1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
|
/*
*+
* Name:
* palMapqkz
* Purpose:
* Quick mean to apparent place (no proper motion or parallax).
* Language:
* Starlink ANSI C
* Type of Module:
* Library routine
* Invocation:
* void palMapqkz( double rm, double dm, double amprms[21],
* double *ra, double *da )
* Arguments:
* rm = double (Given)
* Mean RA (radians).
* dm = double (Given)
* Mean Dec (radians).
* amprms = double[21] (Given)
* Star-independent mean-to-apparent parameters (see palMappa):
* (0-3) not used
* (4-6) heliocentric direction of the Earth (unit vector)
* (7) not used
* (8-10) abv: barycentric Earth velocity in units of c
* (11) sqrt(1-v^2) where v=modulus(abv)
* (12-20) precession/nutation (3,3) matrix
* ra = double * (Returned)
* Apparent RA (radians).
* da = double * (Returned)
* Apparent Dec (radians).
* Description:
* Quick mean to apparent place: transform a star RA,dec from
* mean place to geocentric apparent place, given the
* star-independent parameters, and assuming zero parallax
* and proper motion.
*
* Use of this function is appropriate when efficiency is important
* and where many star positions, all with parallax and proper
* motion either zero or already allowed for, and all referred to
* the same equator and equinox, are to be transformed for one
* epoch. The star-independent parameters can be obtained by
* calling the palMappa function.
*
* The corresponding function for the case of non-zero parallax
* and proper motion is palMapqk.
* Notes:
* - The reference systems and timescales used are IAU 2006.
* - The mean place rm, dm and the vectors amprms[1-3] and amprms[4-6]
* are referred to the mean equinox and equator of the epoch
* specified when generating the precession/nutation matrix
* amprms[12-20]. In the call to palMappa (q.v.) normally used
* to populate amprms, this epoch is the first argument (eq).
* - The vector amprms(4-6) is referred to the mean equinox and
* equator of epoch eq.
* - Strictly speaking, the routine is not valid for solar-system
* sources, though the error will usually be extremely small.
* However, to prevent gross errors in the case where the
* position of the Sun is specified, the gravitational
* deflection term is restrained within about 920 arcsec of the
* centre of the Sun's disc. The term has a maximum value of
* about 1.85 arcsec at this radius, and decreases to zero as
* the centre of the disc is approached.
* Authors:
* PTW: Pat Wallace (STFC)
* {enter_new_authors_here}
* History:
* 2012-02-13 (PTW):
* Initial version.
* Adapted with permission from the Fortran SLALIB library.
* {enter_further_changes_here}
* Copyright:
* Copyright (C) 1999 Rutherford Appleton Laboratory
* Copyright (C) 2012 Science and Technology Facilities Council.
* All Rights Reserved.
* Licence:
* This program is free software: you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation, either
* version 3 of the License, or (at your option) any later
* version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General
* License along with this program. If not, see
* <http://www.gnu.org/licenses/>.
* Bugs:
* {note_any_bugs_here}
*-
*/
#include "pal.h"
#include "pal1sofa.h"
void palMapqkz ( double rm, double dm, double amprms[21], double *ra,
double *da ){
/* Local Variables: */
int i;
double ab1, abv[3], p[3], w, p1dv, p2[3], p3[3];
double gr2e, pde, pdep1, ehn[3], p1[3];
/* Unpack scalar and vector parameters. */
ab1 = amprms[11];
gr2e = amprms[7];
for( i = 0; i < 3; i++ ) {
abv[i] = amprms[i+8];
ehn[i] = amprms[i+4];
}
/* Spherical to x,y,z. */
eraS2c( rm, dm, p );
/* Light deflection (restrained within the Sun's disc) */
pde = eraPdp( p, ehn );
pdep1 = pde + 1.0;
w = gr2e / ( pdep1 > 1.0e-5 ? pdep1 : 1.0e-5 );
for( i = 0; i < 3; i++) {
p1[i] = p[i] + w * ( ehn[i] - pde * p[i] );
}
/* Aberration. */
p1dv = eraPdp( p1, abv );
w = 1.0 + p1dv / ( ab1 + 1.0 );
for( i = 0; i < 3; i++ ) {
p2[i] = ( ( ab1 * p1[i] ) + ( w * abv[i] ) );
}
/* Precession and nutation. */
eraRxp( (double(*)[3]) &rms[12], p2, p3 );
/* Geocentric apparent RA,dec. */
eraC2s( p3, ra, da );
*ra = eraAnp( *ra );
}
|