summaryrefslogtreecommitdiffstats
path: root/ast/polygon.c
blob: 80b42ffb3a05f7415a67b858dd914b0b11c2e41b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
/*
*class++
*  Name:
*     Polygon

*  Purpose:
*     A polygonal region within a 2-dimensional Frame.

*  Constructor Function:
c     astPolygon
f     AST_POLYGON

*  Description:
*     The Polygon class implements a polygonal area, defined by a
*     collection of vertices, within a 2-dimensional Frame. The vertices
*     are connected together by geodesic curves within the encapsulated Frame.
*     For instance, if the encapsulated Frame is a simple Frame then the
*     geodesics will be straight lines, but if the Frame is a SkyFrame then
*     the geodesics will be great circles. Note, the vertices must be
*     supplied in an order such that the inside of the polygon is to the
*     left of the boundary as the vertices are traversed. Supplying them
*     in the reverse order will effectively negate the polygon.
*
*     Within a SkyFrame, neighbouring vertices are always joined using the
*     shortest path. Thus if an edge of 180 degrees or more in length is
*     required, it should be split into section each of which is less
*     than 180 degrees. The closed path joining all the vertices in order
*     will divide the celestial sphere into two disjoint regions. The
*     inside of the polygon is the region which is circled in an
*     anti-clockwise manner (when viewed from the inside of the celestial
*     sphere) when moving through the list of vertices in the order in
*     which they were supplied when the Polygon was created (i.e. the
*     inside is to the left of the boundary when moving through the
*     vertices in the order supplied).

*  Inheritance:
*     The Polygon class inherits from the Region class.

*  Attributes:
*     In addition to those attributes common to all Regions, every
*     Polygon also has the following attributes:
*     - SimpVertices: Simplify by transforming the vertices?

*  Functions:
c     In addition to those functions applicable to all Regions, the
c     following functions may also be applied to all Polygons:
f     In addition to those routines applicable to all Regions, the
f     following routines may also be applied to all Polygons:
*
c     - astDownsize: Reduce the number of vertices in a Polygon.
f     - AST_DOWNSIZE: Reduce the number of vertices in a Polygon.
c     - astConvex<X>: Create a Polygon giving the convex hull of a pixel array
f     - AST_CONVEX<X>: Create a Polygon giving the convex hull of a pixel array
c     - astOutline<X>: Create a Polygon outlining values in a pixel array
f     - AST_OUTLINE<X>: Create a Polygon outlining values in a pixel array

*  Copyright:
*     Copyright (C) 1997-2006 Council for the Central Laboratory of the
*     Research Councils
*     Copyright (C) 2009 Science & Technology Facilities Council.
*     All Rights Reserved.

*  Licence:
*     This program is free software: you can redistribute it and/or
*     modify it under the terms of the GNU Lesser General Public
*     License as published by the Free Software Foundation, either
*     version 3 of the License, or (at your option) any later
*     version.
*
*     This program is distributed in the hope that it will be useful,
*     but WITHOUT ANY WARRANTY; without even the implied warranty of
*     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
*     GNU Lesser General Public License for more details.
*
*     You should have received a copy of the GNU Lesser General
*     License along with this program.  If not, see
*     <http://www.gnu.org/licenses/>.

*  Authors:
*     DSB: David S. Berry (Starlink)

*  History:
*     26-OCT-2004 (DSB):
*        Original version.
*     28-MAY-2009 (DSB):
*        Added astDownsize.
*     29-MAY-2009 (DSB):
*        Added astOutline<X>.
*     30-JUN-2009 (DSB):
*        Override astGetBounded.
*     4-NOV-2013 (DSB):
*        Modify RegPins so that it can handle uncertainty regions that straddle
*        a discontinuity. Previously, such uncertainty Regions could have a huge
*        bounding box resulting in matching region being far too big.
*     6-DEC-2013 (DSB):
*        Reverse the order of the vertices when the Polygon is created,
*        if necessary, to ensure that the unnegated Polygon is bounded.
*        The parent Region class assumes that unnegated regions are
*        bounded.
*     6-JAN-2014 (DSB):
*        Free edges when clearing the cache, not when establishing a new
*        cache, as the number of edges may have changed.
*     10-JAN-2014 (DSB):
*        - Remove unused parameter description in prologue of for astOutline<X>
*     24-FEB-2014 (DSB):
*        Added astConvex<X>.
*     25-FEB-2014 (DSB):
*        Added attribute SimpVertices.
*     7-SEP-2015 (DSB):
*        Shrink outline polygons by a small fraction of a pixel, in order
*        to avoid placing vertices exactly on pixel edges. This is because
*        rounding errors in subsequent code may push the vertices into
*        neighbouring pixels, which may have bad WCS coords (e.g.
*        vertices on the boundary of a polar cusp in an HPX map).
*class--
*/

/* Module Macros. */
/* ============== */
/* Set the name of the class we are implementing. This indicates to
   the header files that define class interfaces that they should make
   "protected" symbols available. */
#define astCLASS Polygon

/* Define a macro for testing if a pixel value <V> satisfies the requirements
   specified by <Oper> and <Value>. Compiler optimisation should remove
   all the "if" testing from this expression. */
#define ISVALID(V,OperI,Value) ( \
   ( OperI == AST__LT ) ? ( (V) < Value ) : ( \
      ( OperI == AST__LE ) ? ( (V) <= Value ) : ( \
         ( OperI == AST__EQ ) ? ( (V) == Value ) : ( \
            ( OperI == AST__GE ) ? ( (V) >= Value ) : ( \
               ( OperI == AST__NE ) ? ( (V) != Value ) : ( \
                  (V) > Value \
               ) \
            ) \
         ) \
      ) \
   ) \
)

/* Macros specifying whether a point is inside, outside or on the
   boundary of the polygon. */
#define UNKNOWN 0
#define IN      1
#define OUT     2
#define ON      3

/* Size of pertubation (in pixels) used to avoid placing vertices exactly
   on a pixel edge. */
#define DELTA 0.01

/* Include files. */
/* ============== */
/* Interface definitions. */
/* ---------------------- */

#include "globals.h"             /* Thread-safe global data access */
#include "error.h"               /* Error reporting facilities */
#include "memory.h"              /* Memory allocation facilities */
#include "object.h"              /* Base Object class */
#include "pointset.h"            /* Sets of points/coordinates */
#include "region.h"              /* Coordinate regions (parent class) */
#include "channel.h"             /* I/O channels */
#include "box.h"                 /* Box Regions */
#include "wcsmap.h"              /* Definitons of AST__DPI etc */
#include "polygon.h"             /* Interface definition for this class */
#include "mapping.h"             /* Position mappings */
#include "unitmap.h"             /* Unit Mapping */
#include "pal.h"                 /* SLALIB library interface */
#include "frame.h"               /* Coordinate system description */

/* Error code definitions. */
/* ----------------------- */
#include "ast_err.h"             /* AST error codes */

/* C header files. */
/* --------------- */
#include <float.h>
#include <math.h>
#include <stdarg.h>
#include <stdlib.h>
#include <stddef.h>
#include <stdio.h>
#include <string.h>
#include <limits.h>

/* Type definitions. */
/* ================= */

/* A structure that holds information about an edge of the new Polygon
   being created by astDownsize. The edge is a line betweeen two of the
   vertices of the original Polygon. */
typedef struct Segment {
   int i1;        /* Index of starting vertex within old Polygon */
   int i2;        /* Index of ending vertex within old Polygon */
   double error;  /* Max geodesic distance from any old vertex to the line */
   int imax;      /* Index of the old vertex at which max error is reached */
   struct Segment *next;/* Pointer to next Segment in a double link list */
   struct Segment *prev;/* Pointer to previous Segment in a double link list */
} Segment;


/* Module Variables. */
/* ================= */

/* Address of this static variable is used as a unique identifier for
   member of this class. */
static int class_check;

/* Pointers to parent class methods which are extended by this class. */
static AstPointSet *(* parent_transform)( AstMapping *, AstPointSet *, int, AstPointSet *, int * );
static AstMapping *(* parent_simplify)( AstMapping *, int * );
static void (* parent_setregfs)( AstRegion *, AstFrame *, int * );
static void (* parent_resetcache)( AstRegion *, int * );
static const char *(* parent_getattrib)( AstObject *, const char *, int * );
static int (* parent_testattrib)( AstObject *, const char *, int * );
static void (* parent_clearattrib)( AstObject *, const char *, int * );
static void (* parent_setattrib)( AstObject *, const char *, int * );


#ifdef THREAD_SAFE
/* Define how to initialise thread-specific globals. */
#define GLOBAL_inits \
   globals->Class_Init = 0; \
   globals->GetAttrib_Buff[ 0 ] = 0;

/* Create the function that initialises global data for this module. */
astMAKE_INITGLOBALS(Polygon)

/* Define macros for accessing each item of thread specific global data. */
#define class_init astGLOBAL(Polygon,Class_Init)
#define class_vtab astGLOBAL(Polygon,Class_Vtab)
#define getattrib_buff astGLOBAL(Polygon,GetAttrib_Buff)


#include <pthread.h>


#else

static char getattrib_buff[ 51 ];

/* Define the class virtual function table and its initialisation flag
   as static variables. */
static AstPolygonVtab class_vtab;   /* Virtual function table */
static int class_init = 0;       /* Virtual function table initialised? */

#endif

/* External Interface Function Prototypes. */
/* ======================================= */
/* The following functions have public prototypes only (i.e. no
   protected prototypes), so we must provide local prototypes for use
   within this module. */
AstPolygon *astPolygonId_( void *, int, int, const double *, void *, const char *, ... );

/* Prototypes for Private Member Functions. */
/* ======================================== */

/* Define a macro that expands to a single prototype for function
   FindInsidePoint for a given data type and operation. */
#define FINDINSIDEPOINT_PROTO0(X,Xtype,Oper) \
static void FindInsidePoint##Oper##X( Xtype, const Xtype *, const int[2], const int[2], int *, int *, int *, int * );

/* Define a macro that expands to a set of prototypes for all operations
   for function FindInsidePoint for a given data type. */
#define FINDINSIDEPOINT_PROTO(X,Xtype) \
FINDINSIDEPOINT_PROTO0(X,Xtype,LT) \
FINDINSIDEPOINT_PROTO0(X,Xtype,LE) \
FINDINSIDEPOINT_PROTO0(X,Xtype,EQ) \
FINDINSIDEPOINT_PROTO0(X,Xtype,GE) \
FINDINSIDEPOINT_PROTO0(X,Xtype,GT) \
FINDINSIDEPOINT_PROTO0(X,Xtype,NE)

/* Use the above macros to define all FindInsidePoint prototypes for all
   data types and operations. */
#if HAVE_LONG_DOUBLE     /* Not normally implemented */
FINDINSIDEPOINT_PROTO(LD,long double)
#endif
FINDINSIDEPOINT_PROTO(D,double)
FINDINSIDEPOINT_PROTO(L,long int)
FINDINSIDEPOINT_PROTO(UL,unsigned long int)
FINDINSIDEPOINT_PROTO(I,int)
FINDINSIDEPOINT_PROTO(UI,unsigned int)
FINDINSIDEPOINT_PROTO(S,short int)
FINDINSIDEPOINT_PROTO(US,unsigned short int)
FINDINSIDEPOINT_PROTO(B,signed char)
FINDINSIDEPOINT_PROTO(UB,unsigned char)
FINDINSIDEPOINT_PROTO(F,float)

/* Define a macro that expands to a single prototype for function
   TraceEdge for a given data type and operation. */
#define TRACEEDGE_PROTO0(X,Xtype,Oper) \
static AstPointSet *TraceEdge##Oper##X( Xtype, const Xtype *, const int[2], const int[2], int, int, int, int, int, int * );

/* Define a macro that expands to a set of prototypes for all operations
   for function TraceEdge for a given data type. */
#define TRACEEDGE_PROTO(X,Xtype) \
TRACEEDGE_PROTO0(X,Xtype,LT) \
TRACEEDGE_PROTO0(X,Xtype,LE) \
TRACEEDGE_PROTO0(X,Xtype,EQ) \
TRACEEDGE_PROTO0(X,Xtype,GE) \
TRACEEDGE_PROTO0(X,Xtype,GT) \
TRACEEDGE_PROTO0(X,Xtype,NE)

/* Use the above macros to define all TraceEdge prototypes for all
   data types and operations. */
#if HAVE_LONG_DOUBLE     /* Not normally implemented */
TRACEEDGE_PROTO(LD,long double)
#endif
TRACEEDGE_PROTO(D,double)
TRACEEDGE_PROTO(L,long int)
TRACEEDGE_PROTO(UL,unsigned long int)
TRACEEDGE_PROTO(I,int)
TRACEEDGE_PROTO(UI,unsigned int)
TRACEEDGE_PROTO(S,short int)
TRACEEDGE_PROTO(US,unsigned short int)
TRACEEDGE_PROTO(B,signed char)
TRACEEDGE_PROTO(UB,unsigned char)
TRACEEDGE_PROTO(F,float)

/* Define a macro that expands to a single prototype for function
   PartHull for a given data type and operation. */
#define PARTHULL_PROTO0(X,Xtype,Oper) \
static void PartHull##Oper##X( Xtype, const Xtype[], int, int, int, int, int, int, int, const int[2], double **, double **, int *, int * );

/* Define a macro that expands to a set of prototypes for all operations
   for function PartHull for a given data type. */
#define PARTHULL_PROTO(X,Xtype) \
PARTHULL_PROTO0(X,Xtype,LT) \
PARTHULL_PROTO0(X,Xtype,LE) \
PARTHULL_PROTO0(X,Xtype,EQ) \
PARTHULL_PROTO0(X,Xtype,GE) \
PARTHULL_PROTO0(X,Xtype,GT) \
PARTHULL_PROTO0(X,Xtype,NE)

/* Use the above macros to define all PartHull prototypes for all
   data types and operations. */
#if HAVE_LONG_DOUBLE     /* Not normally implemented */
PARTHULL_PROTO(LD,long double)
#endif
PARTHULL_PROTO(D,double)
PARTHULL_PROTO(L,long int)
PARTHULL_PROTO(UL,unsigned long int)
PARTHULL_PROTO(I,int)
PARTHULL_PROTO(UI,unsigned int)
PARTHULL_PROTO(S,short int)
PARTHULL_PROTO(US,unsigned short int)
PARTHULL_PROTO(B,signed char)
PARTHULL_PROTO(UB,unsigned char)
PARTHULL_PROTO(F,float)

/* Define a macro that expands to a single prototype for function
   ConvexHull for a given data type and operation. */
#define CONVEXHULL_PROTO0(X,Xtype,Oper) \
static AstPointSet *ConvexHull##Oper##X( Xtype, const Xtype[], const int[2], int, int, int, int * );

/* Define a macro that expands to a set of prototypes for all operations
   for function ConvexHull for a given data type. */
#define CONVEXHULL_PROTO(X,Xtype) \
CONVEXHULL_PROTO0(X,Xtype,LT) \
CONVEXHULL_PROTO0(X,Xtype,LE) \
CONVEXHULL_PROTO0(X,Xtype,EQ) \
CONVEXHULL_PROTO0(X,Xtype,GE) \
CONVEXHULL_PROTO0(X,Xtype,GT) \
CONVEXHULL_PROTO0(X,Xtype,NE)

/* Use the above macros to define all ConvexHull prototypes for all
   data types and operations. */
#if HAVE_LONG_DOUBLE     /* Not normally implemented */
CONVEXHULL_PROTO(LD,long double)
#endif
CONVEXHULL_PROTO(D,double)
CONVEXHULL_PROTO(L,long int)
CONVEXHULL_PROTO(UL,unsigned long int)
CONVEXHULL_PROTO(I,int)
CONVEXHULL_PROTO(UI,unsigned int)
CONVEXHULL_PROTO(S,short int)
CONVEXHULL_PROTO(US,unsigned short int)
CONVEXHULL_PROTO(B,signed char)
CONVEXHULL_PROTO(UB,unsigned char)
CONVEXHULL_PROTO(F,float)

/* Define a macro that expands to a single prototype for function
   FindBoxEdge for a given data type and operation. */
#define FINDBOXEDGE_PROTO0(X,Xtype,Oper) \
static void FindBoxEdge##Oper##X( Xtype, const Xtype[], int, int, int, int, int *, int *, int *, int * );

/* Define a macro that expands to a set of prototypes for all operations
   for function FindBoxEdge for a given data type. */
#define FINDBOXEDGE_PROTO(X,Xtype) \
FINDBOXEDGE_PROTO0(X,Xtype,LT) \
FINDBOXEDGE_PROTO0(X,Xtype,LE) \
FINDBOXEDGE_PROTO0(X,Xtype,EQ) \
FINDBOXEDGE_PROTO0(X,Xtype,GE) \
FINDBOXEDGE_PROTO0(X,Xtype,GT) \
FINDBOXEDGE_PROTO0(X,Xtype,NE)

/* Use the above macros to define all FindBoxEdge prototypes for all
   data types and operations. */
#if HAVE_LONG_DOUBLE     /* Not normally implemented */
FINDBOXEDGE_PROTO(LD,long double)
#endif
FINDBOXEDGE_PROTO(D,double)
FINDBOXEDGE_PROTO(L,long int)
FINDBOXEDGE_PROTO(UL,unsigned long int)
FINDBOXEDGE_PROTO(I,int)
FINDBOXEDGE_PROTO(UI,unsigned int)
FINDBOXEDGE_PROTO(S,short int)
FINDBOXEDGE_PROTO(US,unsigned short int)
FINDBOXEDGE_PROTO(B,signed char)
FINDBOXEDGE_PROTO(UB,unsigned char)
FINDBOXEDGE_PROTO(F,float)









/* Non-generic function prototypes. */
static AstMapping *Simplify( AstMapping *, int * );
static AstPointSet *DownsizePoly( AstPointSet *, double, int, AstFrame *, int * );
static AstPointSet *RegBaseMesh( AstRegion *, int * );
static AstPointSet *Transform( AstMapping *, AstPointSet *, int, AstPointSet *, int * );
static AstPolygon *Downsize( AstPolygon *, double, int, int * );
static Segment *AddToChain( Segment *, Segment *, int * );
static Segment *NewSegment( Segment *, int, int, int, int * );
static Segment *RemoveFromChain( Segment *, Segment *, int * );
static double Polywidth( AstFrame *, AstLineDef **, int, int, double[ 2 ], int * );
static int GetBounded( AstRegion *, int * );
static int IntCmp( const void *, const void * );
static int RegPins( AstRegion *, AstPointSet *, AstRegion *, int **, int * );
static int RegTrace( AstRegion *, int, double *, double **, int * );
static void Cache( AstPolygon *, int * );
static void Copy( const AstObject *, AstObject *, int * );
static void Delete( AstObject *, int * );
static void Dump( AstObject *, AstChannel *, int * );
static void EnsureInside( AstPolygon *, int * );
static void FindMax( Segment *, AstFrame *, double *, double *, int, int, int * );
static void RegBaseBox( AstRegion *this, double *, double *, int * );
static void ResetCache( AstRegion *this, int * );
static void SetPointSet( AstPolygon *, AstPointSet *, int * );
static void SetRegFS( AstRegion *, AstFrame *, int * );
static void SmoothPoly( AstPointSet *, int, double, int * );

static const char *GetAttrib( AstObject *, const char *, int * );
static void ClearAttrib( AstObject *, const char *, int * );
static void SetAttrib( AstObject *, const char *, int * );
static int TestAttrib( AstObject *, const char *, int * );

static int GetSimpVertices( AstPolygon *, int * );
static int TestSimpVertices( AstPolygon *, int * );
static void ClearSimpVertices( AstPolygon *, int * );
static void SetSimpVertices( AstPolygon *, int, int * );


/* Member functions. */
/* ================= */
static Segment *AddToChain( Segment *head, Segment *seg, int *status ){
/*
*  Name:
*     AddToChain

*  Purpose:
*     Add a Segment into the linked list of Segments, maintaining the
*     required order in the list.

*  Type:
*     Private function.

*  Synopsis:
*     #include "polygon.h"
*     Segment *AddToChain( Segment *head, Segment *seg, int *status )

*  Class Membership:
*     Polygon member function

*  Description:
*     The linked list of Segments maintained by astDownsize is searched
*     from the high error end (the head), until a Segment is foound which
*     has a lower error than the supplied segment. The supplied Segment
*     is then inserted into the list at that point.

*  Parameters:
*     head
*        The Segment structure at the head of the list (i.e. the segment
*        with maximum error).
*     seg
*        The Segment to be added into the list.
*     status
*        Pointer to the inherited status variable.

*  Returned Value:
*     Pointer to the link head (which will have changed if "seg" has a
*     higher error than the original head).

*/

/* Local Variables: */
   Segment *tseg;

/* Check the global error status. */
   if ( !astOK ) return head;

/* If the list is empty, return the supplied segment as the new list
   head. */
   if( !head ) {
      head = seg;

/* If the supplied segment has a higher error than the original head,
   insert the new segment in front of the original head. */
   } else if( seg->error > head->error ){
      seg->next = head;
      head->prev = seg;
      head = seg;

/* Otherwise, move down the list from the head until a segment is found
   which has a lower error than the supplied Segment. Then insert the
   supplied segment into the list in front of it. */
   } else {
      tseg = head;
      seg->next = NULL;

      while( tseg->next ) {
         if( seg->error > tseg->next->error ) {
            seg->next = tseg->next;
            seg->prev = tseg;
            tseg->next->prev = seg;
            tseg->next = seg;
            break;
         }
         tseg = tseg->next;
      }

      if( !seg->next ) {
         tseg->next = seg;
         seg->prev = tseg;
      }
   }

/* Return the new head. */
   return head;
}

static void Cache( AstPolygon *this, int *status ){
/*
*  Name:
*     Cache

*  Purpose:
*     Calculate intermediate values and cache them in the Polygon structure.

*  Type:
*     Private function.

*  Synopsis:
*     #include "polygon.h"
*     void Cache( AstPolygon *this, int *status )

*  Class Membership:
*     Polygon member function

*  Description:
*     This function uses the PointSet stored in the parent Region to calculate
*     some intermediate values which are useful in other methods. These
*     values are stored within the Polygon structure.

*  Parameters:
*     this
*        Pointer to the Polygon.
*     status
*        Pointer to the inherited status variable.

*/

/* Local Variables: */
   AstFrame *frm;       /* Pointer to base Frame in Polygon */
   double **ptr;        /* Pointer to data in the encapsulated PointSet */
   double end[ 2 ];     /* Start position for edge */
   double maxwid;       /* Maximum polygon width found so far */
   double polcen[ 2 ];  /* Polygon centre perpendicular to current edge */
   double polwid;       /* Polygon width perpendicular to current edge */
   double start[ 2 ];   /* Start position for edge */
   int i;               /* Axis index */
   int nv;              /* Number of vertices in Polygon */

/* Check the global error status. */
   if ( !astOK ) return;

/* Do nothing if the cached information is up to date. */
   if( this->stale ) {

/* Get a pointer to the base Frame. */
      frm = astGetFrame( ((AstRegion *) this)->frameset, AST__BASE );

/* Get the number of vertices. */
      nv = astGetNpoint( ((AstRegion *) this)->points );

/* Get pointers to the coordinate data in the parent Region structure. */
      ptr = astGetPoints( ((AstRegion *) this)->points );

/* Free any existing edge information in the Polygon structure. */
      if( this->edges ) {
         for( i = 0; i < nv; i++ ) {
            this->edges[ i ] = astFree( this->edges[ i ] );
         }
      }

/* Ensure we have enough memory to store new edge information if necessary. */
      this->edges = astGrow( this->edges, nv, sizeof( AstLineDef *) );
      this->startsat = astGrow( this->startsat, nv, sizeof( double ) );

/* Check pointers can be used safely. */
      if( this->edges && this->startsat ) {

/* Create and store a description of each edge. Also form the total
   distance round the polygon, and the distance from the first vertex
   at which each edge starts. */
         this->totlen = 0.0;
         start[ 0 ] = ptr[ 0 ][ nv - 1 ];
         start[ 1 ] = ptr[ 1 ][ nv - 1 ];

         for( i = 0; i < nv; i++ ) {
            end[ 0 ] = ptr[ 0 ][ i ];
            end[ 1 ] = ptr[ 1 ][ i ];
            this->edges[ i ] = astLineDef( frm, start, end );
            start[ 0 ] = end[ 0 ];
            start[ 1 ] = end[ 1 ];

            this->startsat[ i ] = this->totlen;
            this->totlen += this->edges[ i ]->length;
         }

/* We now look for a point that is inside the polygon. We want a point
   that is well within the polygon, since points that are only just inside
   the polygon can give numerical problems. Loop round each edge with
   non-zero length. */
         maxwid = -1.0;
         for( i = 0; i < nv; i++ ) {
            if( this->edges[ i ]->length > 0.0 ) {

/* We define another line perpendicular to the current edge, passing
   through the mid point of the edge, extending towards the inside of the
   polygon. The following function returns the distance we can travel
   along this line before we hit any of the other polygon edges. It also
   puts the position corresponding to half that distance into "polcen". */
               polwid = Polywidth( frm, this->edges, i, nv, polcen, status );

/* If the width of the polygon perpendicular to the current edge is
   greater than the width perpdeicular to any other edge, record the
   width and also store the current polygon centre. */
               if( polwid > maxwid && polwid != AST__BAD ) {
                  maxwid = polwid;
                  (this->in)[ 0 ] = polcen[ 0 ];
                  (this->in)[ 1 ] = polcen[ 1 ];
               }
            }
         }

/* If no width was found it probably means that the polygon vertices were
   given in clockwise order, resulting in the above process probing the
   infinite extent outside the polygonal hole. In this case any point
   outside the hole will do, so we use the current contents of the
   "polcen" array. Set a flag indicating if the vertices are stored in
   anti-clockwise order. */
         if( maxwid < 0.0 ) {
            (this->in)[ 0 ] = polcen[ 0 ];
            (this->in)[ 1 ] = polcen[ 1 ];
            this->acw = 0;
         } else {
            this->acw = 1;
         }
      }

/* Free resources */
      frm = astAnnul( frm );

/* Indicate cached information is up to date. */
      this->stale = 0;
   }
}

static void ClearAttrib( AstObject *this_object, const char *attrib, int *status ) {
/*
*  Name:
*     ClearAttrib

*  Purpose:
*     Clear an attribute value for a Polygon.

*  Type:
*     Private function.

*  Synopsis:
*     #include "polygon.h"
*     void ClearAttrib( AstObject *this, const char *attrib, int *status )

*  Class Membership:
*     Polygon member function (over-rides the astClearAttrib protected
*     method inherited from the Region class).

*  Description:
*     This function clears the value of a specified attribute for a
*     Polygon, so that the default value will subsequently be used.

*  Parameters:
*     this
*        Pointer to the Polygon.
*     attrib
*        Pointer to a null terminated string specifying the attribute
*        name.  This should be in lower case with no surrounding white
*        space.
*     status
*        Pointer to the inherited status variable.
*/

/* Local Variables: */
   AstPolygon *this;             /* Pointer to the Polygon structure */

/* Check the global error status. */
   if ( !astOK ) return;

/* Obtain a pointer to the Polygon structure. */
   this = (AstPolygon *) this_object;

/* Check the attribute name and clear the appropriate attribute. */

/* SimpVertices. */
/* ------------- */
   if ( !strcmp( attrib, "simpvertices" ) ) {
      astClearSimpVertices( this );

/* If the attribute is not recognised, pass it on to the parent method
   for further interpretation. */
   } else {
      (*parent_clearattrib)( this_object, attrib, status );
   }
}

/*
*++
*  Name:
c     astConvex<X>
f     AST_CONVEX<X>

*  Purpose:
*     Create a new Polygon representing the convex hull of a 2D data grid.

*  Type:
*     Public function.

*  Synopsis:
c     #include "polygon.h"
c     AstPolygon *astConvex<X>( <Xtype> value, int oper, const <Xtype> array[],
c                                const int lbnd[2], const int ubnd[2], int starpix )
f     RESULT = AST_CONVEX<X>( VALUE, OPER, ARRAY, LBND, UBND, STARPIX, STATUS )

*  Class Membership:
*     Polygon method.

*  Description:
*     This is a set of functions that create the shortest Polygon that
*     encloses all pixels with a specified value within a gridded
*     2-dimensional data array (e.g. an image).
*
*     A basic 2-dimensional Frame is used to represent the pixel coordinate
*     system in the returned Polygon. The Domain attribute is set to
*     "PIXEL", the Title attribute is set to "Pixel coordinates", and the
*     Unit attribute for each axis is set to "pixel". All other
*     attributes are left unset. The nature of the pixel coordinate system
*     is determined by parameter
c     "starpix".
f     STARPIX.
*
*     You should use a function which matches the numerical type of the
*     data you are processing by replacing <X> in the generic function
*     name
c     astConvex<X>
f     AST_CONVEX<X>
c     by an appropriate 1- or 2-character type code. For example, if you
*     are procesing data with type
c     "float", you should use the function astConvexF
f     REAL, you should use the function AST_CONVEXR
*     (see the "Data Type Codes" section below for the codes appropriate to
*     other numerical types).

*  Parameters:
c     value
f     VALUE = <Xtype> (Given)
*        A data value that specifies the pixels to be included within the
*        convex hull.
c     oper
f     OPER = INTEGER (Given)
*        Indicates how the
c        "value"
f        VALUE
*        parameter is used to select the required pixels. It can
*        have any of the following values:
c        - AST__LT: include pixels with value less than "value".
c        - AST__LE: include pixels with value less than or equal to "value".
c        - AST__EQ: include pixels with value equal to "value".
c        - AST__NE: include pixels with value not equal to "value".
c        - AST__GE: include pixels with value greater than or equal to "value".
c        - AST__GT: include pixels with value greater than "value".
f        - AST__LT: include pixels with value less than VALUE.
f        - AST__LE: include pixels with value less than or equal to VALUE.
f        - AST__EQ: include pixels with value equal to VALUE.
f        - AST__NE: include pixels with value not equal to VALUE.
f        - AST__GE: include pixels with value greater than or equal to VALUE.
f        - AST__GT: include pixels with value greater than VALUE.
c     array
f     ARRAY( * ) = <Xtype> (Given)
c        Pointer to a
f        A
*        2-dimensional array containing the data to be processed.  The
*        numerical type of this array should match the 1- or
*        2-character type code appended to the function name (e.g. if
c        you are using astConvexF, the type of each array element
c        should be "float").
f        you are using AST_CONVEXR, the type of each array element
f        should be REAL).
*
*        The storage order of data within this array should be such
*        that the index of the first grid dimension varies most
*        rapidly and that of the second dimension least rapidly
c        (i.e. Fortran array indexing is used).
f        (i.e. normal Fortran array storage order).
c     lbnd
f     LBND( 2 ) = INTEGER (Given)
c        Pointer to an array of two integers
f        An array
*        containing the coordinates of the centre of the first pixel
*        in the input grid along each dimension.
c     ubnd
f     UBND( 2) = INTEGER (Given)
c        Pointer to an array of two integers
f        An array
*        containing the coordinates of the centre of the last pixel in
*        the input grid along each dimension.
*
c        Note that "lbnd" and "ubnd" together define the shape
f        Note that LBND and UBND together define the shape
*        and size of the input grid, its extent along a particular
c        (j'th) dimension being ubnd[j]-lbnd[j]+1 (assuming the
c        index "j" to be zero-based). They also define
f        (J'th) dimension being UBND(J)-LBND(J)+1. They also define
*        the input grid's coordinate system, each pixel having unit
*        extent along each dimension with integral coordinate values
*        at its centre or upper corner, as selected by parameter
c        "starpix".
f        STARPIX.
c     starpix
f     STARPIX = LOGICAL (Given)
*        A flag indicating the nature of the pixel coordinate system used
*        to describe the vertex positions in the returned Polygon. If
c        non-zero,
f        .TRUE.,
*        the standard Starlink definition of pixel coordinate is used in
*        which a pixel with integer index I spans a range of pixel coordinate
*        from (I-1) to I (i.e. pixel corners have integral pixel coordinates).
c        If zero,
f        If .FALSE.,
*        the definition of pixel coordinate used by other AST functions
c        such as astResample, astMask,
f        such as AST_RESAMPLE, AST_MASK,
*        etc., is used. In this definition, a pixel with integer index I
*        spans a range of pixel coordinate from (I-0.5) to (I+0.5) (i.e.
*        pixel centres have integral pixel coordinates).
f     STATUS = INTEGER (Given and Returned)
f        The global status.

*  Returned Value:
c     astConvex<X>()
f     AST_CONVEX<X> = INTEGER
*        A pointer to the required Polygon.
c        NULL
f        AST__NULL
*        is returned without error if the array contains no pixels that
*        satisfy the criterion specified by
c        "value" and "oper".
f        VALUE and OPER.

*  Notes:
c     - NULL
f     - AST__NULL
*     will be returned if this function is invoked with the global
*     error status set, or if it should fail for any reason.

*  Data Type Codes:
*     To select the appropriate masking function, you should
c     replace <X> in the generic function name astConvex<X> with a
f     replace <X> in the generic function name AST_CONVEX<X> with a
*     1- or 2-character data type code, so as to match the numerical
*     type <Xtype> of the data you are processing, as follows:
c     - D: double
c     - F: float
c     - L: long int
c     - UL: unsigned long int
c     - I: int
c     - UI: unsigned int
c     - S: short int
c     - US: unsigned short int
c     - B: byte (signed char)
c     - UB: unsigned byte (unsigned char)
f     - D: DOUBLE PRECISION
f     - R: REAL
f     - I: INTEGER
f     - UI: INTEGER (treated as unsigned)
f     - S: INTEGER*2 (short integer)
f     - US: INTEGER*2 (short integer, treated as unsigned)
f     - B: BYTE (treated as signed)
f     - UB: BYTE (treated as unsigned)
*
c     For example, astConvexD would be used to process "double"
c     data, while astConvexS would be used to process "short int"
c     data, etc.
f     For example, AST_CONVEXD would be used to process DOUBLE
f     PRECISION data, while AST_CONVEXS would be used to process
f     short integer data (stored in an INTEGER*2 array), etc.
f
f     For compatibility with other Starlink facilities, the codes W
f     and UW are provided as synonyms for S and US respectively (but
f     only in the Fortran interface to AST).

*--
*/
/* Define a macro to implement the function for a specific data
   type. Note, this function cannot be a virtual function since the
   argument list does not include a Polygon, and so no virtual function
   table is available. */
#define MAKE_CONVEX(X,Xtype) \
AstPolygon *astConvex##X##_( Xtype value, int oper, const Xtype array[], \
                             const int lbnd[2], const int ubnd[2], \
                             int starpix, int *status ) { \
\
/* Local Variables: */ \
   AstFrame *frm;            /* Frame in which to define the Polygon */ \
   AstPointSet *candidate;   /* Candidate polygon vertices */ \
   AstPolygon *result;       /* Result value to return */ \
   int xdim;                 /* Number of pixels per row */ \
   int ydim;                 /* Number of rows */ \
   static double junk[ 6 ] = {0.0, 0.0, 1.0, 1.0, 0.0, 1.0 }; /* Junk poly */ \
\
/* Initialise. */ \
   result = NULL; \
   candidate = NULL; \
\
/* Check the global error status. */ \
   if ( !astOK ) return result; \
\
/* Get the array dimensions. */ \
   xdim = ubnd[ 0 ] - lbnd[ 0 ] + 1; \
   ydim = ubnd[ 1 ] - lbnd[ 1 ] + 1; \
\
/* Get the basic concvex hull. */ \
   if( oper == AST__LT ) { \
      candidate = ConvexHullLT##X( value, array, lbnd, starpix, xdim, ydim, status ); \
\
   } else if( oper == AST__LE ) { \
      candidate = ConvexHullLE##X( value, array, lbnd, starpix, xdim, ydim, status ); \
\
   } else if( oper == AST__EQ ) { \
      candidate = ConvexHullEQ##X( value, array, lbnd, starpix, xdim, ydim, status ); \
\
   } else if( oper == AST__NE ) { \
      candidate = ConvexHullNE##X( value, array, lbnd, starpix, xdim, ydim, status ); \
\
   } else if( oper == AST__GE ) { \
      candidate = ConvexHullGE##X( value, array, lbnd, starpix, xdim, ydim, status ); \
\
   } else if( oper == AST__GT ) { \
      candidate = ConvexHullGT##X( value, array, lbnd, starpix, xdim, ydim, status ); \
\
   } else if( astOK ){ \
      astError( AST__OPRIN, "astConvex"#X": Invalid operation code " \
                "(%d) supplied (programming error).", status, oper ); \
   } \
\
/* Check some good selected values were found. */ \
   if( candidate ) { \
\
/* Create a default Polygon with 3 junk vertices. */ \
      frm = astFrame( 2, "Domain=PIXEL,Unit(1)=pixel,Unit(2)=pixel," \
                      "Title=Pixel coordinates", status ); \
      result = astPolygon( frm, 3, 3, junk, NULL, " ", status ); \
\
/* Change the PointSet within the Polygon to the one created above. */ \
      SetPointSet( result, candidate, status ); \
\
/* Free resources. */ \
      frm = astAnnul( frm ); \
      candidate = astAnnul( candidate ); \
   } \
\
/* If an error occurred, clear the returned result. */ \
   if ( !astOK ) result = astAnnul( result ); \
\
/* Return the result. */ \
   return result; \
}


/* Expand the above macro to generate a function for each required
   data type. */
#if HAVE_LONG_DOUBLE     /* Not normally implemented */
MAKE_CONVEX(LD,long double)
#endif
MAKE_CONVEX(D,double)
MAKE_CONVEX(L,long int)
MAKE_CONVEX(UL,unsigned long int)
MAKE_CONVEX(I,int)
MAKE_CONVEX(UI,unsigned int)
MAKE_CONVEX(S,short int)
MAKE_CONVEX(US,unsigned short int)
MAKE_CONVEX(B,signed char)
MAKE_CONVEX(UB,unsigned char)
MAKE_CONVEX(F,float)

/* Undefine the macros. */
#undef MAKE_CONVEX

/*
*  Name:
*     ConvexHull

*  Purpose:
*     Find the convex hull enclosing selected pixels in a 2D array.

*  Type:
*     Private function.

*  Synopsis:
*     #include "polygon.h"
*     AstPointSet *ConvexHull<Oper><X>( <Xtype> value, const <Xtype> array[],
*                                       const int lbnd[2], int starpix,
*                                       int xdim, int ydim, int *status )

*  Class Membership:
*     Polygon member function

*  Description:
*     This function uses an algorithm similar to "Andrew's Monotone Chain
*     Algorithm" to create a list of vertices describing the convex hull
*     enclosing the selected pixels in the supplied array. The vertices
*     are returned in a PointSet.

*  Parameters:
*     value
*        A data value that specifies the pixels to be selected.
*     array
*        Pointer to a 2-dimensional array containing the data to be
*        processed. The numerical type of this array should match the 1-
*        or 2-character type code appended to the function name.
*     lbnd
*        The lower pixel index bounds of the array.
*     starpix
*        If non-zero, the usual Starlink definition of pixel coordinate
*        is used (integral values at pixel corners). Otherwise, the
*        system used by other AST functions such as astResample is used
*        (integral values at pixel centres).
*     xdim
*        The number of pixels along each row of the array.
*     ydim
*        The number of rows in the array.
*     status
*        Pointer to the inherited status variable.

*  Returned Value:
*     A PointSet holding the vertices of the convex hull, or NULL if an
*     error occurs.

*  Notes:
*     - The following code has been designed with a view to it being
*     multi-threaded at some point.

*/

/* Define a macro to implement the function for a specific data
   type and operation. */
#define MAKE_CONVEXHULL(X,Xtype,Oper,OperI) \
static AstPointSet *ConvexHull##Oper##X( Xtype value, const Xtype array[], \
                                         const int lbnd[2], int starpix, \
                                         int xdim, int ydim, int *status ) { \
\
/* Local Variables: */ \
   AstPointSet *result; \
   double **ptr; \
   double *xv1; \
   double *xv2; \
   double *xv3; \
   double *xv4; \
   double *xvert; \
   double *yv1; \
   double *yv2; \
   double *yv3; \
   double *yv4; \
   double *yvert; \
   int nv1; \
   int nv2; \
   int nv3; \
   int nv4; \
   int nv; \
   int xhi; \
   int xhiymax; \
   int xhiymin; \
   int xlo; \
   int xloymax; \
   int xloymin; \
   int yhi; \
   int yhixmax; \
   int yhixmin; \
   int ylo; \
   int yloxmax; \
   int yloxmin; \
\
/* Initialise */ \
   result = NULL; \
\
/* Check the global error status. */ \
   if ( !astOK ) return result; \
\
/* Find the lowest Y value at any selected pixel, and find the max and \
   min X value of the selected pixels at that lowest Y value. */ \
   FindBoxEdge##Oper##X( value, array, xdim, ydim, 1, 1, &ylo, &yloxmax,  \
                         &yloxmin, status ); \
\
/* Skip if there are no selected values in the array. */ \
   if( ylo > 0 ) { \
\
/* Find the highest Y value at any selected pixel, and find the max and \
   min X value of the selected pixels at that highest Y value. */ \
      FindBoxEdge##Oper##X( value, array, xdim, ydim, 1, 0, &yhi, &yhixmax,  \
                            &yhixmin, status ); \
\
/* Find the lowest X value at any selected pixel, and find the max and \
   min Y value of the selected pixels at that lowest X value. */ \
      FindBoxEdge##Oper##X( value, array, xdim, ydim, 0, 1, &xlo, &xloymax,  \
                            &xloymin, status ); \
\
/* Find the highest X value at any selected pixel, and find the max and \
   min Y value of the selected pixels at that highest X value. */ \
      FindBoxEdge##Oper##X( value, array, xdim, ydim, 0, 0, &xhi, &xhiymax,  \
                            &xhiymin, status ); \
\
/* Create a list of vertices for the bottom right corner of the bounding \
   box of the selected pixels. */ \
      PartHull##Oper##X( value, array, xdim, ydim, yloxmax, ylo, xhi, xhiymin, \
                         starpix, lbnd, &xv1, &yv1, &nv1, status ); \
\
/* Create a list of vertices for the top right corner of the bounding \
   box of the selected pixels. */ \
      PartHull##Oper##X( value, array, xdim, ydim, xhi, xhiymax, yhixmax, yhi, \
                         starpix, lbnd, &xv2, &yv2, &nv2, status ); \
\
/* Create a list of vertices for the top left corner of the bounding \
   box of the selected pixels. */ \
      PartHull##Oper##X( value, array, xdim, ydim, yhixmin, yhi, xlo, xloymax, \
                         starpix, lbnd, &xv3, &yv3, &nv3, status ); \
\
/* Create a list of vertices for the bottom left corner of the bounding \
   box of the selected pixels. */ \
      PartHull##Oper##X( value, array, xdim, ydim, xlo, xloymin, yloxmin, ylo, \
                         starpix, lbnd, &xv4, &yv4, &nv4, status ); \
\
/* Concatenate the four vertex lists and store them in the returned \
   PointSet. */ \
      nv =  nv1 + nv2 + nv3 + nv4; \
      result = astPointSet( nv, 2, " ", status ); \
      ptr = astGetPoints( result ); \
      if( astOK ) { \
         xvert = ptr[ 0 ]; \
         yvert = ptr[ 1 ]; \
\
         memcpy( xvert, xv1, nv1*sizeof( double ) ); \
         memcpy( yvert, yv1, nv1*sizeof( double ) ); \
         xvert += nv1; \
         yvert += nv1; \
\
         memcpy( xvert, xv2, nv2*sizeof( double ) ); \
         memcpy( yvert, yv2, nv2*sizeof( double ) ); \
         xvert += nv2; \
         yvert += nv2; \
\
         memcpy( xvert, xv3, nv3*sizeof( double ) ); \
         memcpy( yvert, yv3, nv3*sizeof( double ) ); \
         xvert += nv3; \
         yvert += nv3; \
\
         memcpy( xvert, xv4, nv4*sizeof( double ) ); \
         memcpy( yvert, yv4, nv4*sizeof( double ) ); \
      } \
\
/* Free resources. */ \
      xv1 = astFree( xv1 ); \
      xv2 = astFree( xv2 ); \
      xv3 = astFree( xv3 ); \
      xv4 = astFree( xv4 ); \
      yv1 = astFree( yv1 ); \
      yv2 = astFree( yv2 ); \
      yv3 = astFree( yv3 ); \
      yv4 = astFree( yv4 ); \
   } \
\
/* Free the returned PointSet if an error occurred. */ \
   if( result && !astOK ) result = astAnnul( result ); \
\
/* Return the result. */ \
   return result; \
}

/* Define a macro that uses the above macro to to create implementations
   of ConvexHull for all operations. */
#define MAKEALL_CONVEXHULL(X,Xtype) \
MAKE_CONVEXHULL(X,Xtype,LT,AST__LT) \
MAKE_CONVEXHULL(X,Xtype,LE,AST__LE) \
MAKE_CONVEXHULL(X,Xtype,EQ,AST__EQ) \
MAKE_CONVEXHULL(X,Xtype,NE,AST__NE) \
MAKE_CONVEXHULL(X,Xtype,GE,AST__GE) \
MAKE_CONVEXHULL(X,Xtype,GT,AST__GT)

/* Expand the above macro to generate a function for each required
   data type and operation. */
#if HAVE_LONG_DOUBLE     /* Not normally implemented */
MAKEALL_CONVEXHULL(LD,long double)
#endif
MAKEALL_CONVEXHULL(D,double)
MAKEALL_CONVEXHULL(L,long int)
MAKEALL_CONVEXHULL(UL,unsigned long int)
MAKEALL_CONVEXHULL(I,int)
MAKEALL_CONVEXHULL(UI,unsigned int)
MAKEALL_CONVEXHULL(S,short int)
MAKEALL_CONVEXHULL(US,unsigned short int)
MAKEALL_CONVEXHULL(B,signed char)
MAKEALL_CONVEXHULL(UB,unsigned char)
MAKEALL_CONVEXHULL(F,float)

/* Undefine the macros. */
#undef MAKE_CONVEXHULL
#undef MAKEALL_CONVEXHULL

static AstPolygon *Downsize( AstPolygon *this, double maxerr, int maxvert,
                             int *status ) {
/*
*++
*  Name:
c     astDownsize
f     AST_DOWNSIZE

*  Purpose:
*     Reduce the number of vertices in a Polygon.

*  Type:
*     Public virtual function.

*  Synopsis:
c     #include "polygon.h"
c     AstPolygon *astDownsize( AstPolygon *this, double maxerr, int maxvert )
f     RESULT = AST_DOWNSIZE( THIS, MAXERR, MAXVERT, STATUS )

*  Class Membership:
*     Polygon method.

*  Description:
*     This function returns a pointer to a new Polygon that contains a
*     subset of the vertices in the supplied Polygon. The subset is
*     chosen so that the returned Polygon is a good approximation to
*     the supplied Polygon, within the limits specified by the supplied
*     parameter values. That is, the density of points in the returned
*     Polygon is greater at points where the curvature of the boundary of
*     the supplied Polygon is greater.

*  Parameters:
c     this
f     THIS = INTEGER (Given)
*        Pointer to the Polygon.
c     maxerr
f     MAXERR = DOUBLE PRECISION (Given)
*        The maximum allowed discrepancy between the supplied and
*        returned Polygons, expressed as a geodesic distance within the
*        Polygon's coordinate frame. If this is zero or less, the
*        returned Polygon will have the number of vertices specified by
c        maxvert.
f        MAXVERT.
c     maxvert
f     MAXVERT = INTEGER (Given)
*        The maximum allowed number of vertices in the returned Polygon.
*        If this is less than 3, the number of vertices in the returned
*        Polygon will be the minimum needed to achieve the maximum
*        discrepancy specified by
c        maxerr.
f        MAXERR.
f     STATUS = INTEGER (Given and Returned)
f        The global status.

*  Returned Value:
c     astDownsize()
f     AST_DOWNSIZE = INTEGER
*        Pointer to the new Polygon.

*  Notes:
*     - A null Object pointer (AST__NULL) will be returned if this
c     function is invoked with the AST error status set, or if it
f     function is invoked with STATUS set to an error value, or if it
*     should fail for any reason.
*--
*/

/* Local Variables: */
   AstFrame *frm;         /* Base Frame from the Polygon */
   AstPointSet *pset;     /* PointSet holding vertices of downsized polygon */
   AstPolygon *result;    /* Returned pointer to new Polygon */

/* Initialise. */
   result = NULL;

/* Check the global error status. */
   if ( !astOK ) return result;

/* Get a pointer to the base Frame of the Polygon. */
   frm = astGetFrame( ((AstRegion *) this)->frameset, AST__BASE );

/* Create a PointSet holding the vertices of the downsized polygon. */
   pset = DownsizePoly( ((AstRegion *) this)->points, maxerr, maxvert,
                        frm, status );

/* Take a deep copy of the supplied Polygon. */
   result = astCopy( this );

/* Change the PointSet within the result Polygon to the one created above. */ \
   SetPointSet( result, pset, status ); \

/* Free resources. */
   frm = astAnnul( frm );
   pset = astAnnul( pset );

/* If an error occurred, annul the returned Polygon. */
   if ( !astOK ) result = astAnnul( result );

/* Return the result. */
   return result;
}

static AstPointSet *DownsizePoly( AstPointSet *pset, double maxerr,
                                  int maxvert, AstFrame *frm, int *status ) {
/*
*  Name:
*     DownsizePoly

*  Purpose:
*     Reduce the number of vertices in a Polygon.

*  Type:
*     Private function.

*  Synopsis:
*    #include "polygon.h"
*    AstPointSet *DownsizePoly( AstPointSet *pset, double maxerr, int maxvert,
*                               AstFrame *frm, int *status )

*  Class Membership:
*     Polygon member function.

*  Description:
*     This function returns a pointer to a new PointSet that contains a
*     subset of the vertices in the supplied PointSet. The subset is
*     chosen so that the returned polygon is a good approximation to
*     the supplied polygon, within the limits specified by the supplied
*     parameter values. That is, the density of points in the returned
*     polygon is greater at points where the curvature of the boundary of
*     the supplied polygon is greater.

*  Parameters:
*     pset
*        Pointer to the PointSet holding the polygon vertices.
*     maxerr
*        The maximum allowed discrepancy between the supplied and
*        returned Polygons, expressed as a geodesic distance within the
*        Polygon's coordinate frame. If this is zero or less, the
*        returned Polygon will have the number of vertices specified by
*        maxvert.
*     maxvert
*        The maximum allowed number of vertices in the returned Polygon.
*        If this is less than 3, the number of vertices in the returned
*        Polygon will be the minimum needed to achieve the maximum
*        discrepancy specified by
*        maxerr.
*     frm
*        Pointer to the Frame in which the polygon is defined.
*     status
*        Pointer to the inherited status variable.

*  Returned Value:
*        Pointer to the new PointSet.

*  Notes:
*     - A null Object pointer (AST__NULL) will be returned if this
*     function is invoked with the AST error status set, or if it
*     should fail for any reason.
*/

/* Local Variables: */
   AstPointSet *result;   /* Returned pointer to new PointSet */
   Segment *head;         /* Pointer to new polygon edge with highest error */
   Segment *seg1;         /* Pointer to new polygon edge */
   Segment *seg2;         /* Pointer to new polygon edge */
   Segment *seg3;         /* Pointer to new polygon edge */
   double **ptr;          /* Pointer to arrays of axis values */
   double *x;             /* Pointer to array of X values for old Polygon */
   double *xnew;          /* Pointer to array of X values for new Polygon */
   double *y;             /* Pointer to array of Y values for old Polygon */
   double *ynew;          /* Pointer to array of Y values for new Polygon */
   double x1;             /* Lowest X value at any vertex */
   double x2;             /* Highest X value at any vertex */
   double y1;             /* Lowest Y value at any vertex */
   double y2;             /* Highest Y value at any vertex */
   int *newpoly;          /* Holds indices of retained input vertices */
   int i1;                /* Index of first vertex added to output polygon */
   int i1x;               /* Index of vertex with lowest X */
   int i1y;               /* Index of vertex with lowest Y */
   int i2;                /* Index of second vertex added to output polygon */
   int i2x;               /* Index of vertex with highest X */
   int i2y;               /* Index of vertex with highest Y */
   int i3;                /* Index of third vertex added to output polygon */
   int iadd;              /* Normalised vertex index */
   int iat;               /* Index at which to store new vertex index */
   int newlen;            /* Number of vertices currently in new Polygon */
   int nv;                /* Number of vertices in old Polygon */

/* Initialise. */
   result = NULL;

/* Check the global error status. */
   if ( !astOK ) return result;

/* Get the number of vertices in the supplied polygon. */
   nv = astGetNpoint( pset );

/* If the maximum error allowed is zero, and the maximum number of
   vertices is equal to or greater than the number in the supplied
   polygon, just return a deep copy of the supplied PointSet. */
   if( maxerr <= 0.0 && ( maxvert < 3 || maxvert >= nv ) ) {
      result = astCopy( pset );

/* Otherwise... */
   } else {

/* Get pointers to the X and Y arrays holding the vertex coordinates in
   the supplied polygon. */
      ptr = astGetPoints( pset );
      x = ptr[ 0 ];
      y = ptr[ 1 ];

/* Allocate memory for an array to hold the original indices of the vertices
   to be used to create the returned Polygon. This array is expanded as
   needed. */
      newpoly = astMalloc( 10*sizeof( int ) );

/* Check the pointers can be used safely. */
      if( astOK ) {

/* We first need to decide on three widely spaced vertices which form a
   reasonable triangular approximation to the whole polygon. First find
   the vertices with the highest and lowest Y values, and the highest and
   lowest X values. */
         x1 = DBL_MAX;
         x2 = -DBL_MAX;
         y1 = DBL_MAX;
         y2 = -DBL_MAX;

         i1y = i1x = 0;
         i2y = i2x = nv/2;

         for( i3 = 0; i3 < nv; i3++ ) {
            if( y[ i3 ] < y1 ) {
               y1 = y[ i3 ];
               i1y = i3;
            } else if( y[ i3 ] > y2 ) {
               y2 = y[ i3 ];
               i2y = i3;
            }

            if( x[ i3 ] < x1 ) {
               x1 = x[ i3 ];
               i1x = i3;
            } else if( x[ i3 ] > x2 ) {
               x2 = x[ i3 ];
               i2x = i3;
            }
         }

/* Use the axis which spans the greater range. */
         if( y2 - y1 > x2 - x1 ) {
            i1 = i1y;
            i2 = i2y;
         } else {
            i1 = i1x;
            i2 = i2x;
         }

/* The index with vertex i1 is definitely going to be one of our three
   vertices. We are going to use the line from i1 to i2 to choose the two
   other vertices to use. Create a structure describing the segment of the
   Polygon from the lowest value on the selected axis (X or Y) to the
   highest value. As always, the polygons is traversed in an anti-clockwise
   direction. */
         seg1 = NewSegment( NULL, i1, i2, nv, status );

/* Find the vertex within this segment which is furthest away from the
   line on the right hand side (as moving from vertex i1 to vertex i2). */
         FindMax( seg1, frm, x, y, nv, 0, status );

/* Likewise, create a structure describing the remained of the Polygon
   (i.e. the segment from the highest value on the selected axis to the
   lowest value). Then find the vertex within this segment which is
   furthest away from the line on the right hand side. */
         seg2 = NewSegment( NULL, i2, i1, nv, status );
         FindMax( seg2, frm, x, y, nv, 0, status );

/* Select the segment for which the found vertex is furthest from the
   line. */
         if( seg2->error > seg1->error ) {

/* If the second segment, we will use the vertex that is farthest from
   the line as one of our threee vertices. To ensure that movement from
   vertex i1 to i2 to i3 is anti-clockwise, we must use this new vertex
   as vertex i3, not i2. */
            i3 = seg2->imax;

/* Create a description of the polygon segment from vertex i1 to i3, and
   find the vertex which is furthest to the right of the line joining the
   two vertices. We use this as the middle vertex (i2). */
            seg1 = NewSegment( seg1, i1, i3, nv, status );
            FindMax( seg1, frm, x, y, nv, 0, status );
            i2 = seg1->imax;

/* Do the same if we are choosing the other segment, ordering the
   vertices to retain anti-clockwise movement from i1 to i2 to i3. */
         } else {
            i2 = seg1->imax;
            seg1 = NewSegment( seg1, i2, i1, nv, status );
            FindMax( seg1, frm, x, y, nv, 0, status );
            i3 = seg1->imax;
         }

/* Ensure the vertex indices are in the first cycle. */
         if( i2 >= nv ) i2 -= nv;
         if( i3 >= nv ) i3 -= nv;

/* Create Segment structures to describe each of these three edges. */
         seg1 = NewSegment( seg1, i1, i2, nv, status );
         seg2 = NewSegment( seg2, i2, i3, nv, status );
         seg3 = NewSegment( NULL, i3, i1, nv, status );

/* Record these 3 vertices in an array holding the original indices of
   the vertices to be used to create the returned Polygon. */
         newpoly[ 0 ] = i1;
         newpoly[ 1 ] = i2;
         newpoly[ 2 ] = i3;

/* Indicate the new polygon currently has 3 vertices. */
         newlen = 3;

/* Search the old vertices between the start and end of segment 3, looking
   for the vertex which lies furthest from the line of segment 3. The
   residual between this point and the line is stored in the Segment
   structure, as is the index of the vertex at which this maximum residual
   occurred. */
         FindMax( seg3, frm, x, y, nv, 1, status );

/* The "head" variable points to the head of a double linked list of
   Segment structures. This list is ordered by residual, so that the
   Segment with the maximum residual is at the head, and the Segment
   with the minimum residual is at the tail. Initially "seg3" is at the
   head. */
         head = seg3;

/* Search the old vertices between the start and end of segment 1, looking
   for the vertex which lies furthest from the line of segment 1. The
   residual between this point and the line is stored in the Segment
   structure, as is the index of the vertex at which this maximum residual
   occurred. */
         FindMax( seg1, frm, x, y, nv, 1, status );

/* Insert segment 1 into the linked list of Segments, at a position that
   maintains the ordering of the segments by error. Thus the head of the
   list will still have the max error. */
         head = AddToChain( head, seg1, status );

/* Do the same for segment 2. */
         FindMax( seg2, frm, x, y, nv, 1, status );
         head = AddToChain( head, seg2, status );

/* If the maximum allowed number of vertices in the output Polygon is
   less than 3, allow any number of vertices up to the number in the
   input Polygon (termination will then be determined just by "maxerr"). */
         if( maxvert < 3 ) maxvert = nv;

/* Loop round adding an extra vertex to the returned Polygon until the
   maximum residual between the new and old polygons is no more than
   "maxerr". Abort early if the specified maximum number of vertices is
   reached. */
         while( head->error > maxerr && newlen < maxvert ) {

/* The segment at the head of the list has the max error (that is, it is
   the segment that departs most from the supplied Polygon). To make the
   new polygon a better fit to the old polygon, we add the vertex that is
   furthest away from this segment to the new polygon. Remember that a
   polygon is cyclic so if the vertex has an index that is greater than the
   number of vertices in the old polygon, reduce the index by the number
   of vertices in the old polygon. */
            iadd = head->imax;
            if( iadd >= nv ) iadd -= nv;
            iat = newlen++;
            newpoly = astGrow( newpoly, newlen, sizeof( int ) );
            if( !astOK ) break;
            newpoly[ iat ] = iadd;

/* We now split the segment that had the highest error into two segments.
   The split occurs at the vertex that had the highest error. */
            seg1 = NewSegment( NULL, head->imax, head->i2, nv, status );
            seg2 = head;
            seg2->i2 = head->imax;

/* We do not know where these two new segments should be in the ordered
   linked list, so remove them from the list. */
            head = RemoveFromChain( head, seg1, status );
            head = RemoveFromChain( head, seg2, status );

/* Find the vertex that deviates most from the first of these two new
   segments, and then add the segment into the list of vertices, using
   the maximum deviation to determine the position of the segment within
   the list. */
            FindMax( seg1, frm, x, y, nv, 1, status );
            head = AddToChain( head, seg1, status );

/* Do the same for the second new segment. */
            FindMax( seg2, frm, x, y, nv, 1, status );
            head = AddToChain( head, seg2, status );
         }

/* Now we have reached the required accuracy, free resources. */
         while( head ) {
            seg1 = head;
            head = head->next;
            seg1 = astFree( seg1 );
         }

/* If no vertices have been left out, return a deep copy of the supplied
   PointSet. */
         if( newlen == nv ) {
            result = astCopy( pset );

/* Otherwise, sort the indices of the vertices to be retained so that they
   are in the same order as they were in the supplied Polygon. */
         } else if( astOK ){
            qsort( newpoly, newlen, sizeof( int ), IntCmp );

/* Create a new PointSet and get pointers to its axis values. */
            result = astPointSet( newlen, 2, " ", status );
            ptr = astGetPoints( result );
            xnew = ptr[ 0 ];
            ynew = ptr[ 1 ];

/* Copy the axis values for the retained vertices from the old to the new
   PointSet. */
            if( astOK ) {
               for( iat = 0; iat < newlen; iat++ ) {
                  *(xnew++) = x[ newpoly[ iat ] ];
                  *(ynew++) = y[ newpoly[ iat ] ];
               }
            }
         }
      }

/* Free resources. */
      newpoly = astFree( newpoly );
   }

/* If an error occurred, annul the returned PointSet. */
   if ( !astOK ) result = astAnnul( result );

/* Return the result. */
   return result;
}

static void EnsureInside( AstPolygon *this, int *status ){
/*
*  Name:
*     EnsureInside

*  Purpose:
*     Ensure the unnegated Polygon represents the inside of the polygon.

*  Type:
*     Private function.

*  Synopsis:
*     #include "polygon.h"
*     void EnsureInside( AstPolygon *this, int *status )

*  Class Membership:
*     Polygon member function

*  Description:
*     Reversing the order of the vertices of a Polygon is like negating
*     the Polygon. But the parent Region class assumes that an unnegated
*     region bounded by closed curves (e.g. boxes, circles, ellipses, etc)
*     is bounded. So we need to have a way to ensure that a Polygon also
*     follows this convention. So this function reverses the order of the
*     vertices in the Polygon, if necessary, to ensure that the unnegated
*     Polygon is bounded.

*  Parameters:
*     this
*        The Polygon.
*     status
*        Pointer to the inherited status variable.

*/

/* Local Variables: */
   AstRegion *this_region;
   double **ptr;
   double *p;
   double *q;
   double tmp;
   int bounded;
   int i;
   int j;
   int jmid;
   int negated;
   int np;

/* Check the global error status. */
   if ( !astOK ) return;

/* Is the unnegated Polygon unbounded? If so, we need to reverse the
   vertices. */
   bounded = astGetBounded( this );
   negated = astGetNegated( this );
   if( ( bounded && negated ) || ( !bounded && !negated ) ) {
      this_region = (AstRegion *) this;

/* Get a pointer to the arrays holding the coordinates at the Polygon
   vertices. */
      ptr = astGetPoints( this_region->points );

/* Get the number of vertices. */
      np = astGetNpoint( this_region->points );

/* Store the index of the last vertex to swap. For odd "np" the central
   vertex does not need to be swapped. */
      jmid = np/2;

/* Loop round the two axes spanned by the Polygon. */
      for( i = 0; i < 2; i++ ) {

/* Get pointers to the first pair of axis values to be swapped - i.e. the
   first and last axis values. */
         p = ptr[ i ];
         q = p + np - 1;

/* Loop round all pairs of axis values. */
         for( j = 0; j < jmid; j++ ) {

/* Swap the pair. */
            tmp = *p;
            *(p++) = *q;
            *(q--) = tmp;
         }
      }

/* Invert the value of the "Negated" attribute to cancel out the effect
   of the above vertex reversal. */
      astNegate( this );

/* Indicate the cached information in the Polygon structure is stale. */
      this->stale = 1;
   }
}

/*
*  Name:
*     FindBoxEdge

*  Purpose:
*     Find an edge of the bounding box containing the selected pixels.

*  Type:
*     Private function.

*  Synopsis:
*     #include "polygon.h"
*     void FindBoxEdge<Oper><X>( <Xtype> value, const <Xtype> array[],
*                                int xdim, int ydim, int axis, int low,
*                                int *val, int *valmax, int *valmin,
*                                int *status )

*  Class Membership:
*     Polygon member function

*  Description:
*     This function search for an edge of the bounding box containing the
*     selected pixels in the supplied array.

*  Parameters:
*     value
*        A data value that specifies the pixels to be selected.
*     array
*        Pointer to a 2-dimensional array containing the data to be
*        processed. The numerical type of this array should match the 1-
*        or 2-character type code appended to the function name.
*     xdim
*        The number of pixels along each row of the array.
*     ydim
*        The number of rows in the array.
*     axis
*        The index (0 or 1) of the pixel axis perpendicular to the edge of the
*        bounding box being found.
*     low
*        If non-zero, the lower edge of the bounding box on the axis
*        specified by "axis" is found and returned. Otherwise, the higher
*        edge of the bounding box on the axis specified by "axis" is
*        found and returned.
*     val
*        Address of an int in which to return the value on axis "axis" of
*        the higher or lower (as specified by "low") edge of the bounding
*        box.
*     valmax
*        Address of an int in which to return the highest value on axis
*        "1-axis" of the selected pixels on the returned edge.
*     valmin
*        Address of an int in which to return the lowest value on axis
*        "1-axis" of the selected pixels on the returned edge.
*     status
*        Pointer to the inherited status variable.

*  Notes;
*     - Zero is returned for "*val" if no good  values are found, or if
*     an error occurs.

*/

/* Define a macro to implement the function for a specific data
   type and operation. */
#define MAKE_FINDBOXEDGE(X,Xtype,Oper,OperI) \
static void FindBoxEdge##Oper##X( Xtype value, const Xtype array[], int xdim, \
                                  int ydim, int axis, int low, int *val, \
                                  int *valmax, int *valmin, int *status ) { \
\
/* Local Variables: */ \
   int astep; \
   int bstep; \
   int a0; \
   int a1; \
   int b0; \
   int b1; \
   int inc; \
   int a; \
   int b; \
   const Xtype *pc; \
\
/* Initialise. */ \
   *val = 0; \
   *valmin = 0; \
   *valmax = 0; \
\
/* Check the global error status. */ \
   if ( !astOK ) return; \
\
/* If we are finding an edge that is parallel to the X axis... */ \
   if(  axis ) { \
\
/* Get the vector step between adjacent pixels on the selected axis, and \
   on the other axis. */ \
      astep = xdim; \
      bstep = 1; \
\
/* Get the first and last value to check on the selected axis, and the  \
   increment between checks. */ \
      if( low ) { \
         a0 = 1; \
         a1 = ydim; \
         inc = 1; \
      } else { \
         a0 = ydim; \
         a1 = 1; \
         inc = -1; \
      } \
\
/* The first and last value to check on the other axis. */ \
      b0 = 1; \
      b1 = xdim; \
\
/* Do the same if we are finding an edge that is parallel to the Y axis. */ \
   } else {  \
      astep = 1; \
      bstep = xdim; \
\
      if( low ) { \
         a0 = 1; \
         a1 = xdim; \
         inc = 1; \
      } else { \
         a0 = xdim; \
         a1 = 1; \
         inc = -1; \
      } \
\
      b0 = 1; \
      b1 = ydim; \
   }  \
\
/* Loop round the axis values. */ \
   a = a0; \
   while( 1 ) { \
\
/* Get a pointer to the first value to be checked at this axis value. */ \
      pc = array + (a - 1)*astep + (b0 - 1)*bstep; \
\
/* Scan the other axis to find the first and last selected pixel. */ \
      for( b = b0; b <= b1; b++ ) { \
         if( ISVALID(*pc,OperI,value) ) {  \
            if( *valmin == 0 ) *valmin = b; \
            *valmax = b; \
         } \
         pc += bstep; \
      } \
\
/* If any selected pixels were found, store the axis value and exit. */ \
      if( *valmax ) { \
         *val = a; \
         break; \
      } \
\
/* Move on to the next axis value. */ \
      if( a != a1 ) { \
         a += inc; \
      } else { \
         break; \
      } \
\
   } \
}

/* Define a macro that uses the above macro to to create implementations
   of FindBoxEdge for all operations. */
#define MAKEALL_FINDBOXEDGE(X,Xtype) \
MAKE_FINDBOXEDGE(X,Xtype,LT,AST__LT) \
MAKE_FINDBOXEDGE(X,Xtype,LE,AST__LE) \
MAKE_FINDBOXEDGE(X,Xtype,EQ,AST__EQ) \
MAKE_FINDBOXEDGE(X,Xtype,NE,AST__NE) \
MAKE_FINDBOXEDGE(X,Xtype,GE,AST__GE) \
MAKE_FINDBOXEDGE(X,Xtype,GT,AST__GT)

/* Expand the above macro to generate a function for each required
   data type and operation. */
#if HAVE_LONG_DOUBLE     /* Not normally implemented */
MAKEALL_FINDBOXEDGE(LD,long double)
#endif
MAKEALL_FINDBOXEDGE(D,double)
MAKEALL_FINDBOXEDGE(L,long int)
MAKEALL_FINDBOXEDGE(UL,unsigned long int)
MAKEALL_FINDBOXEDGE(I,int)
MAKEALL_FINDBOXEDGE(UI,unsigned int)
MAKEALL_FINDBOXEDGE(S,short int)
MAKEALL_FINDBOXEDGE(US,unsigned short int)
MAKEALL_FINDBOXEDGE(B,signed char)
MAKEALL_FINDBOXEDGE(UB,unsigned char)
MAKEALL_FINDBOXEDGE(F,float)

/* Undefine the macros. */
#undef MAKE_FINDBOXEDGE
#undef MAKEALL_FINDBOXEDGE

/*
*  Name:
*     FindInsidePoint

*  Purpose:
*     Find a point that is inside the required outline.

*  Type:
*     Private function.

*  Synopsis:
*     #include "polygon.h"
*     void FindInsidePoint<Oper><X>( <Xtype> value, const <Xtype> array[],
*                                    const int lbnd[ 2 ], const int ubnd[ 2 ],
*                                    int *inx, int *iny, int *iv,
*                                    int *status );

*  Class Membership:
*     Polygon member function

*  Description:
*     The central pixel in the array is checked to see if its value meets
*     the requirements implied by <Oper> and "value". If so, its pixel
*     indices and vector index are returned> if not, a spiral search is
*     made until such a pixel value is found.

*  Parameters:
*     value
*        The data value defining valid pixels.
*     array
*        The data array.
*     lbnd
*        The lower pixel index bounds of the array.
*     ubnd
*        The upper pixel index bounds of the array.
*     inx
*        Pointer to an int in which to return the X pixel index of the
*        first point that meets the requirements implied by <oper> and
*        "value".
*     iny
*        Pointer to an int in which to return the Y pixel index of the
*        first point that meets the requirements implied by <oper> and
*        "value".
*     iv
*        Pointer to an int in which to return the vector index of the
*        first point that meets the requirements implied by <oper> and
*        "value".
*     status
*        Pointer to the inherited status variable.

*  Notes:
*     - <Oper> must be one of LT, LE, EQ, NE, GE, GT.


*/

/* Define a macro to implement the function for a specific data
   type and operation. */
#define MAKE_FINDINSIDEPOINT(X,Xtype,Oper,OperI) \
static void FindInsidePoint##Oper##X( Xtype value, const Xtype array[], \
                                      const int lbnd[ 2 ], const int ubnd[ 2 ], \
                                      int *inx, int *iny, int *iv, \
                                      int *status ){ \
\
/* Local Variables: */ \
   const Xtype *pv;  /* Pointer to next data value to test */ \
   const char *text; /* Pointer to text describing oper */ \
   int cy;           /* Central row index */ \
   int iskin;        /* Index of spiral layer being searched */ \
   int nskin;        /* Number of spiral layers to search */ \
   int nx;           /* Pixel per row */ \
   int tmp;          /* Temporary storage */ \
   int xhi;          /* High X pixel index bound of current skin */ \
   int xlo;          /* Low X pixel index bound of current skin */ \
   int yhi;          /* High X pixel index bound of current skin */ \
   int ylo;          /* Low X pixel index bound of current skin */ \
\
/* Check the global error status. */ \
   if ( !astOK ) return; \
\
/* Find number of pixels in one row of the array. */ \
   nx = ( ubnd[ 0 ] - lbnd[ 0 ] + 1 ); \
\
/* Find the pixel indices of the central pixel */ \
   *inx = ( ubnd[ 0 ] + lbnd[ 0 ] )/2; \
   *iny = ( ubnd[ 1 ] + lbnd[ 1 ] )/2; \
\
/* Initialise the vector index and pointer to refer to the central pixel. */ \
   *iv = ( *inx - lbnd[ 0 ] ) + nx*( *iny - lbnd[ 1 ] ) ; \
   pv = array + (*iv); \
\
/* Test the pixel value, returning if it is valid. This \
   relies on the compiler optimisation to remove the "if" statements \
   for all but the operation appropriate to the function being defined. */ \
   if( OperI == AST__LT ) { \
      if( *pv < value ) return; \
\
   } else if( OperI == AST__LE ) { \
      if( *pv <= value ) return; \
\
   } else if( OperI == AST__EQ ) { \
      if( *pv == value ) return; \
\
   } else if( OperI == AST__NE ) { \
      if( *pv != value ) return; \
\
   } else if( OperI == AST__GE ) { \
      if( *pv >= value ) return; \
\
   } else { \
      if( *pv > value ) return; \
   } \
\
/* The central pixel is invalid if we arrive here. So we need to do a \
   spiral search out from the centre looking for a valid pixel. Record \
   the central row index (this is the row at which we jump to the next \
   outer skin when doing the spiral search below). */ \
   cy = *iny; \
\
/* Find how many skins can be searched as part of the spiral search \
   before the edge of the array is encountered. */ \
   nskin = ubnd[ 0 ] - *inx; \
   tmp = *inx - lbnd[ 0 ]; \
   if( tmp < nskin ) nskin = tmp; \
   tmp = ubnd[ 1 ] - *iny; \
   if( tmp < nskin ) nskin = tmp; \
   tmp = *iny - lbnd[ 1 ]; \
   if( tmp < nskin ) nskin = tmp; \
\
/* Initialise the skin box bounds to be just the central pixel. */ \
   xlo = xhi = *inx; \
   ylo = yhi = *iny; \
\
/* Loop round each skin looking for a valid test pixel. */ \
   for( iskin = 0; iskin < nskin; iskin++ ) { \
\
/* Increment the upper and lower bounds of the box forming the next \
   skin. */ \
      xhi++; \
      xlo--; \
      yhi++; \
      ylo--; \
\
/* Initialise things for the first pixel in the new skin by moving one \
   pixel to the right. */ \
      pv++; \
      (*iv)++; \
      (*inx)++; \
\
/* Move up the right hand edge of the box corresponding to the current \
   skin. We start at the middle of the right hand edge. */ \
      for( *iny = cy; *iny <= yhi; (*iny)++ ) { \
\
/* Test the pixel value, returning if it is valid. This relies on the \
   compiler optimisation to remove the "if" statements for all but the \
   operation appropriate to the function being defined. */ \
         if( OperI == AST__LT ) { \
            if( *pv < value ) return; \
\
         } else if( OperI == AST__LE ) { \
            if( *pv <= value ) return; \
\
         } else if( OperI == AST__EQ ) { \
            if( *pv == value ) return; \
\
         } else if( OperI == AST__NE ) { \
            if( *pv != value ) return; \
\
         } else if( OperI == AST__GE ) { \
            if( *pv >= value ) return; \
\
         } else { \
            if( *pv > value ) return; \
         } \
\
/* Move up a pixel. */ \
         pv += nx; \
         *iv += nx; \
      } \
\
/* Move down a pixel so that *iny == yhi. */ \
      pv -= nx; \
      *iv -= nx; \
      (*iny)--; \
\
/* Move left along the top edge of the box corresponding to the current \
   skin. */ \
      for( *inx = xhi; *inx >= xlo; (*inx)-- ) { \
\
/* Test the pixel value, returning if it is valid. */ \
         if( OperI == AST__LT ) { \
            if( *pv < value ) return; \
\
         } else if( OperI == AST__LE ) { \
            if( *pv <= value ) return; \
\
         } else if( OperI == AST__EQ ) { \
            if( *pv == value ) return; \
\
         } else if( OperI == AST__NE ) { \
            if( *pv != value ) return; \
\
         } else if( OperI == AST__GE ) { \
            if( *pv >= value ) return; \
\
         } else { \
            if( *pv > value ) return; \
         } \
\
/* Move left a pixel. */ \
         pv--; \
         (*iv)--; \
      } \
\
/* Move right a pixel so that *inx == xlo. */ \
      pv++; \
      (*iv)++; \
      (*inx)++; \
\
/* Move down along the left hand edge of the box corresponding to the current \
   skin. */ \
      for( *iny = yhi; *iny >= ylo; (*iny)-- ) { \
\
/* Test the pixel value, returning if it is valid. */ \
         if( OperI == AST__LT ) { \
            if( *pv < value ) return; \
\
         } else if( OperI == AST__LE ) { \
            if( *pv <= value ) return; \
\
         } else if( OperI == AST__EQ ) { \
            if( *pv == value ) return; \
\
         } else if( OperI == AST__NE ) { \
            if( *pv != value ) return; \
\
         } else if( OperI == AST__GE ) { \
            if( *pv >= value ) return; \
\
         } else { \
            if( *pv > value ) return; \
         } \
\
/* Move down a pixel. */ \
         pv -= nx; \
         *iv -= nx; \
      } \
\
/* Move up a pixel so that *iny == ylo. */ \
      pv += nx; \
      *iv += nx; \
      (*iny)++; \
\
/* Move right along the bottom edge of the box corresponding to the current \
   skin. */ \
      for( *inx = xlo; *inx <= xhi; (*inx)++ ) { \
\
/* Test the pixel value, returning if it is valid. */ \
         if( OperI == AST__LT ) { \
            if( *pv < value ) return; \
\
         } else if( OperI == AST__LE ) { \
            if( *pv <= value ) return; \
\
         } else if( OperI == AST__EQ ) { \
            if( *pv == value ) return; \
\
         } else if( OperI == AST__NE ) { \
            if( *pv != value ) return; \
\
         } else if( OperI == AST__GE ) { \
            if( *pv >= value ) return; \
\
         } else { \
            if( *pv > value ) return; \
         } \
\
/* Move right a pixel. */ \
         pv++; \
         (*iv)++; \
      } \
\
/* Move left a pixel so that *inx == xhi. */ \
      pv--; \
      (*iv)--; \
      (*inx)--; \
\
/* Move up the right hand edge of the box correspionding to the current \
   skin. We stop just below the middle of the right hand edge. */ \
      for( *iny = ylo; *iny < cy; (*iny)++ ) { \
\
/* Test the pixel value, returning if it is valid. This relies on the \
   compiler optimisation to remove the "if" statements for all but the \
   operation appropriate to the function being defined. */ \
         if( OperI == AST__LT ) { \
            if( *pv < value ) return; \
\
         } else if( OperI == AST__LE ) { \
            if( *pv <= value ) return; \
\
         } else if( OperI == AST__EQ ) { \
            if( *pv == value ) return; \
\
         } else if( OperI == AST__NE ) { \
            if( *pv != value ) return; \
\
         } else if( OperI == AST__GE ) { \
            if( *pv >= value ) return; \
\
         } else { \
            if( *pv > value ) return; \
         } \
\
/* Move up a pixel. */ \
         pv += nx; \
         *iv += nx; \
      } \
   } \
\
/* Report an error if no inside pooint could be found. */ \
   if( OperI == AST__LT ) { \
      text = "less than"; \
   } else if( OperI == AST__LE ) { \
      text = "less than or equal to"; \
   } else if( OperI == AST__EQ ) { \
      text = "equal to"; \
   } else if( OperI == AST__NE ) { \
      text = "not equal to"; \
   } else if( OperI == AST__GE ) { \
      text = "greater than or equal to"; \
   } else { \
      text = "greater than"; \
   } \
   astError( AST__NONIN, "astOutline"#X": Could not find a pixel value %s " \
             "%g in the supplied array.", status, text, (double) value ); \
}

/* Define a macro that uses the above macro to to create implementations
   of FindInsidePoint for all operations. */
#define MAKEALL_FINDINSIDEPOINT(X,Xtype) \
MAKE_FINDINSIDEPOINT(X,Xtype,LT,AST__LT) \
MAKE_FINDINSIDEPOINT(X,Xtype,LE,AST__LE) \
MAKE_FINDINSIDEPOINT(X,Xtype,EQ,AST__EQ) \
MAKE_FINDINSIDEPOINT(X,Xtype,GE,AST__GE) \
MAKE_FINDINSIDEPOINT(X,Xtype,GT,AST__GT) \
MAKE_FINDINSIDEPOINT(X,Xtype,NE,AST__NE)

/* Expand the above macro to generate a function for each required
   data type and operation. */
#if HAVE_LONG_DOUBLE     /* Not normally implemented */
MAKEALL_FINDINSIDEPOINT(LD,long double)
#endif
MAKEALL_FINDINSIDEPOINT(D,double)
MAKEALL_FINDINSIDEPOINT(L,long int)
MAKEALL_FINDINSIDEPOINT(UL,unsigned long int)
MAKEALL_FINDINSIDEPOINT(I,int)
MAKEALL_FINDINSIDEPOINT(UI,unsigned int)
MAKEALL_FINDINSIDEPOINT(S,short int)
MAKEALL_FINDINSIDEPOINT(US,unsigned short int)
MAKEALL_FINDINSIDEPOINT(B,signed char)
MAKEALL_FINDINSIDEPOINT(UB,unsigned char)
MAKEALL_FINDINSIDEPOINT(F,float)

/* Undefine the macros. */
#undef MAKE_FINDINSIDEPOINT
#undef MAKEALL_FINDINSIDEPOINT

static void FindMax( Segment *seg, AstFrame *frm, double *x, double *y,
                     int nv, int abs, int *status ){
/*
*  Name:
*     FindMax

*  Purpose:
*     Find the maximum discrepancy between a given line segment and the
*     Polygon being downsized.

*  Type:
*     Private function.

*  Synopsis:
*     #include "polygon.h"
*     void FindMax( Segment *seg, AstFrame *frm, double *x, double *y,
*                   int nv, int abs, int *status )

*  Class Membership:
*     Polygon member function

*  Description:
*     The supplied Segment structure describes a range of vertices in
*     the polygon being downsized. This function checks each of these
*     vertices to find the one that lies furthest from the line joining the
*     first and last vertices in the segment. The maximum error, and the
*     vertex index at which this maximum error is found, is stored in the
*     Segment structure.

*  Parameters:
*     seg
*        The structure describing the range of vertices to check. It
*        corresponds to a candidate edge in the downsized polygon.
*     frm
*        The Frame in which the positions are defined.
*     x
*        Pointer to the X axis values in the original Polygon.
*     y
*        Pointer to the Y axis values in the original Polygon.
*     nv
*        Total number of vertics in the old Polygon..
*     abs
*        If non-zero, then the stored maximum is the position with
*        maximum absolute error. Otherwise, the stored maximum is the
*        position with maximum positive error (positive errors are to the
*        right when travelling from start to end of the segment).
*     status
*        Pointer to the inherited status variable.

*/

/* Local Variables: */
   AstPointSet *pset1; /* PointSet holding vertex positions */
   AstPointSet *pset2; /* PointSet holding offset par/perp components */
   double **ptr1;      /* Pointers to "pset1" data arrays */
   double **ptr2;      /* Pointers to "pset2" data arrays */
   double *px;         /* Pointer to next X value */
   double *py;         /* Pointer to next Y value */
   double ax;          /* X value at start */
   double ay;          /* Y value at start */
   double ba;          /* Distance between a and b */
   double bax;         /* X increment from a to b */
   double bay;         /* Y increment from a to b */
   double cax;         /* X increment from a to c */
   double cay;         /* Y increment from a to c */
   double end[ 2 ];    /* Position of starting vertex */
   double error;       /* Error value for current vertex */
   double start[ 2 ];  /* Position of starting vertex */
   int i1;             /* Starting index (always in first cycle) */
   int i2;             /* Ending index converted to first cycle */
   int i2b;            /* Upper vertex limit in first cycle */
   int i;              /* Loop count */
   int n;              /* Number of vertices to check */

/* Check the global error status. */
   if ( !astOK ) return;

/* Stuff needed for handling cyclic redundancy of vertex indices. */
   i1 = seg->i1;
   i2 = seg->i2;
   n = i2 - i1 - 1;
   i2b = i2;
   if( i2 >= nv ) {
      i2 -= nv;
      i2b = nv;
   }

/* If the segment has no intermediate vertices, set the segment error to
   zero and return. */
   if( n < 1 ) {
      seg->error = 0.0;
      seg->imax = i1;

/* For speed, we use simple plane geometry if the Polygon is defined in a
   simple Frame. */
   } else if( !strcmp( astGetClass( frm ), "Frame" ) ) {

/* Point "a" is the vertex that marks the start of the segment. Point "b"
   is the vertex that marks the end of the segment. */
      ax = x[ i1 ];
      ay = y[ i1 ];
      bax = x[ i2 ] - ax;
      bay = y[ i2 ] - ay;
      ba = sqrt( bax*bax + bay*bay );

/* Initialise the largest error found so far. */
      seg->error = -1.0;

/* Check the vertices from the start (plus one) up to the end (minus one)
   or the last vertex (which ever comes first). */
      for( i = i1 + 1; i < i2b; i++ ) {

/* Position "c" is the vertex being tested. Find the squared distance from
   "c" to the line joining "a" and "b". */
         cax = x[ i ] - ax;
         cay = y[ i ] - ay;
         error = ( bay*cax - cay*bax )/ba;
         if( abs ) error = fabs( error );

/* If this is the largest value found so far, record it. Note the error
   here is a squared distance. */
         if( error > seg->error ) {
            seg->error = error;
            seg->imax = i;
         }
      }

/* If the end vertex is in the next cycle, check the remaining vertex
   posI would have thought a telentitions in the same way. */
      if( i2b != i2 ) {

         for( i = 0; i < i2; i++ ) {

            cax = x[ i ] - ax;
            cay = y[ i ] - ay;
            error = ( bay*cax - cay*bax )/ba;
            if( abs ) error = fabs( error );

            if( error > seg->error ) {
               seg->error = error;
               seg->imax = i + i2b;
            }

         }
      }

/* If the polygon is not defined in a simple Frame, we use the overloaded
   Frame methods to do the geometry. */
   } else {

/* Create a PointSet to hold the positions of the vertices to test. We do
   not need to test the start or end vertex. */
      pset1 = astPointSet( n, 2, " ", status );
      ptr1 = astGetPoints( pset1 );
      if( astOK ) {

/* Copy the vertex axis values form the start (plus one) up to the end
   (minus one) vertex or the last vertex (which ever comes first). */
         px = ptr1[ 0 ];
         py = ptr1[ 1 ];

         for( i = i1 + 1; i < i2b; i++ ){
            *(px++) = x[ i ];
            *(py++) = y[ i ];
         }

/* If the end vertex is in the next cycle, copy the remaining vertex
   positions into the PointSet. */
         if( i2b != i2 ) {
            for( i = 0; i < i2; i++ ) {
               *(px++) = x[ i ];
               *(py++) = y[ i ];
            }
         }

/* Record the start and end vertex positions. */
         start[ 0 ] = x[ i1 ];
         start[ 1 ] = y[ i1 ];
         end[ 0 ] = x[ i2 ];
         end[ 1 ] = y[ i2 ];

/* Resolve the vector from the start to each vertex into two components,
   parallel and perpendicular to the start->end vector. */
         pset2 = astResolvePoints( frm, start, end, pset1, NULL );
         ptr2 = astGetPoints( pset2 );
         if( astOK ) {

/* Find the vertex with largest perpendicular component. */
            seg->error = -1.0;
            py = ptr2[ 1 ];
            for( i = 1; i <= n; i++ ) {

               error = *(py++);
               if( abs ) error = fabs( error );

               if( error > seg->error ) {
                  seg->error = error;
                  seg->imax = i + i1;
               }

            }
         }

/* Free resources. */
         pset2 = astAnnul( pset2 );
      }
      pset1 = astAnnul( pset1 );
   }
}

static const char *GetAttrib( AstObject *this_object, const char *attrib, int *status ) {
/*
*  Name:
*     GetAttrib

*  Purpose:
*     Get the value of a specified attribute for a Polygon.

*  Type:
*     Private function.

*  Synopsis:
*     #include "polygon.h"
*     const char *GetAttrib( AstObject *this, const char *attrib, int *status )

*  Class Membership:
*     Polygon member function (over-rides the protected astGetAttrib
*     method inherited from the Region class).

*  Description:
*     This function returns a pointer to the value of a specified
*     attribute for a Polygon, formatted as a character string.

*  Parameters:
*     this
*        Pointer to the Polygon.
*     attrib
*        Pointer to a null-terminated string containing the name of
*        the attribute whose value is required. This name should be in
*        lower case, with all white space removed.
*     status
*        Pointer to the inherited status variable.

*  Returned Value:
*     - Pointer to a null-terminated string containing the attribute
*     value.

*  Notes:
*     - The returned string pointer may point at memory allocated
*     within the Polygon, or at static memory. The contents of the
*     string may be over-written or the pointer may become invalid
*     following a further invocation of the same function or any
*     modification of the Polygon. A copy of the string should
*     therefore be made if necessary.
*     - A NULL pointer will be returned if this function is invoked
*     with the global error status set, or if it should fail for any
*     reason.
*/

/* Local Variables: */
   astDECLARE_GLOBALS            /* Pointer to thread-specific global data */
   AstPolygon *this;             /* Pointer to the Polygon structure */
   const char *result;           /* Pointer value to return */
   int ival;                     /* Integer attribute value */

/* Initialise. */
   result = NULL;

/* Check the global error status. */
   if ( !astOK ) return result;

/* Get a pointer to the thread specific global data structure. */
   astGET_GLOBALS(this_object);

/* Obtain a pointer to the Polygon structure. */
   this = (AstPolygon *) this_object;

/* Compare "attrib" with each recognised attribute name in turn,
   obtaining the value of the required attribute. If necessary, write
   the value into "getattrib_buff" as a null-terminated string in an appropriate
   format.  Set "result" to point at the result string. */

/* SimpVertices. */
/* ------------- */
   if ( !strcmp( attrib, "simpvertices" ) ) {
      ival = astGetSimpVertices( this );
      if ( astOK ) {
         (void) sprintf( getattrib_buff, "%d", ival );
         result = getattrib_buff;
      }

/* If the attribute name was not recognised, pass it on to the parent
   method for further interpretation. */
   } else {
      result = (*parent_getattrib)( this_object, attrib, status );
   }

/* Return the result. */
   return result;

}

static int GetBounded( AstRegion *this, int *status ) {
/*
*  Name:
*     GetBounded

*  Purpose:
*     Is the Region bounded?

*  Type:
*     Private function.

*  Synopsis:
*     #include "polygon.h"
*     int GetBounded( AstRegion *this, int *status )

*  Class Membership:
*     Polygon method (over-rides the astGetBounded method inherited from
*     the Region class).

*  Description:
*     This function returns a flag indicating if the Region is bounded.
*     The implementation provided by the base Region class is suitable
*     for Region sub-classes representing the inside of a single closed
*     curve (e.g. Circle, Interval, Box, etc). Other sub-classes (such as
*     CmpRegion, PointList, etc ) may need to provide their own
*     implementations.

*  Parameters:
*     this
*        Pointer to the Region.
*     status
*        Pointer to the inherited status variable.

*  Returned Value:
*     Non-zero if the Region is bounded. Zero otherwise.

*/

/* Local Variables: */
   int neg;                  /* Has the Polygon been negated? */
   int result;               /* Returned result */

/* Initialise */
   result = 0;

/* Check the global error status. */
   if ( !astOK ) return result;

/* Ensure cached information is available. */
   Cache( (AstPolygon *) this, status );

/* See if the Polygon has been negated. */
   neg = astGetNegated( this );

/* If the polygon vertices are stored in anti-clockwise order, then the
   polygon is bounded if it has not been negated. */
   if( ( (AstPolygon *) this)->acw ) {
      result = (! neg );

/* If the polygon vertices are stored in clockwise order, then the
   polygon is bounded if it has been negated. */
   } else {
      result = neg;
   }

/* Return the result. */
   return result;
}

void astInitPolygonVtab_(  AstPolygonVtab *vtab, const char *name, int *status ) {
/*
*+
*  Name:
*     astInitPolygonVtab

*  Purpose:
*     Initialise a virtual function table for a Polygon.

*  Type:
*     Protected function.

*  Synopsis:
*     #include "polygon.h"
*     void astInitPolygonVtab( AstPolygonVtab *vtab, const char *name )

*  Class Membership:
*     Polygon vtab initialiser.

*  Description:
*     This function initialises the component of a virtual function
*     table which is used by the Polygon class.

*  Parameters:
*     vtab
*        Pointer to the virtual function table. The components used by
*        all ancestral classes will be initialised if they have not already
*        been initialised.
*     name
*        Pointer to a constant null-terminated character string which contains
*        the name of the class to which the virtual function table belongs (it
*        is this pointer value that will subsequently be returned by the Object
*        astClass function).
*-
*/

/* Local Variables: */
   astDECLARE_GLOBALS            /* Pointer to thread-specific global data */
   AstMappingVtab *mapping;      /* Pointer to Mapping component of Vtab */
   AstRegionVtab *region;        /* Pointer to Region component of Vtab */
   AstObjectVtab *object;        /* Pointer to Object component of Vtab */

/* Check the local error status. */
   if ( !astOK ) return;

/* Get a pointer to the thread specific global data structure. */
   astGET_GLOBALS(NULL);

/* Initialize the component of the virtual function table used by the
   parent class. */
   astInitRegionVtab( (AstRegionVtab *) vtab, name );

/* Store a unique "magic" value in the virtual function table. This
   will be used (by astIsAPolygon) to determine if an object belongs
   to this class.  We can conveniently use the address of the (static)
   class_check variable to generate this unique value. */
   vtab->id.check = &class_check;
   vtab->id.parent = &(((AstRegionVtab *) vtab)->id);

/* Initialise member function pointers. */
/* ------------------------------------ */
/* Store pointers to the member functions (implemented here) that provide
   virtual methods for this class. */
   vtab->Downsize = Downsize;

/* Save the inherited pointers to methods that will be extended, and
   replace them with pointers to the new member functions. */
   object = (AstObjectVtab *) vtab;
   mapping = (AstMappingVtab *) vtab;
   region = (AstRegionVtab *) vtab;

   parent_transform = mapping->Transform;
   mapping->Transform = Transform;

   parent_simplify = mapping->Simplify;
   mapping->Simplify = Simplify;

   parent_setregfs = region->SetRegFS;
   region->SetRegFS = SetRegFS;

   parent_resetcache = region->ResetCache;
   region->ResetCache = ResetCache;

   parent_clearattrib = object->ClearAttrib;
   object->ClearAttrib = ClearAttrib;
   parent_getattrib = object->GetAttrib;
   object->GetAttrib = GetAttrib;
   parent_setattrib = object->SetAttrib;
   object->SetAttrib = SetAttrib;
   parent_testattrib = object->TestAttrib;
   object->TestAttrib = TestAttrib;

   region->RegPins = RegPins;
   region->RegBaseMesh = RegBaseMesh;
   region->RegBaseBox = RegBaseBox;
   region->RegTrace = RegTrace;
   region->GetBounded = GetBounded;

   vtab->ClearSimpVertices = ClearSimpVertices;
   vtab->GetSimpVertices = GetSimpVertices;
   vtab->SetSimpVertices = SetSimpVertices;
   vtab->TestSimpVertices = TestSimpVertices;

/* Store replacement pointers for methods which will be over-ridden by
   new member functions implemented here. */

/* Declare the copy constructor, destructor and class dump
   functions. */
   astSetDump( vtab, Dump, "Polygon", "Polygonal region" );
   astSetDelete( vtab, Delete );
   astSetCopy( vtab, Copy );

/* If we have just initialised the vtab for the current class, indicate
   that the vtab is now initialised, and store a pointer to the class
   identifier in the base "object" level of the vtab. */
   if( vtab == &class_vtab ) {
      class_init = 1;
      astSetVtabClassIdentifier( vtab, &(vtab->id) );
   }
}

static int IntCmp( const void *a, const void *b ){
/*
*  Name:
*     IntCmp

*  Purpose:
*     An integer comparison function for the "qsort" function.

*  Type:
*     Private function.

*  Synopsis:
*     #include "polygon.h"
*     int IntCmp( const void *a, const void *b )

*  Class Membership:
*     Polygon member function

*  Description:
*     See the docs for "qsort".

*  Parameters:
*     a
*        Pointer to the first int
*     b
*        Pointer to the second int

*  Returnd Value:
*     Positive, negative or zero, depending on whether a is larger than,
*     equal to, or less than b.

*/

   return *((int*)a) - *((int*)b);
}

static Segment *NewSegment( Segment *seg, int i1, int i2, int nvert,
                            int *status ){
/*
*  Name:
*     NewSegment

*  Purpose:
*     Initialise a structure describing a segment of the new Polygon
*     created by astDownsize.

*  Type:
*     Private function.

*  Synopsis:
*     #include "polygon.h"
*     Segment *NewSegment( Segment *seg, int i1, int i2, int nvert,
*                          int *status )

*  Class Membership:
*     Polygon member function

*  Description:
*     This function initialises the contents of a structure describing
*     the specified range of vertices within a Polygon. The cyclic nature
*     of vertex indices is taken into account.
*
*     If no structure is supplied, memory is allocated to hold a new
*     structure.

*  Parameters:
*     seg
*        Pointer to a structure to initialise, or NULL if a new structure
*        is to be allocated.
*     i1
*        The index of a vertex within the old Polygon (supplied to
*        astDownsize) that marks the start of the new line segment in
*        the downsized polygon.
*     i2
*        The index of a vertex within the old Polygon (supplied to
*        astDownsize) that marks the end of the new line segment in
*        the downsized polygon.
*     nvert
*        Total number of vertics in the old Polygon..
*     status
*        Pointer to the inherited status variable.

*  Returnd Value:
*     Pointer to the initialised Segment structure. It should be freed using
*     astFree when no longer needed.

*/

/* Local Variables: */
   Segment *result;

/* Check the global error status. */
   if ( !astOK ) return NULL;

/* Get a pointer to the structure to be initialised, allocating memory
   for a new structure if none was supplied. */
   result = seg ? seg : astMalloc( sizeof( Segment ) );

/* Check the pointer can be used safely. */
   if( result ) {

/* If the supplied ending index is less than the starting index, the
   ending index must have gone all the way round the polygon and started
   round again. Increase the ending index by the number of vertices to
   put it in the same cycle as the starting index. */
      if( i2 < i1 ) i2 += nvert;

/* If the supplied starting index is within the first cycle (i.e. zero ->
   nvert-1 ), use the indices as they are (which may mean that the ending
   index is greater than nvert, but this is handled correctly by other
   functions). */
      if( i1 < nvert ) {
         result->i1 = i1;
         result->i2 = i2;

/* If the supplied starting index is within the second cycle (i.e. nvert
   or greater) the ending index will be even greater, so we can reduce
   both by "nvert" to put them both in the first cycle. The goal is that
   the starting index should always be in the first cycle, but the ending
   index may possibly be in the second cycle. */
      } else {
         result->i1 = i1 - nvert;
         result->i2 = i2 - nvert;
      }

/* Nullify the links to other Segments */
      result->next = NULL;
      result->prev = NULL;
   }

/* Return the pointer to the new Segment structure. */
   return result;
}

/*
*++
*  Name:
c     astOutline<X>
f     AST_OUTLINE<X>

*  Purpose:
*     Create a new Polygon outling values in a 2D data grid.

*  Type:
*     Public function.

*  Synopsis:
c     #include "polygon.h"
c     AstPolygon *astOutline<X>( <Xtype> value, int oper, const <Xtype> array[],
c                                const int lbnd[2], const int ubnd[2], double maxerr,
c                                int maxvert, const int inside[2], int starpix )
f     RESULT = AST_OUTLINE<X>( VALUE, OPER, ARRAY, LBND, UBND, MAXERR,
f                              MAXVERT, INSIDE, STARPIX, STATUS )

*  Class Membership:
*     Polygon method.

*  Description:
*     This is a set of functions that create a Polygon enclosing a single
*     contiguous set of pixels that have a specified value within a gridded
*     2-dimensional data array (e.g. an image).
*
*     A basic 2-dimensional Frame is used to represent the pixel coordinate
*     system in the returned Polygon. The Domain attribute is set to
*     "PIXEL", the Title attribute is set to "Pixel coordinates", and the
*     Unit attribute for each axis is set to "pixel". All other
*     attributes are left unset. The nature of the pixel coordinate system
*     is determined by parameter
c     "starpix".
f     STARPIX.
*
*     The
c     "maxerr" and "maxvert"
f     MAXERR and MAXVERT
*     parameters can be used to control how accurately the returned
*     Polygon represents the required region in the data array. The
*     number of vertices in the returned Polygon will be the minimum
*     needed to achieve the required accuracy.
*
*     You should use a function which matches the numerical type of the
*     data you are processing by replacing <X> in the generic function
*     name
c     astOutline<X>
f     AST_OUTLINE<X>
c     by an appropriate 1- or 2-character type code. For example, if you
*     are procesing data with type
c     "float", you should use the function astOutlineF
f     REAL, you should use the function AST_OUTLINER
*     (see the "Data Type Codes" section below for the codes appropriate to
*     other numerical types).

*  Parameters:
c     value
f     VALUE = <Xtype> (Given)
*        A data value that specifies the pixels to be outlined.
c     oper
f     OPER = INTEGER (Given)
*        Indicates how the
c        "value"
f        VALUE
*        parameter is used to select the outlined pixels. It can
*        have any of the following values:
c        - AST__LT: outline pixels with value less than "value".
c        - AST__LE: outline pixels with value less than or equal to "value".
c        - AST__EQ: outline pixels with value equal to "value".
c        - AST__NE: outline pixels with value not equal to "value".
c        - AST__GE: outline pixels with value greater than or equal to "value".
c        - AST__GT: outline pixels with value greater than "value".
f        - AST__LT: outline pixels with value less than VALUE.
f        - AST__LE: outline pixels with value less than or equal to VALUE.
f        - AST__EQ: outline pixels with value equal to VALUE.
f        - AST__NE: outline pixels with value not equal to VALUE.
f        - AST__GE: outline pixels with value greater than or equal to VALUE.
f        - AST__GT: outline pixels with value greater than VALUE.
c     array
f     ARRAY( * ) = <Xtype> (Given)
c        Pointer to a
f        A
*        2-dimensional array containing the data to be processed.  The
*        numerical type of this array should match the 1- or
*        2-character type code appended to the function name (e.g. if
c        you are using astOutlineF, the type of each array element
c        should be "float").
f        you are using AST_OUTLINER, the type of each array element
f        should be REAL).
*
*        The storage order of data within this array should be such
*        that the index of the first grid dimension varies most
*        rapidly and that of the second dimension least rapidly
c        (i.e. Fortran array indexing is used).
f        (i.e. normal Fortran array storage order).
c     lbnd
f     LBND( 2 ) = INTEGER (Given)
c        Pointer to an array of two integers
f        An array
*        containing the pixel index of the first pixel in the input grid
*        along each dimension.
c     ubnd
f     UBND( 2) = INTEGER (Given)
c        Pointer to an array of two integers
f        An array
*        containing the pixel index of the last pixel in the input grid
*        along each dimension.
*
c        Note that "lbnd" and "ubnd" together define the shape
f        Note that LBND and UBND together define the shape
*        and size of the input pixel grid, its extent along a particular
c        (j'th) dimension being ubnd[j]-lbnd[j]+1 pixels.
f        (J'th) dimension being UBND(J)-LBND(J)+1 pixels.
*        For FITS images,
c        the lbnd values will be 1 and the ubnd
f        the LBND values will be 1 and the UBND
*        values will be equal to the NAXISi header values. Other
*        data systems, such as the Starlink NDF system, allow an
c        arbitrary pixel origin to be used (i.e. lbnd
f        arbitrary pixel origin to be used (i.e. LBND
*        is not necessarily 1).
*
*        These bounds also define the input grid's floating point coordinate
*        system, each pixel having unit extent along each dimension with
*        integral coordinate values at its centre or upper corner, as selected
*        by parameter
c        "starpix".
f        STARPIX.
c     maxerr
f     MAXERR = DOUBLE PRECISION (Given)
*        Together with
c        "maxvert",
f        MAXVERT,
*        this determines how accurately the returned Polygon represents
*        the required region of the data array. It gives the target
*        discrepancy between the returned Polygon and the accurate outline
*        in the data array, expressed as a number of pixels. Insignificant
*        vertices are removed from the accurate outline, one by one, until
*        the number of vertices remaining in the returned Polygon equals
c        "maxvert",
f        MAXVERT,
*        or the largest discrepancy between the accurate outline and the
*        returned Polygon is greater than
c        "maxerr". If "maxerr"
f        MAXERR. If MAXERR
*        is zero or less, its value is ignored and the returned Polygon will
*        have the number of vertices specified by
c        "maxvert".
f        MAXVERT.
c     maxvert
f     MAXVERT = INTEGER (Given)
*        Together with
c        "maxerr",
f        MAXERR,
*        this determines how accurately the returned Polygon represents
*        the required region of the data array. It gives the maximum
*        allowed number of vertices in the returned Polygon. Insignificant
*        vertices are removed from the accurate outline, one by one, until
*        the number of vertices remaining in the returned Polygon equals
c        "maxvert",
f        MAXVERT,
*        or the largest discrepancy between the accurate outline and the
*        returned Polygon is greater than
c        "maxerr". If "maxvert"
f        MAXERR. If MAXVERT
*        is less than 3, its value is ignored and the number of vertices in
*        the returned Polygon will be the minimum needed to ensure that the
*        discrepancy between the accurate outline and the returned
*        Polygon is less than
c        "maxerr".
f        MAXERR.
c     inside
f     INSIDE( 2 ) = INTEGER (Given)
c        Pointer to an array of two integers
f        An array
*        containing the pixel indices of a pixel known to be inside the
*        required region. This is needed because the supplied data
*        array may contain several disjoint areas of pixels that satisfy
*        the criterion specified by
c        "value" and "oper".
f        VALUE and OPER.
*        In such cases, the area described by the returned Polygon will
*        be the one that contains the pixel specified by
c        "inside".
f        INSIDE.
*        If the specified pixel is outside the bounds given by
c        "lbnd" and "ubnd",
f        LBND and UBND,
*        or has a value that does not meet the criterion specified by
c        "value" and "oper",
f        VALUE and OPER,
*        then this function will search for a suitable pixel. The search
*        starts at the central pixel and proceeds in a spiral manner until
*        a pixel is found that meets the specified crierion.
c     starpix
f     STARPIX = LOGICAL (Given)
*        A flag indicating the nature of the pixel coordinate system used
*        to describe the vertex positions in the returned Polygon. If
c        non-zero,
f        .TRUE.,
*        the standard Starlink definition of pixel coordinate is used in
*        which a pixel with integer index I spans a range of pixel coordinate
*        from (I-1) to I (i.e. pixel corners have integral pixel coordinates).
c        If zero,
f        If .FALSE.,
*        the definition of pixel coordinate used by other AST functions
c        such as astResample, astMask,
f        such as AST_RESAMPLE, AST_MASK,
*        etc., is used. In this definition, a pixel with integer index I
*        spans a range of pixel coordinate from (I-0.5) to (I+0.5) (i.e.
*        pixel centres have integral pixel coordinates).
f     STATUS = INTEGER (Given and Returned)
f        The global status.

*  Returned Value:
c     astOutline<X>()
f     AST_OUTLINE<X> = INTEGER
*        A pointer to the required Polygon.

*  Notes:
*     - This function proceeds by first finding a very accurate polygon,
*     and then removing insignificant vertices from this fine polygon
*     using
c     astDownsize.
f     AST_DOWNSIZE.
*     - The returned Polygon is the outer boundary of the contiguous set
*     of pixels that includes ths specified "inside" point, and satisfy
*     the specified value requirement. This set of pixels may potentially
*     include "holes" where the pixel values fail to meet the specified
*     value requirement. Such holes will be ignored by this function.
c     - NULL
f     - AST__NULL
*     will be returned if this function is invoked with the global
*     error status set, or if it should fail for any reason.

*  Data Type Codes:
*     To select the appropriate masking function, you should
c     replace <X> in the generic function name astOutline<X> with a
f     replace <X> in the generic function name AST_OUTLINE<X> with a
*     1- or 2-character data type code, so as to match the numerical
*     type <Xtype> of the data you are processing, as follows:
c     - D: double
c     - F: float
c     - L: long int
c     - UL: unsigned long int
c     - I: int
c     - UI: unsigned int
c     - S: short int
c     - US: unsigned short int
c     - B: byte (signed char)
c     - UB: unsigned byte (unsigned char)
f     - D: DOUBLE PRECISION
f     - R: REAL
f     - I: INTEGER
f     - UI: INTEGER (treated as unsigned)
f     - S: INTEGER*2 (short integer)
f     - US: INTEGER*2 (short integer, treated as unsigned)
f     - B: BYTE (treated as signed)
f     - UB: BYTE (treated as unsigned)
*
c     For example, astOutlineD would be used to process "double"
c     data, while astOutlineS would be used to process "short int"
c     data, etc.
f     For example, AST_OUTLINED would be used to process DOUBLE
f     PRECISION data, while AST_OUTLINES would be used to process
f     short integer data (stored in an INTEGER*2 array), etc.
f
f     For compatibility with other Starlink facilities, the codes W
f     and UW are provided as synonyms for S and US respectively (but
f     only in the Fortran interface to AST).

*--
*/
/* Define a macro to implement the function for a specific data
   type. Note, this function cannot be a virtual function since the
   argument list does not include a Polygon, and so no virtual function
   table is available. */
#define MAKE_OUTLINE(X,Xtype) \
AstPolygon *astOutline##X##_( Xtype value, int oper, const Xtype array[], \
                              const int lbnd[2], const int ubnd[2], double maxerr, \
                              int maxvert, const int inside[2], int starpix, \
                              int *status ) { \
\
/* Local Variables: */ \
   AstFrame *frm;            /* Frame in which to define the Polygon */ \
   AstPointSet *candidate;   /* Candidate polygon vertices */ \
   AstPointSet *pset;        /* PointSet holding downsized polygon vertices */ \
   AstPolygon *result;       /* Result value to return */ \
   const Xtype *pv;          /* Pointer to next test point */ \
   Xtype v;                  /* Value of current pixel */ \
   double **ptr;             /* Pointers to PointSet arrays */ \
   int boxsize;              /* Half width of smoothign box in vertices */ \
   int inx;                  /* X index of inside point */ \
   int iny;                  /* Y index of inside point */ \
   int iv;                   /* Vector index of next test pixel */ \
   int ixv;                  /* X pixel index of next test point */ \
   int nv0;                  /* Number of vertices in accurate outline */ \
   int nx;                   /* Length of array x axis */ \
   int smooth;               /* Do we need to smooth the polygon? */ \
   int stop_at_invalid;      /* Indicates when to stop rightwards search */ \
   int tmp;                  /* Alternative boxsize */ \
   int valid;                /* Does current pixel meet requirements? */ \
   static double junk[ 6 ] = {0.0, 0.0, 1.0, 1.0, 0.0, 1.0 }; /* Junk poly */ \
\
/* Initialise. */ \
   result = NULL; \
\
/* Check the global error status. */ \
   if ( !astOK ) return result; \
\
/* Avoid compiler warnings. */ \
   iv = 0; \
\
/* If we are going to be smoothing the polygon before downsizing it, we \
   need to ensure that the full polygon is retained within TraceEdge. if \
   this is not the case, TraceEdge can remove all vertices from straight \
   lines, except for the vertices that mark the beinning and end of the \
   straight line. */ \
   smooth = ( maxerr > 0.0 || maxvert > 2 ); \
\
/* Store the X dimension of the array. */ \
   nx = ubnd[ 0 ] - lbnd[ 0 ] + 1; \
\
/* See if a valid inside point was supplied. It must be inside the bounds \
   of the array, and must have a pixel value that meets the specified \
   requirement. */ \
   inx = inside[ 0 ]; \
   iny = inside[ 1 ]; \
   valid = ( inx >= lbnd[ 0 ] && inx <= ubnd[ 0 ] && \
             iny >= lbnd[ 1 ] && iny <= ubnd[ 1 ] ); \
\
   if( valid  ) { \
      iv = ( inx - lbnd[ 0 ] ) + (iny - lbnd[ 1 ] )*nx; \
      v = array[ iv ]; \
\
      if( oper == AST__LT ) { \
         valid = ( v < value ); \
\
      } else if( oper == AST__LE ) { \
         valid = ( v <= value ); \
\
      } else if( oper == AST__EQ ) { \
         valid = ( v == value ); \
\
      } else if( oper == AST__NE ) { \
         valid = ( v != value ); \
\
      } else if( oper == AST__GE ) { \
         valid = ( v >= value ); \
\
      } else if( oper == AST__GT ) { \
         valid = ( v > value ); \
\
      } else if( astOK ){ \
         astError( AST__OPRIN, "astOutline"#X": Invalid operation code " \
                   "(%d) supplied (programming error).", status, oper ); \
      } \
   } \
\
/* If no valid inside point was supplied, find one now. */ \
   if( !valid ) { \
\
      if( oper == AST__LT ) { \
         FindInsidePointLT##X( value, array, lbnd, ubnd, &inx, &iny, &iv, status ); \
\
      } else if( oper == AST__LE ) { \
         FindInsidePointLE##X( value, array, lbnd, ubnd, &inx, &iny, &iv, status ); \
\
      } else if( oper == AST__EQ ) { \
         FindInsidePointEQ##X( value, array, lbnd, ubnd, &inx, &iny, &iv, status ); \
\
      } else if( oper == AST__NE ) { \
         FindInsidePointNE##X( value, array, lbnd, ubnd, &inx, &iny, &iv, status ); \
\
      } else if( oper == AST__GE ) { \
         FindInsidePointGE##X( value, array, lbnd, ubnd, &inx, &iny, &iv, status ); \
\
      } else if( oper == AST__GT ) { \
         FindInsidePointGT##X( value, array, lbnd, ubnd, &inx, &iny, &iv, status ); \
\
      } else if( astOK ){ \
         astError( AST__OPRIN, "astOutline"#X": Invalid operation code " \
                   "(%d) supplied (programming error).", status, oper ); \
      } \
   } \
\
/* We now need to find a point on the boundary of the region containing \
   the inside point. Starting at the inside point, move to the right \
   through the array until a pixel is found which fails to meet the value \
   requirement or the edge of the array is reached. */ \
\
   candidate = NULL; \
   pv = array + iv; \
   ixv = inx; \
   stop_at_invalid = 1; \
\
   while( ++ixv <= ubnd[ 0 ] ) { \
\
/* Get the next pixel value. */ \
      v = *(++pv); \
\
/* See if it meets the value requirement. */ \
      if( oper == AST__LT ) { \
         valid = ( v < value ); \
\
      } else if( oper == AST__LE ) { \
         valid = ( v <= value ); \
\
      } else if( oper == AST__EQ ) { \
         valid = ( v == value ); \
\
      } else if( oper == AST__NE ) { \
         valid = ( v != value ); \
\
      } else if( oper == AST__GE ) { \
         valid = ( v >= value ); \
\
      } else if( oper == AST__GT ) { \
         valid = ( v > value ); \
\
      } else if( astOK ){ \
         astError( AST__OPRIN, "astOutline"#X": Invalid operation code " \
                   "(%d) supplied (programming error).", status, oper ); \
         break; \
      } \
\
/* If we are currently looking for the next invalid pixel, and this pixel \
   is invalid... */ \
      if( stop_at_invalid ) { \
         if( ! valid ) { \
\
/* The current pixel may be on the required polygon, or it may be on the  \
   edge of a hole contained within the region being outlined. We would  \
   like to jump over such holes so that we can continue to look for the  \
   real edge of the region being outlined. In order to determine if we  \
   have reached a hole, we trace the edge that passes through the current  \
   pixel, forming a candidate polygon in the process. In the process, We  \
   see if the inside point falls within this candidate polygon. If it does  \
   then the polygon is accepted as the required polygon. Otherwise, it is  \
   rejected as a mere hole, and we continue moving away from the inside  \
   point, looking for a new edge. */ \
            if( oper == AST__LT ) { \
               candidate = TraceEdgeLT##X( value, array, lbnd, ubnd, iv - 1, \
                                           ixv - 1, iny, starpix, smooth, status ); \
\
            } else if( oper == AST__LE ) { \
               candidate = TraceEdgeLE##X( value, array, lbnd, ubnd, iv - 1, \
                                           ixv - 1, iny, starpix, smooth, status ); \
\
            } else if( oper == AST__EQ ) { \
               candidate = TraceEdgeEQ##X( value, array, lbnd, ubnd, iv - 1, \
                                           ixv - 1, iny, starpix, smooth, status ); \
\
            } else if( oper == AST__NE ) { \
               candidate = TraceEdgeNE##X( value, array, lbnd, ubnd, iv - 1, \
                                           ixv - 1, iny, starpix, smooth, status ); \
\
            } else if( oper == AST__GE ) { \
               candidate = TraceEdgeGE##X( value, array, lbnd, ubnd, iv - 1, \
                                           ixv - 1, iny, starpix, smooth, status ); \
\
            } else if( oper == AST__GT ) { \
               candidate = TraceEdgeGT##X( value, array, lbnd, ubnd, iv - 1, \
                                           ixv - 1, iny, starpix, smooth, status ); \
\
            } else if( astOK ){ \
               astError( AST__OPRIN, "astOutline"#X": Invalid operation code " \
                         "(%d) supplied (programming error).", status, oper ); \
            } \
\
/* If the candidate polygon is the required polygon, break out of the \
   loop. Otherwise, indicate that we want to continue moving right, \
   across the hole, until we reach the far side of the hole (i.e. find \
   the next valid pixel). */ \
            if( candidate ) { \
               break; \
            } else { \
               stop_at_invalid = 0; \
            } \
         } \
\
/* If we are currently looking for the next valid pixel, and the current \
   pixel is valid... */ \
      } else if( valid ) { \
\
/* We have reached the far side of a hole. Continue moving right, looking \
   now for the next invalid pixel (which may be on the required polygon). */ \
         stop_at_invalid = 1; \
      } \
   } \
\
/* If we have not yet found the required polygon, we must have reached \
   the right hand edge of the array. So we now follow the edge of the \
   array round until we meet the boundary of the required region. */ \
   if( !candidate ) { \
      if( oper == AST__LT ) { \
         candidate = TraceEdgeLT##X( value, array, lbnd, ubnd, iv - 1, \
                                     ixv - 1, iny, starpix, smooth, status ); \
\
      } else if( oper == AST__LE ) { \
         candidate = TraceEdgeLE##X( value, array, lbnd, ubnd, iv - 1, \
                                     ixv - 1, iny, starpix, smooth, status ); \
\
      } else if( oper == AST__EQ ) { \
         candidate = TraceEdgeEQ##X( value, array, lbnd, ubnd, iv - 1, \
                                     ixv - 1, iny, starpix, smooth, status ); \
\
      } else if( oper == AST__NE ) { \
         candidate = TraceEdgeNE##X( value, array, lbnd, ubnd, iv - 1, \
                                     ixv - 1, iny, starpix, smooth, status ); \
\
      } else if( oper == AST__GE ) { \
         candidate = TraceEdgeGE##X( value, array, lbnd, ubnd, iv - 1, \
                                     ixv - 1, iny, starpix, smooth, status ); \
\
      } else if( oper == AST__GT ) { \
         candidate = TraceEdgeGT##X( value, array, lbnd, ubnd, iv - 1, \
                                     ixv - 1, iny, starpix, smooth, status ); \
\
      } else if( astOK ){ \
         astError( AST__OPRIN, "astOutline"#X": Invalid operation code " \
                   "(%d) supplied (programming error).", status, oper ); \
      } \
   } \
\
/* If required smooth the full resolution polygon before downsizing it. */ \
   if( smooth ) { \
\
/* Initially, set the boxsize to be equal to the required accouracy. */ \
      if( maxerr > 0 ) { \
         boxsize = (int) maxerr; \
      } else { \
         boxsize = INT_MAX; \
      } \
\
/* Determine a second box size equal to the average number of vertices in \
   the accurate outline, per vertex in the returned Polygon. */ \
      nv0 = astGetNpoint( candidate ); \
      if( maxvert > 2 ) { \
         tmp = nv0/(2*maxvert); \
      } else { \
         tmp = INT_MAX; \
      } \
\
/* Use the minimum of the two box sizes. */ \
      if( tmp < boxsize ) boxsize = tmp; \
\
/* Ensure the box is sufficiently small to allow at least 10 full boxes \
   (=20 half boxes) around the polygon. */ \
      tmp = nv0/20; \
      if( tmp < boxsize ) boxsize = tmp; \
      if( boxsize == 0 ) boxsize = 1; \
\
/* Smooth the polygon. */ \
      SmoothPoly( candidate, boxsize, 1.0, status ); \
   } \
\
/* Reduce the number of vertices in the outline. */ \
   frm = astFrame( 2, "Domain=PIXEL,Unit(1)=pixel,Unit(2)=pixel," \
                   "Title=Pixel coordinates", status ); \
   pset = DownsizePoly( candidate, maxerr, maxvert, frm, status ); \
\
/* Create a default Polygon with 3 junk vertices. */ \
   result = astPolygon( frm, 3, 3, junk, NULL, " ", status ); \
\
/* Change the PointSet within the Polygon to the one created above. */ \
   SetPointSet( result, pset, status ); \
\
/* Free resources. Note, we need to free the arrays within the candidate \
   PointSet explicitly, since they were not created as part of the \
   construction of the PointSet (see TraceEdge). */ \
   pset = astAnnul( pset ); \
   frm = astAnnul( frm ); \
   ptr = astGetPoints( candidate ); \
   if( astOK ) { \
      astFree( ptr[ 0 ] ); \
      astFree( ptr[ 1 ] ); \
   } \
   candidate = astAnnul( candidate ); \
\
/* If an error occurred, clear the returned result. */ \
   if ( !astOK ) result = astAnnul( result ); \
\
/* Return the result. */ \
   return result; \
}


/* Expand the above macro to generate a function for each required
   data type. */
#if HAVE_LONG_DOUBLE     /* Not normally implemented */
MAKE_OUTLINE(LD,long double)
#endif
MAKE_OUTLINE(D,double)
MAKE_OUTLINE(L,long int)
MAKE_OUTLINE(UL,unsigned long int)
MAKE_OUTLINE(I,int)
MAKE_OUTLINE(UI,unsigned int)
MAKE_OUTLINE(S,short int)
MAKE_OUTLINE(US,unsigned short int)
MAKE_OUTLINE(B,signed char)
MAKE_OUTLINE(UB,unsigned char)
MAKE_OUTLINE(F,float)

/* Undefine the macros. */
#undef MAKE_OUTLINE

/*
*  Name:
*     PartHull

*  Purpose:
*     Find the convex hull enclosing selected pixels in one corner of a 2D array.

*  Type:
*     Private function.

*  Synopsis:
*     #include "polygon.h"
*     void PartHull<Oper><X>( <Xtype> value, const <Xtype> array[], int xdim,
*                             int ydim, int xs, int ys, int xe, int ye,
*                             int starpix, const int lbnd[2], double **xvert,
*                             double **yvert, int *nvert, int *status )

*  Class Membership:
*     Polygon member function

*  Description:
*     This function uses an algorithm similar to "Andrew's Monotone Chain
*     Algorithm" to create a list of vertices describing one corner of the
*     convex hull enclosing the selected pixels in the supplied array.
*     The corner is defined to be the area of the array to the right of
*     the line from (xs,ys) to (xe,ye).

*  Parameters:
*     value
*        A data value that specifies the pixels to be selected.
*     array
*        Pointer to a 2-dimensional array containing the data to be
*        processed. The numerical type of this array should match the 1-
*        or 2-character type code appended to the function name.
*     xdim
*        The number of pixels along each row of the array.
*     ydim
*        The number of rows in the array.
*     xs
*        The X GRID index of the first pixel on the line to be checked.
*     ys
*        The Y GRID index of the first pixel on the line to be checked.
*     xe
*        The X GRID index of the last pixel on the line to be checked.
*     ye
*        The Y GRID index of the last pixel on the line to be checked.
*     starpix
*        If non-zero, the usual Starlink definition of pixel coordinate
*        is used (integral values at pixel corners). Otherwise, the
*        system used by other AST functions such as astResample is used
*        (integral values at pixel centres).
*     lbnd
*        The lower pixel index bounds of the array.
*     xvert
*        Address of a pointer in which to return a pointer to the list
*        of GRID x values on the hull.
*     yvert
*        Address of a pointer in which to return a pointer to the list
*        of GRID y values on the hull.
*     nvert
*        Address of a pointer in which to return the number of points in
*        the returned xvert and yvert arrays.
*     status
*        Pointer to the inherited status variable.

*/

/* Define a macro to implement the function for a specific data
   type and operation. */
#define MAKE_PARTHULL(X,Xtype,Oper,OperI) \
static void PartHull##Oper##X( Xtype value, const Xtype array[], int xdim, \
                               int ydim, int xs, int ys, int xe, int ye, \
                               int starpix, const int lbnd[2], \
                               double **xvert, double **yvert, int *nvert, \
                               int *status ) { \
\
/* Local Variables: */ \
   const Xtype *pc; \
   double *pxy; \
   double dx2; \
   double dx1; \
   double dy1; \
   double dy2; \
   double off; \
   double xdelta; \
   int ivert; \
   int ix; \
   int iy; \
   int x0; \
   int x1; \
   int xl; \
   int xlim; \
   int xr; \
   int yinc; \
\
/* Initialise */ \
   *yvert = NULL; \
   *xvert = NULL; \
   *nvert = 0; \
\
/* Check the global error status. */ \
   if ( !astOK ) return; \
\
/* If the line has zero length. just return a single vertex. */ \
   if( xs == xe && ys == ye ) { \
      *xvert = astMalloc( sizeof( double ) ); \
      *yvert = astMalloc( sizeof( double ) ); \
      if( astOK ) { \
         if( starpix ) { \
            (*xvert)[ 0 ] = xs + lbnd[ 0 ] - 1.5; \
            (*yvert)[ 0 ] = ys + lbnd[ 1 ] - 1.5; \
         } else { \
            (*xvert)[ 0 ] = xs + lbnd[ 0 ] - 1.0; \
            (*yvert)[ 0 ] = ys + lbnd[ 1 ] - 1.0; \
         } \
         *nvert = 1; \
      } \
      return; \
   } \
\
/* Otherwise check the line is sloping. */ \
   if( xs == xe ) { \
      astError( AST__INTER, "astOutline(Polygon): Bounding box " \
                "has zero width (internal AST programming error).", \
                status ); \
      return; \
   } else if( ys == ye ) { \
      astError( AST__INTER, "astOutline(Polygon): Bounding box " \
                "has zero height (internal AST programming error).", \
                status ); \
      return; \
   } \
\
/* Calculate the difference in length between adjacent rows of the area \
   to be tested. */ \
   xdelta = ((double)( xe - xs ))/((double)( ye - ys )); \
\
/* The left and right X limits */ \
   if( xe > xs ) { \
      xl = xs; \
      xr = xe; \
   } else { \
      xl = xe; \
      xr = xs; \
   } \
\
/* Get the increment in row number as we move from the start to the end \
   of the line. */ \
   yinc = ( ye > ys ) ? 1 : -1; \
\
/* Loop round all rows that cross the region to be tested, from start to \
   end of the supplied line. */ \
   iy = ys; \
   while( astOK ) { \
\
/* Get the GRID X coord where the line crosses this row. */ \
      xlim = (int)( 0.5 + xs + xdelta*( iy - ys ) ); \
\
/* Get the index of the first and last columns to be tested on this row. */ \
      if( yinc < 0 ) { \
         x0 = xl; \
         x1 = xlim; \
      } else { \
         x0 = xlim; \
         x1 = xr; \
      } \
\
/* Get a pointer to the first pixel to be tested at this row. */ \
      pc = array + ( iy - 1 )*xdim + x0 - 1; \
\
/* Loop round all columns to be tested in this row. */ \
      for( ix = x0; ix <= x1 && astOK; ix++,pc++ ) { \
\
/* Ignore pixels that are not selected. */ \
         if( ISVALID(*pc,OperI,value) ) { \
\
/* If this is the very first pixel, initialise the hull to contain just \
   the first pixel. */ \
            if( *nvert == 0 ){ \
               *xvert = astMalloc( 200*sizeof( double ) ); \
               *yvert = astMalloc( 200*sizeof( double ) ); \
               if( astOK ) { \
                  (*xvert)[ 0 ] = ix; \
                  (*yvert)[ 0 ] = iy; \
                  *nvert = 1; \
               } else { \
                  break; \
               } \
\
/* Otherwise.... */ \
            } else { \
\
/* Loop until the hull has been corrected to include the current pixel. */ \
               while( 1 ) { \
\
/* If the hull currently contains only one pixel, add the current pixel to \
   the end of the hull. */ \
                  if( *nvert == 1 ){ \
                     (*xvert)[ 1 ] = ix; \
                     (*yvert)[ 1 ] = iy; \
                     *nvert = 2; \
                     break; \
\
/* Otherwise... */ \
                  } else { \
\
/* Extend the line from the last-but-one pixel on the hull to the last \
   pixel on the hull, and see if the current pixel is to the left of \
   this line. If it is, it too is on the hull and so push it onto the end \
   of the list of vertices. */ \
                     dx1 = (*xvert)[ *nvert - 1 ] - (*xvert)[ *nvert - 2 ]; \
                     dy1 = (*yvert)[ *nvert - 1 ] - (*yvert)[ *nvert - 2 ]; \
                     dx2 = ix - (*xvert)[ *nvert - 2 ]; \
                     dy2 = iy - (*yvert)[ *nvert - 2 ]; \
\
                     if( dx1*dy2 > dx2*dy1 ) { \
                        ivert = (*nvert)++; \
                        *xvert = astGrow( *xvert, *nvert, sizeof( double ) );  \
                        *yvert = astGrow( *yvert, *nvert, sizeof( double ) );  \
                        if( astOK ) {  \
                           (*xvert)[ ivert ] = ix; \
                           (*yvert)[ ivert ] = iy; \
                        }  \
\
/* Leave the loop now that the new point is on the hull. */ \
                        break; \
\
/* If the new point is to the left of the line, then the last point \
   previously thought to be on hull is in fact not on the hull, so remove \
   it. We then loop again to compare the new pixel with modified hull. */ \
                     } else { \
                        (*nvert)--; \
                     } \
                  } \
               } \
            } \
         } \
      } \
\
      if( iy == ye ) { \
         break; \
      } else { \
         iy += yinc; \
      } \
\
   } \
\
/* Convert GRID coords to PIXEL coords. */ \
   if( astOK ) { \
      pxy = *xvert; \
      off = starpix ? lbnd[ 0 ] - 1.5 : lbnd[ 0 ] - 1.0; \
      for( ivert = 0; ivert < *nvert; ivert++ ) *(pxy++) += off; \
\
      pxy = *yvert; \
      off = starpix ? lbnd[ 1 ] - 1.5 : lbnd[ 1 ] - 1.0; \
      for( ivert = 0; ivert < *nvert; ivert++ ) *(pxy++) += off; \
\
/* Free lists if an error has occurred. */ \
   } else { \
      *xvert = astFree( *xvert ); \
      *yvert = astFree( *yvert ); \
      *nvert = 0; \
   } \
}

/* Define a macro that uses the above macro to to create implementations
   of PartHull for all operations. */
#define MAKEALL_PARTHULL(X,Xtype) \
MAKE_PARTHULL(X,Xtype,LT,AST__LT) \
MAKE_PARTHULL(X,Xtype,LE,AST__LE) \
MAKE_PARTHULL(X,Xtype,EQ,AST__EQ) \
MAKE_PARTHULL(X,Xtype,NE,AST__NE) \
MAKE_PARTHULL(X,Xtype,GE,AST__GE) \
MAKE_PARTHULL(X,Xtype,GT,AST__GT)

/* Expand the above macro to generate a function for each required
   data type and operation. */
#if HAVE_LONG_DOUBLE     /* Not normally implemented */
MAKEALL_PARTHULL(LD,long double)
#endif
MAKEALL_PARTHULL(D,double)
MAKEALL_PARTHULL(L,long int)
MAKEALL_PARTHULL(UL,unsigned long int)
MAKEALL_PARTHULL(I,int)
MAKEALL_PARTHULL(UI,unsigned int)
MAKEALL_PARTHULL(S,short int)
MAKEALL_PARTHULL(US,unsigned short int)
MAKEALL_PARTHULL(B,signed char)
MAKEALL_PARTHULL(UB,unsigned char)
MAKEALL_PARTHULL(F,float)

/* Undefine the macros. */
#undef MAKE_PARTHULL
#undef MAKEALL_PARTHULL

static double Polywidth( AstFrame *frm, AstLineDef **edges, int i, int nv,
                         double cen[ 2 ], int *status ){
/*
*  Name:
*     Polywidth

*  Purpose:
*     Find the width of a polygon perpendicular to a given edge.

*  Type:
*     Private function.

*  Synopsis:
*     #include "polygon.h"
*     double Polywidth( AstFrame *frm, AstLineDef **edges, int i, int nv,
*                       double cen[ 2 ], int *status )

*  Class Membership:
*     Polygon member function

*  Description:
*     This function defines a line perpendicular to a given polygon edge,
*     passing through the mid point of the edge, extending towards the
*     inside of the polygon. It returns the distance that can be travelled
*     along this line before any of the other polygon edges are hit (the
*     "width" of the polygon perpendicular to the given edge). It also
*     puts the position corresponding to half that distance into "cen".

*  Parameters:
*     frm
*        The Frame in which the lines are defined.
*     edges
*        Array of "nv" pointers to AstLineDef structures, each defining an
*        edge of the polygon.
*     i
*        The index of the edge that is to define the polygon width.
*     nv
*        Total number of edges.
*     cen
*        An array into which are put the coords of the point half way
*        along the polygon width line.
*     status
*        Pointer to the inherited status variable.

*  Returnd Value:
*     The width of the polygon perpendicular to the given edge, or
*     AST__BAD if the width cannot be determined (usually because the
*     vertices been supplied in a clockwise direction, effectively
*     negating the Polygon).

*/

/* Local Variables: */
   AstLineDef *line;
   double *cross;
   double d;
   double end[ 2 ];
   double l1;
   double l2;
   double result;
   double start[ 2 ];
   int j;

/* Check the global error status. */
   result = AST__BAD;
   if ( !astOK ) return result;

/* Create a Line description for a line perpendicular to the specified
   edge, passing through the mid point of the edge, and extending towards
   the inside of the polygon. First move away from the start along the
   line to the mid point. This gives the start of the new line. */
   l1 = 0.5*( edges[ i ]->length );
   astLineOffset( frm, edges[ i ], l1, 0.0, start );

/* We now move away from this position at right angles to the line. We
   start off by moving 5 times the length of the specified edge. For
   some Frames (e.g. SkyFrames) this may result in a position that is
   much too close (i.e. if it goes all the way round the great circle
   and comes back to the beginning). Therefore, we check that the end
   point is the requested distance from the start point, and if not, we
   halve the length of the line and try again. */
   l2 = 10.0*l1;
   while( 1 ) {
      astLineOffset( frm, edges[ i ], l1, l2, end );
      d = astDistance( frm, start, end );
      if( d != AST__BAD && fabs( d - l2 ) < 1.0E-6*l2 ) break;
      l2 *= 0.5;
   }

/* Create a description of the required line. */
   line = astLineDef( frm, start, end );

/* Loop round every edge, except for the supplied edge. */
   for( j = 0; j < nv; j++ ) {
      if( j != i ) {

/* Find the position at which the line created above crosses the current
   edge. Skip to the next edge if the line does not intersect the edge
   within the length of the edge. */
         if( astLineCrossing( frm, line, edges[ j ], &cross ) ) {

/* Find the distance between the crossing point and the line start. */
            d = astDistance( frm, start, cross );

/* If this is less than the smallest found so far, record it. */
            if( d != AST__BAD && ( d < result || result == AST__BAD ) ) {
               result = d;
            }
         }

/* Free resources */
         cross = astFree( cross );
      }
   }
   line = astFree( line );

/* If a width was found, return the point half way across the polygon. */
   if( result != AST__BAD ) {
      astOffset( frm, start, end, 0.5*result, cen );

/* The usual reason for not finding a width is if the polygon vertices
   are supplied in clockwise order, effectively negating the polygon, and
   resulting in the "inside" of the polygon being the infinite region
   outside a polygonal hole. In this case, the end point of the line
   perpendicular to the initial edge can be returned as a representative
   "inside" point. */
   } else {
      cen[ 0 ] = end[ 0 ];
      cen[ 1 ] = end[ 1 ];
   }

/* Return the width. */
   return result;

}

static void RegBaseBox( AstRegion *this_region, double *lbnd, double *ubnd, int *status ){
/*
*  Name:
*     RegBaseBox

*  Purpose:
*     Returns the bounding box of an un-negated Region in the base Frame of
*     the encapsulated FrameSet.

*  Type:
*     Private function.

*  Synopsis:
*     #include "polygon.h"
*     void RegBaseBox( AstRegion *this, double *lbnd, double *ubnd, int *status )

*  Class Membership:
*     Polygon member function (over-rides the astRegBaseBox protected
*     method inherited from the Region class).

*  Description:
*     This function returns the upper and lower axis bounds of a Region in
*     the base Frame of the encapsulated FrameSet, assuming the Region
*     has not been negated. That is, the value of the Negated attribute
*     is ignored.

*  Parameters:
*     this
*        Pointer to the Region.
*     lbnd
*        Pointer to an array in which to return the lower axis bounds
*        covered by the Region in the base Frame of the encapsulated
*        FrameSet. It should have at least as many elements as there are
*        axes in the base Frame.
*     ubnd
*        Pointer to an array in which to return the upper axis bounds
*        covered by the Region in the base Frame of the encapsulated
*        FrameSet. It should have at least as many elements as there are
*        axes in the base Frame.
*     status
*        Pointer to the inherited status variable.

*/

/* Local Variables: */
   AstFrame *frm;             /* Pointer to encapsulated Frame */
   AstPointSet *pset;         /* Pointer to PointSet defining the Region */
   AstPolygon *this;          /* Pointer to Polygon structure */
   AstRegion *reg;            /* Base Frame equivalent of supplied Polygon */
   double **ptr;              /* Pointer to PointSet data */
   double *x;                 /* Pointer to next X axis value */
   double *y;                 /* Pointer to next Y axis value */
   double dist;               /* Offset along an axis */
   double x0;                 /* The first X axis value */
   double y0;                 /* The first Y axis value */
   int ip;                    /* Point index */
   int np;                    /* No. of points in PointSet */

/* Check the global error status. */
   if ( !astOK ) return;

/* Get a pointer to the Polygon structure. */
   this = (AstPolygon *) this_region;

/* If the base Frame bounding box has already been found, return the
   values stored in the Polygon structure. */
   if( this->lbnd[ 0 ] != AST__BAD ) {
      lbnd[ 0 ] = this->lbnd[ 0 ];
      lbnd[ 1 ] = this->lbnd[ 1 ];
      ubnd[ 0 ] = this->ubnd[ 0 ];
      ubnd[ 1 ] = this->ubnd[ 1 ];

/* If the base Frame bounding box has not yet been found, find it now and
   store it in the Polygon structure. */
   } else {

/* Get the axis values for the PointSet which defines the location and
   extent of the region in the base Frame of the encapsulated FrameSet. */
      pset = this_region->points;
      ptr = astGetPoints( pset );
      np = astGetNpoint( pset );

/* Get a pointer to the base Frame in the frameset encapsulated by the
   parent Region structure. */
      frm = astGetFrame( this_region->frameset, AST__BASE );

/* Find the upper and lower bounds of the box enclosing all the vertices.
   The box is expressed in terms of axis offsets from the first vertex, in
   order to avoid problems with boxes that cross RA=0 or RA=12h */
      lbnd[ 0 ] = 0.0;
      lbnd[ 1 ] = 0.0;
      ubnd[ 0 ] = 0.0;
      ubnd[ 1 ] = 0.0;

      x = ptr[ 0 ];
      y = ptr[ 1 ];

      x0 = *x;
      y0 = *y;

      for( ip = 0; ip < np; ip++, x++, y++ ) {

         dist =  astAxDistance( frm, 1, x0, *x );
         if( dist < lbnd[ 0 ] ) {
            lbnd[ 0 ] = dist;
         } else if( dist > ubnd[ 0 ] ) {
            ubnd[ 0 ] = dist;
         }

         dist =  astAxDistance( frm, 2, y0, *y );
         if( dist < lbnd[ 1 ] ) {
            lbnd[ 1 ] = dist;
         } else if( dist > ubnd[ 1 ] ) {
            ubnd[ 1 ] = dist;
         }

      }

/* Convert the box bounds to absolute values, rather than values relative
   to the first vertex. */
      lbnd[ 0 ] += x0;
      lbnd[ 1 ] += y0;
      ubnd[ 0 ] += x0;
      ubnd[ 1 ] += y0;

/* The astNormBox requires a Mapping which can be used to test points in
   this base Frame. Create a copy of the Polygon and then set its
   FrameSet so that the current Frame in the copy is the same as the base
   Frame in the original. */
      reg = astCopy( this );
      astSetRegFS( reg, frm );
      astSetNegated( reg, 0 );

/* Normalise this box. */
      astNormBox( frm, lbnd, ubnd, reg );

/* Free resources */
      reg = astAnnul( reg );
      frm = astAnnul( frm );

/* Store it in the olygon structure for future use. */
      this->lbnd[ 0 ] = lbnd[ 0 ];
      this->lbnd[ 1 ] = lbnd[ 1 ];
      this->ubnd[ 0 ] = ubnd[ 0 ];
      this->ubnd[ 1 ] = ubnd[ 1 ];

   }
}

static AstPointSet *RegBaseMesh( AstRegion *this_region, int *status ){
/*
*  Name:
*     RegBaseMesh

*  Purpose:
*     Return a PointSet containing a mesh of points on the boundary of a
*     Region in its base Frame.

*  Type:
*     Private function.

*  Synopsis:
*     #include "polygon.h"
*     AstPointSet *astRegBaseMesh( AstRegion *this, int *status )

*  Class Membership:
*     Polygon member function (over-rides the astRegBaseMesh protected
*     method inherited from the Region class).

*  Description:
*     This function returns a PointSet containing a mesh of points on the
*     boundary of the Region. The points refer to the base Frame of
*     the encapsulated FrameSet.

*  Parameters:
*     this
*        Pointer to the Region.
*     status
*        Pointer to the inherited status variable.

*  Returned Value:
*     Pointer to the PointSet. Annul the pointer using astAnnul when it
*     is no longer needed.

*  Notes:
*    - A NULL pointer is returned if an error has already occurred, or if
*    this function should fail for any reason.

*/

/* Local Variables: */
   AstFrame *frm;                 /* Base Frame in encapsulated FrameSet */
   AstPointSet *result;           /* Returned pointer */
   AstPolygon *this;              /* The Polygon structure */
   double **rptr;                 /* Pointers to returned mesh data */
   double **vptr;                 /* Pointers to vertex data */
   double *lens;                  /* Pointer to work space holding edge lengths */
   double d;                      /* Length of this edge */
   double delta;                  /* Angular separation of points */
   double end[ 2 ];               /* End position */
   double mp;                     /* No. of mesh points per unit distance */
   double p[ 2 ];                 /* Position in 2D Frame */
   double start[ 2 ];             /* Start position */
   double total;                  /* Total length of polygon */
   int ip;                        /* Point index */
   int iv;                        /* Vertex index */
   int n;                         /* No. of points on this edge */
   int next;                      /* Index of next point in returned PointSet */
   int np;                        /* No. of points in returned PointSet */
   int nv;                        /* No. of polygon vertices */

/* Initialise */
   result= NULL;

/* Check the global error status. */
   if ( !astOK ) return result;

/* If the Region structure contains a pointer to a PointSet holding
   a previously created mesh, return it. */
   if( this_region->basemesh ) {
      result = astClone( this_region->basemesh );

/* Otherwise, create a new mesh. */
   } else {

/* Get a pointer to the Polygon structure. */
      this = (AstPolygon *) this_region;

/* Get a pointer to the base Frame in the encapsulated FrameSet. */
      frm = astGetFrame( this_region->frameset, AST__BASE );

/* Get the number of vertices and pointers to the vertex axis values. */
      nv = astGetNpoint( this_region->points );
      vptr = astGetPoints( this_region->points );

/* Allocate memory to hold the geodesic length of each edge. */
      lens = astMalloc( sizeof( double )*(size_t) nv );

      if( astOK ) {

/* Find the total geodesic distance around the boundary. */
         total = 0.0;

         start[ 0 ] = vptr[ 0 ][ 0 ];
         start[ 1 ] = vptr[ 1 ][ 0 ];

         for( iv = 1; iv < nv; iv++ ) {
            end[ 0 ] = vptr[ 0 ][ iv ];
            end[ 1 ] = vptr[ 1 ][ iv ];

            d = astDistance( frm, start, end );
            if( d != AST__BAD ) total += fabs( d );
            lens[ iv ] = d;
            start[ 0 ] = end[ 0 ];
            start[ 1 ] = end[ 1 ];
         }

         end[ 0 ] = vptr[ 0 ][ 0 ];
         end[ 1 ] = vptr[ 1 ][ 0 ];

         d = astDistance( frm, start, end );
         if( d != AST__BAD ) total += fabs( d );
         lens[ 0 ] = d;

/* Find the number of mesh points per unit geodesic distance. */
         if( total > 0.0 ){
            mp = astGetMeshSize( this )/total;

/* Find the total number of mesh points required. */
            np = 0;
            for( iv = 0; iv < nv; iv++ ) {
               if( lens[ iv ] != AST__BAD ) np += 1 + (int)( lens[ iv ]*mp );
            }

/* Create a suitable PointSet to hold the returned positions. */
            result = astPointSet( np, 2, "", status );
            rptr = astGetPoints( result );
            if( astOK ) {

/* Initialise the index of the next point to be added to the returned
   PointSet. */
               next = 0;

/* Loop round each good edge of the polygon. The edge ends at vertex "iv". */
               start[ 0 ] = vptr[ 0 ][ 0 ];
               start[ 1 ] = vptr[ 1 ][ 0 ];

               for( iv = 1; iv < nv; iv++ ) {
                  end[ 0 ] = vptr[ 0 ][ iv ];
                  end[ 1 ] = vptr[ 1 ][ iv ];
                  if( lens[ iv ] != AST__BAD ) {

/* Add the position of the starting vertex to the returned mesh. */
                     rptr[ 0 ][ next ] = start[ 0 ];
                     rptr[ 1 ][ next ] = start[ 1 ];
                     next++;

/* Find the number of points on this edge, and the geodesic distance
   between them. */
                     n = 1 + (int) ( lens[ iv ]*mp );

/* If more than one point, find the distance between points. */
                     if( n > 1 ) {
                        delta = lens[ iv ]/n;

/* Loop round the extra points. */
                        for( ip = 1; ip < n; ip++ ) {

/* Find the position of the next mesh point. */
                           astOffset( frm, start, end, delta*ip, p );

/* Add it to the mesh. */
                           rptr[ 0 ][ next ] = p[ 0 ];
                           rptr[ 1 ][ next ] = p[ 1 ];
                           next++;

                        }
                     }
                  }

/* The end of this edge becomes the start of the next. */
                  start[ 0 ] = end[ 0 ];
                  start[ 1 ] = end[ 1 ];
               }

/* Now do the edge which ends at the first vertex. */
               end[ 0 ] = vptr[ 0 ][ 0 ];
               end[ 1 ] = vptr[ 1 ][ 0 ];
               if( lens[ 0 ] != AST__BAD ) {
                  rptr[ 0 ][ next ] = start[ 0 ];
                  rptr[ 1 ][ next ] = start[ 1 ];
                  next++;

                  n = 1 + (int)( lens[ 0 ]*mp );
                  if( n > 1 ) {
                     delta = lens[ 0 ]/n;
                     for( ip = 1; ip < n; ip++ ) {
                        astOffset( frm, start, end, delta*ip, p );
                        rptr[ 0 ][ next ] = p[ 0 ];
                        rptr[ 1 ][ next ] = p[ 1 ];
                        next++;
                     }
                  }
               }

/* Check the PointSet size was correct. */
               if( next != np && astOK ) {
                  astError( AST__INTER, "astRegBaseMesh(%s): Error in the "
                            "allocated PointSet size (%d) - should have "
                            "been %d (internal AST programming error).", status,
                            astGetClass( this ), np, next );
               }

/* Save the returned pointer in the Region structure so that it does not
   need to be created again next time this function is called. */
               if( astOK ) this_region->basemesh = astClone( result );

            }

         } else if( astOK ) {
            astError( AST__BADIN, "astRegBaseMesh(%s): The boundary of "
                      "the supplied %s has an undefined length.", status,
                      astGetClass( this ), astGetClass( this ) );
         }

      }

/* Free resources. */
      frm = astAnnul( frm );
      lens = astFree( lens );
   }

/* Annul the result if an error has occurred. */
   if( !astOK ) result = astAnnul( result );

/* Return a pointer to the output PointSet. */
   return result;
}

static int RegPins( AstRegion *this_region, AstPointSet *pset, AstRegion *unc,
                    int **mask, int *status ){
/*
*  Name:
*     RegPins

*  Purpose:
*     Check if a set of points fall on the boundary of a given Polygon.

*  Type:
*     Private function.

*  Synopsis:
*     #include "polygon.h"
*     int RegPins( AstRegion *this, AstPointSet *pset, AstRegion *unc,
*                  int **mask, int *status )

*  Class Membership:
*     Polygon member function (over-rides the astRegPins protected
*     method inherited from the Region class).

*  Description:
*     This function returns a flag indicating if the supplied set of
*     points all fall on the boundary of the given Polygon.
*
*     Some tolerance is allowed, as specified by the uncertainty Region
*     stored in the supplied Polygon "this", and the supplied uncertainty
*     Region "unc" which describes the uncertainty of the supplied points.

*  Parameters:
*     this
*        Pointer to the Polygon.
*     pset
*        Pointer to the PointSet. The points are assumed to refer to the
*        base Frame of the FrameSet encapsulated by "this".
*     unc
*        Pointer to a Region representing the uncertainties in the points
*        given by "pset". The Region is assumed to represent the base Frame
*        of the FrameSet encapsulated by "this". Zero uncertainity is assumed
*        if NULL is supplied.
*     mask
*        Pointer to location at which to return a pointer to a newly
*        allocated dynamic array of ints. The number of elements in this
*        array is equal to the value of the Npoint attribute of "pset".
*        Each element in the returned array is set to 1 if the
*        corresponding position in "pset" is on the boundary of the Region
*        and is set to zero otherwise. A NULL value may be supplied
*        in which case no array is created. If created, the array should
*        be freed using astFree when no longer needed.
*     status
*        Pointer to the inherited status variable.

*  Returned Value:
*     Non-zero if the points all fall on the boundary of the given
*     Region, to within the tolerance specified. Zero otherwise.

*/

/* Local variables: */
   AstFrame *frm;               /* Base Frame in supplied Polygon */
   AstPointSet *pset1;          /* Pointer to copy of supplied PointSet */
   AstPointSet *pset2;          /* Pointer to PointSet holding resolved components */
   AstPolygon *this;            /* Pointer to the Polygon structure. */
   AstRegion *tunc;             /* Uncertainity Region from "this" */
   double **ptr1;               /* Pointer to axis values in "pset1" */
   double **ptr2;               /* Pointer to axis values in "pset2" */
   double **vptr;               /* Pointer to axis values at vertices */
   double *safe;                /* An interior point in "this" */
   double edge_len;             /* Length of current edge */
   double end[2];               /* Position of end of current edge */
   double l1;                   /* Length of bounding box diagonal */
   double l2;                   /* Length of bounding box diagonal */
   double lbnd_tunc[2];         /* Lower bounds of "this" uncertainty Region */
   double lbnd_unc[2];          /* Lower bounds of supplied uncertainty Region */
   double par;                  /* Parallel component */
   double parmax;               /* Max acceptable parallel component */
   double prp;                  /* Perpendicular component */
   double start[2];             /* Position of start of current edge */
   double ubnd_tunc[2];         /* Upper bounds of "this" uncertainty Region */
   double ubnd_unc[2];          /* Upper bounds of supplied uncertainty Region */
   double wid;                  /* Width of acceptable margin around polygon */
   int *m;                      /* Pointer to next mask value */
   int i;                       /* Edge index */
   int ip;                      /* Point index */
   int np;                      /* No. of supplied points */
   int nv;                      /* No. of vertices */
   int result;                  /* Returned flag */

/* Initialise */
   result = 0;
   if( mask ) *mask = NULL;

/* Check the inherited status. */
   if( !astOK ) return result;

/* Get a pointer to the Polygon structure. */
   this = (AstPolygon *) this_region;

/* Check the supplied PointSet has 2 axis values per point. */
   if( astGetNcoord( pset ) != 2 && astOK ) {
      astError( AST__INTER, "astRegPins(%s): Illegal number of axis "
                "values per point (%d) in the supplied PointSet - should be "
                "2 (internal AST programming error).", status, astGetClass( this ),
                astGetNcoord( pset ) );
   }

/* Get the number of axes in the uncertainty Region and check it is also 2. */
   if( unc && astGetNaxes( unc ) != 2 && astOK ) {
      astError( AST__INTER, "astRegPins(%s): Illegal number of axes (%d) "
                "in the supplied uncertainty Region - should be 2 "
                "(internal AST programming error).", status, astGetClass( this ),
                astGetNaxes( unc ) );
   }

/* Get pointers to the axis values at the polygon vertices. */
   vptr = astGetPoints( this_region->points );

/* Get the number of vertices. */
   nv = astGetNpoint( this_region->points );

/* Take a copy of the supplied PointSet and get pointers to its axis
   values,and its size */
   pset1 = astCopy( pset );
   ptr1 = astGetPoints( pset1 );
   np = astGetNpoint( pset1 );

/* Create a PointSet to hold the resolved components and get pointers to its
   axis data. */
   pset2 = astPointSet( np, 2, "", status );
   ptr2 = astGetPoints( pset2 );

/* Create a mask array if required. */
   if( mask ) *mask = astMalloc( sizeof(int)*(size_t) np );

/* Get the centre of the region in the base Frame. We use this as a "safe"
   interior point within the region. */
   safe = astRegCentre( this, NULL, NULL, 0, AST__BASE );

/* We now find the maximum distance on each axis that a point can be from the
   boundary of the Polygon for it still to be considered to be on the boundary.
   First get the Region which defines the uncertainty within the Polygon
   being checked (in its base Frame), re-centre it on the interior point
   found above (to avoid problems if the uncertainty region straddles a
   discontinuity), and get its bounding box. The current Frame of the
   uncertainty Region is the same as the base Frame of the Polygon. */
   tunc = astGetUncFrm( this, AST__BASE );
   if( safe ) astRegCentre( tunc, safe, NULL, 0, AST__CURRENT );
   astGetRegionBounds( tunc, lbnd_tunc, ubnd_tunc );

/* Find the geodesic length within the base Frame of "this" of the diagonal of
   the bounding box. */
   frm = astGetFrame( this_region->frameset, AST__BASE );
   l1 = astDistance( frm, lbnd_tunc, ubnd_tunc );

/* Also get the Region which defines the uncertainty of the supplied
   points and get its bounding box. First re-centre the uncertainty at the
   interior position to avoid problems from uncertainties that straddle a
   discontinuity. */
   if( unc ) {
      if( safe ) astRegCentre( unc, safe, NULL, 0, AST__CURRENT );
      astGetRegionBounds( unc, lbnd_unc, ubnd_unc );

/* Find the geodesic length of the diagonal of this bounding box. */
      l2 = astDistance( frm, lbnd_unc, ubnd_unc );

/* Assume zero uncertainty if no "unc" Region was supplied. */
   } else {
      l2 = 0.0;
   }

/* The required border width is half of the total diagonal of the two bounding
   boxes. */
   if( astOK ) {
      wid = 0.5*( l1 + l2 );

/* Loop round each edge of the polygon. Edge "i" starts at vertex "i-1"
   and ends at vertex "i". Edge zero starts at vertex "nv-1" and ends at
   vertex zero. */
      start[ 0 ] = vptr[ 0 ][ nv - 1 ];
      start[ 1 ] = vptr[ 1 ][ nv - 1 ];
      for( i = 0; i < nv; i++ ) {
         end[ 0 ] = vptr[ 0 ][ i ];
         end[ 1 ] = vptr[ 1 ][ i ];

/* Find the length of this edge. */
         edge_len = astDistance( frm, start, end );

/* Resolve all the supplied mesh points into components parallel and
   perpendicular to this edge. */
         (void) astResolvePoints( frm, start, end, pset1, pset2 );

/* A point is effectively on this edge if the parallel component is
   greater than (-wid) and less than (edge_len+wid) AND the perpendicular
   component has an absolute value less than wid. Identify such positions
   and set them bad in pset1. */
         parmax = edge_len + wid;
         for( ip = 0; ip < np; ip++ ) {
            par = ptr2[ 0 ][ ip ];
            prp = ptr2[ 1 ][ ip ];

            if( par != AST__BAD && prp != AST__BAD ) {
               if( par > -wid && par < parmax && prp > -wid && prp < wid ) {
                  ptr1[ 0 ][ ip ] = AST__BAD;
                  ptr1[ 1 ][ ip ] = AST__BAD;
               }
            }
         }

/* The end of the current edge becomes the start of the next. */
         start[ 0 ] = end[ 0 ];
         start[ 1 ] = end[ 1 ];
      }

/* See if any good points are left in pset1. If so, it means that those
   points were not on any edge of hte Polygon. We use two alogorithms
   here depending on whether we are creating a mask array, since we can
   abort the check upon finding the first good point if we are not
   producing a mask. */
      result = 1;
      if( mask ) {
         m = *mask;
         for( ip = 0; ip < np; ip++, m++ ) {
            if( ptr1[ 0 ][ ip ] != AST__BAD &&
                ptr1[ 1 ][ ip ] != AST__BAD ) {
               *m = 0;
               result = 0;
            } else {
               *m = 1;
            }
         }
      } else {
         for( ip = 0; ip < np; ip++ ) {
            if( ptr1[ 0 ][ ip ] != AST__BAD &&
                ptr1[ 1 ][ ip ] != AST__BAD ) {
               result = 0;
               break;
            }
         }
      }
   }

/* Free resources. */
   tunc = astAnnul( tunc );
   frm = astAnnul( frm );
   safe = astFree( safe );
   pset1 = astAnnul( pset1 );
   pset2 = astAnnul( pset2 );

/* If an error has occurred, return zero. */
   if( !astOK ) {
      result = 0;
      if( mask ) *mask = astFree( *mask );
   }

/* Return the result. */
   return result;
}

static int RegTrace( AstRegion *this_region, int n, double *dist, double **ptr,
                     int *status ){
/*
*+
*  Name:
*     RegTrace

*  Purpose:
*     Return requested positions on the boundary of a 2D Region.

*  Type:
*     Private function.

*  Synopsis:
*     #include "polygon.h"
*     int astTraceRegion( AstRegion *this, int n, double *dist, double **ptr );

*  Class Membership:
*     Polygon member function (overrides the astTraceRegion method
*     inherited from the parent Region class).

*  Description:
*     This function returns positions on the boundary of the supplied
*     Region, if possible. The required positions are indicated by a
*     supplied list of scalar parameter values in the range zero to one.
*     Zero corresponds to some arbitrary starting point on the boundary,
*     and one corresponds to the end (which for a closed region will be
*     the same place as the start).

*  Parameters:
*     this
*        Pointer to the Region.
*     n
*        The number of positions to return. If this is zero, the function
*        returns without action (but the returned function value still
*        indicates if the method is supported or not).
*     dist
*        Pointer to an array of "n" scalar parameter values in the range
*        0 to 1.0.
*     ptr
*        A pointer to an array of pointers. The number of elements in
*        this array should equal tthe number of axes in the Frame spanned
*        by the Region. Each element of the array should be a pointer to
*        an array of "n" doubles, in which to return the "n" values for
*        the corresponding axis. The contents of the arrays are unchanged
*        if the supplied Region belongs to a class that does not
*        implement this method.

*  Returned Value:
*     Non-zero if the astTraceRegion method is implemented by the class
*     of Region supplied, and zero if not.

*-
*/

/* Local Variables; */
   AstFrame *frm;
   AstMapping *map;
   AstPointSet *bpset;
   AstPointSet *cpset;
   AstPolygon *this;
   double **bptr;
   double d;
   double p[ 2 ];
   int i;
   int j0;
   int j;
   int ncur;
   int nv;
   int monotonic;

/* Check inherited status, and the number of points to return, returning
   a non-zero value to indicate that this class supports the astRegTrace
   method. */
   if( ! astOK || n == 0 ) return 1;

/* Get a pointer to the Polygon structure. */
   this = (AstPolygon *) this_region;

/* Ensure cached information is available. */
   Cache( this, status );

/* Get a pointer to the base Frame in the encapsulated FrameSet. */
   frm = astGetFrame( this_region->frameset, AST__BASE );

/* We first determine the required positions in the base Frame of the
   Region, and then transform them into the current Frame. Get the
   base->current Mapping, and the number of current Frame axes. */
   map = astGetMapping( this_region->frameset, AST__BASE, AST__CURRENT );

/* If it's a UnitMap we do not need to do the transformation, so put the
   base Frame positions directly into the supplied arrays. */
   if( astIsAUnitMap( map ) ) {
      bpset = NULL;
      bptr = ptr;
      ncur = 2;

/* Otherwise, create a PointSet to hold the base Frame positions (known
   to be 2D since this is an polygon). */
   } else {
      bpset = astPointSet( n, 2, " ", status );
      bptr = astGetPoints( bpset );
      ncur = astGetNout( map );
   }

/* Check the pointers can be used safely. */
   if( astOK ) {

/* Get the number of vertices. */
      nv = astGetNpoint( this_region->points );

/* If we have a reasonable number of pointsand there are a reasonable
   number of vertices, we can be quicker if we know if the parameteric
   distances are monotonic increasing. Find out now. */
      if( n > 5 && nv > 5 ) {

         monotonic = 1;
         for( i = 1; i < n; i++ ) {
            if( dist[ i ] < dist[ i - 1 ] ) {
               monotonic = 0;
               break;
            }
         }

      } else {
         monotonic = 0;
      }

/* Loop round each point. */
      j0 = 1;
      for( i = 0; i < n; i++ ) {

/* Get the required round the polygon, starting from vertex zero. */
         d = dist[ i ]*this->totlen;

/* Loop round each vertex until we find one which is beyond the required
   point. If the supplied distances are monotonic increasing, we can
   start the checks at the same vertex that was used for the previous
   since we know there will never be a backward step. */
         for( j = j0; j < nv; j++ ) {
            if( this->startsat[ j ] > d ) break;
         }

/* If the distances are monotonic increasing, record the vertex that we
   have reached so far. */
         if( monotonic ) j0 = j;

/* Find the distance to travel beyond the previous vertex. */
         d -= this->startsat[ j - 1 ];

/* Find the position, that is the required distance from the previous
   vertex towards the next vertex. */
         astLineOffset( frm, this->edges[ j - 1 ], d, 0.0, p );

/* Store the resulting axis values. */
         bptr[ 0 ][ i ] = p[ 0 ];
         bptr[ 1 ][ i ] = p[ 1 ];
      }
   }

/* If required, transform the base frame positions into the current
   Frame, storing them in the supplied array. Then free resources. */
   if( bpset ) {
      cpset = astPointSet( n, ncur, " ", status );
      astSetPoints( cpset, ptr );

      (void) astTransform( map, bpset, 1, cpset );

      cpset = astAnnul( cpset );
      bpset = astAnnul( bpset );
   }

/* Free remaining resources. */
   map = astAnnul( map );
   frm = astAnnul( frm );

/* Return a non-zero value to indicate that this class supports the
   astRegTrace method. */
   return 1;
}

static Segment *RemoveFromChain( Segment *head, Segment *seg, int *status ){
/*
*  Name:
*     RemoveFromChain

*  Purpose:
*     Remove a Segment from the link list maintained by astDownsize.

*  Type:
*     Private function.

*  Synopsis:
*     #include "polygon.h"
*     Segment *RemoveFromChain( Segment *head, Segment *seg, int *status )

*  Class Membership:
*     Polygon member function

*  Description:
*     The supplied Segment is removed form the list, and the gap is
*     closed up.

*  Parameters:
*     head
*        The Segment structure at the head of the list.
*     seg
*        The Segment to be removed from the list.
*     status
*        Pointer to the inherited status variable.

*  Returned Value:
*     Pointer to the link head (which will have changed if "seg" was the
*     original head).

*/

/* Check the global error status. */
   if ( !astOK ) return head;

/* If the Segment was the original head, make the next segment the new
   head. */
   if( head == seg ) head = seg->next;

/* Close up the links between the Segments on either side of the segment
   being removed. */
   if( seg->prev ) seg->prev->next = seg->next;
   if( seg->next ) seg->next->prev = seg->prev;

/* Nullify the links in the segment being removed. */
   seg->next = NULL;
   seg->prev = NULL;

/* Return the new head. */
   return head;
}

static void ResetCache( AstRegion *this_region, int *status ){
/*
*  Name:
*     ResetCache

*  Purpose:
*     Clear cached information within the supplied Region.

*  Type:
*     Private function.

*  Synopsis:
*     #include "polygon.h"
*     void ResetCache( AstRegion *this, int *status )

*  Class Membership:
*     Region member function (overrides the astResetCache method
*     inherited from the parent Region class).

*  Description:
*     This function clears cached information from the supplied Region
*     structure.

*  Parameters:
*     this
*        Pointer to the Region.
*     status
*        Pointer to the inherited status variable.
*/

/* Local Variables: */
   AstPolygon *this;
   int i;
   int nv;

/* Get a pointer to the Polygon structure. */
   this = (AstPolygon *) this_region;

/* If a Polygon was supplied, indicate cached information needs to be
   recalculated. */
   if( this ) {
      this->stale = 1;
      this->lbnd[ 0 ] = AST__BAD;

/* Free any edge structures (number of vertices may be about to change so
   this cannot be left until the next call to "Cache()". */
      if( this->edges ) {
         nv = astGetNpoint( this_region->points );
         for( i = 0; i < nv; i++ ) {
            this->edges[ i ] = astFree( this->edges[ i ] );
         }
         this->edges = astFree( this->edges );
      }

/* Clear the cache of the parent class. */
      (*parent_resetcache)( this_region, status );
   }
}

static void SetAttrib( AstObject *this_object, const char *setting, int *status ) {
/*
*  Name:
*     SetAttrib

*  Purpose:
*     Set an attribute value for a Polygon.

*  Type:
*     Private function.

*  Synopsis:
*     #include "polygon.h"
*     void SetAttrib( AstObject *this, const char *setting, int *status )

*  Class Membership:
*     Polygon member function (extends the astSetAttrib method inherited from
*     the Region class).

*  Description:
*     This function assigns an attribute value for a Polygon, the attribute
*     and its value being specified by means of a string of the form:
*
*        "attribute= value "
*
*     Here, "attribute" specifies the attribute name and should be in lower
*     case with no white space present. The value to the right of the "="
*     should be a suitable textual representation of the value to be assigned
*     and this will be interpreted according to the attribute's data type.
*     White space surrounding the value is only significant for string
*     attributes.

*  Parameters:
*     this
*        Pointer to the Polygon.
*     setting
*        Pointer to a null terminated string specifying the new attribute
*        value.
*     status
*        Pointer to the inherited status variable.

*  Returned Value:
*     void
*/

/* Local Vaiables: */
   AstPolygon *this;             /* Pointer to the Polygon structure */
   int ival;                     /* Integer attribute value */
   int len;                      /* Length of setting string */
   int nc;                       /* Number of characters read by astSscanf */

/* Check the global error status. */
   if ( !astOK ) return;

/* Obtain a pointer to the Polygon structure. */
   this = (AstPolygon *) this_object;

/* Obtain the length of the setting string. */
   len = strlen( setting );

/* Test for each recognised attribute in turn, using "astSscanf" to parse the
   setting string and extract the attribute value (or an offset to it in the
   case of string values). In each case, use the value set in "nc" to check
   that the entire string was matched. Once a value has been obtained, use the
   appropriate method to set it. */

/* SimpVertices. */
/* ------------- */
   if ( nc = 0,
               ( 1 == astSscanf( setting, "simpvertices= %d %n", &ival, &nc ) )
               && ( nc >= len ) ) {
      astSetSimpVertices( this, ival );

/* Pass any unrecognised setting to the parent method for further
   interpretation. */
   } else {
      (*parent_setattrib)( this_object, setting, status );
   }
}

static void SetPointSet( AstPolygon *this, AstPointSet *pset, int *status ){
/*
*  Name:
*     SetPointSet

*  Purpose:
*     Store a new set of vertices in an existing Polygon.

*  Type:
*     Private function.

*  Synopsis:
*     #include "polygon.h"
*     void SetPointSet( AstPolygon *this, AstPointSet *pset, int *status )

*  Class Membership:
*     Polygon member function

*  Description:
*     The PointSet in the supplied Polygon is annulled, and replaced by a
*     clone of the supplied PointSet pointer.

*  Parameters:
*     this
*        Pointer to the Polygon to be changed.
*     pset
*        The PointSet containing the new vertex information.
*     status
*        Pointer to the inherited status variable.

*/


/* Check the global error status. */
   if ( !astOK ) return;

/* Indicate the cached information in the polygon will need to be
   re-calculated when needed. */
   astResetCache( this );

/* Annul the pointer to the PointSet already in the supplied Polygon. */
   (void) astAnnul( ((AstRegion *) this)->points );

/* Store a clone of the supplied new PointSet pointer. */
   ((AstRegion *) this)->points = astClone( pset );

}

static void SetRegFS( AstRegion *this_region, AstFrame *frm, int *status ) {
/*
*  Name:
*     SetRegFS

*  Purpose:
*     Stores a new FrameSet in a Region

*  Type:
*     Private function.

*  Synopsis:
*     #include "polygon.h"
*     void SetRegFS( AstRegion *this_region, AstFrame *frm, int *status )

*  Class Membership:
*     Polygon method (over-rides the astSetRegFS method inherited from
*     the Region class).

*  Description:
*     This function creates a new FrameSet and stores it in the supplied
*     Region. The new FrameSet contains two copies of the supplied
*     Frame, connected by a UnitMap.

*  Parameters:
*     this
*        Pointer to the Region.
*     frm
*        The Frame to use.
*     status
*        Pointer to the inherited status variable.

*/


/* Check the global error status. */
   if ( !astOK ) return;

/* Indicate cached information eeds re-calculating. */
   astResetCache( this_region );

/* Invoke the parent method to store the FrameSet in the parent Region
   structure. */
   (* parent_setregfs)( this_region, frm, status );

}

static AstMapping *Simplify( AstMapping *this_mapping, int *status ) {
/*
*  Name:
*     Simplify

*  Purpose:
*     Simplify the Mapping represented by a Region.

*  Type:
*     Private function.

*  Synopsis:
*     #include "polygon.h"
*     AstMapping *Simplify( AstMapping *this, int *status )

*  Class Membership:
*     Polygon method (over-rides the astSimplify method inherited
*     from the Region class).

*  Description:
*     This function invokes the parent Region Simplify method, and then
*     performs any further region-specific simplification.
*
*     If the Mapping from base to current Frame is not a UnitMap, this
*     will include attempting to fit a new Region to the boundary defined
*     in the current Frame.

*  Parameters:
*     this
*        Pointer to the original Region.
*     status
*        Pointer to the inherited status variable.

*  Returned Value:
*     A pointer to the simplified Region. A cloned pointer to the
*     supplied Region will be returned if no simplication could be
*     performed.

*  Notes:
*     - A NULL pointer value will be returned if this function is
*     invoked with the AST error status set, or if it should fail for
*     any reason.
*/

/* Local Variables: */
   AstFrame *frm;             /* Current Frame */
   AstMapping *map;           /* Base -> current Mapping */
   AstMapping *result;        /* Result pointer to return */
   AstPointSet *mesh;         /* Mesh of current Frame positions */
   AstPointSet *ps2;          /* Polygon PointSet in current Frame */
   AstPolygon *newpol;        /* New Polygon */
   AstRegion *new;            /* Pointer to simplified Region */
   AstRegion *this;           /* Pointer to supplied Region structure */
   AstRegion *unc;            /* Pointer to uncertainty Region */
   double **ptr2;             /* Pointer axis values in "ps2" */
   double *mem;               /* Pointer to array holding new vertex coords */
   double *p;                 /* Pointer to next vertex coords */
   double *q;                 /* Pointer to next vertex coords */
   int iv;                    /* Vertex index */
   int nv;                    /* Number of vertices in polygon */
   int ok;                    /* Are the new polygon vertices good? */
   int simpler;               /* Has some simplication taken place? */

/* Initialise. */
   result = NULL;

/* Check the global error status. */
   if ( !astOK ) return result;

/* Get a pointer to the supplied Region structure. */
   this = (AstRegion *) this_mapping;

/* Invoke the parent Simplify method inherited from the Region class. This
   will simplify the encapsulated FrameSet and uncertainty Region. */
   new = (AstRegion *) (*parent_simplify)( this_mapping, status );

/* Note if any simplification took place. This is assumed to be the case
   if the pointer returned by the above call is different to the supplied
   pointer. */
   simpler = ( new != this );

/* We attempt to simplify the Polygon by re-defining it within its current
   Frame. Transforming the Polygon from its base to its current Frame may
   result in the region no having the same edges. If required, we test this
   by transforming a set of bounds on the Polygon boundary. This can only
   be done if the current Frame is 2-dimensional. Also, there is only any
   point in doing it if the Mapping from base to current Frame in the
   Polygon is not a UnitMap. */
   map = astGetMapping(  new->frameset, AST__BASE, AST__CURRENT );
   if( !astIsAUnitMap( map ) && astGetNout( map ) == 2 ) {

/* Get a pointer to the Frame represented by the Polgon. */
      frm = astGetFrame( new->frameset, AST__CURRENT );

/* Get the Region describing the positional uncertainty in this Frame. */
      unc = astGetUncFrm( new, AST__CURRENT );

/* Get the positions of the vertices within this Frame. */
      ps2 = astRegTransform( this, this->points, 1, NULL, NULL );
      ptr2 = astGetPoints( ps2 );

/* Get the number of vertices. */
      nv = astGetNpoint( ps2 );

/* Re-organise the vertex axis values into the form required by the
   Polygon constructor function. */
      mem = astMalloc( sizeof( double)*(size_t)( 2*nv ) );
      if( astOK ) {
         ok = 1;
         p = mem;
         q = ptr2[ 0 ];
         for( iv = 0; iv < nv; iv++ ) {
            if( ( *(p++) = *(q++) ) == AST__BAD ) ok = 0;
         }
         q = ptr2[ 1 ];
         for( iv = 0; iv < nv; iv++ ) *(p++) = *(q++);

/* Create a new Polygon using these transformed vertices. */
         if( ok ) {
            newpol = astPolygon( frm, nv, nv, mem, unc, "", status );

/* If the SimpVertices attribute is zero, we now check that the
   transformation has not bent the edges of the polygon significantly.
   If it has, we annul the new Polygon. */
            if( !astGetSimpVertices( this ) ) {

/* Get a mesh of points covering the Polygon in this Frame. */
               mesh = astRegMesh( new );

/* See if all points within the mesh created from the original Polygon fall
   on the boundary of the new Polygon, to within the uncertainty of the
   Region. If not, annul the new Polgon. */
               if( !astRegPins( newpol, mesh, NULL, NULL ) ) {
                  newpol = astAnnul( newpol );
               }

/* Free the mesh. */
               mesh = astAnnul( mesh );
            }

/* If we still have a new polygon, use the new Polygon in place of the
   original Region. */
            if( newpol ) {
               (void) astAnnul( new );
               new = (AstRegion *) newpol;
               simpler = 1;
            }
         }
      }

/* Free other resources. */
      frm = astAnnul( frm );
      unc = astAnnul( unc );
      ps2 = astAnnul( ps2 );
      mem = astFree( mem );
   }
   map = astAnnul( map );

/* If any simplification could be performed, copy Region attributes from
   the supplied Region to the returned Region, and return a pointer to it.
   If the supplied Region had no uncertainty, ensure the returned Region
   has no uncertainty. Otherwise, return a clone of the supplied pointer. */
   if( simpler ){
      astRegOverlay( new, this, 1 );
      result = (AstMapping *) new;

   } else {
      new = astAnnul( new );
      result = astClone( this );
   }

/* If an error occurred, annul the returned pointer. */
   if ( !astOK ) result = astAnnul( result );

/* Return the result. */
   return result;
}

static void SmoothPoly( AstPointSet *pset, int boxsize, double strength,
                        int *status ) {
/*
*  Name:
*     SmoothPoly

*  Purpose:
*     Smoooth a polygon assuming plane geometry.

*  Type:
*     Private function.

*  Synopsis:
*     #include "polygon.h"
*     void SmoothPoly( AstPointSet *pset, int boxsize, double strength,
*                      int *status )

*  Class Membership:
*     Polygon member function

*  Description:
*     This function smooths a polygon, without changing the number of
*     vertices. It assumes plane geometry, so should not be used to
*     smooth polygons defined within a SkyFrame or CmpFrame.
*
*     Each vertex is replaced by a new vertex determined as follows: the
*     mean X and Y axis value of the vertices in a section of the polygon
*     centred on the vertex being replaced are found (the length of the
*     section is given by parameter "boxsize"). The new vertex position
*     is then the weighted mean of this mean (X,Y) position and the old
*     vertex position. The weight for the mean (X,Y) position is given
*     by parameter "strength", and the weight for the old vertex
*     position is (1.0 - strength)

*  Parameters:
*     pset
*        A PointSet holding the polygon vertices.
*     boxsize
*        Half width of the box filter, given as a number of vertices.
*     strength
*        The weight to use for the mean (X,Y) position when finding each
*        new vertex position. Should be in the range 0.0 to 1.0. A value
*        of zero results in no change being made to the polygon. A value
*        of 1.0 results in the returned polygon being fully smoothed.
*     status
*        Pointer to the inherited status variable.

*/

/* Local Variables: */
   double **ptr;
   double *newx;
   double *newy;
   double *nx;
   double *ny;
   double *oldx;
   double *oldy;
   double *ox;
   double *oy;
   double *px;
   double *py;
   double *qx;
   double *qy;
   double a;
   double b;
   double sx;
   double sy;
   int half_width;
   int i;
   int nv;
   int top;

/* Check the global error status. */
   if ( !astOK ) return;

/* Get the number of vertices. */
   nv = astGetNpoint( pset );

/* Get pointers to arrays holding the supplied vertex positions. */
   ptr = astGetPoints( pset );
   oldx = ptr[ 0 ];
   oldy = ptr[ 1 ];

/* Allocate arrays to hold the returned vertex positions. */
   newx = astMalloc( nv*sizeof( double ) );
   newy = astMalloc( nv*sizeof( double ) );

/* Check these pointers can be used safely. */
   if( astOK ) {

/* Get weighting factors for the fully smoothed and unsmoothed positions. */
      a = strength;
      b = 1.0 - a;

/* Ensure the box size is sufficiently small for there to be room for
   two boxes along the polygon. */
      half_width = nv/4 - 1;
      if( boxsize < half_width ) half_width = boxsize;
      if( half_width < 1 ) half_width = 1;

/* Modify the weight for the fully smoothed position to include the
   normalisation factor needed to account for the box width. */
      a /= 2*half_width + 1;

/* Find the sum of the x and y coordinates within a box centred on the
   first vertex. This includes vertices from the end of the polygon. */
      px = oldx + 1;
      qx = oldx + nv;
      sx = (oldx)[ 0 ];

      py = oldy + 1;
      qy = oldy + nv;
      sy = (oldy)[ 0 ];

      for( i = 0; i < half_width; i++ ) {
         sx += *(px++) + *(--qx);
         sy += *(py++) + *(--qy);
      }

/* Replacing vertices within the first half box will include vertices at
   both ends of the polygon. Set up the pointers accordingly, and then
   find replacements for each vertex in the first half box.*/
      ox = oldx;
      oy = oldy;
      nx = newx;
      ny = newy;
      for( i = 0; i < half_width; i++ ) {

/* Form the new vertex (x,y) values as the weighted mean of the mean
   (x,y) values in the box, and the old (x,y) values. */
         *(nx++) = a*sx + b*( *(ox++) );
         *(ny++) = a*sy + b*( *(oy++) );

/* Add in the next vertex X and Y axis values to the running sums, and
   remove the position that has now passed out of the box. */
         sx += *(px++) - *(qx++);
         sy += *(py++) - *(qy++);
      }

/* Adjust the pointer for the rest of the polygon, up to one half box away
   from the end. In this section, the smoothing box does not touch either
   end of the polygon. */
      top = nv - half_width - 1;
      qx = oldx;
      qy = oldy;
      for( ; i < top; i++ ){

/* Form the new vertex (x,y) values as the weighted mean of the mean
   (x,y) values in the box, and the old (x,y) values. */
         *(nx++) = a*sx + b*( *(ox++) );
         *(ny++) = a*sy + b*( *(oy++) );

/* Add in the next vertex X and Y axis values to the running sums, and
   remove the position that has now passed out of the box. */
         sx += *(px++) - *(qx++);
         sy += *(py++) - *(qy++);
      }

/* Now do the last half box (which includes vertices from the start of
   the polygon). */
      top = nv;
      px = oldx;
      py = oldy;
      for( ; i < top; i++ ){
         *(nx++) = a*sx + b*( *(ox++) );
         *(ny++) = a*sy + b*( *(oy++) );
         sx += *(px++) - *(qx++);
         sy += *(py++) - *(qy++);
      }

/* Replace the data points in the PointSet. */
      ptr[ 0 ] = newx;
      ptr[ 1 ] = newy;
      oldx = astFree( oldx );
      oldy = astFree( oldy );
   }
}

static int TestAttrib( AstObject *this_object, const char *attrib, int *status ) {
/*
*  Name:
*     TestAttrib

*  Purpose:
*     Test if a specified attribute value is set for a Polygon.

*  Type:
*     Private function.

*  Synopsis:
*     #include "polygon.h"
*     int TestAttrib( AstObject *this, const char *attrib, int *status )

*  Class Membership:
*     Polygon member function (over-rides the astTestAttrib protected
*     method inherited from the Region class).

*  Description:
*     This function returns a boolean result (0 or 1) to indicate whether
*     a value has been set for one of a Polygon's attributes.

*  Parameters:
*     this
*        Pointer to the Polygon.
*     attrib
*        Pointer to a null terminated string specifying the attribute
*        name.  This should be in lower case with no surrounding white
*        space.
*     status
*        Pointer to the inherited status variable.

*  Returned Value:
*     One if a value has been set, otherwise zero.

*  Notes:
*     - A value of zero will be returned if this function is invoked
*     with the global status set, or if it should fail for any reason.
*/

/* Local Variables: */
   AstPolygon *this;             /* Pointer to the Polygon structure */
   int result;                   /* Result value to return */

/* Initialise. */
   result = 0;

/* Check the global error status. */
   if ( !astOK ) return result;

/* Obtain a pointer to the Polygon structure. */
   this = (AstPolygon *) this_object;

/* Check the attribute name and test the appropriate attribute. */

/* SimpVertices. */
/* ------------- */
   if ( !strcmp( attrib, "simpvertices" ) ) {
      result = astTestSimpVertices( this );

/* If the attribute is not recognised, pass it on to the parent method
   for further interpretation. */
   } else {
      result = (*parent_testattrib)( this_object, attrib, status );
   }

/* Return the result, */
   return result;
}

/*
*  Name:
*     TraceEdge

*  Purpose:
*     Find a point that is inside the required outline.

*  Type:
*     Private function.

*  Synopsis:
*     #include "polygon.h"
*     void TraceEdge<Oper><X>( <Xtype> value, const <Xtype> array[],
*                              const int lbnd[ 2 ], const int ubnd[ 2 ],
*                              int iv0, int ix0, int iy0, int starpix,
*                              int full, int *status );

*  Class Membership:
*     Polygon member function

*  Description:
*     This function forms a polygon enclosing the region of the data
*     array specified by <Oper> and "value". If this polygon contains
*     the point "(inx,iny)", then a PointSet is returned holding the
*     pixel coordinates of the Polygon vertices. If the polygon
*     does not contain "(inx,iny)", a NULL pointer is returned.
*
*     Each vertex in the polygon corresponds to a corner of a pixel in
*     the data array.

*  Parameters:
*     value
*        The data value defining valid pixels.
*     array
*        The data array.
*     lbnd
*        The lower pixel index bounds of the array.
*     ubnd
*        The upper pixel index bounds of the array.
*     iv0
*        The vector index of a pixel inside the region such that the
*        pixel to the right is NOT inside the region. This defines the
*        start of the polygon.
*     ix0
*        The X pixel index of the pixel specified by "iv0".
*     inx
*        The X pixel index of a point which must be inside the polygon
*        for the polygon to be acceptable.
*     iny
*        The Y pixel index of a point which must be inside the polygon
*        for the polygon to be acceptable.
*     starpix
*        If non-zero, the usual Starlink definition of pixel coordinate
*        is used (integral values at pixel corners). Otherwise, the
*        system used by other AST functions such as astResample is used
*        (integral values at pixel centres).
*     full
*        If non-zero, the full polygon is stored. If zero, vertices in the
*        middle of straight sections of the Polygon are omitted.
*     status
*        Pointer to the inherited status variable.

*  Returned Value:
*     A pointer to a PointSet holding the vertices of the polygon, or
*     NULL if the polygon did not contain "(inx,iny)".

*  Notes:
*     - <Oper> must be one of LT, LE, EQ, GE, GT, NE.


*/

/* Define a macro to implement the function for a specific data
   type and operation. */
#define MAKE_TRACEEDGE(X,Xtype,Oper,OperI) \
static AstPointSet *TraceEdge##Oper##X( Xtype value, const Xtype array[], \
                                        const int lbnd[ 2 ], const int ubnd[ 2 ], \
                                        int iv0, int ix0, int iy0, \
                                        int starpix, int full, \
                                        int *status ){ \
\
/* Local Variables: */ \
   AstPointSet *result; /* Pointer to text describing oper */ \
   const Xtype *pa;     /* Pointer to current valid pixel value */ \
   const Xtype *pb;     /* Pointer to neigbouring valid pixel value */ \
   const Xtype *pc;     /* Pointer to neigbouring valid pixel value */ \
   double *ptr[ 2 ];    /* PointSet data pointers */ \
   double *xvert;       /* Pointer to array holding vertex X axis values */ \
   double *yvert;       /* Pointer to array holding vertex Y axis values */ \
   double dx;           /* Pertubation in X (pixels) to avoid the pixel edge */ \
   double dy;           /* Pertubation in Y (pixels) to avoid the pixel edge */ \
   double xx;           /* Pixel X coord at corner */ \
   double yy;           /* Pixel Y coord at corner */ \
   int at;              /* The pixel corner to draw to */ \
   int done;            /* Have we arrived back at the start of the polygon? */ \
   int ii;              /* Index of new vertex */ \
   int ix;              /* X pixel index of current valid pixel */ \
   int iy;              /* Y pixel index of current valid pixel */ \
   int nright;          /* Overall number of right hand turns along polygon */ \
   int nvert;           /* Number of vertices */ \
   int nx;              /* Pixels per row */ \
\
/* Initialise */ \
   result = NULL; \
\
/* Check the global error status. */ \
   if ( !astOK ) return result; \
\
\
/* Initialise pointers to arrays holding the X and Y pixel coordinates at \
   the vertices of the polygon. */ \
   xvert = NULL; \
   yvert = NULL; \
   nvert = 0; \
\
/* Find number of pixels in one row of the array. */ \
   nx = ( ubnd[ 0 ] - lbnd[ 0 ] + 1 ); \
\
/* The four corners of a pixel are numbered as follows: 0=bottom left, \
   1=top left, 2=top right, 3=bottom right. The following algorithm moves \
   along pixel edges, from corner to corner, using the above numbering \
   scheme to identify the corners. We start the polygon by moving from the \
   bottom right to the top right corner of pixel "(ix0,iy0)". */ \
   ix = ix0; \
   iy = iy0; \
   at = 2; \
\
/* Store a pointer to the first good pixel value. */ \
   pa = array + ( ix - lbnd[ 0 ] ) + nx*( iy - lbnd[ 1 ] ) ; \
\
/* We count the number of times the polygon turns to the right compared \
   to the left. Initialise it to zero. */ \
   nright = 0; \
\
/* Loop round tracing out the polygon until we arrive back at the \
   beginning. The Polygon class requires that the inside of the polygon \
   is to the left as we move round the polygon in an anti-clockwise \
   direction. So at each corner, we attempt to move to the next \
   anti-clockwise good pixel corner. */ \
   done = 0; \
   while( !done ) { \
\
/* If we have arrived at the bottom left corner of the good pixel, we must \
   have come from the top left corner since all movements around a pixel \
   must be anti-clockwise. */ \
      if( at == 0 ) { \
\
/* Note the pixel coordinates at the bottom left corner of the current \
   pixel. */ \
         if( starpix ) { \
            xx = ix - 1.0; \
            yy = iy - 1.0; \
         } else { \
            xx = ix - 0.5; \
            yy = iy - 0.5; \
         } \
\
/* Get a pointer to lower left pixel value */ \
         pb = pa - nx - 1; \
\
/* Get a pointer to lower mid pixel value. */ \
         pc = pb + 1; \
\
/* If the lower left pixel is within the array and meets the validity \
   requirements, move to the left along its top edge. */ \
         if( iy > lbnd[ 1 ] && ix > lbnd[ 0 ] && ISVALID(*pb,OperI,value) ) { \
            nright++; \
            pa = pb; \
            at = 1; \
            ix--; \
            iy--; \
            dx = DELTA; \
            dy = -DELTA; \
\
/* Otherwise, if lower mid pixel is good, move down its left edge. */ \
         } else if( iy > lbnd[ 1 ] && ISVALID(*pc,OperI,value) ) { \
            pa = pc; \
            at = 0; \
            iy--; \
            dx = DELTA; \
            dy = 0.0; \
\
/* Otherwise, move to the right along the bottom edge of the current pixel. */ \
         } else { \
            nright--; \
            at = 3; \
            dx = DELTA; \
            dy = DELTA; \
         } \
\
/* If the polygon bends at this point, or if we will be smoothing the \
   polygon, append the pixel coordinates at this pixel corner to the \
   polygon. */ \
         if( full || pa != pc ) ADD( xx, yy ); \
\
/* If we have arrived at the top left corner of the good pixel, we must \
   have come from the top right corner. */ \
      } else if( at == 1 ) { \
\
/* Note the pixel coordinates at the top left corner of the current \
   pixel. */ \
         if( starpix ) { \
            xx = ix - 1.0; \
            yy = iy; \
         } else { \
            xx = ix - 0.5; \
            yy = iy + 0.5; \
         } \
\
/* Get a pointer to upper left pixel value */ \
         pb = pa + nx - 1; \
\
/* Get a pointer to mid left pixel value. */ \
         pc = pa - 1; \
\
/* If upper left pixel is good, move up its left edge. */ \
         if( iy < ubnd[ 1 ] && ix > lbnd[ 0 ] && ISVALID(*pb,OperI,value) ) { \
            nright++; \
            pa = pb; \
            at = 2; \
            ix--; \
            iy++; \
            dx = -DELTA; \
            dy = -DELTA; \
\
/* Otherwise, if left mid pixel is good, move left along its top edge. */ \
         } else if( ix > lbnd[ 0 ] && ISVALID(*pc,OperI,value) ) { \
            pa = pc; \
            at = 1; \
            ix--; \
            dx = 0.0; \
            dy = -DELTA; \
\
/* Otherwise, move down the left edge of the current pixel. */ \
         } else { \
            nright--; \
            at = 0; \
            dx = DELTA; \
            dy = -DELTA; \
         } \
\
/* If the polygon bends at this point, or if we will be smoothing the \
   polygon, append the pixel coordinates at this pixel corner to the \
   polygon. */ \
         if( full || pa != pc ) ADD( xx, yy ); \
\
/* If we have arrived at the top right corner of the good pixel, we must \
   have come from the bottom right corner. */ \
      } else if( at == 2 ) { \
\
/* Note the pixel coordinates at the top right corner of the current \
   pixel. */ \
         if( starpix ) { \
            xx = ix; \
            yy = iy; \
         } else { \
            xx = ix + 0.5; \
            yy = iy + 0.5; \
         } \
\
/* Pointer to upper right pixel value */ \
         pb = pa + nx + 1; \
\
/* Pointer to top mid pixel value. */ \
         pc = pa + nx; \
\
/* If upper right pixel is good, move right along its bottom edge. */ \
         if( iy < ubnd[ 1 ] && ix < ubnd[ 0 ] && ISVALID(*pb,OperI,value) ){ \
            nright++; \
            pa = pb; \
            at = 3; \
            ix++; \
            iy++; \
            dx = -DELTA; \
            dy = DELTA; \
\
/* Otherwise, if upper mid pixel is good, move up its right edge. */ \
         } else if( iy < ubnd[ 1 ] && ISVALID(*pc,OperI,value) ) { \
            pa = pc; \
            at = 2; \
            iy++; \
            dx = -DELTA; \
            dy = 0.0; \
\
/* Otherwise, move left along the top edge of the current pixel. */ \
         } else { \
            nright--; \
            at = 1; \
            dx = -DELTA; \
            dy = -DELTA; \
         } \
\
/* If the polygon bends at this point, or if we will be smoothing the \
   polygon, append the pixel coordinates at this pixel corner to the \
   polygon. */ \
         if( full || pa != pc ) ADD( xx, yy ); \
\
/* Arrived at bottom right corner of good pixel from lower left. */ \
      } else { \
\
/* Note the pixel coordinates at the bottom right corner of the current \
   pixel. */ \
         if( starpix ) { \
            xx = ix; \
            yy = iy - 1.0; \
         } else { \
            xx = ix + 0.5; \
            yy = iy - 0.5; \
         } \
\
/* Pointer to lower right pixel value */ \
         pb = pa - ( nx - 1 ); \
\
/* Pointer to mid right pixel value. */ \
         pc = pa + 1; \
\
/* If lower right pixel is good, move down its left edge. */ \
         if( iy > lbnd[ 1 ] && ix < ubnd[ 0 ] && ISVALID(*pb,OperI,value) ) { \
            nright++; \
            pa = pb; \
            at = 0; \
            ix++; \
            iy--; \
            dx = DELTA; \
            dy = DELTA; \
\
/* Otherwise, if right mid pixel is good, move right along its lower edge. */ \
         } else if( ix < ubnd[ 0 ] && ISVALID(*pc,OperI,value) ) { \
            pa = pc; \
            at = 3; \
            ix++; \
            dx = 0.0; \
            dy = DELTA; \
\
/* Otherwise, move up the right edge of the current pixel. */ \
         } else { \
            nright--; \
            at = 2; \
            dx = -DELTA; \
            dy = DELTA; \
         } \
\
/* If the polygon bends at this point, or if we will be smoothing the \
   polygon, append the pixel coordinates at this pixel corner to the \
   polygon. */ \
         if( full || pa != pc ) ADD( xx, yy ); \
      } \
\
/* If we have arrived back at the start, break out of the loop. */ \
      if( ix == ix0 && iy == iy0 && at == 2 ) done = 1; \
   } \
\
/* If we have circled round to the right, the polygon will not enclosed \
   the specified position, so free resources and return a NULL pointer. */ \
   if( nright > 0 ) { \
      xvert = astFree( xvert ); \
      yvert = astFree( yvert ); \
\
/* If we have circled round to the left, the polygon will enclose \
   the specified position, so create and return a PointSet. */ \
   } else { \
      result = astPointSet( nvert, 2, " ", status ); \
      ptr[ 0 ] = xvert; \
      ptr[ 1 ] = yvert; \
      astSetPoints( result, ptr ); \
   } \
\
/* Annul the returned PointSet if anythign went wrong. */ \
   if( !astOK && result ) result = astAnnul( result ); \
\
/* Return the PointSet pointer. */ \
   return result; \
}

/* Define a macro to add a vertex position to dynamically allocated
   arrays of X and Y positions. We offset the supplied position by
   a small fraction of a pixel towards the centre of hte polygon to
   avoid placing vertices exactly on the edge, which may cause problems
   later for pixels that are on the edge of an area of bad pixel. */
#define ADD(X,Y) {\
   ii = nvert++; \
   xvert = (double *) astGrow( xvert, nvert, sizeof( double ) ); \
   yvert = (double *) astGrow( yvert, nvert, sizeof( double ) ); \
   if( astOK ) { \
      xvert[ ii ] = (X+dx); \
      yvert[ ii ] = (Y+dy); \
   } \
}

/* Define a macro that uses the above macro to to create implementations
   of TraceEdge for all operations. */
#define MAKEALL_TRACEEDGE(X,Xtype) \
MAKE_TRACEEDGE(X,Xtype,LT,AST__LT) \
MAKE_TRACEEDGE(X,Xtype,LE,AST__LE) \
MAKE_TRACEEDGE(X,Xtype,EQ,AST__EQ) \
MAKE_TRACEEDGE(X,Xtype,NE,AST__NE) \
MAKE_TRACEEDGE(X,Xtype,GE,AST__GE) \
MAKE_TRACEEDGE(X,Xtype,GT,AST__GT)

/* Expand the above macro to generate a function for each required
   data type and operation. */
#if HAVE_LONG_DOUBLE     /* Not normally implemented */
MAKEALL_TRACEEDGE(LD,long double)
#endif
MAKEALL_TRACEEDGE(D,double)
MAKEALL_TRACEEDGE(L,long int)
MAKEALL_TRACEEDGE(UL,unsigned long int)
MAKEALL_TRACEEDGE(I,int)
MAKEALL_TRACEEDGE(UI,unsigned int)
MAKEALL_TRACEEDGE(S,short int)
MAKEALL_TRACEEDGE(US,unsigned short int)
MAKEALL_TRACEEDGE(B,signed char)
MAKEALL_TRACEEDGE(UB,unsigned char)
MAKEALL_TRACEEDGE(F,float)

/* Undefine the macros. */
#undef MAKE_TRACEEDGE
#undef MAKEALL_TRACEEDGE

static AstPointSet *Transform( AstMapping *this_mapping, AstPointSet *in,
                               int forward, AstPointSet *out, int *status ) {
/*
*  Name:
*     Transform

*  Purpose:
*     Apply a Polygon to transform a set of points.

*  Type:
*     Private function.

*  Synopsis:
*     #include "polygon.h"
*     AstPointSet *Transform( AstMapping *this, AstPointSet *in,
*                             int forward, AstPointSet *out, int *status )

*  Class Membership:
*     Polygon member function (over-rides the astTransform protected
*     method inherited from the Region class).

*  Description:
*     This function takes a Polygon and a set of points encapsulated in a
*     PointSet and transforms the points by setting axis values to
*     AST__BAD for all points which are outside the region. Points inside
*     the region are copied unchanged from input to output.

*  Parameters:
*     this
*        Pointer to the Polygon.
*     in
*        Pointer to the PointSet holding the input coordinate data.
*     forward
*        A non-zero value indicates that the forward coordinate transformation
*        should be applied, while a zero value requests the inverse
*        transformation.
*     out
*        Pointer to a PointSet which will hold the transformed (output)
*        coordinate values. A NULL value may also be given, in which case a
*        new PointSet will be created by this function.
*     status
*        Pointer to the inherited status variable.

*  Returned Value:
*     Pointer to the output (possibly new) PointSet.

*  Notes:
*     -  The forward and inverse transformations are identical for a
*     Region.
*     -  A null pointer will be returned if this function is invoked with the
*     global error status set, or if it should fail for any reason.
*     -  The number of coordinate values per point in the input PointSet must
*     match the number of axes in the Frame represented by the Polygon.
*     -  If an output PointSet is supplied, it must have space for sufficient
*     number of points and coordinate values per point to accommodate the
*     result. Any excess space will be ignored.
*/

/* Local Variables: */
   AstFrame *frm;                /* Pointer to base Frame in FrameSet */
   AstLineDef *a;                /* Line from inside point to test point */
   AstLineDef *b;                /* Polygon edge */
   AstPointSet *in_base;         /* PointSet holding base Frame input positions*/
   AstPointSet *result;          /* Pointer to output PointSet */
   AstPolygon *this;             /* Pointer to Polygon */
   double **ptr_in;              /* Pointer to input base Frame coordinate data */
   double **ptr_out;             /* Pointer to output current Frame coordinate data */
   double *px;                   /* Pointer to array of first axis values */
   double *py;                   /* Pointer to array of second axis values */
   double p[ 2 ];                /* Current test position */
   int closed;                   /* Is the boundary part of the Region? */
   int i;                        /* Edge index */
   int icoord;                   /* Coordinate index */
   int in_region;                /* Is the point inside the Region? */
   int ncoord_out;               /* No. of current Frame axes */
   int ncross;                   /* Number of crossings */
   int neg;                      /* Has the Region been negated? */
   int npoint;                   /* No. of input points */
   int nv;                       /* No. of vertices */
   int point;                    /* Loop counter for input points */
   int pos;                      /* Is test position in, on, or outside boundary? */

/* Check the global error status. */
   if ( !astOK ) return NULL;

/* Obtain a pointer to the Polygon structure. */
   this = (AstPolygon *) this_mapping;

/* Apply the parent mapping using the stored pointer to the Transform member
   function inherited from the parent Region class. This function validates
   all arguments and generates an output PointSet if necessary,
   containing a copy of the input PointSet. */
   result = (*parent_transform)( this_mapping, in, forward, out, status );

/* Get the number of points to be transformed. */
   npoint = astGetNpoint( result );

/* Get a pointer to the output axis values. */
   ptr_out = astGetPoints( result );

/* Find the number of axes in the current Frame. This need not be 2 (the
   number of axes in the *base* Frame must be 2 however). */
   ncoord_out = astGetNcoord( result );

/* We will now extend the parent astTransform method by performing the
   calculations needed to generate the output coordinate values. */

/* First use the encapsulated FrameSet to transform the supplied positions
   from the current Frame in the encapsulated FrameSet (the Frame
   represented by the Region), to the base Frame (the Frame in which the
   Region is defined). This call also returns a pointer to the base Frame
   of the encapsulated FrameSet. Note, the returned pointer may be a
   clone of the "in" pointer, and so we must be carefull not to modify the
   contents of the returned PointSet. */
   in_base = astRegTransform( this, in, 0, NULL, &frm );
   ptr_in = astGetPoints( in_base );

/* Get the number of vertices in the polygon. */
   nv = astGetNpoint( ((AstRegion *) this)->points );

/* See if the boundary is part of the Region. */
   closed = astGetClosed( this );

/* See if the Region has been negated. */
   neg = astGetNegated( this );

/* Perform coordinate arithmetic. */
/* ------------------------------ */
   if ( astOK ) {
      px = ptr_in[ 0 ];
      py = ptr_in[ 1 ];

/* Loop round each supplied point in the base Frame of the polygon. */
      for ( point = 0; point < npoint; point++, px++, py++ ) {

/* If the input point is bad, indicate that bad output values should be
   returned. */
         if( *px == AST__BAD || *py == AST__BAD ) {
            in_region = 0;

/* Otherwise, we first determine if the point is inside, outside, or on,
   the Polygon boundary. Initialially it is unknown. */
         } else {

/* Ensure cached information is available.*/
            Cache( this, status );

/* Create a definition of the line from a point which is inside the
   polygon to the supplied point. This is a structure which includes
   cached intermediate information which can be used to speed up
   subsequent calculations. */
            p[ 0 ] = *px;
            p[ 1 ] = *py;
            a = astLineDef( frm, this->in, p );

/* We now determine the number of times this line crosses the polygon
   boundary. Initialise the number of crossings to zero. */
            ncross = 0;
            pos = UNKNOWN;

/* Loop rouind all edges of the polygon. */
            for( i = 0; i < nv; i++ ) {
               b = this->edges[ i ];

/* If this point is on the current edge, then we need do no more checks
   since we know it is either inside or outside the polygon (depending on
   whether the polygon is closed or not). */
               if( astLineContains( frm, b, 0, p ) ) {
                  pos = ON;
                  break;

/* Otherwise, see if the two lines cross within their extent. If so,
   increment the number of crossings. */
               } else if( astLineCrossing( frm, b, a, NULL ) ) {
                  ncross++;
               }
            }

/* Free resources */
            a = astFree( a );

/* If the position is not on the boundary, it is inside the boundary if
   the number of crossings is even, and outside otherwise. */
            if( pos == UNKNOWN ) pos = ( ncross % 2 == 0 )? IN : OUT;

/* Whether the point is in the Region depends on whether the point is
   inside the polygon boundary, whether the Polygon has been negated, and
   whether the polygon is closed. */
            if( neg ) {
               if( pos == IN ) {
                  in_region = 0;
               } else if( pos == OUT ) {
                  in_region = 1;
               } else if( closed ) {
                  in_region = 1;
               } else {
                  in_region = 0;
               }

            } else {
               if( pos == IN ) {
                  in_region = 1;
               } else if( pos == OUT ) {
                  in_region = 0;
               } else if( closed ) {
                  in_region = 1;
               } else {
                  in_region = 0;
               }
            }
         }

/* If the point is not inside the Region, store bad output values. */
         if( !in_region ) {
            for ( icoord = 0; icoord < ncoord_out; icoord++ ) {
               ptr_out[ icoord ][ point ] = AST__BAD;
            }
         }
      }
   }

/* Free resources */
   in_base = astAnnul( in_base );
   frm = astAnnul( frm );

/* Annul the result if an error has occurred. */
   if( !astOK ) result = astAnnul( result );

/* Return a pointer to the output PointSet. */
   return result;
}

/* Functions which access class attributes. */
/* ---------------------------------------- */
/* Implement member functions to access the attributes associated with
   this class using the macros defined for this purpose in the
   "object.h" file. For a description of each attribute, see the class
   interface (in the associated .h file). */

/*
*att++
*  Name:
*     SimpVertices

*  Purpose:
*     Simplify a Polygon by transforming its vertices?

*  Type:
*     Public attribute.

*  Synopsis:
*     Integer (boolean).

*  Description:
*     This attribute controls the behaviour of the
c     astSimplify
f     AST_SIMPLIFY
*     method when applied to a Polygon. The simplified Polygon is created
*     by transforming the vertices from the Frame in which the Polygon
*     was originally defined into the Frame currently represented by the
*     Polygon. If SimpVertices is non-zero (the default) then this
*     simplified Polygon is returned without further checks. If SimpVertices
*     is zero, a check is made that the edges of the new Polygon do not
*     depart significantly from the edges of the original Polygon (as
*     determined by the uncertainty associated with the Polygon). This
*     could occur, for instance, if the Mapping frrm the original to the
*     current Frame is highly non-linear. If this check fails, the
*     original unsimplified Polygon is returned without change.

*  Applicability:
*     Polygon
*        All Polygons have this attribute.

*att--
*/
astMAKE_CLEAR(Polygon,SimpVertices,simp_vertices,-INT_MAX)
astMAKE_GET(Polygon,SimpVertices,int,0,( ( this->simp_vertices != -INT_MAX ) ?
                                   this->simp_vertices : 1 ))
astMAKE_SET(Polygon,SimpVertices,int,simp_vertices,( value != 0 ))
astMAKE_TEST(Polygon,SimpVertices,( this->simp_vertices != -INT_MAX ))

/* Copy constructor. */
/* ----------------- */
static void Copy( const AstObject *objin, AstObject *objout, int *status ) {
/*
*  Name:
*     Copy

*  Purpose:
*     Copy constructor for Polygon objects.

*  Type:
*     Private function.

*  Synopsis:
*     void Copy( const AstObject *objin, AstObject *objout, int *status )

*  Description:
*     This function implements the copy constructor for Polygon objects.

*  Parameters:
*     objin
*        Pointer to the object to be copied.
*     objout
*        Pointer to the object being constructed.
*     status
*        Pointer to the inherited status variable.

*  Notes:
*     -  This constructor makes a deep copy.
*/

/* Local Variables: */
   AstPolygon *out;               /* Pointer to output Polygon  */

/* Check the global error status. */
   if ( !astOK ) return;

/* Obtain pointers to the output Polygon. */
   out = (AstPolygon *) objout;

/* For safety, first clear any references to the input memory from
   the output Polygon. */
   out->edges = NULL;
   out->startsat = NULL;

/* Indicate cached information needs nre-calculating. */
   astResetCache( (AstPolygon *) out );
}


/* Destructor. */
/* ----------- */
static void Delete( AstObject *obj, int *status ) {
/*
*  Name:
*     Delete

*  Purpose:
*     Destructor for Polygon objects.

*  Type:
*     Private function.

*  Synopsis:
*     void Delete( AstObject *obj, int *status )

*  Description:
*     This function implements the destructor for Polygon objects.

*  Parameters:
*     obj
*        Pointer to the object to be deleted.
*     status
*        Pointer to the inherited status variable.

*  Notes:
*     This function attempts to execute even if the global error status is
*     set.
*/

/* Local Variables: */
   AstPointSet *ps;                  /* Pointer to PointSet inside Region */
   AstPolygon *this;                 /* Pointer to Polygon */
   int i;                            /* Index of vertex */
   int istat;                        /* Original AST error status */
   int nv;                           /* Number of vertices */
   int rep;                          /* Original error reporting state */

/* Obtain a pointer to the Polygon structure. */
   this = (AstPolygon *) obj;

/* Annul all resources. */
   ps = ((AstRegion *) this)->points;
   if( this->edges && ps ) {

/* Ensure we get a value for "nv" even if an error has occurred. */
      istat = astStatus;
      astClearStatus;
      rep = astReporting( 0 );

      nv = astGetNpoint( ps );

      astSetStatus( istat );
      astReporting( rep );

/* Free the structures holding the edge information. */
      for( i = 0; i < nv; i++ ) {
         this->edges[ i ] = astFree( this->edges[ i ] );
      }
   }

   this->edges = astFree( this->edges );
   this->startsat = astFree( this->startsat );
}

/* Dump function. */
/* -------------- */
static void Dump( AstObject *this_object, AstChannel *channel, int *status ) {
/*
*  Name:
*     Dump

*  Purpose:
*     Dump function for Polygon objects.

*  Type:
*     Private function.

*  Synopsis:
*     void Dump( AstObject *this, AstChannel *channel, int *status )

*  Description:
*     This function implements the Dump function which writes out data
*     for the Polygon class to an output Channel.

*  Parameters:
*     this
*        Pointer to the Polygon whose data are being written.
*     channel
*        Pointer to the Channel to which the data are being written.
*     status
*        Pointer to the inherited status variable.
*/

/* Local Variables: */
   AstPolygon *this;             /* Pointer to the Polygon structure */
   int ival;                     /* Integer attribute value */
   int set;                      /* Attribute value set? */

/* Check the global error status. */
   if ( !astOK ) return;

/* Obtain a pointer to the Polygon structure. */
   this = (AstPolygon *) this_object;

/* Write out values representing the instance variables for the
   Polygon class.  Accompany these with appropriate comment strings,
   possibly depending on the values being written.*/

/* In the case of attributes, we first use the appropriate (private)
   Test...  member function to see if they are set. If so, we then use
   the (private) Get... function to obtain the value to be written
   out.

   For attributes which are not set, we use the astGet... method to
   obtain the value instead. This will supply a default value
   (possibly provided by a derived class which over-rides this method)
   which is more useful to a human reader as it corresponds to the
   actual default attribute value.  Since "set" will be zero, these
   values are for information only and will not be read back. */

/* SimpVertices. */
/* ------------ */
/* Write out the forward-inverse simplification flag. */
   set = TestSimpVertices( this, status );
   ival = set ? GetSimpVertices( this, status ) : astGetSimpVertices( this );
   astWriteInt( channel, "SimpVT", set, 0, ival, "Simplify by transforming vertices?" );

/* A flag indicating the convention used for determining the interior of
   the polygon. A zero value indicates that the old AST system is in
   use (inside to the left when moving anti-clockwise round the vertices
   as viewed from the outside of the celestial sphere). A non-zero value
   indicates the STC system is in use (inside to the left when moving
   anti-clockwise round the vertices as viewed from the inside of the
   celestial sphere). AST currently uses the STC system. */
   astWriteInt( channel, "Order", 1, 0, 1, "Polygon uses STC vertex order convention" );
}

/* Standard class functions. */
/* ========================= */
/* Implement the astIsAPolygon and astCheckPolygon functions using the macros
   defined for this purpose in the "object.h" header file. */
astMAKE_ISA(Polygon,Region)
astMAKE_CHECK(Polygon)

AstPolygon *astPolygon_( void *frame_void, int npnt, int dim,
                         const double *points, AstRegion *unc,
                         const char *options, int *status, ...) {
/*
*++
*  Name:
c     astPolygon
f     AST_POLYGON

*  Purpose:
*     Create a Polygon.

*  Type:
*     Public function.

*  Synopsis:
c     #include "polygon.h"
c     AstPolygon *astPolygon( AstFrame *frame, int npnt, int dim,
c                             const double *points, AstRegion *unc,
c                             const char *options, ... )
f     RESULT = AST_POLYGON( FRAME, NPNT, DIM, POINTS, UNC, OPTIONS, STATUS )

*  Class Membership:
*     Polygon constructor.

*  Description:
*     This function creates a new Polygon object and optionally initialises
*     its attributes.
*
*     The Polygon class implements a polygonal area, defined by a
*     collection of vertices, within a 2-dimensional Frame. The vertices
*     are connected together by geodesic curves within the encapsulated Frame.
*     For instance, if the encapsulated Frame is a simple Frame then the
*     geodesics will be straight lines, but if the Frame is a SkyFrame then
*     the geodesics will be great circles. Note, the vertices must be
*     supplied in an order such that the inside of the polygon is to the
*     left of the boundary as the vertices are traversed. Supplying them
*     in the reverse order will effectively negate the polygon.
*
*     Within a SkyFrame, neighbouring vertices are always joined using the
*     shortest path. Thus if an edge of 180 degrees or more in length is
*     required, it should be split into section each of which is less
*     than 180 degrees. The closed path joining all the vertices in order
*     will divide the celestial sphere into two disjoint regions. The
*     inside of the polygon is the region which is circled in an
*     anti-clockwise manner (when viewed from the inside of the celestial
*     sphere) when moving through the list of vertices in the order in
*     which they were supplied when the Polygon was created (i.e. the
*     inside is to the left of the boundary when moving through the
*     vertices in the order supplied).

*  Parameters:
c     frame
f     FRAME = INTEGER (Given)
*        A pointer to the Frame in which the region is defined. It must
*        have exactly 2 axes. A deep copy is taken of the supplied Frame.
*        This means that any subsequent changes made to the Frame using the
*        supplied pointer will have no effect the Region.
c     npnt
f     NPNT = INTEGER (Given)
*        The number of points in the Region.
c     dim
f     DIM = INTEGER (Given)
c        The number of elements along the second dimension of the "points"
f        The number of elements along the first dimension of the POINTS
*        array (which contains the point coordinates). This value is
*        required so that the coordinate values can be correctly
*        located if they do not entirely fill this array. The value
c        given should not be less than "npnt".
f        given should not be less than NPNT.
c     points
f     POINTS( DIM, 2 ) = DOUBLE PRECISION (Given)
c        The address of the first element of a 2-dimensional array of
c        shape "[2][dim]" giving the physical coordinates of the vertices.
c        These should be stored such that the value of coordinate
c        number "coord" for point number "pnt" is found in element
c        "in[coord][pnt]".
f        A 2-dimensional array giving the physical coordinates of the
f        vertices. These should be stored such that the value of coordinate
f        number COORD for point number PNT is found in element IN(PNT,COORD).
c     unc
f     UNC = INTEGER (Given)
*        An optional pointer to an existing Region which specifies the
*        uncertainties associated with the boundary of the Polygon being created.
*        The uncertainty in any point on the boundary of the Polygon is found by
*        shifting the supplied "uncertainty" Region so that it is centred at
*        the boundary point being considered. The area covered by the
*        shifted uncertainty Region then represents the uncertainty in the
*        boundary position. The uncertainty is assumed to be the same for
*        all points.
*
*        If supplied, the uncertainty Region must be of a class for which
*        all instances are centro-symetric (e.g. Box, Circle, Ellipse, etc.)
*        or be a Prism containing centro-symetric component Regions. A deep
*        copy of the supplied Region will be taken, so subsequent changes to
*        the uncertainty Region using the supplied pointer will have no
*        effect on the created Polygon. Alternatively,
f        a null Object pointer (AST__NULL)
c        a NULL Object pointer
*        may be supplied, in which case a default uncertainty is used
*        equivalent to a box 1.0E-6 of the size of the Polygon being created.
*
*        The uncertainty Region has two uses: 1) when the
c        astOverlap
f        AST_OVERLAP
*        function compares two Regions for equality the uncertainty
*        Region is used to determine the tolerance on the comparison, and 2)
*        when a Region is mapped into a different coordinate system and
*        subsequently simplified (using
c        astSimplify),
f        AST_SIMPLIFY),
*        the uncertainties are used to determine if the transformed boundary
*        can be accurately represented by a specific shape of Region.
c     options
f     OPTIONS = CHARACTER * ( * ) (Given)
c        Pointer to a null-terminated string containing an optional
c        comma-separated list of attribute assignments to be used for
c        initialising the new Polygon. The syntax used is identical to
c        that for the astSet function and may include "printf" format
c        specifiers identified by "%" symbols in the normal way.
f        A character string containing an optional comma-separated
f        list of attribute assignments to be used for initialising the
f        new Polygon. The syntax used is identical to that for the
f        AST_SET routine.
c     ...
c        If the "options" string contains "%" format specifiers, then
c        an optional list of additional arguments may follow it in
c        order to supply values to be substituted for these
c        specifiers. The rules for supplying these are identical to
c        those for the astSet function (and for the C "printf"
c        function).
f     STATUS = INTEGER (Given and Returned)
f        The global status.

*  Returned Value:
c     astPolygon()
f     AST_POLYGON = INTEGER
*        A pointer to the new Polygon.

*  Notes:
*     - A null Object pointer (AST__NULL) will be returned if this
c     function is invoked with the AST error status set, or if it
f     function is invoked with STATUS set to an error value, or if it
*     should fail for any reason.

*  Status Handling:
*     The protected interface to this function includes an extra
*     parameter at the end of the parameter list descirbed above. This
*     parameter is a pointer to the integer inherited status
*     variable: "int *status".

*--
*/

/* Local Variables: */
   astDECLARE_GLOBALS            /* Pointer to thread-specific global data */
   AstFrame *frame;              /* Pointer to Frame structure */
   AstPolygon *new;            /* Pointer to new Polygon */
   va_list args;                 /* Variable argument list */

/* Get a pointer to the thread specific global data structure. */
   astGET_GLOBALS(NULL);

/* Check the global status. */
   if ( !astOK ) return NULL;

/* Obtain and validate a pointer to the supplied Frame structure. */
   frame = astCheckFrame( frame_void );

/* Initialise the Polygon, allocating memory and initialising the
   virtual function table as well if necessary. */
   new = astInitPolygon( NULL, sizeof( AstPolygon ), !class_init,
                         &class_vtab, "Polygon", frame, npnt,
                         dim, points, unc );

/* If successful, note that the virtual function table has been
   initialised. */
   if ( astOK ) {
      class_init = 1;

/* Obtain the variable argument list and pass it along with the options string
   to the astVSet method to initialise the new Polygon's attributes. */
      va_start( args, status );
      astVSet( new, options, NULL, args );
      va_end( args );

/* If an error occurred, clean up by deleting the new object. */
      if ( !astOK ) new = astDelete( new );
   }

/* Return a pointer to the new Polygon. */
   return new;
}

AstPolygon *astPolygonId_( void *frame_void, int npnt, int dim,
                           const double *points, void *unc_void,
                           const char *options, ... ) {
/*
*  Name:
*     astPolygonId_

*  Purpose:
*     Create a Polygon.

*  Type:
*     Private function.

*  Synopsis:
*     #include "polygon.h"
*     AstPolygon *astPolygonId_( void *frame_void, int npnt,
*                                int dim, const double *points, void *unc_void,
*                                const char *options, ... )

*  Class Membership:
*     Polygon constructor.

*  Description:
*     This function implements the external (public) interface to the
*     astPolygon constructor function. It returns an ID value (instead
*     of a true C pointer) to external users, and must be provided
*     because astPolygon_ has a variable argument list which cannot be
*     encapsulated in a macro (where this conversion would otherwise
*     occur).
*
*     The variable argument list also prevents this function from
*     invoking astPolygon_ directly, so it must be a re-implementation
*     of it in all respects, except for the final conversion of the
*     result to an ID value.

*  Parameters:
*     As for astPolygon_.

*  Returned Value:
*     The ID value associated with the new Polygon.
*/

/* Local Variables: */
   astDECLARE_GLOBALS            /* Pointer to thread-specific global data */
   AstFrame *frame;              /* Pointer to Frame structure */
   AstPolygon *new;              /* Pointer to new Polygon */
   AstRegion *unc;               /* Pointer to Region structure */
   va_list args;                 /* Variable argument list */

   int *status;                  /* Get a pointer to the thread specific global data structure. */
   astGET_GLOBALS(NULL);

/* Get a pointer to the inherited status value. */
   status = astGetStatusPtr;

/* Check the global status. */
   if ( !astOK ) return NULL;

/* Obtain a Frame pointer from the supplied ID and validate the
   pointer to ensure it identifies a valid Frame. */
   frame = astVerifyFrame( astMakePointer( frame_void ) );

/* Obtain a Region pointer from the supplied "unc" ID and validate the
   pointer to ensure it identifies a valid Region . */
   unc = unc_void ? astVerifyRegion( astMakePointer( unc_void ) ) : NULL;

/* Initialise the Polygon, allocating memory and initialising the
   virtual function table as well if necessary. */
   new = astInitPolygon( NULL, sizeof( AstPolygon ), !class_init,
                         &class_vtab, "Polygon", frame, npnt, dim,
                         points, unc );

/* If successful, note that the virtual function table has been
   initialised. */
   if ( astOK ) {
      class_init = 1;

/* Obtain the variable argument list and pass it along with the options string
   to the astVSet method to initialise the new Polygon's attributes. */
      va_start( args, options );
      astVSet( new, options, NULL, args );
      va_end( args );

/* If an error occurred, clean up by deleting the new object. */
      if ( !astOK ) new = astDelete( new );
   }

/* Return an ID value for the new Polygon. */
   return astMakeId( new );
}


AstPolygon *astInitPolygon_( void *mem, size_t size, int init, AstPolygonVtab *vtab,
                             const char *name, AstFrame *frame, int npnt,
                             int dim, const double *points, AstRegion *unc, int *status ) {
/*
*+
*  Name:
*     astInitPolygon

*  Purpose:
*     Initialise a Polygon.

*  Type:
*     Protected function.

*  Synopsis:
*     #include "polygon.h"
*     AstPolygon *astInitPolygon( void *mem, size_t size, int init, AstPolygonVtab *vtab,
*                                 const char *name, AstFrame *frame, int npnt,
*                                 int dim, const double *points, AstRegion *unc )

*  Class Membership:
*     Polygon initialiser.

*  Description:
*     This function is provided for use by class implementations to initialise
*     a new Polygon object. It allocates memory (if necessary) to accommodate
*     the Polygon plus any additional data associated with the derived class.
*     It then initialises a Polygon structure at the start of this memory. If
*     the "init" flag is set, it also initialises the contents of a virtual
*     function table for a Polygon at the start of the memory passed via the
*     "vtab" parameter.

*  Parameters:
*     mem
*        A pointer to the memory in which the Polygon is to be initialised.
*        This must be of sufficient size to accommodate the Polygon data
*        (sizeof(Polygon)) plus any data used by the derived class. If a value
*        of NULL is given, this function will allocate the memory itself using
*        the "size" parameter to determine its size.
*     size
*        The amount of memory used by the Polygon (plus derived class data).
*        This will be used to allocate memory if a value of NULL is given for
*        the "mem" parameter. This value is also stored in the Polygon
*        structure, so a valid value must be supplied even if not required for
*        allocating memory.
*     init
*        A logical flag indicating if the Polygon's virtual function table is
*        to be initialised. If this value is non-zero, the virtual function
*        table will be initialised by this function.
*     vtab
*        Pointer to the start of the virtual function table to be associated
*        with the new Polygon.
*     name
*        Pointer to a constant null-terminated character string which contains
*        the name of the class to which the new object belongs (it is this
*        pointer value that will subsequently be returned by the astGetClass
*        method).
*     frame
*        A pointer to the Frame in which the region is defined.
*     npnt
*        The number of points in the Region.
*     dim
*        The number of elements along the second dimension of the "points"
*        array (which contains the point coordinates). This value is
*        required so that the coordinate values can be correctly
*        located if they do not entirely fill this array. The value
*        given should not be less than "npnt".
*     points
*        The address of the first element of a 2-dimensional array of
*        shape "[2][dim]" giving the physical coordinates of the
*        points. These should be stored such that the value of coordinate
*        number "coord" for point number "pnt" is found in element
*        "in[coord][pnt]".
*     unc
*        A pointer to a Region which specifies the uncertainty in the
*        supplied positions (all points in the new Polygon being
*        initialised are assumed to have the same uncertainty). A NULL
*        pointer can be supplied, in which case default uncertainties equal
*        to 1.0E-6 of the dimensions of the new Polygon's bounding box are
*        used. If an uncertainty Region is supplied, it must be either a Box,
*        a Circle or an Ellipse, and its encapsulated Frame must be related
*        to the Frame supplied for parameter "frame" (i.e. astConvert
*        should be able to find a Mapping between them). Two positions
*        the "frame" Frame are considered to be co-incident if their
*        uncertainty Regions overlap. The centre of the supplied
*        uncertainty Region is immaterial since it will be re-centred on the
*        point being tested before use. A deep copy is taken of the supplied
*        Region.

*  Returned Value:
*     A pointer to the new Polygon.

*  Notes:
*     -  A null pointer will be returned if this function is invoked with the
*     global error status set, or if it should fail for any reason.
*-
*/

/* Local Variables: */
   AstPolygon *new;        /* Pointer to new Polygon */
   AstPointSet *pset;        /* Pointer to PointSet holding points */
   const double *q;          /* Pointer to next supplied axis value */
   double **ptr;             /* Pointer to data in pset */
   double *p;                /* Pointer to next PointSet axis value */
   int i;                    /* Axis index */
   int j;                    /* Point index */
   int nin;                  /* No. of axes */

/* Check the global status. */
   if ( !astOK ) return NULL;

/* If necessary, initialise the virtual function table. */
   if ( init ) astInitPolygonVtab( vtab, name );

/* Initialise. */
   new = NULL;

/* Check the number of axis values per position is correct. */
   nin = astGetNaxes( frame );
   if( nin != 2 ) {
      astError( AST__BADIN, "astInitPolygon(%s): The supplied %s has %d "
                "axes - polygons must have exactly 2 axes.", status, name,
                astGetClass( frame ), nin );

/* If so create a PointSet and store the supplied points in it. Check
   none are bad. */
   } else {
      pset = astPointSet( npnt, 2, "", status );
      ptr = astGetPoints( pset );
      for( i = 0; i < 2 && astOK; i++ ) {
         p = ptr[ i ];
         q = points + i*dim;
         for( j = 0; j < npnt; j++ ) {
            if( (*(p++) = *(q++)) == AST__BAD ) {
               astError( AST__BADIN, "astInitPolygon(%s): One or more "
                         "bad axis values supplied for the vertex "
                         "number %d.", status, name, j + 1 );
               break;
            }
         }
      }

/* Initialise a Region structure (the parent class) as the first component
   within the Polygon structure, allocating memory if necessary. */
      new = (AstPolygon *) astInitRegion( mem, size, 0, (AstRegionVtab *) vtab,
                                          name, frame, pset, unc );
      if ( astOK ) {

/* Initialise the Polygon data. */
/* ------------------------------ */
         new->lbnd[ 0 ] = AST__BAD;
         new->ubnd[ 0 ] = AST__BAD;
         new->lbnd[ 1 ] = AST__BAD;
         new->ubnd[ 1 ] = AST__BAD;
         new->simp_vertices = -INT_MAX;
         new->edges = NULL;
         new->startsat = NULL;
         new->totlen = 0.0;
         new->acw = 1;
         new->stale = 1;

/* Ensure the vertices are stored such that the unnegated Polygon
   represents the inside of the polygon. */
         EnsureInside( new, status );

/* If an error occurred, clean up by deleting the new Polygon. */
         if ( !astOK ) new = astDelete( new );
      }

/* Free resources. */
      pset = astAnnul( pset );

   }

/* Return a pointer to the new Polygon. */
   return new;
}

AstPolygon *astLoadPolygon_( void *mem, size_t size, AstPolygonVtab *vtab,
                             const char *name, AstChannel *channel, int *status ) {
/*
*+
*  Name:
*     astLoadPolygon

*  Purpose:
*     Load a Polygon.

*  Type:
*     Protected function.

*  Synopsis:
*     #include "polygon.h"
*     AstPolygon *astLoadPolygon( void *mem, size_t size, AstPolygonVtab *vtab,
*                                 const char *name, AstChannel *channel )

*  Class Membership:
*     Polygon loader.

*  Description:
*     This function is provided to load a new Polygon using data read
*     from a Channel. It first loads the data used by the parent class
*     (which allocates memory if necessary) and then initialises a
*     Polygon structure in this memory, using data read from the input
*     Channel.
*
*     If the "init" flag is set, it also initialises the contents of a
*     virtual function table for a Polygon at the start of the memory
*     passed via the "vtab" parameter.

*  Parameters:
*     mem
*        A pointer to the memory into which the Polygon is to be
*        loaded.  This must be of sufficient size to accommodate the
*        Polygon data (sizeof(Polygon)) plus any data used by derived
*        classes. If a value of NULL is given, this function will
*        allocate the memory itself using the "size" parameter to
*        determine its size.
*     size
*        The amount of memory used by the Polygon (plus derived class
*        data).  This will be used to allocate memory if a value of
*        NULL is given for the "mem" parameter. This value is also
*        stored in the Polygon structure, so a valid value must be
*        supplied even if not required for allocating memory.
*
*        If the "vtab" parameter is NULL, the "size" value is ignored
*        and sizeof(AstPolygon) is used instead.
*     vtab
*        Pointer to the start of the virtual function table to be
*        associated with the new Polygon. If this is NULL, a pointer
*        to the (static) virtual function table for the Polygon class
*        is used instead.
*     name
*        Pointer to a constant null-terminated character string which
*        contains the name of the class to which the new object
*        belongs (it is this pointer value that will subsequently be
*        returned by the astGetClass method).
*
*        If the "vtab" parameter is NULL, the "name" value is ignored
*        and a pointer to the string "Polygon" is used instead.

*  Returned Value:
*     A pointer to the new Polygon.

*  Notes:
*     - A null pointer will be returned if this function is invoked
*     with the global error status set, or if it should fail for any
*     reason.
*-
*/

/* Local Variables: */
   astDECLARE_GLOBALS            /* Pointer to thread-specific global data */
   AstPolygon *new;              /* Pointer to the new Polygon */
   int order;                    /* Is the new (STC) order convention used? */

/* Initialise. */
   new = NULL;

/* Check the global error status. */
   if ( !astOK ) return new;

/* Get a pointer to the thread specific global data structure. */
   astGET_GLOBALS(channel);

/* If a NULL virtual function table has been supplied, then this is
   the first loader to be invoked for this Polygon. In this case the
   Polygon belongs to this class, so supply appropriate values to be
   passed to the parent class loader (and its parent, etc.). */
   if ( !vtab ) {
      size = sizeof( AstPolygon );
      vtab = &class_vtab;
      name = "Polygon";

/* If required, initialise the virtual function table for this class. */
      if ( !class_init ) {
         astInitPolygonVtab( vtab, name );
         class_init = 1;
      }
   }

/* Invoke the parent class loader to load data for all the ancestral
   classes of the current one, returning a pointer to the resulting
   partly-built Polygon. */
   new = astLoadRegion( mem, size, (AstRegionVtab *) vtab, name,
                        channel );

   if ( astOK ) {

/* Read input data. */
/* ================ */
/* Request the input Channel to read all the input data appropriate to
   this class into the internal "values list". */
      astReadClassData( channel, "Polygon" );

/* Now read each individual data item from this list and use it to
   initialise the appropriate instance variable(s) for this class. */

/* In the case of attributes, we first read the "raw" input value,
   supplying the "unset" value as the default. If a "set" value is
   obtained, we then use the appropriate (private) Set... member
   function to validate and set the value properly. */

   new->simp_vertices = astReadInt( channel, "simpvt", -INT_MAX );
   if ( TestSimpVertices( new, status ) ) SetSimpVertices( new, new->simp_vertices, status );

/* A flag indicating what order the vertices are stored in. See the Dump
   function. */
      order = astReadInt( channel, "order", 0 );

/* Initialise other class properties. */
      new->lbnd[ 0 ] = AST__BAD;
      new->ubnd[ 0 ] = AST__BAD;
      new->lbnd[ 1 ] = AST__BAD;
      new->ubnd[ 1 ] = AST__BAD;
      new->edges = NULL;
      new->startsat = NULL;
      new->totlen = 0.0;
      new->acw = 1;
      new->stale = 1;

/* If the order in which the vertices were written used the old AST
   convention, negate the Polygon so that it is consistent with the
   current conevtion (based on STC). */
      if( ! order ) astNegate( new );

/* Ensure the vertices are stored such that the unnegated Polygon
   represents the inside of the polygon. */
      EnsureInside( new, status );

/* If an error occurred, clean up by deleting the new Polygon. */
      if ( !astOK ) new = astDelete( new );
   }

/* Return the new Polygon pointer. */
   return new;
}

/* Virtual function interfaces. */
/* ============================ */
/* These provide the external interface to the virtual functions defined by
   this class. Each simply checks the global error status and then locates and
   executes the appropriate member function, using the function pointer stored
   in the object's virtual function table (this pointer is located using the
   astMEMBER macro defined in "object.h").

   Note that the member function may not be the one defined here, as it may
   have been over-ridden by a derived class. However, it should still have the
   same interface. */


AstPolygon *astDownsize_( AstPolygon *this, double maxerr, int maxvert,
                          int *status ) {
   if ( !astOK ) return NULL;
   return (**astMEMBER(this,Polygon,Downsize))( this, maxerr, maxvert, status );
}