1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
|
/*
* Smithsonian Astrophysical Observatory, Cambridge, MA, USA
* This code has been modified under the terms listed below and is made
* available under the same terms.
*/
/*
* Copyright 1993-2004 George A Howlett.
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
* LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
* OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
* WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#include <math.h>
#include <limits.h>
#include <float.h>
#include <string.h>
#include <stdlib.h>
#include <tk.h>
#include <tkInt.h>
#include "tkbltGraph.h"
#include "tkbltGrMisc.h"
using namespace Blt;
char* Blt::dupstr(const char* str)
{
char* copy =NULL;
if (str) {
copy=new char[strlen(str)+1];
strcpy(copy,str);
}
return copy;
}
int Blt::pointInPolygon(Point2d *s, Point2d *points, int nPoints)
{
int count = 0;
for (Point2d *p=points, *q=p+1, *qend=p + nPoints; q < qend; p++, q++) {
if (((p->y <= s->y) && (s->y < q->y)) ||
((q->y <= s->y) && (s->y < p->y))) {
double b;
b = (q->x - p->x) * (s->y - p->y) / (q->y - p->y) + p->x;
if (s->x < b) {
count++; /* Count the number of intersections. */
}
}
}
return (count & 0x01);
}
static int ClipTest (double ds, double dr, double *t1, double *t2)
{
double t;
if (ds < 0.0) {
t = dr / ds;
if (t > *t2) {
return 0;
}
if (t > *t1) {
*t1 = t;
}
} else if (ds > 0.0) {
t = dr / ds;
if (t < *t1) {
return 0;
}
if (t < *t2) {
*t2 = t;
}
} else {
/* d = 0, so line is parallel to this clipping edge */
if (dr < 0.0) { /* Line is outside clipping edge */
return 0;
}
}
return 1;
}
/*
*---------------------------------------------------------------------------
* Clips the given line segment to a rectangular region. The coordinates
* of the clipped line segment are returned. The original coordinates
* are overwritten.
*
* Reference:
* Liang, Y-D., and B. Barsky, A new concept and method for
* Line Clipping, ACM, TOG,3(1), 1984, pp.1-22.
*---------------------------------------------------------------------------
*/
int Blt::lineRectClip(Region2d* regionPtr, Point2d *p, Point2d *q)
{
double t1, t2;
double dx, dy;
t1 = 0.0, t2 = 1.0;
dx = q->x - p->x;
if ((ClipTest (-dx, p->x - regionPtr->left, &t1, &t2)) &&
(ClipTest (dx, regionPtr->right - p->x, &t1, &t2))) {
dy = q->y - p->y;
if ((ClipTest (-dy, p->y - regionPtr->top, &t1, &t2)) &&
(ClipTest (dy, regionPtr->bottom - p->y, &t1, &t2))) {
if (t2 < 1.0) {
q->x = p->x + t2 * dx;
q->y = p->y + t2 * dy;
}
if (t1 > 0.0) {
p->x += t1 * dx;
p->y += t1 * dy;
}
return 1;
}
}
return 0;
}
/*
*---------------------------------------------------------------------------
* Clips the given polygon to a rectangular region. The resulting
* polygon is returned. Note that the resulting polyon may be complex,
* connected by zero width/height segments. The drawing routine (such as
* XFillPolygon) will not draw a connecting segment.
*
* Reference:
* Liang Y. D. and Brian A. Barsky, "Analysis and Algorithm for
* Polygon Clipping", Communications of ACM, Vol. 26,
* p.868-877, 1983
*---------------------------------------------------------------------------
*/
#define AddVertex(vx, vy) r->x=(vx), r->y=(vy), r++, count++
#define LastVertex(vx, vy) r->x=(vx), r->y=(vy), count++
int Blt::polyRectClip(Region2d *regionPtr, Point2d *points, int nPoints,
Point2d *clipPts)
{
Point2d* r = clipPts;
// Counts # of vertices in output polygon.
int count = 0;
points[nPoints] = points[0];
for (Point2d *p=points, *q=p+1, *pend=p+nPoints; p<pend; p++, q++) {
double dx, dy;
double tin1, tin2, tinx, tiny;
double xin, yin, xout, yout;
dx = q->x - p->x; /* X-direction */
dy = q->y - p->y; /* Y-direction */
if (fabs(dx) < FLT_EPSILON)
dx = (p->x > regionPtr->left) ? -FLT_EPSILON : FLT_EPSILON ;
if (fabs(dy) < FLT_EPSILON)
dy = (p->y > regionPtr->top) ? -FLT_EPSILON : FLT_EPSILON ;
if (dx > 0.0) { /* Left */
xin = regionPtr->left;
xout = regionPtr->right + 1.0;
}
else { /* Right */
xin = regionPtr->right + 1.0;
xout = regionPtr->left;
}
if (dy > 0.0) { /* Top */
yin = regionPtr->top;
yout = regionPtr->bottom + 1.0;
}
else { /* Bottom */
yin = regionPtr->bottom + 1.0;
yout = regionPtr->top;
}
tinx = (xin - p->x) / dx;
tiny = (yin - p->y) / dy;
if (tinx < tiny) { /* Hits x first */
tin1 = tinx;
tin2 = tiny;
}
else { /* Hits y first */
tin1 = tiny;
tin2 = tinx;
}
if (tin1 <= 1.0) {
if (tin1 > 0.0) {
AddVertex(xin, yin);
}
if (tin2 <= 1.0) {
double toutx = (xout - p->x) / dx;
double touty = (yout - p->y) / dy;
double tout1 = MIN(toutx, touty);
if ((tin2 > 0.0) || (tout1 > 0.0)) {
if (tin2 <= tout1) {
if (tin2 > 0.0) {
if (tinx > tiny) {
AddVertex(xin, p->y + tinx * dy);
} else {
AddVertex(p->x + tiny * dx, yin);
}
}
if (tout1 < 1.0) {
if (toutx < touty) {
AddVertex(xout, p->y + toutx * dy);
} else {
AddVertex(p->x + touty * dx, yout);
}
} else {
AddVertex(q->x, q->y);
}
} else {
if (tinx > tiny) {
AddVertex(xin, yout);
} else {
AddVertex(xout, yin);
}
}
}
}
}
}
if (count > 0) {
LastVertex(clipPts[0].x, clipPts[0].y);
}
return count;
}
/*
*---------------------------------------------------------------------------
* Computes the projection of a point on a line. The line (given by two
* points), is assumed the be infinite.
*
* Compute the slope (angle) of the line and rotate it 90 degrees. Using
* the slope-intercept method (we know the second line from the sample
* test point and the computed slope), then find the intersection of both
* lines. This will be the projection of the sample point on the first
* line.
*---------------------------------------------------------------------------
*/
Point2d Blt::getProjection(int x, int y, Point2d *p, Point2d *q)
{
double dx = p->x - q->x;
double dy = p->y - q->y;
/* Test for horizontal and vertical lines */
Point2d t;
if (fabs(dx) < DBL_EPSILON) {
t.x = p->x;
t.y = (double)y;
}
else if (fabs(dy) < DBL_EPSILON) {
t.x = (double)x;
t.y = p->y;
}
else {
/* Compute the slope and intercept of PQ. */
double m1 = (dy / dx);
double b1 = p->y - (p->x * m1);
/*
* Compute the slope and intercept of a second line segment: one that
* intersects through sample X-Y coordinate with a slope perpendicular
* to original line.
*/
/* Find midpoint of PQ. */
double midX = (p->x + q->x) * 0.5;
double midY = (p->y + q->y) * 0.5;
/* Rotate the line 90 degrees */
double ax = midX - (0.5 * dy);
double ay = midY - (0.5 * -dx);
double bx = midX + (0.5 * dy);
double by = midY + (0.5 * -dx);
double m2 = (ay - by) / (ax - bx);
double b2 = y - (x * m2);
/*
* Given the equations of two lines which contain the same point,
*
* y = m1 * x + b1
* y = m2 * x + b2
*
* solve for the intersection.
*
* x = (b2 - b1) / (m1 - m2)
* y = m1 * x + b1
*
*/
t.x = (b2 - b1) / (m1 - m2);
t.y = m1 * t.x + b1;
}
return t;
}
Graph* Blt::getGraphFromWindowData(Tk_Window tkwin)
{
while (tkwin) {
TkWindow* winPtr = (TkWindow*)tkwin;
if (winPtr->instanceData != NULL) {
Graph* graphPtr = (Graph*)winPtr->instanceData;
if (graphPtr)
return graphPtr;
}
tkwin = Tk_Parent(tkwin);
}
return NULL;
}
|