1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
|
'\"
'\" Generated from file 'mapproj\&.man' by tcllib/doctools with format 'nroff'
'\" Copyright (c) 2007 Kevin B\&. Kenny <kennykb@acm\&.org>
'\"
.TH "mapproj" n 0\&.1 tcllib "Tcl Library"
.\" The -*- nroff -*- definitions below are for supplemental macros used
.\" in Tcl/Tk manual entries.
.\"
.\" .AP type name in/out ?indent?
.\" Start paragraph describing an argument to a library procedure.
.\" type is type of argument (int, etc.), in/out is either "in", "out",
.\" or "in/out" to describe whether procedure reads or modifies arg,
.\" and indent is equivalent to second arg of .IP (shouldn't ever be
.\" needed; use .AS below instead)
.\"
.\" .AS ?type? ?name?
.\" Give maximum sizes of arguments for setting tab stops. Type and
.\" name are examples of largest possible arguments that will be passed
.\" to .AP later. If args are omitted, default tab stops are used.
.\"
.\" .BS
.\" Start box enclosure. From here until next .BE, everything will be
.\" enclosed in one large box.
.\"
.\" .BE
.\" End of box enclosure.
.\"
.\" .CS
.\" Begin code excerpt.
.\"
.\" .CE
.\" End code excerpt.
.\"
.\" .VS ?version? ?br?
.\" Begin vertical sidebar, for use in marking newly-changed parts
.\" of man pages. The first argument is ignored and used for recording
.\" the version when the .VS was added, so that the sidebars can be
.\" found and removed when they reach a certain age. If another argument
.\" is present, then a line break is forced before starting the sidebar.
.\"
.\" .VE
.\" End of vertical sidebar.
.\"
.\" .DS
.\" Begin an indented unfilled display.
.\"
.\" .DE
.\" End of indented unfilled display.
.\"
.\" .SO ?manpage?
.\" Start of list of standard options for a Tk widget. The manpage
.\" argument defines where to look up the standard options; if
.\" omitted, defaults to "options". The options follow on successive
.\" lines, in three columns separated by tabs.
.\"
.\" .SE
.\" End of list of standard options for a Tk widget.
.\"
.\" .OP cmdName dbName dbClass
.\" Start of description of a specific option. cmdName gives the
.\" option's name as specified in the class command, dbName gives
.\" the option's name in the option database, and dbClass gives
.\" the option's class in the option database.
.\"
.\" .UL arg1 arg2
.\" Print arg1 underlined, then print arg2 normally.
.\"
.\" .QW arg1 ?arg2?
.\" Print arg1 in quotes, then arg2 normally (for trailing punctuation).
.\"
.\" .PQ arg1 ?arg2?
.\" Print an open parenthesis, arg1 in quotes, then arg2 normally
.\" (for trailing punctuation) and then a closing parenthesis.
.\"
.\" # Set up traps and other miscellaneous stuff for Tcl/Tk man pages.
.if t .wh -1.3i ^B
.nr ^l \n(.l
.ad b
.\" # Start an argument description
.de AP
.ie !"\\$4"" .TP \\$4
.el \{\
. ie !"\\$2"" .TP \\n()Cu
. el .TP 15
.\}
.ta \\n()Au \\n()Bu
.ie !"\\$3"" \{\
\&\\$1 \\fI\\$2\\fP (\\$3)
.\".b
.\}
.el \{\
.br
.ie !"\\$2"" \{\
\&\\$1 \\fI\\$2\\fP
.\}
.el \{\
\&\\fI\\$1\\fP
.\}
.\}
..
.\" # define tabbing values for .AP
.de AS
.nr )A 10n
.if !"\\$1"" .nr )A \\w'\\$1'u+3n
.nr )B \\n()Au+15n
.\"
.if !"\\$2"" .nr )B \\w'\\$2'u+\\n()Au+3n
.nr )C \\n()Bu+\\w'(in/out)'u+2n
..
.AS Tcl_Interp Tcl_CreateInterp in/out
.\" # BS - start boxed text
.\" # ^y = starting y location
.\" # ^b = 1
.de BS
.br
.mk ^y
.nr ^b 1u
.if n .nf
.if n .ti 0
.if n \l'\\n(.lu\(ul'
.if n .fi
..
.\" # BE - end boxed text (draw box now)
.de BE
.nf
.ti 0
.mk ^t
.ie n \l'\\n(^lu\(ul'
.el \{\
.\" Draw four-sided box normally, but don't draw top of
.\" box if the box started on an earlier page.
.ie !\\n(^b-1 \{\
\h'-1.5n'\L'|\\n(^yu-1v'\l'\\n(^lu+3n\(ul'\L'\\n(^tu+1v-\\n(^yu'\l'|0u-1.5n\(ul'
.\}
.el \}\
\h'-1.5n'\L'|\\n(^yu-1v'\h'\\n(^lu+3n'\L'\\n(^tu+1v-\\n(^yu'\l'|0u-1.5n\(ul'
.\}
.\}
.fi
.br
.nr ^b 0
..
.\" # VS - start vertical sidebar
.\" # ^Y = starting y location
.\" # ^v = 1 (for troff; for nroff this doesn't matter)
.de VS
.if !"\\$2"" .br
.mk ^Y
.ie n 'mc \s12\(br\s0
.el .nr ^v 1u
..
.\" # VE - end of vertical sidebar
.de VE
.ie n 'mc
.el \{\
.ev 2
.nf
.ti 0
.mk ^t
\h'|\\n(^lu+3n'\L'|\\n(^Yu-1v\(bv'\v'\\n(^tu+1v-\\n(^Yu'\h'-|\\n(^lu+3n'
.sp -1
.fi
.ev
.\}
.nr ^v 0
..
.\" # Special macro to handle page bottom: finish off current
.\" # box/sidebar if in box/sidebar mode, then invoked standard
.\" # page bottom macro.
.de ^B
.ev 2
'ti 0
'nf
.mk ^t
.if \\n(^b \{\
.\" Draw three-sided box if this is the box's first page,
.\" draw two sides but no top otherwise.
.ie !\\n(^b-1 \h'-1.5n'\L'|\\n(^yu-1v'\l'\\n(^lu+3n\(ul'\L'\\n(^tu+1v-\\n(^yu'\h'|0u'\c
.el \h'-1.5n'\L'|\\n(^yu-1v'\h'\\n(^lu+3n'\L'\\n(^tu+1v-\\n(^yu'\h'|0u'\c
.\}
.if \\n(^v \{\
.nr ^x \\n(^tu+1v-\\n(^Yu
\kx\h'-\\nxu'\h'|\\n(^lu+3n'\ky\L'-\\n(^xu'\v'\\n(^xu'\h'|0u'\c
.\}
.bp
'fi
.ev
.if \\n(^b \{\
.mk ^y
.nr ^b 2
.\}
.if \\n(^v \{\
.mk ^Y
.\}
..
.\" # DS - begin display
.de DS
.RS
.nf
.sp
..
.\" # DE - end display
.de DE
.fi
.RE
.sp
..
.\" # SO - start of list of standard options
.de SO
'ie '\\$1'' .ds So \\fBoptions\\fR
'el .ds So \\fB\\$1\\fR
.SH "STANDARD OPTIONS"
.LP
.nf
.ta 5.5c 11c
.ft B
..
.\" # SE - end of list of standard options
.de SE
.fi
.ft R
.LP
See the \\*(So manual entry for details on the standard options.
..
.\" # OP - start of full description for a single option
.de OP
.LP
.nf
.ta 4c
Command-Line Name: \\fB\\$1\\fR
Database Name: \\fB\\$2\\fR
Database Class: \\fB\\$3\\fR
.fi
.IP
..
.\" # CS - begin code excerpt
.de CS
.RS
.nf
.ta .25i .5i .75i 1i
..
.\" # CE - end code excerpt
.de CE
.fi
.RE
..
.\" # UL - underline word
.de UL
\\$1\l'|0\(ul'\\$2
..
.\" # QW - apply quotation marks to word
.de QW
.ie '\\*(lq'"' ``\\$1''\\$2
.\"" fix emacs highlighting
.el \\*(lq\\$1\\*(rq\\$2
..
.\" # PQ - apply parens and quotation marks to word
.de PQ
.ie '\\*(lq'"' (``\\$1''\\$2)\\$3
.\"" fix emacs highlighting
.el (\\*(lq\\$1\\*(rq\\$2)\\$3
..
.\" # QR - quoted range
.de QR
.ie '\\*(lq'"' ``\\$1''\\-``\\$2''\\$3
.\"" fix emacs highlighting
.el \\*(lq\\$1\\*(rq\\-\\*(lq\\$2\\*(rq\\$3
..
.\" # MT - "empty" string
.de MT
.QW ""
..
.BS
.SH NAME
mapproj \- Map projection routines
.SH SYNOPSIS
package require \fBTcl ?8\&.4?\fR
.sp
package require \fBmath::interpolate ?1\&.0?\fR
.sp
package require \fBmath::special ?0\&.2\&.1?\fR
.sp
package require \fBmapproj ?1\&.0?\fR
.sp
\fB::mapproj::toPlateCarree\fR \fIlambda_0\fR \fIphi_0\fR \fIlambda\fR \fIphi\fR
.sp
\fB::mapproj::fromPlateCarree\fR \fIlambda_0\fR \fIphi_0\fR \fIx\fR \fIy\fR
.sp
\fB::mapproj::toCylindricalEqualArea\fR \fIlambda_0\fR \fIphi_0\fR \fIlambda\fR \fIphi\fR
.sp
\fB::mapproj::fromCylindricalEqualArea\fR \fIlambda_0\fR \fIphi_0\fR \fIx\fR \fIy\fR
.sp
\fB::mapproj::toMercator\fR \fIlambda_0\fR \fIphi_0\fR \fIlambda\fR \fIphi\fR
.sp
\fB::mapproj::fromMercator\fR \fIlambda_0\fR \fIphi_0\fR \fIx\fR \fIy\fR
.sp
\fB::mapproj::toMillerCylindrical\fR \fIlambda_0\fR \fIlambda\fR \fIphi\fR
.sp
\fB::mapproj::fromMillerCylindrical\fR \fIlambda_0\fR \fIx\fR \fIy\fR
.sp
\fB::mapproj::toSinusoidal\fR \fIlambda_0\fR \fIphi_0\fR \fIlambda\fR \fIphi\fR
.sp
\fB::mapproj::fromSinusoidal\fR \fIlambda_0\fR \fIphi_0\fR \fIx\fR \fIy\fR
.sp
\fB::mapproj::toMollweide\fR \fIlambda_0\fR \fIlambda\fR \fIphi\fR
.sp
\fB::mapproj::fromMollweide\fR \fIlambda_0\fR \fIx\fR \fIy\fR
.sp
\fB::mapproj::toEckertIV\fR \fIlambda_0\fR \fIlambda\fR \fIphi\fR
.sp
\fB::mapproj::fromEckertIV\fR \fIlambda_0\fR \fIx\fR \fIy\fR
.sp
\fB::mapproj::toEckertVI\fR \fIlambda_0\fR \fIlambda\fR \fIphi\fR
.sp
\fB::mapproj::fromEckertVI\fR \fIlambda_0\fR \fIx\fR \fIy\fR
.sp
\fB::mapproj::toRobinson\fR \fIlambda_0\fR \fIlambda\fR \fIphi\fR
.sp
\fB::mapproj::fromRobinson\fR \fIlambda_0\fR \fIx\fR \fIy\fR
.sp
\fB::mapproj::toCassini\fR \fIlambda_0\fR \fIphi_0\fR \fIlambda\fR \fIphi\fR
.sp
\fB::mapproj::fromCassini\fR \fIlambda_0\fR \fIphi_0\fR \fIx\fR \fIy\fR
.sp
\fB::mapproj::toPeirceQuincuncial\fR \fIlambda_0\fR \fIlambda\fR \fIphi\fR
.sp
\fB::mapproj::fromPeirceQuincuncial\fR \fIlambda_0\fR \fIx\fR \fIy\fR
.sp
\fB::mapproj::toOrthographic\fR \fIlambda_0\fR \fIphi_0\fR \fIlambda\fR \fIphi\fR
.sp
\fB::mapproj::fromOrthographic\fR \fIlambda_0\fR \fIphi_0\fR \fIx\fR \fIy\fR
.sp
\fB::mapproj::toStereographic\fR \fIlambda_0\fR \fIphi_0\fR \fIlambda\fR \fIphi\fR
.sp
\fB::mapproj::fromStereographic\fR \fIlambda_0\fR \fIphi_0\fR \fIx\fR \fIy\fR
.sp
\fB::mapproj::toGnomonic\fR \fIlambda_0\fR \fIphi_0\fR \fIlambda\fR \fIphi\fR
.sp
\fB::mapproj::fromGnomonic\fR \fIlambda_0\fR \fIphi_0\fR \fIx\fR \fIy\fR
.sp
\fB::mapproj::toAzimuthalEquidistant\fR \fIlambda_0\fR \fIphi_0\fR \fIlambda\fR \fIphi\fR
.sp
\fB::mapproj::fromAzimuthalEquidistant\fR \fIlambda_0\fR \fIphi_0\fR \fIx\fR \fIy\fR
.sp
\fB::mapproj::toLambertAzimuthalEqualArea\fR \fIlambda_0\fR \fIphi_0\fR \fIlambda\fR \fIphi\fR
.sp
\fB::mapproj::fromLambertAzimuthalEqualArea\fR \fIlambda_0\fR \fIphi_0\fR \fIx\fR \fIy\fR
.sp
\fB::mapproj::toHammer\fR \fIlambda_0\fR \fIlambda\fR \fIphi\fR
.sp
\fB::mapproj::fromHammer\fR \fIlambda_0\fR \fIx\fR \fIy\fR
.sp
\fB::mapproj::toConicEquidistant\fR \fIlambda_0\fR \fIphi_0\fR \fIphi_1\fR \fIphi_2\fR \fIlambda\fR \fIphi\fR
.sp
\fB::mapproj::fromConicEquidistant\fR \fIlambda_0\fR \fIphi_0\fR \fIphi_1\fR \fIphi_2\fR \fIx\fR \fIy\fR
.sp
\fB::mapproj::toAlbersEqualAreaConic\fR \fIlambda_0\fR \fIphi_0\fR \fIphi_1\fR \fIphi_2\fR \fIlambda\fR \fIphi\fR
.sp
\fB::mapproj::fromAlbersEqualAreaConic\fR \fIlambda_0\fR \fIphi_0\fR \fIphi_1\fR \fIphi_2\fR \fIx\fR \fIy\fR
.sp
\fB::mapproj::toLambertConformalConic\fR \fIlambda_0\fR \fIphi_0\fR \fIphi_1\fR \fIphi_2\fR \fIlambda\fR \fIphi\fR
.sp
\fB::mapproj::fromLambertConformalConic\fR \fIlambda_0\fR \fIphi_0\fR \fIphi_1\fR \fIphi_2\fR \fIx\fR \fIy\fR
.sp
\fB::mapproj::toLambertCylindricalEqualArea\fR \fIlambda_0\fR \fIphi_0\fR \fIlambda\fR \fIphi\fR
.sp
\fB::mapproj::fromLambertCylindricalEqualArea\fR \fIlambda_0\fR \fIphi_0\fR \fIx\fR \fIy\fR
.sp
\fB::mapproj::toBehrmann\fR \fIlambda_0\fR \fIphi_0\fR \fIlambda\fR \fIphi\fR
.sp
\fB::mapproj::fromBehrmann\fR \fIlambda_0\fR \fIphi_0\fR \fIx\fR \fIy\fR
.sp
\fB::mapproj::toTrystanEdwards\fR \fIlambda_0\fR \fIphi_0\fR \fIlambda\fR \fIphi\fR
.sp
\fB::mapproj::fromTrystanEdwards\fR \fIlambda_0\fR \fIphi_0\fR \fIx\fR \fIy\fR
.sp
\fB::mapproj::toHoboDyer\fR \fIlambda_0\fR \fIphi_0\fR \fIlambda\fR \fIphi\fR
.sp
\fB::mapproj::fromHoboDyer\fR \fIlambda_0\fR \fIphi_0\fR \fIx\fR \fIy\fR
.sp
\fB::mapproj::toGallPeters\fR \fIlambda_0\fR \fIphi_0\fR \fIlambda\fR \fIphi\fR
.sp
\fB::mapproj::fromGallPeters\fR \fIlambda_0\fR \fIphi_0\fR \fIx\fR \fIy\fR
.sp
\fB::mapproj::toBalthasart\fR \fIlambda_0\fR \fIphi_0\fR \fIlambda\fR \fIphi\fR
.sp
\fB::mapproj::fromBalthasart\fR \fIlambda_0\fR \fIphi_0\fR \fIx\fR \fIy\fR
.sp
.BE
.SH DESCRIPTION
The \fBmapproj\fR package provides a set of procedures for
converting between world co-ordinates (latitude and longitude) and map
co-ordinates on a number of different map projections\&.
.SH COMMANDS
The following commands convert between world co-ordinates and
map co-ordinates:
.TP
\fB::mapproj::toPlateCarree\fR \fIlambda_0\fR \fIphi_0\fR \fIlambda\fR \fIphi\fR
Converts to the \fIplate carrée\fR (cylindrical equidistant)
projection\&.
.TP
\fB::mapproj::fromPlateCarree\fR \fIlambda_0\fR \fIphi_0\fR \fIx\fR \fIy\fR
Converts from the \fIplate carrée\fR (cylindrical equidistant)
projection\&.
.TP
\fB::mapproj::toCylindricalEqualArea\fR \fIlambda_0\fR \fIphi_0\fR \fIlambda\fR \fIphi\fR
Converts to the cylindrical equal-area projection\&.
.TP
\fB::mapproj::fromCylindricalEqualArea\fR \fIlambda_0\fR \fIphi_0\fR \fIx\fR \fIy\fR
Converts from the cylindrical equal-area projection\&.
.TP
\fB::mapproj::toMercator\fR \fIlambda_0\fR \fIphi_0\fR \fIlambda\fR \fIphi\fR
Converts to the Mercator (cylindrical conformal) projection\&.
.TP
\fB::mapproj::fromMercator\fR \fIlambda_0\fR \fIphi_0\fR \fIx\fR \fIy\fR
Converts from the Mercator (cylindrical conformal) projection\&.
.TP
\fB::mapproj::toMillerCylindrical\fR \fIlambda_0\fR \fIlambda\fR \fIphi\fR
Converts to the Miller Cylindrical projection\&.
.TP
\fB::mapproj::fromMillerCylindrical\fR \fIlambda_0\fR \fIx\fR \fIy\fR
Converts from the Miller Cylindrical projection\&.
.TP
\fB::mapproj::toSinusoidal\fR \fIlambda_0\fR \fIphi_0\fR \fIlambda\fR \fIphi\fR
Converts to the sinusoidal (Sanson-Flamsteed) projection\&.
projection\&.
.TP
\fB::mapproj::fromSinusoidal\fR \fIlambda_0\fR \fIphi_0\fR \fIx\fR \fIy\fR
Converts from the sinusoidal (Sanson-Flamsteed) projection\&.
projection\&.
.TP
\fB::mapproj::toMollweide\fR \fIlambda_0\fR \fIlambda\fR \fIphi\fR
Converts to the Mollweide projection\&.
.TP
\fB::mapproj::fromMollweide\fR \fIlambda_0\fR \fIx\fR \fIy\fR
Converts from the Mollweide projection\&.
.TP
\fB::mapproj::toEckertIV\fR \fIlambda_0\fR \fIlambda\fR \fIphi\fR
Converts to the Eckert IV projection\&.
.TP
\fB::mapproj::fromEckertIV\fR \fIlambda_0\fR \fIx\fR \fIy\fR
Converts from the Eckert IV projection\&.
.TP
\fB::mapproj::toEckertVI\fR \fIlambda_0\fR \fIlambda\fR \fIphi\fR
Converts to the Eckert VI projection\&.
.TP
\fB::mapproj::fromEckertVI\fR \fIlambda_0\fR \fIx\fR \fIy\fR
Converts from the Eckert VI projection\&.
.TP
\fB::mapproj::toRobinson\fR \fIlambda_0\fR \fIlambda\fR \fIphi\fR
Converts to the Robinson projection\&.
.TP
\fB::mapproj::fromRobinson\fR \fIlambda_0\fR \fIx\fR \fIy\fR
Converts from the Robinson projection\&.
.TP
\fB::mapproj::toCassini\fR \fIlambda_0\fR \fIphi_0\fR \fIlambda\fR \fIphi\fR
Converts to the Cassini (transverse cylindrical equidistant)
projection\&.
.TP
\fB::mapproj::fromCassini\fR \fIlambda_0\fR \fIphi_0\fR \fIx\fR \fIy\fR
Converts from the Cassini (transverse cylindrical equidistant)
projection\&.
.TP
\fB::mapproj::toPeirceQuincuncial\fR \fIlambda_0\fR \fIlambda\fR \fIphi\fR
Converts to the Peirce Quincuncial Projection\&.
.TP
\fB::mapproj::fromPeirceQuincuncial\fR \fIlambda_0\fR \fIx\fR \fIy\fR
Converts from the Peirce Quincuncial Projection\&.
.TP
\fB::mapproj::toOrthographic\fR \fIlambda_0\fR \fIphi_0\fR \fIlambda\fR \fIphi\fR
Converts to the orthographic projection\&.
.TP
\fB::mapproj::fromOrthographic\fR \fIlambda_0\fR \fIphi_0\fR \fIx\fR \fIy\fR
Converts from the orthographic projection\&.
.TP
\fB::mapproj::toStereographic\fR \fIlambda_0\fR \fIphi_0\fR \fIlambda\fR \fIphi\fR
Converts to the stereographic (azimuthal conformal) projection\&.
.TP
\fB::mapproj::fromStereographic\fR \fIlambda_0\fR \fIphi_0\fR \fIx\fR \fIy\fR
Converts from the stereographic (azimuthal conformal) projection\&.
.TP
\fB::mapproj::toGnomonic\fR \fIlambda_0\fR \fIphi_0\fR \fIlambda\fR \fIphi\fR
Converts to the gnomonic projection\&.
.TP
\fB::mapproj::fromGnomonic\fR \fIlambda_0\fR \fIphi_0\fR \fIx\fR \fIy\fR
Converts from the gnomonic projection\&.
.TP
\fB::mapproj::toAzimuthalEquidistant\fR \fIlambda_0\fR \fIphi_0\fR \fIlambda\fR \fIphi\fR
Converts to the azimuthal equidistant projection\&.
.TP
\fB::mapproj::fromAzimuthalEquidistant\fR \fIlambda_0\fR \fIphi_0\fR \fIx\fR \fIy\fR
Converts from the azimuthal equidistant projection\&.
.TP
\fB::mapproj::toLambertAzimuthalEqualArea\fR \fIlambda_0\fR \fIphi_0\fR \fIlambda\fR \fIphi\fR
Converts to the Lambert azimuthal equal-area projection\&.
.TP
\fB::mapproj::fromLambertAzimuthalEqualArea\fR \fIlambda_0\fR \fIphi_0\fR \fIx\fR \fIy\fR
Converts from the Lambert azimuthal equal-area projection\&.
.TP
\fB::mapproj::toHammer\fR \fIlambda_0\fR \fIlambda\fR \fIphi\fR
Converts to the Hammer projection\&.
.TP
\fB::mapproj::fromHammer\fR \fIlambda_0\fR \fIx\fR \fIy\fR
Converts from the Hammer projection\&.
.TP
\fB::mapproj::toConicEquidistant\fR \fIlambda_0\fR \fIphi_0\fR \fIphi_1\fR \fIphi_2\fR \fIlambda\fR \fIphi\fR
Converts to the conic equidistant projection\&.
.TP
\fB::mapproj::fromConicEquidistant\fR \fIlambda_0\fR \fIphi_0\fR \fIphi_1\fR \fIphi_2\fR \fIx\fR \fIy\fR
Converts from the conic equidistant projection\&.
.TP
\fB::mapproj::toAlbersEqualAreaConic\fR \fIlambda_0\fR \fIphi_0\fR \fIphi_1\fR \fIphi_2\fR \fIlambda\fR \fIphi\fR
Converts to the Albers equal-area conic projection\&.
.TP
\fB::mapproj::fromAlbersEqualAreaConic\fR \fIlambda_0\fR \fIphi_0\fR \fIphi_1\fR \fIphi_2\fR \fIx\fR \fIy\fR
Converts from the Albers equal-area conic projection\&.
.TP
\fB::mapproj::toLambertConformalConic\fR \fIlambda_0\fR \fIphi_0\fR \fIphi_1\fR \fIphi_2\fR \fIlambda\fR \fIphi\fR
Converts to the Lambert conformal conic projection\&.
.TP
\fB::mapproj::fromLambertConformalConic\fR \fIlambda_0\fR \fIphi_0\fR \fIphi_1\fR \fIphi_2\fR \fIx\fR \fIy\fR
Converts from the Lambert conformal conic projection\&.
.PP
Among the cylindrical equal-area projections, there are a number of
choices of standard parallels that have names:
.TP
\fB::mapproj::toLambertCylindricalEqualArea\fR \fIlambda_0\fR \fIphi_0\fR \fIlambda\fR \fIphi\fR
Converts to the Lambert cylindrical equal area projection\&. (standard parallel
is the Equator\&.)
.TP
\fB::mapproj::fromLambertCylindricalEqualArea\fR \fIlambda_0\fR \fIphi_0\fR \fIx\fR \fIy\fR
Converts from the Lambert cylindrical equal area projection\&. (standard parallel
is the Equator\&.)
.TP
\fB::mapproj::toBehrmann\fR \fIlambda_0\fR \fIphi_0\fR \fIlambda\fR \fIphi\fR
Converts to the Behrmann cylindrical equal area projection\&. (standard parallels
are 30 degrees North and South)
.TP
\fB::mapproj::fromBehrmann\fR \fIlambda_0\fR \fIphi_0\fR \fIx\fR \fIy\fR
Converts from the Behrmann cylindrical equal area projection\&. (standard parallels
are 30 degrees North and South\&.)
.TP
\fB::mapproj::toTrystanEdwards\fR \fIlambda_0\fR \fIphi_0\fR \fIlambda\fR \fIphi\fR
Converts to the Trystan Edwards cylindrical equal area projection\&. (standard parallels
are 37\&.4 degrees North and South)
.TP
\fB::mapproj::fromTrystanEdwards\fR \fIlambda_0\fR \fIphi_0\fR \fIx\fR \fIy\fR
Converts from the Trystan Edwards cylindrical equal area projection\&. (standard parallels
are 37\&.4 degrees North and South\&.)
.TP
\fB::mapproj::toHoboDyer\fR \fIlambda_0\fR \fIphi_0\fR \fIlambda\fR \fIphi\fR
Converts to the Hobo-Dyer cylindrical equal area projection\&. (standard parallels
are 37\&.5 degrees North and South)
.TP
\fB::mapproj::fromHoboDyer\fR \fIlambda_0\fR \fIphi_0\fR \fIx\fR \fIy\fR
Converts from the Hobo-Dyer cylindrical equal area projection\&. (standard parallels
are 37\&.5 degrees North and South\&.)
.TP
\fB::mapproj::toGallPeters\fR \fIlambda_0\fR \fIphi_0\fR \fIlambda\fR \fIphi\fR
Converts to the Gall-Peters cylindrical equal area projection\&. (standard parallels
are 45 degrees North and South)
.TP
\fB::mapproj::fromGallPeters\fR \fIlambda_0\fR \fIphi_0\fR \fIx\fR \fIy\fR
Converts from the Gall-Peters cylindrical equal area projection\&. (standard parallels
are 45 degrees North and South\&.)
.TP
\fB::mapproj::toBalthasart\fR \fIlambda_0\fR \fIphi_0\fR \fIlambda\fR \fIphi\fR
Converts to the Balthasart cylindrical equal area projection\&. (standard parallels
are 50 degrees North and South)
.TP
\fB::mapproj::fromBalthasart\fR \fIlambda_0\fR \fIphi_0\fR \fIx\fR \fIy\fR
Converts from the Balthasart cylindrical equal area projection\&. (standard parallels
are 50 degrees North and South\&.)
.PP
.SH ARGUMENTS
The following arguments are accepted by the projection commands:
.TP
\fIlambda\fR
Longitude of the point to be projected, in degrees\&.
.TP
\fIphi\fR
Latitude of the point to be projected, in degrees\&.
.TP
\fIlambda_0\fR
Longitude of the center of the sheet, in degrees\&. For many projections,
this figure is also the reference meridian of the projection\&.
.TP
\fIphi_0\fR
Latitude of the center of the sheet, in degrees\&. For the azimuthal
projections, this figure is also the latitude of the center of the projection\&.
.TP
\fIphi_1\fR
Latitude of the first reference parallel, for projections that use reference
parallels\&.
.TP
\fIphi_2\fR
Latitude of the second reference parallel, for projections that use reference
parallels\&.
.TP
\fIx\fR
X co-ordinate of a point on the map, in units of Earth radii\&.
.TP
\fIy\fR
Y co-ordinate of a point on the map, in units of Earth radii\&.
.PP
.SH RESULTS
For all of the procedures whose names begin with 'to', the return value
is a list comprising an \fIx\fR co-ordinate and a \fIy\fR co-ordinate\&.
The co-ordinates are relative to the center of the map sheet to be drawn,
measured in Earth radii at the reference location on the map\&.
For all of the functions whose names begin with 'from', the return value
is a list comprising the longitude and latitude, in degrees\&.
.SH "CHOOSING A PROJECTION"
This package offers a great many projections, because no single projection
is appropriate to all maps\&. This section attempts to provide guidance
on how to choose a projection\&.
.PP
First, consider the type of data that you intend to display on the map\&.
If the data are \fIdirectional\fR (\fIe\&.g\&.,\fR winds, ocean currents, or
magnetic fields) then you need to use a projection that preserves
angles; these are known as \fIconformal\fR projections\&. Conformal
projections include the Mercator, the Albers azimuthal equal-area,
the stereographic, and the Peirce Quincuncial projection\&. If the
data are \fIthematic\fR, describing properties of land or water, such
as temperature, population density, land use, or demographics; then
you need a projection that will show these data with the areas on the map
proportional to the areas in real life\&. These so-called \fIequal area\fR
projections include the various cylindrical equal area projections,
the sinusoidal projection, the Lambert azimuthal equal-area projection,
the Albers equal-area conic projection, and several of the world-map
projections (Miller Cylindrical, Mollweide, Eckert IV, Eckert VI, Robinson,
and Hammer)\&. If the significant factor in your data is distance from a
central point or line (such as air routes), then you will do best with
an \fIequidistant\fR projection such as \fIplate carrée\fR,
Cassini, azimuthal equidistant, or conic equidistant\&. If direction from
a central point is a critical factor in your data (for instance,
air routes, radio antenna pointing), then you will almost surely want to
use one of the azimuthal projections\&. Appropriate choices are azimuthal
equidistant, azimuthal equal-area, stereographic, and perhaps orthographic\&.
.PP
Next, consider how much of the Earth your map will cover, and the general
shape of the area of interest\&. For maps of the entire Earth,
the cylindrical equal area, Eckert IV and VI, Mollweide, Robinson, and Hammer
projections are good overall choices\&. The Mercator projection is traditional,
but the extreme distortions of area at high latitudes make it
a poor choice unless a conformal projection is required\&. The Peirce
projection is a better choice of conformal projection, having less distortion
of landforms\&. The Miller Cylindrical is a compromise designed to give
shapes similar to the traditional Mercator, but with less polar stretching\&.
The Peirce Quincuncial projection shows all the continents with acceptable
distortion if a reference meridian close to +20 degrees is chosen\&.
The Robinson projection yields attractive maps for things like political
divisions, but should be avoided in presenting scientific data, since other
projections have moe useful geometric properties\&.
.PP
If the map will cover a hemisphere, then choose stereographic,
azimuthal-equidistant, Hammer, or Mollweide projections; these all project
the hemisphere into a circle\&.
.PP
If the map will cover a large area (at least a few hundred km on a side),
but less than
a hemisphere, then you have several choices\&. Azimuthal projections
are usually good (choose stereographic, azimuthal equidistant, or
Lambert azimuthal equal-area according to whether shapes, distances from
a central point, or areas are important)\&. Azimuthal projections (and possibly
the Cassini projection) are the only
really good choices for mapping the polar regions\&.
.PP
If the large area is in one of the temperate zones and is round or has
a primarily east-west extent, then the conic projections are good choices\&.
Choose the Lambert conformal conic, the conic equidistant, or the Albers
equal-area conic according to whether shape, distance, or area are the
most important parameters\&. For any of these, the reference parallels
should be chosen at approximately 1/6 and 5/6 of the range of latitudes
to be displayed\&. For instance, maps of the 48 coterminous United States
are attractive with reference parallels of 28\&.5 and 45\&.5 degrees\&.
.PP
If the large area is equatorial and is round or has a primarily east-west
extent, then the Mercator projection is a good choice for a conformal
projection; Lambert cylindrical equal-area and sinusoidal projections are
good equal-area projections; and the \fIplate carrée\fR is a
good equidistant projection\&.
.PP
Large areas having a primarily North-South aspect, particularly those
spanning the Equator, need some other choices\&. The Cassini projection
is a good choice for an equidistant projection (for instance, a Cassini
projection with a central meridian of 80 degrees West produces an
attractive map of the Americas)\&. The cylindrical equal-area, Albers
equal-area conic, sinusoidal, Mollweide and Hammer
projections are possible choices for equal-area projections\&.
A good conformal projection in this situation is the Transverse
Mercator, which alas, is not yet implemented\&.
.PP
Small areas begin to get into a realm where the ellipticity of the
Earth affects the map scale\&. This package does not attempt to
handle accurate mapping for large-scale topographic maps\&. If
slight scale errors are acceptable in your application, then any
of the projections appropriate to large areas should work for
small ones as well\&.
.PP
There are a few projections that are included for their special
properties\&. The orthographic projection produces views of the
Earth as seen from space\&. The gnomonic projection produces a
map on which all great circles (the shortest distance between
two points on the Earth's surface) are rendered as straight lines\&.
While this projection is useful for navigational planning, it
has extreme distortions of shape and area, and can display
only a limited area of the Earth (substantially less than a hemisphere)\&.
.SH KEYWORDS
geodesy, map, projection
.SH COPYRIGHT
.nf
Copyright (c) 2007 Kevin B\&. Kenny <kennykb@acm\&.org>
.fi
|