1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
|
<!-- =defdoc funidx funidx n -->
<HTML>
<HEAD>
<TITLE>Table Filtering with Indexes</TITLE>
</HEAD>
<BODY>
<!-- =section funidx NAME -->
<H2><A NAME="funidx">Funidx: Using Indexes to Filter Rows in a Table</A></H2>
<!-- =section funidx SYNOPSIS -->
<H2>Summary</H2>
<P>
This document contains a summary of the user interface for
filtering rows in binary tables with indexes.
<!-- =section funidx DESCRIPTION -->
<H2>Description</H2>
<P>
Funtools <A HREF="./filters.html">Table Filtering</A> allows rows in a
table to be selected based on the values of one or more columns in the
row. Because the actual filter code is compiled on the fly, it is very
efficient. However, for very large files (hundreds of Mb or larger),
evaluating the filter expression on each row can take a long time. Therefore,
funtools supports index files for columns, which are used automatically during
filtering to reduce dramatically the number of row evaluations performed.
The speed increase for indexed filtering can be an order of magnitude or
more, depending on the size of the file.
<P>
The <A HREF="./programs.html#funindex">funindex</A> program creates an
index on one or more columns in a binary table. For example, to create an index
for the column pi in the file huge.fits, use:
<PRE>
funindex huge.fits pi
</PRE>
This will create an index named huge_pi.idx.
<P>
When a filter expression is initialized for row evaluation, funtools
looks for an index file for each column in the filter expression. If
found, and if the file modification date of the index file is later
than that of the data file, then the index will be used to reduce the
number of rows that are evaluated in the filter. When
<A HREF="./regions.html">Spatial Region Filtering</A> is part of the
expression, the columns associated with the region are checked for index
files.
<P>
If an index file is not available for a given column, then in general,
all rows must be checked when that column is part of a filter
expression. This is not true, however, when a non-indexed column is
part of an AND expression. In this case, only the rows that pass the
other part of the AND expression need to be checked. Thus, in some cases,
filtering speed can increase significantly even if all columns are not
indexed.
<P>
Also note that certain types of filter expression syntax cannot make
use of indices. For example, calling functions with column names as
arguments implies that all rows must be checked against the function
value. Once again, however, if this function is part of an AND
expression, then a significant improvement in speed still is possible
if the other part of the AND expression is indexed.
<P>
For example, note below the dramatic speedup in searching a 1 Gb
file using an AND filter, even when one of the columns (pha) has no
index:
<PRE>
time fundisp \
huge.fits'[idx_activate=0,idx_debug=1,pha=2348&&cir 4000 4000 1]' \
"x y pha"
x y pha
---------- ----------- ----------
3999.48 4000.47 2348
3999.48 4000.47 2348
3999.48 4000.47 2348
3999.48 4000.47 2348
3999.48 4000.47 2348
3999.48 4000.47 2348
3999.48 4000.47 2348
3999.48 4000.47 2348
3999.48 4000.47 2348
3999.48 4000.47 2348
3999.48 4000.47 2348
3999.48 4000.47 2348
3999.48 4000.47 2348
3999.48 4000.47 2348
3999.48 4000.47 2348
3999.48 4000.47 2348
42.36u 13.07s 6:42.89 13.7%
time fundisp \
huge.fits'[idx_activate=1,idx_debug=1,pha=2348&&cir 4000 4000 1]' \
"x y pha"
x y pha
---------- ----------- ----------
idxeq: [INDEF]
idxand sort: x[ROW 8037025:8070128] y[ROW 5757665:5792352]
idxand(1): INDEF [IDX_OR_SORT]
idxall(1): [IDX_OR_SORT]
3999.48 4000.47 2348
3999.48 4000.47 2348
3999.48 4000.47 2348
3999.48 4000.47 2348
3999.48 4000.47 2348
3999.48 4000.47 2348
3999.48 4000.47 2348
3999.48 4000.47 2348
3999.48 4000.47 2348
3999.48 4000.47 2348
3999.48 4000.47 2348
3999.48 4000.47 2348
3999.48 4000.47 2348
3999.48 4000.47 2348
3999.48 4000.47 2348
3999.48 4000.47 2348
1.55u 0.37s 1:19.80 2.4%
</PRE>
When all columns are indexed, the increase in speed can be even more dramatic:
<PRE>
time fundisp \
huge.fits'[idx_activate=0,idx_debug=1,pi=770&&cir 4000 4000 1]' \
"x y pi"
x y pi
---------- ----------- ----------
3999.48 4000.47 770
3999.48 4000.47 770
3999.48 4000.47 770
3999.48 4000.47 770
3999.48 4000.47 770
3999.48 4000.47 770
3999.48 4000.47 770
3999.48 4000.47 770
3999.48 4000.47 770
3999.48 4000.47 770
3999.48 4000.47 770
3999.48 4000.47 770
3999.48 4000.47 770
3999.48 4000.47 770
3999.48 4000.47 770
3999.48 4000.47 770
42.60u 12.63s 7:28.63 12.3%
time fundisp \
huge.fits'[idx_activate=1,idx_debug=1,pi=770&&cir 4000 4000 1]' \
"x y pi"
x y pi
---------- ----------- ----------
idxeq: pi start=9473025,stop=9492240 => pi[ROW 9473025:9492240]
idxand sort: x[ROW 8037025:8070128] y[ROW 5757665:5792352]
idxor sort/merge: pi[ROW 9473025:9492240] [IDX_OR_SORT]
idxmerge(5): [IDX_OR_SORT] pi[ROW]
idxall(1): [IDX_OR_SORT]
3999.48 4000.47 770
3999.48 4000.47 770
3999.48 4000.47 770
3999.48 4000.47 770
3999.48 4000.47 770
3999.48 4000.47 770
3999.48 4000.47 770
3999.48 4000.47 770
3999.48 4000.47 770
3999.48 4000.47 770
3999.48 4000.47 770
3999.48 4000.47 770
3999.48 4000.47 770
3999.48 4000.47 770
3999.48 4000.47 770
3999.48 4000.47 770
1.67u 0.30s 0:24.76 7.9%
</PRE>
<P>
The miracle of indexed filtering (and indeed, of any indexing) is the
speed of the binary search on the index, which is of order log2(n)
instead of n. (The funtools binary search method is taken from
http://www.tbray.org/ongoing/When/200x/2003/03/22/Binary, to whom
grateful acknowledgement is made.) This means that the larger the
file, the better the performance. Conversely, it also means that for
small files, using an index (and the overhead involved) can slow
filtering down somewhat. Our tests indicate that on a file containing
a few tens of thousands of rows, indexed filtering can be 10 to 20
percent slower than non-indexed filtering. Of course, your mileage
will vary with conditions (disk access speed, amount of available
memory, process load, etc.)
<p>
Any problem encountered during index processing will result in
indexing being turned off, and replaced by filtering all rows. You can turn
filtering off manually by setting the idx_activate variable to 0 (in a filter
expression) or the FILTER_IDX_ACTIVATE environment variable to 0 (in the global
environment). Debugging output showing how the indexes are being processed can
be displayed to stderr by setting the idx_debug variable to 1 (in a filter
expression) or the FILTER_IDX_DEBUG environment variable to 1 (in the global
environment).
<p>
Currently, indexed filtering only works with FITS binary tables and raw
event files. It does not work with text files. This restriction might be
removed in a future release.
<!-- =section funidx SEE ALSO -->
<!-- =text See funtools(n) for a list of Funtools help pages -->
<!-- =stop -->
<P>
<A HREF="./help.html">Go to Funtools Help Index</A>
<H5>Last updated: August 3, 2007</H5>
</BODY>
</HTML>
|