summaryrefslogtreecommitdiffstats
path: root/ast/skyframe.c
blob: 1c20839f19bfbeb4e2f4c5837871e332803b952f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572
7573
7574
7575
7576
7577
7578
7579
7580
7581
7582
7583
7584
7585
7586
7587
7588
7589
7590
7591
7592
7593
7594
7595
7596
7597
7598
7599
7600
7601
7602
7603
7604
7605
7606
7607
7608
7609
7610
7611
7612
7613
7614
7615
7616
7617
7618
7619
7620
7621
7622
7623
7624
7625
7626
7627
7628
7629
7630
7631
7632
7633
7634
7635
7636
7637
7638
7639
7640
7641
7642
7643
7644
7645
7646
7647
7648
7649
7650
7651
7652
7653
7654
7655
7656
7657
7658
7659
7660
7661
7662
7663
7664
7665
7666
7667
7668
7669
7670
7671
7672
7673
7674
7675
7676
7677
7678
7679
7680
7681
7682
7683
7684
7685
7686
7687
7688
7689
7690
7691
7692
7693
7694
7695
7696
7697
7698
7699
7700
7701
7702
7703
7704
7705
7706
7707
7708
7709
7710
7711
7712
7713
7714
7715
7716
7717
7718
7719
7720
7721
7722
7723
7724
7725
7726
7727
7728
7729
7730
7731
7732
7733
7734
7735
7736
7737
7738
7739
7740
7741
7742
7743
7744
7745
7746
7747
7748
7749
7750
7751
7752
7753
7754
7755
7756
7757
7758
7759
7760
7761
7762
7763
7764
7765
7766
7767
7768
7769
7770
7771
7772
7773
7774
7775
7776
7777
7778
7779
7780
7781
7782
7783
7784
7785
7786
7787
7788
7789
7790
7791
7792
7793
7794
7795
7796
7797
7798
7799
7800
7801
7802
7803
7804
7805
7806
7807
7808
7809
7810
7811
7812
7813
7814
7815
7816
7817
7818
7819
7820
7821
7822
7823
7824
7825
7826
7827
7828
7829
7830
7831
7832
7833
7834
7835
7836
7837
7838
7839
7840
7841
7842
7843
7844
7845
7846
7847
7848
7849
7850
7851
7852
7853
7854
7855
7856
7857
7858
7859
7860
7861
7862
7863
7864
7865
7866
7867
7868
7869
7870
7871
7872
7873
7874
7875
7876
7877
7878
7879
7880
7881
7882
7883
7884
7885
7886
7887
7888
7889
7890
7891
7892
7893
7894
7895
7896
7897
7898
7899
7900
7901
7902
7903
7904
7905
7906
7907
7908
7909
7910
7911
7912
7913
7914
7915
7916
7917
7918
7919
7920
7921
7922
7923
7924
7925
7926
7927
7928
7929
7930
7931
7932
7933
7934
7935
7936
7937
7938
7939
7940
7941
7942
7943
7944
7945
7946
7947
7948
7949
7950
7951
7952
7953
7954
7955
7956
7957
7958
7959
7960
7961
7962
7963
7964
7965
7966
7967
7968
7969
7970
7971
7972
7973
7974
7975
7976
7977
7978
7979
7980
7981
7982
7983
7984
7985
7986
7987
7988
7989
7990
7991
7992
7993
7994
7995
7996
7997
7998
7999
8000
8001
8002
8003
8004
8005
8006
8007
8008
8009
8010
8011
8012
8013
8014
8015
8016
8017
8018
8019
8020
8021
8022
8023
8024
8025
8026
8027
8028
8029
8030
8031
8032
8033
8034
8035
8036
8037
8038
8039
8040
8041
8042
8043
8044
8045
8046
8047
8048
8049
8050
8051
8052
8053
8054
8055
8056
8057
8058
8059
8060
8061
8062
8063
8064
8065
8066
8067
8068
8069
8070
8071
8072
8073
8074
8075
8076
8077
8078
8079
8080
8081
8082
8083
8084
8085
8086
8087
8088
8089
8090
8091
8092
8093
8094
8095
8096
8097
8098
8099
8100
8101
8102
8103
8104
8105
8106
8107
8108
8109
8110
8111
8112
8113
8114
8115
8116
8117
8118
8119
8120
8121
8122
8123
8124
8125
8126
8127
8128
8129
8130
8131
8132
8133
8134
8135
8136
8137
8138
8139
8140
8141
8142
8143
8144
8145
8146
8147
8148
8149
8150
8151
8152
8153
8154
8155
8156
8157
8158
8159
8160
8161
8162
8163
8164
8165
8166
8167
8168
8169
8170
8171
8172
8173
8174
8175
8176
8177
8178
8179
8180
8181
8182
8183
8184
8185
8186
8187
8188
8189
8190
8191
8192
8193
8194
8195
8196
8197
8198
8199
8200
8201
8202
8203
8204
8205
8206
8207
8208
8209
8210
8211
8212
8213
8214
8215
8216
8217
8218
8219
8220
8221
8222
8223
8224
8225
8226
8227
8228
8229
8230
8231
8232
8233
8234
8235
8236
8237
8238
8239
8240
8241
8242
8243
8244
8245
8246
8247
8248
8249
8250
8251
8252
8253
8254
8255
8256
8257
8258
8259
8260
8261
8262
8263
8264
8265
8266
8267
8268
8269
8270
8271
8272
8273
8274
8275
8276
8277
8278
8279
8280
8281
8282
8283
8284
8285
8286
8287
8288
8289
8290
8291
8292
8293
8294
8295
8296
8297
8298
8299
8300
8301
8302
8303
8304
8305
8306
8307
8308
8309
8310
8311
8312
8313
8314
8315
8316
8317
8318
8319
8320
8321
8322
8323
8324
8325
8326
8327
8328
8329
8330
8331
8332
8333
8334
8335
8336
8337
8338
8339
8340
8341
8342
8343
8344
8345
8346
8347
8348
8349
8350
8351
8352
8353
8354
8355
8356
8357
8358
8359
8360
8361
8362
8363
8364
8365
8366
8367
8368
8369
8370
8371
8372
8373
8374
8375
8376
8377
8378
8379
8380
8381
8382
8383
8384
8385
8386
8387
8388
8389
8390
8391
8392
8393
8394
8395
8396
8397
8398
8399
8400
8401
8402
8403
8404
8405
8406
8407
8408
8409
8410
8411
8412
8413
8414
8415
8416
8417
8418
8419
8420
8421
8422
8423
8424
8425
8426
8427
8428
8429
8430
8431
8432
8433
8434
8435
8436
8437
8438
8439
8440
8441
8442
8443
8444
8445
8446
8447
8448
8449
8450
8451
8452
8453
8454
8455
8456
8457
8458
8459
8460
8461
8462
8463
8464
8465
8466
8467
8468
8469
8470
8471
8472
8473
8474
8475
8476
8477
8478
8479
8480
8481
8482
8483
8484
8485
8486
8487
8488
8489
8490
8491
8492
8493
8494
8495
8496
8497
8498
8499
8500
8501
8502
8503
8504
8505
8506
8507
8508
8509
8510
8511
8512
8513
8514
8515
8516
8517
8518
8519
8520
8521
8522
8523
8524
8525
8526
8527
8528
8529
8530
8531
8532
8533
8534
8535
8536
8537
8538
8539
8540
8541
8542
8543
8544
8545
8546
8547
8548
8549
8550
8551
8552
8553
8554
8555
8556
8557
8558
8559
8560
8561
8562
8563
8564
8565
8566
8567
8568
8569
8570
8571
8572
8573
8574
8575
8576
8577
8578
8579
8580
8581
8582
8583
8584
8585
8586
8587
8588
8589
8590
8591
8592
8593
8594
8595
8596
8597
8598
8599
8600
8601
8602
8603
8604
8605
8606
8607
8608
8609
8610
8611
8612
8613
8614
8615
8616
8617
8618
8619
8620
8621
8622
8623
8624
8625
8626
8627
8628
8629
8630
8631
8632
8633
8634
8635
8636
8637
8638
8639
8640
8641
8642
8643
8644
8645
8646
8647
8648
8649
8650
8651
8652
8653
8654
8655
8656
8657
8658
8659
8660
8661
8662
8663
8664
8665
8666
8667
8668
8669
8670
8671
8672
8673
8674
8675
8676
8677
8678
8679
8680
8681
8682
8683
8684
8685
8686
8687
8688
8689
8690
8691
8692
8693
8694
8695
8696
8697
8698
8699
8700
8701
8702
8703
8704
8705
8706
8707
8708
8709
8710
8711
8712
8713
8714
8715
8716
8717
8718
8719
8720
8721
8722
8723
8724
8725
8726
8727
8728
8729
8730
8731
8732
8733
8734
8735
8736
8737
8738
8739
8740
8741
8742
8743
8744
8745
8746
8747
8748
8749
8750
8751
8752
8753
8754
8755
8756
8757
8758
8759
8760
8761
8762
8763
8764
8765
8766
8767
8768
8769
8770
8771
8772
8773
8774
8775
8776
8777
8778
8779
8780
8781
8782
8783
8784
8785
8786
8787
8788
8789
8790
8791
8792
8793
8794
8795
8796
8797
8798
8799
8800
8801
8802
8803
8804
8805
8806
8807
8808
8809
8810
8811
8812
8813
8814
8815
8816
8817
8818
8819
8820
8821
8822
8823
8824
8825
8826
8827
8828
8829
8830
8831
8832
8833
8834
8835
8836
8837
8838
8839
8840
8841
8842
8843
8844
8845
8846
8847
8848
8849
8850
8851
8852
8853
8854
8855
8856
8857
8858
8859
8860
8861
8862
8863
8864
8865
8866
8867
8868
8869
8870
8871
8872
8873
8874
8875
8876
8877
8878
8879
8880
8881
8882
8883
8884
8885
8886
8887
8888
8889
8890
8891
8892
8893
8894
8895
8896
8897
8898
8899
8900
8901
8902
8903
8904
8905
8906
8907
8908
8909
8910
8911
8912
8913
8914
8915
8916
8917
8918
8919
8920
8921
8922
8923
8924
8925
8926
8927
8928
8929
8930
8931
8932
8933
8934
8935
8936
8937
8938
8939
8940
8941
8942
8943
8944
8945
8946
8947
8948
8949
8950
8951
8952
8953
8954
8955
8956
8957
8958
8959
8960
8961
8962
8963
8964
8965
8966
8967
8968
8969
8970
8971
8972
8973
8974
8975
8976
8977
8978
8979
8980
8981
8982
8983
8984
8985
8986
8987
8988
8989
8990
8991
8992
8993
8994
8995
8996
8997
8998
8999
9000
9001
9002
9003
9004
9005
9006
9007
9008
9009
9010
9011
9012
9013
9014
9015
9016
9017
9018
9019
9020
9021
9022
9023
9024
9025
9026
9027
9028
9029
9030
9031
9032
9033
9034
9035
9036
9037
9038
9039
9040
9041
9042
9043
9044
9045
9046
9047
9048
9049
9050
9051
9052
9053
9054
9055
9056
9057
9058
9059
9060
9061
9062
9063
9064
9065
9066
9067
9068
9069
9070
9071
9072
9073
9074
9075
9076
9077
9078
9079
9080
9081
9082
9083
9084
9085
9086
9087
9088
9089
9090
9091
9092
9093
9094
9095
9096
9097
9098
9099
9100
9101
9102
9103
9104
9105
9106
9107
9108
9109
9110
9111
9112
9113
9114
9115
9116
9117
9118
9119
9120
9121
9122
9123
9124
9125
9126
9127
9128
9129
9130
9131
9132
9133
9134
9135
9136
9137
9138
9139
9140
9141
9142
9143
9144
9145
9146
9147
9148
9149
9150
9151
9152
9153
9154
9155
9156
9157
9158
9159
9160
9161
9162
9163
9164
9165
9166
9167
9168
9169
9170
9171
9172
9173
9174
9175
9176
9177
9178
9179
9180
9181
9182
9183
9184
9185
9186
9187
9188
9189
9190
9191
9192
9193
9194
9195
9196
9197
9198
9199
9200
9201
9202
9203
9204
9205
9206
9207
9208
9209
9210
9211
9212
9213
9214
9215
9216
9217
9218
9219
9220
9221
9222
9223
9224
9225
9226
9227
9228
9229
9230
9231
9232
9233
9234
9235
9236
9237
9238
9239
9240
9241
9242
9243
9244
9245
9246
9247
9248
9249
9250
9251
9252
9253
9254
9255
9256
9257
9258
9259
9260
9261
9262
9263
9264
9265
9266
9267
9268
9269
9270
9271
9272
9273
9274
9275
9276
9277
9278
9279
9280
9281
9282
9283
9284
9285
9286
9287
9288
9289
9290
9291
9292
9293
9294
9295
9296
9297
9298
9299
9300
9301
9302
9303
9304
9305
9306
9307
9308
9309
9310
9311
9312
9313
9314
9315
9316
9317
9318
9319
9320
9321
9322
9323
9324
9325
9326
9327
9328
9329
9330
9331
9332
9333
9334
9335
9336
9337
9338
9339
9340
9341
9342
9343
9344
9345
9346
9347
9348
9349
9350
9351
9352
9353
9354
9355
9356
9357
9358
9359
9360
9361
9362
9363
9364
9365
9366
9367
9368
9369
9370
9371
9372
9373
9374
9375
9376
9377
9378
9379
9380
9381
9382
9383
9384
9385
9386
9387
9388
9389
9390
9391
9392
9393
9394
9395
9396
9397
9398
9399
9400
9401
9402
9403
9404
9405
9406
9407
9408
9409
9410
9411
9412
9413
9414
9415
9416
9417
9418
9419
9420
9421
9422
9423
9424
9425
9426
9427
9428
9429
9430
9431
9432
9433
9434
9435
9436
9437
9438
9439
9440
9441
9442
9443
9444
9445
9446
9447
9448
9449
9450
9451
9452
9453
9454
9455
9456
9457
9458
9459
9460
9461
9462
9463
9464
9465
9466
9467
9468
9469
9470
9471
9472
9473
9474
9475
9476
9477
9478
9479
9480
9481
9482
9483
9484
9485
9486
9487
9488
9489
9490
9491
9492
9493
9494
9495
9496
9497
9498
9499
9500
9501
9502
9503
9504
9505
9506
9507
9508
9509
9510
9511
9512
9513
9514
9515
9516
9517
9518
9519
9520
9521
9522
9523
9524
9525
9526
9527
9528
9529
9530
9531
9532
9533
9534
9535
9536
9537
9538
9539
9540
9541
9542
9543
9544
9545
9546
9547
9548
9549
9550
9551
9552
9553
9554
9555
9556
9557
9558
9559
9560
9561
9562
9563
9564
9565
9566
9567
9568
9569
9570
9571
9572
9573
9574
9575
9576
9577
9578
9579
9580
9581
9582
9583
9584
9585
9586
9587
9588
9589
9590
9591
9592
9593
9594
9595
9596
9597
9598
9599
9600
9601
9602
9603
9604
9605
9606
9607
9608
9609
9610
9611
9612
9613
9614
9615
9616
9617
9618
9619
9620
9621
9622
9623
9624
9625
9626
9627
9628
9629
9630
9631
9632
9633
9634
9635
9636
9637
9638
9639
9640
9641
9642
9643
9644
9645
9646
9647
9648
9649
9650
9651
9652
9653
9654
9655
9656
9657
9658
9659
9660
9661
9662
9663
9664
9665
9666
9667
9668
9669
9670
9671
9672
9673
9674
9675
9676
9677
9678
9679
9680
9681
9682
9683
9684
9685
9686
9687
9688
9689
9690
9691
9692
9693
9694
9695
9696
9697
9698
9699
9700
9701
9702
9703
9704
9705
9706
9707
9708
9709
9710
9711
9712
9713
9714
9715
9716
9717
9718
9719
9720
9721
9722
9723
9724
9725
9726
9727
9728
9729
9730
9731
9732
9733
9734
9735
9736
9737
9738
9739
9740
9741
9742
9743
9744
9745
9746
9747
9748
9749
9750
9751
9752
9753
9754
9755
9756
9757
9758
9759
9760
9761
9762
9763
9764
9765
9766
9767
9768
9769
9770
9771
9772
9773
9774
9775
9776
9777
9778
9779
9780
9781
9782
9783
9784
9785
9786
9787
9788
9789
9790
9791
9792
9793
9794
9795
9796
9797
9798
9799
9800
9801
9802
9803
9804
9805
9806
9807
9808
9809
9810
9811
9812
9813
9814
9815
9816
9817
9818
9819
9820
9821
9822
9823
9824
9825
9826
9827
9828
9829
9830
9831
9832
9833
9834
9835
9836
9837
9838
9839
9840
9841
9842
9843
9844
9845
9846
9847
9848
9849
9850
9851
9852
9853
9854
9855
9856
9857
9858
9859
9860
9861
9862
9863
9864
9865
9866
9867
9868
9869
9870
9871
9872
9873
9874
9875
9876
9877
9878
9879
9880
9881
9882
9883
9884
9885
9886
9887
9888
9889
9890
9891
9892
9893
9894
9895
9896
9897
9898
9899
9900
9901
9902
9903
9904
9905
9906
9907
9908
9909
9910
9911
9912
9913
9914
9915
9916
9917
9918
9919
9920
9921
9922
9923
9924
9925
9926
9927
9928
9929
9930
9931
9932
9933
9934
9935
9936
9937
9938
9939
9940
9941
9942
9943
9944
9945
9946
9947
9948
9949
9950
9951
9952
9953
9954
9955
9956
9957
9958
9959
9960
9961
9962
9963
9964
9965
9966
9967
9968
9969
9970
9971
9972
9973
9974
9975
9976
9977
9978
9979
9980
9981
9982
9983
9984
9985
9986
9987
9988
9989
9990
9991
9992
9993
9994
9995
9996
9997
9998
9999
10000
10001
10002
10003
10004
10005
10006
10007
10008
10009
10010
10011
10012
10013
10014
10015
10016
10017
10018
10019
10020
10021
10022
10023
10024
10025
10026
10027
10028
10029
10030
10031
10032
10033
10034
10035
10036
10037
10038
10039
10040
10041
10042
10043
10044
10045
10046
10047
10048
10049
10050
10051
10052
10053
10054
10055
10056
10057
10058
10059
10060
10061
10062
10063
10064
10065
10066
10067
10068
10069
10070
10071
10072
10073
10074
10075
10076
10077
10078
10079
10080
10081
10082
10083
10084
10085
10086
10087
10088
10089
10090
10091
10092
10093
10094
10095
10096
10097
10098
10099
10100
10101
10102
10103
10104
10105
10106
10107
10108
10109
10110
10111
10112
10113
10114
10115
10116
10117
10118
10119
10120
10121
10122
10123
10124
10125
10126
10127
10128
10129
10130
10131
10132
10133
10134
10135
10136
10137
10138
10139
10140
10141
10142
10143
10144
10145
10146
10147
10148
10149
10150
10151
10152
10153
10154
10155
10156
10157
10158
10159
10160
10161
10162
10163
10164
10165
10166
10167
10168
10169
10170
10171
10172
10173
10174
10175
10176
10177
10178
10179
10180
10181
10182
10183
10184
10185
10186
10187
10188
10189
10190
10191
10192
10193
10194
10195
10196
10197
10198
10199
10200
10201
10202
10203
10204
10205
10206
10207
10208
10209
10210
10211
10212
10213
10214
10215
10216
10217
10218
10219
10220
10221
10222
10223
10224
10225
10226
10227
10228
10229
10230
10231
10232
10233
10234
10235
10236
10237
10238
10239
10240
10241
10242
10243
10244
10245
10246
10247
10248
10249
10250
10251
10252
10253
10254
10255
10256
10257
10258
10259
10260
10261
10262
10263
10264
10265
10266
10267
10268
10269
10270
10271
10272
10273
10274
10275
10276
10277
10278
10279
10280
10281
10282
10283
10284
10285
10286
10287
10288
10289
10290
10291
10292
10293
10294
10295
10296
10297
10298
10299
10300
10301
10302
10303
10304
10305
10306
10307
10308
10309
10310
10311
10312
10313
10314
10315
10316
10317
10318
10319
10320
10321
10322
10323
10324
10325
10326
10327
10328
10329
10330
10331
10332
10333
10334
10335
10336
10337
10338
10339
10340
10341
10342
10343
10344
10345
10346
10347
10348
10349
10350
10351
10352
10353
10354
10355
10356
10357
10358
10359
10360
10361
10362
10363
10364
10365
10366
10367
10368
10369
10370
10371
10372
10373
10374
10375
10376
10377
10378
10379
10380
10381
10382
10383
10384
10385
10386
10387
10388
10389
10390
10391
10392
10393
10394
10395
10396
10397
10398
10399
10400
10401
10402
10403
10404
10405
10406
10407
10408
10409
10410
10411
10412
10413
10414
10415
10416
10417
10418
10419
10420
10421
10422
10423
10424
10425
10426
10427
10428
10429
10430
10431
10432
10433
10434
10435
10436
10437
10438
10439
10440
10441
10442
10443
10444
10445
10446
10447
10448
10449
10450
10451
10452
10453
10454
10455
10456
10457
10458
10459
10460
10461
10462
10463
10464
10465
10466
10467
10468
10469
10470
10471
10472
10473
10474
10475
10476
10477
10478
10479
10480
10481
10482
10483
10484
10485
10486
10487
10488
10489
10490
10491
10492
10493
10494
10495
10496
10497
10498
10499
10500
10501
10502
10503
10504
10505
10506
10507
10508
10509
10510
10511
10512
10513
10514
10515
10516
10517
10518
10519
10520
10521
10522
10523
10524
10525
10526
10527
10528
10529
10530
10531
10532
10533
10534
10535
10536
10537
10538
10539
10540
10541
10542
10543
10544
10545
10546
10547
10548
10549
10550
10551
10552
10553
10554
10555
10556
10557
10558
10559
10560
10561
10562
10563
10564
10565
10566
10567
10568
10569
10570
10571
10572
10573
10574
10575
10576
10577
10578
10579
10580
10581
10582
10583
10584
10585
10586
10587
10588
10589
10590
10591
10592
10593
10594
10595
10596
10597
10598
10599
10600
10601
10602
10603
10604
10605
10606
10607
10608
10609
10610
10611
10612
10613
10614
10615
10616
10617
10618
10619
10620
10621
10622
10623
10624
10625
10626
10627
10628
10629
10630
10631
10632
10633
10634
10635
10636
10637
10638
10639
10640
10641
10642
10643
10644
10645
10646
10647
10648
10649
10650
10651
10652
10653
10654
10655
10656
10657
10658
10659
10660
10661
10662
10663
10664
10665
10666
10667
10668
10669
10670
10671
10672
10673
10674
10675
10676
10677
10678
10679
10680
10681
10682
10683
10684
10685
10686
10687
10688
10689
10690
10691
10692
10693
10694
10695
10696
10697
10698
10699
10700
10701
10702
10703
10704
10705
10706
10707
10708
10709
10710
10711
10712
10713
10714
10715
10716
10717
10718
10719
10720
10721
10722
10723
10724
10725
10726
10727
10728
10729
10730
10731
10732
10733
10734
10735
10736
10737
10738
10739
10740
10741
10742
10743
10744
10745
10746
10747
10748
10749
10750
10751
10752
10753
10754
10755
10756
10757
10758
10759
10760
10761
10762
10763
10764
10765
10766
10767
10768
10769
10770
10771
10772
10773
10774
10775
10776
10777
10778
10779
10780
10781
10782
10783
10784
10785
10786
10787
10788
10789
10790
10791
10792
10793
10794
10795
10796
10797
10798
10799
10800
10801
10802
10803
10804
10805
10806
10807
10808
10809
10810
10811
10812
10813
10814
10815
10816
10817
10818
10819
10820
10821
10822
10823
10824
10825
10826
10827
10828
10829
10830
10831
10832
10833
10834
10835
10836
10837
10838
10839
10840
10841
10842
10843
10844
10845
10846
10847
10848
10849
10850
10851
10852
10853
10854
10855
10856
10857
10858
10859
10860
10861
10862
10863
10864
10865
10866
10867
10868
10869
10870
10871
10872
10873
10874
10875
10876
10877
10878
10879
10880
10881
10882
10883
10884
10885
10886
10887
10888
10889
10890
10891
10892
10893
10894
10895
10896
10897
10898
10899
10900
10901
10902
10903
10904
10905
10906
10907
10908
10909
10910
10911
10912
10913
10914
10915
10916
10917
10918
10919
10920
10921
10922
10923
10924
10925
10926
10927
10928
10929
10930
10931
10932
10933
10934
10935
10936
10937
10938
10939
10940
10941
10942
10943
10944
10945
10946
10947
10948
10949
10950
10951
10952
10953
10954
10955
10956
10957
10958
10959
10960
10961
10962
10963
10964
10965
10966
10967
10968
10969
10970
10971
10972
10973
10974
10975
10976
10977
10978
10979
10980
10981
10982
10983
10984
10985
10986
10987
10988
10989
10990
10991
10992
10993
10994
10995
10996
10997
10998
10999
11000
11001
11002
11003
11004
11005
11006
11007
11008
11009
11010
11011
11012
11013
11014
11015
11016
11017
11018
11019
11020
11021
11022
11023
11024
11025
11026
11027
11028
11029
11030
11031
11032
11033
11034
11035
11036
11037
11038
11039
11040
11041
11042
11043
11044
11045
11046
11047
11048
11049
11050
11051
11052
11053
11054
11055
11056
11057
11058
11059
11060
11061
11062
11063
11064
11065
11066
11067
11068
11069
11070
11071
11072
11073
11074
11075
11076
11077
11078
11079
11080
11081
11082
11083
11084
11085
11086
11087
11088
11089
11090
11091
11092
11093
11094
11095
11096
11097
11098
11099
11100
11101
11102
11103
11104
11105
11106
11107
11108
11109
11110
11111
11112
11113
11114
11115
11116
11117
11118
11119
11120
11121
11122
11123
11124
11125
11126
11127
11128
11129
11130
11131
11132
11133
11134
11135
11136
11137
11138
11139
11140
11141
11142
11143
11144
11145
11146
11147
11148
11149
11150
11151
11152
11153
11154
11155
11156
11157
11158
11159
11160
11161
11162
11163
11164
11165
11166
11167
11168
11169
11170
11171
11172
11173
11174
11175
11176
11177
11178
11179
11180
11181
11182
11183
11184
11185
11186
11187
11188
11189
11190
11191
11192
11193
11194
11195
11196
11197
11198
11199
11200
11201
11202
11203
11204
11205
11206
11207
11208
11209
11210
11211
11212
11213
11214
11215
11216
11217
11218
11219
11220
11221
11222
11223
11224
11225
11226
11227
11228
11229
11230
11231
11232
11233
11234
11235
11236
11237
11238
11239
11240
11241
11242
11243
11244
11245
11246
11247
11248
11249
11250
11251
11252
11253
11254
11255
11256
11257
11258
11259
11260
11261
11262
11263
11264
11265
11266
11267
11268
11269
11270
11271
11272
11273
11274
11275
11276
11277
11278
11279
11280
11281
11282
11283
11284
11285
11286
11287
11288
11289
11290
11291
11292
11293
11294
11295
11296
11297
11298
11299
11300
11301
11302
11303
11304
11305
11306
11307
11308
11309
11310
11311
11312
11313
11314
11315
11316
11317
11318
11319
11320
11321
11322
11323
11324
11325
11326
11327
11328
11329
11330
11331
11332
11333
11334
11335
11336
11337
11338
11339
11340
11341
11342
11343
11344
11345
11346
11347
11348
11349
11350
11351
11352
11353
11354
11355
11356
11357
11358
11359
11360
11361
11362
11363
11364
11365
11366
11367
11368
11369
11370
11371
11372
11373
11374
11375
11376
11377
11378
11379
11380
11381
11382
11383
11384
11385
11386
11387
11388
11389
11390
11391
11392
11393
11394
11395
11396
11397
11398
11399
11400
11401
11402
11403
11404
11405
11406
11407
11408
11409
11410
11411
11412
11413
11414
11415
11416
11417
11418
11419
11420
11421
11422
11423
11424
11425
11426
11427
11428
11429
11430
11431
11432
11433
11434
11435
11436
11437
11438
11439
11440
11441
11442
11443
11444
11445
11446
11447
11448
11449
11450
11451
11452
11453
11454
11455
11456
11457
11458
11459
11460
11461
11462
11463
11464
11465
11466
11467
11468
11469
11470
11471
11472
11473
11474
11475
11476
11477
11478
11479
11480
11481
11482
11483
11484
11485
11486
11487
11488
11489
11490
11491
11492
11493
11494
11495
11496
11497
11498
11499
11500
11501
11502
11503
11504
11505
11506
11507
11508
11509
11510
11511
11512
11513
11514
11515
11516
11517
11518
11519
11520
11521
11522
11523
11524
11525
11526
11527
11528
11529
11530
11531
11532
11533
11534
11535
11536
11537
11538
11539
11540
11541
11542
11543
11544
11545
11546
11547
11548
11549
11550
11551
11552
11553
11554
11555
11556
11557
11558
11559
11560
11561
11562
11563
11564
11565
11566
11567
11568
11569
11570
11571
11572
11573
11574
11575
11576
11577
11578
11579
11580
11581
11582
11583
11584
11585
11586
11587
11588
11589
11590
11591
11592
11593
11594
11595
11596
11597
11598
11599
11600
11601
11602
11603
11604
11605
11606
11607
11608
11609
11610
11611
11612
11613
11614
11615
11616
11617
11618
11619
11620
11621
11622
11623
11624
11625
11626
11627
11628
11629
11630
11631
11632
11633
11634
11635
11636
11637
11638
11639
11640
11641
11642
11643
11644
11645
11646
11647
11648
11649
11650
11651
11652
11653
11654
11655
11656
11657
11658
11659
11660
11661
11662
11663
11664
11665
11666
11667
11668
11669
11670
11671
11672
11673
11674
11675
11676
11677
11678
11679
11680
11681
11682
11683
11684
11685
11686
11687
11688
11689
11690
11691
11692
11693
11694
11695
11696
11697
11698
11699
11700
11701
11702
11703
11704
11705
11706
11707
11708
11709
11710
11711
11712
11713
11714
11715
11716
11717
11718
11719
11720
11721
11722
11723
11724
11725
11726
11727
11728
11729
11730
11731
11732
11733
11734
11735
11736
11737
11738
11739
11740
11741
11742
11743
11744
11745
11746
11747
11748
11749
11750
11751
11752
11753
11754
11755
11756
11757
11758
11759
11760
11761
11762
11763
11764
11765
11766
11767
11768
11769
11770
11771
11772
11773
11774
11775
11776
11777
11778
11779
11780
11781
11782
11783
11784
11785
11786
11787
11788
11789
11790
11791
11792
11793
11794
11795
11796
11797
11798
11799
11800
11801
11802
11803
11804
11805
11806
11807
11808
11809
11810
11811
11812
11813
11814
11815
11816
11817
11818
11819
11820
11821
11822
11823
11824
11825
11826
11827
11828
11829
11830
11831
11832
11833
11834
11835
11836
11837
11838
11839
11840
11841
11842
11843
11844
11845
11846
11847
11848
11849
11850
11851
11852
11853
11854
11855
11856
11857
11858
11859
11860
11861
11862
11863
11864
11865
11866
11867
11868
11869
11870
11871
11872
11873
11874
11875
11876
11877
11878
11879
11880
11881
11882
11883
11884
11885
11886
11887
11888
11889
11890
11891
11892
11893
11894
11895
11896
11897
11898
11899
11900
11901
11902
11903
11904
11905
11906
11907
11908
11909
11910
11911
11912
11913
11914
11915
11916
11917
11918
11919
11920
11921
11922
11923
11924
11925
11926
11927
11928
11929
11930
11931
11932
11933
11934
11935
11936
11937
11938
11939
11940
11941
11942
11943
11944
11945
11946
11947
11948
11949
11950
11951
11952
11953
11954
11955
11956
11957
11958
11959
11960
11961
11962
11963
11964
11965
11966
11967
11968
11969
11970
11971
11972
11973
11974
11975
11976
11977
11978
11979
11980
11981
11982
11983
11984
11985
11986
11987
11988
11989
11990
11991
11992
11993
11994
11995
11996
11997
11998
11999
12000
12001
12002
12003
12004
12005
12006
12007
12008
12009
12010
12011
12012
12013
12014
12015
12016
12017
12018
12019
12020
12021
12022
12023
12024
12025
12026
12027
12028
12029
12030
12031
12032
12033
12034
12035
12036
12037
12038
12039
12040
12041
12042
12043
12044
12045
12046
12047
12048
12049
12050
12051
12052
12053
12054
12055
12056
12057
12058
12059
12060
12061
12062
12063
12064
12065
12066
12067
12068
12069
12070
12071
12072
12073
12074
12075
12076
12077
12078
12079
12080
12081
12082
12083
12084
12085
12086
12087
12088
12089
12090
12091
12092
12093
12094
12095
12096
12097
12098
12099
12100
12101
12102
12103
12104
12105
12106
12107
12108
12109
12110
12111
12112
12113
12114
12115
12116
12117
12118
12119
12120
12121
12122
12123
12124
12125
12126
12127
12128
12129
12130
12131
12132
12133
12134
12135
12136
12137
12138
12139
12140
12141
12142
12143
12144
12145
12146
12147
12148
12149
12150
12151
12152
12153
12154
12155
12156
12157
12158
12159
12160
12161
12162
12163
12164
12165
12166
12167
12168
12169
12170
12171
12172
12173
12174
12175
12176
12177
12178
12179
12180
12181
12182
12183
12184
12185
12186
12187
12188
12189
12190
12191
12192
12193
12194
12195
12196
12197
12198
12199
12200
12201
12202
12203
12204
12205
12206
12207
12208
12209
12210
12211
12212
12213
12214
12215
12216
12217
12218
12219
12220
12221
12222
12223
12224
12225
12226
12227
12228
12229
12230
12231
12232
12233
12234
12235
12236
12237
12238
12239
12240
12241
12242
12243
12244
12245
12246
12247
12248
12249
12250
12251
12252
12253
12254
12255
12256
12257
12258
12259
12260
12261
12262
12263
12264
12265
12266
12267
12268
12269
12270
12271
12272
12273
12274
12275
12276
12277
12278
12279
12280
12281
12282
12283
12284
12285
12286
12287
12288
12289
12290
12291
12292
12293
12294
12295
12296
12297
12298
12299
12300
12301
12302
12303
12304
12305
12306
12307
12308
12309
12310
12311
12312
12313
12314
12315
12316
12317
12318
12319
12320
12321
12322
12323
12324
12325
12326
12327
12328
12329
12330
12331
12332
12333
12334
12335
12336
12337
12338
12339
12340
12341
12342
12343
12344
12345
12346
12347
12348
12349
12350
12351
12352
12353
12354
12355
12356
12357
12358
12359
12360
12361
12362
12363
12364
12365
12366
12367
12368
12369
12370
12371
12372
12373
12374
12375
12376
12377
12378
12379
12380
12381
12382
12383
12384
12385
12386
12387
12388
12389
12390
12391
12392
12393
12394
12395
12396
12397
12398
12399
12400
12401
12402
12403
12404
12405
12406
12407
12408
12409
12410
12411
12412
12413
12414
12415
12416
12417
12418
12419
12420
12421
12422
12423
12424
12425
12426
12427
12428
12429
12430
12431
12432
12433
12434
12435
12436
12437
12438
12439
12440
12441
12442
12443
12444
12445
12446
12447
12448
12449
12450
12451
12452
12453
12454
12455
12456
12457
12458
12459
12460
12461
12462
12463
12464
12465
12466
12467
12468
12469
12470
12471
12472
12473
12474
12475
12476
12477
12478
12479
12480
12481
12482
12483
12484
12485
12486
12487
12488
12489
12490
12491
12492
12493
12494
12495
12496
12497
12498
12499
12500
12501
12502
12503
12504
12505
12506
12507
12508
12509
12510
12511
12512
12513
12514
12515
12516
12517
12518
12519
12520
12521
12522
12523
12524
12525
12526
12527
12528
12529
12530
12531
12532
12533
12534
12535
12536
12537
12538
12539
12540
12541
12542
12543
12544
12545
12546
12547
12548
12549
12550
12551
12552
12553
12554
12555
12556
12557
12558
12559
12560
12561
12562
12563
12564
12565
12566
12567
12568
12569
12570
12571
12572
12573
12574
12575
12576
12577
12578
12579
12580
12581
12582
12583
12584
12585
12586
12587
12588
12589
12590
12591
12592
/*
*class++
*  Name:
*     SkyFrame

*  Purpose:
*     Celestial coordinate system description.

*  Constructor Function:
c     astSkyFrame
f     AST_SKYFRAME

*  Description:
*     A SkyFrame is a specialised form of Frame which describes
*     celestial longitude/latitude coordinate systems. The particular
*     celestial coordinate system to be represented is specified by
*     setting the SkyFrame's System attribute (currently, the default
*     is ICRS) qualified, as necessary, by a mean Equinox value and/or
*     an Epoch.
*
*     For each of the supported celestial coordinate systems, a SkyFrame
*     can apply an optional shift of origin to create a coordinate system
*     representing offsets within the celestial coordinate system from some
*     specified reference point. This offset coordinate system can also be
*     rotated to define new longitude and latitude axes. See attributes
*     SkyRef, SkyRefIs, SkyRefP and AlignOffset.
*
*     All the coordinate values used by a SkyFrame are in
*     radians. These may be formatted in more conventional ways for
c     display by using astFormat.
f     display by using AST_FORMAT.
*     For a SkyFrame, the Unit attribute describes the formatted value of
*     a SkyFrame axis, and may for instance be "h:m:s", indicating that a
*     formatted axis value contains colon-separated fields for hours, minutes
*     and seconds. On the other hand, the InternalUnit attribute for a
*     SkyFrame is always set to "rad" (i.e. radians), indicating that the
*     unformatted (i.e. floating point) axis values used by application code
*     are always in units of radians

*  Inheritance:
*     The SkyFrame class inherits from the Frame class.

*  Attributes:
*     In addition to those attributes common to all Frames, every
*     SkyFrame also has the following attributes:
*
*     - AlignOffset: Align SkyFrames using the offset coordinate system?
*     - AsTime(axis): Format celestial coordinates as times?
*     - Equinox: Epoch of the mean equinox
*     - IsLatAxis: Is the specified axis the latitude axis?
*     - IsLonAxis: Is the specified axis the longitude axis?
*     - LatAxis: Index of the latitude axis
*     - LonAxis: Index of the longitude axis
*     - NegLon: Display longitude values in the range [-pi,pi]?
*     - Projection: Sky projection description.
*     - SkyRef: Position defining location of the offset coordinate system
*     - SkyRefIs: Selects the nature of the offset coordinate system
*     - SkyRefP: Position defining orientation of the offset coordinate system
*     - SkyTol: Smallest significant shift in sky coordinates

*  Functions:
*     In addition to those
c     functions
f     routines
*     applicable to all Frames, the following
c     functions
f     routines
*     may also be applied to all SkyFrames:
*
c     - astSkyOffsetMap: Obtain a Mapping from absolute to offset coordinates
f     - AST_SKYOFFSETMAP: Obtain a Mapping from absolute to offset coordinates

*  Copyright:
*     Copyright (C) 1997-2006 Council for the Central Laboratory of the
*     Research Councils
*     Copyright (C) 2010 Science & Technology Facilities Council.
*     All Rights Reserved.

*  Licence:
*     This program is free software: you can redistribute it and/or
*     modify it under the terms of the GNU Lesser General Public
*     License as published by the Free Software Foundation, either
*     version 3 of the License, or (at your option) any later
*     version.
*
*     This program is distributed in the hope that it will be useful,
*     but WITHOUT ANY WARRANTY; without even the implied warranty of
*     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
*     GNU Lesser General Public License for more details.
*
*     You should have received a copy of the GNU Lesser General
*     License along with this program.  If not, see
*     <http://www.gnu.org/licenses/>.

*  Authors:
*     RFWS: R.F. Warren-Smith (Starlink)
*     DSB: David S. Berry (Starlink)
*     BEC: Brad Cavanagh (JAC, Hawaii)

*  History:
*     4-MAR-1996 (RFWS):
*        Original version.
*     17-MAY-1996 (RFWS):
*        Tidied up, etc.
*     31-JUL-1996 (RFWS):
*        Added support for attributes and a public interface.
*     11-SEP-1996 (RFWS):
*        Added Gap (written by DSB).
*     24-SEP-1996 (RFWS):
*        Added I/O facilities.
*     27-FEB-1997 (RFWS):
*        Improved the public prologues.
*     27-MAY-1997 (RFWS):
*        Modified to use a new public interface to the SlaMap class
*        and to use the astSimplify method to remove redundant
*        conversions.
*     16-JUN-1997 (RFWS):
*        Fixed bug in axis associations returned by astMatch if axes
*        were swapped.
*     16-JUL-1997 (RFWS):
*        Added Projection attribute.
*     14-NOV-1997 (RFWS):
*        Corrected the omission of axis permutations from astNorm.
*     21-JAN-1998 (RFWS):
*        Ensure that Title and Domain values appropriate to a SkyFrame
*        are preserved if a Frame result is generated by SubFrame.
*     26-FEB-1998 (RFWS):
*        Over-ride the astUnformat method.
*     3-APR-2001 (DSB):
*        Added "Unknown" option for the System attribute. Added read-only
*        attributes LatAxis and LonAxis.
*     21-JUN-2001 (DSB):
*        Added astAngle and astOffset2.
*     4-SEP-2001 (DSB):
*        Added NegLon attribute, and astResolve method.
*     9-SEP-2001 (DSB):
*        Added astBear method.
*     21-SEP-2001 (DSB):
*        Removed astBear method.
*     10-OCT-2002 (DSB):
*        Moved definitions of macros for SkyFrame system values from
*        this file into skyframe.h.
*     24-OCT-2002 (DSB):
*        Modified MakeSkyMapping so that any two SkyFrames with system=unknown
*        are assumed to be related by a UnitMap. previously, they were
*        considered to be unrelated, resulting in no ability to convert from
*        one to the other. This could result for instance in astConvert
*        being unable to find a maping from a SkyFrame to itself.
*     15-NOV-2002 (DSB):
*        Moved System and Epoch attributes to the Frame class.
*     8-JAN-2003 (DSB):
*        Changed private InitVtab method to protected astInitSkyFrameVtab
*        method.
*     11-JUN-2003 (DSB):
*        Added ICRS option for System attribute, and made it the default
*        in place of FK5.
*     27-SEP-2003 (DSB):
*        Added HELIOECLIPTIC option for System attribute.
*     19-APR-2004 (DSB):
*        Added SkyRef, SkyRefIs, SkyRefP and AlignOffset attributes.
*     8-SEP-2004 (DSB):
*        Added astResolvePoints method.
*     2-DEC-2004 (DSB):
*        Added System "J2000"
*     27-JAN-2005 (DSB):
*        Fix memory leaks in astLoadSkyFrame_ and Match.
*     7-APR-2005 (DSB):
*        Allow SkyRefIs to be set to "Ignored".
*     12-MAY-2005 (DSB):
*        Override astNormBox method.
*     15-AUG-2005 (DSB):
*        Added AZEL system.
*     13-SEP-2005 (DSB):
*        Override astClearSystem so that SkyRef/SkyRefPcan be converted
*        from the original System to the default System.
*     19-SEP-2005 (DSB):
*        Changed default for SkyRefIs from ORIGIN to IGNORED.
*     14-FEB-2006 (DSB):
*        Override astGetObjSize.
*     22-FEB-2006 (DSB):
*        Store the Local Apparent Sidereal Time in the SkyFrame structure
*        in order to avoid expensive re-computations.
*     22-AUG-2006 (DSB):
*        Ensure the cached Local Apparent Siderial Time is initialised
*        when initialising or loading a SkyFrame.
*     22-SEP-2006 (DSB):
*        Report an error in SetSystem if it is not possible to convert
*        from old to new systems.
*     3-OCT-2006 (DSB):
*        Added Equation of Equinoxes to the SkyFrame structure.
*     6-OCT-2006 (DSB):
*        - Guard against annulling null pointers in subFrame.
*        - Add Dut1 attribute
*        - Use linear approximation for LAST over short periods (less
*          than 0.001 of a day)
*        - Remove Equation of Equinoxes from the SkyFrame structure.
*     10-OCT-2006 (DSB):
*        Use "AlOff" instead of "AlignOffset" as the external channel name
*        for the AlignOffset attribute. The longer form exceeded the
*        limit that can be used by the Channel class.
*     14-OCT-2006 (DSB):
*        - Move Dut1 attribute to the Frame class.
*        - Use the TimeFrame class to do the TDB->LAST conversions.
*     17-JAN-2007 (DSB):
*        - Use a UnitMap to align offset coordinate systems in two
*        SkyFrames, regardless of other attribute values.
*        - Only align in offset coordinates if both target and template
*        have a non-zero value for AlignOffset.
*     23-JAN-2007 (DSB):
*        Modified so that a SkyFrame can be used as a template to find a
*        SkyFrame contained within a CmpFrame. This involves changes in
*        Match and the removal of the local versions of SetMaxAxes and
*        SetMinAxes.
*     4-JUL-2007 (DSB):
*        Modified GetLast to use the correct solar to sidereal conversion
*        factor. As a consequence the largest acceptable epoch gap before
*        the LAST needs to be recalculated has been increased.
*     11-JUL-2007 (DSB):
*        Override astSetEpoch and astClearEpoch by implementations which
*        update the LAST value stored in the SkyFrame.
*     7-AUG-2007 (DSB):
*        - Set a value for the CentreZero attribute when extracting a
*        SkyAxis from a SkyFrame in function SubFrame.
*        - In SubFrame, clear extended attributes such as System after
*        all axis attributes have been "fixated.
*     30-AUG-2007 (DSB):
*        Override astSetDut1 and astClearDut1 by implementations which
*        update the LAST value stored in the SkyFrame.
*     31-AUG-2007 (DSB):
*        - Cache the magnitude of the diurnal aberration vector in the
*        SkyFrame structure for use when correcting for diurnal aberration.
*        - Modify the azel conversions to include correction for diurnal
*        aberration.
*        - Override astClearObsLat and astSetObsLat by implementations which
*        reset the magnitude of the diurnal aberration vector.
*     3-SEP-2007 (DSB):
*        In SubFrame, since AlignSystem is extended by the SkyFrame class
*        it needs to be cleared before invoking the parent SubFrame
*        method in cases where the result Frame is not a SkyFrame.
*     2-OCT-2007 (DSB):
*        In Overlay, clear AlignSystem as well as System before calling
*        the parent overlay method.
*     10-OCT-2007 (DSB):
*        In MakeSkyMapping, correct the usage of variables "system" and
*        "align_sys" when aligning in AZEL.
*     18-OCT-2007 (DSB):
*        Compare target and template AlignSystem values in Match, rather
*        than comparing target and result AlignSystem values in MakeSkyMapping
*        (since result is basically a copy of target).
*     27-NOV-2007 (DSB):
*        - Modify SetSystem to ensure that SkyRef and SkyRefP position are
*        always transformed as absolute values, rather than as offset
*        values.
*        - Modify SubMatch so that a value of zero is assumed for
*        AlignOffset when restoring thre integrity of a FrameSet.
*     15-DEC-2008 (DSB):
*        Improve calculation of approximate Local Apparent Sidereal time
*        by finding and using the ratio of solar to sidereal time
*        independently for each approximation period.
*     14-JAN-2009 (DSB):
*        Override the astIntersect method.
*     21-JAN-2009 (DSB):
*        Fix mis-use of results buffers for GetFormat and GetAttrib.
*     16-JUN-2009 (DSB):
*        All sky coordinate systems currently supported by SkyFrame are
*        left handed. So fix GetDirection method to return zero for all
*        longitude axes and 1 for all latitude axes.
*     18-JUN-2009 (DSB):
*        Incorporate the new ObsAlt attribute.
*     23-SEP-2009 (DSB):
*        Allow some rounding error when checking for changes in SetObsLon
*        and SetDut1. This reduces the number of times the expensive
*        calculation of LAST is performed.
*     24-SEP-2009 (DSB);
*        Create a static cache of LAST values stored in the class virtual
*        function table. These are used in preference to calculating a new
*        value from scratch.
*     25-SEP-2009 (DSB);
*        Do not calculate LAST until it is needed.
*     12-OCT-2009 (DSB);
*        - Handle 2.PI->0 discontinuity in cached LAST values.
*     12-OCT-2009 (BEC);
*        - Fix bug in caching LAST value.
*     31-OCT-2009 (DSB);
*        Correct SetCachedLAST to handle cases where the epoch to be
*        stored is smaller than any epoch already in the table.
*     24-NOV-2009 (DSB):
*        - In CalcLast, only use end values form the table of stored
*        LAST values if the corresponding epochs are within 0.001 of
*        a second of the required epoch (this tolerance used to be
*        0.1 seconds).
*        - Do not clear the cached LAST value in SetEpoch and ClearEpoch.
*     8-MAR-2010 (DSB):
*        Add astSkyOffsetMap method.
*     7-APR-2010 (DSB):
*        Add IsLatAxis and IsLonAxis attributes.
*     11-MAY-2010 (DSB):
*        In SetSystem, clear SkyRefP as well as SkyRef.
*     22-MAR-2011 (DSB):
*        Override astFrameGrid method.
*     29-APR-2011 (DSB):
*        Prevent astFindFrame from matching a subclass template against a
*        superclass target.
*     23-MAY-2011 (DSB):
*        Truncate returned PointSet in function FrameGrid to exclude unused points.
*     24-MAY-2011 (DSB):
*        When clearing or setting the System attribute, clear SkyRef rather
*        than reporting an error if the Mapping from the old System to the
*        new System is unknown.
*     30-NOV-2011 (DSB):
*        When aligning two SkyFrames in the system specified by AlignSystem,
*        do not assume inappropriate default equinox values for systems
*        that are not referred to the equinox specified by the Equinox attribute.
*     26-APR-2012 (DSB):
*        - Correct Dump function so that any axis permutation is taken into
*        account when dumping SkyFrame attributes that have a separate value
*        for each axis (e.g. SkyRef and SkyRefP).
*        - Take axis permutation into account when setting a new value
*        for attributes that have a separate value for each axis (e.g.
*        SkyRef and SkyRefP).
*        - Remove the code that overrides ClearEpoch and SetEpoch (these
*        overrides have not been needed since the changes made on
*        24/11/2009).
*     27-APR-2012 (DSB):
*        - Correct astLoadSkyFrame function so that any axis permutation is
*        taken into account when loading SkyFrame attributes that have a
*        separate value for each axis.
*     25-JUL-2013 (DSB):
*        Use a single table of cached LAST values for all threads, rather
*        than a separate table for each thread. The problem with a table per
*        thread  is that if you have N threads, each table contains only
*        one N'th of the total number of cached values, resulting in
*        poorer accuracy, and small variations in interpolated LAST value
*        depending on the way the cached values are distributed amongst the
*        N threads.
*     6-AST-2013 (DSB):
*        Fix the use of the read-write lock that is used to serialise
*        access to the table of cached LAST values. This bug could
*        cause occasional problems where an AST pointer would became
*        invalid for no apparent reason.
*     21-FEB-2014 (DSB):
*        Rounding errors in the SkyLineDef constructor could result in the line
*        between coincident points being given a non-zero length.
*     6-JUL-2015 (DSB):
*        Added SkyTol attribute.
*     3-FEB-2017 (GSB):
*        Override astSetDtai and astClearDtai.
*     6-APR-2017 (GSB):
*        Added dtai to AstSkyLastTable.
*     10-APR-2017 (GSB):
*        Added macro to test floating point equality and used it for Dtai.
*class--
*/

/* Module Macros. */
/* ============== */
/* Set the name of the class we are implementing. This indicates to
   the header files that define class interfaces that they should make
   "protected" symbols available. */
#define astCLASS SkyFrame

/* Define the first and last acceptable System values. */
#define FIRST_SYSTEM AST__FK4
#define LAST_SYSTEM AST__AZEL

/* Speed of light (AU per day) (from SLA_AOPPA) */
#define C 173.14463331

/* Ratio between solar and sidereal time (from SLA_AOPPA) */
#define SOLSID 1.00273790935

/* Define values for the different values of the SkyRefIs attribute. */
#define POLE_STRING "Pole"
#define ORIGIN_STRING "Origin"
#define IGNORED_STRING "Ignored"

/* Define other numerical constants for use in this module. */
#define GETATTRIB_BUFF_LEN 200
#define GETFORMAT_BUFF_LEN 50
#define GETLABEL_BUFF_LEN 40
#define GETSYMBOL_BUFF_LEN 20
#define GETTITLE_BUFF_LEN 200

/* A macro which returns a flag indicating if the supplied system is
   references to the equinox specified by the Equinox attribute. */
#define EQREF(system) \
((system==AST__FK4||system==AST__FK4_NO_E||system==AST__FK5||system==AST__ECLIPTIC)?1:0)

/* Check for floating point equality (within the given tolerance), taking
   bad values into account. */
#define EQUAL(aa,bb,tol) (((aa)==AST__BAD)?(((bb)==AST__BAD)?1:0):(((bb)==AST__BAD)?0:(fabs((aa)-(bb))<=(tol))))

/*
*
*  Name:
*     MAKE_CLEAR

*  Purpose:
*     Implement a method to clear a single value in a multi-valued attribute.

*  Type:
*     Private macro.

*  Synopsis:
*     #include "skyframe.h"
*     MAKE_CLEAR(attr,component,assign,nval)

*  Class Membership:
*     Defined by the SkyFrame class.

*  Description:
*     This macro expands to an implementation of a private member function of
*     the form:
*
*        static void Clear<Attribute>( AstSkyFrame *this, int axis )
*
*     and an external interface function of the form:
*
*        void astClear<Attribute>_( AstSkyFrame *this, int axis )
*
*     which implement a method for clearing a single value in a specified
*     multi-valued attribute for an axis of a SkyFrame.

*  Parameters:
*     attr
*        The name of the attribute to be cleared, as it appears in the function
*        name (e.g. Label in "astClearLabelAt").
*     component
*        The name of the class structure component that holds the attribute
*        value.
*     assign
*        An expression that evaluates to the value to assign to the component
*        to clear its value.
*     nval
*        Specifies the number of values in the multi-valued attribute. The
*        "axis" values supplied to the created function should be in the
*        range zero to (nval - 1).

*  Notes:
*     -  To avoid problems with some compilers, you should not leave any white
*     space around the macro arguments.
*
*/

/* Define the macro. */
#define MAKE_CLEAR(attr,component,assign,nval) \
\
/* Private member function. */ \
/* ------------------------ */ \
static void Clear##attr( AstSkyFrame *this, int axis, int *status ) { \
\
   int axis_p; \
\
/* Check the global error status. */ \
   if ( !astOK ) return; \
\
/* Validate and permute the axis index. */ \
   axis_p = astValidateAxis( this, axis, 1, "astClear" #attr ); \
\
/* Assign the "clear" value. */ \
   if( astOK ) { \
      this->component[ axis_p ] = (assign); \
   } \
} \
\
/* External interface. */ \
/* ------------------- */ \
void astClear##attr##_( AstSkyFrame *this, int axis, int *status ) { \
\
/* Check the global error status. */ \
   if ( !astOK ) return; \
\
/* Invoke the required method via the virtual function table. */ \
   (**astMEMBER(this,SkyFrame,Clear##attr))( this, axis, status ); \
}


/*
*
*  Name:
*     MAKE_GET

*  Purpose:
*     Implement a method to get a single value in a multi-valued attribute.

*  Type:
*     Private macro.

*  Synopsis:
*     #include "skyframe.h"
*     MAKE_GET(attr,type,bad_value,assign,nval)

*  Class Membership:
*     Defined by the SkyFrame class.

*  Description:
*     This macro expands to an implementation of a private member function of
*     the form:
*
*        static <Type> Get<Attribute>( AstSkyFrame *this, int axis )
*
*     and an external interface function of the form:
*
*        <Type> astGet<Attribute>_( AstSkyFrame *this, int axis )
*
*     which implement a method for getting a single value from a specified
*     multi-valued attribute for an axis of a SkyFrame.

*  Parameters:
*     attr
*        The name of the attribute whose value is to be obtained, as it
*        appears in the function name (e.g. Label in "astGetLabel").
*     type
*        The C type of the attribute.
*     bad_value
*        A constant value to return if the global error status is set, or if
*        the function fails.
*     assign
*        An expression that evaluates to the value to be returned. This can
*        use the string "axis" to represent the zero-based value index.
*     nval
*        Specifies the number of values in the multi-valued attribute. The
*        "axis" values supplied to the created function should be in the
*        range zero to (nval - 1).

*  Notes:
*     -  To avoid problems with some compilers, you should not leave any white
*     space around the macro arguments.
*
*/

/* Define the macro. */
#define MAKE_GET(attr,type,bad_value,assign,nval) \
\
/* Private member function. */ \
/* ------------------------ */ \
static type Get##attr( AstSkyFrame *this, int axis, int *status ) { \
   int axis_p;                   /* Permuted axis index */ \
   type result;                  /* Result to be returned */ \
\
/* Initialise */\
   result = (bad_value); \
\
/* Check the global error status. */ \
   if ( !astOK ) return result; \
\
/* Validate and permute the axis index. */ \
   axis_p = astValidateAxis( this, axis, 1, "astGet" #attr ); \
\
/* Assign the result value. */ \
   if( astOK ) { \
      result = (assign); \
   } \
\
/* Check for errors and clear the result if necessary. */ \
   if ( !astOK ) result = (bad_value); \
\
/* Return the result. */ \
   return result; \
} \
/* External interface. */ \
/* ------------------- */  \
type astGet##attr##_( AstSkyFrame *this, int axis, int *status ) { \
\
/* Check the global error status. */ \
   if ( !astOK ) return (bad_value); \
\
/* Invoke the required method via the virtual function table. */ \
   return (**astMEMBER(this,SkyFrame,Get##attr))( this, axis, status ); \
}

/*
*
*  Name:
*     MAKE_SET

*  Purpose:
*     Implement a method to set a single value in a multi-valued attribute
*     for a SkyFrame.

*  Type:
*     Private macro.

*  Synopsis:
*     #include "skyframe.h"
*     MAKE_SET(attr,type,component,assign,nval)

*  Class Membership:
*     Defined by the SkyFrame class.

*  Description:
*     This macro expands to an implementation of a private member function of
*     the form:
*
*        static void Set<Attribute>( AstSkyFrame *this, int axis, <Type> value )
*
*     and an external interface function of the form:
*
*        void astSet<Attribute>_( AstSkyFrame *this, int axis, <Type> value )
*
*     which implement a method for setting a single value in a specified
*     multi-valued attribute for a SkyFrame.

*  Parameters:
*      attr
*         The name of the attribute to be set, as it appears in the function
*         name (e.g. Label in "astSetLabelAt").
*      type
*         The C type of the attribute.
*      component
*         The name of the class structure component that holds the attribute
*         value.
*      assign
*         An expression that evaluates to the value to be assigned to the
*         component.
*      nval
*         Specifies the number of values in the multi-valued attribute. The
*         "axis" values supplied to the created function should be in the
*         range zero to (nval - 1).

*  Notes:
*     -  To avoid problems with some compilers, you should not leave any white
*     space around the macro arguments.
*-
*/

/* Define the macro. */
#define MAKE_SET(attr,type,component,assign,nval) \
\
/* Private member function. */ \
/* ------------------------ */ \
static void Set##attr( AstSkyFrame *this, int axis, type value, int *status ) { \
\
   int axis_p; \
\
/* Check the global error status. */ \
   if ( !astOK ) return; \
\
/* Validate and permute the axis index. */ \
   axis_p = astValidateAxis( this, axis, 1, "astSet" #attr ); \
\
/* Store the new value in the structure component. */ \
   if( astOK ) { \
      this->component[ axis_p ] = (assign); \
   } \
} \
\
/* External interface. */ \
/* ------------------- */ \
void astSet##attr##_( AstSkyFrame *this, int axis, type value, int *status ) { \
\
/* Check the global error status. */ \
   if ( !astOK ) return; \
\
/* Invoke the required method via the virtual function table. */ \
   (**astMEMBER(this,SkyFrame,Set##attr))( this, axis, value, status ); \
}

/*
*
*  Name:
*     MAKE_TEST

*  Purpose:
*     Implement a method to test if a single value has been set in a
*     multi-valued attribute for a class.

*  Type:
*     Private macro.

*  Synopsis:
*     #include "skyframe.h"
*     MAKE_TEST(attr,assign,nval)

*  Class Membership:
*     Defined by the SkyFrame class.

*  Description:
*     This macro expands to an implementation of a private member function of
*     the form:
*
*        static int Test<Attribute>( AstSkyFrame *this, int axis )
*
*     and an external interface function of the form:
*
*        int astTest<Attribute>_( AstSkyFrame *this, int axis )
*
*     which implement a method for testing if a single value in a specified
*     multi-valued attribute has been set for a class.

*  Parameters:
*      attr
*         The name of the attribute to be tested, as it appears in the function
*         name (e.g. Label in "astTestLabelAt").
*      assign
*         An expression that evaluates to 0 or 1, to be used as the returned
*         value. This can use the string "axis" to represent the zero-based
*         index of the value within the attribute.
*      nval
*         Specifies the number of values in the multi-valued attribute. The
*         "axis" values supplied to the created function should be in the
*         range zero to (nval - 1).

*  Notes:
*     -  To avoid problems with some compilers, you should not leave any white
*     space around the macro arguments.
*-
*/

/* Define the macro. */
#define MAKE_TEST(attr,assign,nval) \
\
/* Private member function. */ \
/* ------------------------ */ \
static int Test##attr( AstSkyFrame *this, int axis, int *status ) { \
   int result;                   /* Value to return */ \
   int axis_p;                   /* Permuted axis index */ \
\
/* Initialise */ \
   result =0; \
\
/* Check the global error status. */ \
   if ( !astOK ) return result; \
\
/* Validate and permute the axis index. */ \
   axis_p = astValidateAxis( this, axis, 1, "astTest" #attr ); \
\
/* Assign the result value. */ \
   if( astOK ) { \
      result = (assign); \
   } \
\
/* Check for errors and clear the result if necessary. */ \
   if ( !astOK ) result = 0; \
\
/* Return the result. */ \
   return result; \
} \
/* External interface. */ \
/* ------------------- */ \
int astTest##attr##_( AstSkyFrame *this, int axis, int *status ) { \
\
/* Check the global error status. */ \
   if ( !astOK ) return 0; \
\
/* Invoke the required method via the virtual function table. */ \
   return (**astMEMBER(this,SkyFrame,Test##attr))( this, axis, status ); \
}


/* Header files. */
/* ============= */
/* Interface definitions. */
/* ---------------------- */

#include "globals.h"             /* Thread-safe global data access */
#include "error.h"               /* Error reporting facilities */
#include "memory.h"              /* Memory allocation facilities */
#include "globals.h"             /* Thread-safe global data access */
#include "object.h"              /* Base Object class */
#include "pointset.h"            /* Sets of points (for AST__BAD) */
#include "unitmap.h"             /* Unit Mappings */
#include "permmap.h"             /* Coordinate permutations */
#include "cmpmap.h"              /* Compound Mappings */
#include "slamap.h"              /* SLALIB sky coordinate Mappings */
#include "timemap.h"             /* Time conversions */
#include "skyaxis.h"             /* Sky axes */
#include "frame.h"               /* Parent Frame class */
#include "matrixmap.h"           /* Matrix multiplication */
#include "sphmap.h"              /* Cartesian<->Spherical transformations */
#include "skyframe.h"            /* Interface definition for this class */
#include "pal.h"                 /* SLALIB library interface */
#include "wcsmap.h"              /* Factors of PI */
#include "timeframe.h"           /* Time system transformations */

/* Error code definitions. */
/* ----------------------- */
#include "ast_err.h"             /* AST error codes */

/* C header files. */
/* --------------- */
#include <ctype.h>
#include <float.h>
#include <limits.h>
#include <math.h>
#include <stdarg.h>
#include <stddef.h>
#include <stdio.h>
#include <string.h>

/* Type Definitions. */
/* ================= */

/* Cached Line structure. */
/* ---------------------- */
/* This structure contains information describing a line segment within a
   SkyFrame. It differs from the AstLineDef defined in frame.h because
   positions are represented by 3D (x,y,z) cartesian coords rather than
   2D (long,lat) coords. */

typedef struct SkyLineDef {
   AstFrame *frame;            /* Pointer to Frame in which the line is defined */
   double length;              /* Line length */
   int infinite;               /* Disregard the start and end of the line? */
   double start[3];            /* Unit vector defining start of line */
   double end[3];              /* Unit vector defining end of line */
   double dir[3];              /* Unit vector defining line direction */
   double q[3];                /* Unit vector perpendicular to line */
   double start_2d[2];
   double end_2d[2];
} SkyLineDef;

/* Module Variables. */
/* ================= */

/* Address of this static variable is used as a unique identifier for
   member of this class. */
static int class_check;

/* Pointers to parent class methods which are used or extended by this
   class. */
static AstSystemType (* parent_getalignsystem)( AstFrame *, int * );
static AstSystemType (* parent_getsystem)( AstFrame *, int * );
static const char *(* parent_format)( AstFrame *, int, double, int * );
static const char *(* parent_getattrib)( AstObject *, const char *, int * );
static const char *(* parent_getdomain)( AstFrame *, int * );
static const char *(* parent_getformat)( AstFrame *, int, int * );
static const char *(* parent_getlabel)( AstFrame *, int, int * );
static const char *(* parent_getsymbol)( AstFrame *, int, int * );
static const char *(* parent_gettitle)( AstFrame *, int * );
static const char *(* parent_getunit)( AstFrame *, int, int * );
static double (* parent_gap)( AstFrame *, int, double, int *, int * );
static double (* parent_getbottom)( AstFrame *, int, int * );
static double (* parent_getepoch)( AstFrame *, int * );
static double (* parent_gettop)( AstFrame *, int, int * );
static int (* parent_getdirection)( AstFrame *, int, int * );
static int (* parent_getobjsize)( AstObject *, int * );
static int (* parent_match)( AstFrame *, AstFrame *, int, int **, int **, AstMapping **, AstFrame **, int * );
static int (* parent_subframe)( AstFrame *, AstFrame *, int, const int *, const int *, AstMapping **, AstFrame **, int * );
static int (* parent_testattrib)( AstObject *, const char *, int * );
static int (* parent_testformat)( AstFrame *, int, int * );
static int (* parent_unformat)( AstFrame *, int, const char *, double *, int * );
static void (* parent_clearattrib)( AstObject *, const char *, int * );
static void (* parent_cleardtai)( AstFrame *, int * );
static void (* parent_cleardut1)( AstFrame *, int * );
static void (* parent_clearformat)( AstFrame *, int, int * );
static void (* parent_clearobsalt)( AstFrame *, int * );
static void (* parent_clearobslat)( AstFrame *, int * );
static void (* parent_clearobslon)( AstFrame *, int * );
static void (* parent_clearsystem)( AstFrame *, int * );
static void (* parent_overlay)( AstFrame *, const int *, AstFrame *, int * );
static void (* parent_setattrib)( AstObject *, const char *, int * );
static void (* parent_setdtai)( AstFrame *, double, int * );
static void (* parent_setdut1)( AstFrame *, double, int * );
static void (* parent_setformat)( AstFrame *, int, const char *, int * );
static void (* parent_setobsalt)( AstFrame *, double, int * );
static void (* parent_setobslat)( AstFrame *, double, int * );
static void (* parent_setobslon)( AstFrame *, double, int * );
static void (* parent_setsystem)( AstFrame *, AstSystemType, int * );

/* Factors for converting between hours, degrees and radians. */
static double hr2rad;
static double deg2rad;
static double pi;
static double piby2;

/* Table of cached Local Apparent Sidereal Time values and corresponding
   epochs. */
static int nlast_tables = 0;
static AstSkyLastTable **last_tables = NULL;


/* Define macros for accessing each item of thread specific global data. */
#ifdef THREAD_SAFE

/* Define how to initialise thread-specific globals. */
#define GLOBAL_inits \
   globals->Class_Init = 0; \
   globals->GetAttrib_Buff[ 0 ] = 0; \
   globals->GetFormat_Buff[ 0 ] = 0; \
   globals->GetLabel_Buff[ 0 ] = 0; \
   globals->GetSymbol_Buff[ 0 ] = 0; \
   globals->GetTitle_Buff[ 0 ] = 0; \
   globals->GetTitle_Buff2[ 0 ] = 0; \
   globals->TDBFrame = NULL; \
   globals->LASTFrame = NULL; \

/* Create the function that initialises global data for this module. */
astMAKE_INITGLOBALS(SkyFrame)

/* Define macros for accessing each item of thread specific global data. */
#define class_init astGLOBAL(SkyFrame,Class_Init)
#define class_vtab astGLOBAL(SkyFrame,Class_Vtab)
#define getattrib_buff astGLOBAL(SkyFrame,GetAttrib_Buff)
#define getformat_buff astGLOBAL(SkyFrame,GetFormat_Buff)
#define getlabel_buff astGLOBAL(SkyFrame,GetLabel_Buff)
#define getsymbol_buff astGLOBAL(SkyFrame,GetSymbol_Buff)
#define gettitle_buff astGLOBAL(SkyFrame,GetTitle_Buff)
#define gettitle_buff2 astGLOBAL(SkyFrame,GetTitle_Buff2)
#define tdbframe astGLOBAL(SkyFrame,TDBFrame)
#define lastframe astGLOBAL(SkyFrame,LASTFrame)



static pthread_mutex_t mutex2 = PTHREAD_MUTEX_INITIALIZER;
#define LOCK_MUTEX2 pthread_mutex_lock( &mutex2 );
#define UNLOCK_MUTEX2 pthread_mutex_unlock( &mutex2 );

/* A read-write lock used to protect the table of cached LAST values so
   that multiple threads can read simultaneously so long as no threads are
   writing to the table. */
static pthread_rwlock_t rwlock1=PTHREAD_RWLOCK_INITIALIZER;
#define LOCK_WLOCK1 pthread_rwlock_wrlock( &rwlock1 );
#define LOCK_RLOCK1 pthread_rwlock_rdlock( &rwlock1 );
#define UNLOCK_RWLOCK1 pthread_rwlock_unlock( &rwlock1 );

/* If thread safety is not needed, declare and initialise globals at static
   variables. */
#else

/* Buffer returned by GetAttrib. */
static char getattrib_buff[ GETATTRIB_BUFF_LEN + 1 ];

/* Buffer returned by GetFormat. */
static char getformat_buff[ GETFORMAT_BUFF_LEN + 1 ];

/* Default GetLabel string buffer */
static char getlabel_buff[ GETLABEL_BUFF_LEN + 1 ];

/* Default GetSymbol buffer */
static char getsymbol_buff[ GETSYMBOL_BUFF_LEN + 1 ];

/* Default Title string buffer */
static char gettitle_buff[ AST__SKYFRAME_GETTITLE_BUFF_LEN + 1 ];
static char gettitle_buff2[ AST__SKYFRAME_GETTITLE_BUFF_LEN + 1 ];

/* TimeFrames for doing TDB<->LAST conversions. */
static AstTimeFrame *tdbframe = NULL;
static AstTimeFrame *lastframe = NULL;


/* Define the class virtual function table and its initialisation flag
   as static variables. */
static AstSkyFrameVtab class_vtab;   /* Virtual function table */
static int class_init = 0;       /* Virtual function table initialised? */

#define LOCK_MUTEX2
#define UNLOCK_MUTEX2

#define LOCK_WLOCK1
#define LOCK_RLOCK1
#define UNLOCK_RWLOCK1

#endif


/* Prototypes for Private Member Functions. */
/* ======================================== */
static AstLineDef *LineDef( AstFrame *, const double[2], const double[2], int * );
static AstMapping *SkyOffsetMap( AstSkyFrame *, int * );
static AstPointSet *FrameGrid( AstFrame *, int, const double *, const double *, int * );
static AstPointSet *ResolvePoints( AstFrame *, const double [], const double [], AstPointSet *, AstPointSet *, int * );
static AstSystemType GetAlignSystem( AstFrame *, int * );
static AstSystemType GetSystem( AstFrame *, int * );
static AstSystemType SystemCode( AstFrame *, const char *, int * );
static AstSystemType ValidateSystem( AstFrame *, AstSystemType, const char *, int * );
static const char *Format( AstFrame *, int, double, int * );
static const char *GetAttrib( AstObject *, const char *, int * );
static const char *GetDomain( AstFrame *, int * );
static const char *GetFormat( AstFrame *, int, int * );
static const char *GetLabel( AstFrame *, int, int * );
static const char *GetProjection( AstSkyFrame *, int * );
static const char *GetSymbol( AstFrame *, int, int * );
static const char *GetTitle( AstFrame *, int * );
static const char *GetUnit( AstFrame *, int, int * );
static const char *SystemString( AstFrame *, AstSystemType, int * );
static double Angle( AstFrame *, const double[], const double[], const double[], int * );
static double CalcLAST( AstSkyFrame *, double, double, double, double, double, double, int * );
static double Distance( AstFrame *, const double[], const double[], int * );
static double Gap( AstFrame *, int, double, int *, int * );
static double GetBottom( AstFrame *, int, int * );
static double GetCachedLAST( AstSkyFrame *, double, double, double, double, double, double, int * );
static double GetEpoch( AstFrame *, int * );
static double GetEquinox( AstSkyFrame *, int * );
static void SetCachedLAST( AstSkyFrame *, double, double, double, double, double, double, double, int * );
static void SetLast( AstSkyFrame *, int * );
static double GetTop( AstFrame *, int, int * );
static double Offset2( AstFrame *, const double[2], double, double, double[2], int * );
static double GetDiurab( AstSkyFrame *, int * );
static double GetLAST( AstSkyFrame *, int * );
static int GetActiveUnit( AstFrame *, int * );
static int GetAsTime( AstSkyFrame *, int, int * );
static int GetDirection( AstFrame *, int, int * );
static int GetIsLatAxis( AstSkyFrame *, int, int * );
static int GetIsLonAxis( AstSkyFrame *, int, int * );
static int GetLatAxis( AstSkyFrame *, int * );
static int GetLonAxis( AstSkyFrame *, int * );
static int GetNegLon( AstSkyFrame *, int * );
static int GetObjSize( AstObject *, int * );
static int IsEquatorial( AstSystemType, int * );
static int LineContains( AstFrame *, AstLineDef *, int, double *, int * );
static int LineCrossing( AstFrame *, AstLineDef *, AstLineDef *, double **, int * );
static int LineIncludes( SkyLineDef *, double[3], int * );
static int MakeSkyMapping( AstSkyFrame *, AstSkyFrame *, AstSystemType, AstMapping **, int * );
static int Match( AstFrame *, AstFrame *, int, int **, int **, AstMapping **, AstFrame **, int * );
static int SubFrame( AstFrame *, AstFrame *, int, const int *, const int *, AstMapping **, AstFrame **, int * );
static int TestActiveUnit( AstFrame *, int * );
static int TestAsTime( AstSkyFrame *, int, int * );
static int TestAttrib( AstObject *, const char *, int * );
static int TestEquinox( AstSkyFrame *, int * );
static int TestNegLon( AstSkyFrame *, int * );
static int TestProjection( AstSkyFrame *, int * );
static int TestSlaUnit( AstSkyFrame *, AstSkyFrame *, AstSlaMap *, int * );
static int Unformat( AstFrame *, int, const char *, double *, int * );
static void ClearAsTime( AstSkyFrame *, int, int * );
static void ClearAttrib( AstObject *, const char *, int * );
static void ClearDtai( AstFrame *, int * );
static void ClearDut1( AstFrame *, int * );
static void ClearEquinox( AstSkyFrame *, int * );
static void ClearNegLon( AstSkyFrame *, int * );
static void ClearObsAlt( AstFrame *, int * );
static void ClearObsLat( AstFrame *, int * );
static void ClearObsLon( AstFrame *, int * );
static void ClearProjection( AstSkyFrame *, int * );
static void ClearSystem( AstFrame *, int * );
static void Copy( const AstObject *, AstObject *, int * );
static void Delete( AstObject *, int * );
static void Dump( AstObject *, AstChannel *, int * );
static void Intersect( AstFrame *, const double[2], const double[2], const double[2], const double[2], double[2], int * );
static void LineOffset( AstFrame *, AstLineDef *, double, double, double[2], int * );
static void MatchAxesX( AstFrame *, AstFrame *, int *, int * );
static void Norm( AstFrame *, double[], int * );
static void NormBox( AstFrame *, double[], double[], AstMapping *, int * );
static void Offset( AstFrame *, const double[], const double[], double, double[], int * );
static void Overlay( AstFrame *, const int *, AstFrame *, int * );
static void Resolve( AstFrame *, const double [], const double [], const double [], double [], double *, double *, int * );
static void SetAsTime( AstSkyFrame *, int, int, int * );
static void SetAttrib( AstObject *, const char *, int * );
static void SetDtai( AstFrame *, double, int * );
static void SetDut1( AstFrame *, double, int * );
static void SetEquinox( AstSkyFrame *, double, int * );
static void SetNegLon( AstSkyFrame *, int, int * );
static void SetObsAlt( AstFrame *, double, int * );
static void SetObsLat( AstFrame *, double, int * );
static void SetObsLon( AstFrame *, double, int * );
static void SetProjection( AstSkyFrame *, const char *, int * );
static void SetSystem( AstFrame *, AstSystemType, int * );
static void Shapp( double, double *, double *, double, double *, int * );
static void Shcal( double, double, double, double *, double *, int * );
static void VerifyMSMAttrs( AstSkyFrame *, AstSkyFrame *, int, const char *, const char *, int * );

static double GetSkyRef( AstSkyFrame *, int, int * );
static int TestSkyRef( AstSkyFrame *, int, int * );
static void SetSkyRef( AstSkyFrame *, int, double, int * );
static void ClearSkyRef( AstSkyFrame *, int, int * );

static double GetSkyRefP( AstSkyFrame *, int, int * );
static int TestSkyRefP( AstSkyFrame *, int, int * );
static void SetSkyRefP( AstSkyFrame *, int, double, int * );
static void ClearSkyRefP( AstSkyFrame *, int, int * );

static int GetSkyRefIs( AstSkyFrame *, int * );
static int TestSkyRefIs( AstSkyFrame *, int * );
static void SetSkyRefIs( AstSkyFrame *, int, int * );
static void ClearSkyRefIs( AstSkyFrame *, int * );

static int GetAlignOffset( AstSkyFrame *, int * );
static int TestAlignOffset( AstSkyFrame *, int * );
static void SetAlignOffset( AstSkyFrame *, int, int * );
static void ClearAlignOffset( AstSkyFrame *, int * );

static double GetSkyTol( AstSkyFrame *, int * );
static int TestSkyTol( AstSkyFrame *, int * );
static void SetSkyTol( AstSkyFrame *, double, int * );
static void ClearSkyTol( AstSkyFrame *, int * );

/* Member functions. */
/* ================= */
static double Angle( AstFrame *this_frame, const double a[],
                     const double b[], const double c[], int *status ) {
/*
*  Name:
*     Angle

*  Purpose:
*     Calculate the angle subtended by two points at a third point.

*  Type:
*     Private function.

*  Synopsis:
*     #include "skyframe.h"
*     double Angle( AstFrame *this_frame, const double a[],
*                   const double b[], const double c[], int *status )

*  Class Membership:
*     SkyFrame member function (over-rides the astAngle method
*     inherited from the Frame class).

*  Description:
*     This function finds the angle at point B between the line
*     joining points A and B, and the line joining points C
*     and B. These lines will in fact be geodesic curves (great circles).

*  Parameters:
*     this
*        Pointer to the SkyFrame.
*     a
*        An array of double, with one element for each SkyFrame axis,
*        containing the coordinates of the first point.
*     b
*        An array of double, with one element for each SkyFrame axis,
*        containing the coordinates of the second point.
*     c
*        An array of double, with one element for each SkyFrame axis,
*        containing the coordinates of the third point.
*     status
*        Pointer to the inherited status variable.

*  Returned Value:
*     The angle in radians, from the line AB to the line CB, in
*     the range $\pm \pi$ with positive rotation is in the same sense
*     as rotation from axis 2 to axis 1.

*  Notes:
*     - This function will return a "bad" result value (AST__BAD) if
*     any of the input coordinates has this value.
*     - A "bad" value will also be returned if points A and B are
*     co-incident, or if points B and C are co-incident.
*     - A "bad" value will also be returned if this function is
*     invoked with the AST error status set, or if it should fail for
*     any reason.
*/

   AstSkyFrame *this;            /* Pointer to SkyFrame structure */
   const int *perm;              /* Axis permutation array */
   double aa[ 2 ];               /* Permuted a coordinates */
   double anga;                  /* Angle from north to the line BA */
   double angc;                  /* Angle from north to the line BC */
   double bb[ 2 ];               /* Permuted b coordinates */
   double cc[ 2 ];               /* Permuted c coordinates */
   double result;                /* Value to return */

/* Initialise. */
   result = AST__BAD;

/* Check the global error status. */
   if ( !astOK ) return result;

/* Obtain a pointer to the SkyFrame structure. */
   this = (AstSkyFrame *) this_frame;

/* Obtain a pointer to the SkyFrame's axis permutation array. */
   perm = astGetPerm( this );
   if ( astOK ) {

/* Check that all supplied coordinates are OK. */
      if ( ( a[ 0 ] != AST__BAD ) && ( a[ 1 ] != AST__BAD ) &&
           ( b[ 0 ] != AST__BAD ) && ( b[ 1 ] != AST__BAD ) &&
           ( c[ 0 ] != AST__BAD ) && ( c[ 1 ] != AST__BAD ) ) {

/* Apply the axis permutation array to obtain the coordinates of the
   three points in the required (longitude,latitude) order. */
         aa[ perm[ 0 ] ] = a[ 0 ];
         aa[ perm[ 1 ] ] = a[ 1 ];
         bb[ perm[ 0 ] ] = b[ 0 ];
         bb[ perm[ 1 ] ] = b[ 1 ];
         cc[ perm[ 0 ] ] = c[ 0 ];
         cc[ perm[ 1 ] ] = c[ 1 ];

/* Check that A and B are not co-incident. */
         if( aa[ 0 ] != bb[ 0 ] || aa[ 1 ] != bb[ 1 ] ) {

/* Check that C and B are not co-incident. */
            if( cc[ 0 ] != bb[ 0 ] || cc[ 1 ] != bb[ 1 ] ) {

/* Find the angle from north to the line BA. */
               anga = palDbear( bb[ 0 ], bb[ 1 ], aa[ 0 ], aa[ 1 ] );

/* Find the angle from north to the line BC. */
               angc = palDbear( bb[ 0 ], bb[ 1 ], cc[ 0 ], cc[ 1 ] );

/* Find the difference. */
               result = angc - anga;

/* This value is the angle from north, but we want the angle from axis 2.
   If the axes have been swapped so that axis 2 is actually the longitude
   axis, then we need to correct this result. */
               if( perm[ 0 ] != 0 ) result = piby2 - result;

/* Fold the result into the range +/- PI. */
               result = palDrange( result );
            }
         }
      }
   }

/* Return the result. */
   return result;
}

static double CalcLAST( AstSkyFrame *this, double epoch, double obslon,
                        double obslat, double obsalt, double dut1, double dtai,
                        int *status ) {
/*
*  Name:
*     CalcLAST

*  Purpose:
*     Calculate the Local Appearent Sidereal Time for a SkyFrame.

*  Type:
*     Private function.

*  Synopsis:
*     #include "skyframe.h"
*     double CalcLAST( AstSkyFrame *this, double epoch, double obslon,
*                      double obslat, double obsalt, double dut1, double dtai,
*                      int *status )

*  Class Membership:
*     SkyFrame member function.

*  Description:
*     This function calculates and returns the Local Apparent Sidereal Time
*     at the given epoch, etc.

*  Parameters:
*     this
*        Pointer to the SkyFrame.
*     epoch
*        The epoch (MJD).
*     obslon
*        Observatory geodetic longitude (radians)
*     obslat
*        Observatory geodetic latitude (radians)
*     obsalt
*        Observatory geodetic altitude (metres)
*     dut1
*        The UT1-UTC correction, in seconds.
*     dtai
*        The TAI-UTC correction, in seconds.
*     status
*        Pointer to the inherited status variable.

*  Returned Value:
*    The Local Apparent Sidereal Time, in radians.

*  Notes:
*     -  A value of AST__BAD will be returned if this function is invoked
*     with the global error status set, or if it should fail for any reason.
*/

/* Local Variables: */
   astDECLARE_GLOBALS /* Declare the thread specific global data */
   AstFrameSet *fs;   /* Mapping from TDB offset to LAST offset */
   double epoch0;     /* Supplied epoch value */
   double result;     /* Returned LAST value */

/* Get a pointer to the structure holding thread-specific global data. */
   astGET_GLOBALS(this);

/* Check the global error status. */
   if ( !astOK ) return AST__BAD;

/* See if the required LAST value can be determined from the cached LAST
   values in the SkyFrame virtual function table. */
   result = GetCachedLAST( this, epoch, obslon, obslat, obsalt, dut1, dtai,
                           status );

/* If not, we do an exact calculation from scratch. */
   if( result == AST__BAD ) {

/* If not yet done, create two TimeFrames. Note, this is done here
   rather than in astInitSkyFrameVtab in order to avoid infinite vtab
   initialisation loops (caused by the TimeFrame class containing a
   static SkyFrame). */
      if( ! tdbframe ) {
         astBeginPM;
         tdbframe = astTimeFrame( "system=mjd,timescale=tdb", status );
         lastframe = astTimeFrame( "system=mjd,timescale=last", status );
         astEndPM;
      }

/* For better accuracy, use this integer part of the epoch as the origin of
   the two TimeFrames. */
      astSetTimeOrigin( tdbframe, (int) epoch );
      astSetTimeOrigin( lastframe, (int) epoch );

/* Convert the absolute Epoch value to an offset from the above origin. */
      epoch0 = epoch;
      epoch -= (int) epoch;

/* Store the observers position in the two TimeFrames. */
      astSetObsLon( tdbframe, obslon );
      astSetObsLon( lastframe, obslon );

      astSetObsLat( tdbframe, obslat );
      astSetObsLat( lastframe, obslat );

      astSetObsAlt( tdbframe, obsalt );
      astSetObsAlt( lastframe, obsalt );

/* Store the DUT1 value. */
      astSetDut1( tdbframe, dut1 );
      astSetDut1( lastframe, dut1 );

/* Store the DTAI value. */
      if ( dtai == AST__BAD ) {
         astClearDtai( tdbframe );
         astClearDtai( lastframe );
      }
      else {
         astSetDtai( tdbframe, dtai );
         astSetDtai( lastframe, dtai );
      }

/* Get the conversion from tdb mjd offset to last mjd offset. */
      fs = astConvert( tdbframe, lastframe, "" );

/* Use it to transform the SkyFrame Epoch from TDB offset to LAST offset. */
      astTran1( fs, 1, &epoch, 1, &epoch );
      fs = astAnnul( fs );

/* Convert the LAST offset from days to radians. */
      result = ( epoch - (int) epoch )*2*AST__DPI;

/* Cache the new LAST value in the SkyFrame virtual function table. */
      SetCachedLAST( this, result, epoch0, obslon, obslat, obsalt, dut1, dtai,
                     status );
   }

/* Return the required LAST value. */
   return result;
}

static void ClearAsTime( AstSkyFrame *this, int axis, int *status ) {
/*
*  Name:
*     ClearAsTime

*  Purpose:
*     Clear the value of the AsTime attribute for a SkyFrame's axis.

*  Type:
*     Private function.

*  Synopsis:
*     #include "skyframe.h"
*     void ClearAsTime( AstSkyFrame *this, int axis, int *status )

*  Class Membership:
*     SkyFrame member function.

*  Description:
*     This function clears any value that has been set for the AsTime
*     attribute for a specified axis of a SkyFrame. This attribute indicates
*     whether axis values should be formatted as times (as opposed to angles)
*     by default.

*  Parameters:
*     this
*        Pointer to the SkyFrame.
*     axis
*        Index of the axis for which the value is to be cleared (zero based).
*     status
*        Pointer to the inherited status variable.

*  Returned Value:
*     void.
*/

/* Local Variables: */
   AstAxis *ax;                  /* Pointer to Axis object */

/* Check the global error status. */
   if ( !astOK ) return;

/* Validate the axis index. */
   (void) astValidateAxis( this, axis, 1, "astClearAsTime" );

/* Obtain a pointer to the Axis object. */
   ax = astGetAxis( this, axis );

/* If the Axis is a SkyAxis, clear the AsTime attribute (if it is not a
   SkyAxis, it will not have this attribute anyway). */
   if ( astIsASkyAxis( ax ) ) astClearAxisAsTime( ax );

/* Annul the Axis pointer. */
   ax = astAnnul( ax );
}

static void ClearAttrib( AstObject *this_object, const char *attrib, int *status ) {
/*
*  Name:
*     ClearAttrib

*  Purpose:
*     Clear an attribute value for a SkyFrame.

*  Type:
*     Private function.

*  Synopsis:
*     #include "skyframe.h"
*     void ClearAttrib( AstObject *this, const char *attrib, int *status )

*  Class Membership:
*     SkyFrame member function (over-rides the astClearAttrib protected
*     method inherited from the Frame class).

*  Description:
*     This function clears the value of a specified attribute for a
*     SkyFrame, so that the default value will subsequently be used.

*  Parameters:
*     this
*        Pointer to the SkyFrame.
*     attrib
*        Pointer to a null terminated string specifying the attribute
*        name.  This should be in lower case with no surrounding white
*        space.
*     status
*        Pointer to the inherited status variable.

*  Notes:
*     - This function uses one-based axis numbering so that it is
*     suitable for external (public) use.
*/

/* Local Variables: */
   AstSkyFrame *this;            /* Pointer to the SkyFrame structure */
   int axis;                     /* SkyFrame axis number */
   int len;                      /* Length of attrib string */
   int nc;                       /* No. characters read by astSscanf */

/* Check the global error status. */
   if ( !astOK ) return;

/* Obtain a pointer to the SkyFrame structure. */
   this = (AstSkyFrame *) this_object;

/* Obtain the length of the "attrib" string. */
   len = strlen( attrib );

/* Check the attribute name and clear the appropriate attribute. */

/* AsTime(axis). */
/* ------------- */
   if ( nc = 0,
        ( 1 == astSscanf( attrib, "astime(%d)%n", &axis, &nc ) )
        && ( nc >= len ) ) {
      astClearAsTime( this, axis - 1 );

/* Equinox. */
/* -------- */
   } else if ( !strcmp( attrib, "equinox" ) ) {
      astClearEquinox( this );

/* NegLon. */
/* ------- */
   } else if ( !strcmp( attrib, "neglon" ) ) {
      astClearNegLon( this );

/* Projection. */
/* ----------- */
   } else if ( !strcmp( attrib, "projection" ) ) {
      astClearProjection( this );

/* SkyRef. */
/* ------- */
   } else if ( !strcmp( attrib, "skyref" ) ) {
      astClearSkyRef( this, 0 );
      astClearSkyRef( this, 1 );

/* SkyTol. */
/* ------- */
   } else if ( !strcmp( attrib, "skytol" ) ) {
      astClearSkyTol( this );

/* SkyRef(axis). */
/* ------------- */
   } else if ( nc = 0,
        ( 1 == astSscanf( attrib, "skyref(%d)%n", &axis, &nc ) )
        && ( nc >= len ) ) {
      astClearSkyRef( this, axis - 1 );

/* SkyRefP. */
/* -------- */
   } else if ( !strcmp( attrib, "skyrefp" ) ) {
      astClearSkyRefP( this, 0 );
      astClearSkyRefP( this, 1 );

/* SkyRefP(axis). */
/* ------------- */
   } else if ( nc = 0,
        ( 1 == astSscanf( attrib, "skyrefp(%d)%n", &axis, &nc ) )
        && ( nc >= len ) ) {
      astClearSkyRefP( this, axis - 1 );

/* SkyRefIs. */
/* --------- */
   } else if ( !strcmp( attrib, "skyrefis" ) ) {
      astClearSkyRefIs( this );

/* AlignOffset. */
/* ------------ */
   } else if ( !strcmp( attrib, "alignoffset" ) ) {
      astClearAlignOffset( this );

/* If the name was not recognised, test if it matches any of the
   read-only attributes of this class. If it does, then report an
   error. */
   } else if ( !strncmp( attrib, "islataxis", 9 ) ||
               !strncmp( attrib, "islonaxis", 9 ) ||
               !strcmp( attrib, "lataxis" ) ||
               !strcmp( attrib, "lonaxis" ) ) {
      astError( AST__NOWRT, "astClear: Invalid attempt to clear the \"%s\" "
                "value for a %s.", status, attrib, astGetClass( this ) );
      astError( AST__NOWRT, "This is a read-only attribute." , status);

/* If the attribute is not recognised, pass it on to the parent method
   for further interpretation. */
   } else {
      (*parent_clearattrib)( this_object, attrib, status );
   }
}

static void ClearDtai( AstFrame *this, int *status ) {
/*
*  Name:
*     ClearDtai

*  Purpose:
*     Clear the value of the Dtai attribute for a SkyFrame.

*  Type:
*     Private function.

*  Synopsis:
*     #include "skyframe.h"
*     void ClearDtai( AstFrame *this, int *status )

*  Class Membership:
*     SkyFrame member function (over-rides the astClearDtai method
*     inherited from the Frame class).

*  Description:
*     This function clears the Dtai value and updates the LAST value
*     stored in the SkyFrame.

*  Parameters:
*     this
*        Pointer to the SkyFrame.
*     status
*        Pointer to the inherited status variable.

*/

/* Local Variables: */
   double orig;

/* Check the global error status. */
   if ( !astOK ) return;

/* Note the original value */
   orig = astGetDtai( this );

/* Invoke the parent method to clear the Frame Dtai */
   (*parent_cleardtai)( this, status );

/* If the DTAI value has changed significantly, indicate that the LAST value
   will need to be re-calculated when it is next needed. */
   if( ! EQUAL( orig, astGetDtai( this ), 1.0E-6 ) ) {
      ( (AstSkyFrame *) this )->last = AST__BAD;
      ( (AstSkyFrame *) this )->eplast = AST__BAD;
      ( (AstSkyFrame *) this )->klast = AST__BAD;
   }
}

static void ClearDut1( AstFrame *this, int *status ) {
/*
*  Name:
*     ClearDut1

*  Purpose:
*     Clear the value of the Dut1 attribute for a SkyFrame.

*  Type:
*     Private function.

*  Synopsis:
*     #include "skyframe.h"
*     void ClearDut1( AstFrame *this, int *status )

*  Class Membership:
*     SkyFrame member function (over-rides the astClearDut1 method
*     inherited from the Frame class).

*  Description:
*     This function clears the Dut1 value and updates the LAST value
*     stored in the SkyFrame.

*  Parameters:
*     this
*        Pointer to the SkyFrame.
*     status
*        Pointer to the inherited status variable.

*/

/* Local Variables: */
   double orig;

/* Check the global error status. */
   if ( !astOK ) return;

/* Note the original value */
   orig = astGetDut1( this );

/* Invoke the parent method to clear the Frame Dut1 */
   (*parent_cleardut1)( this, status );

/* If the DUT1 value has changed significantly, indicate that the LAST value
   will need to be re-calculated when it is next needed. */
   if( fabs( orig - astGetDut1( this ) ) > 1.0E-6 ) {
      ( (AstSkyFrame *) this )->last = AST__BAD;
      ( (AstSkyFrame *) this )->eplast = AST__BAD;
      ( (AstSkyFrame *) this )->klast = AST__BAD;
   }
}

static void ClearObsAlt( AstFrame *this, int *status ) {
/*
*  Name:
*     ClearObsAlt

*  Purpose:
*     Clear the value of the ObsAlt attribute for a SkyFrame.

*  Type:
*     Private function.

*  Synopsis:
*     #include "skyframe.h"
*     void ClearObsAlt( AstFrame *this, int *status )

*  Class Membership:
*     SkyFrame member function (over-rides the astClearObsAlt method
*     inherited from the Frame class).

*  Description:
*     This function clears the ObsAlt value.

*  Parameters:
*     this
*        Pointer to the SkyFrame.
*     status
*        Pointer to the inherited status variable.

*/

/* Local Variables: */
   double orig;

/* Check the global error status. */
   if ( !astOK ) return;

/* Note the original value */
   orig = astGetObsAlt( this );

/* Invoke the parent method to clear the Frame ObsAlt. */
   (*parent_clearobsalt)( this, status );

/* If the altitude has changed significantly, indicate that the LAST value
   and magnitude of the diurnal aberration vector will need to be
   re-calculated when next needed. */
   if( fabs( orig - astGetObsAlt( this ) ) > 0.001 ) {
      ( (AstSkyFrame *) this )->last = AST__BAD;
      ( (AstSkyFrame *) this )->eplast = AST__BAD;
      ( (AstSkyFrame *) this )->klast = AST__BAD;
      ( (AstSkyFrame *) this )->diurab = AST__BAD;
   }
}

static void ClearObsLat( AstFrame *this, int *status ) {
/*
*  Name:
*     ClearObsLat

*  Purpose:
*     Clear the value of the ObsLat attribute for a SkyFrame.

*  Type:
*     Private function.

*  Synopsis:
*     #include "skyframe.h"
*     void ClearObsLat( AstFrame *this, int *status )

*  Class Membership:
*     SkyFrame member function (over-rides the astClearObsLat method
*     inherited from the Frame class).

*  Description:
*     This function clears the ObsLat value.

*  Parameters:
*     this
*        Pointer to the SkyFrame.
*     status
*        Pointer to the inherited status variable.

*/

/* Local Variables: */
   double orig;

/* Check the global error status. */
   if ( !astOK ) return;

/* Note the original value */
   orig = astGetObsLat( this );

/* Invoke the parent method to clear the Frame ObsLat. */
   (*parent_clearobslat)( this, status );

/* If the altitude has changed significantly, indicate that the LAST value
   and magnitude of the diurnal aberration vector will need to be
   re-calculated when next needed. */
   if( fabs( orig - astGetObsLat( this ) ) > 1.0E-8 ) {
      ( (AstSkyFrame *) this )->last = AST__BAD;
      ( (AstSkyFrame *) this )->eplast = AST__BAD;
      ( (AstSkyFrame *) this )->klast = AST__BAD;
      ( (AstSkyFrame *) this )->diurab = AST__BAD;
   }
}

static void ClearObsLon( AstFrame *this, int *status ) {
/*
*  Name:
*     ClearObsLon

*  Purpose:
*     Clear the value of the ObsLon attribute for a SkyFrame.

*  Type:
*     Private function.

*  Synopsis:
*     #include "skyframe.h"
*     void ClearObsLon( AstFrame *this, int *status )

*  Class Membership:
*     SkyFrame member function (over-rides the astClearObsLon method
*     inherited from the Frame class).

*  Description:
*     This function clears the ObsLon value.

*  Parameters:
*     this
*        Pointer to the SkyFrame.
*     status
*        Pointer to the inherited status variable.

*/

/* Local Variables: */
   double orig;

/* Check the global error status. */
   if ( !astOK ) return;

/* Note the original value */
   orig = astGetObsLon( this );

/* Invoke the parent method to clear the Frame ObsLon. */
   (*parent_clearobslon)( this, status );

/* If the longitude has changed significantly, indicate that the LAST value
   will need to be re-calculated when it is next needed. */
   if( fabs( orig - astGetObsLon( this ) ) > 1.0E-8 ) {
      ( (AstSkyFrame *) this )->last = AST__BAD;
      ( (AstSkyFrame *) this )->eplast = AST__BAD;
      ( (AstSkyFrame *) this )->klast = AST__BAD;
   }
}

static void ClearSystem( AstFrame *this_frame, int *status ) {
/*
*  Name:
*     ClearSystem

*  Purpose:
*     Clear the System attribute for a SkyFrame.

*  Type:
*     Private function.

*  Synopsis:
*     #include "skyframe.h"
*     void ClearSystem( AstFrame *this_frame, int *status )

*  Class Membership:
*     SkyFrame member function (over-rides the astClearSystem protected
*     method inherited from the Frame class).

*  Description:
*     This function clears the System attribute for a SkyFrame.

*  Parameters:
*     this
*        Pointer to the SkyFrame.
*     status
*        Pointer to the inherited status variable.

*/

/* Local Variables: */
   AstFrameSet *fs;              /* FrameSet to be used as the Mapping */
   AstSkyFrame *sfrm;            /* Copy of original SkyFrame */
   AstSkyFrame *this;            /* Pointer to SkyFrame structure */
   double xin[ 2 ];              /* Axis 0 values */
   double yin[ 2 ];              /* Axis 1 values */
   double xout[ 2 ];             /* Axis 0 values */
   double yout[ 2 ];             /* Axis 1 values */
   int skyref_set;               /* Is either SkyRef attribute set? */
   int skyrefp_set;              /* Is either SkyRefP attribute set? */

/* Check the global error status. */
   if ( !astOK ) return;

/* Obtain a pointer to the SkyFrame structure. */
   this = (AstSkyFrame *) this_frame;

/* See if either the SkyRef or SkyRefP attribute is set. */
   skyref_set = astTestSkyRef( this, 0 ) || astTestSkyRef( this, 1 );
   skyrefp_set = astTestSkyRefP( this, 0 ) || astTestSkyRefP( this, 1 );

/* If so, we will need to transform their values into the new coordinate
   system. Save a copy of the SkyFrame with its original System value. */
   sfrm = ( skyref_set || skyrefp_set )?astCopy( this ):NULL;

/* Use the parent method to clear the System value. */
   (*parent_clearsystem)( this_frame, status );

/* Now modify the SkyRef and SkyRefP attributes if necessary. */
   if( sfrm ) {

/* Save the SkyRef and SkyRefP values. */
      xin[ 0 ] = astGetSkyRef( sfrm, 0 );
      xin[ 1 ] = astGetSkyRefP( sfrm, 0 );
      yin[ 0 ] = astGetSkyRef( sfrm, 1 );
      yin[ 1 ] = astGetSkyRefP( sfrm, 1 );

/* Clear the SkyRef values to avoid infinite recursion in the following
   call to astConvert. */
      if( skyref_set ) {
         astClearSkyRef( sfrm, 0 );
         astClearSkyRef( sfrm, 1 );
         astClearSkyRef( this, 0 );
         astClearSkyRef( this, 1 );
      }

/* Get the Mapping from the original System to the default System. Invoking
   astConvert will recursively invoke ClearSystem again. This is why we need
   to be careful to ensure that SkyRef is cleared above - doing so ensure
   we do not end up with infinite recursion. */
      fs = astConvert( sfrm, this, "" );

/* Check the Mapping was found. */
      if( fs ) {

/* Use the Mapping to find the SkyRef and SkyRefP positions in the default
   coordinate system. */
         astTran2( fs, 2, xin, yin, 1, xout, yout );

/* Store the values as required. */
         if( skyref_set ) {
            astSetSkyRef( this, 0, xout[ 0 ] );
            astSetSkyRef( this, 1, yout[ 0 ] );
         }

         if( skyrefp_set ) {
            astSetSkyRefP( this, 0, xout[ 1 ] );
            astSetSkyRefP( this, 1, yout[ 1 ] );
         }

/* Free resources. */
         fs = astAnnul( fs );

/* If the Mapping is not defined, we cannot convert the SkyRef or SkyRefP
   positions in the new Frame so clear them. */
      } else {
         if( skyref_set ) {
            astClearSkyRef( this, 0 );
            astClearSkyRef( this, 1 );
         }
         if( skyrefp_set ) {
            astClearSkyRefP( this, 0 );
            astClearSkyRefP( this, 1 );
         }
      }

/* Free resources. */
      sfrm = astAnnul( sfrm );
   }
}

static double Distance( AstFrame *this_frame,
                        const double point1[], const double point2[], int *status ) {
/*
*  Name:
*     Distance

*  Purpose:
*     Calculate the distance between two points.

*  Type:
*     Private function.

*  Synopsis:
*     #include "skyframe.h"
*     double Distance( AstFrame *this,
*                      const double point1[], const double point2[], int *status )

*  Class Membership:
*     SkyFrame member function (over-rides the astDistance method
*     inherited from the Frame class).

*  Description:
*     This function finds the distance between two points whose
*     SkyFrame coordinates are given. The distance calculated is that
*     along the geodesic curve (i.e. great circle) that joins the two
*     points.

*  Parameters:
*     this
*        Pointer to the SkyFrame.
*     point1
*        An array of double, with one element for each SkyFrame axis,
*        containing the coordinates of the first point.
*     point2
*        An array of double, with one element for each SkyFrame axis,
*        containing the coordinates of the second point.
*     status
*        Pointer to the inherited status variable.

*  Returned Value:
*     The distance between the two points, in radians.

*  Notes:
*     - This function will return a "bad" result value (AST__BAD) if
*     any of the input coordinates has this value.
*     - A "bad" value will also be returned if this function is
*     invoked with the AST error status set or if it should fail for
*     any reason.
*/

/* Local Variables: */
   AstSkyFrame *this;            /* Pointer to SkyFrame structure */
   const int *perm;              /* Axis permutation array */
   double p1[ 2 ];               /* Permuted point1 coordinates */
   double p2[ 2 ];               /* Permuted point2 coordinates */
   double result;                /* Value to return */

/* Initialise. */
   result = AST__BAD;

/* Check the global error status. */
   if ( !astOK ) return result;

/* Obtain a pointer to the SkyFrame structure. */
   this = (AstSkyFrame *) this_frame;

/* Obtain a pointer to the SkyFrame's axis permutation array. */
   perm = astGetPerm( this );
   if ( astOK ) {

/* Check that all supplied coordinates are OK. */
      if ( ( point1[ 0 ] != AST__BAD ) && ( point1[ 1 ] != AST__BAD ) &&
           ( point2[ 0 ] != AST__BAD ) && ( point2[ 1 ] != AST__BAD ) ) {

/* Apply the axis permutation array to obtain the coordinates of the
   two points in the required (longitude,latitude) order. */
         p1[ perm[ 0 ] ] = point1[ 0 ];
         p1[ perm[ 1 ] ] = point1[ 1 ];
         p2[ perm[ 0 ] ] = point2[ 0 ];
         p2[ perm[ 1 ] ] = point2[ 1 ];

/* Calculate the great circle distance between the points in radians. */
         result = palDsep( p1[ 0 ], p1[ 1 ], p2[ 0 ], p2[ 1 ] );
      }
   }

/* Return the result. */
   return result;
}

static const char *Format( AstFrame *this_frame, int axis, double value, int *status ) {
/*
*  Name:
*     Format

*  Purpose:
*     Format a coordinate value for a SkyFrame axis.

*  Type:
*     Private function.

*  Synopsis:
*     #include "skyframe.h"
*     const char *Format( AstFrame *this, int axis, double value, int *status )

*  Class Membership:
*     SkyFrame member function (over-rides the astFormat method inherited
*     from the Frame class).

*  Description:
*     This function returns a pointer to a string containing the formatted
*     (character) version of a coordinate value for a SkyFrame axis. The
*     formatting applied is that specified by a previous invocation of the
*     astSetFormat method. A suitable default format is applied if necessary,
*     and this may depend on which sky coordinate system the SkyFrame
*     describes.

*  Parameters:
*     this
*        Pointer to the SkyFrame.
*     axis
*        The number of the axis (zero-based) for which formatting is to be
*        performed.
*     value
*        The coordinate value to be formatted, in radians.
*     status
*        Pointer to the inherited status variable.

*  Returned Value:
*     A pointer to a null-terminated string containing the formatted value.

*  Notes:
*     -  A NULL pointer will be returned if this function is invoked with the
*     global error status set, or if it should fail for any reason.
*/

/* Local Variables: */
   AstSkyFrame *this;            /* Pointer to the SkyFrame structure */
   const char *result;           /* Pointer value to return */
   int format_set;               /* Format attribute set? */

/* Check the global error status. */
   if ( !astOK ) return NULL;

/* Obtain a pointer to the SkyFrame structure. */
   this = (AstSkyFrame *) this_frame;

/* Validate the axis index. */
   (void) astValidateAxis( this, axis, 1, "astFormat" );

/* Determine if a Format value has been set for the axis and set a temporary
   value if it has not. Use the GetFormat member function for this class
   together with member functions inherited from the parent class (rather than
   using the object's methods directly) because if any of these methods have
   been over-ridden by a derived class the Format string syntax may no longer
   be compatible with this class. */
   format_set = (*parent_testformat)( this_frame, axis, status );
   if ( !format_set ) {
      (*parent_setformat)( this_frame, axis, GetFormat( this_frame, axis, status ), status );
   }

/* Use the Format member function inherited from the parent class to format the
   value and return a pointer to the resulting string. */
   result = (*parent_format)( this_frame, axis, value, status );

/* If necessary, clear any temporary Format value that was set above. */
   if ( !format_set ) (*parent_clearformat)( this_frame, axis, status );

/* If an error occurred, clear the returned value. */
   if ( !astOK ) result = NULL;

/* Return the result. */
   return result;
}

static AstPointSet *FrameGrid( AstFrame *this_object, int size, const double *lbnd,
                               const double *ubnd, int *status ){
/*
*  Name:
*     FrameGrid

*  Purpose:
*     Return a grid of points covering a rectangular area of a Frame.

*  Type:
*     Private function.

*  Synopsis:
*     #include "skyframe.h"
*     AstPointSet *FrameGrid( AstFrame *this_frame, int size,
*                             const double *lbnd, const double *ubnd,
*                             int *status )

*  Class Membership:
*     SkyFrame member function (over-rides the protected astFrameGrid
*     method inherited from the Frame class).

*  Description:
*     This function returns a PointSet containing positions spread
*     approximately evenly throughtout a specified rectangular area of
*     the Frame.

*  Parameters:
*     this
*        Pointer to the Frame.
*     size
*        The preferred number of points in the returned PointSet. The
*        actual number of points in the returned PointSet may be
*        different, but an attempt is made to stick reasonably closely to
*        the supplied value.
*     lbnd
*        Pointer to an array holding the lower bound of the rectangular
*        area on each Frame axis. The array should have one element for
*        each Frame axis.
*     ubnd
*        Pointer to an array holding the upper bound of the rectangular
*        area on each Frame axis. The array should have one element for
*        each Frame axis.

*  Returned Value:
*     A pointer to a new PointSet holding the grid of points.

*  Notes:
*     - A NULL pointer is returned if an error occurs.
*/

/* Local Variables: */
   AstPointSet *result;
   AstSkyFrame *this;
   double **ptr;
   double box_area;
   double cl;
   double dlon;
   double hilat;
   double hilon;
   double inclon;
   double lat_size;
   double lat;
   double lon;
   double lolon;
   double lon_size;
   double lolat;
   double totlen;
   int ilat;
   int ilon;
   int imer;
   int ip;
   int ipar;
   int ipmax;
   int nmer;
   int npar;

/* Initialise. */
   result = NULL;

/* Check the global error status. */
   if ( !astOK ) return result;

/* Obtain a pointer to the SkyFrame structure. */
   this = (AstSkyFrame *) this_object;

/* Get the zero-based indices of the longitude and latitude axes. */
   ilon = astGetLonAxis( this );
   ilat = 1 - ilon;

/* The latitude bounds may not be the right way round so check for it. */
   if( lbnd[ ilat ] <= ubnd[ ilat ] ) {
      lolat = lbnd[ ilat ];
      hilat = ubnd[ ilat ];
   } else {
      lolat = ubnd[ ilat ];
      hilat = lbnd[ ilat ];
   }

/* Check all bounds are good. Also check the size is positive. */
   lolon = lbnd[ ilon ];
   hilon = ubnd[ ilon ];
   if( size > 0 && lolat != AST__BAD && hilat != AST__BAD &&
       lolon != AST__BAD && hilon != AST__BAD ) {

/* Ensure the longitude bounds are in the range 0-2PI. */
      lolon = palDranrm( lolon );
      hilon = palDranrm( hilon );

/* If the upper longitude limit is less than the lower limit, add 2.PI */
      if( hilon <= lolon &&
          ubnd[ ilon ] != lbnd[ ilon ] ) hilon += 2*AST__DPI;

/* Get the total area of the box in steradians. */
      dlon = hilon - lolon;
      box_area = fabs( dlon*( sin( hilat ) - sin( lolat ) ) );

/* Get the nominal size of a square grid cell, in radians. */
      lat_size = sqrt( box_area/size );

/* How many parallels should we use to cover the box? Ensure we use at
   least two. These parallels pass through the centre of the grid cells. */
      npar = (int)( 0.5 + ( hilat - lolat )/lat_size );
      if( npar < 2 ) npar = 2;

/* Find the actual sample size implied by this number of parallels. */
      lat_size = ( hilat - lolat )/npar;

/* Find the total arc length of the parallels. */
      totlen = 0.0;
      lat = lolat + 0.5*lat_size;
      for( ipar = 0; ipar < npar; ipar++ ) {
         totlen += dlon*cos( lat );
         lat += lat_size;
      }

/* If we space "size" samples evenly over this total arc-length, what is
   the arc-distance between samples? */
      lon_size = totlen/size;

/* Create a PointSet in which to store the grid. Make it bigger than
   necessary in order to leave room for extra samples caused by integer
   truncation. */
      ipmax = 2*size;
      result = astPointSet( ipmax, 2, " ", status );
      ptr = astGetPoints( result );
      if( astOK ) {

/* Loop over all the parallels. */
         ip = 0;
         lat = lolat + 0.5*lat_size;
         for( ipar = 0; ipar < npar; ipar++ ) {

/* Get the longitude increment between samples on this parallel. */
            cl = cos( lat );
            inclon = ( cl != 0.0 ) ? lon_size/cl : 0.0;

/* Get the number of longitude samples for this parallel. Reduce it if
   it would extend beyond the end of the PointSet. */
            nmer = dlon/inclon;
            if( ip + nmer >= ipmax ) nmer = ipmax - ip;

/* Adjust the longitude increment to take up any slack caused by the
   above integer division. */
            inclon = dlon/nmer;

/* Produce the samples for the current parallel. */
            lon = lolon + 0.5*inclon;
            for( imer = 0; imer < nmer; imer++ ) {
               ptr[ ilon ][ ip ] = lon;
               ptr[ ilat ][ ip ] = lat;

               lon += inclon;
               ip++;
            }

/* Get the latitude on the next parallel. */
            lat += lat_size;
         }

/* Truncate the PointSet to exclude unused elements at the end. */
         astSetNpoint( result, ip );
      }

/* Report error if supplied values were bad. */
   } else if( astOK ) {
      if( size < 1 ) {
         astError( AST__ATTIN, "astFrameGrid(%s): The supplied grid "
                   "size (%d) is invalid (programming error).",
                   status, astGetClass( this ), size );
      } else {
         astError( AST__ATTIN, "astFrameGrid(%s): One of more of the "
                   "supplied bounds is AST__BAD (programming error).",
                   status, astGetClass( this ) );
      }
   }

/* Annul the returned PointSet if an error has occurred. */
   if( !astOK ) result = astAnnul( result );

/* Return the PointSet holding the grid. */
   return result;
}

static double Gap( AstFrame *this_frame, int axis, double gap, int *ntick, int *status ) {
/*
*  Name:
*     Gap

*  Purpose:
*     Find a "nice" gap for tabulating SkyFrame axis values.

*  Type:
*     Private function.

*  Synopsis:
*     #include "skyframe.h"
*     double Gap( AstFrame *this, int axis, double gap, int *ntick, int *status )

*  Class Membership:
*     SkyFrame member function (over-rides the protected astGap method
*     inherited from the Frame class).

*  Description:
*     This function returns a gap size which produces a nicely spaced
*     series of formatted values for a SkyFrame axis, the returned gap
*     size being as close as possible to the supplied target gap
*     size. It also returns a convenient number of divisions into
*     which the gap can be divided.

*  Parameters:
*     this
*        Pointer to the SkyFrame.
*     axis
*        The number of the axis (zero-based) for which a gap is to be found.
*     gap
*        The target gap size.
*     ntick
*        Address of an int in which to return a convenient number of
*        divisions into which the gap can be divided.
*     status
*        Pointer to the inherited status variable.

*  Returned Value:
*     The nice gap size.

*  Notes:
*     - A value of zero is returned if the target gap size is zero.
*     - A negative gap size is returned if the supplied gap size is negative.
*     - A value of zero will be returned if this function is invoked
*     with the global error status set, or if it should fail for any
*     reason.
*/

/* Local Variables: */
   AstSkyFrame *this;            /* Pointer to the SkyFrame structure */
   double result;                /* Gap value to return */
   int format_set;               /* Format attribute set? */

/* Check the global error status. */
   if ( !astOK ) return 0.0;

/* Obtain a pointer to the SkyFrame structure. */
   this = (AstSkyFrame *) this_frame;

/* Validate the axis index. */
   (void) astValidateAxis( this, axis, 1, "astGap" );

/* Determine if a Format value has been set for the axis and set a
   temporary value if it has not. Use the GetFormat member function
   for this class together with member functions inherited from the
   parent class (rather than using the object's methods directly)
   because if any of these methods have been over-ridden by a derived
   class the Format string syntax may no longer be compatible with
   this class. */
   format_set = (*parent_testformat)( this_frame, axis, status );
   if ( !format_set ) {
      (*parent_setformat)( this_frame, axis, GetFormat( this_frame, axis, status ), status );
   }

/* Use the Gap member function inherited from the parent class to find
   the gap size. */
   result = (*parent_gap)( this_frame, axis, gap, ntick, status );

/* If necessary, clear any temporary Format value that was set above. */
   if ( !format_set ) (*parent_clearformat)( this_frame, axis, status );

/* If an error occurred, clear the returned value. */
   if ( !astOK ) result = 0.0;

/* Return the result. */
   return result;
}

static int GetObjSize( AstObject *this_object, int *status ) {
/*
*  Name:
*     GetObjSize

*  Purpose:
*     Return the in-memory size of an Object.

*  Type:
*     Private function.

*  Synopsis:
*     #include "skyframe.h"
*     int GetObjSize( AstObject *this, int *status )

*  Class Membership:
*     SkyFrame member function (over-rides the astGetObjSize protected
*     method inherited from the parent class).

*  Description:
*     This function returns the in-memory size of the supplied SkyFrame,
*     in bytes.

*  Parameters:
*     this
*        Pointer to the SkyFrame.
*     status
*        Pointer to the inherited status variable.

*  Returned Value:
*     The Object size, in bytes.

*  Notes:
*     - A value of zero will be returned if this function is invoked
*     with the global status set, or if it should fail for any reason.
*/

/* Local Variables: */
   AstSkyFrame *this;         /* Pointer to SkyFrame structure */
   int result;                /* Result value to return */

/* Initialise. */
   result = 0;

/* Check the global error status. */
   if ( !astOK ) return result;

/* Obtain a pointers to the SkyFrame structure. */
   this = (AstSkyFrame *) this_object;

/* Invoke the GetObjSize method inherited from the parent class, and then
   add on any components of the class structure defined by thsi class
   which are stored in dynamically allocated memory. */
   result = (*parent_getobjsize)( this_object, status );
   result += astTSizeOf( this->projection );

/* If an error occurred, clear the result value. */
   if ( !astOK ) result = 0;

/* Return the result, */
   return result;
}

static int GetActiveUnit( AstFrame *this_frame, int *status ) {
/*
*  Name:
*     GetActiveUnit

*  Purpose:
*     Obtain the value of the ActiveUnit flag for a SkyFrame.

*  Type:
*     Private function.

*  Synopsis:
*     #include "skyframe.h"
*     int GetActiveUnit( AstFrame *this_frame, int *status )

*  Class Membership:
*     SkyFrame member function (over-rides the astGetActiveUnit protected
*     method inherited from the Frame class).

*  Description:
*    This function returns the value of the ActiveUnit flag for a
*    SkyFrame, which is always 0.

*  Parameters:
*     this
*        Pointer to the SkyFrame.
*     status
*        Pointer to the inherited status variable.

*  Returned Value:
*     The value to use for the ActiveUnit flag (0).

*/
   return 0;
}

static int GetAsTime( AstSkyFrame *this, int axis, int *status ) {
/*
*  Name:
*     GetAsTime

*  Purpose:
*     Obtain the value of the AsTime attribute for a SkyFrame's axis.

*  Type:
*     Private function.

*  Synopsis:
*     #include "skyframe.h"
*     int GetAsTime( AstSkyFrame *this, int axis, int *status )

*  Class Membership:
*     SkyFrame member function.

*  Description:
*     This function returns the boolean value of the AsTime attribute for a
*     specified axis of a SkyFrame. This value indicates whether axis values
*     should be formatted as times (as opposed to angles) by default.

*  Parameters:
*     this
*        Pointer to the SkyFrame.
*     axis
*        Index of the axis for which information is required (zero based).
*     status
*        Pointer to the inherited status variable.

*  Returned Value:
*     Zero or one, according to the setting of the AsTime attribute (if no
*     value has previously been set, a suitable default is returned).

*  Notes:
*     -  A value of zero will be returned if this function is invoked with the
*     global error status set, or if it should fail for any reason.
*/

/* Local Variables: */
   AstAxis *ax;                  /* Pointer to Axis object */
   int axis_p;                   /* Permuted axis index */
   int result;                   /* Result to be returned */

/* Check the global error status. */
   if ( !astOK ) return 0;

/* Initialise. */
   result = 0;

/* Validate and permute the axis index. */
   axis_p = astValidateAxis( this, axis, 1, "astGetAsTime" );

/* Obtain a pointer to the required Axis object. */
   ax = astGetAxis( this, axis );

/* Determine if the AsTime attribute has been set for the axis (this can only
   be the case if the object is a SkyAxis). If the attribute is set, obtain its
   value. */
   if ( astIsASkyAxis( ax ) && astTestAxisAsTime( ax ) ) {
      result = astGetAxisAsTime( ax );

/* Otherwise, check which (permuted) axis is involved. Only the first
   (longitude) axis may be displayed as a time by default. */
   } else if ( axis_p == 0 ) {

/* Test for those coordinate systems which normally have their longitude axes
   displayed as times (basically, those that involve the Earth's equator) and
   set the returned value appropriately. */
      result = IsEquatorial( astGetSystem( this ), status );
   }

/* Annul the Axis object pointer. */
   ax = astAnnul( ax );

/* Return the result. */
   return result;
}

static const char *GetAttrib( AstObject *this_object, const char *attrib, int *status ) {
/*
*  Name:
*     GetAttrib

*  Purpose:
*     Get the value of a specified attribute for a SkyFrame.

*  Type:
*     Private function.

*  Synopsis:
*     #include "skyframe.h"
*     const char *GetAttrib( AstObject *this, const char *attrib, int *status )

*  Class Membership:
*     SkyFrame member function (over-rides the protected astGetAttrib
*     method inherited from the Frame class).

*  Description:
*     This function returns a pointer to the value of a specified
*     attribute for a SkyFrame, formatted as a character string.

*  Parameters:
*     this
*        Pointer to the SkyFrame.
*     attrib
*        Pointer to a null-terminated string containing the name of
*        the attribute whose value is required. This name should be in
*        lower case, with all white space removed.
*     status
*        Pointer to the inherited status variable.

*  Returned Value:
*     - Pointer to a null-terminated string containing the attribute
*     value.

*  Notes:
*     - This function uses one-based axis numbering so that it is
*     suitable for external (public) use.
*     - The returned string pointer may point at memory allocated
*     within the SkyFrame, or at static memory. The contents of the
*     string may be over-written or the pointer may become invalid
*     following a further invocation of the same function or any
*     modification of the SkyFrame. A copy of the string should
*     therefore be made if necessary.
*     - A NULL pointer will be returned if this function is invoked
*     with the global error status set, or if it should fail for any
*     reason.
*/

/* Local Variables: */
   astDECLARE_GLOBALS            /* Declare the thread specific global data */
   AstSkyFrame *this;            /* Pointer to the SkyFrame structure */
   const char *cval;             /* Pointer to character attribute value */
   const char *result;           /* Pointer value to return */
   double dval;                  /* Floating point attribute value */
   double equinox;               /* Equinox attribute value (as MJD) */
   int as_time;                  /* AsTime attribute value */
   int axis;                     /* SkyFrame axis number */
   int ival;                     /* Integer attribute value */
   int len;                      /* Length of attrib string */
   int nc;                       /* No. characters read by astSscanf */
   int neglon;                   /* Display long. values as [-pi,pi]? */

/* Initialise. */
   result = NULL;

/* Check the global error status. */
   if ( !astOK ) return result;

/* Get a pointer to the structure holding thread-specific global data. */
   astGET_GLOBALS(this_object);

/* Obtain a pointer to the SkyFrame structure. */
   this = (AstSkyFrame *) this_object;

/* Obtain the length of the attrib string. */
   len = strlen( attrib );

/* Compare "attrib" with each recognised attribute name in turn,
   obtaining the value of the required attribute. If necessary, write
   the value into "getattrib_buff" as a null-terminated string in an appropriate
   format.  Set "result" to point at the result string. */

/* AsTime(axis). */
/* ------------- */
   if ( nc = 0,
        ( 1 == astSscanf( attrib, "astime(%d)%n", &axis, &nc ) )
        && ( nc >= len ) ) {
      as_time = astGetAsTime( this, axis - 1 );
      if ( astOK ) {
         (void) sprintf( getattrib_buff, "%d", as_time );
         result = getattrib_buff;
      }

/* Equinox. */
/* -------- */
   } else if ( !strcmp( attrib, "equinox" ) ) {
      equinox = astGetEquinox( this );
      if ( astOK ) {

/* Format the Equinox as decimal years. Use a Besselian epoch if it
   will be less than 1984.0, otherwise use a Julian epoch. */
         result = astFmtDecimalYr( ( equinox < palEpj2d( 1984.0 ) ) ?
                                   palEpb( equinox ) : palEpj( equinox ),
                                   AST__DBL_DIG );
      }

/* IsLatAxis(axis) */
/* --------------- */
   } else if ( nc = 0,
               ( 1 == astSscanf( attrib, "islataxis(%d)%n", &axis, &nc ) )
               && ( nc >= len ) ) {
      ival = astGetIsLatAxis( this, axis - 1 );
      if ( astOK ) {
         (void) sprintf( getattrib_buff, "%d", ival );
         result = getattrib_buff;
      }

/* IsLonAxis(axis) */
/* --------------- */
   } else if ( nc = 0,
               ( 1 == astSscanf( attrib, "islonaxis(%d)%n", &axis, &nc ) )
               && ( nc >= len ) ) {
      ival = astGetIsLonAxis( this, axis - 1 );
      if ( astOK ) {
         (void) sprintf( getattrib_buff, "%d", ival );
         result = getattrib_buff;
      }

/* LatAxis */
/* -------- */
   } else if ( !strcmp( attrib, "lataxis" ) ) {
      axis = astGetLatAxis( this );
      if ( astOK ) {
         (void) sprintf( getattrib_buff, "%d", axis + 1 );
         result = getattrib_buff;
      }

/* LonAxis */
/* -------- */
   } else if ( !strcmp( attrib, "lonaxis" ) ) {
      axis = astGetLonAxis( this );
      if ( astOK ) {
         (void) sprintf( getattrib_buff, "%d", axis + 1 );
         result = getattrib_buff;
      }

/* NegLon */
/* ------ */
   } else if ( !strcmp( attrib, "neglon" ) ) {
      neglon = astGetNegLon( this );
      if ( astOK ) {
         (void) sprintf( getattrib_buff, "%d", neglon );
         result = getattrib_buff;
      }

/* SkyTol */
/* ------ */
   } else if ( !strcmp( attrib, "skytol" ) ) {
      dval = astGetSkyTol( this );
      if ( astOK ) {
         (void) sprintf( getattrib_buff, "%.*g", AST__DBL_DIG, dval );
         result = getattrib_buff;
      }

/* Projection. */
/* ----------- */
   } else if ( !strcmp( attrib, "projection" ) ) {
      result = astGetProjection( this );

/* SkyRef. */
/* ------- */
   } else if ( !strcmp( attrib, "skyref" ) ) {
      cval = astFormat( this, 0, astGetSkyRef( this, 0 ) );
      if ( astOK ) {
         nc = sprintf( getattrib_buff, "%s, ", cval );
         cval = astFormat( this, 1, astGetSkyRef( this, 1 ) );
         if ( astOK ) {
            (void) sprintf( getattrib_buff + nc, "%s", cval );
            result = getattrib_buff;
         }
      }

/* SkyRef(axis). */
/* ------------- */
   } else if ( nc = 0,
        ( 1 == astSscanf( attrib, "skyref(%d)%n", &axis, &nc ) )
        && ( nc >= len ) ) {
      dval = astGetSkyRef( this, axis - 1 );
      if ( astOK ) {
         (void) sprintf( getattrib_buff, "%.*g", AST__DBL_DIG, dval );
         result = getattrib_buff;
      }

/* SkyRefP. */
/* -------- */
   } else if ( !strcmp( attrib, "skyrefp" ) ) {
      cval = astFormat( this, 0, astGetSkyRefP( this, 0 ) );
      if ( astOK ) {
         nc = sprintf( getattrib_buff, "%s, ", cval );
         cval = astFormat( this, 1, astGetSkyRefP( this, 1 ) );
         if ( astOK ) {
            (void) sprintf( getattrib_buff + nc, "%s", cval );
            result = getattrib_buff;
         }
      }

/* SkyRefP(axis). */
/* -------------- */
   } else if ( nc = 0,
        ( 1 == astSscanf( attrib, "skyrefp(%d)%n", &axis, &nc ) )
        && ( nc >= len ) ) {
      dval = astGetSkyRefP( this, axis - 1 );
      if ( astOK ) {
         (void) sprintf( getattrib_buff, "%.*g", AST__DBL_DIG, dval );
         result = getattrib_buff;
      }

/* SkyRefIs. */
/* --------- */
   } else if ( !strcmp( attrib, "skyrefis" ) ) {
      ival = astGetSkyRefIs( this );
      if ( astOK ) {
         if( ival == AST__POLE_REF ){
            result = POLE_STRING;
         } else if( ival == AST__IGNORED_REF ){
            result = IGNORED_STRING;
         } else {
            result = ORIGIN_STRING;
         }
      }

/* AlignOffset */
/* ----------- */
   } else if ( !strcmp( attrib, "alignoffset" ) ) {
      ival = astGetAlignOffset( this );
      if ( astOK ) {
         (void) sprintf( getattrib_buff, "%d", ival );
         result = getattrib_buff;
      }

/* If the attribute name was not recognised, pass it on to the parent
   method for further interpretation. */
   } else {
      result = (*parent_getattrib)( this_object, attrib, status );
   }

/* Return the result. */
   return result;
}

static int GetDirection( AstFrame *this_frame, int axis, int *status ) {
/*
*  Name:
*     GetDirection

*  Purpose:
*     Obtain the value of the Direction attribute for a SkyFrame axis.

*  Type:
*     Private function.

*  Synopsis:
*     #include "skyframe.h"
*     int GetDirection( AstFrame *this_frame, int axis, int *status )

*  Class Membership:
*     SkyFrame member function (over-rides the astGetDirection method inherited
*     from the Frame class).

*  Description:
*     This function returns the value of the Direction attribute for a
*     specified axis of a SkyFrame. A suitable default value is returned if no
*     Direction value has previously been set.

*  Parameters:
*     this
*        Pointer to the SkyFrame.
*     axis
*        Axis index (zero-based) identifying the axis for which information is
*        required.
*     status
*        Pointer to the inherited status variable.

*  Returned Value:
*     Zero or one, depending on the Direction attribute value.

*  Notes:
*     -  A value of zero will be returned if this function is invoked with the
*     global error status set, or if it should fail for any reason.
*/

/* Local Variables: */
   AstSkyFrame *this;            /* Pointer to the SkyFrame structure */
   int axis_p;                   /* Permuted axis index */
   int result;                   /* Result to be returned */

/* Check the global error status. */
   if ( !astOK ) return 0;

/* Initialise. */
   result = 0;

/* Obtain a pointer to the SkyFrame structure. */
   this = (AstSkyFrame *) this_frame;

/* Validate and permute the axis index. */
   axis_p = astValidateAxis( this, axis, 1, "astGetDirection" );

/* Check if a value has been set for the axis Direction attribute. If so,
   obtain its value. */
   if ( astTestDirection( this, axis ) ) {
      result = (*parent_getdirection)( this_frame, axis, status );

/* Otherwise, we will generate a default Direction value. Currently all
   systems supported by SkyFrame are left handed, so all longitude axes
   are reversed and all latitude axes are not reversed. */
   } else if( axis_p == 0 ) {
      result = 0;
   } else {
      result = 1;
   }

/* If an error occurred, clear the result value. */
   if ( !astOK ) result = 0;

/* Return the result. */
   return result;
}

static double GetBottom( AstFrame *this_frame, int axis, int *status ) {
/*
*  Name:
*     GetBottom

*  Purpose:
*     Obtain the value of the Bottom attribute for a SkyFrame axis.

*  Type:
*     Private function.

*  Synopsis:
*     #include "skyframe.h"
*     double GetBottom( AstFrame *this_frame, int axis, int *status )

*  Class Membership:
*     SkyFrame member function (over-rides the astGetBottom method inherited
*     from the Frame class).

*  Description:
*     This function returns the value of the Bottom attribute for a
*     specified axis of a SkyFrame. A suitable default value is returned if no
*     value has previously been set.

*  Parameters:
*     this
*        Pointer to the SkyFrame.
*     axis
*        Axis index (zero-based) identifying the axis for which information is
*        required.
*     status
*        Pointer to the inherited status variable.

*  Returned Value:
*     The Bottom value to use.

*  Notes:
*     -  A value of -DBL_MAX will be returned if this function is invoked
*     with the global error status set, or if it should fail for any reason.
*/

/* Local Variables: */
   AstSkyFrame *this;            /* Pointer to the SkyFrame structure */
   int axis_p;                   /* Permuted axis index */
   double result;                /* Result to be returned */

/* Check the global error status. */
   if ( !astOK ) return -DBL_MAX;

/* Initialise. */
   result = -DBL_MAX;

/* Obtain a pointer to the SkyFrame structure. */
   this = (AstSkyFrame *) this_frame;

/* Validate and permute the axis index. */
   axis_p = astValidateAxis( this, axis, 1, "astGetBottom" );

/* Check if a value has been set for the axis Bottom attribute. If so,
   obtain its value. */
   if ( astTestBottom( this, axis ) ) {
      result = (*parent_getbottom)( this_frame, axis, status );

/* Otherwise, we will return a default Bottom value appropriate to the
   SkyFrame class. */
   } else {

/* If it is a latitude axis return -pi/2. */
      if( axis_p == 1 ) {
         result = -piby2;

/* If it is a longitude value return -DBL_MAX (i.e. no lower limit). */
      } else {
         result = -DBL_MAX;
      }
   }

/* If an error occurred, clear the result value. */
   if ( !astOK ) result = -DBL_MAX;

/* Return the result. */
   return result;
}

static double GetCachedLAST( AstSkyFrame *this, double epoch, double obslon,
                             double obslat, double obsalt, double dut1,
                             double dtai, int *status ) {
/*
*  Name:
*     GetCachedLAST

*  Purpose:
*     Attempt to get a LAST value from the cache in the SkyFrame vtab.

*  Type:
*     Private function.

*  Synopsis:
*     #include "skyframe.h"
*     double GetCachedLAST( AstSkyFrame *this, double epoch, double obslon,
*                           double obslat, double obsalt, double dut1,
*                           double dtai, int *status )

*  Class Membership:
*     SkyFrame member function.

*  Description:
*     This function searches the static cache of LAST values held in the
*     SkyFrame virtual function table for a value that corresponds to the
*     supplied parameter values. If one is found, it is returned.
*     Otherwise AST__BAD is found.

*  Parameters:
*     this
*        Pointer to the SkyFrame.
*     epoch
*        The epoch (MJD).
*     obslon
*        Observatory geodetic longitude (radians)
*     obslat
*        Observatory geodetic latitude (radians)
*     obsalt
*        Observatory geodetic altitude (metres)
*     dut1
*        The UT1-UTC correction, in seconds.
*     dtai
*        The TAI-UTC correction, in seconds.
*     status
*        Pointer to the inherited status variable.

*  Returned Value:
*    The Local Apparent Sidereal Time, in radians.

*  Notes:
*     -  A value of AST__BAD will be returned if this function is invoked
*     with the global error status set, or if it should fail for any reason.
*/

/* Local Variables: */
   astDECLARE_GLOBALS
   AstSkyLastTable *table;
   double *ep;
   double *lp;
   double dep;
   double result;
   int ihi;
   int ilo;
   int itable;
   int itest;

/* Get a pointer to the structure holding thread-specific global data. */
   astGET_GLOBALS(this);

/* Initialise */
   result = AST__BAD;

/* Check the global error status. */
   if ( !astOK ) return result;

/* Wait until the table is not being written to by any thread. This also
   prevents a thread from writing to the table whilst we are reading it. */
   LOCK_RLOCK1

/* Loop round every LAST table held in the vtab. Each table refers to a
   different observatory position and/or DUT1 and/or DTAI value. */
   for( itable = 0; itable < nlast_tables; itable++ ) {
      table = last_tables[ itable ];

/* See if the table refers to the given position, dut1 and dtai value, allowing
   some small tolerance. */
      if( fabs( table->obslat - obslat ) < 2.0E-7 &&
          fabs( table->obslon - obslon ) < 2.0E-7 &&
          fabs( table->obsalt - obsalt ) < 1.0 &&
          fabs( table->dut1 - dut1 ) < 1.0E-5 &&
          EQUAL( table->dtai, dtai, 1.0E-5 ) ) {

/* Get pointers to the array of epoch and corresponding LAST values in
   the table. */
         ep = table->epoch;
         lp = table->last;

/* The values in the epoch array are monotonic increasing. Do a binary chop
   within the table's epoch array to find the earliest entry that has a
   value equal to or greater than the supplied epoch value. */
         ilo = 0;
         ihi = table->nentry - 1;
         while( ihi > ilo ) {
            itest = ( ilo + ihi )/2;
            if( ep[ itest ] >= epoch ) {
               ihi = itest;
            } else {
               ilo = itest + 1;
            }
         }

/* Get the difference between the epoch at the entry selected above and
   the requested epoch. */
         dep = ep[ ilo ] - epoch;

/* If the entry selected above is the first entry in the table, it can
   only be used if it is within 0.001 second of the requested epoch. */
         if( ilo == 0 ) {
            if( fabs( dep ) < 0.001/86400.0 ) {
               result = lp[ 0 ];
            }

/* If the list of epoch values contained no value that was greater than
   the supplied epoch value, then we can use the last entry if
   it is no more than 0.001 second away from the requested epoch. */
         } else if( dep <= 0.0 ) {
            if( fabs( dep ) < 0.001/86400.0 ) {
                result = lp[ ilo ];
            }


/* Otherwise, see if the entry selected above is sufficiently close to
   its lower neighbour (i.e. closer than 0.4 days) to allow a reasonably
   accurate LAST value to be determined by interpolation. */
         } else if( ep[ ilo ] - ep[ ilo - 1 ] < 0.4 ) {
            ep += ilo - 1;
            lp += ilo - 1;
            result = *lp + ( epoch - *ep )*( lp[ 1 ] - *lp )/( ep[ 1 ] - *ep );

/* If the neighbouring point is too far away for interpolation to be
   reliable, then we can only use the point if it is within 0.001 seconds of
   the requested epoch. */
         } else if( fabs( dep ) < 0.001/86400.0 ) {
            result = lp[ ilo ];
         }

/* If we have found the right table, we do not need to look at any other
   tables, so leave the table loop. */
         break;
      }
   }

/* Indicate that threads may now write to the table. */
   UNLOCK_RWLOCK1

/* Ensure the returned value is within the range 0 - 2.PI. */
   if( result != AST__BAD ) {
      while( result > 2*AST__DPI ) result -= 2*AST__DPI;
      while( result < 0.0 ) result += 2*AST__DPI;
   }

/* Return the required LAST value. */
   return result;
}

static double GetEpoch( AstFrame *this_frame, int *status ) {
/*
*  Name:
*     GetEpoch

*  Purpose:
*     Obtain the value of the Epoch attribute for a SkyFrame axis.

*  Type:
*     Private function.

*  Synopsis:
*     #include "skyframe.h"
*     double GetEpoch( AstFrame *this_frame, int *status )

*  Class Membership:
*     SkyFrame member function (over-rides the astGetEpoch method inherited
*     from the Frame class).

*  Description:
*     This function returns the value of the Epoch attribute for a
*     SkyFrame. A suitable default value is returned if no value has
*     previously been set.

*  Parameters:
*     this
*        Pointer to the SkyFrame.
*     status
*        Pointer to the inherited status variable.

*  Returned Value:
*     The Epoch value to use.

*  Notes:
*     -  A value of AST__BAD will be returned if this function is invoked
*     with the global error status set, or if it should fail for any reason.
*/

/* Local Variables: */
   AstSkyFrame *this;            /* Pointer to the SkyFrame structure */
   AstSystemType system;         /* System attribute */
   double result;                /* Result to be returned */

/* Check the global error status. */
   if ( !astOK ) return AST__BAD;

/* Initialise. */
   result = AST__BAD;

/* Obtain a pointer to the SkyFrame structure. */
   this = (AstSkyFrame *) this_frame;

/* Check if a value has been set for the Epoch attribute. If so, obtain its
   value. */
   if ( astTestEpoch( this ) ) {
      result = (*parent_getepoch)( this_frame, status );

/* Otherwise, we will return a default Epoch value appropriate to the
   SkyFrame class. */
   } else {

/* Provide a default value of B1950.0 or J2000.0 depending on the System
   setting. */
      system = astGetSystem( this );
      if( system  == AST__FK4 || system == AST__FK4_NO_E ) {
         result = palEpb2d( 1950.0 );
      } else {
         result = palEpj2d( 2000.0 );
      }
   }

/* If an error occurred, clear the result value. */
   if ( !astOK ) result = AST__BAD;

/* Return the result. */
   return result;
}

static double GetTop( AstFrame *this_frame, int axis, int *status ) {
/*
*  Name:
*     GetTop

*  Purpose:
*     Obtain the value of the Top attribute for a SkyFrame axis.

*  Type:
*     Private function.

*  Synopsis:
*     #include "skyframe.h"
*     double GetTop( AstFrame *this_frame, int axis, int *status )

*  Class Membership:
*     SkyFrame member function (over-rides the astGetTop method inherited
*     from the Frame class).

*  Description:
*     This function returns the value of the Top attribute for a
*     specified axis of a SkyFrame. A suitable default value is returned if no
*     value has previously been set.

*  Parameters:
*     this
*        Pointer to the SkyFrame.
*     axis
*        Axis index (zero-based) identifying the axis for which information is
*        required.
*     status
*        Pointer to the inherited status variable.

*  Returned Value:
*     The Top value to use.

*  Notes:
*     -  A value of DBL_MAX will be returned if this function is invoked
*     with the global error status set, or if it should fail for any reason.
*/

/* Local Variables: */
   AstSkyFrame *this;            /* Pointer to the SkyFrame structure */
   int axis_p;                   /* Permuted axis index */
   double result;                /* Result to be returned */

/* Check the global error status. */
   if ( !astOK ) return DBL_MAX;

/* Initialise. */
   result = DBL_MAX;

/* Obtain a pointer to the SkyFrame structure. */
   this = (AstSkyFrame *) this_frame;

/* Validate and permute the axis index. */
   axis_p = astValidateAxis( this, axis, 1, "astGetTop" );

/* Check if a value has been set for the axis Top attribute. If so,
   obtain its value. */
   if ( astTestTop( this, axis ) ) {
      result = (*parent_gettop)( this_frame, axis, status );

/* Otherwise, we will return a default Top value appropriate to the
   SkyFrame class. */
   } else {

/* If this is a latitude axis return pi/2. */
      if( axis_p == 1 ) {
         result = piby2;

/* If it is a longitude value return DBL_MAX (i.e. no upper limit). */
      } else {
         result = DBL_MAX;
      }
   }

/* If an error occurred, clear the result value. */
   if ( !astOK ) result = DBL_MAX;

/* Return the result. */
   return result;
}

static const char *GetDomain( AstFrame *this_frame, int *status ) {
/*
*  Name:
*     GetDomain

*  Purpose:
*     Obtain a pointer to the Domain attribute string for a SkyFrame.

*  Type:
*     Private function.

*  Synopsis:
*     #include "skyframe.h"
*     const char *GetDomain( AstFrame *this, int *status )

*  Class Membership:
*     SkyFrame member function (over-rides the astGetDomain protected
*     method inherited from the Frame class).

*  Description:
*    This function returns a pointer to the Domain attribute string
*    for a SkyFrame.

*  Parameters:
*     this
*        Pointer to the SkyFrame.
*     status
*        Pointer to the inherited status variable.

*  Returned Value:
*     A pointer to a constant null-terminated string containing the
*     Domain value.

*  Notes:
*     - The returned pointer or the string it refers to may become
*     invalid following further invocation of this function or
*     modification of the SkyFrame.
*     - A NULL pointer is returned if this function is invoked with
*     the global error status set or if it should fail for any reason.
*/

/* Local Variables: */
   AstSkyFrame *this;            /* Pointer to SkyFrame structure */
   const char *result;           /* Pointer value to return */

/* Initialise. */
   result = NULL;

/* Check the global error status. */
   if ( !astOK ) return result;

/* Obtain a pointer to the SkyFrame structure. */
   this = (AstSkyFrame *) this_frame;

/* If a Domain attribute string has been set, invoke the parent method
   to obtain a pointer to it. */
   if ( astTestDomain( this ) ) {
      result = (*parent_getdomain)( this_frame, status );

/* Otherwise, provide a pointer to a suitable default string. */
   } else {
      result = "SKY";
   }

/* Return the result. */
   return result;
}

static const char *GetFormat( AstFrame *this_frame, int axis, int *status ) {
/*
*  Name:
*     GetFormat

*  Purpose:
*     Access the Format string for a SkyFrame axis.

*  Type:
*     Private function.

*  Synopsis:
*     #include "skyframe.h"
*     const char *GetFormat( AstFrame *this, int axis )

*  Class Membership:
*     SkyFrame member function (over-rides the astGetFormat method inherited
*     from the Frame class).

*  Description:
*     This function returns a pointer to the Format string for a specified axis
*     of a SkyFrame. A pointer to a suitable default string is returned if no
*     Format value has previously been set.

*  Parameters:
*     this
*        Pointer to the SkyFrame.
*     axis
*        Axis index (zero-based) identifying the axis for which information is
*        required.

*  Returned Value:
*     Pointer to a null-terminated character string containing the requested
*     information.

*  Notes:
*     -  A NULL pointer will be returned if this function is invoked with the
*     global error status set, or if it should fail for any reason.
*/

/* Local Variables: */
   astDECLARE_GLOBALS            /* Declare the thread specific global data */
   AstAxis *ax;                  /* Pointer to Axis object */
   AstSkyFrame *this;            /* Pointer to the SkyFrame structure */
   const char *result;           /* Pointer value to return */
   int as_time;                  /* Value of AsTime attribute */
   int as_time_set;              /* AsTime attribute set? */
   int axis_p;                   /* Permuted axis index */
   int digits;                   /* Number of digits of precision */
   int is_latitude;              /* Value of IsLatitude attribute */
   int is_latitude_set;          /* IsLatitude attribute set? */
   int parent;                   /* Use parent method? */
   int skyaxis;                  /* Is the Axis a SkyAxis? */

/* Check the global error status. */
   if ( !astOK ) return NULL;

/* Get a pointer to the structure holding thread-specific global data. */
   astGET_GLOBALS(this_frame);

/* Initialise. */
   result = NULL;
   as_time_set = 0;
   is_latitude = 0;
   is_latitude_set = 0;

/* Obtain a pointer to the SkyFrame structure. */
   this = (AstSkyFrame *) this_frame;

/* Validate and permute the axis index. */
   axis_p = astValidateAxis( this, axis, 1, "astGetFormat" );

/* Obtain a pointer to the Axis structure. */
   ax = astGetAxis( this, axis );

/* Decide whether the parent astGetFormat method is able to provide the format
   string we require. We must use the parent method if the Axis is not a
   SkyAxis, because the syntax of the Format string would become unsuitable
   for use with the Axis astFormat method if it was over-ridden here. We also
   use the parent method to return a Format pointer if an explicit Format
   string has already been set. */
   skyaxis = astIsASkyAxis( ax );
   parent = ( !skyaxis || (*parent_testformat)( this_frame, axis, status ) );

/* If neither of the above conditions apply, we may still be able to use the
   parent method if the Axis (actually a SkyAxis) is required to behave as a
   normal RA or DEC axis, as this is the standard behaviour provided by the
   SkyAxis class. Examine the SkyFrame's System attribute to determine if its
   axes should behave in this way. */
   if ( !parent ) parent = IsEquatorial( astGetSystem( this ), status );

/* If using the parent method and dealing with a SkyAxis, determine the
   settings of any attributes that may affect the Format string. */
   if ( astOK ) {
      if ( parent ) {
         if ( skyaxis ) {
            as_time_set = astTestAsTime( this, axis );
            is_latitude_set = astTestAxisIsLatitude( ax );
            is_latitude = astGetAxisIsLatitude( ax );

/* If no AsTime value is set for the axis, set a temporary value as determined
   by the astGetAsTime method, which supplies suitable defaults for the axes of
   a SkyFrame. */
            if ( !as_time_set ) {
               astSetAsTime( this, axis, astGetAsTime( this, axis ) );
	    }

/* Temporarly over-ride the SkyAxis IsLatitude attribute, regardless of its
   setting, as the second axis of a SkyFrame is always the latitude axis. */
            astSetAxisIsLatitude( ax, axis_p == 1 );
         }

/* Invoke the parent method to obtain a pointer to the Format string. */
         result = (*parent_getformat)( this_frame, axis, status );

/* Now restore the attributes that were temporarily over-ridden above to their
   previous states. */
         if ( skyaxis ) {
            if ( !as_time_set ) astClearAsTime( this, axis );
            if ( !is_latitude_set ) {
               astClearAxisIsLatitude( ax );
            } else {
               astSetAxisIsLatitude( ax, is_latitude );
            }
         }

/* If the parent method is unsuitable, we must construct a new Format string
   here. This affects only those coordinate systems whose axes do not behave
   like standard RA/DEC axes (e.g. typically ecliptic, galactic and
   supergalactic coordinates). For these, we format values as decimal degrees
   (or decimal hours if the AsTime attribute is set). Obtain the AsTime
   value. */
      } else {
         as_time = astGetAsTime( this, axis );

/* Determine how many digits of precision to use. This is obtained from the
   SkyAxis Digits attribute (if set), otherwise from the Digits attribute of
   the enclosing SkyFrame. */
         if ( astTestAxisDigits( ax ) ) {
            digits = astGetAxisDigits( ax );
         } else {
            digits = astGetDigits( this );
         }

/* If a time format is required, generate a Format string using decimal
   hours. */
         if ( astOK ) {
            if ( as_time ) {
               if ( digits <= 2 ) {
                  result = "h";
               } else {
                  (void) sprintf( getformat_buff, "h.%d", digits - 2 );
                  result = getformat_buff;
               }

/* Otherwise use decimal degrees. */
            } else {
               if ( digits <= 3 ) {
                  result = "d";
               } else {
                  (void) sprintf( getformat_buff, "d.%d", digits - 3 );
                  result = getformat_buff;
               }
	    }
	 }
      }
   }

/* Annul the Axis pointer. */
   ax = astAnnul( ax );

/* If an error occurred, clear the returned value. */
   if ( !astOK ) result = NULL;

/* Return the result. */
   return result;
}

static const char *GetLabel( AstFrame *this, int axis, int *status ) {
/*
*  Name:
*     GetLabel

*  Purpose:
*     Access the Label string for a SkyFrame axis.

*  Type:
*     Private function.

*  Synopsis:
*     #include "skyframe.h"
*     const char *GetLabel( AstFrame *this, int axis, int *status )

*  Class Membership:
*     SkyFrame member function (over-rides the astGetLabel method inherited
*     from the Frame class).

*  Description:
*     This function returns a pointer to the Label string for a specified axis
*     of a SkyFrame.

*  Parameters:
*     this
*        Pointer to the SkyFrame.
*     axis
*        Axis index (zero-based) identifying the axis for which information is
*        required.
*     status
*        Pointer to the inherited status variable.

*  Returned Value:
*     Pointer to a constant null-terminated character string containing the
*     requested information.

*  Notes:
*     -  A NULL pointer will be returned if this function is invoked with the
*     global error status set, or if it should fail for any reason.
*/

/* Local Variables: */
   astDECLARE_GLOBALS            /* Declare the thread specific global data */
   AstSystemType system;         /* Code identifying type of sky coordinates */
   const char *result;           /* Pointer to label string */
   int axis_p;                   /* Permuted axis index */

/* Check the global error status. */
   if ( !astOK ) return NULL;

/* Get a pointer to the structure holding thread-specific global data. */
   astGET_GLOBALS(this);

/* Initialise. */
   result = NULL;

/* Validate and permute the axis index. */
   axis_p = astValidateAxis( this, axis, 1, "astGetLabel" );

/* Check if a value has been set for the required axis label string. If so,
   invoke the parent astGetLabel method to obtain a pointer to it. */
   if ( astTestLabel( this, axis ) ) {
      result = (*parent_getlabel)( this, axis, status );

/* Otherwise, identify the sky coordinate system described by the SkyFrame. */
   } else {
      system = astGetSystem( this );

/* If OK, supply a pointer to a suitable default label string. */
      if ( astOK ) {

/* Equatorial coordinate systems. */
         if ( IsEquatorial( system, status ) ) {
	    result = ( axis_p == 0 ) ? "Right ascension" :
	                               "Declination";

/* Ecliptic coordinates. */
         } else if ( system == AST__ECLIPTIC ) {
	    result = ( axis_p == 0 ) ? "Ecliptic longitude" :
                                       "Ecliptic latitude";

/* Helio-ecliptic coordinates. */
         } else if ( system == AST__HELIOECLIPTIC ) {
	    result = ( axis_p == 0 ) ? "Helio-ecliptic longitude" :
                                       "Helio-ecliptic latitude";

/* AzEl coordinates. */
         } else if ( system == AST__AZEL ) {
	    result = ( axis_p == 0 ) ? "Azimuth" :
                                       "Elevation";

/* Galactic coordinates. */
         } else if ( system == AST__GALACTIC ) {
	    result = ( axis_p == 0 ) ? "Galactic longitude" :
                                       "Galactic latitude";

/* Supergalactic coordinates. */
         } else if ( system == AST__SUPERGALACTIC ) {
	    result = ( axis_p == 0 ) ? "Supergalactic longitude" :
                                       "Supergalactic latitude";

/* Unknown spherical coordinates. */
         } else if ( system == AST__UNKNOWN ) {
	    result = ( axis_p == 0 ) ? "Longitude" :
                                       "Latitude";

/* Report an error if the coordinate system was not recognised. */
         } else {
	    astError( AST__SCSIN, "astGetLabel(%s): Corrupt %s contains "
		      "invalid sky coordinate system identification code "
		      "(%d).", status, astGetClass( this ), astGetClass( this ),
		      (int) system );
         }

/* If the SkyRef attribute has a set value, append " offset" to the label. */
         if( astGetSkyRefIs( this ) != AST__IGNORED_REF &&
             ( astTestSkyRef( this, 0 ) || astTestSkyRef( this, 1 ) ) ) {
            sprintf( getlabel_buff, "%s offset", result );
            result = getlabel_buff;
         }
      }
   }

/* Return the result. */
   return result;
}

static double GetDiurab( AstSkyFrame *this, int *status ) {
/*
*  Name:
*     GetDiurab

*  Purpose:
*     Return the magnitude of the diurnal aberration vector.

*  Type:
*     Private function.

*  Synopsis:
*     #include "skyframe.h"
*     double GetDiurab( AstSkyFrame *this, int *status )

*  Class Membership:
*     SkyFrame member function

*  Description:
*     This function returns the  magnitude of the diurnal aberration
*     vector.

*  Parameters:
*     this
*        Pointer to the SkyFrame.
*     status
*        Pointer to the inherited status variable.

*  Returned Value:
*     The magnitude of the diurnal aberration vector.

*/

/* Local Variables: */
   double uau;
   double vau;

/* Check the global error status. */
   if ( !astOK ) return AST__BAD;

/* If the magnitude of the diurnal aberration vector has not yet been
   found, find it now, and cache it in the SkyFrame structure. The cached
   value will be reset to AST__BAD if the ObsLat attribute value is
   changed. This code is transliterated from SLA_AOPPA. */
   if( this->diurab == AST__BAD ) {
      palGeoc( astGetObsLat( this ), astGetObsAlt( this ), &uau, &vau );
      this->diurab = 2*AST__DPI*uau*SOLSID/C;
   }

/* Return the result, */
   return this->diurab;
}

static double GetLAST( AstSkyFrame *this, int *status ) {
/*
*  Name:
*     GetLAST

*  Purpose:
*     Return the Local Apparent Sidereal Time for the SkyFrame.

*  Type:
*     Private function.

*  Synopsis:
*     #include "skyframe.h"
*     double GetLAST( AstSkyFrame *this, int *status )

*  Class Membership:
*     SkyFrame member function

*  Description:
*     This function returns the Local Apparent Sidereal Time (LAST)
*     at the moment intime given by the Epoch attribute of the SkyFrame.

*  Parameters:
*     this
*        Pointer to the SkyFrame.
*     status
*        Pointer to the inherited status variable.

*  Returned Value:
*     The LAST value.

*/

/* Local Variables: */
   double dlast;                 /* Change in LAST */
   double epoch;                 /* Epoch (TDB MJD) */
   double last1;                 /* LAST at end of current interval */
   double result;                /* Result value to return */
   double delta_epoch;           /* Change in Epoch */

/* Initialise. */
   result = 0;

/* Check the global error status. */
   if ( !astOK ) return result;

/* The "last" component of the SkyFrame structure holds the accurate
   LAST at the moment in time given by the "eplast" (a TDB MJD) component
   of the SkyFrame structure. If the current value of the SkyFrame's
   Epoch attribute is not much different to "eplast" (within 0.4 of a day),
   then the returned LAST value is the "last" value plus the difference
   between Epoch and "eplast", converted from solar to sidereal time,
   then converted to radians. This approximation seems to be good to less
   than a tenth of an arcsecond. If this approximation cannot be used,
   invoke SetLast to recalculate the accurate LAST and update the "eplast"
   and "last" values. */
   if( this->eplast != AST__BAD ) {
      epoch = astGetEpoch( this );
      delta_epoch = epoch - this->eplast;

/* Return the current LAST value if the epoch has not changed. */
      if( delta_epoch == 0.0 ) {
         result = this->last;

/* If the previous full calculation of LAST was less than 0.4 days ago,
   use a linear approximation to LAST. */
      } else if( fabs( delta_epoch ) < 0.4 ) {

/* If we do not know the ratio of sidereal to solar time at the current
   epoch, calculate it now. This involves a full calculation of LAST at
   the end of the current linear approximation period. */
         if( this->klast == AST__BAD ) {
            last1 = CalcLAST( this, this->eplast + 0.4, astGetObsLon( this ),
                              astGetObsLat( this ), astGetObsAlt( this ),
                              astGetDut1( this ), astGetDtai( this ), status );

/* Ensure the change in LAST is positive so that we get a positive ratio. */
            dlast = last1 - this->last;
            if( dlast < 0.0 ) dlast += 2*AST__DPI;
            this->klast = 2*AST__DPI*0.4/dlast;
         }

/* Now use the ratio of solar to sidereal time to calculate the linear
   approximation to LAST. */
         result = this->last + 2*AST__DPI*delta_epoch/this->klast;

/* If the last accurate calculation of LAST was more than 0.4 days ago,
   do a full accurate calculation. */
      } else {
         SetLast( this, status );
         result = this->last;
      }

/* If we have not yet done an accurate calculation of LAST, do one now. */
   } else {
      SetLast( this, status );
      result = this->last;
   }

/* Return the result, */
   return result;
}

static int GetIsLatAxis( AstSkyFrame *this, int axis, int *status ) {
/*
*  Name:
*     GetIsLatAxis

*  Purpose:
*     Test an axis to see if it is a latitude axis.

*  Type:
*     Private function.

*  Synopsis:
*     #include "skyframe.h"
*     int GetIsLatAxis( AstSkyFrame *this, int axis, int *status )

*  Class Membership:
*     SkyFrame member function.

*  Description:
*     This function tests if a SkyFrame axis is a celestial latitude axis.

*  Parameters:
*     this
*        Pointer to the SkyFrame.
*     axis
*        Zero based axis index.
*     status
*        Pointer to the inherited status variable.

*  Returned Value:
*     One if the supplied axis is a celestial latitude axis, and zero
*     otherwise.

*  Notes:
*     -  A value of zero will be returned if this function is invoked with the
*     global error status set, or if it should fail for any reason.
*/

/* Local Variables: */
   int result;                   /* Result to be returned */

/* Check the global error status. */
   if ( !astOK ) return 0;

/* Get the index of the latitude axis and compare to the supplied axis
   index. */
   result = ( axis == astGetLatAxis( this ) );

/* Return the result. */
   return astOK ? result : 0;

}

static int GetIsLonAxis( AstSkyFrame *this, int axis, int *status ) {
/*
*  Name:
*     GetIsLonAxis

*  Purpose:
*     Test an axis to see if it is a longitude axis.

*  Type:
*     Private function.

*  Synopsis:
*     #include "skyframe.h"
*     int GetIsLonAxis( AstSkyFrame *this, int axis, int *status )

*  Class Membership:
*     SkyFrame member function.

*  Description:
*     This function tests if a SkyFrame axis is a celestial longitude axis.

*  Parameters:
*     this
*        Pointer to the SkyFrame.
*     axis
*        Zero based axis index.
*     status
*        Pointer to the inherited status variable.

*  Returned Value:
*     One if the supplied axis is a celestial longitude axis, and zero
*     otherwise.

*  Notes:
*     -  A value of zero will be returned if this function is invoked with the
*     global error status set, or if it should fail for any reason.
*/

/* Local Variables: */
   int result;                   /* Result to be returned */

/* Check the global error status. */
   if ( !astOK ) return 0;

/* Get the index of the longitude axis and compare to the supplied axis
   index. */
   result = ( axis == astGetLonAxis( this ) );

/* Return the result. */
   return astOK ? result : 0;

}

static int GetLatAxis( AstSkyFrame *this, int *status ) {
/*
*  Name:
*     GetLatAxis

*  Purpose:
*     Obtain the index of the latitude axis of a SkyFrame.

*  Type:
*     Private function.

*  Synopsis:
*     #include "skyframe.h"
*     int GetLatAxis( AstSkyFrame *this, int *status )

*  Class Membership:
*     SkyFrame member function.

*  Description:
*     This function returns the zero-based index of the latitude axis of
*     a SkyFrame, taking into account any current axis permutation.

*  Parameters:
*     this
*        Pointer to the SkyFrame.
*     status
*        Pointer to the inherited status variable.

*  Returned Value:
*     The zero based axis index (0 or 1) of the latitude axis.

*  Notes:
*     -  A value of one will be returned if this function is invoked with the
*     global error status set, or if it should fail for any reason.
*/

/* Local Variables: */
   int result;                   /* Result to be returned */
   const int *perm;              /* Axis permutation array */

/* Check the global error status. */
   if ( !astOK ) return 1;

/* Initialise. */
   result = 1;

/* Obtain a pointer to the SkyFrame's axis permutation array. */
   perm = astGetPerm( this );
   if ( astOK ) {

/* Identify the latitude axis. */
      if( perm[ 0 ] == 1 ) {
         result = 0;
      } else {
         result = 1;
      }

   }

/* Return the result. */
   return result;

}

static int GetLonAxis( AstSkyFrame *this, int *status ) {
/*
*  Name:
*     GetLonAxis

*  Purpose:
*     Obtain the index of the longitude axis of a SkyFrame.

*  Type:
*     Private function.

*  Synopsis:
*     #include "skyframe.h"
*     int GetLonAxis( AstSkyFrame *this, int *status )

*  Class Membership:
*     SkyFrame member function.

*  Description:
*     This function returns the zero-based index of the longitude axis of
*     a SkyFrame, taking into account any current axis permutation.

*  Parameters:
*     this
*        Pointer to the SkyFrame.
*     status
*        Pointer to the inherited status variable.

*  Returned Value:
*     The zero based axis index (0 or 1) of the longitude axis.

*  Notes:
*     -  A value of zero will be returned if this function is invoked with the
*     global error status set, or if it should fail for any reason.
*/

/* Local Variables: */
   int result;                   /* Result to be returned */
   const int *perm;              /* Axis permutation array */

/* Check the global error status. */
   if ( !astOK ) return 0;

/* Initialise. */
   result = 0;

/* Obtain a pointer to the SkyFrame's axis permutation array. */
   perm = astGetPerm( this );
   if ( astOK ) {

/* Identify the longitude axis. */
      if( perm[ 0 ] == 0 ) {
         result = 0;
      } else {
         result = 1;
      }

   }

/* Return the result. */
   return result;

}

static double GetSkyRefP( AstSkyFrame *this, int axis, int *status ) {
/*
*  Name:
*     GetSkyRefP

*  Purpose:
*     Obtain the value of the SkyRefP attribute for a SkyFrame axis.

*  Type:
*     Private function.

*  Synopsis:
*     #include "skyframe.h"
*     double GetSkyRefP( AstSkyFrame *this, int axis, int *status )

*  Class Membership:
*     SkyFrame member function.

*  Description:
*     This function returns the value of the SkyRefP attribute for a
*     SkyFrame axis, providing suitable defaults.

*  Parameters:
*     this
*        Pointer to the SkyFrame.
*     axis
*        Axis index (zero-based) identifying the axis for which information is
*        required.
*     status
*        Pointer to the inherited status variable.

*  Returned Value:
*     The SkyRefP value to be used.

*  Notes:
*     -  A value of zero will be returned if this function is invoked with the
*     global error status set, or if it should fail for any reason.
*/

/* Local Variables: */
   double result;                /* Returned value */
   int axis_p;                   /* Permuted axis index */

/* Initialise. */
   result = 0.0;

/* Check the global error status. */
   if ( !astOK ) return result;

/* Validate and permute the axis index. */
   axis_p = astValidateAxis( this, axis, 1, "astGetSkyRefP" );

/* Check if a value has been set for the required axis. If so, return it. */
   if( this->skyrefp[ axis_p ] != AST__BAD ) {
      result = this->skyrefp[ axis_p ];

/* Otherwise, return the default value */
   } else {

/* The default longitude value is always zero. */
      if( axis_p == 0 ) {
         result= 0.0;

/* The default latitude value depends on SkyRef. The usual default is the
   north pole. The exception to this is if the SkyRef attribute identifies
   either the north or the south pole, in which case the origin is used as
   the default. Allow some tolerance. */
      } else if( fabs( cos( this->skyref[ 1 ] ) ) > 1.0E-10 ) {
         result = pi/2;

      } else {
         result = 0.0;
      }
   }

/* Return the result. */
   return result;
}

static const char *GetSymbol( AstFrame *this, int axis, int *status ) {
/*
*  Name:
*     GetSymbol

*  Purpose:
*     Obtain a pointer to the Symbol string for a SkyFrame axis.

*  Type:
*     Private function.

*  Synopsis:
*     #include "skyframe.h"
*     const char *GetSymbol( AstFrame *this, int axis, int *status )

*  Class Membership:
*     SkyFrame member function (over-rides the astGetSymbol method inherited
*     from the Frame class).

*  Description:
*     This function returns a pointer to the Symbol string for a specified axis
*     of a SkyFrame.

*  Parameters:
*     this
*        Pointer to the SkyFrame.
*     axis
*        Axis index (zero-based) identifying the axis for which information is
*        required.
*     status
*        Pointer to the inherited status variable.

*  Returned Value:
*     Pointer to a constant null-terminated character string containing the
*     requested information.

*  Notes:
*     -  A NULL pointer will be returned if this function is invoked with the
*     global error status set, or if it should fail for any reason.
*/

/* Local Variables: */
   astDECLARE_GLOBALS            /* Declare the thread specific global data */
   AstSystemType system;         /* Code identifying type of sky coordinates */
   const char *result;           /* Pointer to symbol string */
   int axis_p;                   /* Permuted axis index */

/* Check the global error status. */
   if ( !astOK ) return NULL;

/* Get a pointer to the structure holding thread-specific global data. */
   astGET_GLOBALS(this);

/* Initialise. */
   result = NULL;

/* Validate and permute the axis index. */
   axis_p = astValidateAxis( this, axis, 1, "astGetSymbol" );

/* Check if a value has been set for the required axis symbol string. If so,
   invoke the parent astGetSymbol method to obtain a pointer to it. */
   if ( astTestSymbol( this, axis ) ) {
      result = (*parent_getsymbol)( this, axis, status );

/* Otherwise, identify the sky coordinate system described by the SkyFrame. */
   } else {
      system = astGetSystem( this );

/* If OK, supply a pointer to a suitable default Symbol string. */
      if ( astOK ) {

/* Equatorial coordinate systems. */
         if ( IsEquatorial( system, status ) ) {
	    result = ( axis_p == 0 ) ? "RA" : "Dec";

/* Ecliptic coordinates. */
         } else if ( system == AST__ECLIPTIC ) {
	    result = ( axis_p == 0 ) ? "Lambda" : "Beta";

/* Helio-ecliptic coordinates. */
         } else if ( system == AST__HELIOECLIPTIC ) {
	    result = ( axis_p == 0 ) ? "Lambda" : "Beta";

/* AzEl coordinates. */
         } else if ( system == AST__AZEL ) {
	    result = ( axis_p == 0 ) ? "Az" : "El";

/* Galactic coordinates. */
         } else if ( system == AST__GALACTIC ) {
	    result = ( axis_p == 0 ) ? "l" : "b";

/* Supergalactic coordinates. */
         } else if ( system == AST__SUPERGALACTIC ) {
	    result = ( axis_p == 0 ) ? "SGL" : "SGB";

/* Unknown spherical coordinates. */
         } else if ( system == AST__UNKNOWN ) {
	    result = ( axis_p == 0 ) ? "Lon" : "Lat";

/* Report an error if the coordinate system was not recognised. */
         } else {
	    astError( AST__SCSIN, "astGetSymbol(%s): Corrupt %s contains "
		      "invalid sky coordinate system identification code "
		      "(%d).", status, astGetClass( this ), astGetClass( this ),
		      (int) system );
         }

/* If the SkyRef attribute had a set value, prepend "D" (for "delta") to the
   Symbol. */
         if( astGetSkyRefIs( this ) != AST__IGNORED_REF &&
             ( astTestSkyRef( this, 0 ) || astTestSkyRef( this, 1 ) ) ) {
            sprintf( getsymbol_buff, "D%s", result );
            result = getsymbol_buff;
         }
      }
   }

/* Return the result. */
   return result;
}

static AstSystemType GetAlignSystem( AstFrame *this_frame, int *status ) {
/*
*  Name:
*     GetAlignSystem

*  Purpose:
*     Obtain the AlignSystem attribute for a SkyFrame.

*  Type:
*     Private function.

*  Synopsis:
*     #include "skyframe.h"
*     AstSystemType GetAlignSystem( AstFrame *this_frame, int *status )

*  Class Membership:
*     SkyFrame member function (over-rides the astGetAlignSystem protected
*     method inherited from the Frame class).

*  Description:
*     This function returns the AlignSystem attribute for a SkyFrame.

*  Parameters:
*     this
*        Pointer to the SkyFrame.
*     status
*        Pointer to the inherited status variable.

*  Returned Value:
*     The AlignSystem value.

*/

/* Local Variables: */
   AstSkyFrame *this;            /* Pointer to SkyFrame structure */
   AstSystemType result;         /* Value to return */

/* Initialise. */
   result = AST__BADSYSTEM;

/* Check the global error status. */
   if ( !astOK ) return result;

/* Obtain a pointer to the SkyFrame structure. */
   this = (AstSkyFrame *) this_frame;

/* If a AlignSystem attribute has been set, invoke the parent method to obtain
   it. */
   if ( astTestAlignSystem( this ) ) {
      result = (*parent_getalignsystem)( this_frame, status );

/* Otherwise, provide a suitable default. */
   } else {
      result = AST__ICRS;
   }

/* Return the result. */
   return result;
}

static AstSystemType GetSystem( AstFrame *this_frame, int *status ) {
/*
*  Name:
*     GetSystem

*  Purpose:
*     Obtain the System attribute for a SkyFrame.

*  Type:
*     Private function.

*  Synopsis:
*     #include "skyframe.h"
*     AstSystemType GetSystem( AstFrame *this_frame, int *status )

*  Class Membership:
*     SkyFrame member function (over-rides the astGetSystem protected
*     method inherited from the Frame class).

*  Description:
*     This function returns the System attribute for a SkyFrame.

*  Parameters:
*     this
*        Pointer to the SkyFrame.
*     status
*        Pointer to the inherited status variable.

*  Returned Value:
*     The System value.

*  Notes:
*     - AST__BADSYSTEM is returned if this function is invoked with
*     the global error status set or if it should fail for any reason.
*/

/* Local Variables: */
   AstSkyFrame *this;            /* Pointer to SkyFrame structure */
   AstSystemType result;         /* Value to return */

/* Initialise. */
   result = AST__BADSYSTEM;

/* Check the global error status. */
   if ( !astOK ) return result;

/* Obtain a pointer to the SkyFrame structure. */
   this = (AstSkyFrame *) this_frame;

/* If a System attribute has been set, invoke the parent method to obtain
   it. */
   if ( astTestSystem( this ) ) {
      result = (*parent_getsystem)( this_frame, status );

/* Otherwise, provide a suitable default. */
   } else {
      result = AST__ICRS;
   }

/* Return the result. */
   return result;
}

static const char *GetTitle( AstFrame *this_frame, int *status ) {
/*
*  Name:
*     GetTitle

*  Purpose:
*     Obtain a pointer to the Title string for a SkyFrame.

*  Type:
*     Private function.

*  Synopsis:
*     #include "skyframe.h"
*     const char *GetTitle( AstFrame *this_frame, int *status )

*  Class Membership:
*     SkyFrame member function (over-rides the astGetTitle method inherited
*     from the Frame class).

*  Description:
*     This function returns a pointer to the Title string for a SkyFrame.
*     A pointer to a suitable default string is returned if no Title value has
*     previously been set.

*  Parameters:
*     this
*        Pointer to the SkyFrame.
*     status
*        Pointer to the inherited status variable.

*  Returned Value:
*     Pointer to a null-terminated character string containing the requested
*     information.

*  Notes:
*     -  A NULL pointer will be returned if this function is invoked with the
*     global error status set, or if it should fail for any reason.
*/

/* Local Variables: */
   astDECLARE_GLOBALS            /* Declare the thread specific global data */
   AstSkyFrame *this;            /* Pointer to SkyFrame structure */
   AstSystemType system;         /* Code identifying type of sky coordinates */
   const char *extra;            /* Pointer to extra information */
   const char *p;                /* Character pointer */
   const char *projection;       /* Pointer to sky projection description */
   const char *result;           /* Pointer to result string */
   const char *word;             /* Pointer to critical word */
   double epoch;                 /* Value of Epoch attribute */
   double equinox;               /* Value of Equinox attribute */
   int lextra;                   /* Length of extra information */
   int offset;                   /* Using offset coordinate system? */
   int pos;                      /* Buffer position to enter text */

/* Check the global error status. */
   if ( !astOK ) return NULL;

/* Get a pointer to the structure holding thread-specific global data. */
   astGET_GLOBALS(this_frame);

/* Initialise. */
   result = NULL;
   pos = 0;

/* Obtain a pointer to the SkyFrame structure. */
   this = (AstSkyFrame *) this_frame;

/* See if a Title string has been set. If so, use the parent astGetTitle
   method to obtain a pointer to it. */
   if ( astTestTitle( this ) ) {
      result = (*parent_gettitle)( this_frame, status );

/* Otherwise, we will generate a default Title string. Obtain the values of the
   SkyFrame's attributes that determine what this string will be. */
   } else {
      epoch = astGetEpoch( this );
      equinox = astGetEquinox( this );
      projection = astGetProjection( this );
      system = astGetSystem( this );

/* See if an offset coordinate system is being used.*/
      offset = ( astTestSkyRef( this, 0 ) || astTestSkyRef( this, 1 ) )
               && ( astGetSkyRefIs( this ) != AST__IGNORED_REF );

/* Use this to determine if the word "coordinates" or "offsets" should be
   used.*/
      word = offset ? "offsets" : "coordinates";

/* Classify the coordinate system type and create an appropriate Title
   string.  (Note that when invoking the astFmtDecimalYr function we must
   use a separate sprintf on each occasion so as not to over-write its
   internal buffer before the result string has been used.) */
      if ( astOK ) {
         result = gettitle_buff;
         switch ( system ) {

/* FK4 equatorial coordinates. */
/* --------------------------- */
/* Display the Equinox and Epoch values. */
	 case AST__FK4:
	    pos = sprintf( gettitle_buff, "FK4 equatorial %s", word );
            if( astTestEquinox( this ) || astGetUseDefs( this ) ) {
   	       pos += sprintf( gettitle_buff + pos, "; mean equinox B%s",
		               astFmtDecimalYr( palEpb( equinox ), 9 ) );
            }
            if( astTestEpoch( this ) || astGetUseDefs( this ) ) {
               pos += sprintf( gettitle_buff + pos,
                               "; epoch B%s", astFmtDecimalYr( palEpb( epoch ), 9 ) );
            }
	    break;

/* FK4 coordinates with no E-terms of aberration. */
/* ---------------------------------------------- */
/* Display the Equinox and Epoch values. */
	 case AST__FK4_NO_E:
	    pos = sprintf( gettitle_buff, "FK4 equatorial %s; no E-terms", word );
            if( astTestEquinox( this ) || astGetUseDefs( this ) ) {
   	       pos += sprintf( gettitle_buff + pos, "; mean equinox B%s",
		               astFmtDecimalYr( palEpb( equinox ), 9 ) );
            }
            if( astTestEpoch( this ) || astGetUseDefs( this ) ) {
               pos += sprintf( gettitle_buff + pos,
                               "; epoch B%s", astFmtDecimalYr( palEpb( epoch ), 9 ) );
            }
	    break;

/* FK5 equatorial coordinates. */
/* --------------------------- */
/* Display only the Equinox value. */
	 case AST__FK5:
	    pos = sprintf( gettitle_buff, "FK5 equatorial %s", word );
            if( astTestEquinox( this ) || astGetUseDefs( this ) ) {
   	       pos += sprintf( gettitle_buff + pos, "; mean equinox J%s",
		               astFmtDecimalYr( palEpj( equinox ), 9 ) );
            }
	    break;

/* J2000 equatorial coordinates. */
/* ----------------------------- */
/* Based on the dynamically determined mean equator and equinox of J2000,
   rather than on a model such as FK4 or FK5 */
	 case AST__J2000:
	    pos = sprintf( gettitle_buff, "J2000 equatorial %s", word );
	    break;

/* ICRS coordinates. */
/* ----------------- */
/* ICRS is only like RA/Dec by co-incidence, it is not really an
   equatorial system by definition. */
	 case AST__ICRS:
	    pos = sprintf( gettitle_buff, "ICRS %s", word );
	    break;

/* AzEl coordinates. */
/* ----------------- */
	 case AST__AZEL:
	    pos = sprintf( gettitle_buff, "Horizon (Azimuth/Elevation) %s", word );
	    break;

/* Geocentric apparent equatorial coordinates. */
/* ------------------------------------------ */
/* Display only the Epoch value. */
	 case AST__GAPPT:
	    pos = sprintf( gettitle_buff,
                           "Geocentric apparent equatorial %s; "
                           "; epoch J%s", word, astFmtDecimalYr( palEpj( epoch ), 9 ) );
	    break;

/* Ecliptic coordinates. */
/* --------------------- */
/* Display only the Equinox value. */
	 case AST__ECLIPTIC:
	    pos = sprintf( gettitle_buff, "Ecliptic %s", word );
            if( astTestEquinox( this ) || astGetUseDefs( this ) ) {
   	       pos += sprintf( gettitle_buff + pos, "; mean equinox J%s",
		               astFmtDecimalYr( palEpj( equinox ), 9 ) );
            }
	    break;

/* Helio-ecliptic coordinates. */
/* --------------------------- */
/* Display only the Epoch value (equinox is fixed). */
	 case AST__HELIOECLIPTIC:
	    pos = sprintf( gettitle_buff, "Helio-ecliptic %s; mean equinox J2000", word );
            if( astTestEpoch( this ) || astGetUseDefs( this ) ) {
   	       pos += sprintf( gettitle_buff + pos, "; epoch J%s",
		               astFmtDecimalYr( palEpj( epoch ), 9 ) );
            }
	    break;

/* Galactic coordinates. */
/* --------------------- */
/* Do not display an Equinox or Epoch value. */
	 case AST__GALACTIC:
	    pos = sprintf( gettitle_buff, "IAU (1958) galactic %s", word );
	    break;

/* Supergalactic coordinates. */
/* -------------------------- */
/* Do not display an Equinox or Epoch value. */
	 case AST__SUPERGALACTIC:
	    pos = sprintf( gettitle_buff,
                           "De Vaucouleurs supergalactic %s", word );
	    break;

/* Unknown coordinates. */
/* -------------------------- */
	 case AST__UNKNOWN:
	    pos = sprintf( gettitle_buff,
                           "Spherical %s", word );
	    break;

/* Report an error if the coordinate system was not recognised. */
	 default:
	    astError( AST__SCSIN, "astGetTitle(%s): Corrupt %s contains "
		      "invalid sky coordinate system identification code "
		      "(%d).", status, astGetClass( this ), astGetClass( this ),
		     (int) system );
	    break;
         }

/* If OK, we add either a description of the sky projection, or (if used)
   a description of the origin or pole of the offset coordinate system.
   We include only one of these two strings in order to keep the length
   of the title down to a reasonable value.*/
         if ( astOK ) {

/* If the SkyRef attribute has set values, create a description of the offset
   coordinate system. */
            if( offset ){
               word = ( astGetSkyRefIs( this ) == AST__POLE_REF )?"pole":"origin";
               lextra = sprintf( gettitle_buff2, "%s at %s ", word,
                           astFormat( this, 0, astGetSkyRef( this, 0 ) ) );
               lextra += sprintf( gettitle_buff2 + lextra, "%s",
                           astFormat( this, 1, astGetSkyRef( this, 1 ) ) );
               extra = gettitle_buff2;

/* Otherwise, get the sky projection description. */
            } else {
               extra = projection;

/* Determine the length of the extra information, after removing trailing
   white space. */
               for ( lextra = (int) strlen( extra ); lextra > 0; lextra-- ) {
                  if ( !isspace( extra[ lextra - 1 ] ) ) break;
               }
            }

/* If non-blank extra information is available, append it to the title string,
   checking that the end of the buffer is not over-run. */
            if ( lextra ) {
               p = "; ";
               while ( ( pos < AST__SKYFRAME_GETTITLE_BUFF_LEN ) && *p ) gettitle_buff[ pos++ ] = *p++;
               p = extra;
               while ( ( pos < AST__SKYFRAME_GETTITLE_BUFF_LEN ) &&
                       ( p < ( extra + lextra ) ) ) gettitle_buff[ pos++ ] = *p++;
               if( extra == projection ) {
                  p = " projection";
                  while ( ( pos < AST__SKYFRAME_GETTITLE_BUFF_LEN ) && *p ) gettitle_buff[ pos++ ] = *p++;
               }
               gettitle_buff[ pos ] = '\0';
            }
         }
      }
   }

/* If an error occurred, clear the returned pointer value. */
   if ( !astOK ) result = NULL;

/* Return the result. */
   return result;
}

static const char *GetUnit( AstFrame *this_frame, int axis, int *status ) {
/*
*  Name:
*     GetUnit

*  Purpose:
*     Obtain a pointer to the Unit string for a SkyFrame's axis.

*  Type:
*     Private function.

*  Synopsis:
*     #include "skyframe.h"
*     const char *GetUnit( AstFrame *this_frame, int axis )

*  Class Membership:
*     SkyFrame member function (over-rides the astGetUnit method inherited
*     from the Frame class).

*  Description:
*     This function returns a pointer to the Unit string for a specified axis
*     of a SkyFrame. If the Unit attribute has not been set for the axis, a
*     pointer to a suitable default string is returned instead. This string may
*     depend on the value of the Format attribute for the axis and, in turn, on
*     the type of sky coordinate system that the SkyFrame describes.

*  Parameters:
*     this
*        Pointer to the SkyFrame.
*     axis
*        The number of the axis (zero-based) for which information is required.

*  Returned Value:
*     A pointer to a null-terminated string containing the Unit value.

*  Notes:
*     -  A NULL pointer will be returned if this function is invoked with the
*     global error status set, or if it should fail for any reason.
*/

/* Local Variables: */
   AstSkyFrame *this;            /* Pointer to the SkyFrame structure */
   const char *result;           /* Pointer value to return */
   int format_set;               /* Format attribute set? */

/* Check the global error status. */
   if ( !astOK ) return NULL;

/* Obtain a pointer to the SkyFrame structure. */
   this = (AstSkyFrame *) this_frame;

/* Validate the axis index. */
   (void) astValidateAxis( this, axis, 1, "astGetUnit" );

/* The Unit value may depend on the value of the Format attribute, so
   determine if a Format value has been set for the axis and set a
   temporary value if it has not. Use the GetFormat member function
   for this class together with member functions inherited from the
   parent class (rather than using the object's methods directly)
   because if any of these methods have been over-ridden by a derived
   class the Format string syntax may no longer be compatible with
   this class. */
   format_set = (*parent_testformat)( this_frame, axis, status );
   if ( !format_set ) {
      (*parent_setformat)( this_frame, axis, GetFormat( this_frame, axis, status ), status );
   }

/* Use the parent GetUnit method to return a pointer to the required Unit
   string. */
   result = (*parent_getunit)( this_frame, axis, status );

/* If necessary, clear any temporary Format value that was set above. */
   if ( !format_set ) (*parent_clearformat)( this_frame, axis, status );

/* If an error occurred, clear the returned value. */
   if ( !astOK ) result = NULL;

/* Return the result. */
   return result;
}

void astInitSkyFrameVtab_(  AstSkyFrameVtab *vtab, const char *name, int *status ) {
/*
*+
*  Name:
*     astInitSkyFrameVtab

*  Purpose:
*     Initialise a virtual function table for a SkyFrame.

*  Type:
*     Protected function.

*  Synopsis:
*     #include "skyframe.h"
*     void astInitSkyFrameVtab( AstSkyFrameVtab *vtab, const char *name )

*  Class Membership:
*     SkyFrame vtab initialiser.

*  Description:
*     This function initialises the component of a virtual function
*     table which is used by the SkyFrame class.

*  Parameters:
*     vtab
*        Pointer to the virtual function table. The components used by
*        all ancestral classes will be initialised if they have not already
*        been initialised.
*     name
*        Pointer to a constant null-terminated character string which contains
*        the name of the class to which the virtual function table belongs (it
*        is this pointer value that will subsequently be returned by the Object
*        astClass function).
*-
*/

/* Local Variables: */
   astDECLARE_GLOBALS            /* Pointer to thread-specific global data */
   AstFrameVtab *frame;          /* Pointer to Frame component of Vtab */
   AstObjectVtab *object;        /* Pointer to Object component of Vtab */
   int stat;                     /* SLALIB status */

/* Check the local error status. */
   if ( !astOK ) return;

/* Get a pointer to the thread specific global data structure. */
   astGET_GLOBALS(NULL);

/* Initialize the component of the virtual function table used by the
   parent class. */
   astInitFrameVtab( (AstFrameVtab *) vtab, name );

/* Store a unique "magic" value in the virtual function table. This
   will be used (by astIsASkyFrame) to determine if an object belongs
   to this class.  We can conveniently use the address of the (static)
   class_check variable to generate this unique value. */
   vtab->id.check = &class_check;
   vtab->id.parent = &(((AstFrameVtab *) vtab)->id);

/* Initialise member function pointers. */
/* ------------------------------------ */
/* Store pointers to the member functions (implemented here) that
   provide virtual methods for this class. */
   vtab->ClearAsTime = ClearAsTime;
   vtab->ClearEquinox = ClearEquinox;
   vtab->ClearNegLon = ClearNegLon;
   vtab->ClearProjection = ClearProjection;
   vtab->GetAsTime = GetAsTime;
   vtab->GetEquinox = GetEquinox;
   vtab->GetNegLon = GetNegLon;
   vtab->GetIsLatAxis = GetIsLatAxis;
   vtab->GetIsLonAxis = GetIsLonAxis;
   vtab->GetLatAxis = GetLatAxis;
   vtab->GetLonAxis = GetLonAxis;
   vtab->GetProjection = GetProjection;
   vtab->SetAsTime = SetAsTime;
   vtab->SetEquinox = SetEquinox;
   vtab->SetNegLon = SetNegLon;
   vtab->SetProjection = SetProjection;
   vtab->SkyOffsetMap = SkyOffsetMap;
   vtab->TestAsTime = TestAsTime;
   vtab->TestEquinox = TestEquinox;
   vtab->TestNegLon = TestNegLon;
   vtab->TestProjection = TestProjection;

   vtab->TestSkyTol = TestSkyTol;
   vtab->SetSkyTol = SetSkyTol;
   vtab->GetSkyTol = GetSkyTol;
   vtab->ClearSkyTol = ClearSkyTol;

   vtab->TestSkyRef = TestSkyRef;
   vtab->SetSkyRef = SetSkyRef;
   vtab->GetSkyRef = GetSkyRef;
   vtab->ClearSkyRef = ClearSkyRef;

   vtab->TestSkyRefP = TestSkyRefP;
   vtab->SetSkyRefP = SetSkyRefP;
   vtab->GetSkyRefP = GetSkyRefP;
   vtab->ClearSkyRefP = ClearSkyRefP;

   vtab->TestSkyRefIs = TestSkyRefIs;
   vtab->SetSkyRefIs = SetSkyRefIs;
   vtab->GetSkyRefIs = GetSkyRefIs;
   vtab->ClearSkyRefIs = ClearSkyRefIs;

   vtab->TestAlignOffset = TestAlignOffset;
   vtab->SetAlignOffset = SetAlignOffset;
   vtab->GetAlignOffset = GetAlignOffset;
   vtab->ClearAlignOffset = ClearAlignOffset;

/* Save the inherited pointers to methods that will be extended, and
   replace them with pointers to the new member functions. */
   object = (AstObjectVtab *) vtab;
   frame = (AstFrameVtab *) vtab;
   parent_getobjsize = object->GetObjSize;
   object->GetObjSize = GetObjSize;

   parent_clearattrib = object->ClearAttrib;
   object->ClearAttrib = ClearAttrib;
   parent_getattrib = object->GetAttrib;
   object->GetAttrib = GetAttrib;
   parent_setattrib = object->SetAttrib;
   object->SetAttrib = SetAttrib;
   parent_testattrib = object->TestAttrib;
   object->TestAttrib = TestAttrib;

   parent_gettop = frame->GetTop;
   frame->GetTop = GetTop;

   parent_setobsalt = frame->SetObsAlt;
   frame->SetObsAlt = SetObsAlt;

   parent_setobslat = frame->SetObsLat;
   frame->SetObsLat = SetObsLat;

   parent_setobslon = frame->SetObsLon;
   frame->SetObsLon = SetObsLon;

   parent_clearobslon = frame->ClearObsLon;
   frame->ClearObsLon = ClearObsLon;

   parent_clearobsalt = frame->ClearObsAlt;
   frame->ClearObsAlt = ClearObsAlt;

   parent_clearobslat = frame->ClearObsLat;
   frame->ClearObsLat = ClearObsLat;

   parent_getbottom = frame->GetBottom;
   frame->GetBottom = GetBottom;

   parent_getepoch = frame->GetEpoch;
   frame->GetEpoch = GetEpoch;

   parent_format = frame->Format;
   frame->Format = Format;
   parent_gap = frame->Gap;
   frame->Gap = Gap;
   parent_getdirection = frame->GetDirection;
   frame->GetDirection = GetDirection;
   parent_getdomain = frame->GetDomain;
   frame->GetDomain = GetDomain;
   parent_getsystem = frame->GetSystem;
   frame->GetSystem = GetSystem;
   parent_setsystem = frame->SetSystem;
   frame->SetSystem = SetSystem;
   parent_clearsystem = frame->ClearSystem;
   frame->ClearSystem = ClearSystem;
   parent_getalignsystem = frame->GetAlignSystem;
   frame->GetAlignSystem = GetAlignSystem;
   parent_getformat = frame->GetFormat;
   frame->GetFormat = GetFormat;
   parent_getlabel = frame->GetLabel;
   frame->GetLabel = GetLabel;
   parent_getsymbol = frame->GetSymbol;
   frame->GetSymbol = GetSymbol;
   parent_gettitle = frame->GetTitle;
   frame->GetTitle = GetTitle;
   parent_getunit = frame->GetUnit;
   frame->GetUnit = GetUnit;
   parent_match = frame->Match;
   frame->Match = Match;
   parent_overlay = frame->Overlay;
   frame->Overlay = Overlay;
   parent_subframe = frame->SubFrame;
   frame->SubFrame = SubFrame;
   parent_unformat = frame->Unformat;
   frame->Unformat = Unformat;

   parent_setdtai = frame->SetDtai;
   frame->SetDtai = SetDtai;
   parent_setdut1 = frame->SetDut1;
   frame->SetDut1 = SetDut1;

   parent_cleardtai = frame->ClearDtai;
   frame->ClearDtai = ClearDtai;
   parent_cleardut1 = frame->ClearDut1;
   frame->ClearDut1 = ClearDut1;

/* Store replacement pointers for methods which will be over-ridden by new
   member functions implemented here. */
   frame->Angle = Angle;
   frame->Distance = Distance;
   frame->FrameGrid = FrameGrid;
   frame->Intersect = Intersect;
   frame->Norm = Norm;
   frame->NormBox = NormBox;
   frame->Resolve = Resolve;
   frame->ResolvePoints = ResolvePoints;
   frame->Offset = Offset;
   frame->Offset2 = Offset2;
   frame->ValidateSystem = ValidateSystem;
   frame->SystemString = SystemString;
   frame->SystemCode = SystemCode;
   frame->LineDef = LineDef;
   frame->LineContains = LineContains;
   frame->LineCrossing = LineCrossing;
   frame->LineOffset = LineOffset;
   frame->GetActiveUnit = GetActiveUnit;
   frame->TestActiveUnit = TestActiveUnit;
   frame->MatchAxesX = MatchAxesX;

/* Store pointers to inherited methods that will be invoked explicitly
   by this class. */
   parent_clearformat = frame->ClearFormat;
   parent_setformat = frame->SetFormat;
   parent_testformat = frame->TestFormat;

/* Declare the copy constructor, destructor and class dump
   function. */
   astSetCopy( vtab, Copy );
   astSetDelete( vtab, Delete );
   astSetDump( vtab, Dump, "SkyFrame",
               "Description of celestial coordinate system" );

/* Initialize constants for converting between hours, degrees and
   radians, etc.. */
   LOCK_MUTEX2
   palDtf2r( 1, 0, 0.0, &hr2rad, &stat );
   palDaf2r( 1, 0, 0.0, &deg2rad, &stat );
   palDaf2r( 180, 0, 0.0, &pi, &stat );
   piby2 = 0.5*pi;
   UNLOCK_MUTEX2

/* If we have just initialised the vtab for the current class, indicate
   that the vtab is now initialised, and store a pointer to the class
   identifier in the base "object" level of the vtab. */
   if( vtab == &class_vtab ) {
      class_init = 1;
      astSetVtabClassIdentifier( vtab, &(vtab->id) );
   }
}

static void Intersect( AstFrame *this_frame, const double a1[2],
                       const double a2[2], const double b1[2],
                       const double b2[2], double cross[2],
                       int *status ) {
/*
*  Name:
*     Intersect

*  Purpose:
*     Find the point of intersection between two geodesic curves.

*  Type:
*     Private function.

*  Synopsis:
*     #include "skyframe.h"
*     void Intersect( AstFrame *this_frame, const double a1[2],
*                      const double a2[2], const double b1[2],
*                      const double b2[2], double cross[2],
*                      int *status )

*  Class Membership:
*     SkyFrame member function (over-rides the astIntersect method
*     inherited from the Frame class).

*  Description:
*     This function finds the coordinate values at the point of
*     intersection between two geodesic curves. Each curve is specified
*     by two points on the curve.

*  Parameters:
*     this
*        Pointer to the SkyFrame.
*     a1
*        An array of double, with one element for each Frame axis.
*        This should contain the coordinates of a point on the first
*        geodesic curve.
*     a2
*        An array of double, with one element for each Frame axis.
*        This should contain the coordinates of a second point on the
*        first geodesic curve.
*     b1
*        An array of double, with one element for each Frame axis.
*        This should contain the coordinates of a point on the second
*        geodesic curve.
*     b2
*        An array of double, with one element for each Frame axis.
*        This should contain the coordinates of a second point on
*        the second geodesic curve.
*     cross
*        An array of double, with one element for each Frame axis
*        in which the coordinates of the required intersection
*        point will be returned. These will be AST__BAD if the curves do
*        not intersect.
*     status
*        Pointer to the inherited status variable.

*  Notes:
*     - The geodesic curve used by this function is the path of
*     shortest distance between two points, as defined by the
*     astDistance function.
*     - This function will return "bad" coordinate values (AST__BAD)
*     if any of the input coordinates has this value.
*     - For SkyFrames each curve will be a great circle, and in general
*     each pair of curves will intersect at two diametrically opposite
*     points on the sky. The returned position is the one which is
*     closest to point "a1".
*/

/* Local Variables: */
   AstSkyFrame *this;          /* Pointer to the SkyFrame structure */
   const int *perm;            /* Pointer to axis permutation array */
   double aa1[ 2 ];            /* Permuted coordinates for a1 */
   double aa2[ 2 ];            /* Permuted coordinates for a2 */
   double bb1[ 2 ];            /* Permuted coordinates for b1 */
   double bb2[ 2 ];            /* Permuted coordinates for b2 */
   double cc[ 2 ];             /* Permuted coords at intersection */
   double d1;                  /* Cos(distance from a1 to vp) */
   double d2;                  /* Cos(distance from a1 to -vp) */
   double na[ 3 ];             /* Normal to the a1/a2 great circle */
   double nb[ 3 ];             /* Normal to the b1/b2 great circle */
   double va1[ 3 ];            /* Vector pointing at a1 */
   double va2[ 3 ];            /* Vector pointing at a2 */
   double vb1[ 3 ];            /* Vector pointing at b1 */
   double vb2[ 3 ];            /* Vector pointing at b2 */
   double vmod;                /* Length of "vp" */
   double vp[ 3 ];             /* Vector pointing at the intersection */
   double vpn[ 3 ];            /* Normalised vp */
   int iaxis;                  /* Axis index */

/* Initialise. */
   cross[ 0 ] = AST__BAD;
   cross[ 1 ] = AST__BAD;

/* Check the global error status. */
   if ( !astOK ) return;

/* Obtain a pointer to the SkyFrame structure. */
   this = (AstSkyFrame *) this_frame;

/* Check that all supplied values are OK. */
   if ( ( a1[ 0 ] != AST__BAD ) && ( a1[ 1 ] != AST__BAD ) &&
        ( a2[ 0 ] != AST__BAD ) && ( a2[ 1 ] != AST__BAD ) &&
        ( b1[ 0 ] != AST__BAD ) && ( b1[ 1 ] != AST__BAD ) &&
        ( b2[ 0 ] != AST__BAD ) && ( b2[ 1 ] != AST__BAD ) ) {

/* Obtain a pointer to the SkyFrame's axis permutation array. */
      perm = astGetPerm( this );
      if ( astOK ) {

/* Apply the axis permutation array to obtain the coordinates of
   the points in the required (longitude,latitude) order. */
         for( iaxis = 0; iaxis < 2; iaxis++ ) {
            aa1[ perm[ iaxis ] ] = a1[ iaxis ];
            aa2[ perm[ iaxis ] ] = a2[ iaxis ];
            bb1[ perm[ iaxis ] ] = b1[ iaxis ];
            bb2[ perm[ iaxis ] ] = b2[ iaxis ];
         }

/* Convert each (lon,lat) pair into a unit length 3-vector. */
         palDcs2c( aa1[ 0 ], aa1[ 1 ], va1 );
         palDcs2c( aa2[ 0 ], aa2[ 1 ], va2 );
         palDcs2c( bb1[ 0 ], bb1[ 1 ], vb1 );
         palDcs2c( bb2[ 0 ], bb2[ 1 ], vb2 );

/* Find the normal vectors to the two great cicles. */
         palDvxv( va1, va2, na );
         palDvxv( vb1, vb2, nb );

/* The cross product of the two normal vectors points to one of the
   two diametrically opposite intersections. */
         palDvxv( na, nb, vp );

/* Normalise the "vp" vector, also obtaining its original modulus. */
         palDvn( vp, vpn, &vmod );
         if( vmod != 0.0 ) {

/* We want the intersection which is closest to "a1". The dot product
   gives the cos(distance) between two positions. So find the dot
   product between "a1" and "vpn", and then between "a1" and the point
   diametrically opposite "vpn". */
            d1 = palDvdv( vpn, va1 );
            vpn[ 0 ] = -vpn[ 0 ];
            vpn[ 1 ] = -vpn[ 1 ];
            vpn[ 2 ] = -vpn[ 2 ];
            d2 = palDvdv( vpn, va1 );

/* Revert to "vpn" if it is closer to "a1". */
            if( d1 > d2 ) {
               vpn[ 0 ] = -vpn[ 0 ];
               vpn[ 1 ] = -vpn[ 1 ];
               vpn[ 2 ] = -vpn[ 2 ];
            }

/* Convert the vector back into a (lon,lat) pair, and put the longitude
   into the range 0 to 2.pi. */
            palDcc2s( vpn, cc, cc + 1 );
            *cc = palDranrm( *cc );

/* Permute the result coordinates to undo the effect of the SkyFrame
   axis permutation array. */
            cross[ 0 ] = cc[ perm[ 0 ] ];
            cross[ 1 ] = cc[ perm[ 1 ] ];
         }
      }
   }
}

static int IsEquatorial( AstSystemType system, int *status ) {
/*
*  Name:
*     IsEquatorial

*  Purpose:
*     Test for an equatorial sky coordinate system.

*  Type:
*     Private function.

*  Synopsis:
*     #include "skyframe.h"
*     int IsEquatorial( AstSystemType system, int *status )

*  Class Membership:
*     SkyFrame member function.

*  Description:
*     This function returns a boolean value to indicate if a sky coordinate
*     system is equatorial.

*  Parameters:
*     system
*        Code to identify the sky coordinate system.
*     status
*        Pointer to the inherited status variable.

*  Returned Value:
*     Non-zero if the sky coordinate system is equatorial, otherwise zero.

*  Notes:
*     -  A value of zero is returned if this function is invoked with the
*     global error status set or if it should fail for any reason.
*/

/* Local Variables: */
   int result;                   /* Result value to return */

/* Check the global error status. */
   if ( !astOK ) return 0;

/* Determine if the sky coordinate system is an equatorial one. Note,
   ICRS is not equatorial by definition, but is included here because it
   is normally treated as an equatorial system in terms of the axis
   labels, formats, etc. */
   result = ( ( system == AST__FK4 ) ||
              ( system == AST__FK4_NO_E ) ||
              ( system == AST__ICRS ) ||
              ( system == AST__FK5 ) ||
              ( system == AST__J2000 ) ||
              ( system == AST__GAPPT ) );

/* Return the result. */
   return result;
}

static int LineContains( AstFrame *this, AstLineDef *l, int def, double *point, int *status ) {
/*
*  Name:
*     LineContains

*  Purpose:
*     Determine if a line contains a point.

*  Type:
*     Private function.

*  Synopsis:
*     #include "skyframe.h"
*     int LineContains( AstFrame *this, AstLineDef *l, int def, double *point, int *status )

*  Class Membership:
*     SkyFrame member function (over-rides the protected astLineContains
*     method inherited from the Frame class).

*  Description:
*     This function determines if the supplied point is on the supplied
*     line within the supplied Frame. The start point of the line is
*     considered to be within the line, but the end point is not. The tests
*     are that the point of closest approach of the line to the point should
*     be between the start and end, and that the distance from the point to
*     the point of closest aproach should be less than 1.0E-7 of the length
*     of the line.

*  Parameters:
*     this
*        Pointer to the Frame.
*     l
*        Pointer to the structure defining the line.
*     def
*        Should be set non-zero if the "point" array was created by a
*        call to astLineCrossing (in which case it may contain extra
*        information following the axis values),and zero otherwise.
*     point
*        Point to an array containing the axis values of the point to be
*        tested, possibly followed by extra cached information (see "def").
*     status
*        Pointer to the inherited status variable.

*  Returned Value:
*     A non-zero value is returned if the line contains the point.

*  Notes:
*     - The pointer supplied for "l" should have been created using the
*     astLineDef method. These structures contained cached information about
*     the lines which improve the efficiency of this method when many
*     repeated calls are made. An error will be reported if the structure
*     does not refer to the Frame specified by "this".
*     - Zero will be returned if this function is invoked with the global
*     error status set, or if it should fail for any reason.
*-
*/

/* Local Variables: */
   SkyLineDef *sl;               /* SkyLine information */
   const int *perm;              /* Pointer to axis permutation array */
   double *b;                    /* Pointer to Cartesian coords array */
   double bb[3];                 /* Buffer for Cartesian coords */
   double p1[2];                 /* Buffer for Spherical coords */
   double t1, t2;
   int result;                   /* Returned value */

/* Initialise */
   result =0;

/* Check the global error status. */
   if ( !astOK ) return result;

/* Check that the line refers to the supplied Frame. */
   if( l->frame != this ) {
      astError( AST__INTER, "astLineContains(%s): The supplied line does "
                "not relate to the supplied %s (AST internal programming "
                "error).", status, astGetClass( this ), astGetClass( this ) );

/* Check the axis values are good */
   } else if( point[ 0 ] != AST__BAD && point[ 1 ] != AST__BAD ){

/* Get a pointer to an array holding the corresponding Cartesian coords. */
      if( def ) {
         b = point + 2;

      } else {
         perm = astGetPerm( this );
         if ( perm ) {
            p1[ perm[ 0 ] ] = point[ 0 ];
            p1[ perm[ 1 ] ] = point[ 1 ];
            palDcs2c( p1[ 0 ], p1[ 1 ], bb );
            b = bb;
         } else {
            b = NULL;
         }
      }

/* Recast the supplied AstLineDef into a SkyLineDef to get the different
   structure (we know from the above check on the Frame that it is safe to
   do this). */
      sl = (SkyLineDef *) l;

/* Check that the point of closest approach of the line to the point is
   within the limits of the line. */
      if( LineIncludes( sl, b, status ) ){

/* Check that the point is 90 degrees away from the pole of the great
   circle containing the line. */
        t1 = palDvdv( sl->q, b );
        t2 = 1.0E-7*sl->length;
        if( t2 < 1.0E-10 ) t2 = 1.0E-10;
        if( fabs( t1 ) <= t2 ) result = 1;
     }
   }

/* Return the result. */
   return result;
}

static int LineCrossing( AstFrame *this, AstLineDef *l1, AstLineDef *l2,
                         double **cross, int *status ) {
/*
*  Name:
*     LineCrossing

*  Purpose:
*     Determine if two lines cross.

*  Type:
*     Private function.

*  Synopsis:
*     #include "skyframe.h"
*     int LineCrossing( AstFrame *this, AstLineDef *l1, AstLineDef *l2,
*                       double **cross, int *status )

*  Class Membership:
*     SkyFrame member function (over-rides the protected astLineCrossing
*     method inherited from the Frame class).

*  Description:
*     This function determines if the two suplied line segments cross,
*     and if so returns the axis values at the point where they cross.
*     A flag is also returned indicating if the crossing point occurs
*     within the length of both line segments, or outside one or both of
*     the line segments.

*  Parameters:
*     this
*        Pointer to the Frame.
*     l1
*        Pointer to the structure defining the first line.
*     l2
*        Pointer to the structure defining the second line.
*     cross
*        Pointer to a location at which to put a pointer to a dynamically
*        alocated array containing the axis values at the crossing. If
*        NULL is supplied no such array is returned. Otherwise, the returned
*        array should be freed using astFree when no longer needed. If the
*        lines are parallel (i.e. do not cross) then AST__BAD is returned for
*        all axis values. Note usable axis values are returned even if the
*        lines cross outside the segment defined by the start and end points
*        of the lines. The order of axes in the returned array will take
*        account of the current axis permutation array if appropriate. Note,
*        sub-classes such as SkyFrame may append extra values to the end
*        of the basic frame axis values. A NULL pointer is returned if an
*        error occurs.
*     status
*        Pointer to the inherited status variable.

*  Returned Value:
*     A non-zero value is returned if the lines cross at a point which is
*     within the [start,end) segment of both lines. If the crossing point
*     is outside this segment on either line, or if the lines are parallel,
*     zero is returned. Note, the start point is considered to be inside
*     the length of the segment, but the end point is outside.

*  Notes:
*     - The pointers supplied for "l1" and "l2" should have been created
*     using the astLineDef method. These structures contained cached
*     information about the lines which improve the efficiency of this method
*     when many repeated calls are made. An error will be reported if
*     either structure does not refer to the Frame specified by "this".
*     - Zero will be returned if this function is invoked with the global
*     error status set, or if it should fail for any reason.
*/

/* Local Variables: */
   SkyLineDef *sl1;              /* SkyLine information for line 1 */
   SkyLineDef *sl2;              /* SkyLine information for line 2 */
   const int *perm;              /* Pointer to axis permutation array */
   double *crossing;             /* Pointer to returned array */
   double *b;                    /* Pointer to Cartesian coords */
   double len;                   /* Vector length */
   double p[ 2 ];                /* Temporary (lon,lat) pair */
   double temp[ 3 ];             /* Temporary vector */
   int result;                   /* Returned value */

/* Initialise */
   result = 0;
   if( cross ) *cross = NULL;

/* Check the global error status. */
   if ( !astOK ) return result;

/* Allocate returned array (2 elements for the lon and lat values, plus 3
   for the corresponding (x,y,z) coords). */
   crossing = astMalloc( sizeof(double)*5 );

/* Check that both lines refer to the supplied Frame. */
   if( l1->frame != this ) {
      astError( AST__INTER, "astLineCrossing(%s): First supplied line does "
                "not relate to the supplied %s (AST internal programming "
                "error).", status, astGetClass( this ), astGetClass( this ) );

   } else if( l2->frame != this ) {
      astError( AST__INTER, "astLineCrossing(%s): Second supplied line does "
                "not relate to the supplied %s (AST internal programming "
                "error).", status, astGetClass( this ), astGetClass( this ) );

/* Recast the supplied AstLineDefs into a SkyLineDefs to get the different
   structure (we know from the above check on the Frame that it is safe to
   do this). */
   } else if( crossing ){
      sl1 = (SkyLineDef *) l1;
      sl2 = (SkyLineDef *) l2;

/* Point of intersection of the two great circles is perpendicular to the
   pole vectors of both great circles. Put the Cartesian coords in elements
   2 to 4 of the returned array. */
      palDvxv( sl1->q, sl2->q, temp );
      b = crossing + 2;
      palDvn( temp, b, &len );

/* See if this point is within the length of both arcs. If so return it. */
      if( LineIncludes( sl2, b, status ) && LineIncludes( sl1, b, status ) ) {
         result = 1;

/* If not, see if the negated b vector is within the length of both arcs.
   If so return it. Otherwise, we return zero. */
      } else {
         b[ 0 ] *= -1.0;
         b[ 1 ] *= -1.0;
         b[ 2 ] *= -1.0;
         if( LineIncludes( sl2, b, status ) && LineIncludes( sl1, b, status ) ) result = 1;
      }

/* Store the spherical coords in elements 0 and 1 of the returned array. */
      palDcc2s( b, p, p + 1 );

/* Permute the spherical axis value into the order used by the SkyFrame. */
      perm = astGetPerm( this );
      if( perm ){
         crossing[ 0 ] = p[ perm[ 0 ] ];
         crossing[ 1 ] = p[ perm[ 1 ] ];
      }
   }

/* If an error occurred, return 0. */
   if( !astOK ) {
      result = 0;
      crossing = astFree( crossing );
   }

/* Return the array */
   if( cross ) {
      *cross = crossing;
   } else {
      crossing = astFree( crossing );
   }

/* Return the result. */
   return result;
}

static AstLineDef *LineDef( AstFrame *this, const double start[2],
                            const double end[2], int *status ) {
/*
*  Name:
*     LineDef

*  Purpose:
*     Creates a structure describing a line segment in a 2D Frame.

*  Type:
*     Private function.

*  Synopsis:
*     #include "skyframe.h"
*     AstLineDef *LineDef( AstFrame *this, const double start[2],
*                          const double end[2], int *status )

*  Class Membership:
*     SkyFrame member function (over-rides the protected astLineDef
*     method inherited from the Frame class).

*  Description:
*     This function creates a structure containing information describing a
*     given line segment within the supplied 2D Frame. This may include
*     information which allows other methods such as astLineCrossing to
*     function more efficiently. Thus the returned structure acts as a
*     cache to store intermediate values used by these other methods.

*  Parameters:
*     this
*        Pointer to the Frame. Must have 2 axes.
*     start
*        An array of 2 doubles marking the start of the line segment.
*     end
*        An array of 2 doubles marking the end of the line segment.
*     status
*        Pointer to the inherited status variable.

*  Returned Value:
*     Pointer to the memory structure containing the description of the
*     line. This structure should be freed using astFree when no longer
*     needed. A NULL pointer is returned (without error) if any of the
*     supplied axis values are AST__BAD.

*  Notes:
*     - A null pointer will be returned if this function is invoked
*     with the global error status set, or if it should fail for any
*     reason.
*/

/* Local Variables: */
   SkyLineDef *result;           /* Returned value */
   const int *perm;              /* Axis permutation array */
   double le;                    /* Length of end vector */
   double len;                   /* Permuted point1 coordinates */
   double ls;                    /* Length of start vector */
   double p1[ 2 ];               /* Permuted point1 coordinates */
   double p2[ 2 ];               /* Permuted point2 coordinates */
   double temp[3];               /* Cartesian coords at offset position */

/* Initialise */
   result = NULL;

/* Check the global error status. */
   if ( !astOK ) return NULL;

/* Check the axis values are good */
   if( start[ 0 ] != AST__BAD && start[ 1 ] != AST__BAD &&
       end[ 0 ] != AST__BAD && end[ 1 ] != AST__BAD ) {

/* Allocate memory for the returned structure. */
      result = astMalloc( sizeof( SkyLineDef ) );

/* Obtain a pointer to the SkyFrame's axis permutation array. */
      perm = astGetPerm( this );
      if ( perm ) {

/* Apply the axis permutation array to obtain the coordinates of the two
   input points in the required (longitude,latitude) order. */
         p1[ perm[ 0 ] ] = start[ 0 ];
         p1[ perm[ 1 ] ] = start[ 1 ];
         p2[ perm[ 0 ] ] = end[ 0 ];
         p2[ perm[ 1 ] ] = end[ 1 ];

/* Convert each point into a 3-vector of unit length and store in the
   returned structure. */
         palDcs2c( p1[ 0 ], p1[ 1 ], result->start );
         palDcs2c( p2[ 0 ], p2[ 1 ], result->end );

/* Calculate the great circle distance between the points in radians and
   store in the result structure. Correct for rounding errors in palDcs2c
   that can result in the vectors not having exactly unit length. */
         result->length = palDvdv( result->start, result->end );
         ls = result->start[0]*result->start[0] +
              result->start[1]*result->start[1] +
              result->start[2]*result->start[2];
         le = result->end[0]*result->end[0] +
              result->end[1]*result->end[1] +
              result->end[2]*result->end[2];
         result->length = acos( result->length/sqrt( ls*le ) );

/* Find a unit vector representing the pole of the system in which the
   equator is given by the great circle. This is such that going the
   short way from the start to the end, the pole is to the left of the
   line as seen by the observer (i.e. from the centre of the sphere).
   If the line has zero length, or 180 degrees length, the pole is
   undefined, so we use an arbitrary value. */
         if( result->length == 0.0 || result->length > pi - 5.0E-11 ) {
            palDcs2c( p1[ 0 ] + 0.01, p1[ 1 ] + 0.01, temp );
            palDvxv( temp, result->start, result->dir );
         } else {
            palDvxv( result->end, result->start, result->dir );
         }
         palDvn( result->dir, result->q, &len );

/* Also store a point which is 90 degrees along the great circle from the
   start. */
         palDvxv( result->start, result->q, result->dir );

/* Store a pointer to the defining SkyFrame. */
         result->frame = this;

/* Indicate that the line is considered to be terminated at the start and
   end points. */
         result->infinite = 0;

/* Normalise the spherical start and end positions stored in the returned
   structure. */
         result->start_2d[ 0 ] = start[ 0 ];
         result->start_2d[ 1 ] = start[ 1 ];
         result->end_2d[ 0 ] = end[ 0 ];
         result->end_2d[ 1 ] = end[ 1 ];

         astNorm( this, result->start_2d );
         astNorm( this, result->end_2d );
      }
   }

/* Free the returned pointer if an error occurred. */
   if( !astOK ) result = astFree( result );

/* Return a pointer to the output structure. */
   return (AstLineDef *) result;
}

static int LineIncludes( SkyLineDef *l, double point[3], int *status ) {
/*
*  Name:
*     LineIncludes

*  Purpose:
*     Determine if a line includes a point which is known to be in the
*     great circle.

*  Type:
*     Private function.

*  Synopsis:
*     #include "skyframe.h"
*     int LineIncludes( SkyLineDef *l, double point[3], int *status )

*  Class Membership:
*     SkyFrame member function (over-rides the protected astLineIncludes
*     method inherited from the Frame class).

*  Description:
*     The supplied point is assumed to be a point on the great circle of
*     which the supplied line is a segment. This function returns true if
*     "point" is within the bounds of the segment (the end point of the
*     line is assumed * not to be part of the segment).

*  Parameters:
*     l
*        Pointer to the structure defining the line.
*     point
*        An array holding the Cartesian coords of the point to be tested.
*     status
*        Pointer to the inherited status variable.

*  Returned Value:
*     A non-zero value is returned if the line includes the point.

*  Notes:
*     - Zero will be returned if this function is invoked with the global
*     error status set, or if it should fail for any reason.
*/

/* Local Variables: */
   double t1, t2, t3;

/* Check the global error status. */
   if ( !astOK ) return 0;

/* If the line is of infite length, it is assumed to include the supplied
   point. */
   if( l->infinite ) return 1;

/* Otherwise, get the unsigned distance of the point from the start of the
   line in the range 0 - 180 degs. Check it is less than the line length.
   Then check that the point is not more than 90 degs away from the quarter
   point. */
   t1 = palDvdv( l->start, point );
   t2 = acos( t1 );
   t3 = palDvdv( l->dir, point );
   return ( ((l->length > 0) ? t2 < l->length : t2 == 0.0 ) && t3 >= -1.0E-8 );
}

static void LineOffset( AstFrame *this, AstLineDef *line, double par,
                        double prp, double point[2], int *status ){
/*
*  Name:
*     LineOffset

*  Purpose:
*     Find a position close to a line.

*  Type:
*     Private function.

*  Synopsis:
*     #include "skyframe.h"
*     void LineOffset( AstFrame *this, AstLineDef *line, double par,
*                      double prp, double point[2], int *status )

*  Class Membership:
*     SkyFrame member function (over-rides the protected astLineOffset
*     method inherited from the Frame class).

*  Description:
*     This function returns a position formed by moving a given distance along
*     the supplied line, and then a given distance away from the supplied line.

*  Parameters:
*     this
*        Pointer to the Frame.
*     line
*        Pointer to the structure defining the line.
*     par
*        The distance to move along the line from the start towards the end.
*     prp
*        The distance to move at right angles to the line. Positive
*        values result in movement to the left of the line, as seen from
*        the observer, when moving from start towards the end.
*     status
*        Pointer to the inherited status variable.

*  Notes:
*     - The pointer supplied for "line" should have been created using the
*     astLineDef method. This structure contains cached information about the
*     line which improves the efficiency of this method when many repeated
*     calls are made. An error will be reported if the structure does not
*     refer to the Frame specified by "this".
*-
*/

/* Local Variables; */
    SkyLineDef *sl;
    const int *perm;
    double c;
    double nx;
    double ny;
    double nz;
    double p[2];
    double s;
    double v[3];

/* Check the global error status. */
   if ( !astOK ) return;

/* Check that the line refers to the supplied Frame. */
   if( line->frame != this ) {
      astError( AST__INTER, "astLineOffset(%s): The supplied line does "
                "not relate to the supplied %s (AST internal programming "
                "error).", status, astGetClass( this ), astGetClass( this ) );

/* This implementation uses spherical geometry. */
   } else {

/* Get a pointer to the SkyLineDef structure. */
      sl = (SkyLineDef *) line;

/* Move a distance par from start to end. */
      c = cos( par );
      s = sin( par );
      nx = c * sl->start[ 0 ] + s * sl->dir[ 0 ];
      ny = c * sl->start[ 1 ] + s * sl->dir[ 1 ];
      nz = c * sl->start[ 2 ] + s * sl->dir[ 2 ];

/* Move a distance prp from this point towards the pole point. */
      if( prp != 0.0 ) {
         c = cos( prp );
         s = sin( prp );
         v[ 0 ] = c * nx + s * sl->q[ 0 ];
         v[ 1 ] = c * ny + s * sl->q[ 1 ];
         v[ 2 ] = c * nz + s * sl->q[ 2 ];
      } else {
         v[ 0 ] = nx;
         v[ 1 ] = ny;
         v[ 2 ] = nz;
      }

/* Convert to lon/lat */
      palDcc2s( v, p, p + 1 );

/* Permute the spherical axis value into the order used by the SkyFrame. */
      perm = astGetPerm( this );
      if( perm ){
         point[ 0 ] = p[ perm[ 0 ] ];
         point[ 1 ] = p[ perm[ 1 ] ];
      }
   }
}

static int MakeSkyMapping( AstSkyFrame *target, AstSkyFrame *result,
                           AstSystemType align_sys, AstMapping **map, int *status ) {
/*
*  Name:
*     MakeSkyMapping

*  Purpose:
*     Generate a Mapping between two SkyFrames.

*  Type:
*     Private function.

*  Synopsis:
*     #include "skyframe.h"
*     int MakeSkyMapping( AstSkyFrame *target, AstSkyFrame *result,
*                         AstSystemType align_sys, AstMapping **map, int *status )

*  Class Membership:
*     SkyFrame member function.

*  Description:
*     This function takes two SkyFrames and generates a Mapping that
*     converts between them, taking account of differences in their
*     coordinate systems, equinox value, epoch, etc. (but not allowing
*     for any axis permutations).

*  Parameters:
*     target
*        Pointer to the first SkyFrame.
*     result
*        Pointer to the second SkyFrame.
*     align_sys
*        The system in which to align the two SkyFrames.
*     map
*        Pointer to a location which is to receive a pointer to the
*        returned Mapping. The forward transformation of this Mapping
*        will convert from "target" coordinates to "result"
*        coordinates, and the inverse transformation will convert in
*        the opposite direction (all coordinate values in radians).
*     status
*        Pointer to the inherited status variable.

*  Returned Value:
*     Non-zero if the Mapping could be generated, or zero if the two
*     SkyFrames are sufficiently un-related that no meaningful Mapping
*     can be produced.

*  Notes:
*     A value of zero is returned if this function is invoked with the
*     global error status set or if it should fail for any reason.
*/

/* Local Constants: */
#define MAX_ARGS 4               /* Max arguments for an SlaMap conversion */

/* Local Variables: */
   AstMapping *omap;             /* Mapping from coorinates to offsets */
   AstMapping *tmap2;            /* Temporary Mapping */
   AstMapping *tmap;             /* Temporary Mapping */
   AstSlaMap *slamap;            /* Pointer to SlaMap */
   AstSystemType result_system;  /* Code to identify result coordinate system */
   AstSystemType system;         /* Code to identify coordinate system */
   AstSystemType target_system;  /* Code to identify target coordinate system */
   double args[ MAX_ARGS ];      /* Conversion argument array */
   double epoch;                 /* Epoch as Modified Julian Date */
   double epoch_B;               /* Besselian epoch as decimal years */
   double epoch_J;               /* Julian epoch as decimal years */
   double equinox;               /* Equinox as Modified Julian Date */
   double equinox_B;             /* Besselian equinox as decimal years */
   double equinox_J;             /* Julian equinox as decimal years */
   double diurab;                /* Magnitude of diurnal aberration vector */
   double last;                  /* Local Apparent Sidereal Time */
   double lat;                   /* Observers latitude */
   double result_epoch;          /* Result frame Epoch */
   double result_equinox;        /* Result frame Epoch */
   double target_epoch;          /* Target frame Epoch */
   double target_equinox;        /* Target frame Epoch */
   int isunit;                   /* Is the SlaMap effectively a unit mapping? */
   int match;                    /* Mapping can be generated? */
   int step1;                    /* Convert target to FK5 J2000? */
   int step2;                    /* Convert FK5 J2000 to align sys? */
   int step3;                    /* Convert align sys to FK5 J2000? */
   int step4;                    /* Convert FK5 J2000 to result? */

/* Check the global error status. */
   if ( !astOK ) return 0;

/* Initialise the returned values. */
   match = 1;
   *map = NULL;

/* Initialise variables to avoid "used of uninitialised variable"
   messages from dumb compilers. */
   epoch_B = 0.0;
   epoch_J = 0.0;
   equinox_B = 0.0;
   equinox_J = 0.0;

/* Get the two epoch values. */
   result_epoch = astGetEpoch( result );
   target_epoch = astGetEpoch( target );

/* Get the two equinox values. */
   result_equinox = astGetEquinox( result );
   target_equinox = astGetEquinox( target );

/* Get the two system values. */
   result_system = astGetSystem( result );
   target_system = astGetSystem( target );

/* If either system is not references to the equinox given by the Equinox
   attribute, then use the equinox of the other system rather than
   adopting the arbitrary default of J2000. */
   if( !EQREF(result_system) ) result_equinox = target_equinox;
   if( !EQREF(target_system) ) target_equinox = result_equinox;

/* If both systems are unknown, assume they are the same. Return a UnitMap.
   We need to do this, otherwise a simple change of Title (for instance)
   will result in a FrameSet whose current Frame has System=AST__UNKNOWN
   loosing its integrity. */
   if( target_system == AST__UNKNOWN && result_system == AST__UNKNOWN ) {
      *map = (AstMapping *) astUnitMap( 2, "", status );
      return 1;
   }

/* The total Mapping is divided into two parts in series; the first part
   converts from the target SkyFrame to the alignment system, using the
   Epoch and Equinox of the target Frame, the second part converts from
   the alignment system to the result SkyFrame, using the Epoch and Equinox
   of the result Frame. Each of these parts has an arbitrary input and an
   output system, and therefore could be implemented using a collection
   of NxN conversions. To reduce the complexity, each part is implement
   by converting from the input system to FK5 J2000, and then from FK5
   J2000 to the output system. This scheme required only N conversions
   rather than NxN. Thus overall the total Mapping is made up of 4 steps
   in series. Some of these steps may be ommitted if they are effectively
   a UnitMap. Determine which steps need to be included. Assume all need
   to be done to begin with. */
   step1 = 1;
   step2 = 1;
   step3 = 1;
   step4 = 1;

/* If the target system is the same as the alignment system, neither of the
   first 2 steps need be done. */
   if( target_system == align_sys ) {
      step1 = 0;
      step2 = 0;
   }

/* If the result system is the same as the alignment system, neither of the
   last 2 steps need be done. */
   if( result_system == align_sys ) {
      step3 = 0;
      step4 = 0;
   }

/* If the two epochs are the same, or if the alignment system is FK5 J2000,
   steps 2 and 3 are not needed. */
   if( step2 && step3 ) {
      if( align_sys == AST__FK5 || result_epoch == target_epoch ) {
      step2 = 0;
      step3 = 0;
      }
   }

/* None are needed if the target and result SkyFrames have the same
   System, Epoch and Equinox. */
   if(  result_system == target_system &&
        result_epoch == target_epoch &&
        result_equinox == target_equinox ) {
      step1 = 0;
      step2 = 0;
      step3 = 0;
      step4 = 0;
   }

/* Create an initial (null) SlaMap. */
   slamap = astSlaMap( 0, "", status );

/* Define local macros as shorthand for adding sky coordinate
   conversions to this SlaMap.  Each macro simply stores details of
   the additional arguments in the "args" array and then calls
   astSlaAdd. The macros differ in the number of additional argument
   values. */
   #define TRANSFORM_0(cvt) \
           astSlaAdd( slamap, cvt, 0, NULL );

   #define TRANSFORM_1(cvt,arg0) \
           args[ 0 ] = arg0; \
           astSlaAdd( slamap, cvt, 1, args );

   #define TRANSFORM_2(cvt,arg0,arg1) \
           args[ 0 ] = arg0; \
           args[ 1 ] = arg1; \
           astSlaAdd( slamap, cvt, 2, args );

   #define TRANSFORM_3(cvt,arg0,arg1,arg2) \
           args[ 0 ] = arg0; \
           args[ 1 ] = arg1; \
           args[ 2 ] = arg2; \
           astSlaAdd( slamap, cvt, 3, args );

   #define TRANSFORM_4(cvt,arg0,arg1,arg2,arg3) \
           args[ 0 ] = arg0; \
           args[ 1 ] = arg1; \
           args[ 2 ] = arg2; \
           args[ 3 ] = arg3; \
           astSlaAdd( slamap, cvt, 4, args );

/* Convert _to_ FK5 J2000.0 coordinates. */
/* ===================================== */
/* The overall conversion is formulated in four phases. In this first
   phase, we convert from the target coordinate system to intermediate sky
   coordinates expressed using the FK5 system, mean equinox J2000.0. */

/* Obtain the sky coordinate system, equinox, epoch, etc, of the target
   SkyFrame. */
   system = target_system;
   equinox = target_equinox;
   epoch = target_epoch;
   last = GetLAST( target, status );
   diurab = GetDiurab( target, status );
   lat = astGetObsLat( target );
   if( astOK && step1 ) {

/* Convert the equinox and epoch values (stored as Modified Julian
   Dates) into the equivalent Besselian and Julian epochs (as decimal
   years). */
      equinox_B = palEpb( equinox );
      equinox_J = palEpj( equinox );
      epoch_B = palEpb( epoch );
      epoch_J = palEpj( epoch );

/* Formulate the conversion... */

/* From FK4. */
/* --------- */
/* If necessary, apply the old-style FK4 precession model to bring the
   equinox to B1950.0, with rigorous handling of the E-terms of
   aberration. Then convert directly to FK5 J2000.0 coordinates. */
      if ( system == AST__FK4 ) {
         VerifyMSMAttrs( target, result, 1, "Equinox Epoch", "astMatch", status );
         if ( equinox_B != 1950.0 ) {
            TRANSFORM_1( "SUBET", equinox_B )
            TRANSFORM_2( "PREBN", equinox_B, 1950.0 )
            TRANSFORM_1( "ADDET", 1950.0 )
         }
         TRANSFORM_1( "FK45Z", epoch_B )

/* From FK4 with no E-terms. */
/* ------------------------- */
/* This is the same as above, except that we do not need to subtract
      the E-terms initially as they are already absent. */
      } else if ( system == AST__FK4_NO_E ) {
         VerifyMSMAttrs( target, result, 1, "Equinox Epoch", "astMatch", status );
         if ( equinox_B != 1950.0 ) {
            TRANSFORM_2( "PREBN", equinox_B, 1950.0 )
         }
         TRANSFORM_1( "ADDET", 1950.0 )
         TRANSFORM_1( "FK45Z", epoch_B )

/* From FK5. */
/* --------- */
/* We simply need to apply a precession correction for the change of
   equinox.  Omit even this if the equinox is already J2000.0. */
      } else if ( system == AST__FK5 ) {
         VerifyMSMAttrs( target, result, 1, "Equinox", "astMatch", status );
         if ( equinox_J != 2000.0 ) {
            TRANSFORM_2( "PREC", equinox_J, 2000.0 );
         }

/* From J2000. */
/* ----------- */
/* Convert from J2000 to ICRS, then from ICRS to FK5. */
      } else if ( system == AST__J2000 ) {
         VerifyMSMAttrs( target, result, 1, "Epoch", "astMatch", status );
         TRANSFORM_0( "J2000H" )
         TRANSFORM_1( "HFK5Z", epoch_J );

/* From geocentric apparent. */
/* ------------------------- */
/* This conversion is supported directly by SLALIB. */
      } else if ( system == AST__GAPPT ) {
         VerifyMSMAttrs( target, result, 1, "Epoch", "astMatch", status );
         TRANSFORM_2( "AMP", epoch, 2000.0 )

/* From ecliptic coordinates. */
/* -------------------------- */
/* This conversion is supported directly by SLALIB. */
      } else if ( system == AST__ECLIPTIC ) {
         VerifyMSMAttrs( target, result, 1, "Equinox", "astMatch", status );
         TRANSFORM_1( "ECLEQ", equinox )

/* From helio-ecliptic coordinates. */
/* -------------------------------- */
      } else if ( system == AST__HELIOECLIPTIC ) {
         VerifyMSMAttrs( target, result, 1, "Epoch", "astMatch", status );
         TRANSFORM_1( "HEEQ", epoch )

/* From galactic coordinates. */
/* -------------------------- */
/* This conversion is supported directly by SLALIB. */
      } else if ( system == AST__GALACTIC ) {
         TRANSFORM_0( "GALEQ" )

/* From ICRS. */
/* ---------- */
/* This conversion is supported directly by SLALIB. */
      } else if ( system == AST__ICRS ) {
         VerifyMSMAttrs( target, result, 1, "Epoch", "astMatch", status );
         TRANSFORM_1( "HFK5Z", epoch_J );

/* From supergalactic coordinates. */
/* ------------------------------- */
/* Convert to galactic coordinates and then to FK5 J2000.0
      equatorial. */
      } else if ( system == AST__SUPERGALACTIC ) {
         TRANSFORM_0( "SUPGAL" )
         TRANSFORM_0( "GALEQ" )

/* From AzEl. */
/* ---------- */
/* Rotate from horizon to equator (H2E), shift hour angle into RA (H2R),
      go from geocentric apparent to FK5 J2000. */
      } else if ( system == AST__AZEL ) {
         VerifyMSMAttrs( target, result, 1, "ObsLon ObsLat Epoch", "astMatch", status );
         TRANSFORM_2( "H2E", lat, diurab )
         TRANSFORM_1( "H2R", last )
         TRANSFORM_2( "AMP", epoch, 2000.0 )

/* From unknown coordinates. */
/* ------------------------- */
/* No conversion is possible. */
      } else if ( system == AST__UNKNOWN ) {
         match = 0;
      }
   }

/* Convert _from_ FK5 J2000.0 coordinates _to_ the alignment system. */
/* ============================================================ */
/* In this second phase, we convert to the system given by the align_sys
   argument (if required), still using the properties of the target Frame. */
   if ( astOK && match && step2 ) {

/* Align in FK4. */
/* --------------- */
/* Convert directly from FK5 J2000.0 to FK4 B1950.0 coordinates at the
   appropriate epoch. Then, if necessary, apply the old-style FK4
   precession model to bring the equinox to that required, with
   rigorous handling of the E-terms of aberration. */
      if ( align_sys == AST__FK4 ) {
         VerifyMSMAttrs( target, result, 1, "Equinox Epoch", "astMatch", status );
         TRANSFORM_1( "FK54Z", epoch_B )
         if ( equinox_B != 1950.0 ) {
            TRANSFORM_1( "SUBET", 1950.0 )
            TRANSFORM_2( "PREBN", 1950.0, equinox_B )
            TRANSFORM_1( "ADDET", equinox_B )
         }

/* Align in FK4 with no E-terms. */
/* ------------------------------- */
/* This is the same as above, except that we do not need to add the
   E-terms at the end. */
      } else if ( align_sys == AST__FK4_NO_E ) {
         VerifyMSMAttrs( target, result, 1, "Equinox Epoch", "astMatch", status );
         TRANSFORM_1( "FK54Z", epoch_B )
         TRANSFORM_1( "SUBET", 1950.0 )
         if ( equinox_B != 1950.0 ) {
            TRANSFORM_2( "PREBN", 1950.0, equinox_B )
         }

/* Align in FK5. */
/* ------------- */
/* We simply need to apply a precession correction for the change of
   equinox.  Omit even this if the required equinox is J2000.0. */
      } else if ( align_sys == AST__FK5 ) {
         VerifyMSMAttrs( target, result, 1, "Equinox", "astMatch", status );
         if ( equinox_J != 2000.0 ) {
            TRANSFORM_2( "PREC", 2000.0, equinox_J )
         }

/* Align in J2000. */
/* --------------- */
/* Mov from FK5 to ICRS, and from ICRS to J2000. */
      } else if ( align_sys == AST__J2000 ) {
         VerifyMSMAttrs( target, result, 1, "Epoch", "astMatch", status );
         TRANSFORM_1( "FK5HZ", epoch_J )
         TRANSFORM_0( "HJ2000" )

/* Align in geocentric apparent. */
/* ------------------------------- */
/* This conversion is supported directly by SLALIB. */
      } else if ( align_sys == AST__GAPPT ) {
         VerifyMSMAttrs( target, result, 1, "Epoch", "astMatch", status );
         TRANSFORM_2( "MAP", 2000.0, epoch )

/* Align in ecliptic coordinates. */
/* -------------------------------- */
/* This conversion is supported directly by SLALIB. */
      } else if ( align_sys == AST__ECLIPTIC ) {
         VerifyMSMAttrs( target, result, 1, "Equinox", "astMatch", status );
         TRANSFORM_1( "EQECL", equinox )

/* Align in helio-ecliptic coordinates. */
/* ------------------------------------ */
      } else if ( align_sys == AST__HELIOECLIPTIC ) {
         VerifyMSMAttrs( target, result, 1, "Epoch", "astMatch", status );
         TRANSFORM_1( "EQHE", epoch )

/* Align in galactic coordinates. */
/* -------------------------------- */
/* This conversion is supported directly by SLALIB. */
      } else if ( align_sys == AST__GALACTIC ) {
         TRANSFORM_0( "EQGAL" )

/* Align in ICRS. */
/* -------------- */
/* This conversion is supported directly by SLALIB. */
      } else if ( align_sys == AST__ICRS ) {
         VerifyMSMAttrs( target, result, 1, "Epoch", "astMatch", status );
         TRANSFORM_1( "FK5HZ", epoch_J )

/* Align in supergalactic coordinates. */
/* ------------------------------------- */
/* Convert to galactic coordinates and then to supergalactic. */
      } else if ( align_sys == AST__SUPERGALACTIC ) {
         TRANSFORM_0( "EQGAL" )
         TRANSFORM_0( "GALSUP" )

/* Align in AzEl coordinates. */
/* -------------------------- */
/* Go from FK5 J2000 to geocentric apparent (MAP), shift RA into hour angle
   (R2H), rotate from equator to horizon (E2H). */
      } else if ( align_sys == AST__AZEL ) {
         VerifyMSMAttrs( target, result, 1, "ObsLon ObsLat Epoch", "astMatch", status );
         TRANSFORM_2( "MAP", 2000.0, epoch )
         TRANSFORM_1( "R2H", last )
         TRANSFORM_2( "E2H", lat, diurab )

/* Align in unknown coordinates. */
/* ------------------------------- */
/* No conversion is possible. */
      } else if ( align_sys == AST__UNKNOWN ) {
         match = 0;
      }
   }

/* Convert _from_ the alignment system _to_ FK5 J2000.0 coordinates */
/* =========================================================== */
/* In this third phase, we convert from the alignment system (if required)
   to the intermediate FK5 J2000 system, using the properties of the
   result SkyFrame. */

/* Obtain the sky coordinate system, equinox, epoch, etc, of the result
   SkyFrame. */
   system = result_system;
   equinox = result_equinox;
   epoch = result_epoch;
   diurab = GetDiurab( result, status );
   last = GetLAST( result, status );
   lat = astGetObsLat( result );

/* Convert the equinox and epoch values (stored as Modified Julian
   Dates) into the equivalent Besselian and Julian epochs (as decimal
   years). */
   if( astOK ) {
      equinox_B = palEpb( equinox );
      equinox_J = palEpj( equinox );
      epoch_B = palEpb( epoch );
      epoch_J = palEpj( epoch );
   }

/* Check we need to do the conversion. */
   if ( astOK && match && step3 ) {

/* Formulate the conversion... */

/* From FK4. */
/* --------- */
/* If necessary, apply the old-style FK4 precession model to bring the
   equinox to B1950.0, with rigorous handling of the E-terms of
   aberration. Then convert directly to FK5 J2000.0 coordinates. */
      if ( align_sys == AST__FK4 ) {
         VerifyMSMAttrs( target, result, 3, "Equinox Epoch", "astMatch", status );
         if ( equinox_B != 1950.0 ) {
            TRANSFORM_1( "SUBET", equinox_B )
            TRANSFORM_2( "PREBN", equinox_B, 1950.0 )
            TRANSFORM_1( "ADDET", 1950.0 )
         }
         TRANSFORM_1( "FK45Z", epoch_B )

/* From FK4 with no E-terms. */
/* ------------------------- */
/* This is the same as above, except that we do not need to subtract
   the E-terms initially as they are already absent. */
      } else if ( align_sys == AST__FK4_NO_E ) {
         VerifyMSMAttrs( target, result, 3, "Equinox Epoch", "astMatch", status );
         if ( equinox_B != 1950.0 ) {
            TRANSFORM_2( "PREBN", equinox_B, 1950.0 )
         }
         TRANSFORM_1( "ADDET", 1950.0 )
         TRANSFORM_1( "FK45Z", epoch_B )

/* From FK5. */
/* --------- */
/* We simply need to apply a precession correction for the change of
   equinox.  Omit even this if the equinox is already J2000.0. */
      } else if ( align_sys == AST__FK5 ) {
         VerifyMSMAttrs( target, result, 3, "Equinox", "astMatch", status );
         if ( equinox_J != 2000.0 ) {
            TRANSFORM_2( "PREC", equinox_J, 2000.0 );
         }

/* From geocentric apparent. */
/* ------------------------- */
/* This conversion is supported directly by SLALIB. */
      } else if ( align_sys == AST__GAPPT ) {
         VerifyMSMAttrs( target, result, 3, "Epoch", "astMatch", status );
         TRANSFORM_2( "AMP", epoch, 2000.0 )

/* From ecliptic coordinates. */
/* -------------------------- */
/* This conversion is supported directly by SLALIB. */
      } else if ( align_sys == AST__ECLIPTIC ) {
         VerifyMSMAttrs( target, result, 3, "Equinox", "astMatch", status );
         TRANSFORM_1( "ECLEQ", equinox )

/* From helio-ecliptic coordinates. */
/* -------------------------------- */
      } else if ( align_sys == AST__HELIOECLIPTIC ) {
         VerifyMSMAttrs( target, result, 3, "Epoch", "astMatch", status );
         TRANSFORM_1( "HEEQ", epoch )

/* From galactic coordinates. */
/* -------------------------- */
/* This conversion is supported directly by SLALIB. */
      } else if ( align_sys == AST__GALACTIC ) {
         TRANSFORM_0( "GALEQ" )

/* From ICRS. */
/* ---------- */
/* This conversion is supported directly by SLALIB. */
      } else if ( align_sys == AST__ICRS ) {
         VerifyMSMAttrs( target, result, 3, "Epoch", "astMatch", status );
         TRANSFORM_1( "HFK5Z", epoch_J )

/* From J2000. */
/* ----------- */
/* From J2000 to ICRS, and from ICRS to FK5. */
      } else if ( align_sys == AST__J2000 ) {
         VerifyMSMAttrs( target, result, 3, "Epoch", "astMatch", status );
         TRANSFORM_0( "J2000H" )
         TRANSFORM_1( "HFK5Z", epoch_J )

/* From supergalactic coordinates. */
/* ------------------------------- */
/* Convert to galactic coordinates and then to FK5 J2000.0
      equatorial. */
      } else if ( align_sys == AST__SUPERGALACTIC ) {
         TRANSFORM_0( "SUPGAL" )
         TRANSFORM_0( "GALEQ" )

/* From AzEl. */
/* ---------- */
/* Rotate from horizon to equator (H2E), shift hour angle into RA (H2R),
      go from geocentric apparent to FK5 J2000. */
      } else if ( align_sys == AST__AZEL ) {
         VerifyMSMAttrs( target, result, 3, "ObsLon ObsLat Epoch", "astMatch", status );
         TRANSFORM_2( "H2E", lat, diurab )
         TRANSFORM_1( "H2R", last )
         TRANSFORM_2( "AMP", epoch, 2000.0 )

/* From unknown coordinates. */
/* ------------------------------- */
/* No conversion is possible. */
      } else if ( align_sys == AST__UNKNOWN ) {
         match = 0;
      }
   }

/* Convert _from_ FK5 J2000.0 coordinates. */
/* ======================================= */
/* In this fourth and final phase, we convert to the result coordinate
   system from the intermediate FK5 J2000 sky coordinates generated above. */
   if ( astOK && match && step4 ) {

/* To FK4. */
/* ------- */
/* Convert directly from FK5 J2000.0 to FK4 B1950.0 coordinates at the
   appropriate epoch. Then, if necessary, apply the old-style FK4
   precession model to bring the equinox to that required, with
   rigorous handling of the E-terms of aberration. */
      if ( system == AST__FK4 ) {
         VerifyMSMAttrs( target, result, 3, "Equinox Epoch", "astMatch", status );
         TRANSFORM_1( "FK54Z", epoch_B )
         if ( equinox_B != 1950.0 ) {
            TRANSFORM_1( "SUBET", 1950.0 )
            TRANSFORM_2( "PREBN", 1950.0, equinox_B )
            TRANSFORM_1( "ADDET", equinox_B )
         }

/* To FK4 with no E-terms. */
/* ----------------------- */
/* This is the same as above, except that we do not need to add the
   E-terms at the end. */
      } else if ( system == AST__FK4_NO_E ) {
         VerifyMSMAttrs( target, result, 3, "Equinox Epoch", "astMatch", status );
         TRANSFORM_1( "FK54Z", epoch_B )
         TRANSFORM_1( "SUBET", 1950.0 )
         if ( equinox_B != 1950.0 ) {
            TRANSFORM_2( "PREBN", 1950.0, equinox_B )
         }

/* To FK5. */
/* ------- */
/* We simply need to apply a precession correction for the change of
   equinox.  Omit even this if the required equinox is J2000.0. */
      } else if ( system == AST__FK5 ) {
         VerifyMSMAttrs( target, result, 3, "Equinox", "astMatch", status );
         if ( equinox_J != 2000.0 ) {
            TRANSFORM_2( "PREC", 2000.0, equinox_J )
         }

/* To geocentric apparent. */
/* ----------------------- */
/* This conversion is supported directly by SLALIB. */
      } else if ( system == AST__GAPPT ) {
         VerifyMSMAttrs( target, result, 3, "Epoch", "astMatch", status );
         TRANSFORM_2( "MAP", 2000.0, epoch )

/* To ecliptic coordinates. */
/* ------------------------ */
/* This conversion is supported directly by SLALIB. */
      } else if ( system == AST__ECLIPTIC ) {
         VerifyMSMAttrs( target, result, 3, "Equinox", "astMatch", status );
         TRANSFORM_1( "EQECL", equinox )

/* To helio-ecliptic coordinates. */
/* ------------------------------ */
      } else if ( system == AST__HELIOECLIPTIC ) {
         VerifyMSMAttrs( target, result, 3, "Epoch", "astMatch", status );
         TRANSFORM_1( "EQHE", epoch )

/* To galactic coordinates. */
/* ------------------------ */
/* This conversion is supported directly by SLALIB. */
      } else if ( system == AST__GALACTIC ) {
         TRANSFORM_0( "EQGAL" )

/* To ICRS. */
/* -------- */
/* This conversion is supported directly by SLALIB. */
      } else if ( system == AST__ICRS ) {
         VerifyMSMAttrs( target, result, 3, "Epoch", "astMatch", status );
         TRANSFORM_1( "FK5HZ", epoch_J )

/* To J2000. */
/* --------- */
/* From FK5 to ICRS, then from ICRS to J2000. */
      } else if ( system == AST__J2000 ) {
         VerifyMSMAttrs( target, result, 3, "Epoch", "astMatch", status );
         TRANSFORM_1( "FK5HZ", epoch_J )
         TRANSFORM_0( "HJ2000" )

/* To supergalactic coordinates. */
/* ----------------------------- */
/* Convert to galactic coordinates and then to supergalactic. */
      } else if ( system == AST__SUPERGALACTIC ) {
         TRANSFORM_0( "EQGAL" )
         TRANSFORM_0( "GALSUP" )

/* To AzEl */
/* ------- */
/* Go from FK5 J2000 to geocentric apparent (MAP), shift RA into hour angle
   (R2H), rotate from equator to horizon (E2H). */
      } else if ( system == AST__AZEL ) {
         VerifyMSMAttrs( target, result, 3, "ObsLon ObsLat Epoch", "astMatch", status );
         TRANSFORM_2( "MAP", 2000.0, epoch )
         TRANSFORM_1( "R2H", last )
         TRANSFORM_2( "E2H", lat, diurab )

/* To unknown coordinates. */
/* ----------------------------- */
/* No conversion is possible. */
      } else if ( system == AST__UNKNOWN ) {
         match = 0;
      }
   }

/* See of the slamap created above is effectively a unit mapping to
   within the tolerance of the more accurate SkyFrame (target or result). */
   isunit = TestSlaUnit( target, result, slamap, status );

/* Now need to take account of the possibility that the input or output
   SkyFrame may represent an offset system rather than a coordinate system.
   Form the Mapping from the target coordinate system to the associated
   offset system. A UnitMap is returned if the target does not use an
   offset system. */
   omap = SkyOffsetMap( target, status );

/* Invert it to get the Mapping from the actual used system (whther
   offsets or coordinates) to the coordinate system. */
   astInvert( omap );

/* Combine it with the slamap created earlier, so that its coordinate
   outputs feed the inputs of the slamap. We only do this if the slamap
   is not effectively a unit mapping. Annul redundant pointers afterwards. */
   if( ! isunit ) {
      tmap = (AstMapping *) astCmpMap( omap, slamap, 1, "", status );
   } else {
      tmap = astClone( omap );
   }
   omap = astAnnul( omap );
   slamap =astAnnul( slamap );

/* Now form the Mapping from the result coordinate system to the associated
   offset system. A UnitMap is returned if the result does not use an
   offset system. */
   omap = SkyOffsetMap( result, status );

/* Combine it with the above CmpMap, so that the CmpMap outputs feed the
   new Mapping inputs. Annul redundant pointers afterwards. */
   tmap2 = (AstMapping *) astCmpMap( tmap, omap, 1, "", status );
   omap =astAnnul( omap );
   tmap =astAnnul( tmap );

/* Simplify the Mapping produced above (this eliminates any redundant
   conversions) and annul the original pointer. */
   *map = astSimplify( tmap2 );
   tmap2 = astAnnul( tmap2 );

/* If an error occurred, annul the returned Mapping and clear the
   returned values. */
   if ( !astOK ) {
      *map = astAnnul( *map );
      match = -1;
   }

/* Return the result. */
   return match;

/* Undefine macros local to this function. */
#undef MAX_ARGS
#undef TRANSFORM_0
#undef TRANSFORM_1
#undef TRANSFORM_2
#undef TRANSFORM_3
}

static int Match( AstFrame *template_frame, AstFrame *target, int matchsub,
                  int **template_axes, int **target_axes, AstMapping **map,
                  AstFrame **result, int *status ) {
/*
*  Name:
*     Match

*  Purpose:
*     Determine if conversion is possible between two coordinate systems.

*  Type:
*     Private function.

*  Synopsis:
*     #include "skyframe.h"
*     int Match( AstFrame *template, AstFrame *target, int matchsub,
*                int **template_axes, int **target_axes,
*                AstMapping **map, AstFrame **result, int *status )

*  Class Membership:
*     SkyFrame member function (over-rides the protected astMatch method
*     inherited from the Frame class).

*  Description:
*     This function matches a "template" SkyFrame to a "target" Frame and
*     determines whether it is possible to convert coordinates between them.
*     If it is, a mapping that performs the transformation is returned along
*     with a new Frame that describes the coordinate system that results when
*     this mapping is applied to the "target" coordinate system. In addition,
*     information is returned to allow the axes in this "result" Frame to be
*     associated with the corresponding axes in the "target" and "template"
*     Frames from which they are derived.

*  Parameters:
*     template
*        Pointer to the template SkyFrame. This describes the coordinate system
*        (or set of possible coordinate systems) into which we wish to convert
*        our coordinates.
*     target
*        Pointer to the target Frame. This describes the coordinate system in
*        which we already have coordinates.
*     matchsub
*        If zero then a match only occurs if the template is of the same
*        class as the target, or of a more specialised class. If non-zero
*        then a match can occur even if this is not the case.
*     template_axes
*        Address of a location where a pointer to int will be returned if the
*        requested coordinate conversion is possible. This pointer will point
*        at a dynamically allocated array of integers with one element for each
*        axis of the "result" Frame (see below). It must be freed by the caller
*        (using astFree) when no longer required.
*
*        For each axis in the result Frame, the corresponding element of this
*        array will return the index of the template SkyFrame axis from which
*        it is derived. If it is not derived from any template SkyFrame axis,
*        a value of -1 will be returned instead.
*     target_axes
*        Address of a location where a pointer to int will be returned if the
*        requested coordinate conversion is possible. This pointer will point
*        at a dynamically allocated array of integers with one element for each
*        axis of the "result" Frame (see below). It must be freed by the caller
*        (using astFree) when no longer required.
*
*        For each axis in the result Frame, the corresponding element of this
*        array will return the index of the target Frame axis from which it
*        is derived. If it is not derived from any target Frame axis, a value
*        of -1 will be returned instead.
*     map
*        Address of a location where a pointer to a new Mapping will be
*        returned if the requested coordinate conversion is possible. If
*        returned, the forward transformation of this Mapping may be used to
*        convert coordinates between the "target" Frame and the "result"
*        Frame (see below) and the inverse transformation will convert in the
*        opposite direction.
*     result
*        Address of a location where a pointer to a new Frame will be returned
*        if the requested coordinate conversion is possible. If returned, this
*        Frame describes the coordinate system that results from applying the
*        returned Mapping (above) to the "target" coordinate system. In
*        general, this Frame will combine attributes from (and will therefore
*        be more specific than) both the target and the template Frames. In
*        particular, when the template allows the possibility of transformaing
*        to any one of a set of alternative coordinate systems, the "result"
*        Frame will indicate which of the alternatives was used.
*     status
*        Pointer to the inherited status variable.

*  Returned Value:
*     A non-zero value is returned if the requested coordinate conversion is
*     possible. Otherwise zero is returned (this will not in itself result in
*     an error condition).

*  Notes:
*     -  A value of zero will be returned if this function is invoked with the
*     global error status set, or if it should fail for any reason.

*  Implementation Notes:
*     This implementation addresses the matching of a SkyFrame class object to
*     any other class of Frame. A SkyFrame will match any class of SkyFrame
*     (i.e. possibly from a derived class) but will not match a less
*     specialised class of Frame.
*/

/* Local Variables: */
   AstFrame *frame0;          /* Pointer to Frame underlying axis 0 */
   AstFrame *frame1;          /* Pointer to Frame underlying axis 1 */
   AstSkyFrame *template;     /* Pointer to template SkyFrame structure */
   int iaxis;                 /* Axis index */
   int iaxis0;                /* Axis index underlying axis 0 */
   int iaxis1;                /* Axis index underlying axis 1 */
   int match;                 /* Coordinate conversion possible? */
   int swap1;                 /* Template axes swapped? */
   int swap2;                 /* Target axes swapped? */
   int swap;                  /* Additional axis swap needed? */
   int target_axis0;          /* Index of 1st SkyFrame axis in the target */
   int target_axis1;          /* Index of 2nd SkyFrame axis in the target */
   int target_naxes;          /* Number of target axes */

/* Initialise the returned values. */
   *template_axes = NULL;
   *target_axes = NULL;
   *map = NULL;
   *result = NULL;
   match = 0;

/* Check the global error status. */
   if ( !astOK ) return match;

/* Initialise variables to avoid "used of uninitialised variable"
   messages from dumb compilers. */
   swap = 0;
   target_axis0 = -1;
   target_axis1 = -1;

/* Obtain a pointer to the template SkyFrame structure. */
   template = (AstSkyFrame *) template_frame;

/* Obtain the number of axes in the target Frame. */
   target_naxes = astGetNaxes( target );

/* The first criterion for a match is that the template matches as a
   Frame class object. This ensures that the number of axes (2) and
   domain, etc. of the target Frame are suitable. Invoke the parent
   "astMatch" method to verify this. */
   match = (*parent_match)( template_frame, target, matchsub,
                            template_axes, target_axes, map, result, status );

/* If a match was found, annul the returned objects, which are not
   needed, but keep the memory allocated for the axis association
   arrays, which we will re-use. */
   if ( astOK && match ) {
      *map = astAnnul( *map );
      *result = astAnnul( *result );
   }

/* If OK so far, obtain pointers to the primary Frames which underlie
   all target axes. Stop when a SkyFrame axis is found. */
   if ( match && astOK ) {

      match = 0;
      for( iaxis = 0; iaxis < target_naxes; iaxis++ ) {
         astPrimaryFrame( target, iaxis, &frame0, &iaxis0 );
         if( astIsASkyFrame( frame0 ) ) {
            target_axis0 = iaxis;
            match = 1;
            break;
         } else {
            frame0 = astAnnul( frame0 );
         }
      }

/* Check at least one SkyFrame axis was found it the target. */
      if( match ) {

/* If so, search the remaining target axes for another axis that is
   derived from the same SkyFrame. */
         match = 0;
         for( iaxis++ ; iaxis < target_naxes; iaxis++ ) {
            astPrimaryFrame( target, iaxis, &frame1, &iaxis1 );
            if( frame1 == frame0 ) {
               target_axis1 = iaxis;
               frame1 = astAnnul( frame1 );
               match = 1;
               break;
            } else {
               frame1 = astAnnul( frame1 );
            }
         }

/* Annul the remaining Frame pointer used in the above tests. */
         frame0 = astAnnul( frame0 );
      }

/* If this test is passed, we can now test that the underlying axis indices
   are 0 and 1, in either order. This then ensures that we have a
   single SkyFrame (not a compound Frame) with both axes present. */
      if ( match && astOK ) {
         match = ( ( ( iaxis0 == 0 ) && ( iaxis1 == 1 ) ) ||
                   ( ( iaxis1 == 0 ) && ( iaxis0 == 1 ) ) );
      }

   }

/* If a possible match has been detected, we must now decide how the
   order of the axes in the result Frame relates to the order of axes
   in the target Frame. There are two factors involved. The first
   depends on whether the axis permutation array for the template
   SkyFrame (whose method we are executing) causes an axis
   reversal. Determine this by permuting axis index zero. */
   if ( astOK && match ) {
      swap1 = ( astValidateAxis( template, 0, 1, "astMatch" ) != 0 );

/* The second factor depends on whether the axes of the underlying
   primary SkyFrame are reversed when seen in the target Frame. */
      swap2 = ( iaxis0 != 0 );

/* Combine these to determine if an additional axis swap will be
   needed. */
      swap = ( swap1 != swap2 );

/* Now check to see if this additional swap is permitted by the
   template's Permute attribute. */
      match = ( !swap || astGetPermute( template ) );
   }

/* If the Frames still match, we next set up the axis association
   arrays. */
   if ( astOK && match ) {

/* If the target axis order is to be preserved, then the target axis
   association involves no permutation but the template axis
   association may involve an axis swap. */
      if ( astGetPreserveAxes( template ) ) {
         (*template_axes)[ 0 ] = swap;
         (*template_axes)[ 1 ] = !swap;
         (*target_axes)[ 0 ] = target_axis0;
         (*target_axes)[ 1 ] = target_axis1;

/* Otherwise, any swap applies to the target axis association
   instead. */
      } else {
         (*template_axes)[ 0 ] = 0;
         (*template_axes)[ 1 ] = 1;
         (*target_axes)[ 0 ] = swap ? target_axis1 : target_axis0;
         (*target_axes)[ 1 ] = swap ? target_axis0 : target_axis1;
      }

/* Use the target's "astSubFrame" method to create a new Frame (the
   result Frame) with copies of the target axes in the required
   order. This process also overlays the template attributes on to the
   target Frame and returns a Mapping between the target and result
   Frames which effects the required coordinate conversion. */
      match = astSubFrame( target, template, 2, *target_axes, *template_axes,
                           map, result );
   }

/* If an error occurred, or conversion to the result Frame's
   coordinate system was not possible, then free all memory, annul the
   returned objects, and reset the returned value. */
   if ( !astOK || !match ) {
      *template_axes = astFree( *template_axes );
      *target_axes = astFree( *target_axes );
      if( *map ) *map = astAnnul( *map );
      if( *result ) *result = astAnnul( *result );
      match = 0;
   }

/* Return the result. */
   return match;
}

static void MatchAxesX( AstFrame *frm2_frame, AstFrame *frm1, int *axes,
                        int *status ) {
/*
*  Name:
*     MatchAxesX

*  Purpose:
*     Find any corresponding axes in two Frames.

*  Type:
*     Private function.

*  Synopsis:
*     #include "skyframe.h"
*     void MatchAxesX( AstFrame *frm2, AstFrame *frm1, int *axes )
*                      int *status )

*  Class Membership:
*     SkyFrame member function (over-rides the protected astMatchAxesX
*     method inherited from the Frame class).

*     This function looks for corresponding axes within two supplied
*     Frames. An array of integers is returned that contains an element
*     for each axis in the second supplied Frame. An element in this array
*     will be set to zero if the associated axis within the second Frame
*     has no corresponding axis within the first Frame. Otherwise, it
*     will be set to the index (a non-zero positive integer) of the
*     corresponding axis within the first supplied Frame.

*  Parameters:
*     frm2
*        Pointer to the second Frame.
*     frm1
*        Pointer to the first Frame.
*     axes
*        Pointer to an integer array in which to return the indices of
*        the axes (within the first Frame) that correspond to each axis
*        within the second Frame. Axis indices start at 1. A value of zero
*        will be stored in the returned array for each axis in the second
*        Frame that has no corresponding axis in the first Frame.
*
*        The number of elements in this array must be greater than or
*        equal to the number of axes in the second Frame.
*     status
*        Pointer to inherited status value.

*  Notes:
*     -  Corresponding axes are identified by the fact that a Mapping
*     can be found between them using astFindFrame or astConvert. Thus,
*     "corresponding axes" are not necessarily identical. For instance,
*     SkyFrame axes in two Frames will match even if they describe
*     different celestial coordinate systems
*/

/* Local Variables: */
   AstFrame *resfrm;
   AstMapping *resmap;
   AstSkyFrame *frm2;
   int *frm2_axes;
   int *frm1_axes;
   int max_axes;
   int min_axes;
   int preserve_axes;

/* Check the global error status. */
   if ( !astOK ) return;

/* Get a pointer to the SkyFrame. */
   frm2 = (AstSkyFrame *) frm2_frame;

/* Temporarily ensure that the PreserveAxes attribute is non-zero in
   the first supplied Frame. This means thte result Frame returned by
   astMatch below will have the axis count and order of the target Frame
   (i.e. "pfrm"). */
   if( astTestPreserveAxes( frm1 ) ) {
      preserve_axes = astGetPreserveAxes( frm1 ) ? 1 : 0;
   } else {
      preserve_axes = -1;
   }
   astSetPreserveAxes( frm1, 1 );

/* Temporarily ensure that the MaxAxes and MinAxes attributes in the
   first supplied Frame are set so the Frame can be used as a template
   in astMatch for matching any number of axes. */
   if( astTestMaxAxes( frm1 ) ) {
      max_axes = astGetMaxAxes( frm1 );
   } else {
      max_axes = -1;
   }
   astSetMaxAxes( frm1, 10000 );

   if( astTestMinAxes( frm1 ) ) {
      min_axes = astGetMinAxes( frm1 );
   } else {
      min_axes = -1;
   }
   astSetMinAxes( frm1, 1 );

/* Attempt to find a sub-frame within the first supplied Frame that
   corresponds to the supplied SkyFrame. */
   if( astMatch( frm1, frm2, 1, &frm1_axes, &frm2_axes, &resmap, &resfrm ) ) {

/* If successfull, Store the one-based index within "frm1" of the
   corresponding axes. */
      axes[ 0 ] = frm1_axes[ 0 ] + 1;
      axes[ 1 ] = frm1_axes[ 1 ] + 1;

/* Free resources */
      frm1_axes = astFree( frm1_axes );
      frm2_axes = astFree( frm2_axes );
      resmap = astAnnul( resmap );
      resfrm = astAnnul( resfrm );

/* If no corresponding SkyFrame was found store zeros in the returned array. */
   } else {
      axes[ 0 ] = 0;
      axes[ 1 ] = 0;
   }

/* Re-instate the original attribute values in the first supplied Frame. */
   if( preserve_axes == -1 ) {
      astClearPreserveAxes( frm1 );
   } else {
      astSetPreserveAxes( frm1, preserve_axes );
   }

   if( max_axes == -1 ) {
      astClearMaxAxes( frm1 );
   } else {
      astSetMaxAxes( frm1, max_axes );
   }

   if( min_axes == -1 ) {
      astClearMinAxes( frm1 );
   } else {
      astSetMinAxes( frm1, min_axes );
   }
}

static void Norm( AstFrame *this_frame, double value[], int *status ) {
/*
*  Name:
*     Norm

*  Purpose:
*     Normalise a set of SkyFrame coordinates.

*  Type:
*     Private function.

*  Synopsis:
*     #include "skyframe.h"
*     void Norm( AstAxis *this, double value[], int *status )

*  Class Membership:
*     SkyFrame member function (over-rides the astNorm method inherited
*     from the Frame class).

*  Description:
*     This function converts a set of SkyFrame coordinate values,
*     which might potentially be unsuitable for display to a user (for
*     instance, may lie outside the expected range of values) into a
*     set of acceptable alternative values suitable for display.
*
*     This is done by wrapping coordinates so that the latitude lies
*     in the range (-pi/2.0) <= latitude <= (pi/2.0). If the NegLon
*     attribute is zero (the default), then the wrapped longitude value
*     lies in the range 0.0 <= longitude < (2.0*pi). Otherwise, it lies
*     in the range -pi <= longitude < pi.

*  Parameters:
*     this
*        Pointer to the SkyFrame.
*     value
*        An array of double, with one element for each SkyFrame axis.
*        This should contain the initial set of coordinate values,
*        which will be modified in place.
*     status
*        Pointer to the inherited status variable.
*/

/* Local Variables: */
   AstSkyFrame *this;            /* Pointer to the SkyFrame structure */
   const int *perm;              /* Axis permutation array */
   double sky_lat;               /* Sky latitude value */
   double sky_long;              /* Sky longitude value */
   double v[ 2 ];                /* Permuted value coordinates */

/* Check the global error status. */
   if ( !astOK ) return;

/* Obtain a pointer to the SkyFrame structure. */
   this = (AstSkyFrame *) this_frame;

/* Obtain a pointer to the SkyFrame's axis permutation array. */
   perm = astGetPerm( this );
   if ( astOK ) {

/* Obtain the sky longitude and latitude values, allowing for any axis
   permutation. */
      v[ perm[ 0 ] ] = value[ 0 ];
      v[ perm[ 1 ] ] = value[ 1 ];
      sky_long = v[ 0 ];
      sky_lat = v[ 1 ];

/* Test if both values are OK (i.e. not "bad"). */
      if ( ( sky_long != AST__BAD ) && ( sky_lat != AST__BAD ) ) {

/* Fold the longitude value into the range 0 to 2*pi and the latitude into
   the range -pi to +pi. */
         sky_long = palDranrm( sky_long );
         sky_lat = palDrange( sky_lat );

/* If the latitude now exceeds pi/2, shift the longitude by pi in whichever
   direction will keep it in the range 0 to 2*pi. */
         if ( sky_lat > ( pi / 2.0 ) ) {
            sky_long += ( sky_long < pi ) ? pi : -pi;

/* Reflect the latitude value through the pole, so it lies in the range 0 to
   pi/2. */
            sky_lat = pi - sky_lat;

/* If the latitude is less than -pi/2, shift the longitude in the same way
   as above. */
         } else if ( sky_lat < -( pi / 2.0 ) ) {
            sky_long += ( sky_long < pi ) ? pi : -pi;

/* But reflect the latitude through the other pole, so it lies in the range
   -pi/2 to 0. */
            sky_lat = -pi - sky_lat;
         }

/* If only the longitude value is valid, wrap it into the range 0 to 2*pi. */
      } else if ( sky_long != AST__BAD ) {
         sky_long = palDranrm( sky_long );

/* If only the latitude value is valid, wrap it into the range -pi to +pi. */
      } else if ( sky_lat != AST__BAD ) {
         sky_lat = palDrange( sky_lat );

/* Then refect through one of the poles (as above), if necessary, to move it
   into the range -pi/2 to +pi/2. */
         if ( sky_lat > ( pi / 2.0 ) ) {
            sky_lat = pi - sky_lat;
         } else if ( sky_lat < -( pi / 2.0 ) ) {
            sky_lat = -pi - sky_lat;
         }
      }

/* Convert 2*pi longitude into zero. Allow for a small error. */
      if ( fabs( sky_long - ( 2.0 * pi ) ) <=
          ( 2.0 * pi ) * ( DBL_EPSILON * (double) FLT_RADIX ) ) sky_long = 0.0;

/* If the NegLon attribute is set, and the longitude value is good,
   convert it into the range -pi to +pi. */
      if( sky_long != AST__BAD && astGetNegLon( this ) ) {
         sky_long = palDrange( sky_long );
      }

/* Return the new values, allowing for any axis permutation. */
      v[ 0 ] = sky_long;
      v[ 1 ] = sky_lat;
      value[ 0 ] = v[ perm[ 0 ] ];
      value[ 1 ] = v[ perm[ 1 ] ];
   }
}

static void NormBox( AstFrame *this_frame, double lbnd[], double ubnd[],
                     AstMapping *reg, int *status ) {
/*
*  Name:
*     NormBox

*  Purpose:
*     Extend a box to include effect of any singularities in the Frame.

*  Type:
*     Private function.

*  Synopsis:
*     #include "skyframe.h"
*     void astNormBox( AstFrame *this, double lbnd[], double ubnd[],
*                      AstMapping *reg, int *status )

*  Class Membership:
*     SkyFrame member function (over-rides the astNormBox method inherited
*     from the Frame class).

*  Description:
*     This function modifies a supplied box to include the effect of any
*     singularities in the co-ordinate system represented by the Frame.
*     For a normal Cartesian coordinate system, the box will be returned
*     unchanged. Other classes of Frame may do other things. For instance,
*     a SkyFrame will check to see if the box contains either the north
*     or south pole and extend the box appropriately.

*  Parameters:
*     this
*        Pointer to the Frame.
*     lbnd
*        An array of double, with one element for each Frame axis
*        (Naxes attribute). Initially, this should contain a set of
*        lower axis bounds for the box. They will be modified on exit
*        to include the effect of any singularities within the box.
*     ubnd
*        An array of double, with one element for each Frame axis
*        (Naxes attribute). Initially, this should contain a set of
*        upper axis bounds for the box. They will be modified on exit
*        to include the effect of any singularities within the box.
*     reg
*        A Mapping which should be used to test if any singular points are
*        inside or outside the box. The Mapping should leave an input
*        position unchanged if the point is inside the box, and should
*        set all bad if the point is outside the box.
*     status
*        Pointer to the inherited status variable.
*/

/* Local Variables: */
   AstSkyFrame *this;            /* Pointer to the SkyFrame structure */
   const int *perm;              /* Axis permutation array */
   double lb[ 2 ];               /* Permuted lower bounds */
   double t;                     /* Temporary storage */
   double t2;                    /* Temporary storage */
   double ub[ 2 ];               /* Permuted upper bounds */
   double x[2];                  /* 1st axis values at poles */
   double xo[2];                 /* Tested 1st axis values at poles */
   double y[2];                  /* 2nd axis values at poles */
   double yo[2];                 /* Tested 2nd axis values at poles */

/* Check the global error status. */
   if ( !astOK ) return;

/* Obtain a pointer to the SkyFrame structure. */
   this = (AstSkyFrame *) this_frame;

/* Obtain a pointer to the SkyFrame's axis permutation array. */
   perm = astGetPerm( this );
   if( perm ) {

/* Obtain the sky longitude and latitude limits, allowing for any axis
   permutation. */
      lb[ perm[ 0 ] ] = lbnd[ 0 ];
      lb[ perm[ 1 ] ] = lbnd[ 1 ];
      ub[ perm[ 0 ] ] = ubnd[ 0 ];
      ub[ perm[ 1 ] ] = ubnd[ 1 ];

/* Use the supplied Mapping to test if box includes either pole. */
      if( perm[ 0 ] == 0 ) {
         x[ 0 ] = 0.0;
         y[ 0 ] = AST__DPIBY2;
         x[ 1 ] = 0.0;
         y[ 1 ] = -AST__DPIBY2;
      } else {
         x[ 0 ] = AST__DPIBY2;
         y[ 0 ] = 0.0;
         x[ 1 ] = -AST__DPIBY2;
         y[ 1 ] = 0.0;
      }
      astTran2( reg, 2, x, y, 1, xo, yo );

/* If the box includes the north pole... */
      if( xo[ 0 ] != AST__BAD ) {

/* Find the lowest latitude after normalisation. */
         if( ub[ 1 ] != AST__BAD &&  lb[ 1 ] != AST__BAD ){
            t = palDrange( ub[ 1 ] );
            t2 = palDrange( lb[ 1 ] );
            if( t2 < t ) t = t2;
         } else {
            t = AST__BAD;
         }

/* Set the lower returned limit to this value and the upper returned limit
   to +90 degs */
         lb[ 1 ] = t;
         ub[ 1 ] = AST__DPIBY2;

/* Set the longitude range to 0 to 2PI */
         lb[ 0 ] = 0;
         ub[ 0 ] = 2*AST__DPI;

      }

/* If the box includes the south pole... */
      if( xo[ 1 ] != AST__BAD ) {

/* Find the highest latitude after normalisation. */
         if( ub[ 1 ] != AST__BAD &&  lb[ 1 ] != AST__BAD ){
            t = palDrange( ub[ 1 ] );
            t2 = palDrange( lb[ 1 ] );
            if( t2 > t ) t = t2;
         } else {
            t = AST__BAD;
         }

/* Set the upper returned limit to this value and the lower returned limit
   to -90 degs */
         lb[ 1 ] = -AST__DPIBY2;
         ub[ 1 ] = t;

/* Set the longitude range to 0 to 2PI */
         lb[ 0 ] = 0;
         ub[ 0 ] = 2*AST__DPI;
      }

/* Return the modified limits. */
      lbnd[ 0 ] = lb[ perm[ 0 ] ];
      lbnd[ 1 ] = lb[ perm[ 1 ] ];
      ubnd[ 0 ] = ub[ perm[ 0 ] ];
      ubnd[ 1 ] = ub[ perm[ 1 ] ];
   }
}

static void Offset( AstFrame *this_frame, const double point1[],
                    const double point2[], double offset, double point3[], int *status ) {
/*
*  Name:
*     Offset

*  Purpose:
*     Calculate an offset along a geodesic curve.

*  Type:
*     Private function.

*  Synopsis:
*     #include "skyframe.h"
*     void Offset( AstFrame *this,
*                  const double point1[], const double point2[],
*                  double offset, double point3[], int *status )

*  Class Membership:
*     SkyFrame member function (over-rides the astOffset method
*     inherited from the Frame class).

*  Description:
*     This function finds the SkyFrame coordinate values of a point
*     which is offset a specified distance along the geodesic curve
*     (i.e. great circle) between two other points.

*  Parameters:
*     this
*        Pointer to the SkyFrame.
*     point1
*        An array of double, with one element for each SkyFrame axis.
*        This should contain the coordinates of the point marking the
*        start of the geodesic curve.
*     point2
*        An array of double, with one element for each SkyFrame axis.
*        This should contain the coordinates of the point marking the
*        end of the geodesic curve.
*     offset
*        The required offset from the first point along the geodesic
*        curve, in radians. If this is positive, it will be towards
*        the second point. If it is negative, it will be in the
*        opposite direction. This offset need not imply a position
*        lying between the two points given, as the curve will be
*        extrapolated if necessary.
*     point3
*        An array of double, with one element for each SkyFrame axis
*        in which the coordinates of the required point will be
*        returned.
*     status
*        Pointer to the inherited status variable.

*  Notes:
*     - The geodesic curve used by this function is the path of
*     shortest distance between two points, as defined by the
*     astDistance function.
*     - This function will return "bad" coordinate values (AST__BAD)
*     if any of the input coordinates has this value.
*     - "Bad" coordinate values will also be returned if the two
*     points supplied are coincident (or otherwise fail to uniquely
*     specify a geodesic curve) but the requested offset is non-zero.
*/

/* Local Variables: */
   AstSkyFrame *this;            /* Pointer to the SkyFrame structure */
   const int *perm;              /* Pointer to axis permutation array */
   double mrot[ 3 ][ 3 ];        /* Rotation matrix */
   double p1[ 2 ];               /* Permuted coordinates for point1 */
   double p2[ 2 ];               /* Permuted coordinates for point2 */
   double p3[ 2 ];               /* Permuted coordinates for point3 */
   double scale;                 /* Scale factor */
   double v1[ 3 ];               /* 3-vector for p1 */
   double v2[ 3 ];               /* 3-vector for p2 */
   double v3[ 3 ];               /* 3-vector for p3 */
   double vmod;                  /* Modulus of vector */
   double vrot[ 3 ];             /* Vector along rotation axis */

/* Check the global error status. */
   if ( !astOK ) return;

/* Obtain a pointer to the SkyFrame structure. */
   this = (AstSkyFrame *) this_frame;

/* Obtain a pointer to the SkyFrame's axis permutation array. */
   perm = astGetPerm( this );
   if ( astOK ) {

/* Check that all supplied coordinates are OK. If not, generate "bad"
   output coordinates. */
      if ( ( point1[ 0 ] == AST__BAD ) || ( point1[ 1 ] == AST__BAD ) ||
           ( point2[ 0 ] == AST__BAD ) || ( point2[ 1 ] == AST__BAD ) ) {
         point3[ 0 ] = AST__BAD;
         point3[ 1 ] = AST__BAD;

/* Otherwise, apply the axis permutation array to obtain the
   coordinates of the two input points in the required
   (longitude,latitude) order. */
      } else {
         p1[ perm[ 0 ] ] = point1[ 0 ];
         p1[ perm[ 1 ] ] = point1[ 1 ];
         p2[ perm[ 0 ] ] = point2[ 0 ];
         p2[ perm[ 1 ] ] = point2[ 1 ];

/* Convert each point into a 3-vector of unit length. */
         palDcs2c( p1[ 0 ], p1[ 1 ], v1 );
         palDcs2c( p2[ 0 ], p2[ 1 ], v2 );

/* Find the cross product between these two vectors (the vector order
   is reversed here to compensate for the sense of rotation introduced
   by palDav2m and palDmxv below). */
         palDvxv( v2, v1, v3 );

/* Normalise the cross product vector, also obtaining its original
   modulus. */
         palDvn( v3, vrot, &vmod );

/* If the original modulus was zero, the input points are either
   coincident or diametrically opposite, so do not uniquely define a
   great circle. In either case, we can only generate output
   coordinates if the offset required is an exact multiple of pi. If
   it is, generate the 3-vector that results from rotating the first
   input point through this angle. */
         if ( vmod == 0.0 ) {
            if ( sin( offset ) == 0.0 ) {
               scale = cos( offset );
               v3[ 0 ] = v1[ 0 ] * scale;
               v3[ 1 ] = v1[ 1 ] * scale;
               v3[ 2 ] = v1[ 2 ] * scale;

/* Convert the 3-vector back into spherical cooordinates and then
   constrain the longitude result to lie in the range 0 to 2*pi
   (palDcc2s doesn't do this itself). */
               palDcc2s( v3, &p3[ 0 ], &p3[ 1 ] );
               p3[ 0 ] = palDranrm( p3[ 0 ] );

/* If the offset was not a multiple of pi, generate "bad" output
   coordinates. */
            } else {
               p3[ 0 ] = AST__BAD;
               p3[ 1 ] = AST__BAD;
            }

/* If the two input points define a great circle, scale the normalised
   cross product vector to make its length equal to the required
   offset (angle) between the first input point and the result. */
         } else {
            vrot[ 0 ] *= offset;
            vrot[ 1 ] *= offset;
            vrot[ 2 ] *= offset;

/* Generate the rotation matrix that implements this rotation and use
   it to rotate the first input point (3-vector) to give the required
   result (3-vector). */
            palDav2m( vrot, mrot );
            palDmxv( mrot, v1, v3 );

/* Convert the 3-vector back into spherical cooordinates and then
   constrain the longitude result to lie in the range 0 to 2*pi. */
            palDcc2s( v3, &p3[ 0 ], &p3[ 1 ] );
            p3[ 0 ] = palDranrm( p3[ 0 ] );
         }

/* Permute the result coordinates to undo the effect of the SkyFrame
   axis permutation array. */
         point3[ 0 ] = p3[ perm[ 0 ] ];
         point3[ 1 ] = p3[ perm[ 1 ] ];
      }
   }
}

static AstMapping *SkyOffsetMap( AstSkyFrame *this, int *status ){
/*
*++
*  Name:
c     astSkyOffsetMap
f     AST_SKYOFFSETMAP

*  Purpose:
*     Returns a Mapping which goes from absolute coordinates to offset
*     coordinates.

*  Type:
*     Public virtual function.

*  Synopsis:
c     #include "skyframe.h"
c     AstMapping *astSkyOffsetMap( AstSkyFrame *this )
f     RESULT = AST_SKYOFFSETMAP( THIS, STATUS )

*  Class Membership:
*     SkyFrame method.

*  Description:
*     This function returns a Mapping in which the forward transformation
*     transforms a position in the coordinate system given by the System
*     attribute of the supplied SkyFrame, into the offset coordinate system
*     specified by the SkyRef, SkyRefP and SkyRefIs attributes of the
*     supplied SkyFrame.
*
*     A UnitMap is returned if the SkyFrame does not define an offset
*     coordinate system.

*  Parameters:
c     this
f     THIS = INTEGER (Given)
*        Pointer to the SkyFrame.
f     STATUS = INTEGER (Given and Returned)
f        The global status.

*  Returned Value:
c     astSkyOffsetMap()
f     AST_SKYOFFSETMAP = INTEGER
*        Pointer to the returned Mapping.

*  Notes:
*     - A null Object pointer (AST__NULL) will be returned if this
c     function is invoked with the AST error status set, or if it
f     function is invoked with STATUS set to an error value, or if it
*     should fail for any reason.
*--
*/

/* Local Variables: */
   AstCmpMap *map3;            /* Partial Mapping. */
   AstMapping *result;         /* The returned Mapping. */
   AstMatrixMap *map1;         /* Spherical rotation in 3D cartesian space */
   AstSphMap *map2;            /* 3D Cartesian to 2D spherical Mapping */
   double *vx;                 /* Pointer to x unit vector. */
   double *vy;                 /* Pointer to y unit vector. */
   double *vz;                 /* Pointer to z unit vector. */
   double mat[ 9 ];            /* Spherical rotation matrix */
   double vmod;                /* Length of vector (+ve) */
   double vp[ 3 ];             /* Unit vector representin SkyRefP position. */
   int lataxis;                /* Index of the latitude axis */
   int lonaxis;                /* Index of the longitude axis */

/* Initialise. */
   result = NULL;

/* Check the global error status. */
   if ( !astOK ) return result;

/* Return a UnitMap if the offset coordinate system is not defined. */
   if( astGetSkyRefIs( this ) == AST__IGNORED_REF ||
       ( !astTestSkyRef( this, 0 ) && !astTestSkyRef( this, 1 ) ) ) {
      result = (AstMapping *) astUnitMap( 2, "", status );

/* Otherwise... */
   } else {

/* Get the longitude and latitude at the reference point and at a point
   on the primary meridian. */
      lataxis = astGetLatAxis( this );
      lonaxis = 1 - lataxis;

/* Initialise pointers to the rows of the 3x3 matrix. Each row will be
   used to store a unit vector. */
      vx = mat;
      vy = mat + 3;
      vz = mat + 6;

/* The following trig converts between (longitude,latitude) and (x,y,z)
   on a unit sphere, in which (0,0) is at (1,0,0), (0,pi/2) is (0,0,1)
   and (pi/2,0) is at (0,1,0). */

/* First deal with cases where the SkyRef attribute holds the standard
   coords at the origin of the offset coordinate system. */
      if( astGetSkyRefIs( this ) == AST__ORIGIN_REF ) {

/* Convert each point into a 3-vector of unit length. The SkyRef position
   defines the X axis in the offset coord system. */
         palDcs2c( astGetSkyRef( this, lonaxis ), astGetSkyRef( this, lataxis ), vx );
         palDcs2c( astGetSkyRefP( this, lonaxis ), astGetSkyRefP( this, lataxis ), vp );

/* The Y axis is perpendicular to both the X axis and the skyrefp
   position. That is, it is parallel to the cross product of the 2 above
   vectors.*/
         palDvxv( vp, vx, vy );

/* Normalize the y vector. */
         palDvn( vy, vy, &vmod );

/* Report an error if the modulus of the vector is zero.*/
         if( vmod == 0.0 ) {
            astError( AST__BADOC, "astConvert(%s): The position specified by the SkyRefP "
                      "attribute is either coincident, with or opposite to, the "
                      "position specified by the SkyRef attribute.", status, astGetClass( this ) );

/* If OK, form the Z axis as the cross product of the x and y axes. */
         } else {
            palDvxv( vx, vy, vz );

         }

/* Now deal with cases where the SkyRef attribute holds the standard
   coords at the north pole of the offset coordinate system. */
      } else {

/* Convert each point into a 3-vector of unit length. The SkyRef position
   defines the Z axis in the offset coord system. */
         palDcs2c( astGetSkyRef( this, lonaxis ), astGetSkyRef( this, lataxis ), vz );
         palDcs2c( astGetSkyRefP( this, lonaxis ), astGetSkyRefP( this, lataxis ), vp );

/* The Y axis is perpendicular to both the Z axis and the skyrefp
   position. That is, it is parallel to the cross product of the 2 above
   vectors.*/
         palDvxv( vz, vp, vy );

/* Normalize the y vector. */
         palDvn( vy, vy, &vmod );

/* Report an error if the modulus of the vector is zero.*/
         if( vmod == 0.0 ) {
            astError( AST__BADOC, "astConvert(%s): The position specified by the SkyRefP "
                      "attribute is either coincident, with or opposite to, the "
                      "position specified by the SkyRef attribute.", status, astGetClass( this ) );

/* If OK, form the X axis as the cross product of the y and z axes. */
         } else {
            palDvxv( vy, vz, vx );
         }
      }

/* Create a MatrixMap which implements the above spherical rotation. Each
   row in this matrix represents one of the unit axis vectors found above. */
      map1 = astMatrixMap( 3, 3, 0, mat, "", status );

/* Create a 3D cartesian to 2D spherical Mapping. */
      map2 = astSphMap( "UnitRadius=1", status );

/* Form a series CmpMap which converts from 2D (long,lat) in the base
   System to 2D (long,lat) in the offset coordinate system. */
      map3 = astCmpMap( map1, map2, 1, "", status );
      astInvert( map2 );
      result = (AstMapping *) astCmpMap( map2, map3, 1, "", status );

/* Free resources. */
      map1 = astAnnul( map1 );
      map2 = astAnnul( map2 );
      map3 = astAnnul( map3 );
   }

/* Annul the returned Mapping if anything has gone wrong. */
   if( !astOK ) result = astAnnul( result );

/* Return the result. */
   return result;

}

static double Offset2( AstFrame *this_frame, const double point1[2],
                       double angle, double offset, double point2[2], int *status ) {
/*
*  Name:
*     Offset2

*  Purpose:
*     Calculate an offset along a geodesic curve at a given bearing.

*  Type:
*     Private function.

*  Synopsis:
*     #include "skyframe.h"
*     double Offset2( AstFrame *this_frame, const double point1[2],
*                     double angle, double offset, double point2[2], int *status )

*  Class Membership:
*     SkyFrame member function (over-rides the astOffset2 method
*     inherited from the Frame class).

*  Description:
*     This function finds the SkyFrame coordinate values of a point
*     which is offset a specified distance along the geodesic curve
*     (i.e. great circle) at a given angle from a given starting point.

*  Parameters:
*     this
*        Pointer to the SkyFrame.
*     point1
*        An array of double, with one element for each SkyFrame axis.
*        This should contain the coordinates of the point marking the
*        start of the geodesic curve.
*     angle
*        The angle (in radians) from the positive direction of the second
*        axis, to the direction of the required position, as seen from
*        the starting position. Positive rotation is in the sense of
*        rotation from the positive direction of axis 2 to the positive
*        direction of axis 1.
*     offset
*        The required offset from the first point along the geodesic
*        curve, in radians. If this is positive, it will be towards
*        the given angle. If it is negative, it will be in the
*        opposite direction.
*     point2
*        An array of double, with one element for each SkyFrame axis
*        in which the coordinates of the required point will be
*        returned.
*     status
*        Pointer to the inherited status variable.

*  Returned Value:
*     The direction of the geodesic curve at the end point. That is, the
*     angle (in radians) between the positive direction of the second
*     axis and the continuation of the geodesic curve at the requested
*     end point. Positive rotation is in the sense of rotation from
*     the positive direction of axis 2 to the positive direction of axis
*     1.

*  Notes:
*     - The geodesic curve used by this function is the path of
*     shortest distance between two points, as defined by the
*     astDistance function.
*     - This function will return "bad" coordinate values (AST__BAD)
*     if any of the input coordinates has this value.
*/

/* Local Variables: */
   AstSkyFrame *this;          /* Pointer to the SkyFrame structure */
   const int *perm;            /* Pointer to axis permutation array */
   double p1[ 2 ];             /* Permuted coordinates for point1 */
   double p2[ 2 ];             /* Permuted coordinates for point2 */
   double result;              /* The returned answer */
   double cosoff;              /* Cosine of offset */
   double cosa1;               /* Cosine of longitude at start */
   double cosb1;               /* Cosine of latitude at start */
   double pa;                  /* A position angle measured from north */
   double q1[ 3 ];             /* Vector PI/2 away from R4 in meridian of R4 */
   double q2[ 3 ];             /* Vector PI/2 away from R4 on equator */
   double q3[ 3 ];             /* Vector PI/2 away from R4 on great circle */
   double r0[ 3 ];             /* Reference position vector */
   double r3[ 3 ];             /* Vector PI/2 away from R0 on great circle */
   double sinoff;              /* Sine of offset */
   double sina1;               /* Sine of longitude at start */
   double sinb1;               /* Sine of latitude at start */

/* Initialise. */
   result = AST__BAD;

/* Check the global error status. */
   if ( !astOK ) return result;

/* Obtain a pointer to the SkyFrame structure. */
   this = (AstSkyFrame *) this_frame;

/* Obtain a pointer to the SkyFrame's axis permutation array. */
   perm = astGetPerm( this );
   if ( astOK ) {

/* Check that all supplied values are OK. If not, generate "bad"
   output coordinates. */
      if ( ( point1[ 0 ] == AST__BAD ) || ( point1[ 1 ] == AST__BAD ) ||
           ( angle == AST__BAD ) || ( offset == AST__BAD ) ) {
         point2[ 0 ] = AST__BAD;
         point2[ 1 ] = AST__BAD;

/* Otherwise, apply the axis permutation array to obtain the
   coordinates of the starting point in the required (longitude,latitude)
   order. */
      } else {
         p1[ perm[ 0 ] ] = point1[ 0 ];
         p1[ perm[ 1 ] ] = point1[ 1 ];

/* If the axes are permuted, convert the supplied angle into a position
   angle. */
         pa = ( perm[ 0 ] == 0 )? angle: piby2 - angle;

/* Use Shcal to calculate the required vectors R0 (representing
   the reference point) and R3 (representing the point which is 90
   degrees away from the reference point, along the required great
   circle). The XY plane defines zero latitude, Z is in the direction
   of increasing latitude, X is towards zero longitude, and Y is
   towards longitude 90 degrees. */
         Shcal( p1[ 0 ], p1[ 1 ], pa, r0, r3, status );

/* Use Shapp to use R0 and R3 to calculate the new position. */
         Shapp( offset, r0, r3,  p1[ 0 ], p2, status );

/* Normalize the result. */
         astNorm( this, p2 );

/* Create the vector Q1 representing the point in the meridian of the
   required point which has latitude 90 degrees greater than the
   required point. */
         sina1 = sin( p2[ 0 ] );
         cosa1 = cos( p2[ 0 ] );
         sinb1 = sin( p2[ 1 ] );
         cosb1 = cos( p2[ 1 ] );

         q1[ 0 ] = -sinb1*cosa1;
         q1[ 1 ] = -sinb1*sina1;
         q1[ 2 ] = cosb1;

/* Create the vector Q2 representing the point on the equator (i.e. a
   latitude of zero), which has a longitude 90 degrees to the west of
   the required point. */
         q2[ 0 ] = -sina1;
         q2[ 1 ] =  cosa1;
         q2[ 2 ] =  0.0;

/* Create the vector Q3 representing the point which is 90 degrees away
   from the required point, along the required great circle. */
         cosoff = cos( offset );
         sinoff = sin( offset );

         q3[ 0 ] = -sinoff*r0[ 0 ] + cosoff*r3[ 0 ];
         q3[ 1 ] = -sinoff*r0[ 1 ] + cosoff*r3[ 1 ];
         q3[ 2 ] = -sinoff*r0[ 2 ] + cosoff*r3[ 2 ];

/* Calculate the position angle of the great circle at the required
   point. */
         pa = atan2( palDvdv( q3, q2 ), palDvdv( q3, q1 ) );

/* Convert this from a pa into the required angle. */
         result = ( perm[ 0 ] == 0 )? pa: piby2 - pa;

/* Ensure that the end angle is in the range 0 to 2*pi. */
         result = palDranrm( result );

/* Permute the result coordinates to undo the effect of the SkyFrame
   axis permutation array. */
         point2[ 0 ] = p2[ perm[ 0 ] ];
         point2[ 1 ] = p2[ perm[ 1 ] ];
      }
   }

/* Return the result. */
   return result;

}

static void Overlay( AstFrame *template, const int *template_axes,
                     AstFrame *result, int *status ) {
/*
*  Name:
*     Overlay

*  Purpose:
*     Overlay the attributes of a template SkyFrame on to another Frame.

*  Type:
*     Private function.

*  Synopsis:
*     #include "skyframe.h"
*     void Overlay( AstFrame *template, const int *template_axes,
*                   AstFrame *result, int *status )

*  Class Membership:
*     SkyFrame member function (over-rides the protected astOverlay method
*     inherited from the Frame class).

*  Description:
*     This function overlays attributes of a SkyFrame (the "template") on to
*     another Frame, so as to over-ride selected attributes of that second
*     Frame. Normally only those attributes which have been specifically set
*     in the template will be transferred. This implements a form of
*     defaulting, in which a Frame acquires attributes from the template, but
*     retains its original attributes (as the default) if new values have not
*     previously been explicitly set in the template.
*
*     Note that if the result Frame is a SkyFrame and a change of sky
*     coordinate system occurs as a result of overlaying its System
*     attribute, then some of its original attribute values may no
*     longer be appropriate (e.g. the Title, or attributes describing
*     its axes). In this case, these will be cleared before overlaying
*     any new values.

*  Parameters:
*     template
*        Pointer to the template SkyFrame, for which values should have been
*        explicitly set for any attribute which is to be transferred.
*     template_axes
*        Pointer to an array of int, with one element for each axis of the
*        "result" Frame (see below). For each axis in the result frame, the
*        corresponding element of this array should contain the (zero-based)
*        index of the template axis to which it corresponds. This array is used
*        to establish from which template axis any axis-dependent attributes
*        should be obtained.
*
*        If any axis in the result Frame is not associated with a template
*        axis, the corresponding element of this array should be set to -1.
*
*        If a NULL pointer is supplied, the template and result axis
*        indices are assumed to be identical.
*     result
*        Pointer to the Frame which is to receive the new attribute values.
*     status
*        Pointer to the inherited status variable.

*  Returned Value:
*     void

*  Notes:
*     -  In general, if the result Frame is not from the same class as the
*     template SkyFrame, or from a class derived from it, then attributes may
*     exist in the template SkyFrame which do not exist in the result Frame. In
*     this case, these attributes will not be transferred.
*/


/* Local Variables: */
   AstSystemType new_alignsystem;/* Code identifying new alignment coords */
   AstSystemType new_system;     /* Code identifying new sky cordinates */
   AstSystemType old_system;     /* Code identifying old sky coordinates */
   int axis;                     /* Loop counter for result SkyFrame axes */
   int skyref_changed;           /* Has the SkyRef attribute changed? */
   int reset_system;             /* Was the template System value cleared? */
   int skyframe;                 /* Result Frame is a SkyFrame? */
   int tax0;                     /* Template axis for result axis 0 */
   int tax1;                     /* Template axis for result axis 1 */

/* Check the global error status. */
   if ( !astOK ) return;

/* Indicate that we do not need to reset the System attribute of the
   template. */
   reset_system = 0;
   new_system = AST__UNKNOWN;

/* If the result Frame is a SkyFrame, we must test to see if overlaying its
   System attribute will change the type of sky coordinate system it
   describes. Determine the value of this attribute for the result and template
   SkyFrames. We also need to do this if either SkyRef attribute would
   change. */
   skyframe = astIsASkyFrame( result );
   if ( skyframe ) {
      old_system = astGetSystem( result );
      new_system = astGetSystem( template );
      skyref_changed = ( astGetSkyRef( result, 0 ) !=
                         astGetSkyRef( template, 0 ) ) ||
                       ( astGetSkyRef( result, 1 ) !=
                         astGetSkyRef( template, 1 ) );

/* If the coordinate system will change, any value already set for the result
   SkyFrame's Title will no longer be appropriate, so clear it. */
      if ( new_system != old_system || skyref_changed ) {
         astClearTitle( result );

/* Test if the old and new sky coordinate systems are similar enough to make
   use of the same axis attribute values (e.g. if they are both equatorial
   systems, then they can both use the same axis labels, etc.,so long as
   the SKyRefIs value has not changed). */
         if ( IsEquatorial( new_system, status ) != IsEquatorial( old_system, status ) ||
              skyref_changed ) {

/* If necessary, clear inappropriate values for all those axis attributes
   whose access functions are over-ridden by this class (these access functions
   will then provide suitable defaults appropriate to the new coordinate system
   instead). */
            for ( axis = 0; axis < 2; axis++ ) {
               astClearAsTime( result, axis );
               astClearDirection( result, axis );
               astClearFormat( result, axis );
               astClearLabel( result, axis );
               astClearSymbol( result, axis );
               astClearUnit( result, axis );
            }
         }
      }

/* If the result Frame is not a SkyFrame, we must temporarily clear the
   System and AlignSystem values since the values used by this class are only
   appropriate to this class. */
   } else {
      if( astTestSystem( template ) ) {
         new_system = astGetSystem( template );
         astClearSystem( template );
         new_alignsystem = astGetAlignSystem( template );
         astClearAlignSystem( template );
         reset_system = 1;
      }
   }

/* Invoke the parent class astOverlay method to transfer attributes inherited
   from the parent class. */
   (*parent_overlay)( template, template_axes, result, status );

/* Reset the System and AlignSystem values if necessary */
   if( reset_system ) {
      astSetSystem( template, new_system );
      astSetAlignSystem( template, new_alignsystem );
   }

/* Check if the result Frame is a SkyFrame or from a class derived from
   SkyFrame. If not, we cannot transfer SkyFrame attributes to it as it is
   insufficiently specialised. In this case simply omit these attributes. */
   if ( skyframe && astOK ) {

/* Define a macro that tests whether an attribute is set in the template and,
   if so, transfers its value to the result. */
#define OVERLAY(attr) \
   if ( astTest##attr( template ) ) { \
      astSet##attr( result, astGet##attr( template ) ); \
   }

/* Store template axis indices */
   if( template_axes ) {
      tax0 = template_axes[ 0 ];
      tax1 = template_axes[ 1 ];
   } else {
      tax0 = 0;
      tax1 = 1;
   }

/* Define a similar macro that does the same for SkyFrame specific axis
   attributes. */
#define OVERLAY2(attr) \
   if( astTest##attr( template, tax0 ) ) { \
      astSet##attr( result, 0, astGet##attr( template, tax0 ) ); \
   } \
   if( astTest##attr( template, tax1 ) ) { \
      astSet##attr( result, 1, astGet##attr( template, tax1 ) ); \
   }

/* Use the macro to transfer each SkyFrame attribute in turn. */
      OVERLAY(Equinox);
      OVERLAY(Projection);
      OVERLAY(NegLon);
      OVERLAY(SkyTol);
      OVERLAY(AlignOffset);
      OVERLAY(SkyRefIs);
      OVERLAY2(SkyRef);
      OVERLAY2(SkyRefP);
   }

/* Undefine macros local to this function. */
#undef OVERLAY
#undef OVERLAY2
}

static void Resolve( AstFrame *this_frame, const double point1[],
                     const double point2[], const double point3[],
                     double point4[], double *d1, double *d2, int *status ){
/*
*  Name:
*     Resolve

*  Purpose:
*     Resolve a vector into two orthogonal components

*  Type:
*     Private function.

*  Synopsis:
*     #include "skyframe.h"
*     void Resolve( AstFrame *this, const double point1[],
*                   const double point2[], const double point3[],
*                   double point4[], double *d1, double *d2, int *status )

*  Class Membership:
*     SkyFrame member function (over-rides the astResolve method
*     inherited from the Frame class).

*  Description:
*     This function resolves a vector into two perpendicular components.
*     The vector from point 1 to point 2 is used as the basis vector.
*     The vector from point 1 to point 3 is resolved into components
*     parallel and perpendicular to this basis vector. The lengths of the
*     two components are returned, together with the position of closest
*     aproach of the basis vector to point 3.
*
*     Each vector is a geodesic curve. For a SkyFrame, these are great
*     circles on the celestial sphere.

*  Parameters:
*     this
*        Pointer to the Frame.
*     point1
*        An array of double, with one element for each Frame axis
*        (Naxes attribute). This marks the start of the basis vector,
*        and of the vector to be resolved.
*     point2
*        An array of double, with one element for each Frame axis
*        (Naxes attribute). This marks the end of the basis vector.
*     point3
*        An array of double, with one element for each Frame axis
*        (Naxes attribute). This marks the end of the vector to be
*        resolved.
*     point4
*        An array of double, with one element for each Frame axis
*        in which the coordinates of the point of closest approach of the
*        basis vector to point 3 will be returned.
*     d1
*        The address of a location at which to return the distance from
*        point 1 to point 4 (that is, the length of the component parallel
*        to the basis vector). Positive values are in the same sense as
*        movement from point 1 to point 2.
*     d2
*        The address of a location at which to return the distance from
*        point 4 to point 3 (that is, the length of the component
*        perpendicular to the basis vector). The returned value is always
*        positive.
*     status
*        Pointer to the inherited status variable.

*  Notes:
*     - This function will return "bad" coordinate values (AST__BAD)
*     if any of the input coordinates has this value, or if the required
*     output values are undefined.
*/

/* Local Variables: */
   AstSkyFrame *this;            /* Pointer to the SkyFrame structure */
   const int *perm;              /* Pointer to axis permutation array */
   double n1[ 3 ];               /* Unit normal to grt crcl thru p1 and p2 */
   double n2[ 3 ];               /* Unit normal to grt crcl thru p3 and p4 */
   double p1[ 2 ];               /* Permuted coordinates for point1 */
   double p2[ 2 ];               /* Permuted coordinates for point2 */
   double p3[ 2 ];               /* Permuted coordinates for point3 */
   double p4[ 2 ];               /* Permuted coordinates for point4 */
   double v1[ 3 ];               /* 3-vector for p1 */
   double v2[ 3 ];               /* 3-vector for p2 */
   double v3[ 3 ];               /* 3-vector for p3 */
   double v4[ 3 ];               /* 3-vector for p4 */
   double v5[ 3 ];               /* 3-vector 90 degs away from p1 */
   double vmod;                  /* Modulus of vector */
   double vtemp[ 3 ];            /* Temporary vector workspace */

/* Check the global error status. */
   if ( !astOK ) return;

/* Obtain a pointer to the SkyFrame structure. */
   this = (AstSkyFrame *) this_frame;

/* Store initial bad output values. */
   point4[ 0 ] = AST__BAD;
   point4[ 1 ] = AST__BAD;
   *d1 = AST__BAD;
   *d2 = AST__BAD;

/* Check that all supplied values are OK. */
   if ( ( point1[ 0 ] != AST__BAD ) && ( point1[ 1 ] != AST__BAD ) &&
        ( point2[ 0 ] != AST__BAD ) && ( point2[ 1 ] != AST__BAD ) &&
        ( point3[ 0 ] != AST__BAD ) && ( point3[ 1 ] != AST__BAD ) ) {

/* If so, obtain a pointer to the SkyFrame's axis permutation array. */
      perm = astGetPerm( this );
      if ( astOK ) {

/* Apply the axis permutation array to obtain the coordinates of the
   three supplied point in the required (longitude,latitude) order. */
         p1[ perm[ 0 ] ] = point1[ 0 ];
         p1[ perm[ 1 ] ] = point1[ 1 ];
         p2[ perm[ 0 ] ] = point2[ 0 ];
         p2[ perm[ 1 ] ] = point2[ 1 ];
         p3[ perm[ 0 ] ] = point3[ 0 ];
         p3[ perm[ 1 ] ] = point3[ 1 ];

/* Convert each point into a 3-vector of unit length. */
         palDcs2c( p1[ 0 ], p1[ 1 ], v1 );
         palDcs2c( p2[ 0 ], p2[ 1 ], v2 );
         palDcs2c( p3[ 0 ], p3[ 1 ], v3 );

/* Find the cross product between the first two vectors, and normalize is.
   This is the unit normal to the great circle plane defining parallel
   distance. */
         palDvxv( v2, v1, vtemp );
         palDvn( vtemp, n1, &vmod );

/* Return with bad values if the normal is undefined (i.e. if the first two
   vectors are identical or diametrically opposite). */
         if( vmod > 0.0 ) {

/* Now take the cross product of the normal vector and v1. This gives a
   point, v5, on the great circle which is 90 degrees away from v1, in the
   direction of v2. */
            palDvxv( v1, n1, v5 );

/* Find the cross product of the outlying point (point 3), and the vector
   n1 found above, and normalize it. This is the unit normal to the great
   circle plane defining perpendicular distance. */
            palDvxv( v3, n1, vtemp );
            palDvn( vtemp, n2, &vmod );

/* Return with bad values if the normal is undefined (i.e. if the
   outlying point is normal to the great circle defining the basis
   vector). */
            if( vmod > 0.0 ) {

/* The point of closest approach, point 4, is the point which is normal
   to both normal vectors (i.e. the intersection of the two great circles).
   This is the cross product of n1 and n2. No need to normalize this time
   since both n1 and n2 are unit vectors, and so v4 will already be a
   unit vector. */
               palDvxv( n1, n2, v4 );

/* The dot product of v4 and v1 is the cos of the parallel distance,
   d1, whilst the dot product of v4 and v5 is the sin of the parallel
   distance. Use these to get the parallel distance with the correct
   sign, in the range -PI to +PI. */
               *d1 = atan2( palDvdv( v4, v5 ), palDvdv( v4, v1 ) );

/* The dot product of v4 and v3 is the cos of the perpendicular distance,
   d2, whilst the dot product of n1 and v3 is the sin of the perpendicular
   distance. Use these to get the perpendicular distance. */
               *d2 = fabs( atan2( palDvdv( v3, n1 ), palDvdv( v3, v4 ) ) );

/* Convert the 3-vector representing the intersection of the two planes
   back into spherical cooordinates and then constrain the longitude result
   to lie in the range 0 to 2*pi. */
               palDcc2s( v4, &p4[ 0 ], &p4[ 1 ] );
               p4[ 0 ] = palDranrm( p4[ 0 ] );

/* Permute the result coordinates to undo the effect of the SkyFrame
   axis permutation array. */
               point4[ 0 ] = p4[ perm[ 0 ] ];
               point4[ 1 ] = p4[ perm[ 1 ] ];
            }
         }
      }
   }

   return;

}

static AstPointSet *ResolvePoints( AstFrame *this_frame, const double point1[],
                                   const double point2[], AstPointSet *in,
                                   AstPointSet *out, int *status ) {
/*
*  Name:
*     ResolvePoints

*  Purpose:
*     Resolve a set of vectors into orthogonal components

*  Type:
*     Private function.

*  Synopsis:
*     #include "frame.h"
*     AstPointSet *astResolvePoints( AstFrame *this, const double point1[],
*                                    const double point2[], AstPointSet *in,
*                                    AstPointSet *out )

*  Class Membership:
*     SkyFrame member function (over-rides the astResolvePoints method
*     inherited from the Frame class).

*  Description:
*     This function takes a Frame and a set of vectors encapsulated
*     in a PointSet, and resolves each one into two orthogonal components,
*     returning these two components in another PointSet.
*
*     This is exactly the same as the public astResolve method, except
*     that this method allows many vectors to be processed in a single call,
*     thus reducing the computational cost of overheads of many
*     individual calls to astResolve.

*  Parameters:
*     this
*        Pointer to the Frame.
*     point1
*        An array of double, with one element for each Frame axis
*        (Naxes attribute). This marks the start of the basis vector,
*        and of the vectors to be resolved.
*     point2
*        An array of double, with one element for each Frame axis
*        (Naxes attribute). This marks the end of the basis vector.
*     in
*        Pointer to the PointSet holding the ends of the vectors to be
*        resolved.
*     out
*        Pointer to a PointSet which will hold the length of the two
*        resolved components. A NULL value may also be given, in which
*        case a new PointSet will be created by this function.

*  Returned Value:
*     Pointer to the output (possibly new) PointSet. The first axis will
*     hold the lengths of the vector components parallel to the basis vector.
*     These values will be signed (positive values are in the same sense as
*     movement from point 1 to point 2. The second axis will hold the lengths
*     of the vector components perpendicular to the basis vector. These
*     values will be signed only if the Frame is 2-dimensional, in which
*     case a positive value indicates that rotation from the basis vector
*     to the tested vector is in the same sense as rotation from the first
*     to the second axis of the Frame.

*  Notes:
*     - The number of coordinate values per point in the input
*     PointSet must match the number of axes in the supplied Frame.
*     - If an output PointSet is supplied, it must have space for
*     sufficient number of points and 2 coordinate values per point.
*     - A null pointer will be returned if this function is invoked
*     with the global error status set, or if it should fail for any
*     reason.
*     - We assume spherical geometry throughout this function.
*/

/* Local Variables: */
   AstPointSet *result;          /* Pointer to output PointSet */
   AstSkyFrame *this;            /* Pointer to SkyFrame structure */
   const int *perm;              /* Pointer to axis permutation array */
   double **ptr_in;              /* Pointers to input axis values */
   double **ptr_out;             /* Pointers to returned axis values */
   double *d1;                   /* Pointer to next parallel component value */
   double *d2;                   /* Pointer to next perpendicular component value */
   double *point3x;              /* Pointer to next first axis value */
   double *point3y;              /* Pointer to next second axis value */
   double n1[ 3 ];               /* Unit normal to grt crcl thru p1 and p2 */
   double n2[ 3 ];               /* Unit normal to grt crcl thru p3 and p4 */
   double p1[ 2 ];               /* Permuted coordinates for point1 */
   double p2[ 2 ];               /* Permuted coordinates for point2 */
   double p3[ 2 ];               /* Permuted coordinates for point3 */
   double sign;                  /* Sign for perpendicular distances */
   double v1[ 3 ];               /* 3-vector for p1 */
   double v2[ 3 ];               /* 3-vector for p2 */
   double v3[ 3 ];               /* 3-vector for p3 */
   double v4[ 3 ];               /* 3-vector for p4 */
   double v5[ 3 ];               /* 3-vector 90 degs away from p1 */
   double vmod;                  /* Modulus of vector */
   double vtemp[ 3 ];            /* Temporary vector workspace */
   int ipoint;                   /* Index of next point */
   int ncoord_in;                /* Number of input PointSet coordinates */
   int ncoord_out;               /* Number of coordinates in output PointSet */
   int npoint;                   /* Number of points to transform */
   int npoint_out;               /* Number of points in output PointSet */
   int ok;                       /* OK to proceed? */

/* Initialise. */
   result = NULL;

/* Check the global error status. */
   if ( !astOK ) return result;

/* Get a pointer to the SkyFrame structure. */
   this = (AstSkyFrame *) this_frame;

/* Obtain the number of input vectors to resolve and the number of coordinate
   values per vector. */
   npoint = astGetNpoint( in );
   ncoord_in = astGetNcoord( in );

/* If OK, check that the number of input coordinates matches the number
   required by the Frame. Report an error if these numbers do not match. */
   if ( astOK && ( ncoord_in != 2 ) ) {
      astError( AST__NCPIN, "astResolvePoints(%s): Bad number of coordinate "
                "values (%d) in input %s.", status, astGetClass( this ), ncoord_in,
                astGetClass( in ) );
      astError( AST__NCPIN, "The %s given requires 2 coordinate values for "
                "each input point.", status, astGetClass( this ) );
   }

/* If still OK, and a non-NULL pointer has been given for the output PointSet,
   then obtain the number of points and number of coordinates per point for
   this PointSet. */
   if ( astOK && out ) {
      npoint_out = astGetNpoint( out );
      ncoord_out = astGetNcoord( out );

/* Check that the dimensions of this PointSet are adequate to accommodate the
   output coordinate values and report an error if they are not. */
      if ( astOK ) {
         if ( npoint_out < npoint ) {
            astError( AST__NOPTS, "astResolvePoints(%s): Too few points (%d) in "
                      "output %s.", status, astGetClass( this ), npoint_out,
                      astGetClass( out ) );
            astError( AST__NOPTS, "The %s needs space to hold %d transformed "
                      "point(s).", status, astGetClass( this ), npoint );
         } else if ( ncoord_out < 2 ) {
            astError( AST__NOCTS, "astResolvePoints(%s): Too few coordinate "
                      "values per point (%d) in output %s.", status,
                      astGetClass( this ), ncoord_out, astGetClass( out ) );
            astError( AST__NOCTS, "The %s supplied needs space to store 2 "
                      "coordinate value(s) per transformed point.", status,
                      astGetClass( this ) );
         }
      }
   }

/* If all the validation stages are passed successfully, and a NULL output
   pointer was given, then create a new PointSet to encapsulate the output
   coordinate data. */
   if ( astOK ) {
      if ( !out ) {
         result = astPointSet( npoint, 2, "", status );

/* Otherwise, use the PointSet supplied. */
      } else {
         result = out;
      }
   }

/* Get pointers to the input and output axis values */
   ptr_in = astGetPoints( in );
   ptr_out = astGetPoints( result );

/* Obtain a pointer to the SkyFrame's axis permutation array. */
   perm = astGetPerm( this );

/* If the axes have been swapped we need to swap the sign of the returned
   perpendicular distances. */
   sign = ( perm[ 0 ] == 0 ) ? -1.0 : 1.0;

/* Check pointers can be used safely */
   if( astOK ) {

/* Apply the axis permutation array to obtain the coordinates of the
   two supplied points in the required (longitude,latitude) order. */
      p1[ perm[ 0 ] ] = point1[ 0 ];
      p1[ perm[ 1 ] ] = point1[ 1 ];
      p2[ perm[ 0 ] ] = point2[ 0 ];
      p2[ perm[ 1 ] ] = point2[ 1 ];

/* Convert these points into 3-vectors of unit length. */
      palDcs2c( p1[ 0 ], p1[ 1 ], v1 );
      palDcs2c( p2[ 0 ], p2[ 1 ], v2 );

/* Find the cross product between the vectors, and normalize it. This is the
   unit normal to the great circle plane defining parallel distance. */
      palDvxv( v2, v1, vtemp );
      palDvn( vtemp, n1, &vmod );

/* Return with bad values if the normal is undefined (i.e. if the first two
   vectors are identical or diametrically opposite). */
      ok = 0;
      if( vmod > 0.0 ) {
         ok = 1;

/* Now take the cross product of the normal vector and v1. This gives a
   point, v5, on the great circle which is 90 degrees away from v1, in the
   direction of v2. */
         palDvxv( v1, n1, v5 );
      }

/* Store pointers to the first two axis arrays in the returned PointSet. */
      d1 = ptr_out[ 0 ];
      d2 = ptr_out[ 1 ];

/* Store pointers to the axis values in the supplied PointSet. */
      point3x = ptr_in[ 0 ];
      point3y = ptr_in[ 1 ];

/* Check supplied values can be used */
      if( ok ) {

/* Loop round each supplied vector. */
         for( ipoint = 0; ipoint < npoint; ipoint++, d1++, d2++,
                                           point3x++, point3y++ ) {

/* Store bad output values if either input axis value is bad. */
            if( *point3x == AST__BAD || *point3y == AST__BAD ){
               *d1 = AST__BAD;
               *d2 = AST__BAD;

/* If both are good... */
            } else {

/* Apply the axis permutation array to obtain the coordinates in the
   required (longitude,latitude) order. */
               p3[ perm[ 0 ] ] = *point3x;
               p3[ perm[ 1 ] ] = *point3y;

/* Convert into a 3-vector of unit length. */
               palDcs2c( p3[ 0 ], p3[ 1 ], v3 );

/* Find the cross product of the outlying point (point 3), and the vector
   n1 found above, and normalize it. This is the unit normal to the great
   circle plane defining perpendicular distance. */
               palDvxv( v3, n1, vtemp );
               palDvn( vtemp, n2, &vmod );

/* Return with bad values if the normal is undefined (i.e. if the
   outlying point is normal to the great circle defining the basis
   vector). */
               if( vmod <= 0.0 ) {
                  *d1 = AST__BAD;
                  *d2 = AST__BAD;
               } else {

/* The point of closest approach, point 4, is the point which is normal
   to both normal vectors (i.e. the intersection of the two great circles).
   This is the cross product of n1 and n2. No need to normalize this time
   since both n1 and n2 are unit vectors, and so v4 will already be a
   unit vector. */
                  palDvxv( n1, n2, v4 );

/* The dot product of v4 and v1 is the cos of the parallel distance,
   d1, whilst the dot product of v4 and v5 is the sin of the parallel
   distance. Use these to get the parallel distance with the correct
   sign, in the range -PI to +PI. */
                  *d1 = atan2( palDvdv( v4, v5 ), palDvdv( v4, v1 ) );

/* The dot product of v4 and v3 is the cos of the perpendicular distance,
   d2, whilst the dot product of n1 and v3 is the sin of the perpendicular
   distance. Use these to get the perpendicular distance. */
                  *d2 = sign*atan2( palDvdv( v3, n1 ), palDvdv( v3, v4 ) );
               }
            }
         }

/* If supplied values cannot be used, fill the returned PointSet with bad
   values */
      } else {
         for( ipoint = 0; ipoint < npoint; ipoint++, d1++, d2++ ) {
            *d1 = AST__BAD;
            *d2 = AST__BAD;
         }
      }
   }

/* Annul the returned PointSet if an error occurred. */
   if( !astOK ) result = astAnnul( result );

/* Return a pointer to the output PointSet. */
   return result;
}

static void SetAsTime( AstSkyFrame *this, int axis, int value, int *status ) {
/*
*  Name:
*     SetAsTime

*  Purpose:
*     Set a value for the AsTime attribute for a SkyFrame's axis.

*  Type:
*     Private function.

*  Synopsis:
*     #include "skyframe.h"
*     void SetAsTime( AstSkyFrame *this, int axis, int value, int *status )

*  Class Membership:
*     SkyFrame member function.

*  Description:
*     This function sets the boolean value of the AsTime attribute for a
*     specified axis of a SkyFrame. This value indicates whether axis values
*     should be formatted as times (as opposed to angles) by default.

*  Parameters:
*     this
*        Pointer to the SkyFrame.
*     axis
*        Index of the axis for which a value is to be set (zero based).
*     value
*        The boolean value to be set.
*     status
*        Pointer to the inherited status variable.

*  Returned Value:
*     void.
*/

/* Local Variables: */
   AstAxis *ax;                  /* Pointer to Axis object */
   AstSkyAxis *new_ax;           /* Pointer to new SkyAxis object */

/* Check the global error status. */
   if ( !astOK ) return;

/* Validate the axis index. */
   (void) astValidateAxis( this, axis, 1, "astSetAsTime" );

/* Obtain a pointer to the Axis object. */
   ax = astGetAxis( this, axis );

/* Check if the Axis object is a SkyAxis. If not, we will replace it with
   one. */
   if ( !astIsASkyAxis( ax ) ) {

/* Create a new SkyAxis and overlay the attributes of the original Axis. */
      new_ax = astSkyAxis( "", status );
      astAxisOverlay( ax, new_ax );

/* Modify the SkyFrame to use the new Skyaxis and annul the original Axis
   pointer. Retain a pointer to the new SkyAxis. */
      astSetAxis( this, axis, new_ax );
      ax = astAnnul( ax );
      ax = (AstAxis *) new_ax;
   }

/* Set a value for the Axis AsTime attribute. */
   astSetAxisAsTime( ax, value );

/* Annul the Axis pointer. */
   ax = astAnnul( ax );
}

static void SetAttrib( AstObject *this_object, const char *setting, int *status ) {
/*
*  Name:
*     SetAttrib

*  Purpose:
*     Set an attribute value for a SkyFrame.

*  Type:
*     Private function.

*  Synopsis:
*     #include "skyframe.h"
*     void SetAttrib( AstObject *this, const char *setting, int *status )

*  Class Membership:
*     SkyFrame member function (extends the astSetAttrib method inherited from
*     the Mapping class).

*  Description:
*     This function assigns an attribute value for a SkyFrame, the attribute
*     and its value being specified by means of a string of the form:
*
*        "attribute= value "
*
*     Here, "attribute" specifies the attribute name and should be in lower
*     case with no white space present. The value to the right of the "="
*     should be a suitable textual representation of the value to be assigned
*     and this will be interpreted according to the attribute's data type.
*     White space surrounding the value is only significant for string
*     attributes.

*  Parameters:
*     this
*        Pointer to the SkyFrame.
*     setting
*        Pointer to a null terminated string specifying the new attribute
*        value.
*     status
*        Pointer to the inherited status variable.

*  Returned Value:
*     void

*  Attributes:
*     As well as those attributes inherited from the parent class, this
*     function also accepts values for the following additional attributes:
*
*        Equinox (double, read as a string)

*  Notes:
*     This protected method is intended to be invoked by the Object astSet
*     method and makes additional attributes accessible to it.
*/

/* Local Vaiables: */
   AstSkyFrame *this;            /* Pointer to the SkyFrame structure */
   double dval;                  /* Floating point attribute value */
   double dval1;                 /* Floating point attribute value */
   double dval2;                 /* Floating point attribute value */
   double mjd;                   /* Modified Julian Date */
   int astime;                   /* Value of AsTime attribute */
   int axis;                     /* Axis index */
   int equinox;                  /* Offset of Equinox attribute value */
   int ival;                     /* Integer attribute value */
   int len;                      /* Length of setting string */
   int nc;                       /* Number of characters read by astSscanf */
   int neglon;                   /* Display -ve longitudes? */
   int ok;                       /* Can string be used? */
   int offset;                   /* Offset of start of attribute value */
   int projection;               /* Offset of projection attribute value */

/* Check the global error status. */
   if ( !astOK ) return;

/* Obtain a pointer to the SkyFrame structure. */
   this = (AstSkyFrame *) this_object;

/* Obtain the length of the setting string. */
   len = strlen( setting );

/* Test for each recognised attribute in turn, using "astSscanf" to parse the
   setting string and extract the attribute value (or an offset to it in the
   case of string values). In each case, use the value set in "nc" to check
   that the entire string was matched. Once a value has been obtained, use the
   appropriate method to set it. */

/* AsTime(axis). */
/* ------------- */
   if ( nc = 0,
        ( 2 == astSscanf( setting, "astime(%d)= %d %n", &axis, &astime, &nc ) )
        && ( nc >= len ) ) {
      astSetAsTime( this, axis - 1, astime );

/* Equinox. */
/* -------- */
   } else if ( nc = 0,
               ( 0 == astSscanf( setting, "equinox=%n%*[^\n]%n",
                              &equinox, &nc ) ) && ( nc >= len ) ) {

/* Convert the Equinox value to a Modified Julian Date before use. */
      mjd = astReadDateTime( setting + equinox );
      if ( astOK ) {
         astSetEquinox( this, mjd );

/* Report contextual information if the conversion failed. */
      } else {
         astError( AST__ATTIN, "astSetAttrib(%s): Invalid equinox value "
                   "\"%s\" given for sky coordinate system.", status,
                   astGetClass( this ), setting + equinox );
      }

/* NegLon. */
/* ------- */
   } else if ( nc = 0,
             ( 1 == astSscanf( setting, "neglon= %d %n", &neglon, &nc ) )
               && ( nc >= len ) ) {
      astSetNegLon( this, neglon );

/* SkyTol. */
/* ------- */
   } else if ( nc = 0,
             ( 1 == astSscanf( setting, "skytol= %lg %n", &dval, &nc ) )
               && ( nc >= len ) ) {
      astSetSkyTol( this, dval );

/* Projection. */
/* ----------- */
   } else if ( nc = 0,
               ( 0 == astSscanf( setting, "projection=%n%*[^\n]%n",
                              &projection, &nc ) )
               && ( nc >= len ) ) {
      astSetProjection( this, setting + projection );

/* SkyRef. */
/* ------- */
   } else if ( nc = 0,
               ( 0 == astSscanf( setting, "skyref=%n%*[^\n]%n",
                                 &offset, &nc ) )
               && ( nc >= len ) ) {
      ok = 0;
      nc = astUnformat( this, 0, setting + offset, &dval1 );
      if( setting[ offset + nc ] == ',' ) {
         nc++;
         nc += astUnformat( this, 1, setting + offset + nc, &dval2 );
         if( nc == strlen( setting + offset ) ) {
            astSetSkyRef( this, 0, dval1 );
            astSetSkyRef( this, 1, dval2 );
            ok = 1;
         }
      }

      if( !ok && astOK ) {
         astError( AST__BADOC, "astSetAttrib(%s): Invalid axis values string "
                   "\"%.*s\" given for SkyRef attribute.", status, astGetClass( this ),
                   (int) astChrLen( setting + offset ), setting + offset );
      }

/* SkyRef(axis). */
/* ------------- */
   } else if ( nc = 0,
               ( 2 == astSscanf( setting, "skyref(%d)= %lg %n",
                                 &axis, &dval, &nc ) )
               && ( nc >= len ) ) {
      astSetSkyRef( this, axis - 1, dval );

/* SkyRefIs. */
/* --------- */
   } else if ( nc = 0,
               ( 0 == astSscanf( setting, "skyrefis=%n%*[^\n]%n",
                              &offset, &nc ) )
               && ( nc >= len ) ) {

      if( astChrMatch( setting + offset, POLE_STRING ) ) {
         astSetSkyRefIs( this, AST__POLE_REF );

      } else if( astChrMatch( setting + offset, ORIGIN_STRING ) ) {
         astSetSkyRefIs( this, AST__ORIGIN_REF );

      } else if( astChrMatch( setting + offset, IGNORED_STRING ) ) {
         astSetSkyRefIs( this, AST__IGNORED_REF );

      } else if( astOK ) {
         astError( AST__OPT, "astSet(%s): option '%s' is unknown in '%s'.", status,
                   astGetClass( this ), setting+offset, setting );
      }

/* SkyRefP. */
/* -------- */
   } else if ( nc = 0,
               ( 0 == astSscanf( setting, "skyrefp=%n%*[^\n]%n",
                                 &offset, &nc ) )
               && ( nc >= len ) ) {

      ok = 0;
      nc = astUnformat( this, 0, setting + offset, &dval1 );
      if( setting[ offset + nc ] == ',' ) {
         nc++;
         nc += astUnformat( this, 1, setting + offset + nc, &dval2 );
         if( nc == strlen( setting + offset ) ) {
            astSetSkyRefP( this, 0, dval1 );
            astSetSkyRefP( this, 1, dval2 );
            ok = 1;
         }
      }

      if( !ok && astOK ) {
         astError( AST__BADOC, "astSetAttrib(%s): Invalid axis values string "
                   "\"%.*s\" given for SkyRefP attribute.", status, astGetClass( this ),
                   (int) astChrLen( setting + offset ), setting + offset );
      }


/* SkyRefP(axis). */
/* -------------- */
   } else if ( nc = 0,
               ( 2 == astSscanf( setting, "skyrefp(%d)= %lg %n",
                                 &axis, &dval, &nc ) )
               && ( nc >= len ) ) {
      astSetSkyRefP( this, axis - 1, dval );

/* AlignOffset. */
/* ------------ */
   } else if ( nc = 0,
             ( 1 == astSscanf( setting, "alignoffset= %d %n", &ival, &nc ) )
               && ( nc >= len ) ) {
      astSetAlignOffset( this, ival );

/* Define a macro to see if the setting string matches any of the
   read-only attributes of this class. */
#define MATCH(attrib) \
        ( nc = 0, ( 0 == astSscanf( setting, attrib "=%*[^\n]%n", &nc ) ) && \
                  ( nc >= len ) )

/* If the attribute was not recognised, use this macro to report an error
   if a read-only attribute has been specified. */
   } else if ( !strncmp( setting, "islataxis", 9 ) ||
               !strncmp( setting, "islonaxis", 9 ) ||
               MATCH( "lataxis" ) ||
               MATCH( "lonaxis" ) ) {
      astError( AST__NOWRT, "astSet: The setting \"%s\" is invalid for a %s.", status,
                setting, astGetClass( this ) );
      astError( AST__NOWRT, "This is a read-only attribute." , status);

/* Pass any unrecognised setting to the parent method for further
   interpretation. */
   } else {
      (*parent_setattrib)( this_object, setting, status );
   }
}

static void SetCachedLAST( AstSkyFrame *this, double last, double epoch,
                           double obslon, double obslat, double obsalt,
                           double dut1, double dtai, int *status ) {
/*
*  Name:
*     SetCachedLAST

*  Purpose:
*     Store a LAST value in the cache in the SkyFrame vtab.

*  Type:
*     Private function.

*  Synopsis:
*     #include "skyframe.h"
*     void SetCachedLAST( AstSkyFrame *this, double last, double epoch,
*                         double obslon, double obslat, double obsalt,
*                         double dut1, double dtai, int *status )

*  Class Membership:
*     SkyFrame member function.

*  Description:
*     This function stores the supplied LAST value in a cache in the
*     SkyFrame virtual function table for later use by GetCachedLAST.

*  Parameters:
*     this
*        Pointer to the SkyFrame.
*     last
*        The Local Apparent Sidereal Time (radians).
*     epoch
*        The epoch (MJD).
*     obslon
*        Observatory geodetic longitude (radians)
*     obslat
*        Observatory geodetic latitude (radians)
*     obsalt
*        Observatory geodetic altitude (metres)
*     dut1
*        The UT1-UTC correction, in seconds.
*     dtai
*        The TAI-UTC correction, in seconds.
*     status
*        Pointer to the inherited status variable.

*/

/* Local Variables: */
   astDECLARE_GLOBALS
   AstSkyLastTable *table;
   double *ep;
   double *lp;
   double lp_ref;
   int i;
   int itable;

/* Get a pointer to the structure holding thread-specific global data. */
   astGET_GLOBALS(this);

/* Initialise */
   table = NULL;

/* Check the global error status. */
   if ( !astOK ) return;

/* Ensure no threads are allowed to read the table whilst we are writing
   to it. */
   LOCK_WLOCK1

/* Loop round every LAST table held in the vtab. Each table refers to a
   different observatory position and/or DUT1 and/or DTAI value. */
   for( itable = 0; itable < nlast_tables; itable++ ) {
      table = last_tables[ itable ];

/* See if the table refers to the given position, dut1 and dtai value, allowing
   some small tolerance. If it does, leave the loop. */
      if( fabs( table->obslat - obslat ) < 2.0E-7 &&
          fabs( table->obslon - obslon ) < 2.0E-7 &&
          fabs( table->obsalt - obsalt ) < 1.0 &&
          fabs( table->dut1 - dut1 ) < 1.0E-5 &&
          EQUAL( table->dtai, dtai, 1.0E-5 ) ) break;

/* Ensure "table" ends up NULL if no suitable table is found. */
      table = NULL;
   }

/* If no table was found, create one now, and add it into the vtab cache. */
   if( !table ) {

      astBeginPM;
      table = astMalloc( sizeof( AstSkyLastTable ) );
      itable = nlast_tables++;
      last_tables = astGrow( last_tables, nlast_tables,
                                   sizeof( AstSkyLastTable * ) );
      astEndPM;

      if( astOK ) {
         last_tables[ itable ] = table;
         table->obslat = obslat;
         table->obslon = obslon;
         table->obsalt = obsalt;
         table->dut1 = dut1;
         table->dtai = dtai;
         table->nentry = 1;

         astBeginPM;
         table->epoch = astMalloc( sizeof( double ) );
         table->last = astMalloc( sizeof( double ) );
         astEndPM;

         if( astOK ) {
            table->epoch[ 0 ] = epoch;
            table->last[ 0 ] = last;
         }
      }


/* If we have a table, add the new point into it. */
   } else {

/* Extend the epoch and last arrays. */
      astBeginPM;
      table->epoch = astGrow( table->epoch, ++(table->nentry), sizeof( double ) );
      table->last = astGrow( table->last, table->nentry, sizeof( double ) );
      astEndPM;

/* Check memory allocation was successful. */
      if( astOK ) {

/* Get pointers to the last original elements in the arrays of epoch and
   corresponding LAST values in the table. */
         ep = table->epoch + table->nentry - 2;
         lp = table->last + table->nentry - 2;

/* Starting from the end of the arrays, shuffle all entries up one
   element until an element is found which is less than the supplied epoch
   value. This maintains the epoch array in monotonic increasing order. */
         for( i = table->nentry - 2; i >= 0; i--,ep--,lp-- ) {
            if( *ep <= epoch ) break;
            ep[ 1 ] = *ep;
            lp[ 1 ] = *lp;
         }

/* Store the new epoch and LAST value. Add or subtract 2.PI as needed
   from the new LAST value to ensure it is continuous with an adjacent
   LAST value. This is needed for interpolation between the two values
   to be meaningful.  */
         ep[ 1 ] = epoch;

/* For most cases, compare with the previous LAST value. If the new epoch
   value is smaller than any epoch already in the table, there will be no
   previous LAST value. So compare with the next value instead. */
         if( i >= 0 ) {
            lp_ref = lp[ 0 ];
         } else {
            lp_ref = lp[ 2 ];
         }

         if( last > lp_ref + AST__DPI ) {
            lp[ 1 ] = last - 2*AST__DPI;

         } else if( last < lp_ref - AST__DPI ) {
            lp[ 1 ] = last + 2*AST__DPI;

         } else {
            lp[ 1 ] = last;
         }
      }
   }

/* Indicate other threads are now allowed to read the table. */
   UNLOCK_RWLOCK1

}

static void SetDtai( AstFrame *this_frame, double val, int *status ) {
/*
*  Name:
*     SetDtai

*  Purpose:
*     Set the value of the Dtai attribute for a SkyFrame.

*  Type:
*     Private function.

*  Synopsis:
*     #include "skyframe.h"
*     void SetDtai( AstFrame *this, double val, int *status )

*  Class Membership:
*     SkyFrame member function (over-rides the astSetDtai method
*     inherited from the Frame class).

*  Description:
*     This function clears the Dtai value and updates the LAST value
*     stored in the SkyFrame.

*  Parameters:
*     this
*        Pointer to the SkyFrame.
*     val
*        New Dtai value.
*     status
*        Pointer to the inherited status variable.

*/

/* Local Variables: */
   AstSkyFrame *this;
   double orig;

/* Check the global error status. */
   if ( !astOK ) return;

/* Obtain a pointer to the SkyFrame structure. */
   this = (AstSkyFrame *) this_frame;

/* Note the original Dtai value. */
   orig = astGetDtai( this );

/* Invoke the parent method to set the Frame Dtai value. */
   (*parent_setdtai)( this_frame, val, status );

/* If the DTAI value has changed significantly, indicate that the LAST value
   will need to be re-calculated when it is next needed. */
   if( ! EQUAL( orig, val, 1.0E-6 ) ) {
      this->last = AST__BAD;
      this->eplast = AST__BAD;
      this->klast = AST__BAD;
   }
}

static void SetDut1( AstFrame *this_frame, double val, int *status ) {
/*
*  Name:
*     SetDut1

*  Purpose:
*     Set the value of the Dut1 attribute for a SkyFrame.

*  Type:
*     Private function.

*  Synopsis:
*     #include "skyframe.h"
*     void SetDut1( AstFrame *this, double val, int *status )

*  Class Membership:
*     SkyFrame member function (over-rides the astSetDut1 method
*     inherited from the Frame class).

*  Description:
*     This function clears the Dut1 value and updates the LAST value
*     stored in the SkyFrame.

*  Parameters:
*     this
*        Pointer to the SkyFrame.
*     val
*        New Dut1 value.
*     status
*        Pointer to the inherited status variable.

*/

/* Local Variables: */
   AstSkyFrame *this;
   double orig;

/* Check the global error status. */
   if ( !astOK ) return;

/* Obtain a pointer to the SkyFrame structure. */
   this = (AstSkyFrame *) this_frame;

/* Note the original Dut1 value. */
   orig = astGetDut1( this );

/* Invoke the parent method to set the Frame Dut1 value. */
   (*parent_setdut1)( this_frame, val, status );

/* If the DUT1 value has changed significantly, indicate that the LAST value
   will need to be re-calculated when it is next needed. */
   if( fabs( orig - val ) > 1.0E-6 ) {
      this->last = AST__BAD;
      this->eplast = AST__BAD;
      this->klast = AST__BAD;
   }
}

static void SetLast( AstSkyFrame *this, int *status ) {
/*
*  Name:
*     SetLast

*  Purpose:
*     Set the Local Appearent Sidereal Time for a SkyFrame.

*  Type:
*     Private function.

*  Synopsis:
*     #include "skyframe.h"
*     void SetLast( AstSkyFrame *this, int *status )

*  Class Membership:
*     SkyFrame member function.

*  Description:
*     This function sets the Local Apparent Sidereal Time at the epoch
*     and geographical longitude given by the current values of the Epoch
*     and ObsLon attributes associated with the supplied SkyFrame.

*  Parameters:
*     this
*        Pointer to the SkyFrame.
*     status
*        Pointer to the inherited status variable.

*  Notes:
*     -  A value of AST__BAD will be returned if this function is invoked
*     with the global error status set, or if it should fail for any reason.
*/

/* Local Variables: */
   double epoch;      /* Epoch as a TDB MJD */

/* Check the global error status. */
   if ( !astOK ) return;

/* Get the SkyFrame Epoch as a TDB MJD. */
   epoch = astGetEpoch( this );

/* Calculate the LAST value (in rads) and store in the SkyFrame structure. */
   this->last = CalcLAST( this, epoch, astGetObsLon( this ),
                          astGetObsLat( this ), astGetObsAlt( this ),
                          astGetDut1( this ), astGetDtai( this ), status );

/* Save the TDB MJD to which this LAST corresponds. */
   this->eplast = epoch;

/* The ratio between solar and sidereal time is a slowly varying function
   of epoch. The GetLAST function returns a fast approximation to LAST
   by using the ratio between solar and sidereal time. Indicate that
   GetLAST should re-calculate the ratio by setting the ratio value bad. */
   this->klast = AST__BAD;
}

static void SetObsAlt( AstFrame *this, double val, int *status ) {
/*
*  Name:
*     SetObsAlt

*  Purpose:
*     Set the value of the ObsAlt attribute for a SkyFrame.

*  Type:
*     Private function.

*  Synopsis:
*     #include "skyframe.h"
*     void SetObsAlt( AstFrame *this, double val, int *status )

*  Class Membership:
*     SkyFrame member function (over-rides the astSetObsAlt method
*     inherited from the Frame class).

*  Description:
*     This function sets the ObsAlt value.

*  Parameters:
*     this
*        Pointer to the SkyFrame.
*     val
*        New ObsAlt value.
*     status
*        Pointer to the inherited status variable.

*/

/* Local Variables: */
   double orig;

/* Check the global error status. */
   if ( !astOK ) return;

/* Note the original ObsAlt value. */
   orig = astGetObsAlt( this );

/* Invoke the parent method to set the Frame ObsAlt. */
   (*parent_setobsalt)( this, val, status );

/* If the altitude has changed significantly, indicate that the LAST value
   and magnitude of the diurnal aberration vector will need to be
   re-calculated when next needed. */
   if( fabs( orig - val ) > 0.001 ) {
      ( (AstSkyFrame *) this )->last = AST__BAD;
      ( (AstSkyFrame *) this )->eplast = AST__BAD;
      ( (AstSkyFrame *) this )->klast = AST__BAD;
      ( (AstSkyFrame *) this )->diurab = AST__BAD;
   }
}

static void SetObsLat( AstFrame *this, double val, int *status ) {
/*
*  Name:
*     SetObsLat

*  Purpose:
*     Set the value of the ObsLat attribute for a SkyFrame.

*  Type:
*     Private function.

*  Synopsis:
*     #include "skyframe.h"
*     void SetObsLat( AstFrame *this, double val, int *status )

*  Class Membership:
*     SkyFrame member function (over-rides the astSetObsLat method
*     inherited from the Frame class).

*  Description:
*     This function sets the ObsLat value.

*  Parameters:
*     this
*        Pointer to the SkyFrame.
*     val
*        New ObsLat value.
*     status
*        Pointer to the inherited status variable.

*/

/* Local Variables: */
   double orig;

/* Check the global error status. */
   if ( !astOK ) return;

/* Note the original ObsLat value. */
   orig = astGetObsLat( this );

/* Invoke the parent method to set the Frame ObsLat. */
   (*parent_setobslat)( this, val, status );

/* If the altitude has changed significantly, indicate that the LAST value
   and magnitude of the diurnal aberration vector will need to be
   re-calculated when next needed. */
   if( fabs( orig - val ) > 1.0E-8 ) {
      ( (AstSkyFrame *) this )->last = AST__BAD;
      ( (AstSkyFrame *) this )->eplast = AST__BAD;
      ( (AstSkyFrame *) this )->klast = AST__BAD;
      ( (AstSkyFrame *) this )->diurab = AST__BAD;
   }
}

static void SetObsLon( AstFrame *this, double val, int *status ) {
/*
*  Name:
*     SetObsLon

*  Purpose:
*     Set the value of the ObsLon attribute for a SkyFrame.

*  Type:
*     Private function.

*  Synopsis:
*     #include "skyframe.h"
*     void SetObsLon( AstFrame *this, double val, int *status )

*  Class Membership:
*     SkyFrame member function (over-rides the astSetObsLon method
*     inherited from the Frame class).

*  Description:
*     This function sets the ObsLon value.

*  Parameters:
*     this
*        Pointer to the SkyFrame.
*     val
*        New ObsLon value.
*     status
*        Pointer to the inherited status variable.

*/

/* Local Variables: */
   double orig;

/* Check the global error status. */
   if ( !astOK ) return;

/* Note the original ObsLon value. */
   orig = astGetObsLon( this );

/* Invoke the parent method to set the Frame ObsLon. */
   (*parent_setobslon)( this, val, status );

/* If the longitude has changed significantly, indicate that the LAST value
   will need to be re-calculated when it is next needed. */
   if( fabs( orig - val ) > 1.0E-8 ) {
      ( (AstSkyFrame *) this )->last = AST__BAD;
      ( (AstSkyFrame *) this )->eplast = AST__BAD;
      ( (AstSkyFrame *) this )->klast = AST__BAD;
   }
}

static void SetSystem( AstFrame *this_frame, AstSystemType system, int *status ) {
/*
*  Name:
*     SetSystem

*  Purpose:
*     Set the System attribute for a SkyFrame.

*  Type:
*     Private function.

*  Synopsis:
*     #include "skyframe.h"
*     void SetSystem( AstFrame *this_frame, AstSystemType system, int *status )

*  Class Membership:
*     SkyFrame member function (over-rides the astSetSystem protected
*     method inherited from the Frame class).

*  Description:
*     This function assigns a new value to the System attribute for a SkyFrame.

*  Parameters:
*     this
*        Pointer to the SkyFrame.
*     system
*        The new System value.
*     status
*        Pointer to the inherited status variable.

*/

/* Local Variables: */
   AstFrameSet *fs;              /* FrameSet to be used as the Mapping */
   AstSkyFrame *sfrm;            /* Copy of original SkyFrame */
   AstSkyFrame *this;            /* Pointer to SkyFrame structure */
   double xin[ 2 ];              /* Axis 0 values */
   double xout[ 2 ];             /* Axis 0 values */
   double yin[ 2 ];              /* Axis 1 values */
   double yout[ 2 ];             /* Axis 1 values */
   int aloff;                    /* The AlignOffset attribute value */
   int aloff_set;                /* Is the AlignOffset attribute set? */
   int skyref_set;               /* Is either SkyRef attribute set? */
   int skyrefis;                 /* The SkyRefIs attribute value */
   int skyrefis_set;             /* Is the SkyRefIs attribute set? */
   int skyrefp_set;              /* Is either SkyRefP attribute set? */

/* Check the global error status. */
   if ( !astOK ) return;

/* Obtain a pointer to the SkyFrame structure. */
   this = (AstSkyFrame *) this_frame;

/* See if either the SkyRef or SkyRefP attribute is set. */
   skyref_set = astTestSkyRef( this, 0 ) || astTestSkyRef( this, 1 );
   skyrefp_set = astTestSkyRefP( this, 0 ) || astTestSkyRefP( this, 1 );

/* If so, we will need to transform their values into the new coordinate
   system. Save a copy of the SkyFrame with its original System value. */
   sfrm = ( skyref_set || skyrefp_set )?astCopy( this ):NULL;

/* Use the parent method to set the new System value. */
   (*parent_setsystem)( this_frame, system, status );

/* Now modify the SkyRef and SkyRefP attributes if necessary. */
   if( sfrm ) {

/* Save the AlignOffset, SkyRefIs, SkyRef and SkyRefP values. */
      aloff_set = astTestAlignOffset( sfrm );
      aloff = astGetAlignOffset( sfrm );
      skyrefis_set = astTestSkyRefIs( sfrm );
      skyrefis = astGetSkyRefIs( sfrm );

      xin[ 0 ] = astGetSkyRef( sfrm, 0 );
      xin[ 1 ] = astGetSkyRefP( sfrm, 0 );
      yin[ 0 ] = astGetSkyRef( sfrm, 1 );
      yin[ 1 ] = astGetSkyRefP( sfrm, 1 );

/* Clear the SkyRef and SkyRefP values to avoid infinite recursion in the
   following call to astConvert. */
      if( skyref_set ) {
         astClearSkyRef( sfrm, 0 );
         astClearSkyRef( sfrm, 1 );
         astClearSkyRef( this, 0 );
         astClearSkyRef( this, 1 );
      }

      if( skyrefp_set ) {
         astClearSkyRefP( sfrm, 0 );
         astClearSkyRefP( sfrm, 1 );
         astClearSkyRefP( this, 0 );
         astClearSkyRefP( this, 1 );
      }

/* Also set AlignOffset and SkyRefIs so that the following call to
   astConvert does not align in offset coords. */
      astSetAlignOffset( sfrm, 0 );
      astSetSkyRefIs( sfrm, AST__IGNORED_REF );

/* Get the Mapping from the original System to the new System. Invoking
   astConvert will recursively invoke SetSystem again. This is why we need
   to be careful to ensure that SkyRef and SKyRefP are cleared above - doing
   so ensure we do not end up with infinite recursion. */
      fs = astConvert( sfrm, this, "" );

/* If the conversion is not possible, clear the SkyRef and SkyRefP
   values. */
      if( !fs ) {
         if( skyref_set ) {
            astClearSkyRef( this, 0 );
            astClearSkyRef( this, 1 );
         }
         if( skyrefp_set ) {
            astClearSkyRefP( this, 0 );
            astClearSkyRefP( this, 1 );
         }

/* Use the Mapping to find the SkyRef and SkyRefP positions in the new
   coordinate system. */
      } else {
         astTran2( fs, 2, xin, yin, 1, xout, yout );

/* Store the values as required. */
         if( skyref_set ) {
            astSetSkyRef( this, 0, xout[ 0 ] );
            astSetSkyRef( this, 1, yout[ 0 ] );
         }

         if( skyrefp_set ) {
            astSetSkyRefP( this, 0, xout[ 1 ] );
            astSetSkyRefP( this, 1, yout[ 1 ] );
         }

/* Restore the original SkyRefIs and AlignOffset values. */
         if( aloff_set ) {
            astSetAlignOffset( this, aloff );
         } else {
            astClearAlignOffset( this );
         }

         if( skyrefis_set ) {
            astSetSkyRefIs( this, skyrefis );
         } else {
            astClearSkyRefIs( this );
         }

/* Free resources. */
         fs = astAnnul( fs );
      }
      sfrm = astAnnul( sfrm );
   }
}

static void Shapp( double dist, double *r0, double *r3, double a0,
                   double *p4, int *status ){
/*
*  Name:
*     Shapp

*  Purpose:
*     Use the vectors calculated by Shcal to find a sky position
*     which is offset along a given position angle.

*  Type:
*     Private function.

*  Synopsis:
*     #include "skyframe.h"
*     void Shapp( double dist, double *r0, double *r3, double a0,
*                 double *p4, int *status )

*  Class Membership:
*     SkyFrame member function.

*  Description:
*     This function uses the vectors R0 and R3 calculated previously by
*     Shcal to find the sky position which is offset away from the
*     "reference" position (see function Offset2) by a given arc
*     distance, along a given great circle.
*
*     No checks are made for AST__BAD values.

*  Parameters:
*     dist
*        The arc distance to move away from the reference position
*        in the given direction, in radians.
*     r0
*        Pointer to an array holding the 3-vector representing the reference
*        position.
*     r3
*        Pointer to an array holding the 3-vector representing the
*        point which is 90 degrees away from the reference point, along
*        the required great circle.
*     a0
*        The sky longitude of the reference position, in radians.
*     p4
*        Pointer to an array of 2 doubles in which to put the sky longitude
*        and latitude of the required point, in radians.
*     status
*        Pointer to the inherited status variable.

*/

/* Local Variables: */
   double cosdst;            /* Cosine of DIST */
   double r4[ 3 ];           /* Required position vector */
   double sindst;            /* Sine of DIST */

/* Check the global error status. */
   if ( !astOK ) return;

/* Store commonly used values. */
   sindst = sin( dist );
   cosdst = cos( dist );

/* The vector R4 representing the required point is produced as a
   linear sum of R0 and R3. */
   r4[ 0 ] = cosdst*r0[ 0 ] + sindst*r3[ 0 ];
   r4[ 1 ] = cosdst*r0[ 1 ] + sindst*r3[ 1 ];
   r4[ 2 ] = cosdst*r0[ 2 ] + sindst*r3[ 2 ];

/* Create the longitude of the required point. If this point is at
   a pole it is assigned the same longitude as the reference point. */
   if( r4[ 0 ] != 0.0 || r4[ 1 ] != 0.0 ) {
      p4[ 0 ] = atan2( r4[ 1 ], r4[ 0 ] );
   } else {
      p4[ 0 ] = a0;
   }

/* Create the latitude of the required point. */
   if( r4[ 2 ] > 1.0 ) {
      r4[ 2 ] = 1.0;
   } else if( r4[ 2 ] < -1.0 ) {
      r4[ 2 ] = -1.0;
   }
   p4[ 1 ] = asin( r4[ 2 ] );

}

static void Shcal( double a0, double b0, double angle, double *r0,
                   double *r3, int *status ) {
/*
*  Name:
*     Shcal

*  Purpose:
*     Calculate vectors required by Offset2.

*  Type:
*     Private function.

*  Synopsis:
*     #include "skyframe.h"
*     void Shcal( double a0, double b0, double angle, double *r0,
*                 double *r3, int *status )

*  Class Membership:
*     SkyFrame member function.

*  Description:
*     This function calculates the 3-vector R0, representing the given
*     sky position (A0,B0), and the 3-vector R3, representing the sky
*     position which is 90 degrees away from R0, along a great circle
*     passing through R0 at a position angle given by ANGLE. Each
*     3-vector holds Cartesian (X,Y,Z) values with origin at the centre
*     of the celestial sphere. The XY plane is the "equator", the Z
*     axis is in the direction of the "north pole", X is towards zero
*     longitude (A=0), and Y is towards longitude 90 degrees.
*
*     No checks are made for AST__BAD input values.

*  Parameters:
*     a0
*        The sky longitude of the given position, in radians.
*     b0
*        The sky latitude of the given position, in radians.
*     angle
*        The position angle of a great circle passing through the given
*        position.  That is, the angle from north to the required
*        direction, in radians. Positive angles are in the sense of
*        rotation from north to east.
*     r0
*        A pointer to an array to receive 3-vector R0. See above.
*     r3
*        A pointer to an array to receive 3-vector R3. See above.
*     status
*        Pointer to the inherited status variable.

*/

/* Local Variables: */
   double cosa0;         /* Cosine of A0 */
   double cosb0;         /* Cosine of B0 */
   double cospa;         /* Cosine of ANGLE */
   double r1[ 3 ];       /* Vector PI/2 away from R0 in meridian of R0 */
   double r2[ 3 ];       /* Vector PI/2 away from R0 on equator */
   double sinpa;         /* Sine of ANGLE */
   double sina0;         /* Sine of A0 */
   double sinb0;         /* Sine of B0 */

/* Check the global error status. */
   if ( !astOK ) return;

/* Store commonly used values. */
   sina0 = sin( a0 );
   cosa0 = cos( a0 );
   sinb0 = sin( b0 );
   cosb0 = cos( b0 );
   sinpa = sin( angle );
   cospa = cos( angle );

/* Create the vector R0 representing the given point. The XY plane
   defines zero latitude, Z is in the direction of increasing latitude,
   X is towards zero longitude, and Y is towards longitude 90 degrees. */
   r0[ 0 ] =  cosb0*cosa0;
   r0[ 1 ] =  cosb0*sina0;
   r0[ 2 ] =  sinb0;

/* Create the vector R1 representing the point in the meridian of the
   given point which has latitude 90 degrees greater than the
   given point. */
   r1[ 0 ] = -sinb0*cosa0;
   r1[ 1 ] = -sinb0*sina0;
   r1[ 2 ] =  cosb0;

/* Create the vector R2 representing the point on the equator (i.e. a
   latitude of zero), which has a longitude 90 degrees to the west of
   the given point. */
   r2[ 0 ] = -sina0;
   r2[ 1 ] =  cosa0;
   r2[ 2 ] =  0.0;

/* Create the vector R3 representing the point which is 90 degrees away
   from the given point, along the required great circle. */
   r3[ 0 ] =  cospa*r1[ 0 ] + sinpa*r2[ 0 ];
   r3[ 1 ] =  cospa*r1[ 1 ] + sinpa*r2[ 1 ];
   r3[ 2 ] =  cospa*r1[ 2 ] + sinpa*r2[ 2 ];

/* Return */
   return;
}

static int SubFrame( AstFrame *target_frame, AstFrame *template,
                     int result_naxes, const int *target_axes,
                     const int *template_axes, AstMapping **map,
                     AstFrame **result, int *status ) {
/*
*  Name:
*     SubFrame

*  Purpose:
*     Select axes from a SkyFrame and convert to the new coordinate system.

*  Type:
*     Private function.

*  Synopsis:
*     #include "skyframe.h"
*     int SubFrame( AstFrame *target, AstFrame *template,
*                   int result_naxes, const int *target_axes,
*                   const int *template_axes, AstMapping **map,
*                   AstFrame **result, int *status )

*  Class Membership:
*     SkyFrame member function (over-rides the protected astSubFrame method
*     inherited from the Frame class).

*  Description:
*     This function selects a requested sub-set (or super-set) of the axes from
*     a "target" SkyFrame and creates a new Frame with copies of the selected
*     axes assembled in the requested order. It then optionally overlays the
*     attributes of a "template" Frame on to the result. It returns both the
*     resulting Frame and a Mapping that describes how to convert between the
*     coordinate systems described by the target and result Frames. If
*     necessary, this Mapping takes account of any differences in the Frames'
*     attributes due to the influence of the template.

*  Parameters:
*     target
*        Pointer to the target SkyFrame, from which axes are to be selected.
*     template
*        Pointer to the template Frame, from which new attributes for the
*        result Frame are to be obtained. Optionally, this may be NULL, in
*        which case no overlaying of template attributes will be performed.
*     result_naxes
*        Number of axes to be selected from the target Frame. This number may
*        be greater than or less than the number of axes in this Frame (or
*        equal).
*     target_axes
*        Pointer to an array of int with result_naxes elements, giving a list
*        of the (zero-based) axis indices of the axes to be selected from the
*        target SkyFrame. The order in which these are given determines the
*        order in which the axes appear in the result Frame. If any of the
*        values in this array is set to -1, the corresponding result axis will
*        not be derived from the target Frame, but will be assigned default
*        attributes instead.
*     template_axes
*        Pointer to an array of int with result_naxes elements. This should
*        contain a list of the template axes (given as zero-based axis indices)
*        with which the axes of the result Frame are to be associated. This
*        array determines which axes are used when overlaying axis-dependent
*        attributes of the template on to the result. If any element of this
*        array is set to -1, the corresponding result axis will not receive any
*        template attributes.
*
*        If the template argument is given as NULL, this array is not used and
*        a NULL pointer may also be supplied here.
*     map
*        Address of a location to receive a pointer to the returned Mapping.
*        The forward transformation of this Mapping will describe how to
*        convert coordinates from the coordinate system described by the target
*        SkyFrame to that described by the result Frame. The inverse
*        transformation will convert in the opposite direction.
*     result
*        Address of a location to receive a pointer to the result Frame.
*     status
*        Pointer to the inherited status variable.

*  Returned Value:
*     A non-zero value is returned if coordinate conversion is possible
*     between the target and the result Frame. Otherwise zero is returned and
*     *map and *result are returned as NULL (but this will not in itself
*     result in an error condition). In general, coordinate conversion should
*     always be possible if no template Frame is supplied but may not always
*     be possible otherwise.

*  Notes:
*     -  A value of zero will be returned if this function is invoked with the
*     global error status set, or if it should fail for any reason.

*  Implementation Notes:
*     -  This implementation addresses the selection of axes from a SkyFrame
*     object. This results in another object of the same class only if both
*     axes of the SkyFrame are selected, once each. Otherwise, the result is a
*     Frame class object which inherits the SkyFrame's axis information (if
*     appropriate) but none of the other properties of a SkyFrame.
*     -  In the event that a SkyFrame results, the returned Mapping will take
*     proper account of the relationship between the target and result sky
*     coordinate systems.
*     -  In the event that a Frame class object results, the returned Mapping
*     will only represent a selection/permutation of axes.

*  Implementation Deficiencies:
*     -  Any axis selection is currently permitted. Probably this should be
*     restricted so that each axis can only be selected once. The
*     astValidateAxisSelection method will do this but currently there are bugs
*     in the CmpFrame class that cause axis selections which will not pass this
*     test. Install the validation when these are fixed.
*/

/* Local Variables: */
   AstAxis *ax;                  /* Pointer to result Frame Axis object */
   AstMapping *tmpmap;           /* Temporary Mapping pointer */
   AstPermMap *permmap;          /* Pointer to PermMap */
   AstSkyFrame *target;          /* Pointer to the SkyFrame structure */
   AstSkyFrame *temp;            /* Pointer to copy of target SkyFrame */
   AstSystemType align_sys;      /* System in which to align the SkyFrames */
   int match;                    /* Coordinate conversion is possible? */
   int perm[ 2 ];                /* Permutation array for axis swap */
   int result_swap;              /* Swap result SkyFrame coordinates? */
   int set_usedefs;              /* Set the returned UseDefs attribute zero?*/
   int target_axis;              /* Target SkyFrame axis index */
   int target_swap;              /* Swap target SkyFrame coordinates? */

/* Initialise the returned values. */
   *map = NULL;
   *result = NULL;
   match = 0;

/* Check the global error status. */
   if ( !astOK ) return match;

/* Obtain a pointer to the target SkyFrame structure. */
   target = (AstSkyFrame *) target_frame;

/* Result is a SkyFrame. */
/* --------------------- */
/* Check if the result Frame is to have two axes obtained by selecting
   both of the target SkyFrame axes, in either order. If so, the
   result will also be a SkyFrame. */
   if ( ( result_naxes == 2 ) &&
        ( ( ( target_axes[ 0 ] == 0 ) && ( target_axes[ 1 ] == 1 ) ) ||
          ( ( target_axes[ 0 ] == 1 ) && ( target_axes[ 1 ] == 0 ) ) ) ) {

/* If a template has not been supplied, or is the same object as the
   target, we are simply extracting axes from the supplied SkyFrame. In
   this case we temporarily force the UseDefs attribute to 1 so that (for
   instance) the astPickAxes method can function correctly. E.g. if you
   have a SkyFrame with no set Epoch and UseDefs set zero,  and you try to
   swap the axes, the attempt would fail because MakeSkyMapping would be
   unable to determine the Mapping from original to swapped SkyFrame,
   because of the lack of an Epoch value. */
      set_usedefs = 0;
      if( !template || template == target_frame ) {
         if( !astGetUseDefs( target ) ) {
            astClearUseDefs( target );
            set_usedefs = 1;
         }
      }

/* Form the result from a copy of the target and then permute its axes
   into the order required. */
      *result = astCopy( target );
      astPermAxes( *result, target_axes );

/* If required, overlay the template attributes on to the result SkyFrame.
   Also get the system in which to align the two SkyFrames. This is the
   value of the AlignSystem attribute from the template (if there is a
   template). */
      if ( template ) {
         astOverlay( template, template_axes, *result );
         align_sys = astGetAlignSystem( template );

      } else {
         align_sys = astGetAlignSystem( target );
      }

/* See whether alignment occurs in offset coordinates or absolute
   coordinates. If the current call to this function is part of the
   process of restoring a FrameSet's integrity following changes to
   the FrameSet's current Frame, then we ignore the setting of the
   AlignOffset attributes and use 0. This ensures that when the System
   attribute (for instance) is changed via a FrameSet pointer, the
   Mappings within the FrameSet are modified to produce offsets in the
   new System. If we are not currently restoring a FrameSet's integrity,
   then we align in offsets if the template is a SkyFrame and both template
   and target want alignment to occur in the offset coordinate system. In
   this case we use a UnitMap to connect them. */
      if( ( astGetFrameFlags( target_frame ) & AST__INTFLAG ) == 0 ) {
         if( astGetAlignOffset( target ) &&
             astGetSkyRefIs( target ) != AST__IGNORED_REF &&
             template && astIsASkyFrame( template ) ){
            if( astGetAlignOffset( (AstSkyFrame *) template ) &&
                astGetSkyRefIs( (AstSkyFrame *) template ) != AST__IGNORED_REF ) {
               match = 1;
               *map = (AstMapping *) astUnitMap( 2, "", status );
            }
         }
      }

/* Otherwise, generate a Mapping that takes account of changes in the sky
   coordinate system (equinox, epoch, etc.) between the target SkyFrame and
   the result SkyFrame. If this Mapping can be generated, set "match" to
   indicate that coordinate conversion is possible. */
      if( ! *map ) {
         match = ( MakeSkyMapping( target, (AstSkyFrame *) *result,
                                   align_sys, map, status ) != 0 );
      }

/* If required, re-instate the original zero value of UseDefs. */
      if( set_usedefs ) {
         astSetUseDefs( target, 0 );
         astSetUseDefs( *result, 0 );
      }

/* If a Mapping has been obtained, it will expect coordinate values to be
   supplied in (longitude,latitude) pairs. Test whether we need to swap the
   order of the target SkyFrame coordinates to conform with this. */
      if ( astOK && match ) {
         target_swap = ( astValidateAxis( target, 0, 1, "astSubFrame" ) != 0 );

/* Coordinates will also be delivered in (longitude,latitude) pairs, so check
   to see whether the result SkyFrame coordinate order should be swapped. */
         result_swap = ( target_swap != ( target_axes[ 0 ] != 0 ) );

/* If either set of coordinates needs swapping, create a PermMap that
   will swap a pair of coordinates. */
         permmap = NULL;
         if ( target_swap || result_swap ) {
            perm[ 0 ] = 1;
            perm[ 1 ] = 0;
            permmap = astPermMap( 2, perm, 2, perm, NULL, "", status );
         }

/* If necessary, prefix this PermMap to the main Mapping. */
         if ( target_swap ) {
            tmpmap = (AstMapping *) astCmpMap( permmap, *map, 1, "", status );
            *map = astAnnul( *map );
            *map = tmpmap;
         }

/* Also, if necessary, append it to the main Mapping. */
         if ( result_swap ) {
            tmpmap = (AstMapping *) astCmpMap( *map, permmap, 1, "", status );
            *map = astAnnul( *map );
            *map = tmpmap;
         }

/* Annul the pointer to the PermMap (if created). */
         if ( permmap ) permmap = astAnnul( permmap );
      }

/* Result is not a SkyFrame. */
/* ------------------------- */
/* In this case, we select axes as if the target were from the Frame
   class.  However, since the resulting data will then be separated
   from their enclosing SkyFrame, default attribute values may differ
   if the methods for obtaining them were over-ridden by the SkyFrame
   class. To overcome this, we ensure that these values are explicitly
   set for the result Frame (rather than relying on their
   defaults). */
   } else {

/* Make a temporary copy of the target SkyFrame. We will explicitly
   set the attribute values in this copy so as not to modify the
   original. */
      temp = astCopy( target );

/* Define a macro to test if an attribute is set. If not, set it
   explicitly to its default value. */
#define SET(attribute) \
   if ( !astTest##attribute( temp ) ) { \
      astSet##attribute( temp, astGet##attribute( temp ) ); \
   }

/* Set attribute values which apply to the Frame as a whole and which
   we want to retain, but whose defaults are over-ridden by the
   SkyFrame class. */
      SET(Domain)
      SET(Title)

/* Now loop to set explicit attribute values for each axis. */
      for ( target_axis = 0; target_axis < 2; target_axis++ ) {

/* Define a macro to test if an axis attribute is set. If not, set it
   explicitly to its default value. */
#define SET_AXIS(attribute) \
   if ( !astTest##attribute( temp, target_axis ) ) { \
      astSet##attribute( temp, target_axis, \
                         astGet##attribute( temp, target_axis ) ); \
   }

/* Use this macro to set explicit values for all the axis attributes
   for which the SkyFrame class over-rides the default value. */
         SET_AXIS(AsTime)
         SET_AXIS(Format)
         SET_AXIS(Label)
         SET_AXIS(Symbol)
         SET_AXIS(Unit)

/* Now handle axis attributes for which there are no SkyFrame access
   methods.  For these we require a pointer to the temporary
   SkyFrame's Axis object. */
         ax = astGetAxis( temp, target_axis );

/* Set an explicit value for the IsLatitude and CentreZero attributes. */
         if( astValidateAxis( temp, target_axis, 1, "astSubFrame" ) == 1 ) {
            astSetAxisIsLatitude( ax, 1 );
            astSetAxisCentreZero( ax, 1 );

         } else {
            astSetAxisIsLatitude( ax, 0 );
            astSetAxisCentreZero( ax, astGetNegLon( temp ) );
         }

/* Annul the Axis object pointer. */
         ax = astAnnul( ax );
      }

/* Clear attributes which have an extended range of values allowed by
   this class. */
      astClearSystem( temp );
      astClearAlignSystem( temp );

/* Invoke the astSubFrame method inherited from the Frame class to
   produce the result Frame by selecting the required set of axes and
   overlaying the template Frame's attributes. */
      match = (*parent_subframe)( (AstFrame *) temp, template,
                                  result_naxes, target_axes, template_axes,
                                  map, result, status );

/* Delete the temporary copy of the target SkyFrame. */
      temp = astDelete( temp );
   }

/* Ensure the returned Frame does not have active units. */
   astSetActiveUnit( *result, 0 );

/* If an error occurred or no match was found, annul the returned
   objects and reset the returned result. */
   if ( !astOK || !match ) {
      if( *map ) *map = astAnnul( *map );
      if( *result ) *result = astAnnul( *result );
      match = 0;
   }

/* Return the result. */
   return match;

/* Undefine macros local to this function. */
#undef SET
#undef SET_AXIS
}

static AstSystemType SystemCode( AstFrame *this, const char *system, int *status ) {
/*
*  Name:
*     SystemCode

*  Purpose:
*     Convert a string into a coordinate system type code.

*  Type:
*     Private function.

*  Synopsis:
*     #include "skyframe.h"
*     AstSystemType SystemCode( AstFrame *this, const char *system, int *status )

*  Class Membership:
*     SkyFrame member function (over-rides the astSystemCode method
*     inherited from the Frame class).

*  Description:
*     This function converts a string used for the external
*     description of a sky coordinate system into a SkyFrame
*     coordinate system type code (System attribute value). It is the
*     inverse of the astSystemString function.

*  Parameters:
*     this
*        The Frame.
*     system
*        Pointer to a constant null-terminated string containing the
*        external description of the sky coordinate system.
*     status
*        Pointer to the inherited status variable.

*  Returned Value:
*     The System type code.

*  Notes:
*     - A value of AST__BADSYSTEM is returned if the sky coordinate
*     system description was not recognised. This does not produce an
*     error.
*     - A value of AST__BADSYSTEM is also returned if this function
*     is invoked with the global error status set or if it should fail
*     for any reason.
*/

/* Local Variables: */
   AstSystemType result;      /* Result value to return */

/* Initialise. */
   result = AST__BADSYSTEM;

/* Check the global error status. */
   if ( !astOK ) return result;

/* Match the "system" string against each possibility and assign the
   result. */
   if ( astChrMatch( "FK4", system ) ) {
      result = AST__FK4;

   } else if ( astChrMatch( "FK4_NO_E", system ) ||
               astChrMatch( "FK4-NO-E", system ) ) {
      result = AST__FK4_NO_E;

   } else if ( astChrMatch( "FK5", system ) ||
               astChrMatch( "Equatorial", system ) ) {
      result = AST__FK5;

   } else if ( astChrMatch( "J2000", system ) ) {
      result = AST__J2000;

   } else if ( astChrMatch( "ICRS", system ) ) {
      result = AST__ICRS;

   } else if ( astChrMatch( "AZEL", system ) ) {
      result = AST__AZEL;

   } else if ( astChrMatch( "GAPPT", system ) ||
               astChrMatch( "GEOCENTRIC", system ) ||
               astChrMatch( "APPARENT", system ) ) {
         result = AST__GAPPT;

   } else if ( astChrMatch( "ECLIPTIC", system ) ) {
      result = AST__ECLIPTIC;

   } else if ( astChrMatch( "HELIOECLIPTIC", system ) ) {
      result = AST__HELIOECLIPTIC;

   } else if ( astChrMatch( "GALACTIC", system ) ) {
      result = AST__GALACTIC;

   } else if ( astChrMatch( "SUPERGALACTIC", system ) ) {
      result = AST__SUPERGALACTIC;

   } else if ( astChrMatch( "UNKNOWN", system ) ) {
      result = AST__UNKNOWN;
   }

/* Return the result. */
   return result;
}

static const char *SystemString( AstFrame *this, AstSystemType system, int *status ) {
/*
*  Name:
*     SystemString

*  Purpose:
*     Convert a coordinate system type code into a string.

*  Type:
*     Private function.

*  Synopsis:
*     #include "skyframe.h"
*     const char *SystemString( AstFrame *this, AstSystemType system, int *status )

*  Class Membership:
*     SkyFrame member function (over-rides the astSystemString method
*     inherited from the Frame class).

*  Description:
*     This function converts a SkyFrame coordinate system type code
*     (System attribute value) into a string suitable for use as an
*     external representation of the coordinate system type.

*  Parameters:
*     this
*        The Frame.
*     system
*        The coordinate system type code.
*     status
*        Pointer to the inherited status variable.

*  Returned Value:
*     Pointer to a constant null-terminated string containing the
*     textual equivalent of the type code supplied.

*  Notes:
*     - A NULL pointer value is returned if the sky coordinate system
*     code was not recognised. This does not produce an error.
*     - A NULL pointer value is also returned if this function is
*     invoked with the global error status set or if it should fail
*     for any reason.
*/

/* Local Variables: */
   const char *result;           /* Pointer value to return */

/* Initialise. */
   result = NULL;

/* Check the global error status. */
   if ( !astOK ) return result;

/* Match the "system" value against each possibility and convert to a
   string pointer. (Where possible, return the same string as would be
   used in the FITS WCS representation of the coordinate system). */
   switch ( system ) {
   case AST__FK4:
      result = "FK4";
      break;

   case AST__FK4_NO_E:
      result = "FK4-NO-E";
      break;

   case AST__FK5:
      result = "FK5";
      break;

   case AST__J2000:
      result = "J2000";
      break;

   case AST__ICRS:
      result = "ICRS";
      break;

   case AST__GAPPT:
      result = "GAPPT";
      break;

   case AST__AZEL:
      result = "AZEL";
      break;

   case AST__ECLIPTIC:
      result = "ECLIPTIC";
      break;

   case AST__HELIOECLIPTIC:
      result = "HELIOECLIPTIC";
      break;

   case AST__GALACTIC:
      result = "GALACTIC";
      break;

   case AST__SUPERGALACTIC:
      result = "SUPERGALACTIC";
      break;

   case AST__UNKNOWN:
      result = "Unknown";
      break;
   }

/* Return the result pointer. */
   return result;
}

static int TestActiveUnit( AstFrame *this_frame, int *status ) {
/*
*  Name:
*     TestActiveUnit

*  Purpose:
*     Test the ActiveUnit flag for a SkyFrame.

*  Type:
*     Private function.

*  Synopsis:
*     #include "skyframe.h"
*     int TestActiveUnit( AstFrame *this_frame, int *status )

*  Class Membership:
*     SkyFrame member function (over-rides the astTestActiveUnit protected
*     method inherited from the Frame class).

*  Description:
*    This function test the value of the ActiveUnit flag for a SkyFrame,
*    which is always "unset".

*  Parameters:
*     this
*        Pointer to the SkyFrame.
*     status
*        Pointer to the inherited status variable.

*  Returned Value:
*     The result of the test (0).

*/
   return 0;
}

static int TestAsTime( AstSkyFrame *this, int axis, int *status ) {
/*
*  Name:
*     TestAsTime

*  Purpose:
*     Determine if a value has been set for a SkyFrame's AsTime attribute.

*  Type:
*     Private function.

*  Synopsis:
*     #include "skyframe.h"
*     int TestAsTime( AstSkyFrame *this, int axis, int *status )

*  Class Membership:
*     SkyFrame member function.

*  Description:
*     This function returns a boolean value to indicate if a value has
*     previously been set for the AsTime attribute for a specified axis of a
*     SkyFrame. This attribute indicates whether axis values should be
*     formatted as times (as opposed to angles) by default.

*  Parameters:
*     this
*        Pointer to the SkyFrame.
*     axis
*        Index of the axis for which information is required (zero based).
*     status
*        Pointer to the inherited status variable.

*  Returned Value:
*     Zero or one, according to whether the AsTime attribute has been set.

*  Notes:
*     -  A value of zero will be returned if this function is invoked with the
*     global error status set, or if it should fail for any reason.
*/

/* Local Variables. */
   AstAxis *ax;                  /* Pointer to Axis object */
   int result;                   /* Result to be returned */

/* Check the global error status. */
   if ( !astOK ) return 0;

/* Validate the axis index. */
   (void) astValidateAxis( this, axis, 1, "astTestAsTime" );

/* Obtain a pointer to the Axis object. */
   ax = astGetAxis( this, axis );

/* Determine if the AsTime attribute has been set for it (it cannot have been
   set unless the object is a SkyAxis). */
   result = ( astIsASkyAxis( ax ) && astTestAxisAsTime( ax ) );

/* Annul the Axis pointer. */
   ax = astAnnul( ax );

/* Return the result. */
   return result;
}

static int TestAttrib( AstObject *this_object, const char *attrib, int *status ) {
/*
*  Name:
*     TestAttrib

*  Purpose:
*     Test if a specified attribute value is set for a SkyFrame.

*  Type:
*     Private function.

*  Synopsis:
*     #include "skyframe.h"
*     int TestAttrib( AstObject *this, const char *attrib, int *status )

*  Class Membership:
*     SkyFrame member function (over-rides the astTestAttrib protected
*     method inherited from the Frame class).

*  Description:
*     This function returns a boolean result (0 or 1) to indicate whether
*     a value has been set for one of a SkyFrame's attributes.

*  Parameters:
*     this
*        Pointer to the SkyFrame.
*     attrib
*        Pointer to a null terminated string specifying the attribute
*        name.  This should be in lower case with no surrounding white
*        space.
*     status
*        Pointer to the inherited status variable.

*  Returned Value:
*     One if a value has been set, otherwise zero.

*  Notes:
*     - This function uses one-based axis numbering so that it is
*     suitable for external (public) use.
*     - A value of zero will be returned if this function is invoked
*     with the global status set, or if it should fail for any reason.
*/

/* Local Variables: */
   AstSkyFrame *this;            /* Pointer to the SkyFrame structure */
   int axis;                     /* SkyFrame axis number */
   int len;                      /* Length of attrib string */
   int nc;                       /* No. characters read by astSscanf */
   int result;                   /* Result value to return */

/* Initialise. */
   result = 0;

/* Check the global error status. */
   if ( !astOK ) return result;

/* Obtain a pointer to the SkyFrame structure. */
   this = (AstSkyFrame *) this_object;

/* Obtain the length of the attrib string. */
   len = strlen( attrib );

/* Check the attribute name and test the appropriate attribute. */

/* AsTime(axis). */
/* ------------- */
   if ( nc = 0,
        ( 1 == astSscanf( attrib, "astime(%d)%n", &axis, &nc ) )
        && ( nc >= len ) ) {
      result = astTestAsTime( this, axis - 1 );

/* Equinox. */
/* -------- */
   } else if ( !strcmp( attrib, "equinox" ) ) {
      result = astTestEquinox( this );

/* NegLon. */
/* ------- */
   } else if ( !strcmp( attrib, "neglon" ) ) {
      result = astTestNegLon( this );

/* SkyTol. */
/* ------- */
   } else if ( !strcmp( attrib, "skytol" ) ) {
      result = astTestSkyTol( this );

/* Projection. */
/* ----------- */
   } else if ( !strcmp( attrib, "projection" ) ) {
      result = astTestProjection( this );

/* SkyRefIs. */
/* --------- */
   } else if ( !strcmp( attrib, "skyrefis" ) ) {
      result = astTestSkyRefIs( this );

/* SkyRef. */
/* ------- */
   } else if ( !strcmp( attrib, "skyref" ) ) {
      result = astTestSkyRef( this, 0 ) || astTestSkyRef( this, 1 );

/* SkyRef(axis). */
/* ------------- */
   } else if ( nc = 0,
        ( 1 == astSscanf( attrib, "skyref(%d)%n", &axis, &nc ) )
        && ( nc >= len ) ) {
      result = astTestSkyRef( this, axis - 1 );

/* SkyRefP. */
/* -------- */
   } else if ( !strcmp( attrib, "skyrefp" ) ) {
      result = astTestSkyRefP( this, 0 ) || astTestSkyRefP( this, 1 );

/* SkyRefP(axis). */
/* ------------- */
   } else if ( nc = 0,
        ( 1 == astSscanf( attrib, "skyrefp(%d)%n", &axis, &nc ) )
        && ( nc >= len ) ) {
      result = astTestSkyRefP( this, axis - 1 );

/* AlignOffset */
/* ----------- */
   } else if ( !strcmp( attrib, "alignoffset" ) ) {
      result = astTestAlignOffset( this );

/* If the name is not recognised, test if it matches any of the
   read-only attributes of this class. If it does, then return
   zero. */
   } else if ( !strncmp( attrib, "islataxis", 9 ) ||
               !strncmp( attrib, "islonaxis", 9 ) ||
               !strcmp( attrib, "lataxis" ) ||
               !strcmp( attrib, "lonaxis" ) ) {
      result = 0;

/* If the attribute is not recognised, pass it on to the parent method
   for further interpretation. */
   } else {
      result = (*parent_testattrib)( this_object, attrib, status );
   }

/* Return the result, */
   return result;
}

static int TestSlaUnit( AstSkyFrame *sf1, AstSkyFrame *sf2, AstSlaMap *slamap,
                        int *status ){
/*
*  Name:
*     Unformat

*  Purpose:
*     See if a slamap is effectively a unit mapping.

*  Type:
*     Private function.

*  Synopsis:
*     #include "skyframe.h"
*     int TestSlaUnit( AstSkyFrame *sf1, AstSkyFrame *sf2, AstSlaMap *slamap,
*                      int *status )

*  Class Membership:
*     SkyFrame member function.

*  Description:
*     This function tests a SlaMap to see if it is effectively a unit
*     transformatuon to within a tolerance given by the smaller tolerance
*     of the two supplied SkyFrames.

*  Parameters:
*     sf1
*        Pointer to the first SkyFrame.
*     sf2
*        Pointer to the second SkyFrame (may be NULL)
*     slamap
*        Pointer to the SlaMap to test.
*     status
*        Pointer to the inherited status variable.

*  Returned Value:
*     Non-zero if the SlaMap is effectively a unit mapping, and zero
*     otherwise.

*/

/*  Number of test points. */
#define NTEST 14

/* Local Variables: */
   double maxshift;            /* Max. shift produced by slamap (rads) */
   double olat[NTEST];         /* Transformed latitudes */
   double olon[NTEST];         /* Transformed longitudes */
   double shift;               /* Shift produced by slamap (rads) */
   double tol2;                /* Second tolerance (in radians) */
   double tol;                 /* Used tolerance (in radians) */
   int i;                      /* Loop count */
   int result;                 /* Returned flag */

/* A grid of lon/lat points covering the sphere. */
   double lat[ NTEST ] = { 0.0,  0.0,  0.0,  0.0,
                           0.8,  0.8,  0.8,  0.8,
                          -0.8, -0.8, -0.8, -0.8,
                           1.570796, -1.570796 };
   double lon[ NTEST ] = { 0.0,  1.57,  3.14,  4.71,
                           0.8,  2.37,  3.94,  5.51,
                           0.8,  2.37,  3.94,  5.51,
                           0.0, 0.0 };

/* Initialise. */
   result = 0;

/* Check the global error status. */
   if ( !astOK ) return result;

/* If the SlaMap is empty (i.e. has no conversions in it), then is it a
   UnitMap. So save time by not transforming the test values. */
   if( astSlaIsEmpty( slamap ) ) {
      result = 1;

/* Otherwise, get the smaller of the tolerances associated with the
   supplied SkyFrames, in radians. */
   } else {
      tol = astGetSkyTol( sf1 );
      if( sf2 ) {
         tol2 = astGetSkyTol( sf2 );
         if( tol2 < tol ) tol = tol2;
      }

/* If the tolerance is zero, there is no need to do the test. */
      if( tol > 0.0 ) {

/* Transform the test point using the SlaMap. */
         astTran2( slamap, NTEST, lon, lat, 1, olon, olat );

/* Find the maximum shift produced by the SlaMap at any of the test
   positions. Again, to avoid the slow-down produced by checking for
   axis permutation, use palDsep rather than astDistance. */
         maxshift = 0.0;
         for( i = 0; i < NTEST; i++ ) {
            shift = palDsep( lon[ i ], lat[ i ], olon[ i ], olat[ i ] );
            if( shift > maxshift ) maxshift = shift;
         }

/* Convert the max shift to arc-seconds and do the check. */
         result = ( maxshift*AST__DR2D*3600 < tol );
      }
   }

   return result;
}

static int Unformat( AstFrame *this_frame, int axis, const char *string,
                     double *value, int *status ) {
/*
*  Name:
*     Unformat

*  Purpose:
*     Read a formatted coordinate value for a SkyFrame axis.

*  Type:
*     Private function.

*  Synopsis:
*     #include "skyframe.h"
*     int Unformat( AstFrame *this, int axis, const char *string,
*                   double *value, int *status )

*  Class Membership:
*     SkyFrame member function (over-rides the public astUnformat
*     method inherited from the Frame class).

*  Description:
*     This function reads a formatted coordinate value for a SkyFrame
*     axis (supplied as a string) and returns the equivalent numerical
*     value as a double. It also returns the number of characters read
*     from the string.

*  Parameters:
*     this
*        Pointer to the SkyFrame.
*     axis
*        The number of the SkyFrame axis for which the coordinate
*        value is to be read (axis numbering starts at zero for the
*        first axis).
*     string
*        Pointer to a constant null-terminated string containing the
*        formatted coordinate value.
*     value
*        Pointer to a double in which the coordinate value read will
*        be returned (in radians).
*     status
*        Pointer to the inherited status variable.

*  Returned Value:
*     The number of characters read from the string to obtain the
*     coordinate value.

*  Notes:
*     - Any white space at the beginning of the string will be
*     skipped, as also will any trailing white space following the
*     coordinate value read. The function's return value will reflect
*     this.
*     - A function value of zero (and no coordinate value) will be
*     returned, without error, if the string supplied does not contain
*     a suitably formatted value.
*     - The string "<bad>" is recognised as a special case and will
*     generate the value AST__BAD, without error. The test for this
*     string is case-insensitive and permits embedded white space.
*     - A function result of zero will be returned and no coordinate
*     value will be returned via the "value" pointer if this function
*     is invoked with the global error status set, or if it should
*     fail for any reason.
*/

/* Local Variables: */
   AstSkyFrame *this;            /* Pointer to the SkyFrame structure */
   double coord;                 /* Coordinate value read */
   int format_set;               /* Format attribute set? */
   int nc;                       /* Number of characters read */

/* Initialise. */
   nc = 0;

/* Check the global error status. */
   if ( !astOK ) return nc;

/* Obtain a pointer to the SkyFrame structure. */
   this = (AstSkyFrame *) this_frame;

/* Validate the axis index. */
   (void) astValidateAxis( this, axis, 1, "astUnformat" );

/* Determine if a Format value has been set for the axis and set a
   temporary value if it has not. Use the GetFormat member function
   for this class together with member functions inherited from the
   parent class (rather than using the object's methods directly)
   because if any of these methods have been over-ridden by a derived
   class the Format string syntax may no longer be compatible with
   this class. */
   format_set = (*parent_testformat)( this_frame, axis, status );
   if ( !format_set ) {
      (*parent_setformat)( this_frame, axis, GetFormat( this_frame, axis, status ), status );
   }

/* Use the Unformat member function inherited from the parent class to
   read the coordinate value. */
   nc = (*parent_unformat)( this_frame, axis, string, &coord, status );

/* If necessary, clear any temporary Format value that was set above. */
   if ( !format_set ) (*parent_clearformat)( this_frame, axis, status );

/* If an error occurred, clear the number of characters read. */
   if ( !astOK ) {
      nc = 0;

/* Otherwise, if characters were read, return the coordinate value. */
   } else if ( nc ) {
      *value = coord;
   }

/* Return the number of characters read. */
   return nc;
}

static int ValidateSystem( AstFrame *this, AstSystemType system, const char *method, int *status ) {
/*
*
*  Name:
*     ValidateSystem

*  Purpose:
*     Validate a value for a Frame's System attribute.

*  Type:
*     Protected virtual function.

*  Synopsis:
*     #include "frame.h"
*     int ValidateSystem( AstFrame *this, AstSystemType system,
*                         const char *method, int *status )

*  Class Membership:
*     SkyFrame member function (over-rides the astValidateSystem method
*     inherited from the Frame class).

*  Description:
*     This function checks the validity of the supplied system value.
*     If the value is valid, it is returned unchanged. Otherwise, an
*     error is reported and a value of AST__BADSYSTEM is returned.

*  Parameters:
*     this
*        Pointer to the Frame.
*     system
*        The system value to be checked.
*     method
*        Pointer to a constant null-terminated character string
*        containing the name of the method that invoked this function
*        to validate an axis index. This method name is used solely
*        for constructing error messages.
*     status
*        Pointer to the inherited status variable.

*  Returned Value:
*     The validated system value.

*  Notes:
*     - A value of AST__BADSYSTEM will be returned if this function is invoked
*     with the global error status set, or if it should fail for any
*     reason.
*/

/* Local Variables: */
   AstSystemType result;              /* Validated system value */

/* Initialise. */
   result = AST__BADSYSTEM;

/* Check the global error status. */
   if ( !astOK ) return result;

/* If the value is out of bounds, report an error. */
   if ( system < FIRST_SYSTEM || system > LAST_SYSTEM ) {
         astError( AST__AXIIN, "%s(%s): Bad value (%d) given for the System "
                   "or AlignSystem attribute of a %s.", status, method,
                   astGetClass( this ), (int) system, astGetClass( this ) );

/* Otherwise, return the supplied value. */
   } else {
      result = system;
   }

/* Return the result. */
   return result;
}

static void VerifyMSMAttrs( AstSkyFrame *target, AstSkyFrame *result,
                            int which, const char *attrs, const char *method, int *status ) {
/*
*  Name:
*     VerifyMSMAttrs

*  Purpose:
*     Verify that usable attribute values are available.

*  Type:
*     Private function.

*  Synopsis:
*     #include "skyframe.h"
*      void VerifyMSMAttrs( AstSkyFrame *target, AstSkyFrame *result,
*                           int which, const char *attrs, const char *method, int *status )

*  Class Membership:
*     SkyFrame member function

*  Description:
*     This function tests each attribute listed in "attrs". It returns
*     without action if 1) an explicit value has been set for each attribute
*     in the SkyFrame indicated by "which" or 2) the UseDefs attribute of the
*     "which" SkyFrame is non-zero.
*
*     If UseDefs is zero (indicating that default values should not be
*     used for attributes), and any of the named attributes does not have
*     an explicitly set value, then an error is reported.
*
*     The displayed error message assumes that tjis function was called
*     as part of the process of producing a Mapping from "target" to "result".

*  Parameters:
*     target
*        Pointer to the target SkyFrame.
*     result
*        Pointer to the result SkyFrame.
*     which
*        If 2, both the target and result SkyFrames are checked for the
*        supplied attributes. If less than 2, only the target SkyFrame is
*        checked. If greater than 2, only the result SkyFrame is checked.
*     attrs
*        A string holding a space separated list of attribute names.
*     method
*        A string holding the name of the calling method for use in error
*        messages.
*     status
*        Pointer to the inherited status variable.

*/

/* Local Variables: */
   const char *a;
   const char *p;
   const char *desc;
   int len;
   int set1;
   int set2;
   int state;
   int usedef1;
   int usedef2;

/* Check inherited status */
   if( !astOK ) return;

/* Get the UseDefs attributes of the two SkyFrames. */
   usedef1 = astGetUseDefs( target );
   usedef2 = astGetUseDefs( result );

/* If both SkyFrames have a non-zero value for its UseDefs attribute, then
   all attributes are assumed to have usable values, since the defaults
   will be used if no explicit value has been set. So we only need to do
   any checks if UseDefs is zero for either SkyFrame. */
   if( !usedef1 || !usedef2 ) {

/* Stop compiler warnings about uninitialised variables */
      a = NULL;
      desc = NULL;
      len = 0;
      set1 = 0;
      set2 = 0;

/* Loop round the "attrs" string identifying the start and length of each
   non-blank word in the string. */
      state = 0;
      p = attrs;
      while( 1 ) {
         if( state == 0 ) {
            if( !isspace( *p ) ) {
               a = p;
               len = 1;
               state = 1;
            }
         } else {
            if( isspace( *p ) || !*p ) {

/* The end of a word has just been reached. Compare it to each known
   attribute value. Get a flag indicating if the attribute has a set
   value, and a string describing the attribute.*/
               if( len > 0 ) {

                  if( !strncmp( "Equinox", a, len ) ) {
                     set1 = astTestEquinox( target );
                     set2 = astTestEquinox( result );
                     desc = "reference equinox";

                  } else if( !strncmp( "Dtai", a, len ) ) {
                     set1 = astTestDtai( target );
                     set2 = astTestDtai( result );
                     desc = "TAI-UTC correction";

                  } else if( !strncmp( "Dut1", a, len ) ) {
                     set1 = astTestDut1( target );
                     set2 = astTestDut1( result );
                     desc = "UT1-UTC correction";

                  } else if( !strncmp( "Epoch", a, len ) ) {
                     set1 = astTestEpoch( target );
                     set2 = astTestEpoch( result );
                     desc = "epoch of observation";

                  } else if( !strncmp( "ObsLon", a, len ) ) {
                     set1 = astTestObsLon( target );
                     set2 = astTestObsLon( result );
                     desc = "longitude of observer";

                  } else if( !strncmp( "ObsLat", a, len ) ) {
                     set1 = astTestObsLat( target );
                     set2 = astTestObsLat( result );
                     desc = "latitude of observer";

                  } else if( !strncmp( "ObsAlt", a, len ) ) {
                     set1 = astTestObsAlt( target );
                     set2 = astTestObsAlt( result );
                     desc = "altitude of observer";

                  } else {
                     astError( AST__INTER, "VerifyMSMAttrs(SkyFrame): "
                               "Unknown attribute name \"%.*s\" supplied (AST "
                               "internal programming error).", status, len, a );
                  }

/* If the attribute is not set in the target but should be, report an
   error. */
                  if( !usedef1 && !set1 && which < 3 ) {
                     astClearTitle( target );
                     astClearTitle( result );
                     astError( AST__NOVAL, "%s(%s): Cannot convert "
                               "celestial coordinates from %s to %s.", status,
                               method, astGetClass( target ),
                               astGetC( target, "Title" ),
                               astGetC( result, "Title" ) );
                     astError( AST__NOVAL, "No value has been set for "
                               "the \"%.*s\" attribute (%s) in the input %s.", status,
                               len, a, desc, astGetClass( target ) );
                     break;
                  }

/* If the attribute is not set in the result but should be, report an
   error. */
                  if( !usedef2 && !set2 && which > 1 ) {
                     astClearTitle( target );
                     astClearTitle( result );
                     astError( AST__NOVAL, "%s(%s): Cannot convert "
                               "celestial coordinates from %s to %s.", status,
                               method, astGetClass( result ),
                               astGetC( target, "Title" ),
                               astGetC( result, "Title" ) );
                     astError( AST__NOVAL, "No value has been set for "
                               "the \"%.*s\" attribute (%s) in the output %s.", status,
                               len, a, desc, astGetClass( result ) );
                     break;
                  }

/* Continue the word search algorithm. */
               }
               len = 0;
               state = 0;
            } else {
               len++;
            }
         }
         if( !*(p++) ) break;
      }
   }
}

/* Functions which access class attributes. */
/* ---------------------------------------- */
/*
*att++
*  Name:
*     AlignOffset

*  Purpose:
*     Align SkyFrames using the offset coordinate system?

*  Type:
*     Public attribute.

*  Synopsis:
*     Integer (boolean).

*  Description:
*     This attribute is a boolean value which controls how a SkyFrame
*     behaves when it is used (by
c     astFindFrame or astConvert) as a template to match another (target)
f     AST_FINDFRAME or AST_CONVERT) as a template to match another (target)
*     SkyFrame. It determines the coordinate system in which the two
*     SkyFrames are aligned if a match occurs.
*
*     If the template and target SkyFrames both have defined offset coordinate
*     systems (i.e. the SkyRefIs attribute is set to either "Origin" or "
*     Pole"), and they both have a non-zero value for AlignOffset, then
*     alignment occurs within the offset coordinate systems (that is, a
*     UnitMap will always be used to align the two SkyFrames). If either
*     the template or target SkyFrame has zero (the default value) for
*     AlignOffset, or if either SkyFrame has SkyRefIs set to "Ignored", then
*     alignment occurring within the coordinate system specified by the
*     AlignSystem attribute.

*  Applicability:
*     SkyFrame
*        All SkyFrames have this attribute.
*att--
*/
astMAKE_CLEAR(SkyFrame,AlignOffset,alignoffset,-INT_MAX)
astMAKE_GET(SkyFrame,AlignOffset,int,0,( ( this->alignoffset != -INT_MAX ) ?
                                           this->alignoffset : 0 ))
astMAKE_SET(SkyFrame,AlignOffset,int,alignoffset,( value != 0 ))
astMAKE_TEST(SkyFrame,AlignOffset,( this->alignoffset != -INT_MAX ))

/*
*att++
*  Name:
*     AsTime(axis)

*  Purpose:
*     Format celestal coordinates as times?

*  Type:
*     Public attribute.

*  Synopsis:
*     Integer (boolean).

*  Description:
*     This attribute specifies the default style of formatting to be
c     used (e.g. by astFormat) for the celestial coordinate values
f     used (e.g. by AST_FORMAT) for the celestial coordinate values
*     described by a SkyFrame. It takes a separate boolean value for
*     each SkyFrame axis so that, for instance, the setting
*     "AsTime(2)=0" specifies the default formatting style for
*     celestial latitude values.
*
*     If the AsTime attribute for a SkyFrame axis is zero, then
*     coordinates on that axis will be formatted as angles by default
*     (using degrees, minutes and seconds), otherwise they will be
*     formatted as times (using hours, minutes and seconds).
*
*     The default value of AsTime is chosen according to the sky
*     coordinate system being represented, as determined by the
*     SkyFrame's System attribute. This ensures, for example, that
*     right ascension values will be formatted as times by default,
*     following normal conventions.

*  Applicability:
*     SkyFrame
*        All SkyFrames have this attribute.

*  Notes:
*     - The AsTime attribute operates by changing the default value of
*     the corresponding Format(axis) attribute. This, in turn, may
*     also affect the value of the Unit(axis) attribute.
*     - Only the default style of formatting is affected by the AsTime
*     value. If an explicit Format(axis) value is set, it will
*     over-ride any effect from the AsTime attribute.
*att--
*/

/*
*att++
*  Name:
*     Equinox

*  Purpose:
*     Epoch of the mean equinox.

*  Type:
*     Public attribute.

*  Synopsis:
*     Floating point.

*  Description:
*     This attribute is used to qualify those celestial coordinate
*     systems described by a SkyFrame which are notionally based on
*     the ecliptic (the plane of the Earth's orbit around the Sun)
*     and/or the Earth's equator.
*
*     Both of these planes are in motion and their positions are
*     difficult to specify precisely. In practice, therefore, a model
*     ecliptic and/or equator are used instead. These, together with
*     the point on the sky that defines the coordinate origin (the
*     intersection of the two planes termed the "mean equinox") move
*     with time according to some model which removes the more rapid
*     fluctuations. The SkyFrame class supports both the FK4 and
*     FK5 models.
*
*     The position of a fixed source expressed in any of these
*     coordinate systems will appear to change with time due to
*     movement of the coordinate system itself (rather than motion of
*     the source).  Such coordinate systems must therefore be
*     qualified by a moment in time (the "epoch of the mean equinox"
*     or "equinox" for short) which allows the position of the model
*     coordinate system on the sky to be determined. This is the role
*     of the Equinox attribute.
*
*     The Equinox attribute is stored as a Modified Julian Date, but
*     when setting or getting its value you may use the same formats
*     as for the Epoch attribute (q.v.).
*
*     The default Equinox value is B1950.0 (Besselian) for the old
*     FK4-based coordinate systems (see the System attribute) and
*     J2000.0 (Julian) for all others.

*  Applicability:
*     SkyFrame
*        All SkyFrames have this attribute.

*  Notes:
*     - Care must be taken to distinguish the Equinox value, which
*     relates to the definition of a time-dependent coordinate system
*     (based on solar system reference planes which are in motion),
*     from the superficially similar Epoch value. The latter is used
*     to qualify coordinate systems where the positions of sources
*     change with time (or appear to do so) for a variety of other
*     reasons, such as aberration of light caused by the observer's
*     motion, etc.
*     - See the description of the System attribute for details of
*     which qualifying attributes apply to each celestial coordinate
*     system.
*att--
*/
/* Clear the Equinox value by setting it to AST__BAD. */
astMAKE_CLEAR(SkyFrame,Equinox,equinox,AST__BAD)

/* Provide a default value of B1950.0 or J2000.0 depending on the System
   setting. */
astMAKE_GET(SkyFrame,Equinox,double,AST__BAD,(
            ( this->equinox != AST__BAD ) ? this->equinox :
               ( ( ( astGetSystem( this ) == AST__FK4 ) ||
                   ( astGetSystem( this ) == AST__FK4_NO_E ) ) ?
                    palEpb2d( 1950.0 ) : palEpj2d( 2000.0 ) ) ))

/* Allow any Equinox value to be set, unless the System is Helio-ecliptic
   (in which case clear the value so that J2000 is used). */
astMAKE_SET(SkyFrame,Equinox,double,equinox,((astGetSystem(this)!=AST__HELIOECLIPTIC)?value:AST__BAD))

/* An Equinox value is set if it is not equal to AST__BAD. */
astMAKE_TEST(SkyFrame,Equinox,( this->equinox != AST__BAD ))


/*
*att++
*  Name:
*     IsLatAxis(axis)

*  Purpose:
*     Is the specified celestial axis a latitude axis?

*  Type:
*     Public attribute.

*  Synopsis:
*     Integer (boolean), read-only.

*  Description:
*     This is a read-only boolean attribute that indicates the nature of
*     the specified axis. The attribute has a non-zero value if the
*     specified axis is a celestial latitude axis (Declination, Galactic
*     latitude, etc), and is zero otherwise.

*  Applicability:
*     SkyFrame
*        All SkyFrames have this attribute.

*  Notes:
*     - When specifying this attribute by name, it should be
*     subscripted with the number of the SkyFrame axis to be tested.
*att--
*/

/*
*att++
*  Name:
*     IsLonAxis(axis)

*  Purpose:
*     Is the specified celestial axis a longitude axis?

*  Type:
*     Public attribute.

*  Synopsis:
*     Integer (boolean), read-only.

*  Description:
*     This is a read-only boolean attribute that indicates the nature of
*     the specified axis. The attribute has a non-zero value if the
*     specified axis is a celestial longitude axis (Right Ascension, Galactic
*     longitude, etc), and is zero otherwise.

*  Applicability:
*     SkyFrame
*        All SkyFrames have this attribute.

*  Notes:
*     - When specifying this attribute by name, it should be
*     subscripted with the number of the SkyFrame axis to be tested.
*att--
*/

/*
*att++
*  Name:
*     LatAxis

*  Purpose:
*     Index of the latitude axis.

*  Type:
*     Public attribute.

*  Synopsis:
*     Integer.

*  Description:
*     This read-only attribute gives the index (1 or 2) of the latitude
*     axis within the SkyFrame (taking into account any current axis
*     permutations).

*  Applicability:
*     SkyFrame
*        All SkyFrames have this attribute.

*att--
*/

/*
*att++
*  Name:
*     LonAxis

*  Purpose:
*     Index of the longitude axis.

*  Type:
*     Public attribute.

*  Synopsis:
*     Integer.

*  Description:
*     This read-only attribute gives the index (1 or 2) of the longitude
*     axis within the SkyFrame (taking into account any current axis
*     permutations).

*  Applicability:
*     SkyFrame
*        All SkyFrames have this attribute.

*att--
*/

/*
*att++
*  Name:
*     NegLon

*  Purpose:
*     Display negative longitude values?

*  Type:
*     Public attribute.

*  Synopsis:
*     Integer (boolean).

*  Description:
*     This attribute is a boolean value which controls how longitude values
c     are normalized for display by astNorm.
f     are normalized for display by AST_NORM.
*
*     If the NegLon attribute is zero, then normalized
*     longitude values will be in the range zero to 2.pi. If NegLon is
*     non-zero, then normalized longitude values will be in the range -pi
*     to pi.
*
*     The default value depends on the current value of the SkyRefIs
*     attribute, If SkyRefIs has a value of "Origin", then the default for
*     NegLon is one, otherwise the default is zero.

*  Applicability:
*     SkyFrame
*        All SkyFrames have this attribute.
*att--
*/
/* Clear the NegLon value by setting it to -INT_MAX. */
astMAKE_CLEAR(SkyFrame,NegLon,neglon,-INT_MAX)

/* Supply a default of 0 for absolute coords and 1 for offset coords if
   no NegLon value has been set. */
astMAKE_GET(SkyFrame,NegLon,int,0,( ( this->neglon != -INT_MAX ) ?
this->neglon : (( astGetSkyRefIs( this ) == AST__ORIGIN_REF )? 1 : 0)))

/* Set a NegLon value of 1 if any non-zero value is supplied. */
astMAKE_SET(SkyFrame,NegLon,int,neglon,( value != 0 ))

/* The NegLon value is set if it is not -INT_MAX. */
astMAKE_TEST(SkyFrame,NegLon,( this->neglon != -INT_MAX ))

/*
*att++
*  Name:
*     SkyTol

*  Purpose:
*     The smallest significant shift in sky coordinates.

*  Type:
*     Public attribute.

*  Synopsis:
*     Floating point.

*  Description:
*     This attribute indicates the accuracy of the axis values that will
*     be represented by the SkyFrame. If the arc-distance between two
*     positions within the SkyFrame is smaller than the value of SkyTol,
*     then the two positions will (for the puposes indicated below) be
*     considered to be co-incident.
*
*     This value is used only when constructing the Mapping between
*     two different SkyFrames (for instance, when calling
c     astConvert or astFindFrame).
f     AST_CONVERT or AST_FINDFRAME).
*     If the transformation between the two SkyFrames causes positions to
*     shift by less than SkyTol arc-seconds, then the transformation is
*     replaced by a UnitMap.  This could in certain circumatances allow
*     major simplifications to be made to the transformation between
*     any pixel grids associated with the two SkyFrames (for instance, if
*     each SkyFrame is part of the WCS FrameSet associated with an image).
*
*     A common case is when two SkyFrames use the FK5 system, but have
*     slightly different Epoch values. If the AlignSystem attribute has
*     its default value of "ICRS", then the transformation between the
*     two SkyFrames will include a very small rotation (FK5 rotates with
*     respect to ICRS as a rate of about 0.0005 arc-seconds per year). In
*     most circumstances such a small rotation is insignificant. Setting
*     SkyTol to some suitably small non-zero value will cause this
*     rotation to be ignored, allowing much simpler transformations to
*     be used.
*
*     The test to determine the shift introduced by transforming between
*     the two SkyFrames is performed by transforming a set of 14 position
*     spread evenly over the whole sky. The largest shift produced at any
*     of these 14 positions is compared to the value of SkyTol.
*
*     The SkyTol value is in units of arc-seconds, and the default value
*     is 0.001.

*  Applicability:
*     SkyFrame
*        All SkyFrames have this attribute.
*att--
*/
astMAKE_CLEAR(SkyFrame,SkyTol,skytol,AST__BAD)
astMAKE_GET(SkyFrame,SkyTol,double,0.001,((this->skytol!=AST__BAD)?this->skytol:0.001))
astMAKE_SET(SkyFrame,SkyTol,double,skytol,fabs(value))
astMAKE_TEST(SkyFrame,SkyTol,(this->skytol!=AST__BAD))

/*
*att++
*  Name:
*     Projection

*  Purpose:
*     Sky projection description.

*  Type:
*     Public attribute.

*  Synopsis:
*     String.

*  Description:
*     This attribute provides a place to store a description of the
*     type of sky projection used when a SkyFrame is attached to a
*     2-dimensional object, such as an image or plotting surface. For
*     example, typical values might be "orthographic", "Hammer-Aitoff"
*     or "cylindrical equal area".
*
*     The Projection value is purely descriptive and does not affect
*     the celestial coordinate system represented by the SkyFrame in
*     any way. If it is set to a non-blank string, the description
*     provided may be used when forming the default value for the
*     SkyFrame's Title attribute (so that typically it will appear in
*     graphical output, for instance). The default value is an empty
*     string.

*  Applicability:
*     SkyFrame
*        All SkyFrames have this attribute.
*att--
*/
/* Clear the Projection value by freeing the allocated memory and
   assigning a NULL pointer. */
astMAKE_CLEAR(SkyFrame,Projection,projection,astFree( this->projection ))

/* If the Projection value is not set, return a pointer to an empty
   string. */
astMAKE_GET(SkyFrame,Projection,const char *,NULL,( this->projection ?
                                                    this->projection : "" ))

/* Set a Projection value by freeing any previously allocated memory,
   allocating new memory, storing the string and saving the pointer to
   the copy. */
astMAKE_SET(SkyFrame,Projection,const char *,projection,astStore(
                     this->projection, value, strlen( value ) + (size_t) 1 ))

/* The Projection value is set if the pointer to it is not NULL. */
astMAKE_TEST(SkyFrame,Projection,( this->projection != NULL ))

/*
*att++
*  Name:
*     SkyRefIs

*  Purpose:
*     Selects the nature of the offset coordinate system.

*  Type:
*     Public attribute.

*  Synopsis:
*     String.

*  Description:
*     This attribute controls how the values supplied for the SkyRef and
*     SkyRefP attributes are used. These three attributes together allow
*     a SkyFrame to represent offsets relative to some specified origin
*     or pole within the coordinate system specified by the System attribute,
*     rather than absolute axis values. SkyRefIs can take one of the
*     case-insensitive values "Origin", "Pole" or "Ignored".
*
*     If SkyRefIs is set to "Origin", then the coordinate system
*     represented by the SkyFrame is modified to put the origin of longitude
*     and latitude at the position specified by the SkyRef attribute.
*
*     If SkyRefIs is set to "Pole", then the coordinate system represented
*     by the SkyFrame is modified to put the north pole at the position
*     specified by the SkyRef attribute.
*
*     If SkyRefIs is set to "Ignored" (the default), then any value set for the
*     SkyRef attribute is ignored, and the SkyFrame represents the coordinate
*     system specified by the System attribute directly without any rotation.

*  Applicability:
*     SkyFrame
*        All SkyFrames have this attribute.

*att--
*/
astMAKE_CLEAR(SkyFrame,SkyRefIs,skyrefis,AST__BAD_REF)
astMAKE_SET(SkyFrame,SkyRefIs,int,skyrefis,value)
astMAKE_TEST(SkyFrame,SkyRefIs,( this->skyrefis != AST__BAD_REF ))
astMAKE_GET(SkyFrame,SkyRefIs,int,AST__IGNORED_REF,(this->skyrefis == AST__BAD_REF ? AST__IGNORED_REF : this->skyrefis))

/*
*att++
*  Name:
*     SkyRef(axis)

*  Purpose:
*     Position defining the offset coordinate system.

*  Type:
*     Public attribute.

*  Synopsis:
*     Floating point.

*  Description:
*     This attribute allows a SkyFrame to represent offsets, rather than
*     absolute axis values, within the coordinate system specified by the
*     System attribute. If supplied, SkyRef should be set to hold the
*     longitude and latitude of a point within the coordinate system
*     specified by the System attribute. The coordinate system represented
*     by the SkyFrame will then be rotated in order to put the specified
*     position at either the pole or the origin of the new coordinate system
*     (as indicated by the SkyRefIs attribute). The orientation of the
*     modified coordinate system is then controlled using the SkyRefP
*     attribute.
*
*     If an integer axis index is included in the attribute name (e.g.
*     "SkyRef(1)") then the attribute value should be supplied as a single
*     floating point axis value, in radians, when setting a value for the
*     attribute, and will be returned in the same form when getting the value
*     of the attribute. In this case the integer axis index should be "1"
*     or "2" (the values to use for longitude and latitude axes are
*     given by the LonAxis and LatAxis attributes).
*
*     If no axis index is included in the attribute name (e.g. "SkyRef") then
*     the attribute value should be supplied as a character string
*     containing two formatted axis values (an axis 1 value followed by a
*     comma, followed by an axis 2 value). The same form
*     will be used when getting the value of the attribute.
*
*     The default values for SkyRef are zero longitude and zero latitude.

*  Aligning SkyFrames with Offset Coordinate Systems:
*     The offset coordinate system within a SkyFrame should normally be
*     considered as a superficial "re-badging" of the axes of the coordinate
*     system specified by the System attribute - it merely provides an
*     alternative numerical "label" for each position in the System coordinate
*     system. The SkyFrame retains full knowledge of the celestial coordinate
*     system on which the offset coordinate system is based (given by the
*     System attribute). For instance, the SkyFrame retains knowledge of the
*     way that one celestial coordinate system may "drift" with respect to
*     another over time. Normally, if you attempt to align two SkyFrames (e.g.
f     using the AST_CONVERT or AST_FINDFRAME routine),
c     using the astConvert or astFindFrame routine),
*     the effect of any offset coordinate system defined in either SkyFrame
*     will be removed, resulting in alignment being performed in the
*     celestial coordinate system given by the AlignSystem attribute.
*     However, by setting the AlignOffset attribute to a non-zero value, it
*     is possible to change this behaviour so that the effect of the offset
*     coordinate system is not removed when aligning two SkyFrames.

*  Applicability:
*     SkyFrame
*        All SkyFrames have this attribute.

*  Notes:
*     - If the System attribute of the SkyFrame is changed, any position
*     given for SkyRef is transformed into the new System.
*     - If a value has been assigned to SkyRef attribute, then
*     the default values for certain attributes are changed as follows:
*     the default axis Labels for the SkyFrame are modified by appending
*     " offset" to the end, the default axis Symbols for the SkyFrame are
*     modified by prepending the character "D" to the start, and the
*     default title is modified by replacing the projection information by the
*     origin information.

*att--
*/
MAKE_CLEAR(SkyRef,skyref,AST__BAD,2)
MAKE_SET(SkyRef,double,skyref,value,2)
MAKE_TEST(SkyRef,( this->skyref[axis_p] != AST__BAD ),2)
MAKE_GET(SkyRef,double,0.0,((this->skyref[axis_p]!=AST__BAD)?this->skyref[axis_p]:0.0),2)

/*
*att++
*  Name:
*     SkyRefP(axis)

*  Purpose:
*     Position on primary meridian of offset coordinate system.

*  Type:
*     Public attribute.

*  Synopsis:
*     Floating point.

*  Description:
*     This attribute is used to control the orientation of the offset
*     coordinate system defined by attributes SkyRef and SkyRefIs. If used,
*     it should be set to hold the longitude and latitude of a point within
*     the coordinate system specified by the System attribute. The offset
*     coordinate system represented by the SkyFrame will then be rotated in
*     order to put the position supplied for SkyRefP on the zero longitude
*     meridian. This rotation is about an axis from the centre of the
*     celestial sphere to the point specified by the SkyRef attribute.
*     The default value for SkyRefP is usually the north pole (that is, a
*     latitude of +90 degrees in the coordinate system specified by the System
*     attribute). The exception to this is if the SkyRef attribute is
*     itself set to either the north or south pole. In these cases the
*     default for SkyRefP is the origin (that is, a (0,0) in the coordinate
*     system specified by the System attribute).
*
*     If an integer axis index is included in the attribute name (e.g.
*     "SkyRefP(1)") then the attribute value should be supplied as a single
*     floating point axis value, in radians, when setting a value for the
*     attribute, and will be returned in the same form when getting the value
*     of the attribute. In this case the integer axis index should be "1"
*     or "2" (the values to use for longitude and latitude axes are
*     given by the LonAxis and LatAxis attributes).
*
*     If no axis index is included in the attribute name (e.g. "SkyRefP") then
*     the attribute value should be supplied as a character string
*     containing two formatted axis values (an axis 1 value followed by a
*     comma, followed by an axis 2 value). The same form
*     will be used when getting the value of the attribute.

*  Applicability:
*     SkyFrame
*        All SkyFrames have this attribute.

*  Notes:
*     - If the position given by the SkyRef attribute defines the origin
*     of the offset coordinate system (that is, if the SkyRefIs attribute
*     is set to "origin"), then there will in general be two orientations
*     which will put the supplied SkyRefP position on the zero longitude
*     meridian. The orientation which is actually used is the one which
*     gives the SkyRefP position a positive latitude in the offset coordinate
*     system (the other possible orientation would give the SkyRefP position
*     a negative latitude).
*     - An error will be reported if an attempt is made to use a
*     SkyRefP value which is co-incident with SkyRef or with the point
*     diametrically opposite to SkyRef on the celestial sphere. The
*     reporting of this error is deferred until the SkyRef and SkyRefP
*     attribute values are used within a calculation.
*     - If the System attribute of the SkyFrame is changed, any position
*     given for SkyRefP is transformed into the new System.

*att--
*/
MAKE_CLEAR(SkyRefP,skyrefp,AST__BAD,2)
MAKE_SET(SkyRefP,double,skyrefp,value,2)
MAKE_TEST(SkyRefP,( this->skyrefp[axis_p] != AST__BAD ),2)

/* Copy constructor. */
/* ----------------- */
static void Copy( const AstObject *objin, AstObject *objout, int *status ) {
/*
*  Name:
*     Copy

*  Purpose:
*     Copy constructor for SkyFrame objects.

*  Type:
*     Private function.

*  Synopsis:
*     void Copy( const AstObject *objin, AstObject *objout, int *status )

*  Description:
*     This function implements the copy constructor for SkyFrame objects.

*  Parameters:
*     objin
*        Pointer to the object to be copied.
*     objout
*        Pointer to the object being constructed.
*     status
*        Pointer to the inherited status variable.

*  Notes:
*     -  This constructor makes a deep copy.
*/

/* Local Variables: */
   AstSkyFrame *in;              /* Pointer to input SkyFrame */
   AstSkyFrame *out;             /* Pointer to output SkyFrame */

/* Check the global error status. */
   if ( !astOK ) return;

/* Obtain pointers to the input and output SkyFrames. */
   in = (AstSkyFrame *) objin;
   out = (AstSkyFrame *) objout;

/* For safety, first clear any references to the input memory from
   the output SkyFrame. */
   out->projection = NULL;

/* If necessary, allocate memory in the output SkyFrame and store a
   copy of the input Projection string. */
   if ( in->projection ) out->projection = astStore( NULL, in->projection,
                                      strlen( in->projection ) + (size_t) 1 );

/* If an error occurred, free any allocated memory. */
   if ( !astOK ) {
      out->projection = astFree( out->projection );
   }
}

/* Destructor. */
/* ----------- */
static void Delete( AstObject *obj, int *status ) {
/*
*  Name:
*     Delete

*  Purpose:
*     Destructor for SkyFrame objects.

*  Type:
*     Private function.

*  Synopsis:
*     void Delete( AstObject *obj, int *status )

*  Description:
*     This function implements the destructor for SkyFrame objects.

*  Parameters:
*     obj
*        Pointer to the object to be deleted.
*     status
*        Pointer to the inherited status variable.

*  Notes:
*     This function attempts to execute even if the global error status is
*     set.
*/

/* Local Variables: */
   AstSkyFrame *this;            /* Pointer to SkyFrame */

/* Obtain a pointer to the SkyFrame structure. */
   this = (AstSkyFrame *) obj;

/* Free the memory used for the Projection string if necessary. */
   this->projection = astFree( this->projection );
}

/* Dump function. */
/* -------------- */
static void Dump( AstObject *this_object, AstChannel *channel, int *status ) {
/*
*  Name:
*     Dump

*  Purpose:
*     Dump function for SkyFrame objects.

*  Type:
*     Private function.

*  Synopsis:
*     void Dump( AstObject *this, AstChannel *channel, int *status )

*  Description:
*     This function implements the Dump function which writes out data
*     for the SkyFrame class to an output Channel.

*  Parameters:
*     this
*        Pointer to the SkyFrame whose data are being written.
*     channel
*        Pointer to the Channel to which the data are being written.
*     status
*        Pointer to the inherited status variable.
*/

/* Local Variables: */
   AstSkyFrame *this;            /* Pointer to the SkyFrame structure */
   AstSystemType system;         /* System attribute value */
   char buf[ 100 ];              /* Comment buffer */
   char key[ 10 ];               /* Buffer for keywords */
   const char *sval;             /* Pointer to string value */
   const int *perm;              /* Pointer to axis permutation array */
   double dval;                  /* Double value */
   int bessyr;                   /* Use a Besselian year value ?*/
   int helpful;                  /* Helpful to display un-set value? */
   int invperm[ 2 ];             /* Inverse permutation array */
   int ival;                     /* Integer value */
   int set;                      /* Attribute value set? */
   int axis;                     /* External (i.e. permuted) zero-based axis index */
   int axis_p;                   /* Internal zero-based axis index */

/* Check the global error status. */
   if ( !astOK ) return;

/* Obtain a pointer to the SkyFrame structure. */
   this = (AstSkyFrame *) this_object;

/* Get a pointer to the SkyFrame's axis permutation array (using a method,
   to allow for any over-ride by a derived class). */
   perm = astGetPerm( this );

/* Generate an inverse axis permutation array from the forward permutation
   values. This will be used to determine which axis should be enquired
   about (using possibly over-ridden methods) to obtain data to
   correspond with a particular internal value (i.e. instance variable)
   relating to an axis. This step is needed so that the effect of any
   axis permutation can be un-done before values are written out, as
   output values are written by this function in un-permuted order. */
   for ( axis = 0; axis < 2; axis++ ) invperm[ perm[ axis ] ] = axis;

/* Write out values representing the instance variables for the
   SkyFrame class.  Accompany these with appropriate comment strings,
   possibly depending on the values being written.*/

/* In the case of attributes, we first use the appropriate (private)
   Test...  member function to see if they are set. If so, we then use
   the (private) Get... function to obtain the value to be written
   out.

   For attributes which are not set, we use the astGet... method to
   obtain the value instead. This will supply a default value
   (possibly provided by a derived class which over-rides this method)
   which is more useful to a human reader as it corresponds to the
   actual default attribute value.  Since "set" will be zero, these
   values are for information only and will not be read back. */

/* Projection. */
/* ----------- */
   set = TestProjection( this, status );
   sval = set ? GetProjection( this, status ) : astGetProjection( this );
   astWriteString( channel, "Proj", set, 0, sval,
                   "Description of sky projection" );

/* NegLon. */
/* ------- */
   set = TestNegLon( this, status );
   ival = set ? GetNegLon( this, status ) : astGetNegLon( this );
   astWriteInt( channel, "NegLon", set, 0, ival,
                ival ? "Display negative longitude values" :
                       "Display positive longitude values" );

/* SkyTol. */
/* ------- */
   set = TestSkyTol( this, status );
   dval = set ? GetSkyTol( this, status ) : astGetSkyTol( this );
   astWriteDouble( channel, "SkyTol", set, 1, dval,
                   "Smallest significant separation [arc-sec]");

/* Equinox. */
/* -------- */
   set = TestEquinox( this, status );
   dval = set ? GetEquinox( this, status ) : astGetEquinox( this );

/* Decide whether the Equinox value is relevant to the current
   coordinate system. */
   system = astGetSystem( this );
   helpful = ( ( system == AST__FK4 ) ||
               ( system == AST__FK4_NO_E ) ||
               ( system == AST__FK5 ) ||
               ( system == AST__ECLIPTIC ) );

/* Convert MJD to Besselian or Julian years, depending on the value. */
   bessyr = ( dval < palEpj2d( 1984.0 ) );
   dval = bessyr ? palEpb( dval ) : palEpj( dval );
   astWriteDouble( channel, "Eqnox", set, helpful, dval,
                   bessyr ? "Besselian epoch of mean equinox" :
                            "Julian epoch of mean equinox" );

/* SkyRefIs. */
/* --------- */
   set = TestSkyRefIs( this, status );
   ival = set ? GetSkyRefIs( this, status ) : astGetSkyRefIs( this );
   if( ival == AST__POLE_REF ) {
      astWriteString( channel, "SRefIs", set, 0, POLE_STRING,
                      "Rotated to put pole at ref. pos." );

   } else if( ival == AST__IGNORED_REF ) {
      astWriteString( channel, "SRefIs", set, 0, IGNORED_STRING,
                      "Not rotated (ref. pos. is ignored)" );

   } else {
      astWriteString( channel, "SRefIs", set, 0, ORIGIN_STRING,
                      "Rotated to put origin at ref. pos." );
   }

/* SkyRef. */
/* ------- */
/* The inverse axis permutation array is used to obtain the axis index
   to use when accessing the SkyRef attribute. This reverses the effect
   of the SkyFrame's axis permutation array and yields a value appropriate
   to the axis with internal index "axis". */
   for ( axis_p = 0; axis_p < 2; axis_p++ ) {
      axis = invperm[ axis_p ];

      set = TestSkyRef( this, axis, status );
      dval = set ? GetSkyRef( this, axis, status ) : astGetSkyRef( this, axis );
      sprintf( buf, "Ref. pos. %s %s", astGetSymbol( this, axis ),
               astFormat( this, axis, dval ) );
      sprintf( key, "SRef%d", axis_p + 1 );
      astWriteDouble( channel, key, set, 0, dval, buf );
   }

/* SkyRefP. */
/* -------- */
   for ( axis_p = 0; axis_p < 2; axis_p++ ) {
      axis = invperm[ axis_p ];

      set = TestSkyRefP( this, axis, status );
      dval = set ? GetSkyRefP( this, axis, status ) : astGetSkyRefP( this, axis );
      sprintf( buf, "Ref. north %s %s", astGetSymbol( this, axis ),
               astFormat( this, axis, dval ) );
      sprintf( key, "SRefP%d", axis_p + 1 );
      astWriteDouble( channel, key, set, 0, dval, buf );
   }

/* AlignOffset. */
/* ------------ */
   set = TestAlignOffset( this, status );
   ival = set ? GetAlignOffset( this, status ) : astGetAlignOffset( this );
   astWriteInt( channel, "AlOff", set, 0, ival,
                ival ? "Align in offset coords" :
                       "Align in system coords" );
}

/* Standard class functions. */
/* ========================= */
/* Implement the astIsASkyFrame and astCheckSkyFrame functions using the macros
   defined for this purpose in the "object.h" header file. */
astMAKE_ISA(SkyFrame,Frame)
astMAKE_CHECK(SkyFrame)

AstSkyFrame *astSkyFrame_( const char *options, int *status, ...) {
/*
*+
*  Name:
*     astSkyFrame

*  Purpose:
*     Create a SkyFrame.

*  Type:
*     Protected function.

*  Synopsis:
*     #include "skyframe.h"
*     AstSkyFrame *astSkyFrame( const char *options, int *status, ... )

*  Class Membership:
*     SkyFrame constructor.

*  Description:
*     This function creates a new SkyFrame and optionally initialises its
*     attributes.

*  Parameters:
*     options
*        Pointer to a null terminated string containing an optional
*        comma-separated list of attribute assignments to be used for
*        initialising the new SkyFrame. The syntax used is the same as for the
*        astSet method and may include "printf" format specifiers identified
*        by "%" symbols in the normal way.
*     status
*        Pointer to the inherited status variable.
*     ...
*        If the "options" string contains "%" format specifiers, then an
*        optional list of arguments may follow it in order to supply values to
*        be substituted for these specifiers. The rules for supplying these
*        are identical to those for the astSet method (and for the C "printf"
*        function).

*  Returned Value:
*     A pointer to the new SkyFrame.

*  Notes:
*     -  A NULL pointer will be returned if this function is invoked with the
*     global error status set, or if it should fail for any reason.
*-

*  Implementation Notes:
*     - This function implements the basic SkyFrame constructor which
*     is available via the protected interface to the SkyFrame class.
*     A public interface is provided by the astSkyFrameId_ function.
*/

/* Local Variables: */
   astDECLARE_GLOBALS            /* Pointer to thread-specific global data */
   AstSkyFrame *new;             /* Pointer to new SkyFrame */
   va_list args;                 /* Variable argument list */

/* Get a pointer to the thread specific global data structure. */
   astGET_GLOBALS(NULL);

/* Check the global status. */
   if ( !astOK ) return NULL;

/* Initialise the SkyFrame, allocating memory and initialising the virtual
   function table as well if necessary. */
   new = astInitSkyFrame( NULL, sizeof( AstSkyFrame ), !class_init, &class_vtab,
                          "SkyFrame" );

/* If successful, note that the virtual function table has been initialised. */
   if ( astOK ) {
      class_init = 1;

/* Obtain the variable argument list and pass it along with the options string
   to the astVSet method to initialise the new SkyFrame's attributes. */
      va_start( args, status );
      astVSet( new, options, NULL, args );
      va_end( args );

/* If an error occurred, clean up by deleting the new object. */
      if ( !astOK ) new = astDelete( new );
   }

/* Return a pointer to the new SkyFrame. */
   return new;
}

AstSkyFrame *astInitSkyFrame_( void *mem, size_t size, int init,
                               AstSkyFrameVtab *vtab, const char *name, int *status ) {
/*
*+
*  Name:
*     astInitSkyFrame

*  Purpose:
*     Initialise a SkyFrame.

*  Type:
*     Protected function.

*  Synopsis:
*     #include "skyframe.h"
*     AstSkyFrame *astInitSkyFrame( void *mem, size_t size, int init,
*                                   AstFrameVtab *vtab, const char *name )

*  Class Membership:
*     SkyFrame initialiser.

*  Description:
*     This function is provided for use by class implementations to initialise
*     a new SkyFrame object. It allocates memory (if necessary) to accommodate
*     the SkyFrame plus any additional data associated with the derived class.
*     It then initialises a SkyFrame structure at the start of this memory. If
*     the "init" flag is set, it also initialises the contents of a virtual
*     function table for a SkyFrame at the start of the memory passed via the
*     "vtab" parameter.

*  Parameters:
*     mem
*        A pointer to the memory in which the SkyFrame is to be created. This
*        must be of sufficient size to accommodate the SkyFrame data
*        (sizeof(SkyFrame)) plus any data used by the derived class. If a value
*        of NULL is given, this function will allocate the memory itself using
*        the "size" parameter to determine its size.
*     size
*        The amount of memory used by the SkyFrame (plus derived class data).
*        This will be used to allocate memory if a value of NULL is given for
*        the "mem" parameter. This value is also stored in the SkyFrame
*        structure, so a valid value must be supplied even if not required for
*        allocating memory.
*     init
*        A logical flag indicating if the SkyFrame's virtual function table is
*        to be initialised. If this value is non-zero, the virtual function
*        table will be initialised by this function.
*     vtab
*        Pointer to the start of the virtual function table to be associated
*        with the new SkyFrame.
*     name
*        Pointer to a constant null-terminated character string which contains
*        the name of the class to which the new object belongs (it is this
*        pointer value that will subsequently be returned by the astGetClass
*        method).

*  Returned Value:
*     A pointer to the new SkyFrame.

*  Notes:
*     -  A null pointer will be returned if this function is invoked with the
*     global error status set, or if it should fail for any reason.
*-
*/

/* Local Variables: */
   AstSkyAxis *ax;               /* Pointer to SkyAxis object */
   AstSkyFrame *new;             /* Pointer to the new SkyFrame */
   int axis;                     /* Loop counter for axes */

/* Check the global status. */
   if ( !astOK ) return NULL;

/* If necessary, initialise the virtual function table. */
   if ( init ) astInitSkyFrameVtab( vtab, name );

/* Initialise a Frame structure (the parent class) as the first component
   within the SkyFrame structure, allocating memory if necessary. */
   new = (AstSkyFrame *) astInitFrame( mem, size, 0,
                                       (AstFrameVtab *) vtab, name, 2 );

      if ( astOK ) {

/* Initialise the SkyFrame data. */
/* ----------------------------- */
/* Initialise all attributes to their "undefined" values. */
      new->equinox = AST__BAD;
      new->projection = NULL;
      new->neglon = -INT_MAX;
      new->skytol = AST__BAD;
      new->alignoffset = -INT_MAX;
      new->skyrefis = AST__BAD_REF;
      new->skyref[ 0 ] = AST__BAD;
      new->skyref[ 1 ] = AST__BAD;
      new->skyrefp[ 0 ] = AST__BAD;
      new->skyrefp[ 1 ] = AST__BAD;
      new->last = AST__BAD;
      new->eplast = AST__BAD;
      new->klast = AST__BAD;
      new->diurab = AST__BAD;

/* Loop to replace the Axis object associated with each SkyFrame axis with
   a SkyAxis object instead. */
      for ( axis = 0; axis < 2; axis++ ) {

/* Create the new SkyAxis, assign it to the required SkyFrame axis and then
   annul the SkyAxis pointer. */
         ax = astSkyAxis( "", status );
         astSetAxis( new, axis, ax );
         ax = astAnnul( ax );
      }

/* If an error occurred, clean up by deleting the new object. */
      if ( !astOK ) new = astDelete( new );
   }

/* Return a pointer to the new object. */
   return new;
}

AstSkyFrame *astLoadSkyFrame_( void *mem, size_t size,
                               AstSkyFrameVtab *vtab, const char *name,
                               AstChannel *channel, int *status ) {
/*
*+
*  Name:
*     astLoadSkyFrame

*  Purpose:
*     Load a SkyFrame.

*  Type:
*     Protected function.

*  Synopsis:
*     #include "skyframe.h"
*     AstSkyFrame *astLoadSkyFrame( void *mem, size_t size,
*                                    AstSkyFrameVtab *vtab, const char *name,
*                                    AstChannel *channel )

*  Class Membership:
*     SkyFrame loader.

*  Description:
*     This function is provided to load a new SkyFrame using data read
*     from a Channel. It first loads the data used by the parent class
*     (which allocates memory if necessary) and then initialises a
*     SkyFrame structure in this memory, using data read from the
*     input Channel.

*  Parameters:
*     mem
*        A pointer to the memory into which the SkyFrame is to be
*        loaded.  This must be of sufficient size to accommodate the
*        SkyFrame data (sizeof(SkyFrame)) plus any data used by
*        derived classes. If a value of NULL is given, this function
*        will allocate the memory itself using the "size" parameter to
*        determine its size.
*     size
*        The amount of memory used by the SkyFrame (plus derived class
*        data).  This will be used to allocate memory if a value of
*        NULL is given for the "mem" parameter. This value is also
*        stored in the SkyFrame structure, so a valid value must be
*        supplied even if not required for allocating memory.
*
*        If the "vtab" parameter is NULL, the "size" value is ignored
*        and sizeof(AstSkyFrame) is used instead.
*     vtab
*        Pointer to the start of the virtual function table to be
*        associated with the new SkyFrame. If this is NULL, a pointer
*        to the (static) virtual function table for the SkyFrame class
*        is used instead.
*     name
*        Pointer to a constant null-terminated character string which
*        contains the name of the class to which the new object
*        belongs (it is this pointer value that will subsequently be
*        returned by the astGetClass method).
*
*        If the "vtab" parameter is NULL, the "name" value is ignored
*        and a pointer to the string "SkyFrame" is used instead.

*  Returned Value:
*     A pointer to the new SkyFrame.

*  Notes:
*     - A null pointer will be returned if this function is invoked
*     with the global error status set, or if it should fail for any
*     reason.
*-
*/

/* Local Variables: */
   AstSkyFrame *new;             /* Pointer to the new SkyFrame */
   astDECLARE_GLOBALS            /* Pointer to thread-specific global data */
   char *sval;                   /* Pointer to string value */
   const int *perm;              /* Pointer to axis permutation array */
   double dval;                  /* Floating point attribute value */
   int axis;                     /* External axis index */
   int invperm[ 2 ];             /* Inverse permutation array */

/* Initialise. */
   new = NULL;

/* Get a pointer to the thread specific global data structure. */
   astGET_GLOBALS(channel);

/* Check the global error status. */
   if ( !astOK ) return new;

/* If a NULL virtual function table has been supplied, then this is
   the first loader to be invoked for this SkyFrame. In this case the
   SkyFrame belongs to this class, so supply appropriate values to be
   passed to the parent class loader (and its parent, etc.). */
   if ( !vtab ) {
      size = sizeof( AstSkyFrame );
      vtab = &class_vtab;
      name = "SkyFrame";

/* If required, initialise the virtual function table for this class. */
      if ( !class_init ) {
         astInitSkyFrameVtab( vtab, name );
         class_init = 1;
      }
   }

/* Invoke the parent class loader to load data for all the ancestral
   classes of the current one, returning a pointer to the resulting
   partly-built SkyFrame. */
   new = astLoadFrame( mem, size, (AstFrameVtab *) vtab, name,
                       channel );

   if ( astOK ) {

/* Get a pointer to the SkyFrame's axis permutation array (using a method,
   to allow for any over-ride by a derived class). */
      perm = astGetPerm( new );

/* Generate an inverse axis permutation array from the forward permutation
   values. This will be used to determine which axis should be enquired
   about (using possibly over-ridden methods) to obtain data to
   correspond with a particular internal value (i.e. instance variable)
   relating to an axis. This step is needed so that the effect of any
   axis permutation can be un-done before values are written out, as
   output values are written by this function in un-permuted order. */
      for( axis = 0; axis < 2; axis++ ) invperm[ perm[ axis ] ] = axis;

/* Read input data. */
/* ================ */
/* Request the input Channel to read all the input data appropriate to
   this class into the internal "values list". */
      astReadClassData( channel, "SkyFrame" );

/* Now read each individual data item from this list and use it to
   initialise the appropriate instance variable(s) for this class. */

/* In the case of attributes, we first read the "raw" input value,
   supplying the "unset" value as the default. If a "set" value is
   obtained, we then use the appropriate (private) Set... member
   function to validate and set the value properly. */

/* The attributes defining the offset coordinate system must be loaded
   before the System attrivbute, since SetSystem uses them. */

/* AlignOffset */
/* ----------- */
      new->alignoffset = astReadInt( channel, "aloff", -INT_MAX );
      if ( TestAlignOffset( new, status ) ) SetAlignOffset( new, new->alignoffset, status );

/* SkyRefIs. */
/* --------- */
      sval = astReadString( channel, "srefis", " " );
      if( sval ){
         new->skyrefis = AST__BAD_REF;
         if( astChrMatch( sval, POLE_STRING ) ) {
            new->skyrefis = AST__POLE_REF;
         } else if( astChrMatch( sval, ORIGIN_STRING ) ) {
            new->skyrefis = AST__ORIGIN_REF;
         } else if( astChrMatch( sval, IGNORED_STRING ) ) {
            new->skyrefis = AST__IGNORED_REF;
         } else if( !astChrMatch( sval, " " ) && astOK ){
	    astError( AST__INTER, "astRead(SkyFrame): Corrupt SkyFrame contains "
		      "invalid SkyRefIs attribute value (%s).", status, sval );
         }
         if( TestSkyRefIs( new, status ) ) SetSkyRefIs( new, new->skyrefis, status );
         sval = astFree( sval );
      }

/* SkyRef. */
/* ------- */
      new->skyref[ 0 ] = astReadDouble( channel, "sref1", AST__BAD );
      axis = invperm[ 0 ];
      if ( TestSkyRef( new, axis, status ) ) SetSkyRef( new, axis, new->skyref[ 0 ], status );

      new->skyref[ 1 ] = astReadDouble( channel, "sref2", AST__BAD );
      axis = invperm[ 1 ];
      if ( TestSkyRef( new, axis, status ) ) SetSkyRef( new, axis, new->skyref[ 1 ], status );

/* SkyRefP. */
/* -------- */
      new->skyrefp[ 0 ] = astReadDouble( channel, "srefp1", AST__BAD );
      axis = invperm[ 0 ];
      if ( TestSkyRefP( new, axis, status ) ) SetSkyRefP( new, axis, new->skyrefp[ 0 ], status );

      new->skyrefp[ 1 ] = astReadDouble( channel, "srefp2", AST__BAD );
      axis = invperm[ 1 ];
      if ( TestSkyRefP( new, axis, status ) ) SetSkyRefP( new, axis, new->skyrefp[ 1 ], status );

/* System. */
/* ------- */
/* The System attribute is now part of the Frame class, but this code is
   retained to allow this version of AST to read SkyFrames dumped by
   previous versions.  */

/* Check a value has not already been assigned to the Frames System
   attribute.  */
      if( !astTestSystem( new ) ){

/* Read the external representation as a string. */
         sval = astReadString( channel, "system", NULL );

/* If a value was read, use the SetAttrib method to validate and store the
   new value in the correct place, then free the string. */
         if ( sval ) {
            astSet( new, "System=%s", status, sval);
            sval = astFree( sval );
         }
      }

/* Epoch. */
/* ------ */
/* The Epoch attribute is now part of the Frame class, but this code is
   retained to allow this version of AST to read SkyFrames dumped by
   previous versions.  */

/* Check a value has not already been assigned to the Frames Epoch
   attribute.  */
      if( !astTestEpoch( new ) ){

/* Get the value. */
         dval = astReadDouble( channel, "epoch", AST__BAD );

/* If a value was read, use the SetAttrib method to validate and store the
   new value in the correct place. */
         if( dval != AST__BAD ) {
            if( dval < 1984.0 ) {
               astSet( new, "Epoch=B%.*g", status, AST__DBL_DIG, dval);
            } else {
               astSet( new, "Epoch=J%.*g", status, AST__DBL_DIG, dval);
            }
         }
      }

/* Projection. */
/* ----------- */
      new->projection = astReadString( channel, "proj", NULL );

/* Equinox. */
/* -------- */
/* Interpret this as Besselian or Julian depending on its value. */
      new->equinox = astReadDouble( channel, "eqnox", AST__BAD );
      if ( TestEquinox( new, status ) ) {
         SetEquinox( new, ( new->equinox < 1984.0 ) ? palEpb2d( new->equinox ) :
                                                      palEpj2d( new->equinox ), status );
      }

/* NegLon. */
/* ------- */
      new->neglon = astReadInt( channel, "neglon", -INT_MAX );
      if ( TestNegLon( new, status ) ) SetNegLon( new, new->neglon, status );

/* SkyTol. */
/* ------- */
      new->skytol = astReadDouble( channel, "skytol", AST__BAD );
      if ( TestSkyTol( new, status ) ) SetSkyTol( new, new->skytol, status );

/* Other values */
/* ------------ */
      new->last = AST__BAD;
      new->eplast = AST__BAD;
      new->klast = AST__BAD;
      new->diurab = AST__BAD;

/* If an error occurred, clean up by deleting the new SkyFrame. */
      if ( !astOK ) new = astDelete( new );
   }

/* Return the new SkyFrame pointer. */
   return new;
}

/* Virtual function interfaces. */
/* ============================ */
/* These provide the external interface to the virtual functions defined by
   this class. Each simply checks the global error status and then locates and
   executes the appropriate member function, using the function pointer stored
   in the object's virtual function table (this pointer is located using the
   astMEMBER macro defined in "object.h").

   Note that the member function may not be the one defined here, as it may
   have been over-ridden by a derived class. However, it should still have the
   same interface. */
void astClearAsTime_( AstSkyFrame *this, int axis, int *status ) {
   if ( !astOK ) return;
   (**astMEMBER(this,SkyFrame,ClearAsTime))( this, axis, status );
}
int astGetAsTime_( AstSkyFrame *this, int axis, int *status ) {
   if ( !astOK ) return 0;
   return (**astMEMBER(this,SkyFrame,GetAsTime))( this, axis, status );
}
void astSetAsTime_( AstSkyFrame *this, int axis, int value, int *status ) {
   if ( !astOK ) return;
   (**astMEMBER(this,SkyFrame,SetAsTime))( this, axis, value, status );
}
int astTestAsTime_( AstSkyFrame *this, int axis, int *status ) {
   if ( !astOK ) return 0;
   return (**astMEMBER(this,SkyFrame,TestAsTime))( this, axis, status );
}
int astGetIsLatAxis_( AstSkyFrame *this, int axis, int *status ) {
   if ( !astOK ) return 0;
   return (**astMEMBER(this,SkyFrame,GetIsLatAxis))( this, axis, status );
}
int astGetIsLonAxis_( AstSkyFrame *this, int axis, int *status ) {
   if ( !astOK ) return 0;
   return (**astMEMBER(this,SkyFrame,GetIsLonAxis))( this, axis, status );
}
int astGetLatAxis_( AstSkyFrame *this, int *status ) {
   if ( !astOK ) return 1;
   return (**astMEMBER(this,SkyFrame,GetLatAxis))( this, status );
}
int astGetLonAxis_( AstSkyFrame *this, int *status ) {
   if ( !astOK ) return 0;
   return (**astMEMBER(this,SkyFrame,GetLonAxis))( this, status );
}
double astGetSkyRefP_( AstSkyFrame *this, int axis, int *status ) {
   if ( !astOK ) return 0.0;
   return (**astMEMBER(this,SkyFrame,GetSkyRefP))( this, axis, status );
}
AstMapping *astSkyOffsetMap_( AstSkyFrame *this, int *status ) {
   if ( !astOK ) return NULL;
   return (**astMEMBER(this,SkyFrame,SkyOffsetMap))( this, status );
}

/* Special public interface functions. */
/* =================================== */
/* These provide the public interface to certain special functions
   whose public interface cannot be handled using macros (such as
   astINVOKE) alone. In general, they are named after the
   corresponding protected version of the function, but with "Id"
   appended to the name. */

/* Public Interface Function Prototypes. */
/* ------------------------------------- */
/* The following functions have public prototypes only (i.e. no
   protected prototypes), so we must provide local prototypes for use
   within this module. */
AstSkyFrame *astSkyFrameId_( const char *, ... );

/* Special interface function implementations. */
/* ------------------------------------------- */
AstSkyFrame *astSkyFrameId_( const char *options, ... ) {
/*
*++
*  Name:
c     astSkyFrame
f     AST_SKYFRAME

*  Purpose:
*     Create a SkyFrame.

*  Type:
*     Public function.

*  Synopsis:
c     #include "skyframe.h"
c     AstSkyFrame *astSkyFrame( const char *options, ... )
f     RESULT = AST_SKYFRAME( OPTIONS, STATUS )

*  Class Membership:
*     SkyFrame constructor.

*  Description:
*     This function creates a new SkyFrame and optionally initialises
*     its attributes.
*
*     A SkyFrame is a specialised form of Frame which describes
*     celestial longitude/latitude coordinate systems. The particular
*     celestial coordinate system to be represented is specified by
*     setting the SkyFrame's System attribute (currently, the default
*     is ICRS) qualified, as necessary, by a mean Equinox value and/or
*     an Epoch.
*
*     For each of the supported celestial coordinate systems, a SkyFrame
*     can apply an optional shift of origin to create a coordinate system
*     representing offsets within the celestial coordinate system from some
*     specified point. This offset coordinate system can also be rotated to
*     define new longitude and latitude axes. See attributes SkyRef, SkyRefIs
*     and SkyRefP
*
*     All the coordinate values used by a SkyFrame are in
*     radians. These may be formatted in more conventional ways for
c     display by using astFormat.
f     display by using AST_FORMAT.

*  Parameters:
c     options
f     OPTIONS = CHARACTER * ( * ) (Given)
c        Pointer to a null-terminated string containing an optional
c        comma-separated list of attribute assignments to be used for
c        initialising the new SkyFrame. The syntax used is identical to
c        that for the astSet function and may include "printf" format
c        specifiers identified by "%" symbols in the normal way.
c        If no initialisation is required, a zero-length string may be
c        supplied.
f        A character string containing an optional comma-separated
f        list of attribute assignments to be used for initialising the
f        new SkyFrame. The syntax used is identical to that for the
f        AST_SET routine. If no initialisation is required, a blank
f        value may be supplied.
c     ...
c        If the "options" string contains "%" format specifiers, then
c        an optional list of additional arguments may follow it in
c        order to supply values to be substituted for these
c        specifiers. The rules for supplying these are identical to
c        those for the astSet function (and for the C "printf"
c        function).
f     STATUS = INTEGER (Given and Returned)
f        The global status.

*  Returned Value:
c     astSkyFrame()
f     AST_SKYFRAME = INTEGER
*        A pointer to the new SkyFrame.

*  Examples:
c     frame = astSkyFrame( "" );
c        Creates a SkyFrame to describe the default ICRS celestial
c        coordinate system.
c     frame = astSkyFrame( "System = FK5, Equinox = J2005, Digits = 10" );
c        Creates a SkyFrame to describe the FK5 celestial
c        coordinate system, with a mean Equinox of J2005.0.
c        Because especially accurate coordinates will be used,
c        additional precision (10 digits) has been requested. This will
c        be used when coordinate values are formatted for display.
c     frame = astSkyFrame( "System = FK4, Equinox = 1955-sep-2" );
c        Creates a SkyFrame to describe the old FK4 celestial
c        coordinate system.  A default Epoch value (B1950.0) is used,
c        but the mean Equinox value is given explicitly as "1955-sep-2".
c     frame = astSkyFrame( "System = GAPPT, Epoch = %s", date );
c        Creates a SkyFrame to describe the Geocentric Apparent
c        celestial coordinate system. The Epoch value, which specifies
c        the date of observation, is obtained from a date/time string
c        supplied via the string pointer "date".
f     FRAME = AST_SKYFRAME( ' ', STATUS )
f        Creates a SkyFrame to describe the default ICRS celestial
f        coordinate system.
f     FRAME = AST_SKYFRAME( 'System = FK5, Equinox = J2005, Digits = 10', STATUS )
f        Creates a SkyFrame to describe the FK5 celestial
f        coordinate system, with a mean Equinox of J2005.0.
f        Because especially accurate coordinates will be used,
f        additional precision (10 digits) has been requested. This will
f        be used when coordinate values are formatted for display.
f     FRAME = AST_SKYFRAME( 'System = FK4, Equinox = 1955-SEP-2', STATUS )
f        Creates a SkyFrame to describe the old FK4 celestial
f        coordinate system.  A default Epoch value (B1950.0) is used,
f        but the mean Equinox value is given explicitly as "1955-SEP-2".
f     FRAME = AST_SKYFRAME( 'System = GAPPT, Epoch = ' // DATE, STATUS )
f        Creates a SkyFrame to describe the Geocentric Apparent
f        celestial coordinate system. The Epoch value, which specifies
f        the date of observation, is obtained from a date/time string
f        contained in the character variable DATE.

*  Notes:
*     - Currently, the default celestial coordinate system is
*     ICRS. However, this default may change in future as new
*     astrometric standards evolve. The intention is to track the most
*     modern appropriate standard. For this reason, you should use the
*     default only if this is what you intend (and can tolerate any
*     associated slight change in behaviour with future versions of
*     this function). If you intend to use the ICRS system
*     indefinitely, then you should specify it explicitly using an
c     "options" value of "System=ICRS".
f     OPTIONS value of "System=ICRS".
*     - Whichever celestial coordinate system is represented, it will
*     have two axes.  The first of these will be the longitude axis
*     and the second will be the latitude axis. This order can be
c     changed using astPermAxes if required.
f     changed using AST_PERMAXES if required.
*     - When conversion between two SkyFrames is requested (as when
c     supplying SkyFrames to astConvert),
f     supplying SkyFrames AST_CONVERT),
*     account will be taken of the nature of the celestial coordinate
*     systems they represent, together with any qualifying mean Equinox or
*     Epoch values, etc. The AlignSystem attribute will also be taken into
*     account. The results will therefore fully reflect the
*     relationship between positions on the sky measured in the two
*     systems.
*     - A null Object pointer (AST__NULL) will be returned if this
c     function is invoked with the AST error status set, or if it
f     function is invoked with STATUS set to an error value, or if it
*     should fail for any reason.
*--

*  Implementation Notes:
*     - This function implements the external (public) interface to
*     the astSkyFrame constructor function. It returns an ID value
*     (instead of a true C pointer) to external users, and must be
*     provided because astSkyFrame_ has a variable argument list which
*     cannot be encapsulated in a macro (where this conversion would
*     otherwise occur).
*     - The variable argument list also prevents this function from
*     invoking astSkyFrame_ directly, so it must be a
*     re-implementation of it in all respects, except for the final
*     conversion of the result to an ID value.
*/

/* Local Variables: */
   astDECLARE_GLOBALS            /* Pointer to thread-specific global data */
   AstSkyFrame *new;             /* Pointer to new SkyFrame */
   va_list args;                 /* Variable argument list */

   int *status;                  /* Pointer to inherited status value */

/* Get a pointer to the inherited status value. */
   status = astGetStatusPtr;

/* Get a pointer to the thread specific global data structure. */
   astGET_GLOBALS(NULL);

/* Check the global status. */
   if ( !astOK ) return NULL;

/* Initialise the SkyFrame, allocating memory and initialising the virtual
   function table as well if necessary. */
   new = astInitSkyFrame( NULL, sizeof( AstSkyFrame ), !class_init, &class_vtab,
                          "SkyFrame" );

/* If successful, note that the virtual function table has been initialised. */
   if ( astOK ) {
      class_init = 1;

/* Obtain the variable argument list and pass it along with the options string
   to the astVSet method to initialise the new SkyFrame's attributes. */
      va_start( args, options );
      astVSet( new, options, NULL, args );
      va_end( args );

/* If an error occurred, clean up by deleting the new object. */
      if ( !astOK ) new = astDelete( new );
   }

/* Return an ID value for the new SkyFrame. */
   return astMakeId( new );
}