and store a pointer to the class
   identifier in the base "object" level of the vtab. */
   if( vtab == &class_vtab ) {
      class_init = 1;
      astSetVtabClassIdentifier( vtab, &(vtab->id) );
   }
}


static double *InvertMatrix( int form, int nrow, int ncol, double *matrix, int *status ){
/*
*  Name:
*     InvertMatrix

*  Purpose:
*     Invert a suplied matrix.

*  Type:
*     Private function.

*  Synopsis:
*     #include "matrixmap.h"
*     double *InvertMatrix( int form, int nrow, int ncol, double *matrix, int *status )

*  Class Membership:
*     MatrixMap member function.

*  Description:
*     This function returns a pointer to a matrix holding the inverse of
*     the supplied matrix, or a NULL pointer if the inverse is not defined.
*     The memory to store the inverse matrix is allocated internally, and
*     should be freed using astFree when no longer required.
*
*     The correspondence between a full matrix and its inverse is only
*     unique if the matrix is square, and so a NULL pointer is returned if
*     the supplied matrix is not square.

*  Parameters:
*     form
*        The form of the MatrixMap; UNIT, DIAGONAL or FULL.
*     nrow
*        Number of rows in the supplied matrix.
*     ncol
*        Number of columns in the supplied matrix.
*     matrix
*        A pointer to the input matrix. Elements should be stored in row
*        order (i.e. (row 1,column 1 ), (row 1,column 2 )... (row 2,column 1),
*        etc).
*     status
*        Pointer to the inherited status variable.

*  Returned Value:
*     Pointer to the output matrix.

*  Notes:
*     -  A NULL pointer is returned if a unit matrix is supplied.
*     -  A NULL pointer will be returned if this function is invoked with the
*     global error status set, or if it should fail for any reason.
*     -  No error is reported if the inverse is not defined.
*/

/* Local Variables: */
   double det;                    /* Determinant of supplied matrix */
   double mval;                   /* Matrix element value */
   double *out;                   /* Pointer to returned inverse matrix */
   double *vector;                /* Pointer to vector used by palDmat */
   int i;                         /* Matrix element number */
   int *iw;                       /* Pointer to workspace used by palDmat */
   int nel;                       /* No. of elements in square matrix */
   int ndiag;                     /* No. of diagonal elements */
   int ok;                        /* Zero if any bad matrix values found */
   int sing;                      /* Zero if matrix is not singular */

/* Check the global error status. */
   if ( !astOK ) return NULL;

/* Return a NULL pointer if the input matrix is NULL. */
   if( !matrix ) return NULL;

/* If a unit matrix map has been supplied, return NULL. */
   if( form == UNIT ){
      return NULL;

/* If a diagonal matrix has been supplied, allocate an array to hold
   the diagonal terms of the inverse matrix. Store the reciprocal
   of the input matrix diagonal terms in it. If any of the input diagonal
   terms are zero or BAD, set the associated elements of the inverse matrix
   BAD. */
   } else if( form == DIAGONAL ){
      if( nrow > ncol ) {
         ndiag = ncol;
      } else {
         ndiag = nrow;
      }

      out = (double *) astMalloc( sizeof( double )*(size_t)ndiag );

      if( out ) {
         for( i = 0; i < ndiag; i++ ) {
            mval = matrix[ i ];
            if( mval != 0.0 && mval != AST__BAD ){
               out[ i ] = 1.0/mval;
            } else {
               out[ i ] = AST__BAD;
            }
         }
      }

/* If a full matrix has been supplied, initialise the returned pointer. */
   } else {
      out = NULL;

/* Check that the matrix is square. */
      if( nrow == ncol ){

/* Find the number of elements in the matrix. */
         nel = nrow*ncol;

/* See if there are any bad values in the matrix. */
         ok = 1;
         for ( i=0; i<nel; i++ ) {
            if ( matrix[i] == AST__BAD ) {
               ok = 0;
               break;
            }
         }

/* Only continue if there are no bad matrix values. */
         if( ok ) {

/* Take a copy of the supplied matrix */
            out = (double *) astStore( NULL, (void *) matrix,
                                       astSizeOf( (void *) matrix ) );

/* The SLALIB function which inverts the matrix also applies the inverse
   matrix to a vector. We are not interested in the vector in this
   instance, but we still have to provide one for SLALIB to use. Allocate
   memory for the vector. */
            vector = (double *) astMalloc( sizeof(double)*(size_t) nrow );

/* If it was allocated succesfully, fill it with zeros. */
            if( astOK ){
               for ( i=0; i<nrow; i++ ) vector[i] = 0.0;

/* Obtain work space and attempt to invert the matrix using SLALIB, then
   free the work space. */
               iw = (int *) astMalloc( sizeof(int)*(size_t) nrow );
               if( astOK ) palDmat( nrow, out, vector, &det, &sing, iw );
               iw = (int *) astFree( (void *) iw );

            }

/* If the matrix could not be inverted, free the memory used to hold the
   square matrix, and return the NULL pointer. */
            if ( !astOK || sing != 0 ){
               out = (double *) astFree( (void *) out );
            }

/*  Free the memory used to hold the vector. */
            vector = (double *) astFree( (void *) vector );
         }
      }
   }

/* Return the pointer. */

   return out;

}

static int MapMerge( AstMapping *this, int where, int series, int *nmap,
                     AstMapping ***map_list, int **invert_list, int *status ) {
/*
*  Name:
*     MapMerge

*  Purpose:
*     Simplify a sequence of Mappings containing a MatrixMap.

*  Type:
*     Private function.

*  Synopsis:
*     #include "mapping.h"
*     int MapMerge( AstMapping *this, int where, int series, int *nmap,
*                   AstMapping ***map_list, int **invert_list, int *status )

*  Class Membership:
*     MatrixMap method (over-rides the protected astMapMerge method
*     inherited from the Mapping class).

*  Description:
*     This function attempts to simplify a sequence of Mappings by
*     merging a nominated MatrixMap in the sequence with its neighbours,
*     so as to shorten the sequence if possible.
*
*     In many cases, simplification will not be possible and the
*     function will return -1 to indicate this, without further
*     action.
*
*     In most cases of interest, however, this function will either
*     attempt to replace the nominated MatrixMap with a Mapping which it
*     considers simpler, or to merge it with the Mappings which
*     immediately precede it or follow it in the sequence (both will
*     normally be considered). This is sufficient to ensure the
*     eventual simplification of most Mapping sequences by repeated
*     application of this function.
*
*     In some cases, the function may attempt more elaborate
*     simplification, involving any number of other Mappings in the
*     sequence. It is not restricted in the type or scope of
*     simplification it may perform, but will normally only attempt
*     elaborate simplification in cases where a more straightforward
*     approach is not adequate.

*  Parameters:
*     this
*        Pointer to the nominated MatrixMap which is to be merged with
*        its neighbours. This should be a cloned copy of the MatrixMap
*        pointer contained in the array element "(*map_list)[where]"
*        (see below). This pointer will not be annulled, and the
*        MatrixMap it identifies will not be modified by this function.
*     where
*        Index in the "*map_list" array (below) at which the pointer
*        to the nominated MatrixMap resides.
*     series
*        A non-zero value indicates that the sequence of Mappings to
*        be simplified will be applied in series (i.e. one after the
*        other), whereas a zero value indicates that they will be
*        applied in parallel (i.e. on successive sub-sets of the
*        input/output coordinates).
*     nmap
*        Address of an int which counts the number of Mappings in the
*        sequence. On entry this should be set to the initial number
*        of Mappings. On exit it will be updated to record the number
*        of Mappings remaining after simplification.
*     map_list
*        Address of a pointer to a dynamically allocated array of
*        Mapping pointers (produced, for example, by the astMapList
*        method) which identifies the sequence of Mappings. On entry,
*        the initial sequence of Mappings to be simplified should be
*        supplied.
*
*        On exit, the contents of this array will be modified to
*        reflect any simplification carried out. Any form of
*        simplification may be performed. This may involve any of: (a)
*        removing Mappings by annulling any of the pointers supplied,
*        (b) replacing them with pointers to new Mappings, (c)
*        inserting additional Mappings and (d) changing their order.
*
*        The intention is to reduce the number of Mappings in the
*        sequence, if possible, and any reduction will be reflected in
*        the value of "*nmap" returned. However, simplifications which
*        do not reduce the length of the sequence (but improve its
*        execution time, for example) may also be performed, and the
*        sequence might conceivably increase in length (but normally
*        only in order to split up a Mapping into pieces that can be
*        more easily merged with their neighbours on subsequent
*        invocations of this function).
*
*        If Mappings are removed from the sequence, any gaps that
*        remain will be closed up, by moving subsequent Mapping
*        pointers along in the array, so that vacated elements occur
*        at the end. If the sequence increases in length, the array
*        will be extended (and its pointer updated) if necessary to
*        accommodate any new elements.
*
*        Note that any (or all) of the Mapping pointers supplied in
*        this array may be annulled by this function, but the Mappings
*        to which they refer are not modified in any way (although
*        they may, of course, be deleted if the annulled pointer is
*        the final one).
*     invert_list
*        Address of a pointer to a dynamically allocated array which,
*        on entry, should contain values to be assigned to the Invert
*        attributes of the Mappings identified in the "*map_list"
*        array before they are applied (this array might have been
*        produced, for example, by the astMapList method). These
*        values will be used by this function instead of the actual
*        Invert attributes of the Mappings supplied, which are
*        ignored.
*
*        On exit, the contents of this array will be updated to
*        correspond with the possibly modified contents of the
*        "*map_list" array.  If the Mapping sequence increases in
*        length, the "*invert_list" array will be extended (and its
*        pointer updated) if necessary to accommodate any new
*        elements.
*     status
*        Pointer to the inherited status variable.

*  Returned Value:
*     If simplification was possible, the function returns the index
*     in the "map_list" array of the first element which was
*     modified. Otherwise, it returns -1 (and makes no changes to the
*     arrays supplied).

*  Notes:
*     - A value of -1 will be returned if this function is invoked
*     with the global error status set, or if it should fail for any
*     reason.
*/

/* Local Variables: */
   AstMapping **maplt;   /* New mappings list pointer */
   AstMapping *map2;     /* Pointer to replacement Mapping */
   AstMapping *mc[2];    /* Copies of supplied Mappings to swap */
   AstMapping *newmap;   /* Pointer to replacement MatrixMap */
   AstMapping *smc0;     /* Simplied Mapping */
   AstMapping *smc1;     /* Simplied Mapping */
   AstMatrixMap *mm;     /* Pointer to supplied MatrixMap */
   const char *class1;   /* Pointer to first Mapping class string */
   const char *class2;   /* Pointer to second Mapping class string */
   const char *nclass;   /* Pointer to neighbouring Mapping class */
   double *b;            /* Pointer to scale terms */
   double *new_mat;      /* Pointer to elements of new MatrixMap */
   double factor;        /* Zoom factor for new ZoomMap */
   int *invlt;           /* New invert flags list pointer */
   int do1;              /* Would a backward swap make a simplification? */
   int do2;              /* Would a forward swap make a simplification? */
   int i1;               /* Index of first MatrixMap to merge */
   int i2;               /* Index of last MatrixMap to merge */
   int i;                /* Loop counter */
   int ic[2];            /* Copies of supplied invert flags to swap */
   int invert;           /* Should the inverted Mapping be used? */
   int j;                /* Loop counter */
   int nin;              /* Number of input coordinates for MatrixMap */
   int nmapt;            /* No. of Mappings in list */
   int nout;             /* Number of output coordinates for MatrixMap */
   int nstep1;           /* No. of Mappings backwards to next mergable Mapping */
   int nstep2;           /* No. of Mappings forward to next mergable Mapping */
   int result;           /* Result value to return */
   int swaphi;           /* Can MatrixMap be swapped with higher neighbour? */
   int swaplo;           /* Can MatrixMap be swapped with lower neighbour? */
   int zoom;             /* Can MatrixMap be replaced by a ZoomMap? */

/* Initialise. */
   result = -1;

/* Check the global error status. */
   if ( !astOK ) return result;

/* Initialise variables to avoid "used of uninitialised variable"
   messages from dumb compilers. */
   i1 = 0;
   i2 = 0;

/* Get the Invert attribute for the specified mapping. */
   invert = astGetInvert( ( *map_list )[ where ] );

/* Get the number of input and output axes for the MatrixMap. Swap these
   if the supplied invert flag is not the same as the Invert attribute of
   the Mapping. */
   if( ( invert && !( *invert_list )[ where ] ) ||
       ( !invert && ( *invert_list )[ where ] ) ) {
      nout = astGetNin( ( *map_list )[ where ] );
      nin = astGetNout( ( *map_list )[ where ] );

   } else {
      nin = astGetNin( ( *map_list )[ where ] );
      nout = astGetNout( ( *map_list )[ where ] );
   }

/* First of all, see if the MatrixMap can be replaced by a simpler Mapping,
   without reference to the neighbouring Mappings in the list.           */
/* ======================================================================*/
   map2 = NULL;
   mm = (AstMatrixMap *) ( *map_list )[ where ];

/* If the MatrixMap is a square unit matrix, it can be replaced by a
   UnitMap. */
   if( mm->form == UNIT && nin == nout ){
      map2 = (AstMapping *) astUnitMap( nin, "", status );

/* If the MatrixMap is a square diagonal matrix with equal diagonal
   terms, then it can be replaced by a ZoomMap, so long as the
   diagonal elements are not all zero. */
   } else if( mm->form == DIAGONAL && nin == nout &&
              mm->f_matrix && mm->i_matrix &&
             (mm->f_matrix)[ 0 ] != AST__BAD ){
      zoom = 1;
      b = mm->f_matrix + 1;
      for( i = 1; i < nin; i++ ){
         if( !astEQUAL( *b, *( b - 1 ) ) ){
            zoom = 0;
            break;
         }
         b++;
      }

      if( zoom ){
         if( ( *invert_list )[ where ] ){
            factor = (mm->i_matrix)[ 0 ];
         } else {
            factor = (mm->f_matrix)[ 0 ];
         }

         if( factor != 0.0 ){
            map2 = (AstMapping *) astZoomMap( nin, factor, "", status );
         }
      }

/* If the MatrixMap is a full matrix but all off-diagonal elements are
   zero, it can be replaced by a diagonal MatrixMap. */
   } else if( mm->form == FULL && nin == nout && mm->f_matrix ){
      new_mat = astMalloc( sizeof( double )*nin );
      b = mm->f_matrix;
      for( i = 0; i < nin && new_mat; i++ ){
         for( j = 0; j < nout; j++,b++ ){
            if( i == j ) {
               new_mat[ i ] = *b;
            } else if( *b != 0.0 ) {
               new_mat = astFree( new_mat );
               break;
            }
         }
      }

      if( new_mat ) {
         map2 = (AstMapping *) astMatrixMap( nin, nout, 1, new_mat, "",
                                             status );
         new_mat = astFree( new_mat );
      }
   }

/* If the MatrixMap can be replaced, annul the MatrixMap pointer in the
   list and replace it with the new Mapping pointer, and indicate that the
   forward transformation of the returned Mapping should be used. */
   if( map2 ){
      (void) astAnnul( ( *map_list )[ where ] );
      ( *map_list )[ where ] = map2;
      ( *invert_list )[ where ] = 0;

/* Return the index of the first modified element. */
      result = where;

/* If the MatrixMap itself could not be simplified, see if it can be merged
   with the Mappings on either side of it in the list. */
/*==========================================================================*/
   } else {

/* Store the classes of the neighbouring Mappings in the list. */
       class1 = ( where > 0 ) ? astGetClass( ( *map_list )[ where - 1 ] ) : NULL;
       class2 = ( where < *nmap - 1 ) ? astGetClass( ( *map_list )[ where + 1 ] ) : NULL;

/* In series. */
/* ========== */
      if ( series ) {

/* We first look to see if the MatrixMap can be merged with one of its
   neighbours, resulting in a reduction of one in the number of Mappings
   in the list. MatrixMaps can merge directly with another MatrixMap, a
   ZoomMap, an invertable PermMap, or a UnitMap. */
         if( class1 && ( !strcmp( class1, "MatrixMap" ) ||
                         !strcmp( class1, "ZoomMap" ) ||
                         !strcmp( class1, "PermMap" ) ||
                         !strcmp( class1, "UnitMap" ) ) ){
            nclass = class1;
            i1 = where - 1;
            i2 = where;

         } else if( class2 && ( !strcmp( class2, "MatrixMap" ) ||
                                !strcmp( class2, "ZoomMap" ) ||
                                !strcmp( class2, "PermMap" ) ||
                                !strcmp( class2, "UnitMap" ) ) ){
            nclass = class2;
            i1 = where;
            i2 = where + 1;

         } else {
            nclass = NULL;
         }

/* Only some PermMaps can be merged with (those which have consistent
   forward and inverse mappings). If this is not one of them, set nclass
   NULL to indicate this. */
         if( nclass && !strcmp( nclass, "PermMap" ) &&
             !PermOK( ( *map_list )[ (i1==where)?i2:i1 ], status ) ) nclass = NULL;

/* If the MatrixMap is diagonal it can also merge with a WinMap. */
         if( !nclass && mm->form == DIAGONAL) {
            if( class1 && ( !strcmp( class1, "WinMap" ) ) ){
               nclass = class1;
               i1 = where - 1;
               i2 = where;

            } else if( class2 && ( !strcmp( class2, "WinMap" ) ) ){
               nclass = class2;
               i1 = where;
               i2 = where + 1;

            }
         }

/* If the MatrixMap can merge with one of its neighbours, create the merged
   Mapping. */
         if( nclass ){

            if( !strcmp( nclass, "MatrixMap" ) ){
               newmap = (AstMapping *) MatMat( ( *map_list )[ i1 ], ( *map_list )[ i2 ],
                               ( *invert_list )[ i1 ], ( *invert_list )[ i2 ], status );
               invert = 0;

            } else if( !strcmp( nclass, "ZoomMap" ) ){
               if( i1 == where ){
                  newmap = (AstMapping *) MatZoom( (AstMatrixMap *)( *map_list )[ i1 ],
                                   (AstZoomMap *)( *map_list )[ i2 ],
                              ( *invert_list )[ i1 ], ( *invert_list )[ i2 ], status );
               } else {
                  newmap = (AstMapping *) MatZoom( (AstMatrixMap *)( *map_list )[ i2 ],
                                   (AstZoomMap *)( *map_list )[ i1 ],
                           ( *invert_list )[ i2 ], ( *invert_list )[ i1 ], status );
               }
               invert = 0;

            } else if( !strcmp( nclass, "PermMap" ) ){
               if( i1 == where ){
                  newmap = (AstMapping *) MatPerm( (AstMatrixMap *)( *map_list )[ i1 ],
                                   (AstPermMap *)( *map_list )[ i2 ],
                           ( *invert_list )[ i1 ], ( *invert_list )[ i2 ], 1, status );
               } else {
                  newmap = (AstMapping *) MatPerm( (AstMatrixMap *)( *map_list )[ i2 ],
                                   (AstPermMap *)( *map_list )[ i1 ],
                           ( *invert_list )[ i2 ], ( *invert_list )[ i1 ], 0, status );
               }
               invert = 0;

            } else if( !strcmp( nclass, "WinMap" ) ){
               if( i1 == where ){
                  newmap = (AstMapping *) MatWin2( (AstMatrixMap *)( *map_list )[ i1 ],
                                   (AstWinMap *)( *map_list )[ i2 ],
                           ( *invert_list )[ i1 ], ( *invert_list )[ i2 ], 1, status );
               } else {
                  newmap = (AstMapping *) MatWin2( (AstMatrixMap *)( *map_list )[ i2 ],
                                   (AstWinMap *)( *map_list )[ i1 ],
                           ( *invert_list )[ i2 ], ( *invert_list )[ i1 ], 0, status );
               }
               invert = 0;

            } else {
               newmap = astClone( ( *map_list )[ where ] );
               invert = ( *invert_list )[ where ];
            }

/* If succesfull... */
            if( astOK ){

/* Annul the first of the two Mappings, and replace it with the merged
   MatrixMap. Also set the invert flag. */
               (void) astAnnul( ( *map_list )[ i1 ] );
               ( *map_list )[ i1 ] = newmap;
               ( *invert_list )[ i1 ] = invert;

/* Annul the second of the two Mappings, and shuffle down the rest of the
   list to fill the gap. */
               (void) astAnnul( ( *map_list )[ i2 ] );
               for ( i = i2 + 1; i < *nmap; i++ ) {
                  ( *map_list )[ i - 1 ] = ( *map_list )[ i ];
                  ( *invert_list )[ i - 1 ] = ( *invert_list )[ i ];
               }

/* Clear the vacated element at the end. */
               ( *map_list )[ *nmap - 1 ] = NULL;
               ( *invert_list )[ *nmap - 1 ] = 0;

/* Decrement the Mapping count and return the index of the first
   modified element. */
               ( *nmap )--;
               result = i1;

            }

/* If the MatrixMap could not merge directly with either of its neighbours,
   we consider whether it would be worthwhile to swap the MatrixMap with
   either of its neighbours. This can only be done for certain classes
   of Mapping (WinMaps and some PermMaps), and will usually require both
   Mappings to be modified (unless they are commutative). The advantage of
   swapping the order of the Mappings is that it may result in the MatrixMap
   being adjacent to a Mapping with which it can merge directly on the next
   invocation of this function, thus reducing the number of Mappings
   in the list. */
         } else {

/* Set a flag if we could swap the MatrixMap with its higher neighbour. "do2"
   is returned if swapping the Mappings would simplify either of the Mappings. */
            if( where + 1 < *nmap ){
               swaphi = CanSwap(  ( *map_list )[ where ],
                                  ( *map_list )[ where + 1 ],
                                  ( *invert_list )[ where ],
                                  ( *invert_list )[ where + 1 ], &do2, status );
            } else {
               swaphi = 0;
               do2 = 0;
            }

/* If so, step through each of the Mappings which follow the MatrixMap,
   looking for a Mapping with which the MatrixMap could merge directly. Stop
   when such a Mapping is found, or if a Mapping is found with which the
   MatrixMap could definitely not swap. Note the number of Mappings which
   separate the MatrixMap from the Mapping with which it could merge (if
   any). */
            nstep2 = -1;
            if( swaphi ){
               for( i2 = where + 1; i2 < *nmap; i2++ ){

/* See if we can merge with this Mapping. If so, note the number of steps
   between the two Mappings and leave the loop. */
                  nclass = astGetClass( ( *map_list )[ i2 ] );
                  if( !strcmp( nclass, "MatrixMap" ) ||
                      !strcmp( nclass, "ZoomMap" ) ||
                      ( !strcmp( nclass, "PermMap" ) && PermOK( ( *map_list )[ i2 ], status ) ) ||
                      !strcmp( nclass, "UnitMap" ) ) {
                     nstep2 = i2 - where - 1;
                     break;
                  }

/* If there is no chance that we can swap with this Mapping, leave the loop
   with -1 for the number of steps to indicate that no merging is possible.
   MatrixMaps can swap with WinMaps and some permmaps. */
                  if( strcmp( nclass, "WinMap" ) &&
                      strcmp( nclass, "PermMap" ) ) {
                     break;
                  }

               }

            }

/* Do the same working forward from the MatrixMap towards the start of the map
   list. */
            if( where > 0 ){
               swaplo = CanSwap(  ( *map_list )[ where - 1 ],
                                  ( *map_list )[ where ],
                                  ( *invert_list )[ where - 1 ],
                                  ( *invert_list )[ where ], &do1, status );
            } else {
               swaplo = 0;
               do1 = 0;
            }

            nstep1 = -1;
            if( swaplo ){
               for( i1 = where - 1; i1 >= 0; i1-- ){

                  nclass = astGetClass( ( *map_list )[ i1 ] );
                  if( !strcmp( nclass, "MatrixMap" ) ||
                      ( !strcmp( nclass, "PermMap" ) && PermOK( ( *map_list )[ i1 ], status ) ) ||
                      !strcmp( nclass, "ZoomMap" ) ||
                      !strcmp( nclass, "UnitMap" ) ) {
                     nstep1 = where - 1 - i1;
                     break;
                  }

                  if( strcmp( nclass, "WinMap" ) &&
                      strcmp( nclass, "PermMap" ) ) {
                     break;
                  }

               }

            }

/* Choose which neighbour to swap with so that the MatrixMap moves towards the
   nearest Mapping with which it can merge. */
            if( do1 || (
                nstep1 != -1 && ( nstep2 == -1 || nstep2 > nstep1 ) ) ){
               nclass = class1;
               i1 = where - 1;
               i2 = where;
            } else if( do2 || nstep2 != -1 ){
               nclass = class2;
               i1 = where;
               i2 = where + 1;
            } else {
               nclass = NULL;
            }

/* If there is a target Mapping in the list with which the MatrixMap could
   merge, consider replacing the supplied Mappings with swapped Mappings to
   bring the MatrixMap closer to the target Mapping. */
            if( nclass ){

/* Swap the Mappings. */
               if (!strcmp( nclass, "WinMap" ) ){
                  MatWin( (*map_list) + i1, (*invert_list) + i1, where - i1, status );

               } else if( !strcmp( nclass, "PermMap" ) ){
                  MatPermSwap( (*map_list) + i1, (*invert_list) + i1, where - i1, status );
               }

/* And then merge them. */
               if( where == i1 && where + 1 < *nmap ) {    /* Merging upwards */
                  map2 = astClone( (*map_list)[ where + 1 ] );
                  nmapt = *nmap - where - 1;
                  maplt = *map_list + where + 1;
                  invlt = *invert_list + where + 1;

                  (void) astMapMerge( map2, 0, series, &nmapt, &maplt, &invlt );
                  map2 = astAnnul( map2 );
                  *nmap = where + 1 + nmapt;

               } else if( where - 2 >= 0 ) {               /* Merging downwards */
                  map2 = astClone( (*map_list)[ where - 2 ] );
                  nmapt = *nmap - where + 2;
                  maplt = *map_list + where - 2 ;
                  invlt = *invert_list + where - 2;

                  (void) astMapMerge( map2, 0, series, &nmapt, &maplt, &invlt );
                  map2 = astAnnul( map2 );
                  *nmap = where - 2 + nmapt;
               }

               result = i1;

/* If there is no Mapping available for merging, it may still be
   advantageous to swap with a neighbour because the swapped Mapping may
   be simpler than the original Mappings. For instance, a PermMap may
   strip rows of the MatrixMap leaving only a UnitMap. */
            } else if( swaphi || swaplo ) {

/* Try swapping with each possible neighbour in turn. */
               for( i = 0; i < 2; i++ ) {

/*  Set up the class and pointers for the mappings to be swapped, first
    the lower neighbour, then the upper neighbour. */
                  if( i == 0 && swaplo ){
                     nclass = class1;
                     i1 = where - 1;
                     i2 = where;

                  } else if( i == 1 && swaphi ){
                     nclass = class2;
                     i1 = where;
                     i2 = where + 1;

                  } else {
                     nclass = NULL;
                  }

/* If we have a Mapping to swap with... */
                  if( nclass ) {

/* Take copies of the Mapping and Invert flag arrays so we do not change
   the supplied values. */
                     mc[ 0 ] = (AstMapping *) astCopy( ( (*map_list) + i1 )[0] );
                     mc[ 1 ] = (AstMapping *) astCopy( ( (*map_list) + i1 )[1] );
                     ic[ 0 ] = ( (*invert_list) + i1 )[0];
                     ic[ 1 ] = ( (*invert_list) + i1 )[1];

/* Swap these Mappings. */
                     if( !strcmp( nclass, "WinMap" ) ){
                        MatWin( mc, ic, where - i1, status );
                     } else if( !strcmp( nclass, "PermMap" ) ){
                        MatPermSwap( mc, ic, where - i1, status );
                     }

/* If neither of the swapped Mappings can be simplified further, then there
   is no point in swapping the Mappings, so just annul the map copies. */
                     smc0 = astSimplify( mc[0] );
                     smc1 = astSimplify( mc[1] );

                     if( astGetClass( smc0 ) == astGetClass( mc[0] ) &&
                         astGetClass( smc1 ) == astGetClass( mc[1] ) ) {

                        mc[ 0 ] = (AstMapping *) astAnnul( mc[ 0 ] );
                        mc[ 1 ] = (AstMapping *) astAnnul( mc[ 1 ] );

/* If one or both of the swapped Mappings could be simplified, then annul
   the supplied Mappings and return the swapped mappings, storing the index
   of the first modified Mapping. */
                     } else {
                        (void ) astAnnul( ( (*map_list) + i1 )[0] );
                        (void ) astAnnul( ( (*map_list) + i1 )[1] );

                        ( (*map_list) + i1 )[0] = mc[ 0 ];
                        ( (*map_list) + i1 )[1] = mc[ 1 ];

                        ( (*invert_list) + i1 )[0] = ic[ 0 ];
                        ( (*invert_list) + i1 )[1] = ic[ 1 ];

                        result = i1;
                        break;
                     }

/* Annul the simplied Mappings */
                     smc0 = astAnnul( smc0 );
                     smc1 = astAnnul( smc1 );

                  }
               }
            }
         }
      }
   }

/* Return the result. */
   return result;
}

static int *MapSplit( AstMapping *this_map, int nin, const int *in, AstMapping **map, int *status ){
/*
*  Name:
*     MapSplit

*  Purpose:
*     Create a Mapping representing a subset of the inputs of an existing
*     MatrixMap.

*  Type:
*     Private function.

*  Synopsis:
*     #include "matrixmap.h"
*     int *MapSplit( AstMapping *this, int nin, const int *in, AstMapping **map, int *status )

*  Class Membership:
*     MatrixMap method (over-rides the protected astMapSplit method
*     inherited from the Mapping class).

*  Description:
*     This function creates a new Mapping by picking specified inputs from
*     an existing MatrixMap. This is only possible if the specified inputs
*     correspond to some subset of the MatrixMap outputs. That is, there
*     must exist a subset of the MatrixMap outputs for which each output
*     depends only on the selected MatrixMap inputs, and not on any of the
*     inputs which have not been selected. In addition, outputs that are
*     not in this subset must not depend on any selected inputs. If these
*     conditions are not met by the supplied MatrixMap, then a NULL Mapping
*     is returned.

*  Parameters:
*     this
*        Pointer to the MatrixMap to be split (the MatrixMap is not actually
*        modified by this function).
*     nin
*        The number of inputs to pick from "this".
*     in
*        Pointer to an array of indices (zero based) for the inputs which
*        are to be picked. This array should have "nin" elements. If "Nin"
*        is the number of inputs of the supplied MatrixMap, then each element
*        should have a value in the range zero to Nin-1.
*     map
*        Address of a location at which to return a pointer to the new
*        Mapping. This Mapping will have "nin" inputs (the number of
*        outputs may be different to "nin"). A NULL pointer will be
*        returned if the supplied MatrixMap has no subset of outputs which
*        depend only on the selected inputs.
*     status
*        Pointer to the inherited status variable.

*  Returned Value:
*     A pointer to a dynamically allocated array of ints. The number of
*     elements in this array will equal the number of outputs for the
*     returned Mapping. Each element will hold the index of the
*     corresponding output in the supplied MatrixMap. The array should be
*     freed using astFree when no longer needed. A NULL pointer will
*     be returned if no output Mapping can be created.

*  Notes:
*     - If this function is invoked with the global error status set,
*     or if it should fail for any reason, then NULL values will be
*     returned as the function value and for the "map" pointer.
*/

/* Local Variables: */
   AstMatrixMap *this;        /* Pointer to MatrixMap structure */
   double *mat;               /* Pointer to matrix for supplied MatrixMap */
   double *pmat;              /* Pointer to row start in returned matrix */
   double *prow;              /* Pointer to row start in supplied matrix */
   double *rmat;              /* Pointer to matrix for returned MatrixMap */
   double el;                 /* Next element value in supplied matrix */
   int *result;               /* Pointer to returned array */
   int good;                  /* Would new matrix contain any good values/ */
   int i;                     /* Loop count */
   int icol;                  /* Column index within supplied MatrixMap */
   int iel;                   /* Index of next element from the input matrix */
   int irow;                  /* Row index within supplied MatrixMap */
   int isel;                  /* Does output depend on any selected inputs? */
   int ncol;                  /* Number of columns (inputs) in supplied MatrixMap */
   int nout;                  /* Number of outputs in returned MatrixMap */
   int nrow;                  /* Number of rows (outputs) in supplied MatrixMap */
   int ok;                    /* Are input indices OK? */
   int sel;                   /* Does any output depend on selected inputs? */
   int unsel;                 /* Does any output depend on unselected inputs? */

/* Initialise */
   result = NULL;
   *map = NULL;

/* Check the global error status. */
   if ( !astOK ) return result;

/* Invoke the parent astMapSplit method to see if it can do the job. */
   result = (*parent_mapsplit)( this_map, nin, in, map, status );

/* If not, we provide a special implementation here. */
   if( !result ) {

/* Get a pointer to the MatrixMap structure. */
      this = (AstMatrixMap *) this_map;

/* Get the number of inputs and outputs. */
      ncol = astGetNin( this );
      nrow = astGetNout( this );

/* Check the supplied input indices are usable. */
      ok = 1;
      for( i = 0; i < nin; i++ ) {
         if( in[ i ] < 0 || in[ i ] >= ncol ) {
            ok = 0;
            break;
         }
      }

      if( ok ) {

/* Ensure the MatrixMap is stored in full form. */
         ExpandMatrix( this, status );

/* Allocate the largest array that could be necessary to hold the
   returned array of Mapping outputs. */
         result = astMalloc( sizeof(int)*(size_t) nrow );

/* Allocate the largest array that could be necessary to hold the
   matrix representing the returned MatrixMap. */
         rmat = astMalloc( sizeof(double)*(size_t) (nrow*ncol) );

/* Get the matrix which defines the current forward transformation. This
   takes into account whether the MatrixMap has been inverted or not. */
         if( astGetInvert( this ) ) {
            mat = this->i_matrix;
         } else {
            mat = this->f_matrix;
         }

/* We cannot create the require Mapping if the matrix is undefined. */
         if( !mat || !astOK ) {
            ok = 0;
            nout = 0;
            good = 0;

/* Otherwise, loop round all the rows in the matrix. */
         } else {
            nout = 0;
            good = 0;
            pmat = rmat;
            iel = 0;
            for( irow = 0; irow < nrow; irow++ ) {

/* Indicate that this output (i.e. row of the matrix) depends on neither
   selected nor unselected inputs as yet. */
               sel = 0;
               unsel = 0;

/* Save a pointer to the first element of this row in the MatrixMap
   matrix. */
               prow = mat + iel;

/* Loop round all the elements in the current row of the matrix. */
               for( icol = 0; icol < ncol; icol++ ) {

/* If this element is non-zero and non-bad, then output "irow" depends on
   input "icol". */
                  el = mat[ iel++ ];
                  if( el != 0.0 && el != AST__BAD ) {

/* Is input "icol" one of the selected inputs? */
                     isel = 0;
                     for( i = 0; i < nin; i++ ) {
                        if( in[ i ] == icol ) {
                           isel = 1;
                           break;
                        }
                     }

/* If so, note that this output depends on selected inputs. Otherwise note
   it depends on unselected inputs. */
                     if( isel ) {
                        sel = 1;
                     } else  {
                        unsel = 1;
                     }
                  }
               }

/* If this output depends only on selected inputs, we can include it in
   the returned Mapping.*/
               if( sel && !unsel ) {

/* Store the index of the output within the original MatrixMap. */
                  result[ nout ] = irow;

/* Increment the number of outputs in the returned Mapping. */
                  nout++;

/* Copy the elements of the current matrix row which correspond to the
   selected inputs into the new matrix. */
                  for( i = 0; i < nin; i++ ) {
                    if( astISGOOD( prow[ in[ i ] ] ) ) {
                        *(pmat++) = prow[ in[ i ] ];
                        good = 1;
                     }
                  }
               }

/* If this output depends on a selected input, but also depends on an
   unselected input, we cannot split the MatrixMap. */
               if( sel && unsel ) {
                  ok = 0;
                  break;
               }
            }
         }


/* If the returned Mapping can be created, create it. */
         if( ok && nout > 0 && good ) {
            *map = (AstMapping *) astMatrixMap( nin, nout, 0, rmat, "", status );

/* Otherwise, free the returned array. */
         } else {
            result = astFree( result );
         }

/* Free resources. */
         rmat = astFree( rmat );

/* Re-compress the supplied MatrixMap. */
         CompressMatrix( this, status );
      }
   }

/* Free returned resources if an error has occurred. */
   if( !astOK ) {
      result = astFree( result );
      *map = astAnnul( *map );
   }

/* Return the list of output indices. */
   return result;
}

static AstMatrixMap *MatMat( AstMapping *map1, AstMapping *map2, int inv1,
                             int inv2, int *status ){
/*
*  Name:
*     MatMat

*  Purpose:
*     Create a merged MatrixMap from two supplied MatrixMaps.

*  Type:
*     Private function.

*  Synopsis:
*     #include "matrixmap.h"
*     AstMatrixMap *MatMat( AstMapping *map1, AstMapping *map2, int inv1,
*                           int inv2, int *status )

*  Class Membership:
*     MatrixMap member function

*  Description:
*     This function creates a new MatrixMap which performs a mapping
*     equivalent to applying the two supplied MatrixMaps in series, in the
*     directions specified by the "invert" flags (the Invert attributes of
*     the supplied MatrixMaps are ignored).

*  Parameters:
*     map1
*        A pointer to the MatrixMap to apply first.
*     map2
*        A pointer to the MatrixMap to apply second.
*     inv1
*        The invert flag to use with map1. A value of zero causes the forward
*        mapping to be used, and a non-zero value causes the inverse
*        mapping to be used.
*     inv2
*        The invert flag to use with map2.
*     status
*        Pointer to the inherited status variable.

*  Returned Value:
*     Pointer to the new MatrixMap.

*  Notes:
*     -  The forward direction of the returned MatrixMap is equivalent to the
*     combined effect of the two supplied MatrixMap, operating in the
*     directions specified by "inv1" and "inv2".
*     -  A null pointer will be returned if this function is invoked with the
*     global error status set, or if it should fail for any reason.
*/

/* Local Variables: */
   AstMatrixMap *result;            /* Pointer to output MatrixMap */
   int invert[ 2 ];                 /* Original invert flags */

/* Check the global error status. */
   if ( !astOK ) return NULL;

/* Initialise the returned pointer. */
   result = NULL;

/* Temporarily set their Invert attributes to the supplied values. */
   invert[ 0 ] = astGetInvert( map1 );
   astSetInvert( map1, inv1 );

   invert[ 1 ] = astGetInvert( map2 );
   astSetInvert( map2, inv2 );

/* Create a new MatrixMap by multiplying them together. */
   result = astMtrMult( (AstMatrixMap *) map1, (AstMatrixMap *) map2 );

/* Re-instate the original settings of the Invert attributes for the
   supplied MatrixMaps. */
   astSetInvert( map1, invert[ 0 ] );
   astSetInvert( map2, invert[ 1 ] );

/* If an error has occurred, annull the returned MatrixMap. */
   if( !astOK ) result = astAnnul( result );

/* Return a pointer to the output MatrixMap. */
   return result;
}

static AstMatrixMap *MatPerm( AstMatrixMap *mm, AstPermMap *pm, int minv,
                              int pinv, int mat1, int *status ){
/*
*  Name:
*     MatPerm

*  Purpose:
*     Create a MatrixMap by merging a MatrixMap and a PermMap.

*  Type:
*     Private function.

*  Synopsis:
*     #include "matrixmap.h"
*     AstMatrixMap *MatPerm( AstMatrixMap *mm, AstPermMap *pm, int minv,
*                            int pinv, int mat1, int *status )

*  Class Membership:
*     MatrixMap member function

*  Description:
*     This function creates a new MatrixMap which performs a mapping
*     equivalent to applying the two supplied Mappings in series in the
*     directions specified by the "invert" flags (the Invert attributes of
*     the supplied MatrixMaps are ignored).

*  Parameters:
*     mm
*        A pointer to the MatrixMap.
*     pm
*        A pointer to the PermMap.
*     minv
*        The invert flag to use with mm. A value of zero causes the forward
*        mapping to be used, and a non-zero value causes the inverse
*        mapping to be used.
*     pinv
*        The invert flag to use with pm.
*     mat1
*        If non-zero, then "mm" is applied first followed by "pm". Otherwise,
*        "pm" is applied first followed by "mm".
*     status
*        Pointer to the inherited status variable.

*  Returned Value:
*     Pointer to the new MatrixMap.

*  Notes:
*     -  The forward direction of the returned MatrixMap is equivalent to the
*     combined effect of the two supplied Mappings, operating in the
*     directions specified by "pinv" and "minv".
*     -  A null pointer will be returned if this function is invoked with the
*     global error status set, or if it should fail for any reason.
*/

/* Local Variables: */
   AstMatrixMap *mm2;            /* Pointer to an intermediate MatrixMap */
   AstMatrixMap *result;         /* Pointer to output MatrixMap */
   AstPointSet *pset1;           /* Pointer to a PointSet holding unpermuted unit vectors */
   AstPointSet *pset2;           /* Pointer to a PointSet holding permuted unit vectors */
   double *matrix;               /* Pointer to a matrix representing the PermMap */
   double *p;                    /* Pointer to next matrix element */
   double **ptr1;                /* Pointer to the data in pset1 */
   double **ptr2;                /* Pointer to the data in pset2 */
   int i;                        /* Axis index */
   int j;                        /* Point index */
   int nax;                      /* No. of axes in the PermMap */
   int old_minv;                 /* Original setting of MatrixMap Invert attribute */
   int old_pinv;                 /* Original setting of PermMap Invert attribute */

/* Check the global error status. */
   if ( !astOK ) return NULL;

/* Initialise the returned pointer. */
   result = NULL;

/* Temporarily set the Invert attributes of both Mappings to the supplied
   values. */
   old_minv = astGetInvert( mm );
   astSetInvert( mm, minv );

   old_pinv = astGetInvert( pm );
   astSetInvert( pm, pinv );

/* Get the number of axes in the PermMap. The PermMap will have the same
   number of input and output axes because a check has already been made on
   it to ensure that this is so (in function PermOK). */
   nax = astGetNin( pm );

/* We first represent the PermMap as a MatrixMap containing elements with
   values zero or one. Each row of this matrix is obtained by transforming a
   unit vector along each axis using the inverse PermMap. Allocate memory
   to hold the matrix array, and create a PointSet holding the unit
   vectors. */
   matrix = (double *) astMalloc( sizeof( double )*(size_t)( nax*nax ) );

   pset1 = astPointSet( nax, nax, "", status );
   ptr1 = astGetPoints( pset1 );

   pset2 = astPointSet( nax, nax, "", status );
   ptr2 = astGetPoints( pset2 );

   if( astOK ){
      for( i = 0; i < nax; i++ ){
         for( j = 0; j < nax; j++ ) ptr1[ i ][ j ] = 0.0;
         ptr1[ i ][ i ] = 1.0;
      }

/* Transform these unit vectors using the inverse PermMap. */
      (void) astTransform( pm, pset1, 0, pset2 );

/* Copy the transformed vectors into the matrix array. */
      p = matrix;
      for( j = 0; j < nax; j++ ){
         for( i = 0; i < nax; i++ ) *(p++) = ptr2[ i ][ j ];
      }

/* Create a MatrixMap holding this array. */
      mm2 = astMatrixMap( nax, nax, 0, matrix, "", status );

/* Create a new MatrixMap equal to the product of the supplied MatrixMap
   and the MatrixMap just created from the PermMap. */
      if( mat1 ){
         result = astMtrMult( mm, mm2 );
      } else {
         result = astMtrMult( mm2, mm );
      }

/* Free everything. */
      mm2 = astAnnul( mm2 ) ;
   }

   pset2 = astAnnul( pset2 );
   pset1 = astAnnul( pset1 );
   matrix = (double *) astFree( (void *) matrix );

/* Re-instate the original settings of the Invert attribute for the
   supplied Mappings. */
   astSetInvert( mm, old_minv );
   astSetInvert( pm, old_pinv );

/* If an error has occurred, annull the returned MatrixMap. */
   if( !astOK ) result = astAnnul( result );

/* Return a pointer to the output MatrixMap. */
   return result;
}

static void MatPermSwap( AstMapping **maps, int *inverts, int imm, int *status ){
/*
*  Name:
*     MatPermSwap

*  Purpose:
*     Swap a PermMap and a MatrixMap.

*  Type:
*     Private function.

*  Synopsis:
*     #include "matrixmap.h"
*     void MatPermSwap( AstMapping **maps, int *inverts, int imm )

*  Class Membership:
*     MatrixMap member function

*  Description:
*     A list of two Mappings is supplied containing a PermMap and a
*     MatrixMap. These Mappings are annulled, and replaced with
*     another pair of Mappings consisting of a PermMap and a MatrixMap
*     in the opposite order. These Mappings are chosen so that their
*     combined effect is the same as the original pair of Mappings.

*  Parameters:
*     maps
*        A pointer to an array of two Mapping pointers.
*     inverts
*        A pointer to an array of two invert flags.
*     imm
*        The index within "maps" of the MatrixMap.

*  Notes:
*     -  There are restictions on the sorts of PermMaps which can be
*     swapped with a MatrixMap -- see function CanSwap. It is assumed
*     that the supplied MatrixMap and PermMap satisfy these requirements.

*/

/* Local Variables: */
   AstMatrixMap *mm;         /* Pointer to the supplied MatrixMap */
   AstMatrixMap *mmnew;      /* Pointer to new MatrixMap */
   AstMatrixMap *smmnew;     /* Pointer to new simplified MatrixMap */
   AstPermMap *pm;           /* Pointer to the supplied PermMap */
   AstPermMap *pmnew;        /* Pointer to new PermMap */
   AstPermMap *spmnew;       /* Pointer to new simplified PermMap */
   double *consts;           /* Pointer to constants array */
   double *matrix;           /* Supplied array of matrix elements */
   double *out_el;           /* Pointer to next element of new MatrixMap */
   double *out_mat;          /* Matrix elements for new MatrixMap */
   double c;                 /* Constant */
   double matel;             /* Matrix element */
   int *inperm;              /* Pointer to input axis permutation array */
   int *outperm;             /* Pointer to output axis permutation array */
   int col;                  /* Index of matrix column */
   int i;                    /* Axis count */
   int k;                    /* Axis count */
   int nin;                  /* No. of axes in supplied PermMap */
   int nout;                 /* No. of axes in returned PermMap */
   int old_pinv;             /* Invert value for the supplied PermMap */
   int row;                  /* Index of matrix row */

/* Check the global error status. */
   if ( !astOK ) return;

/* Initialise variables to avoid "used of uninitialised variable"
   messages from dumb compilers. */
   mmnew = NULL;
   pmnew = NULL;

/* Store pointers to the supplied PermMap and the MatrixMap. */
   pm = (AstPermMap *) maps[ 1 - imm ];
   mm = (AstMatrixMap *) maps[ imm ];

/* Temporarily set the Invert attribute of the supplied PermMap to the
   supplied value. */
   old_pinv = astGetInvert( pm );
   astSetInvert( pm, inverts[ 1 - imm ] );

/* Ensure the MatrixMap is stored in full form. */
   ExpandMatrix( mm, status );

/* Store a pointer to the required array of matrix elements. */
   if( inverts[ imm ] ) {
      matrix = mm->i_matrix;
   } else {
      matrix = mm->f_matrix;
   }

/* Get the number of input and output axes of the PermMap. */
   nin = astGetNin( pm );
   nout = astGetNout( pm );

/* Allocate memory to hold the matrix elements for the swapped MatrixMap.
   The number of rows and olumns in the new matrix must equal the number of
   input or output axes for the PermMap, depending on whether the PermMap
   or MatrixMap is applied first. */
   if( imm == 0 ) {
      out_mat = (double *) astMalloc( sizeof( double )*(size_t)( nout*nout ) );
   } else {
      out_mat = (double *) astMalloc( sizeof( double )*(size_t)( nin*nin ) );
   }

/* We need to know the axis permutation arrays and constants array for
   the PermMap. */
   PermGet( pm, &outperm, &inperm, &consts, status );
   if( astOK ) {

/* First deal with cases where the MatrixMap is applied first. */
      if( imm == 0 ) {

/* Consider each output axis of the PermMap. */
         for( i = 0; i < nout; i++ ) {

/* If this output is connected to one of the input axes... */
            row = outperm[ i ];
            if( row >= 0 && row < nin ) {

/* Permute the row of the supplied matrix which feeds the corresponding
   PermMap input axis (i.e. axis outperm[k] ) using the forward PermMap.
   Store zeros for any output axes which are assigned constants. This forms
   row i of the new MatrixMap. */
               out_el = out_mat + nout*i;
               for( k = 0; k < nout; k++ ){
                  col = outperm[ k ];
                  if( col >= 0 && col < nin ) {
                     *(out_el++) = *( matrix + nin*row + col );
                  } else {
                     *(out_el++) = 0.0;
                  }
               }

/* If this output is asigned a constant value, use a "diagonal" vector for
   row i of the new MatrixMap (i.e. all zeros except for a 1.0 in column
   i ). */
            } else {
               out_el = out_mat + nout*i;
               for( k = 0; k < nout; k++ ) {
                  if( k != i ) {
                     *(out_el++) = 0.0;
                  } else {
                     *(out_el++) = 1.0;
                  }
               }
            }
         }

/* Create the new MatrixMap. */
         mmnew = astMatrixMap( nout, nout, 0, out_mat, "", status );

/* Any PermMap inputs which are assigned a constant value need to be
   changed now, since they will no longer be scaled by the inverse
   MatrixMap. CanSwap ensures that the inverse MatrixMap produces a
   simple scaling for constant axes, so we change the PermMap constant
   to be the constant AFTER scaling by the inverse MatrixMap.

   Consider each input axis of the PermMap. */
         for( i = 0; i < nin; i++ ) {

/* If this input is assigned a constant value... */
            if( inperm[ i ] < 0 ) {

/* Divide the supplied constant value by the corresponding diagonal term
   in the supplied MatrixMap. */
               c = consts[ -inperm[ i ] - 1 ];
               if( c != AST__BAD ) {
                  matel = matrix[ i*( nin + 1 ) ];
                  if( matel != 0.0 && matel != AST__BAD ) {
                     consts[ -inperm[ i ] - 1 ] /= matel;
                  } else {
                     consts[ -inperm[ i ] - 1 ] = AST__BAD;
                  }
               }
            }
         }

/* Now deal with cases where the PermMap is applied first. */
      } else {

/* Consider each input axis of the PermMap. */
         for( i = 0; i < nin; i++ ) {

/* If this input is connected to one of the output axes... */
            row = inperm[ i ];
            if( row >= 0 && row < nout ) {

/* Permute the row of the supplied matrix which feeds the corresponding
   PermMap output axis (i.e. axis inperm[k] ) using the inverse PermMap.
   Store zeros for any input axes which are assigned constants. This forms
   row i of the new MatrixMap. */
               out_el = out_mat + nin*i;
               for( k = 0; k < nin; k++ ){
                  col = inperm[ k ];
                  if( col >= 0 && col < nout ) {
                     *(out_el++) = *( matrix + nout*row + col );
                  } else {
                     *(out_el++) = 0.0;
                  }
               }

/* If this input is asigned a constant value, use a "diagonal" vector for
   row i of the new MatrixMap (i.e. all zeros except for a 1.0 in column
   i ). */
            } else {
               out_el = out_mat + nin*i;
               for( k = 0; k < nin; k++ ) {
                  if( k != i ) {
                     *(out_el++) = 0.0;
                  } else {
                     *(out_el++) = 1.0;
                  }
               }
            }
         }

/* Create the new MatrixMap. */
         mmnew = astMatrixMap( nin, nin, 0, out_mat, "", status );

/* Any PermMap outputs which are assigned a constant value need to be
   changed now, since they will no longer be scaled by the forward
   MatrixMap. CanSwap ensures that the forward MatrixMap produces a
   simple scaling for constant axes, so we change the PermMap constant
   to be the constant AFTER scaling by the forward MatrixMap.

   Consider each output axis of the PermMap. */
         for( i = 0; i < nout; i++ ) {

/* If this output is assigned a constant value... */
            if( outperm[ i ] < 0 ) {

/* Multiple the supplied constant value by the corresponding diagonal term in
   the supplied MatrixMap. */
               c = consts[ -outperm[ i ] - 1 ];
               if( c != AST__BAD ) {
                  matel = matrix[ i*( nout + 1 ) ];
                  if( matel != AST__BAD ) {
                     consts[ -outperm[ i ] - 1 ] *= matel;
                  } else {
                     consts[ -outperm[ i ] - 1 ] = AST__BAD;
                  }
               }
            }
         }
      }

/* Create a new PermMap (since the constants may have changed). */
      pmnew = astPermMap( nin, inperm, nout, outperm, consts, "", status );

/* Free the axis permutation and constants arrays. */
      outperm = (int *) astFree( (void *) outperm );
      inperm = (int *) astFree( (void *) inperm );
      consts = (double *) astFree( (void *) consts );
   }

/* Free the memory used to hold the new matrix elements. */
   out_mat = (double *) astFree( (void *) out_mat );

/* Ensure the supplied MatrixMap is stored back in compressed form. */
   CompressMatrix( mm, status );

/* Re-instate the original value of the Invert attribute of the supplied
   PermMap. */
   astSetInvert( pm, old_pinv );

   if( astOK ) {

/* Annul the supplied PermMap. */
      (void) astAnnul( pm );

/* Simplify the returned Mappings. */
      spmnew = astSimplify( pmnew );
      pmnew = astAnnul( pmnew );

      smmnew = astSimplify( mmnew );
      mmnew = astAnnul( mmnew );

/* Store a pointer to the new PermMap in place of the supplied MatrixMap. This
   PermMap should be used in its forward direction. */
      maps[ imm ] = (AstMapping *) spmnew;
      inverts[ imm ] = astGetInvert( spmnew );

/* Annul the supplied matrixMap. */
      (void) astAnnul( mm );

/* Store a pointer to the new MatrixMap. This MatrixMap should be used in
   its forward direction. */
      maps[ 1 - imm ] = (AstMapping *) smmnew;
      inverts[ 1 - imm ] = astGetInvert( smmnew );
   }

/* Return. */
   return;
}

static void MatWin( AstMapping **maps, int *inverts, int imm, int *status ){
/*
*  Name:
*     MatWin

*  Purpose:
*     Swap a WinMap and a MatrixMap.

*  Type:
*     Private function.

*  Synopsis:
*     #include "matrixmap.h"
*     void MatWin( AstMapping **maps, int *inverts, int imm, int *status )

*  Class Membership:
*     WinMap member function

*  Description:
*     A list of two Mappings is supplied containing a WinMap and a
*     MatrixMap. These Mappings are annulled, and replaced with
*     another pair of Mappings consisting of a WinMap and a MatrixMap
*     in the opposite order. These Mappings are chosen so that their
*     combined effect is the same as the original pair of Mappings.
*     The scale factors in the returned WinMap are always unity (i.e.
*     the differences in scaling get absorbed into the returned
*     MatrixMap).

*  Parameters:
*     maps
*        A pointer to an array of two Mapping pointers.
*     inverts
*        A pointer to an array of two invert flags.
*     imm
*        The index within "maps" of the MatrixMap.
*     status
*        Pointer to the inherited status variable.

*/

/* Local Variables: */
   AstMatrixMap *m1;             /* Pointer to Diagonal scale factor MatrixMap */
   AstMatrixMap *m2;             /* Pointer to returned MatrixMap */
   AstMatrixMap *sm2;            /* Pointer to simplified returned MatrixMap */
   AstMatrixMap *mm;             /* Pointer to the supplied MatrixMap */
   AstPointSet *pset1;           /* Shift terms from supplied WinMap */
   AstPointSet *pset2;           /* Shift terms for returned WinMap */
   AstWinMap *w1;                /* Pointer to the returned WinMap */
   AstWinMap *sw1;               /* Pointer to the simplified returned WinMap */
   AstWinMap *wm;                /* Pointer to the supplied WinMap */
   double **ptr1;                /* Pointer to pset1 data */
   double **ptr2;                /* Pointer to pset2 data */
   double *a;                    /* Array of shift terms from supplied WinMap */
   double *aa;                   /* Pointer to next shift term */
   double *b;                    /* Array of scale terms from supplied WinMap */
   double *bb;                   /* Pointer to next scale term */
   int i;                        /* Axis count */
   int nin;                      /* No. of axes in supplied WinMap */
   int nout;                     /* No. of axes in returned WinMap */
   int old_minv;                 /* Invert value for the supplied MatrixMap */
   int old_winv;                 /* Invert value for the supplied WinMap */

/* Check the global error status. */
   if ( !astOK ) return;

/* Store pointers to the supplied WinMap and the MatrixMap. */
   wm = (AstWinMap *) maps[ 1 - imm ];
   mm = (AstMatrixMap *) maps[ imm ];

/* Temporarily set the Invert attribute of the supplied Mappings to the
   supplied values. */
   old_winv = astGetInvert( wm );
   astSetInvert( wm, inverts[ 1 - imm ] );

   old_minv = astGetInvert( mm );
   astSetInvert( mm, inverts[ imm ] );

/* Get copies of the shift and scale terms used by the WinMap. This
   also returns the number of axes in the WinMap. */
   nin = astWinTerms( wm, &a, &b );

/* Create a diagonal MatrixMap holding the scale factors from the
   supplied WinMap. */
   m1 = astMatrixMap( nin, nin, 1, b, "", status );

/* Create a PointSet holding a single position given by the shift terms
   in the supplied WinMap. */
   pset1 = astPointSet( 1, nin, "", status );
   ptr1 = astGetPoints( pset1 );
   if( astOK ){
      aa = a;
      for( i = 0; i < nin; i++ ) ptr1[ i ][ 0 ] = *(aa++);
   }

/* First deal with cases when the WinMap is applied first, followed by
   the MatrixMap. */
   if( imm == 1 ){

/* Multiply the diagonal matrix holding the WinMap scale factors by the
   supplied matrix. The resulting MatrixMap is the one to return in the
   map list. */
      m2 = astMtrMult( m1, mm );

/* Transform the position given by the shift terms from the supplied
   WinMap using the supplied MatrixMap to get the shift terms for
   the returned WinMap. */
      pset2 = astTransform( mm, pset1, 1, NULL );

/* Now deal with cases when the MatrixMap is applied first, followed by
   the WinMap. */
   } else {

/* Multiply the supplied MatrixMap by the diagonal matrix holding scale
   factors from the supplied WinMap. The resulting MatrixMap is the one to
   return in the map list. */
      m2 = astMtrMult( mm, m1 );

/* Transform the position given by the shift terms from the supplied
   WinMap using the inverse of the returned MatrixMap to get the shift
   terms for the returned WinMap. */
      pset2 = astTransform( m2, pset1, 0, NULL );

   }

/* Re-instate the original value of the Invert attributes of the supplied
   Mappings. */
   astSetInvert( wm, old_winv );
   astSetInvert( mm, old_minv );

/* Get pointers to the shift terms for the returned WinMap. */
   ptr2 = astGetPoints( pset2 );

/* Create the returned WinMap, initially with undefined corners. The number of
   axes in the WinMap must equal the number of shift terms. */
   nout = astGetNcoord( pset2 );
   w1 = astWinMap( nout, NULL, NULL, NULL, NULL, "", status );

/* If succesful, store the scale and shift terms in the WinMap. The scale
   terms are always unity. */
   if( astOK ){
      bb = w1->b;
      aa = w1->a;
      for( i = 0; i < nout; i++ ) {
         *(bb++) = 1.0;
         *(aa++) = ptr2[ i ][ 0 ];
      }

/* Replace the supplied Mappings and invert flags with the ones found
   above. Remember that the order of the Mappings is now swapped */
      (void) astAnnul( maps[ 0 ] );
      (void) astAnnul( maps[ 1 ] );

      sw1 = astSimplify( w1 );
      w1 = astAnnul( w1 );

      maps[ imm ] = (AstMapping *) sw1;
      inverts[ imm  ] = astGetInvert( sw1 );

      sm2 = astSimplify( m2 );
      m2 = astAnnul( m2 );

      maps[ 1 - imm ] = (AstMapping *) sm2;
      inverts[ 1 - imm  ] = astGetInvert( sm2 );

   }

/* Annul the MatrixMap and PointSet holding the scale and shift terms from the
   supplied WinMap. */
   m1 = astAnnul( m1 );
   pset1 = astAnnul( pset1 );
   pset2 = astAnnul( pset2 );

/* Free the copies of the scale and shift terms from the supplied WinMap. */
   b = (double *) astFree( (void *) b );
   a = (double *) astFree( (void *) a );

/* Return. */
   return;
}

static AstWinMap *MatWin2( AstMatrixMap *mm, AstWinMap *wm, int minv,
                           int winv, int mat1, int *status ){
/*
*  Name:
*     MatWin2

*  Purpose:
*     Create a WinMap by merging a diagonal MatrixMap and a WinMap.

*  Type:
*     Private function.

*  Synopsis:
*     #include "matrixmap.h"
*     AstWinMap *MatWin2( AstMatrixMap *mm, AstWinMap *wm, int minv,
*                         int winv, int mat1, int *status )

*  Class Membership:
*     MatrixMap member function

*  Description:
*     This function creates a new WinMap which performs a mapping
*     equivalent to applying the two supplied Mappings in series in the
*     directions specified by the "invert" flags (the Invert attributes of
*     the supplied MatrixMaps are ignored), in the order specified by
*     "mat1".

*  Parameters:
*     mm
*        A pointer to the MatrixMap. Assumed to be diagonal.
*     wm
*        A pointer to the WinMap.
*     minv
*        The invert flag to use with mm. A value of zero causes the forward
*        mapping to be used, and a non-zero value causes the inverse
*        mapping to be used.
*     winv
*        The invert flag to use with wm.
*     mat1
*        If non-zero, then "mm" is applied first followed by "wm". Otherwise,
*        "wm" is applied first followed by "mm".
*     status
*        Pointer to the inherited status variable.

*  Returned Value:
*     Pointer to the new MatrixMap.

*  Notes:
*     -  The forward direction of the returned MatrixMap is equivalent to the
*     combined effect of the two supplied Mappings, operating in the
*     directions specified by "winv" and "minv".
*     -  A null pointer will be returned if this function is invoked with the
*     global error status set, or if it should fail for any reason.
*/

/* Local Variables: */
   AstWinMap *result;            /* Pointer to output WinMap */
   double *ina;                  /* Input corner A in new WinMap */
   double *inb;                  /* Input corner B in new WinMap */
   double *newscales;            /* Scales for new WinMap */
   double *newshifts;            /* Shifts for new WinMap */
   double *outa;                 /* Output corner A in new WinMap */
   double *outb;                 /* Output corner B in new WinMap */
   double *scales2;              /* Pointer to extended WinMap scales array */
   double *scales;               /* Pointer to WinMap scales array */
   double *shifts;               /* Pointer to WinMap shifts array */
   int i;                        /* Axis index */
   int ncol;                     /* No. of columns in the MatrixMap */
   int nrow;                     /* No. of rows in the MatrixMap */
   int nt;                       /* Number of axes in WinMap */
   int old_minv;                 /* Original setting of MatrixMap Invert attribute */
   int old_winv;                 /* Original setting of WinMap Invert attribute */

/* Check the global error status. */
   if ( !astOK ) return NULL;

/* Initialise the returned pointer. */
   result = NULL;

/* Temporarily set the Invert attributes of both Mappings to the supplied
   values. */
   old_minv = astGetInvert( mm );
   astSetInvert( mm, minv );

   old_winv = astGetInvert( wm );
   astSetInvert( wm, winv );

/* Get the number of inputs (columns) and outputs (rows) for the MatrixMap. */
   ncol = astGetNin( mm );
   nrow = astGetNout( mm );

/* Get the scales and shifts implemented by the WinMap. These take into
   account the current Invert attribute of the WinMap. */
   nt = astWinTerms( wm, &shifts, &scales );

/* First deal with cases where the MatrixMap is applied first. */
   if( mat1 ){

/* Sanity check. */
      if( nt != nrow ) {
         if( astOK ) astError( AST__INTER, "astMapMerge(%s): WinMap has %d axes, "
                               "but MatrixMap has %d rows (internal AST programming "
                               "error).", status, astGetClass(mm), nt, nrow );

      } else {

/* Allocate the array to hold the scale terms for the new WinMap. */
         newscales = astMalloc( nrow*sizeof(double) );

/* Ensure that the original scales array is padded with sufficient zeros
   to allow it to be transformed using the matrixmap. */
         scales2 = astCalloc( ncol, sizeof(double) );
         if( astOK ) memcpy( scales2, scales,
                             (ncol<nrow?ncol:nrow)*sizeof(double) );

/* Use the MatrixMap to transform the scale terms from the WinMap. */
         astTranN( mm, 1, ncol, 1, scales2, 1, nrow, 1, newscales );

/* Free resources. */
         scales2 = astFree( scales2 );

/* The shifts are unchanged. */
         newshifts = shifts;
      }

/* Now deal with cases where the WinMap is applied first. */
   } else {

/* Sanity check. */
      if( nt != ncol ) {
         if( astOK ) astError( AST__INTER, "astMapMerge(%s): WinMap has %d axes, "
                               "but MatrixMap has %d columns (internal AST programming "
                               "error).", status, astGetClass(mm), nt, ncol );

      } else {

/* Allocate the array to hold the scale and shift terms for the new WinMap. */
         newscales = astMalloc( nrow*sizeof(double) );
         newshifts = astMalloc( nrow*sizeof(double) );

/* Use the MatrixMap to transform the scale terms from the WinMap. */
         astTranN( mm, 1, ncol, 1, scales, 1, nrow, 1, newscales );

/* Use the MatrixMap to transform the shift terms from the WinMap. */
         astTranN( mm, 1, ncol, 1, shifts, 1, nrow, 1, newshifts );

      }
   }

/* Create the new WinMap. */
   ina = astMalloc( nt*sizeof(double) );
   inb = astMalloc( nt*sizeof(double) );
   outa = astMalloc( nt*sizeof(double) );
   outb = astMalloc( nt*sizeof(double) );
   if( astOK ) {
      for( i = 0; i < nt; i++ ) {
         ina[ i ] = 0.0;
         inb[ i ] = 1.0;
         outa[ i ] = newshifts[ i ];
         outb[ i ] = newscales[ i ] + newshifts[ i ];
      }
      result = astWinMap( nt, ina, inb, outa, outb, "", status );
   }

/* Re-instate the original settings of the Invert attribute for the
   supplied Mappings. */
   astSetInvert( mm, old_minv );
   astSetInvert( wm, old_winv );

/* Free resources. */
   ina = astFree( ina );
   inb = astFree( inb );
   outa = astFree( outa );
   outb = astFree( outb );
   if( newscales != scales ) newscales = astFree( newscales );
   if( newshifts != shifts ) newshifts = astFree( newshifts );
   scales = astFree( scales );
   shifts = astFree( shifts );

/* If an error has occurred, annull the returned MatrixMap. */
   if( !astOK ) result = astAnnul( result );

/* Return a pointer to the output MatrixMap. */
   return result;
}

static AstMatrixMap *MatZoom( AstMatrixMap *mm, AstZoomMap *zm, int minv,
                              int zinv, int *status ){
/*
*  Name:
*     MatZoom

*  Purpose:
*     Create a MatrixMap by merging a MatrixMap and a ZoomMap.

*  Type:
*     Private function.

*  Synopsis:
*     #include "matrixmap.h"
*     AstMatrixMap *MatZoom( AstMatrixMap *mm, AstZoomMap *zm, int minv,
*                            int zinv, int *status )

*  Class Membership:
*     MatrixMap member function

*  Description:
*     This function creates a new MatrixMap which performs a mapping
*     equivalent to applying the two supplied Mappings in series in the
*     directions specified by the "invert" flags (the Invert attributes of
*     the supplied MatrixMaps are ignored).

*  Parameters:
*     mm
*        A pointer to the MatrixMap.
*     zm
*        A pointer to the ZoomMap.
*     minv
*        The invert flag to use with mm. A value of zero causes the forward
*        mapping to be used, and a non-zero value causes the inverse
*        mapping to be used.
*     zinv
*        The invert flag to use with zm.
*     status
*        Pointer to the inherited status variable.

*  Returned Value:
*     Pointer to the new MatrixMap.

*  Notes:
*     -  The forward direction of the returned MatrixMap is equivalent to the
*     combined effect of the two supplied Mappings, operating in the
*     directions specified by "zinv" and "minv".
*     -  A null pointer will be returned if this function is invoked with the
*     global error status set, or if it should fail for any reason.
*/

/* Local Variables: */
   AstMatrixMap *mm2;            /* Pointer to intermediate MatrixMap */
   AstMatrixMap *result;         /* Pointer to output MatrixMap */
   double *matrix;               /* Pointer to diagonal matrix elements array */
   double zfac;                  /* Zoom factor */
   int i;                        /* Axis index */
   int nrow;                     /* No. of rows in the MatrixMap */
   int old_minv;                 /* Original setting of MatrixMap Invert attribute */
   int old_zinv;                 /* Original setting of ZoomMap Invert attribute */

/* Check the global error status. */
   if ( !astOK ) return NULL;

/* Initialise the returned pointer. */
   result = NULL;

/* Temporarily set the Invert attributes of both Mappings to the supplied
   values. */
   old_minv = astGetInvert( mm );
   astSetInvert( mm, minv );

   old_zinv = astGetInvert( zm );
   astSetInvert( zm, zinv );

/* Get the number of rows in the MatrixMap (i.e. the number of output
   axes). */
   nrow = astGetNout( mm );

/* Get the zoom factor implemented by the ZoomMap. Invert it if necessary
   since astGetZoom does not take account of the Invert setting.  */
   zfac = astGetZoom( zm );
   if( zinv ) zfac = 1.0 / zfac;

/* Create a diagonal matrix map in which each diagonal element is equal
   to the zoom factor. */
   matrix = (double *) astMalloc( sizeof( double )*(size_t) nrow );
   if( astOK ) {
      for( i = 0; i < nrow; i++ ) matrix[ i ] = zfac;
   }
   mm2 = astMatrixMap( nrow, nrow, 1, matrix, "", status );
   matrix = (double *) astFree( (void *) matrix );

/* Create a new MatrixMap holding the product of the supplied MatrixMap
   and the diagonal MatrixMap just created. */
   result = astMtrMult( mm, mm2 );
   mm2 = astAnnul( mm2 );

/* Re-instate the original settings of the Invert attribute for the
   supplied Mappings. */
   astSetInvert( mm, old_minv );
   astSetInvert( zm, old_zinv );

/* If an error has occurred, annull the returned MatrixMap. */
   if( !astOK ) result = astAnnul( result );

/* Return a pointer to the output MatrixMap. */
   return result;
}

/* Functions which access class attributes. */
/* ---------------------------------------- */
/* Implement member functions to access the attributes associated with
   this class using the macros defined for this purpose in the
   "object.h" file. For a description of each attribute, see the class
   interface (in the associated .h file). */

static AstMatrixMap *MtrMult( AstMatrixMap *this, AstMatrixMap *a, int *status ){
/*
*+
*  Name:
*     astMtrMult

*  Purpose:
*     Multiply a MatrixMap by another MatrixMap.

*  Type:
*     Protected virtual function.

*  Synopsis:
*     #include "matrixmap.h"
*     AstMatrixMap *MtrMult( astMatrixMap *this, astMatrixMap *a )

*  Class Membership:
*     MatrixMap method

*  Description:
*     This function multiples the matrices given by "this" and "a", returning
*     a pointer to a new MatrixMap holding the product "a x this".
*
*     The number of columns in the "a" matrix must match the number of
*     rows in the "this" matrix. The number of rows in the returned
*     MatrixMap is equal to the number of rows in "a", and the number of
*     columns is the same as the number of rows in "this".

*  Parameters:
*     this
*        Pointer to the first MatrixMap.
*     a
*        Pointer to a second MatrixMap.

*  Returned Value:
*     A pointer to the product MatrixMap.

*  Notes:
*     -  An error is reported if the two MatrixMaps have incompatible
*     shapes, or if either MatrixMap does not have a defined forward
*     transformation.
*     - A null Object pointer will also be returned if this function
*     is invoked with the AST error status set, or if it should fail
*     for any reason.
*-
*/

/* Local variables. */
   astDECLARE_GLOBALS        /* Pointer to thread-specific global data */
   AstMatrixMap *new;        /* New MatrixMap holding the product matrix */
   double *a_matrix;         /* Pointer to the forward "a" matrix */
   double *a_row;            /* Pointer to start of current row in "a" */
   double a_val;             /* Current element value from "a" */
   double factor;            /* Diagonal matrix term */
   double *new_matrix;       /* Pointer to the new forward "this" matrix */
   double *new_val;          /* Pointer to current output element value */
   double sum;               /* Dot product value */
   double *this_col;         /* Pointer to start of current column in "this" */
   double *this_matrix;      /* Pointer to the forward "this" matrix */
   double this_val;          /* Current element value from "this" */
   int col;                  /* Current output column number */
   int i;                    /* Loop count */
   int minrow;               /* Min. number of rows in "a" or "this" */
   int ncol_a;               /* No. of columns in the "a" MatrixMap */
   int ncol_this;            /* No. of columns in the "this" MatrixMap */
   int nrow_a;               /* No. of rows in the "a" MatrixMap */
   int nrow_this;            /* No. of rows in the "this" MatrixMap */
   int row;                  /* Current output row number */

/* Return a NULL pointer if an error has already occurred. */
   if ( !astOK ) return NULL;

/* Get a pointer to the thread specific global data structure. */
   astGET_GLOBALS(NULL);

/* Initialise */
   new = NULL;

/* Report an error if eitherof the MatrixMaps doe snot have a defined
   forward transformation.*/
   if( !astGetTranForward( this ) ){
      astError( AST__MTRML, "astMtrMult(%s): Cannot find the product of 2 "
                "MatrixMaps- the first MatrixMap has no forward transformation.", status,
                astClass(this) );
      return NULL;
   }

   if( !astGetTranForward( a ) ){
      astError( AST__MTRML, "astMtrMult(%s): Cannot find the product of 2 "
                "MatrixMaps- the second MatrixMap has no forward transformation.", status,
                astClass(this) );
      return NULL;
   }

/* Report an error if the shapes of the two matrices are incompatible. */
   nrow_a = astGetNout( a );
   ncol_a = astGetNin( a );
   nrow_this = astGetNout( this );
   ncol_this = astGetNin( this );

   if( ncol_a != nrow_this && astOK ){
      astError( AST__MTRML, "astMtrMult(%s): Number of rows in the first "
                "MatrixMap (%d) does not equal number of columns in the "
                "second MatrixMap (%d).", status, astClass(this), nrow_this, ncol_a );
      return NULL;
   }

/* Store the minimum number of rows in either matrix for later use. */
   if( nrow_a < nrow_this ){
      minrow = nrow_a;
   } else {
      minrow = nrow_this;
   }

/* Ensure that "this" is stored in FULL form (i.e. with all elements
   stored explicitly, even if the matrix is a unit or diagonal matrix). */
   ExpandMatrix( this, status );

/* Store pointers to the current forward matrices (taking into
   account the current states of the Mapping inversion flags ). */
   this_matrix = astGetInvert( this ) ? this->i_matrix : this->f_matrix;
   a_matrix = astGetInvert( a ) ? a->i_matrix : a->f_matrix;

/* Get memory to hold the product matrix in full form. */
   new_matrix = (double *) astMalloc( sizeof( double )*
                                      (size_t)( nrow_a*ncol_this ) );
   if( astOK ){

/* First deal with cases where the "a" MatrixMap represents a unit
   matrix. */
      if( a->form == UNIT ){

/* Copy the required number of rows from "this" to "new". */
         (void) memcpy( (void *) new_matrix, (const void *) this_matrix,
                         sizeof(double)*(size_t)( minrow*ncol_this ) );

/* If there are insufficient rows in "this", append some zero-filled rows. */
         if( minrow < nrow_a ){
            for( i = minrow*ncol_this; i < nrow_a*ncol_this; i++ ){
               new_matrix[ i ] = 0.0;
            }
         }

/* Now deal with cases where the "a" MatrixMap represents a diagonal
   matrix. */
      } else if( a->form == DIAGONAL ){

/* Scale the required number of rows from "this" storing them in "new",
   and checking for bad values. */
         i = 0;

         for( row = 0; row < minrow; row++ ){
            factor = a_matrix[ row ];

            if( factor != AST__BAD ){

               for( col = 0; col < ncol_this; col++ ){
                  this_val = this_matrix[ i ];
                  if( this_val != AST__BAD ){
                     new_matrix[ i ] = this_val*factor;
                  } else {
                     new_matrix[ i ] = AST__BAD;
                  }
                  i++;
               }

            } else {

               for( col = 0; col < ncol_this; col++ ){
                  new_matrix[ i++ ] = AST__BAD;
               }

            }
         }

/* If there are insufficient rows in "this", append some zero-filled rows. */
         if( minrow < nrow_a ){
            for( i = minrow*ncol_this; i < nrow_a*ncol_this; i++ ){
               new_matrix[ i ] = 0.0;
            }
         }


/* Now deal with cases where the "a" MatrixMap represents a full, non-diagonal
   matrix. */
      } else {

/* Initialise a pointer to the next element in the product matrix. */
         new_val = new_matrix;

/* Get a pointer to the start of each row of the "a" matrix. */
         for( row = 0; row < nrow_a; row++ ){
            a_row = a_matrix + ncol_a*row;

/* Get a pointer to the start of each column of the "this" matrix. */
            for( col = 0; col < ncol_this; col++ ){
               this_col = this_matrix + col;

/* Form the dot product of the current row from "a", and the current
   column from "this", checking for bad values. */
               sum = 0.0;
               for( i = 0; i < ncol_a; i++ ){
                  a_val = a_row[ i ];
                  this_val = this_col[ i*ncol_this ];
                  if( a_val != AST__BAD && this_val != AST__BAD ){
                     sum += a_val*this_val;
                  } else {
                     sum = AST__BAD;
                     break;
                  }
               }

/* Store the output matrix element value. */
               *(new_val++) = sum;

            }
         }
      }

/* Create the new MatrixMap. */
      new = astInitMatrixMap( NULL, sizeof( AstMatrixMap ), !class_init,
                              &class_vtab, "MatrixMap", ncol_this, nrow_a,
                              FULL, new_matrix );

/* If possible, compress the new MatrixMap by removing off-diagonal zero
   elements. */
      CompressMatrix( new, status );

/* Re-compress the original "this" MatrixMap. */
      CompressMatrix( this, status );

   }

/* Free the memory used to hold the product matrix in full form. */
   new_matrix = (double *) astFree( (void *) new_matrix );

   return new;

}

static AstMatrixMap *MtrRot( AstMatrixMap *this, double theta,
                             const double axis[], int *status ){
/*
*+
*  Name:
*     astMtrRot

*  Purpose:
*     Multiply a MatrixMap by a rotation matrix.

*  Type:
*     Protected virtual function.

*  Synopsis:
*     #include "matrixmap.h"
*     AstMatrixMap *astMtrRot( astMatrixMap *this, double theta,
*                              const double axis[] )

*  Class Membership:
*     MatrixMap method.

*  Description:
*     This function creates a new MatrixMap which is a copy of "this",
*     rotated by a specified angle. It can only be used on MatrixMaps which
*     have either 2 or 3 output coordinates. In the 3-D case, the rotation
*     is about an arbitrary axis passing through the origin.

*  Parameters:
*     this
*        Pointer to the MatrixMap.
*     theta
*        The angle by which to rotate the matrix, in radians. If the matrix
*        is applied to a 2-D vector position, the resulting vector is
*        rotated clockwise about the origin (i.e. from the positive direction
*        of the second axis to the positive direction of the first axis). If
*        the vector positions are three dimensional, the rotation is clockwise
*        when looking along the vector given by "axis". Note, "theta" measures
f        when looking along the vector given by AXIS. Note, THETA measures
*        the movemement of the vectors relative to a fixed reference frame.
*        Alternatively, the reference frame can be thought of as rotating by
*        (-theta) relative to the fixed vectors.
*     axis
*        A 3-D vector specifying the axis of rotation. This parameter is
*        ignored if the output from MatrixMap is 2-dimensional.

*  Returned Value:
*     A pointer to the rotated MatrixMap.

*  Notes:
*     - A null Object pointer will also be returned if this function
*     is invoked with the AST error status set, or if it should fail
*     for any reason.
*-
*/

/* Local variables. */
   AstMatrixMap *new;        /* New MatrixMap holding the rotated matrix */
   double as,a,b,c,d,e,f,g;  /* Intermediate quantities */
   double axlen;             /* Length of axis vector */
   double axlen2;            /* Squared length of axis vector */
   double costh;             /* Cos(rotation angle) */
   double sinth;             /* Sin(rotation angle) */
   double rotmat[9];         /* Rotation matrix */
   double work[3];           /* Work space for matrix multiplication */
   int ncol;                 /* No. of columns in the MatrixMap */
   int nrow;                 /* No. of rows in the MatrixMap */

/* Return a NULL pointer if an error has already occurred. */
   if ( !astOK ) return NULL;

/* Initialise the returned MarixMap to be a copy of the supplied MatrixMap. */
   new = astCopy( this );

/* Save the cos and sin of the rotation angle for future use. */
   costh = cos( theta );
   sinth = sin( theta );

/* Return without changing the MatrixMap if the rotation angle is a
   multiple of 360 degrees. */
   if ( costh == 1.0 ) return new;

/* Get the dimensions of the MatrixMap. */
   nrow = astGetNout( new );
   ncol = astGetNin( new );

/* First do rotation of a plane about the origin. */
   if( nrow == 2 ){

/* Ensure that the MatrixMap is stored in full form rather than
   compressed form. */
      ExpandMatrix( new, status );

/* Form the 2x2 forward rotation matrix. Theta is the clockwise angle
   of rotation. */
      rotmat[0] = costh;
      rotmat[1] = sinth;
      rotmat[2] = -sinth;
      rotmat[3] = costh;

/*  Post-multiply the current forward matrix (depending on whether or not
    the MatrixMap has been inverted) by the forward rotation matrix. */
      if( !astGetInvert( new ) ){
         SMtrMult( 1, 2, ncol, rotmat, new->f_matrix, work, status );
      } else {
         SMtrMult( 1, 2, ncol, rotmat, new->i_matrix, work, status );
      }

/* Now form the 2x2 inverse rotation matrix (the diagonal elements
   don't change). */
      rotmat[1] = -sinth;
      rotmat[2] = sinth;

/*  Pre-multiply the current inverse matrix (depending on whether or
    not the MatrixMap has been inverted) by the inverse rotation matrix. */
      if( !astGetInvert( new ) ){
         SMtrMult( 0, ncol, 2, rotmat, new->i_matrix, work, status );
      } else {
         SMtrMult( 0, ncol, 2, rotmat, new->f_matrix, work, status );
      }

/*  See if the matrix can be stored as a UNIT or DIAGONAL matrix. */
      CompressMatrix( new, status );

/* Now do rotation of a volume about an axis passing through the origin. */
   } else if( nrow == 3 ){

/* Find the length of the axis vector. Report an error if it has zero
   length or has not been supplied. */
      if( axis ) {
         axlen2 = axis[0]*axis[0] + axis[1]*axis[1] + axis[2]*axis[2];
      } else {
         axlen2 = 0.0;
      }
      if( axlen2 <= 0.0 ) {
         astError( AST__MTRAX, "astMtrRot(%s): NULL or zero length "
                   "axis vector supplied.", status, astClass(new) );
      }
      axlen = sqrt( axlen2 );

/* Ensure that the MatrixMap is stored in full form rather than
   compressed form. */
      ExpandMatrix( new, status );

/* Form commonly used terms in the rotation matrix. */
      as = sinth/axlen;
      a = (1.0 - costh)/axlen2;
      b = a*axis[0]*axis[1];
      c = as*axis[2];
      d = a*axis[0]*axis[2];
      e = as*axis[1];
      f = a*axis[1]*axis[2];
      g = as*axis[0];

/* Form the 3x3 forward rotation matrix. Theta is the clockwise angle
   of rotation looking in the direction of the axis vector. */
      rotmat[0] = a*axis[0]*axis[0] + costh;
      rotmat[1] = b - c;
      rotmat[2] = d + e;
      rotmat[3] = b + c;
      rotmat[4] = a*axis[1]*axis[1] + costh;
      rotmat[5] = f - g;
      rotmat[6] = d - e;
      rotmat[7] = f + g;
      rotmat[8] = a*axis[2]*axis[2] + costh;

/*  Post-multiply the current forward matrix (depending on whether or not
    the MatrixMap has been inverted) by the forward rotation matrix. */
      if( !astGetInvert( new ) ){
         SMtrMult( 1, 3, ncol, rotmat, new->f_matrix, work, status );
      } else {
         SMtrMult( 1, 3, ncol, rotmat, new->i_matrix, work, status );
      }

/* Now form the 3x3 inverse rotation matrix (the diagonal elements
   don't change). */
      rotmat[1] = b + c;
      rotmat[2] = d - e;
      rotmat[3] = b - c;
      rotmat[5] = f + g;
      rotmat[6] = d + e;
      rotmat[7] = f - g;

/* Pre-multiply the current inverse matrix (depending on whether or
   not the MatrixMap has been inverted) by the inverse rotation matrix. */
      if( !astGetInvert( new ) ){
         SMtrMult( 0, ncol, 3, rotmat, new->i_matrix, work, status );
      } else {
         SMtrMult( 0, ncol, 3, rotmat, new->f_matrix, work, status );
      }

/*  See if the matrix can be stored as a UNIT or DIAGONAL matrix. */
      CompressMatrix( new, status );

/* Report an error if the matrix is not suitable for rotation. */
   } else {
      astError( AST__MTR23, "astMtrRot(%s): Cannot rotate a %dx%d"
                " MatrixMap.", status, astClass(new), nrow, ncol );
   }

/* Delete the new MatrixMap if an error has occurred. */
   if( !astOK ) new = astDelete( new );

   return new;

}

static void PermGet( AstPermMap *map, int **outperm, int **inperm,
                     double **consts, int *status ){
/*
*  Name:
*     PermGet

*  Purpose:
*     Get the axis permutation and constants array for a PermMap.

*  Type:
*     Private function.

*  Synopsis:
*     #include "matrixmap.h"
*     void PermGet( AstPermMap *map, int **outperm, int **inperm,
*                   double **const, int *status )

*  Class Membership:
*     MatrixMap member function

*  Description:
*     This function returns axis permutation and constants arrays which can
*     be used to create a PermMap which is equivalent to the supplied PermMap.

*  Parameters:
*     map
*        The PermMap.
*     outperm
*        An address at which to return a popinter to an array of ints
*        holding the output axis permutation array. The array should be
*        released using astFree when no longer needed.
*     inperm
*        An address at which to return a popinter to an array of ints
*        holding the input axis permutation array. The array should be
*        released using astFree when no longer needed.
*     consts
*        An address at which to return a popinter to an array of doubles
*        holding the constants array. The array should be released using
*        astFree when no longer needed.
*     status
*        Pointer to the inherited status variable.

*  Notes:
*     -  NULL pointers are returned if an error has already occurred, or if
*     this function should fail for any reason.
*/

/* Local Variables: */
   AstPointSet *pset1;       /* PointSet holding input positions for PermMap */
   AstPointSet *pset2;       /* PointSet holding output positions for PermMap */
   double **ptr1;            /* Pointer to pset1 data */
   double **ptr2;            /* Pointer to pset2 data */
   double *cnst;             /* Pointer to constants array */
   double cn;                /* Potential new constant value */
   double ip;                /* Potential output axis index */
   double op;                /* Potential input axis index */
   int *inprm;               /* Pointer to input axis permutation array */
   int *outprm;              /* Pointer to output axis permutation array */
   int i;                    /* Axis count */
   int nc;                   /* Number of constants stored so far */
   int nin;                  /* No. of input coordinates for the PermMap */
   int nout;                 /* No. of output coordinates for the PermMap */

/* Initialise. */
   if( outperm ) *outperm = NULL;
   if( inperm ) *inperm = NULL;
   if( consts ) *consts = NULL;

/* Check the global error status and the supplied pointers. */
   if ( !astOK || !outperm || !inperm || !consts ) return;

/* Get the number of input and output axes for the supplied PermMap. */
   nin = astGetNin( map );
   nout = astGetNout( map );

/* Allocate the memory for the returned arrays. */
   outprm = (int *) astMalloc( sizeof( int )* (size_t) nout );
   inprm = (int *) astMalloc( sizeof( int )* (size_t) nin );
   cnst = (double *) astMalloc( sizeof( double )* (size_t) ( nout + nin ) );

/* Returned the pointers to these arrays.*/
   *outperm = outprm;
   *inperm = inprm;
   *consts = cnst;

/* Create two PointSets, each holding two points, which can be used for
   input and output positions with the PermMap. */
   pset1 = astPointSet( 2, nin, "", status );
   pset2 = astPointSet( 2, nout, "", status );

/* Set up the two input positions to be [0,1,2...] and [-1,-1,-1,...]. The
   first position is used to enumerate the axes, and the second is used to
   check for constant axis values. */
   ptr1 = astGetPoints( pset1 );
   if( astOK ){
      for( i = 0; i < nin; i++ ){
         ptr1[ i ][ 0 ] = ( double ) i;
         ptr1[ i ][ 1 ] = -1.0;
      }
   }

/* Use the PermMap to transform these positions in the forward direction. */
   (void) astTransform( map, pset1, 1, pset2 );

/* No constant axis valeus found yet. */
   nc = 0;

/* Look at the mapped positions to determine the output axis permutation
   array. */
   ptr2 = astGetPoints( pset2 );
   if( astOK ){

/* Do each output axis. */
      for( i = 0; i < nout; i++ ){

/* If the output axis value is copied from an input axis value, the index
   of the appropriate input axis will be in the mapped first position. */
         op = ptr2[ i ][ 0 ];

/* If the output axis value is assigned a constant value, the result of
   mapping the two different input axis values will be the same. */
         cn = ptr2[ i ][ 1 ];
         if( op == cn ) {

/* We have found another constant. Store it in the constants array, and
   store the index of the constant in the output axis permutation array. */
            cnst[ nc ] = cn;
            outprm[ i ] = -( nc + 1 );
            nc++;

/* If the output axis values are different, then the output axis value
   must be copied from the input axis value. */
         } else {
            outprm[ i ] = (int) ( op + 0.5 );
         }
      }
   }

/* Now do the same thing to determine the input permutation array. */
   if( astOK ){
      for( i = 0; i < nout; i++ ){
         ptr2[ i ][ 0 ] = ( double ) i;
         ptr2[ i ][ 1 ] = -1.0;
      }
   }

   (void) astTransform( map, pset2, 0, pset1 );

   if( astOK ){

      for( i = 0; i < nin; i++ ){

         ip = ptr1[ i ][ 0 ];
         cn = ptr1[ i ][ 1 ];
         if( ip == cn ) {

            cnst[ nc ] = cn;
            inprm[ i ] = -( nc + 1 );
            nc++;

         } else {
            inprm[ i ] = (int) ( ip + 0.5 );
         }
      }
   }

/* Annul the PointSets. */
   pset1 = astAnnul( pset1 );
   pset2 = astAnnul( pset2 );

/* If an error has occurred, attempt to free the returned arrays. */
   if( !astOK ) {
      *outperm = (int *) astFree( (void *) *outperm );
      *inperm = (int *) astFree( (void *) *inperm );
      *consts = (double *) astFree( (void *) *consts );
   }

/* Return. */
   return;
}

static int PermOK( AstMapping *pm, int *status ){
/*
*  Name:
*     PermOK

*  Purpose:
*     Determine if a PermMap can be merged with a MatrixMap.

*  Type:
*     Private function.

*  Synopsis:
*     #include "matrixmap.h"
*     int PermOK( AstMapping *pm, int *status )

*  Class Membership:
*     PermMap member function

*  Description:
*     This function returns a flag indicating if the supplied PermMap
*     could be merged with a MatrixMap. For thios to be possible, the
*     PermMap must have the same number of input and output axes, and the
*     inverse and forward mappings must be consistent.

*  Parameters:
*     pm
*        The PermMap.
*     status
*        Pointer to the inherited status variable.

*  Returned Value:
*     1 if the PermMap can be merged, 0 otherwise.

*  Notes:
*     -  A value of 0 is returned if an error has already occurred, or if
*     this function should fail for any reason.
*/

/* Local Variables: */
   AstPointSet *pset1;       /* PointSet holding input positions for PermMap */
   AstPointSet *pset2;       /* PointSet holding output positions for PermMap */
   double **ptr1;            /* Pointer to pset1 data */
   int i;                    /* Loop count */
   int nin;                  /* No. of input coordinates for the PermMap */
   int nout;                 /* No. of output coordinates for the PermMap */
   int ret;                  /* Returned flag */

/* Check the global error status. */
   if ( !astOK ) return 0;

/* Initialise */
   ret = 0;

/* The PermMap must have the same number of input and output coordinates. */
   nin = astGetNin( pm );
   nout = astGetNout( pm );
   if( nin == nout ){

/* Create two PointSets, each holding two points, which can be used for
   the input and output positions with the PermMap. */
      pset1 = astPointSet( 2, nin, "", status );
      pset2 = astPointSet( 2, nout, "", status );

/* Set up the two input positions to be [1,2,3...] and [0,-1,-2,...] */
      ptr1 = astGetPoints( pset1 );
      if( astOK ){
         for( i = 0; i < nin; i++ ){
            ptr1[ i ][ 0 ] = ( double )( i + 1 );
            ptr1[ i ][ 1 ] = ( double )( -i );
         }

      }

/* Use the PermMap to transform these positions in the forward direction. */
      (void) astTransform( pm, pset1, 1, pset2 );

/* Now transform the results back again using the inverse PermMap. */
      (void) astTransform( pm, pset2, 0, pset1 );

/* See if the input positions have changed. If they have, then the PermMap
   does not have a consistent pair of transformations. If they have not,
   then the transformations must be consistent because we used two
   different input positions and only one could come out unchanged by
   chance. */
      if( astOK ){
         ret = 1;
         for( i = 0; i < nin; i++ ){
            if( ptr1[ i ][ 0 ] != ( double )( i + 1 ) ||
                ptr1[ i ][ 1 ] != ( double )( -i ) ){
               ret = 0;
               break;
            }
         }
      }

/* Annul the PointSets. */
      pset1 = astAnnul( pset1 );
      pset2 = astAnnul( pset2 );
   }

/* Return the answer. */
   return astOK ? ret : 0;
}

static double Rate( AstMapping *this, double *at, int ax1, int ax2, int *status ){
/*
*  Name:
*     Rate

*  Purpose:
*     Calculate the rate of change of a Mapping output.

*  Type:
*     Private function.

*  Synopsis:
*     #include "matrixmap.h"
*     result = Rate( AstMapping *this, double *at, int ax1, int ax2, int *status )

*  Class Membership:
*     MatrixMap member function (overrides the astRate method inherited
*     from the Mapping class ).

*  Description:
*     This function returns the rate of change of a specified output of
*     the supplied Mapping with respect to a specified input, at a
*     specified input position.

*  Parameters:
*     this
*        Pointer to the Mapping to be applied.
*     at
*        The address of an array holding the axis values at the position
*        at which the rate of change is to be evaluated. The number of
*        elements in this array should equal the number of inputs to the
*        Mapping.
*     ax1
*        The index of the Mapping output for which the rate of change is to
*        be found (output numbering starts at 0 for the first output).
*     ax2
*        The index of the Mapping input which is to be varied in order to
*        find the rate of change (input numbering starts at 0 for the first
*        input).
*     status
*        Pointer to the inherited status variable.

*  Returned Value:
*     The rate of change of Mapping output "ax1" with respect to input
*     "ax2", evaluated at "at", or AST__BAD if the value cannot be
*     calculated.

*/

/* Local Variables: */
   AstMatrixMap *map;
   double *matrix;
   double result;

/* Check inherited status */
   if( !astOK ) return AST__BAD;

/* Get a pointer to the MatrixMap structure. */
   map = (AstMatrixMap *) this;

/* Get a pointer to the array holding the required matrix elements, according
   to whether the MatrixMap has been inverted. */
   if( !astGetInvert( this ) ) {
      matrix = map->f_matrix;
   } else {
      matrix = map->i_matrix;
   }

/* First deal with full MatrixMaps in which all matrix elements are stored. */
   if( map->form == FULL ){
      result = matrix[ ax1*astGetNin( this ) + ax2 ];

/* For unit matrices, the rate is unity if the input and output axes are
   equal, and zero otherwise. */
   } else if( map->form == UNIT ){
      result = (ax1 == ax2 ) ? 1.0 : 0.0;

/* For diagonal matrices, the rate is zero for off diagonal elements and
   the matrix array stored the on-diagonal rates. */
   } else if( ax1 == ax2 ) {
      result = matrix[ ax1 ];

   } else {
      result = 0.0;
   }

/* Return the result. */
   return result;
}

static void SMtrMult( int post, int m, int n, const double *mat1,
                        double *mat2, double *work, int *status ){
/*
*  Name:
*     SMtrMult

*  Purpose:
*     Multiply a square matrix and a non-square matrix.

*  Type:
*     Private function.

*  Synopsis:
*     #include "matrixmap.h"
*     void SMtrMult( int post, int m, int n, const double *mat1,
*                    double *mat2, double *work, int *status )

*  Class Membership:
*     MatrixMap member function.

*  Description:
*     The matrix pointed to by "mat2" is modified by multiplying it by
*     the square matrix pointed to by "mat1". If "post" is 1, then:
*
*        mat2 -> mat1*mat2  (mat1 is mxm and mat2 is mxn)
*
*     If "post" is zero, then:
*
*        mat2 -> mat2*mat1  (mat1 is nxn and mat2 is mxn)
*
*     The restriction that "mat1" must be square is imposed so that the
*     returned matrix will have the same shape as the supplied matrix (mat1).

*  Parameters:
*     post
*        Specifies whether to post- or pre- multiply mat2 by mat1.
*     m
*        The number of rows in mat2.
*     n
*        The number of columns in mat2.
*     mat1
*        The multiplier matrix. It must be square of size m or n, depending
*        on "post".
*     mat2
*        The multiplicand matrix.
*     work
*        Pointer to work space containing room for m doubles (if "post"
*        is 1), or n doubles (if "post" is 0).
*     status
*        Pointer to the inherited status variable.

*  Notes:
*     -  No error is reported if "mat2" is supplied NULL. In this case
*     it will also be returned NULL.
*/

/* Local Variables */
   double dot;             /* Output matrix element value */
   const double *mat1_col; /* Pointer to start of current column of mat1 */
   const double *mat1_row; /* Pointer to start of current row of mat1 */
   double *mat2_col;       /* Pointer to start of current column of mat2 */
   double *mat2_row;       /* Pointer to start of current row of mat2 */
   double cel;             /* Column element value */
   double rel;             /* Row element value */
   int i;                  /* Index of current output row */
   int j;                  /* Index of current output column */
   int k;                  /* Dot product index */

/* Do nothing if mat2 is NULL */
   if ( mat2 ){

/* First deal with cases where the supplied matrix is post-multiplied
   (i.e. the returned matrix is mat1*mat2). */
      if( post ){

/* Loop round each column of the output matrix, storing a pointer to
   the start of the corresponding column of mat2. */
         for( j=0; j<n; j++ ){
            mat2_col = mat2 + j;

/* Loop round each row of the output matrix, storing a pointer to
   the start of the corresponding row of mat1. */
            for( i=0; i<m; i++ ){
               mat1_row = mat1 + i*m;

/* Get the dot product of the corresponding row from mat1 and the
   corresponding column from mat2 and store it in the work array. */
               dot = 0.0;
               for( k=0; k<m; k++ ) {
                  rel = mat1_row[ k ];
                  cel = mat2_col[ k*n ];
                  if( rel != AST__BAD && cel != AST__BAD ){
                     dot += rel*cel;
                  } else {
                     dot = AST__BAD;
                     break;
                  }
               }
               work[ i ] = dot;
            }

/* Copy the values stored in the work array to the current column of
   the output matrix. */
            for( i=0; i<m; i++ ) mat2_col[ i*n ] = work[ i ];
         }

/* Now deal with cases where the supplied matrix is pre-multiplied
   (i.e. the returned matrix is mat2*mat1). */
      } else {

/* Loop round each row of the output matrix, storing a pointer to
   the start of the corresponding row of mat2. */
         for( i=0; i<m; i++ ){
            mat2_row = mat2 + i*n;

/* Loop round each column of the output matrix, storing a pointer to
   the start of the corresponding column of mat1. */
            for( j=0; j<n; j++ ){
               mat1_col = mat1 + j;

/* Get the dot product of the corresponding row from mat2 and the
   corresponding column from mat1 and store it in the work array. */
               dot = 0.0;
               for( k=0; k<n; k++ ) {
                  rel = mat2_row[ k ];
                  cel = mat1_col[ k*n ];
                  if( rel != AST__BAD && cel != AST__BAD ){
                     dot += rel*cel;
                  } else {
                     dot = AST__BAD;
                     break;
                  }
               }
               work[ j ] = dot;
            }

/* Copy the values stored in the work array to the current row of
   the output matrix. */
            for( j=0; j<n; j++ ) mat2_row[ j ] = work[ j ];
         }
      }
   }

   return;

}

static int GetTranForward( AstMapping *this, int *status ) {
/*
*
*  Name:
*     GetTranForward

*  Purpose:
*     Determine if a MatrixMap defines a forward coordinate transformation.

*  Type:
*     Private function.

*  Synopsis:
*     #include "matrixmap.h"
*     int GetTranForward( AstMapping *this, int *status )

*  Class Membership:
*     MatrixMap member function (over-rides the astGetTranForward method
*     inherited from the Mapping class).

*  Description:
*     This function returns a value indicating if the MatrixMap is able
*     to perform a forward coordinate transformation.

*  Parameters:
*     this
*        Pointer to the MatrixMap.
*     status
*        Pointer to the inherited status variable.

*  Returned Value:
*     Zero if the forward coordinate transformation is not defined, or 1 if it
*     is.

*  Notes:
*     -  A value of zero will be returned if this function is invoked with the
*     global error status set, or if it should fail for any reason.
*/

/* Local Variables: */
   AstMatrixMap *map;            /* Pointer to MatrixMap to be queried */
   int invert;                   /* Has the mapping been inverted? */
   int result;                   /* The returned value */

/* Initialise. */
   result = 0;

/* Check the global error status. */
   if ( !astOK ) return result;

/* Obtain a pointer to the MatrixMap. */
   map = (AstMatrixMap *) this;

/* All unit MatrixMaps are defined in both directions. */
   if( map->form == UNIT ) {
      result = 1;

/* Otherwise, check that the appropriate array is defined in the
   MatrixMap. */
   } else {

/* Determine if the Mapping has been inverted. */
      invert = astGetInvert( this );

/* If OK, obtain the result. */
      if ( astOK ) {

         if( invert ){
            result = ( map->i_matrix != NULL );
         } else {
            result = ( map->f_matrix != NULL );
         }

      }

   }

/* Return the result. */
   return result;

}

static int GetTranInverse( AstMapping *this, int *status ) {
/*
*
*  Name:
*     GetTranInverse

*  Purpose:
*     Determine if a MatrixMap defines an inverse coordinate transformation.

*  Type:
*     Private function.

*  Synopsis:
*     #include "matrixmap.h"
*     int GetTranInverse( AstMapping *this, int *status )

*  Class Membership:
*     MatrixMap member function (over-rides the astGetTranInverse method
*     inherited from the Mapping class).

*  Description:
*     This function returns a value indicating if the MatrixMap is able
*     to perform an inverse coordinate transformation.

*  Parameters:
*     this
*        Pointer to the MatrixMap.
*     status
*        Pointer to the inherited status variable.

*  Returned Value:
*     Zero if the inverse coordinate transformation is not defined, or 1 if it
*     is.

*  Notes:
*     -  A value of zero will be returned if this function is invoked with the
*     global error status set, or if it should fail for any reason.
*/

/* Local Variables: */
   AstMatrixMap *map;            /* Pointer to MatrixMap to be queried */
   int invert;                   /* Has the mapping been inverted? */
   int result;                   /* The returned value */

/* Initialise. */
   result = 0;

/* Check the global error status. */
   if ( !astOK ) return result;

/* Obtain a pointer to the MatrixMap. */
   map = (AstMatrixMap *) this;

/* All unit MatrixMaps are defined in both directions. */
   if( map->form == UNIT ) {
      result = 1;

/* Otherwise, check that the appropriate array is defined in the
   MatrixMap. */
   } else {

/* Determine if the Mapping has been inverted. */
      invert = astGetInvert( this );

/* If OK, obtain the result. */
      if ( astOK ) {

         if( invert ){
            result = ( map->f_matrix != NULL );
         } else {
            result = ( map->i_matrix != NULL );
         }

      }

   }

/* Return the result. */
   return result;

}

static AstPointSet *Transform( AstMapping *this, AstPointSet *in,
                               int forward, AstPointSet *out, int *status ) {
/*
*  Name:
*     Transform

*  Purpose:
*     Apply a MatrixMap to transform a set of points.

*  Type:
*     Private function.

*  Synopsis:
*     #include "matrixmap.h"
*     AstPointSet *Transform( AstMapping *this, AstPointSet *in,
*                             int forward, AstPointSet *out, int *status )

*  Class Membership:
*     MatrixMap member function (over-rides the astTransform protected
*     method inherited from the Mapping class).

*  Description:
*     This function takes a MatrixMap and a set of points encapsulated in a
*     PointSet and transforms the points by multiplying them by the matrix.

*  Parameters:
*     this
*        Pointer to the MatrixMap.
*     in
*        Pointer to the PointSet holding the input coordinate data.
*     forward
*        A non-zero value indicates that the forward coordinate transformation
*        should be applied, while a zero value requests the inverse
*        transformation.
*     out
*        Pointer to a PointSet which will hold the transformed (output)
*        coordinate values. A NULL value may also be given, in which case a
*        new PointSet will be created by this function.
*     status
*        Pointer to the inherited status variable.

*  Returned Value:
*     Pointer to the output (possibly new) PointSet.

*  Notes:
*     -  A null pointer will be returned if this function is invoked with the
*     global error status set, or if it should fail for any reason.
*     -  The number of coordinate values per point in the input PointSet must
*     match the number of columns in the MatrixMap being applied.
*     -  The number of coordinate values per point in the output PointSet will
*     equal the number of rows in the MatrixMap being applied.
*     -  If an output PointSet is supplied, it must have space for sufficient
*     number of points and coordinate values per point to accommodate the
*     result. Any excess space will be ignored.
*/

/* Local Variables: */
   AstPointSet *result;          /* Pointer to output PointSet */
   AstMatrixMap *map;            /* Pointer to MatrixMap to be applied */
   double diag_term;             /* Current diagonal element value */
   double *indata;               /* Pointer to next input data value */
   double *matrix;               /* Pointer to start of matrix element array */
   double *matrix_element;       /* Pointer to current matrix element value */
   double *outdata;              /* Pointer to next output data value */
   double **ptr_in;              /* Pointer to input coordinate data */
   double **ptr_out;             /* Pointer to output coordinate data */
   double sum;                   /* Partial output value */
   double val;                   /* Data value */
   int in_coord;                 /* Index of output coordinate */
   int nax;                      /* Output axes for which input axes exist */
   int ncoord_in;                /* Number of coordinates per input point */
   int ncoord_out;               /* Number of coordinates per output point */
   int npoint;                   /* Number of points */
   int out_coord;                /* Index of output coordinate */
   int point;                    /* Loop counter for points */

/* Check the global error status. */
   if ( !astOK ) return NULL;

/* Obtain a pointer to the MatrixMap. */
   map = (AstMatrixMap *) this;

/* Apply the parent mapping using the stored pointer to the Transform member
   function inherited from the parent Mapping class. This function validates
   all arguments and generates an output PointSet if necessary, but does not
   actually transform any coordinate values. */
   result = (*parent_transform)( this, in, forward, out, status );

/* We will now extend the parent astTransform method by performing the
   calculations needed to generate the output coordinate values. */

/* Determine the numbers of points and coordinates per point from the input
   and output PointSets and obtain pointers for accessing the input and
   output coordinate values. */
   ncoord_in = astGetNcoord( in );
   ncoord_out = astGetNcoord( result );
   npoint = astGetNpoint( in );
   ptr_in = astGetPoints( in );
   ptr_out = astGetPoints( result );

/* Determine whether to apply the forward or inverse mapping, according to the
   direction specified and whether the mapping has been inverted. */
   if ( astGetInvert( map ) ) forward = !forward;

/* Get a pointer to the array holding the required matrix elements, according
   to the direction of mapping required. */
   if ( forward ) {
      matrix = map->f_matrix;
   } else {
      matrix = map->i_matrix;
   }

/* Perform coordinate arithmetic. */
/* ------------------------------ */
   if ( astOK ) {

/* First deal with full MatrixMaps in which all matrix elements are stored. */
      if( map->form == FULL ){

/* Loop to apply the matrix to each point in turn, checking for
   (and propagating) bad values in the process. The matrix elements are
   accessed sequentially in row order. The next matrix element to be
   used is identified by a pointer which is initialised to point to the
   first element of the matrix prior to processing each point. */
         for ( point = 0; point < npoint; point++ ) {
            matrix_element = matrix;

/* Each output co-ordinate value is created by summing the product of the
   corresponding input co-ordinates and the elements of one row of the
   matrix. */
            for ( out_coord = 0; out_coord < ncoord_out; out_coord++ ) {
               sum = 0.0;

               for ( in_coord = 0; in_coord < ncoord_in; in_coord++ ) {

/*  Check the current input coordinate value and the current matrix element.
    If the coordinate value is bad, then the output value will also be
    bad unless the matrix element is zero. That is, a zero matrix element
    results in the input coordinate value being ignored, even if it is bad.
    This prevents bad input values being propagated to output axes which
    are independant of the bad input axis. A bad matrix element always results
    in the output value being bad. In either of these cases, break out of the
    loop, remembering to advance the pointer to the next matrix element so
    that it points to the start of the next row ready for doing the next
    output coordinate. */
                  if ( ( ptr_in[ in_coord ][ point ] == AST__BAD &&
                                         (*matrix_element) != 0.0 ) ||
                       (*matrix_element) == AST__BAD ) {
                     sum = AST__BAD;
                     matrix_element += ncoord_in - in_coord;
                     break;

/*  If the input coordinate and the current matrix element are both
    valid, increment the sum by their product, and step to the next matrix
    element pointer If we arrive here with a bad input value, then the
    matrix element must be zero, in which case the running sum is left
    unchanged. */
                  } else {
                     if ( ptr_in[ in_coord ][ point ] != AST__BAD ) {
                        sum += ptr_in[ in_coord ][ point ] * (*matrix_element);
                     }
                     matrix_element++;
                  }
               }

/*  Store the output coordinate value. */
               ptr_out[ out_coord ][ point ] = sum;

            }

         }

/* Now deal with unit and diagonal MatrixMaps. */
      } else {

/* Find the number of output axes for which input data is available. */
         if( ncoord_in < ncoord_out ){
            nax = ncoord_in;
         } else {
            nax = ncoord_out;
         }

/* For unit matrices, copy the input axes to the corresponding output axes. */
         if( map->form == UNIT ){
            for( out_coord = 0; out_coord < nax; out_coord++ ) {
               (void) memcpy( ptr_out[ out_coord ],
                              (const void *) ptr_in[ out_coord ],
                              sizeof( double )*(size_t)npoint );
            }

/* For diagonal matrices, scale each input axis using the appropriate
   diagonal element from the matrix, and store in the output. */
         } else {
            for( out_coord = 0; out_coord < nax; out_coord++ ){
               diag_term = matrix[ out_coord ];
               outdata = ptr_out[ out_coord ];
               indata = ptr_in[ out_coord ];

               if( diag_term != AST__BAD ){
                  for( point = 0; point < npoint; point++ ){
                     val = *(indata++);
                     if( val != AST__BAD ){
                        *(outdata++) = diag_term*val;
                     } else {
                        *(outdata++) = AST__BAD;
                     }
                  }

               } else {
                  for( point = 0; point < npoint; point++ ){
                     *(outdata++) = AST__BAD;
                  }
               }
            }
         }

/* If there are any remaining output axes, fill the first one with zeros. */
         if( nax < ncoord_out ){
            outdata = ptr_out[ nax ];
            for( point = 0; point < npoint; point++ ) *(outdata++) = 0.0;

/* Copy this axis to any remaining output axes. */
            outdata = ptr_out[ nax ];
            for( out_coord = nax + 1; out_coord < ncoord_out; out_coord++ ) {
               (void) memcpy( ptr_out[ out_coord ], (const void *) outdata,
                              sizeof( double )*(size_t)npoint );
            }
         }
      }
   }

/* Return a pointer to the output PointSet. */
   return result;
}

static int ScalingRowCol( AstMatrixMap *map, int axis, int *status ){
/*
*  Name:
*     ScalingRowCol

*  Purpose:
*     Determine if a given row and column of a MatrixMap are zeros
*     with a non-zero diagonal term.

*  Type:
*     Private function.

*  Synopsis:
*     #include "matrixmap.h"
*     int ScalingRowCol( AstMatrixMap *map, int axis, int *status )

*  Class Membership:
*     MatrixMap member function

*  Description:
*     This function returns a flag indicating if a MatrixMap presents a
*     simple scaling for a given axis in both directions. The MatrixMap
*     must be square. A value of one is returned if every element of the
*     row and column corresponding to the given axis is zero, except for
*     the diagonal term which must be non-zero.

*  Parameters:
*     map
*        The MatrixMap.
*     axis
*        The zero-based index of the axis to check.
*     status
*        Pointer to the inherited status variable.

*  Returned Value:
*     1 if the row/column produces a simple scaling, 0 otherwise.

*/

/* Local Variables: */
   double *el;               /* Pointer to matrix element */
   int i;                    /* Element count */
   int ncol;                 /* No. of input coordinates */
   int ret;                  /* Returned flag */

/* Initialise */
   ret = 0;

/* Check the global error status. */
   if ( !astOK ) return ret;

/* If a unit or diagonal MatrixMap has been supplied, return 1. */
   if( map->form != FULL ){
      ret = 1;

/* If a full matrix has been supplied... */
   } else {

/* Assume the row/column gives a unit mapping. */
      ret = 1;

/* Get the number of input axes for the MatrixMap. */
      ncol = astGetNin( map );

/* Check that all elements of the "axis"th row are effectively zero, except
   for the "axis"th element which must be non-zero. */
      el = map->f_matrix + axis*ncol;
      for( i = 0; i < ncol; i++ ) {
         if( i == axis ) {
            if( fabs( *el ) <= DBL_EPSILON ) {
               ret = 0;
               break;
            }
         } else if( fabs( *el ) > DBL_EPSILON ) {
            ret = 0;
            break;
         }
         el++;
      }

/* Check that all elements of the "axis"th column are effectively zero, except
   for the "axis"th element which must be non-zero. */
      if( ret ) {
         el = map->f_matrix + axis;
         for( i = 0; i < ncol; i++ ) {
            if( i == axis ) {
               if( fabs( *el ) <= DBL_EPSILON ) {
                  ret = 0;
                  break;
               }
            } else if( fabs( *el ) > DBL_EPSILON ) {
               ret = 0;
               break;
            }
            el += ncol;
         }
      }
   }

/* Return the answer. */
   return astOK ? ret : 0;
}

/* Functions which access class attributes. */
/* ---------------------------------------- */
/* Implement member functions to access the attributes associated with
   this class using the macros defined for this purpose in the
   "object.h" file. For a description of each attribute, see the class
   interface (in the associated .h file). */

/* Copy constructor. */
/* ----------------- */
static void Copy( const AstObject *objin, AstObject *objout, int *status ) {
/*
*  Name:
*     Copy

*  Purpose:
*     Copy constructor for MatrixMap objects.

*  Type:
*     Private function.

*  Synopsis:
*     void Copy( const AstObject *objin, AstObject *objout, int *status )

*  Description:
*     This function implements the copy constructor for MatrixMap objects.

*  Parameters:
*     objin
*        Pointer to the object to be copied.
*     objout
*        Pointer to the object being constructed.
*     status
*        Pointer to the inherited status variable.

*  Returned Value:
*     void

*  Notes:
*     -  This constructor makes a deep copy, including a copy of the matrix
*     element values associated with the input MatrixMap.
*/


/* Local Variables: */
   AstMatrixMap *in;             /* Pointer to input MatrixMap */
   AstMatrixMap *out;            /* Pointer to output MatrixMap */
   int nel;                      /* No. of elements in the matrix */
   int nin;                      /* No. of input coordinates */
   int nout;                     /* No. of output coordinates */

/* Check the global error status. */
   if ( !astOK ) return;

/* Obtain pointers to the input and output MatrixMaps. */
   in = (AstMatrixMap *) objin;
   out = (AstMatrixMap *) objout;

/* Nullify the pointers stored in the output object since these will
   currently be pointing at the input data (since the output is a simple
   byte-for-byte copy of the input). Otherwise, the input data could be
   freed by accidient if the output object is deleted due to an error
   occuring in this function. */
   out->f_matrix = NULL;
   out->i_matrix = NULL;

/* If the input MatrixMap is a unit mapping, then no matrix elements are
   stored with it, so do nothing in this case. */
   if( out->form != UNIT ){

/* Obtain the number of stored values in the MatrixMap. This is independant of
   whether the Mapping has been inverted or not. If the MatrixMap is diagonal,
   only the diagonal terms are stored. */
      nin = astGetNin( in );
      nout = astGetNout( in );

      if( out->form == DIAGONAL ){
         if( nin < nout ){
            nel = nin;
         } else {
            nel = nout;
         }

      } else {
         nel = nin*nout;
      }

/* Store the forward matrix elements in the output MatrixMap. */
      out->f_matrix = (double *) astStore( NULL, (void *) in->f_matrix,
                                           sizeof( double )*(size_t) nel );

/* Store the inverse matrix elements (if defined) in the output
   MatrixMap. */
      if( in->i_matrix ){
         out->i_matrix = (double *) astStore( NULL, (void *) in->i_matrix,
                                              sizeof( double )*(size_t) nel );
      }

/* If an error has occurred, free the output MatrixMap arrays. */
      if( !astOK ) {
         out->f_matrix = (double *) astFree( (void *) out->f_matrix );
         out->i_matrix = (double *) astFree( (void *) out->i_matrix );
      }
   }

   return;

}

/* Destructor. */
/* ----------- */
static void Delete( AstObject *obj, int *status ) {
/*
*  Name:
*     Delete

*  Purpose:
*     Destructor for MatrixMap objects.

*  Type:
*     Private function.

*  Synopsis:
*     void Delete( AstObject *obj, int *status )

*  Description:
*     This function implements the destructor for MatrixMap objects.

*  Parameters:
*     obj
*        Pointer to the object to be deleted.
*     status
*        Pointer to the inherited status variable.

*  Returned Value:
*     void

*  Notes:
*     This function attempts to execute even if the global error status is
*     set.
*/

/* Local Variables: */
   AstMatrixMap *this;            /* Pointer to MatrixMap */

/* Obtain a pointer to the MatrixMap structure. */
   this = (AstMatrixMap *) obj;

/* Free the arrays used to store element values for forward and inverse
   matrices. */
   this->f_matrix = (double *) astFree( (void *) this->f_matrix );
   this->i_matrix = (double *) astFree( (void *) this->i_matrix );
}

/* Dump function. */
/* -------------- */
static void Dump( AstObject *this_object, AstChannel *channel, int *status ) {
/*
*  Name:
*     Dump

*  Purpose:
*     Dump function for MatrixMap objects.

*  Type:
*     Private function.

*  Synopsis:
*     void Dump( AstObject *this, AstChannel *channel, int *status )

*  Description:
*     This function implements the Dump function which writes out data
*     for the MatrixMap class to an output Channel.

*  Parameters:
*     this
*        Pointer to the MatrixMap whose data are being written.
*     channel
*        Pointer to the Channel to which the data are being written.
*     status
*        Pointer to the inherited status variable.
*/

#define KEY_LEN 50               /* Maximum length of a keyword */

/* Local Variables: */
   AstMatrixMap *this;           /* Pointer to the MatrixMap structure */
   char buff[ KEY_LEN + 1 ];     /* Buffer for keyword string */
   int el;                       /* Element index */
   int nel;                      /* No. of elements in the matrix */
   int nin;                      /* No. of input coords */
   int nout;                     /* No. of output coords */

/* Check the global error status. */
   if ( !astOK ) return;

/* Obtain a pointer to the MatrixMap structure. */
   this = (AstMatrixMap *) this_object;

/* Find the number of elements stored for each matrix. */
   nin = astGetNin( this );
   nout = astGetNout( this );

   if( this->form == FULL ){
      nel = nin*nout;

   } else if( this->form == DIAGONAL ){
      nel = astMIN( nin, nout );

   } else {
      nel = 0;
   }

/* Write out values representing the instance variables for the
   MatrixMap class.  */

/* The forward matrix. Note BAD values are not written out as the
   AST__BAD value may differ on different machines. If a matrix element
   is not found when reading the matrix back in again (in astLoadMatrixMap),
   then it is assigned a default value of AST__BAD. */
   if( this->f_matrix ){
      for( el = 0; el < nel; el++ ){
         if( (this->f_matrix)[ el ] != AST__BAD ) {
            (void) sprintf( buff, "M%d", el );
            astWriteDouble( channel, buff, 1, 1, (this->f_matrix)[ el ],
                            "Forward matrix value" );
         }
      }
   }

/* The inverse matrix. */
   if( this->i_matrix ){
      for( el = 0; el < nel; el++ ){
         if( (this->i_matrix)[ el ] != AST__BAD ) {
            (void) sprintf( buff, "IM%d", el );
            astWriteDouble( channel, buff, 1, 1, (this->i_matrix)[ el ],
                            "Inverse matrix value" );
         }
      }
   }

/* The matrix storage form. */
   astWriteString( channel, "Form", 1, 1, Form[ this->form ],
                   "Matrix storage form" );

/* Undefine macros local to this function. */
#undef KEY_LEN
}

/* Standard class functions. */
/* ========================= */
/* Implement the astIsAMatrixMap and astCheckMatrixMap functions using the macros
   defined for this purpose in the "object.h" header file. */
astMAKE_ISA(MatrixMap,Mapping)
astMAKE_CHECK(MatrixMap)

AstMatrixMap *astMatrixMap_( int nin, int nout, int form,
                             const double matrix[], const char *options, int *status, ...){
/*
*++
*  Name:
c     astMatrixMap
f     AST_MATRIXMAP

*  Purpose:
*     Create a MatrixMap.

*  Type:
*     Public function.

*  Synopsis:
c     #include "matrixmap.h"
c     AstMatrixMap *astMatrixMap( int nin, int nout, int form,
c                                 const double matrix[],
c                                 const char *options, ... )
f     RESULT = AST_MATRIXMAP( NIN, NOUT, FORM, MATRIX, OPTIONS, STATUS )

*  Class Membership:
*     MatrixMap constructor.

*  Description:
*     This function creates a new MatrixMap and optionally initialises
*     its attributes.
*
*     A MatrixMap is a form of Mapping which performs a general linear
*     transformation.  Each set of input coordinates, regarded as a
*     column-vector, are pre-multiplied by a matrix (whose elements
*     are specified when the MatrixMap is created) to give a new
*     column-vector containing the output coordinates. If appropriate,
*     the inverse transformation may also be performed.

*  Parameters:
c     nin
f     NIN = INTEGER (Given)
*        The number of input coordinates, which determines the number
*        of columns in the matrix.
c     nout
f     NOUT = INTEGER (Given)
*        The number of output coordinates, which determines the number
*        of rows in the matrix.
c     form
f     FORM = INTEGER (Given)
*        An integer which indicates the form in which the matrix
*        elements will be supplied.
*
c        A value of zero indicates that a full "nout" x "nin" matrix
f        A value of zero indicates that a full NOUT x NIN  matrix
c        of values will be supplied via the "matrix" parameter
f        of values will be supplied via the MATRIX argument
*        (below). In this case, the elements should be given in row
*        order (the elements of the first row, followed by the
*        elements of the second row, etc.).
*
*        A value of 1 indicates that only the diagonal elements of the
*        matrix will be supplied, and that all others should be
c        zero. In this case, the elements of "matrix" should contain
f        zero. In this case, the elements of MATRIX should contain
*        only the diagonal elements, stored consecutively.
*
*        A value of 2 indicates that a "unit" matrix is required,
*        whose diagonal elements are set to unity (with all other
c        elements zero).  In this case, the "matrix" parameter is
c        ignored and a NULL pointer may be supplied.
f        elements zero).  In this case, the MATRIX argument is not used.
c     matrix
f     MATRIX( * ) = DOUBLE PRECISION (Given)
*        The array of matrix elements to be used, stored according to
c        the value of "form".
f        the value of FORM.
c     options
f     OPTIONS = CHARACTER * ( * ) (Given)
c        Pointer to a null-terminated string containing an optional
c        comma-separated list of attribute assignments to be used for
c        initialising the new MatrixMap. The syntax used is identical to
c        that for the astSet function and may include "printf" format
c        specifiers identified by "%" symbols in the normal way.
f        A character string containing an optional comma-separated
f        list of attribute assignments to be used for initialising the
f        new MatrixMap. The syntax used is identical to that for the
f        AST_SET routine.
c     ...
c        If the "options" string contains "%" format specifiers, then
c        an optional list of additional arguments may follow it in
c        order to supply values to be substituted for these
c        specifiers. The rules for supplying these are identical to
c        those for the astSet function (and for the C "printf"
c        function).
f     STATUS = INTEGER (Given and Returned)
f        The global status.

*  Returned Value:
c     astMatrixMap()
f     AST_MATRIXMAP = INTEGER
*        A pointer to the new MatrixMap.

*  Notes:
*     - In general, a MatrixMap's forward transformation will always
*     be available (as indicated by its TranForward attribute), but
*     its inverse transformation (TranInverse attribute) will only be
*     available if the associated matrix is square and non-singular.
*     - As an exception to this, the inverse transformation is always
*     available if a unit or diagonal matrix is specified. In this
*     case, if the matrix is not square, one or more of the input
*     coordinate values may not be recoverable from a set of output
*     coordinates. Any coordinates affected in this way will simply be
*     set to the value zero.
*     - A null Object pointer (AST__NULL) will be returned if this
c     function is invoked with the AST error status set, or if it
f     function is invoked with STATUS set to an error value, or if it
*     should fail for any reason.

*  Status Handling:
*     The protected interface to this function includes an extra
*     parameter at the end of the parameter list descirbed above. This
*     parameter is a pointer to the integer inherited status
*     variable: "int *status".

*--
*/

/* Local Variables: */
   astDECLARE_GLOBALS            /* Pointer to thread-specific global data */
   AstMatrixMap *new;            /* Pointer to new MatrixMap */
   va_list args;                 /* Variable argument list */

/* Check the global status. */
   if ( !astOK ) return NULL;

/* Get a pointer to the thread specific global data structure. */
   astGET_GLOBALS(NULL);

/* Initialise the MatrixMap, allocating memory and initialising the
   virtual function table as well if necessary. */
   new = astInitMatrixMap( NULL, sizeof( AstMatrixMap ), !class_init,
                           &class_vtab, "MatrixMap", nin, nout, form, matrix);

/* If successful, note that the virtual function table has been
   initialised. */
   if ( astOK ) {
      class_init = 1;

/* Obtain the variable argument list and pass it along with the options string
   to the astVSet method to initialise the new MatrixMap's attributes. */
      va_start( args, status );
      astVSet( new, options, NULL, args );
      va_end( args );

/* If an error occurred, clean up by deleting the new object. */
      if ( !astOK ) new = astDelete( new );
   }

/* Return a pointer to the new MatrixMap. */
   return new;
}

AstMatrixMap *astMatrixMapId_( int nin, int nout, int form, const double matrix[],
                               const char *options, ... ) {
/*
*  Name:
*     astMatrixMapId_

*  Purpose:
*     Create a MatrixMap.

*  Type:
*     Private function.

*  Synopsis:
*     #include "matrixmap.h"
*     AstMatrixMap *astMatrixMapId_( int nin, int nout, int form,
*                                    const double matrix[], const char *options,
*                                    ... )

*  Class Membership:
*     MatrixMap constructor.

*  Description:
*     This function implements the external (public) interface to the
*     astMatrixMap constructor function. It returns an ID value (instead
*     of a true C pointer) to external users, and must be provided
*     because astMatrixMap_ has a variable argument list which cannot be
*     encapsulated in a macro (where this conversion would otherwise
*     occur).
*
*     The variable argument list also prevents this function from
*     invoking astMatrixMap_ directly, so it must be a re-implementation
*     of it in all respects, except for the final conversion of the
*     result to an ID value.

*  Parameters:
*     As for astMatrixMap_.

*  Returned Value:
*     The ID value associated with the new MatrixMap.
*/

/* Local Variables: */
   astDECLARE_GLOBALS            /* Pointer to thread-specific global data */
   AstMatrixMap *new;            /* Pointer to new MatrixMap */
   va_list args;                 /* Variable argument list */
   int *status;                  /* Pointer to inherited status value */

/* Get a pointer to the inherited status value. */
   status = astGetStatusPtr;

/* Get a pointer to the thread specific global data structure. */
   astGET_GLOBALS(NULL);

/* Check the global status. */
   if ( !astOK ) return NULL;

/* Initialise the MatrixMap, allocating memory and initialising the
   virtual function table as well if necessary. */
   new = astInitMatrixMap( NULL, sizeof( AstMatrixMap ), !class_init, &class_vtab,
                         "MatrixMap", nin, nout, form, matrix );

/* If successful, note that the virtual function table has been
   initialised. */
   if ( astOK ) {
      class_init = 1;

/* Obtain the variable argument list and pass it along with the options string
   to the astVSet method to initialise the new MatrixMap's attributes. */
      va_start( args, options );
      astVSet( new, options, NULL, args );
      va_end( args );

/* If an error occurred, clean up by deleting the new object. */
      if ( !astOK ) new = astDelete( new );
   }

/* Return an ID value for the new MatrixMap. */
   return astMakeId( new );
}

AstMatrixMap *astInitMatrixMap_( void *mem, size_t size, int init,
                                 AstMatrixMapVtab *vtab, const char *name,
                                 int nin, int nout, int form,
                                 const double *matrix, int *status ) {
/*
*+
*  Name:
*     astInitMatrixMap

*  Purpose:
*     Initialise a MatrixMap.

*  Type:
*     Protected function.

*  Synopsis:
*     #include "matrixmap.h"
*     AstMatrixMap *astInitMatrixMap( void *mem, size_t size, int init,
*                                 AstMatrixMapVtab *vtab, const char *name,
*                                 int nin, int nout, int form,
*                                 const double *matrix )

*  Class Membership:
*     MatrixMap initialiser.

*  Description:
*     This function is provided for use by class implementations to initialise
*     a new MatrixMap object. It allocates memory (if necessary) to accommodate
*     the MatrixMap plus any additional data associated with the derived class.
*     It then initialises a MatrixMap structure at the start of this memory. If
*     the "init" flag is set, it also initialises the contents of a virtual
*     function table for a MatrixMap at the start of the memory passed via the
*     "vtab" parameter.

*  Parameters:
*     mem
*        A pointer to the memory in which the MatrixMap is to be initialised.
*        This must be of sufficient size to accommodate the MatrixMap data
*        (sizeof(MatrixMap)) plus any data used by the derived class. If a value
*        of NULL is given, this function will allocate the memory itself using
*        the "size" parameter to determine its size.
*     size
*        The amount of memory used by the MatrixMap (plus derived class data).
*        This will be used to allocate memory if a value of NULL is given for
*        the "mem" parameter. This value is also stored in the MatrixMap
*        structure, so a valid value must be supplied even if not required for
*        allocating memory.
*     init
*        A logical flag indicating if the MatrixMap's virtual function table is
*        to be initialised. If this value is non-zero, the virtual function
*        table will be initialised by this function.
*     vtab
*        Pointer to the start of the virtual function table to be associated
*        with the new MatrixMap.
*     name
*        Pointer to a constant null-terminated character string which contains
*        the name of the class to which the new object belongs (it is this
*        pointer value that will subsequently be returned by the astGetClass
*        method).
*     nin
*        The number of input coordinate values per point. This is the
*        same as the number of columns in the matrix.
*     nout
*        The number of output coordinate values per point. This is the
*        same as the number of rows in the matrix.
*     form
*        If "form" is 2 or larger, then a unit MatrixMap is created. In this
*        case "matrix" is ignored and can be supplied as NULL. If "form" is
*        1, then a diagonal MatrixMap is created. In this case, the number of
*        values in "matrix" should be equal to the minimum of nin and nout,
*        and "matrix" should contain the corresponding diagonal terms, in row
*        order. If "form" is 0 or less, then a full MatrixMap is created, and
*        "matrix" should contain all nin*nout element values.
*     matrix
*        A pointer to an array of matrix element values. The values should be
*        supplied in row order. The content of this array is determined by
*        "form". If a full MatrixMap is to be created then the array starts
*        with (row 1, column 1), then comes (row 1, column 2), up to (row 1,
*        column nin), then (row 2, column 1), (row 2, column 2), and so on,
*        finishing with (row nout, column nin) ). An error is reported if a
*        NULL value is supplied unless "form" is 2 or more.

*  Returned Value:
*     A pointer to the new MatrixMap.

*  Notes:
*     -  A null pointer will be returned if this function is invoked with the
*     global error status set, or if it should fail for any reason.
*-
*/

/* Local Variables: */
   AstMatrixMap *new;              /* Pointer to new MatrixMap */
   double *fmat;                   /* Pointer to the forward matrix */
   double *imat;                   /* Pointer to the inverse matrix */
   int i;                          /* Loop count */
   int nel;                        /* No. of elements in matrix array */
   int nuse;                       /* Number of usable matrix elements */
   int used_form;                  /* Form limited to 0, 1 or 2 */

/* Check the global status. */
   if ( !astOK ) return NULL;

/* If necessary, initialise the virtual function table. */
   if ( init ) astInitMatrixMapVtab( vtab, name );

/* Initialise. */
   new = NULL;

/* Report an error if a NULL matrix was supplied, unless a unit MatrixMap
   has been requested. */
   if( form < 2 && !matrix ){
      astError( AST__MTRMT, "astInitMatrixMap(%s): NULL matrix supplied.", status,
                name );

   } else {

/* Initialise a Mapping structure (the parent class) as the first component
   within the MatrixMap structure, allocating memory if necessary. Specify that
   the Mapping should be defined in both the forward and inverse directions. */
      new = (AstMatrixMap *) astInitMapping( mem, size, 0,
                                           (AstMappingVtab *) vtab, name,
                                            nin, nout, 1, 1 );

      if ( astOK ) {

/* Initialise the MatrixMap data. */
/* ---------------------------- */
/* If a unit MatrixMap is being created, then no additional storage is
   required. */
         if( form > 1 ){
            nel = 0;
            used_form = UNIT;

/* If a diagonal MatrixMap is being created, then memory is needed to hold
   the diagonal terms. */
         } else if( form == 1 ){
            if( nin < nout ){
               nel = nin;
            } else {
               nel = nout;
            }
            used_form = DIAGONAL;

/* If a full MatrixMap is being created, then memory is needed to hold
   all the terms. */
         } else {
            nel = nin*nout ;
            used_form = FULL;
         }

/* Allocate memory for the forward matrix, storing the supplied matrix
   values in it. */
         fmat = (double *) astStore( NULL, (void *) matrix,
                                     sizeof(double)*(size_t)nel );

/* Replace any NaNs by AST__BAD and count the number of usable values. */
         if( nel > 0 ) {
            nuse = 0;
            for( i = 0; i < nel; i++ ) {
               if( !astISFINITE(fmat[ i ]) ) {
                  fmat[ i ] = AST__BAD;
               } else if( fmat[ i ] != AST__BAD ) {
                  nuse++;
               }
            }

/* Report an error if there are no usable values. */
            if( nuse == 0 && astOK ) {
               astError( AST__MTRMT, "astInitMatrixMap(%s): Supplied matrix "
                         "contains only bad values.",  status, name );
            }
         }

/* Create an inverse matrix if possible. */
         imat = InvertMatrix( used_form, nout, nin, fmat, status );

/* Store the matrix arrays. */
         new->form = used_form;
         new->f_matrix = fmat;
         new->i_matrix = imat;

/* Attempt to compress the MatrixMap into DIAGONAL or UNIT form. */
         CompressMatrix( new, status );

/* If an error occurred, clean up by deleting the new MatrixMap. */
         if ( !astOK ) new = astDelete( new );
      }
   }

/* Return a pointer to the new MatrixMap. */
   return new;
}

AstMatrixMap *astLoadMatrixMap_( void *mem, size_t size,
                                 AstMatrixMapVtab *vtab, const char *name,
                                 AstChannel *channel, int *status ) {
/*
*+
*  Name:
*     astLoadMatrixMap

*  Purpose:
*     Load a MatrixMap.

*  Type:
*     Protected function.

*  Synopsis:
*     #include "matrixmap.h"
*     AstMatrixMap *astLoadMatrixMap( void *mem, size_t size,
*                                     AstMatrixMapVtab *vtab, const char *name,
*                                     AstChannel *channel )

*  Class Membership:
*     MatrixMap loader.

*  Description:
*     This function is provided to load a new MatrixMap using data read
*     from a Channel. It first loads the data used by the parent class
*     (which allocates memory if necessary) and then initialises a
*     MatrixMap structure in this memory, using data read from the input
*     Channel.
*
*     If the "init" flag is set, it also initialises the contents of a
*     virtual function table for a MatrixMap at the start of the memory
*     passed via the "vtab" parameter.


*  Parameters:
*     mem
*        A pointer to the memory into which the MatrixMap is to be
*        loaded.  This must be of sufficient size to accommodate the
*        MatrixMap data (sizeof(MatrixMap)) plus any data used by derived
*        classes. If a value of NULL is given, this function will
*        allocate the memory itself using the "size" parameter to
*        determine its size.
*     size
*        The amount of memory used by the MatrixMap (plus derived class
*        data).  This will be used to allocate memory if a value of
*        NULL is given for the "mem" parameter. This value is also
*        stored in the MatrixMap structure, so a valid value must be
*        supplied even if not required for allocating memory.
*
*        If the "vtab" parameter is NULL, the "size" value is ignored
*        and sizeof(AstMatrixMap) is used instead.
*     vtab
*        Pointer to the start of the virtual function table to be
*        associated with the new MatrixMap. If this is NULL, a pointer
*        to the (static) virtual function table for the MatrixMap class
*        is used instead.
*     name
*        Pointer to a constant null-terminated character string which
*        contains the name of the class to which the new object
*        belongs (it is this pointer value that will subsequently be
*        returned by the astGetClass method).
*
*        If the "vtab" parameter is NULL, the "name" value is ignored
*        and a pointer to the string "MatrixMap" is used instead.

*  Returned Value:
*     A pointer to the new MatrixMap.

*  Notes:
*     - A null pointer will be returned if this function is invoked
*     with the global error status set, or if it should fail for any
*     reason.
*-
*/

#define KEY_LEN 50               /* Maximum length of a keyword */

   astDECLARE_GLOBALS            /* Pointer to thread-specific global data */
/* Local Variables: */
   AstMatrixMap *new;            /* Pointer to the new MatrixMap */
   char buff[ KEY_LEN + 1 ];     /* Buffer for keyword string */
   const char *form;             /* String form */
   int def;                      /* Is the matrix defined? */
   int el;                       /* Element index */
   int nel;                      /* No. of elements in the matrix */
   int nin;                      /* No. of input coords */
   int nout;                     /* No. of output coords */

/* Get a pointer to the thread specific global data structure. */
   astGET_GLOBALS(channel);

/* Initialise. */
   new = NULL;

/* Check the global error status. */
   if ( !astOK ) return new;

/* If a NULL virtual function table has been supplied, then this is
   the first loader to be invoked for this MatrixMap. In this case the
   MatrixMap belongs to this class, so supply appropriate values to be
   passed to the parent class loader (and its parent, etc.). */
   if ( !vtab ) {
      size = sizeof( AstMatrixMap );
      vtab = &class_vtab;
      name = "MatrixMap";

/* If required, initialise the virtual function table for this class. */
      if ( !class_init ) {
         astInitMatrixMapVtab( vtab, name );
         class_init = 1;
      }
   }

/* Invoke the parent class loader to load data for all the ancestral
   classes of the current one, returning a pointer to the resulting
   partly-built MatrixMap. */
   new = astLoadMapping( mem, size, (AstMappingVtab *) vtab, name,
                         channel );

   if ( astOK ) {

/* Read input data. */
/* ================ */
/* Request the input Channel to read all the input data appropriate to
   this class into the internal "values list". */
      astReadClassData( channel, "MatrixMap" );

/* Now obtain the Matrix storage form from this list. */
      form = astReadString( channel, "form", Form[FULL] );
      new->form = FindString( 3, Form, form, "the MatrixMap component 'Form'",
                              "astRead", astGetClass( channel ), status );
      form = astFree( (void *) form );

/* Find the number of elements stored for each matrix. */
      nin = astGetNin( (AstMapping *) new );
      nout = astGetNout( (AstMapping *) new );

      if( new->form == FULL ){
         nel = nin*nout;

      } else if( new->form == DIAGONAL ){
         nel = astMIN( nin, nout );

      } else {
         nel = 0;
      }

/* Allocate memory to hold the forward matrix. */
      new->f_matrix = (double *) astMalloc( sizeof(double)*(size_t)nel );

/* Now read the other data items from the list and use them to
   initialise the appropriate instance variable(s) for this class. */

/* The forward matrix. */
      if( new->f_matrix ){
         def = 0;

         for( el = 0; el < nel; el++ ){
            (void) sprintf( buff, "m%d", el );
            (new->f_matrix)[ el ] = astReadDouble( channel, buff, AST__BAD );
            if( (new->f_matrix)[ el ] != AST__BAD ) def = 1;
         }

/* Store a NULL pointer if no elements of the matrix were found. */
         if( !def ) new->f_matrix = (double *) astFree( (void *) new->f_matrix );

      }

/* The inverse matrix. */
      new->i_matrix = (double *) astMalloc( sizeof(double)*(size_t)nel );
      if( new->i_matrix ){
         def = 0;

         for( el = 0; el < nel; el++ ){
            (void) sprintf( buff, "im%d", el );
            (new->i_matrix)[ el ] = astReadDouble( channel, buff, AST__BAD );
            if( (new->i_matrix)[ el ] != AST__BAD ) def = 1;
         }

/* If no elements of the matrix were found, create an inverse matrix if
   possible, otherwise store a NULL pointer. Note, prior to AST 8.6.3, the 
   inverse matrix was not included in the dump - it was always recalculated 
   using InvertMatrix, but this led to small round-trip errors in cases, 
   where the original inverse matrix was not created using InvertMatrix 
   (e.g. was created by astMtrRot).  */
         if( !def ) {
            new->i_matrix = (double *) astFree( (void *) new->i_matrix );
            if( new->f_matrix ){
               new->i_matrix = InvertMatrix( new->form, nout, nin, new->f_matrix, status );
            } else {
               new->i_matrix = NULL;
            }
         }
      }

/* If an error occurred, clean up by deleting the new MatrixMap. */
      if ( !astOK ) new = astDelete( new );
   }

/* Return the new MatrixMap pointer. */
   return new;

/* Undefine macros local to this function. */
#undef KEY_LEN
}

/* Virtual function interfaces. */
/* ============================ */
/* These provide the external interface to the virtual functions defined by
   this class. Each simply checks the global error status and then locates and
   executes the appropriate member function, using the function pointer stored
   in the object's virtual function table (this pointer is located using the
   astMEMBER macro defined in "object.h").

   Note that the member function may not be the one defined here, as it may
   have been over-ridden by a derived class. However, it should still have the
   same interface. */

AstMatrixMap *astMtrRot_( AstMatrixMap *this, double theta,
                                const double axis[], int *status ){
   if( !astOK ) return NULL;
   return (**astMEMBER(this,MatrixMap,MtrRot))( this, theta, axis, status );
}

AstMatrixMap *astMtrMult_( AstMatrixMap *this, AstMatrixMap *a, int *status ){
   if( !astOK ) return NULL;
   return (**astMEMBER(this,MatrixMap,MtrMult))( this, a, status );
}