1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
|
# -*- tcl -*-
# Grammar / FA / Operations
# ### ### ### ######### ######### #########
## Package description
# ### ### ### ######### ######### #########
## Requisites
package require struct::list ; # Extended list operations.
package require struct::set ; # Extended set operations.
# ### ### ### ######### ######### #########
## Implementation
namespace eval ::grammar::fa::op {
# ### ### ### ######### ######### #########
## API. Structure / Language / Compilation
proc reverse {fa} {}
proc complete {fa {sink {}}} {}
proc remove_eps {fa} {}
proc trim {fa {what !reachable|!useful}} {}
proc determinize {fa {mapvar {}} {idstart 0}} {}
proc minimize {fa {mapvar {}}} {}
proc complement {fa} {}
proc kleene {fa} {}
proc optional {fa} {}
proc union {fa fb {mapvar {}}} {}
proc intersect {fa fb {mapvar {}} {idstart 0}} {}
proc difference {fa fb {mapvar {}}} {}
proc concatenate {fa fb {mapvar {}}} {}
proc fromRegex {fa regex {over {}}} {}
proc toRegexp {fa} {}
proc toRegexp2 {fa} {}
proc simplifyRegexp {rex} {}
proc toTclRegexp {rex symdict} {}
# ### ### ### ######### ######### #########
namespace export reverse complete remove_eps trim \
determinize minimize complement kleene \
optional union intersect difference \
concatenate fromRegex toRegexp toRegexp2 \
simplifyRegexp toTclRegexp
# ### ### ### ######### ######### #########
## Internal data structures.
variable cons {}
# ### ### ### ######### ######### #########
}
# ### ### ### ######### ######### #########
## API implementation. Structure
proc ::grammar::fa::op::reverse {fa} {
# Reversal means that all transitions change their direction
# and start and final states are swapped.
# Note that reversed FA might not be deterministic, even if the FA
# itself was.
# One loop is not enough for this. If we reverse the
# transitions for a state immediately we may modify a state
# which has not been processed yet. And when we come to this
# state we reverse already reversed transitions, creating a
# complete mess. Thus two loops, one to collect the current
# transitions (and also remove them), and a second to insert
# the reversed transitions.
set tmp [$fa finalstates]
$fa final set [$fa startstates]
$fa start set $tmp
# FUTURE : Method to retrieve all transitions
# FUTURE : Method to delete all transitions
set trans {}
foreach s [$fa states] {
foreach sym [$fa symbols@ $s] {
lappend trans $s $sym [$fa next $s $sym]
$fa !next $s $sym
}
}
foreach {s sym destinations} $trans {
foreach d $destinations {
$fa next $d $sym --> $s
}
}
return
}
# --- --- --- --------- --------- ---------
proc ::grammar::fa::op::complete {fa {sink {}}} {
if {[$fa is complete]} return
# We have an incomplete FA.
if {$sink eq ""} {
set sink [FindNewState $fa sink]
} elseif {[$fa state exists $sink]} {
return -code error "The chosen sink state exists already"
}
$fa state add $sink
# Add transitions to it from all states which are not
# complete. The sink state itself loops on all inputs. IOW it is a
# non-useful state.
set symbols [$fa symbols]
foreach sym $symbols {
$fa next $sink $sym --> $sink
}
if {[$fa is epsilon-free]} {
foreach s [$fa states] {
foreach missing [struct::set difference \
$symbols \
[$fa symbols@ $s]] {
$fa next $s $missing --> $sink
}
}
} else {
# For an FA with epsilon-transitions we cannot simply look at
# the direct transitions to find the used symbols. We have to
# determine this for the epsilon-closure of the state in
# question. Oh, and we have to defer actually adding the
# transitions after we have picked them all, or otherwise the
# newly added transitions throw the symbol calculations for
# epsilon closures off.
set new {}
foreach s [$fa states] {
foreach missing [struct::set difference \
$symbols \
[$fa symbols@set [$fa epsilon_closure $s]]] {
lappend new $s $missing
}
}
foreach {s missing} $new {
$fa next $s $missing --> $sink
}
}
return
}
# --- --- --- --------- --------- ---------
proc ::grammar::fa::op::remove_eps {fa} {
# We eliminate all epsilon transitions by duplicating a number
# of regular transitions, which we get through the epsilon
# closure of the states having epsilon transitions. We do
# nothing if the FA is epsilon free to begin with.
if {[$fa is epsilon-free]} return
# Note: Epsilon transitions touching start and final states
# propagate the start markers forward and final markers
# backward. We do this first by propagating start markers twice,
# once with a reversed FA. This also gives us some
# epsilon-closures as well.
foreach n {1 2} {
foreach s [$fa startstates] {
foreach e [$fa epsilon_closure $s] {
$fa start add $e
}
}
reverse $fa
}
# Now duplicate all transitions which are followed or preceeded by
# epsilon transitions of any number greater than zero.
# Note: The closure computations done by the FA are cached in the
# FA, so doing it multiple times is no big penalty.
# FUTURE : Retrieve all transitions on one command.
# FUTURE : Different algorithm ...
# Retrieve non-eps transitions for all states ...
# Iterate this list. Compute e-closures for endpoints, cache
# them. Duplicate the transition if needed, in that case add it to
# the end of the list, for possible more duplication (may touch
# different e-closures). Stop when the list is empty again.
set changed 1
while {$changed} {
set changed 0
foreach s [$fa states] {
foreach sym [$fa symbols@ $s] {
set dest [$fa next $s $sym]
if {$sym eq ""} {
# Epsilon transitions.
# Get the closure, and duplicate all transitions for all
# non-empty symbols as transitions of the original state.
# This may lead to parallel transitions between states, hence
# the catch. It prevents the generated error from stopping the
# action, and no actual parallel transitions are created.
set clos [$fa epsilon_closure $s]
foreach csym [$fa symbols@set $clos] {
if {$csym eq ""} continue
foreach d [$fa nextset $clos $csym] {
if {![catch {$fa next $s $csym --> $d} msg]} {
set changed 1
}
}
}
} else {
# Regular transition. Go through all destination
# states, compute their closures and replicate the
# transition if the closure contains more than the
# destination itself, to all states in the closure.
foreach d $dest {
set clos [$fa epsilon_closure $d]
if {[llength $clos] > 1} {
foreach e $clos {
if {![catch {$fa next $s $sym --> $e}]} {
set changed 1
}
}
}
}
}
}
}
}
# At last, drop the epsilons for all states. Only now is this
# possible because otherwise we might compute bad epsilon
# closures in the previous loop.
foreach s [$fa states] {
$fa !next $s ""
}
return
}
# --- --- --- --------- --------- ---------
proc ::grammar::fa::op::trim {fa {what !reachable|!useful}} {
# Remove various unwanted pices from the FA.
switch -exact -- $what {
!reachable {
set remove [$fa unreachable_states]
}
!useful {
set remove [$fa unuseful_states]
}
!reachable&!useful -
!(reachable|useful) {
set remove [struct::set intersect [$fa unreachable_states] [$fa unuseful_states]]
}
!reachable|!useful -
!(reachable&useful) {
set remove [struct::set union [$fa unreachable_states] [$fa unuseful_states]]
}
default {
return -code error "Expected !reachable, !useful, !reachable&!useful, !(reachable|useful), !reachable|!useful, or !(reachable&useful), got \"$what\""
}
}
foreach s $remove {
$fa state delete $s
}
return
}
# --- --- --- --------- --------- ---------
proc ::grammar::fa::op::determinize {fa {mapvar {}} {idstart 0}} {
# We do the operation in several stages instead of jumping
# directly in the subset construction. Basically we try the less
# expensive operations first to see if they are enough. It does
# help that they will us also bring nearer to the ultimate goal
# even if they are not enough.
set hasmap 0
if {$mapvar ne ""} {
upvar 1 $mapvar map ; set hasmap 1
}
# First, is the input already deterministic ?
# There is nothing to do in that case.
if {[$fa is deterministic]} {
if {$hasmap} {set map {}}
return
}
# Second, trim unreachable and unuseables. We are done if only
# they carried the non-determinism. Otherwise we might have made
# the FA smaller and was less time consuming to convert.
if {[llength [$fa startstates]]} {trim $fa !reachable}
if {[llength [$fa finalstates]]} {trim $fa !useful}
if {[$fa is deterministic]} {
if {$hasmap} {set map {}}
return
}
# Third, remove any epsilon transitions, and stop if that was
# enough. Of course, weed out again states which have become
# irrelevant. The removal of the epsilons will at least ensure
# that the subset construction won't have to deal with
# closures. I.e. simpler.
remove_eps $fa
if {[llength [$fa startstates]]} {trim $fa !reachable}
if {[llength [$fa finalstates]]} {trim $fa !useful}
if {[$fa is deterministic]} {
if {$hasmap} {set map {}}
return
}
# Fourth. There is no way to avoid the subset construction.
# Dive in. This is the only part of the algorithm which requires
# us to keep a map. We construct the dfa in a transient container
# and copy the result back to fa when completed.
array set subsets {}
set id $idstart
set pending {}
set dfa [[cons] %AUTO%]
# FUTURE : $dfa symbol set [$fa symbols]
foreach sym [$fa symbols] {$dfa symbol add $sym}
# If we have start states we can initialize the algorithm with
# their set. Otherwise we have to the single-element sets of all
# states as the beginning.
set starts [$fa startstates]
if {[llength $starts] > 0} {
# Make the set of start states the initial stae of the result.
set starts [lsort $starts] ; # Sort to get canonical form.
$dfa state add $id
$dfa start add $id
# The start may also be a final state
if {[$fa final?set $starts]} {
$dfa final add $id
}
set subsets(dfa,$starts) $id
set subsets(nfa,$id) $starts
lappend pending $id
incr id
} else {
# Convert all states of the input into sets (of one element)
# in the output. Do not forget to mark all final states we
# come by. No start states, otherwise we wouldn't be here.
foreach s [$fa states] {
set nfaset [list $s]
$dfa state add $id
if {[$fa final? $s]} {
$dfa final add $id
}
set subsets(dfa,$nfaset) $id
set subsets(nfa,$id) $nfaset
lappend pending $id
incr id
}
}
while {[llength $pending]} {
set dfastate [struct::list shift pending]
# We have to compute the transition function for this dfa state.
set nfaset $subsets(nfa,$dfastate)
foreach sym [$fa symbols@set $nfaset] {
set nfanext [lsort [$fa nextset $nfaset $sym]]
if {![info exists subsets(dfa,$nfanext)]} {
# Unknown destination. Add it as a new state.
$dfa state add $id
if {[$fa final?set $nfanext]} {
$dfa final add $id
}
set subsets(dfa,$nfanext) $id
set subsets(nfa,$id) $nfanext
# Schedule the calculation of the transition function
# of the new state.
lappend pending $id
incr id
}
# Add the transition
$dfa next $dfastate $sym --> $subsets(dfa,$nfanext)
}
}
if {[llength [$fa startstates]]} {trim $fa !reachable}
if {[llength [$fa finalstates]]} {trim $fa !useful}
if {$hasmap} {
# The map is from new dfa states to the sets of nfa states.
set map {}
foreach s [$dfa states] {
lappend map $s $subsets(nfa,$s)
}
}
$fa = $dfa
$dfa destroy
# ASSERT : $fa is deterministic
return
}
# --- --- --- --------- --------- ---------
proc ::grammar::fa::op::minimize {fa {mapvar {}}} {
# Brzozowski's method:
# Reverse, determinize, reverse again, determinize again.
reverse $fa
determinize $fa mapa
reverse $fa
determinize $fa mapb
if {$mapvar ne ""} {
upvar 1 $mapvar map
if {![llength $mapa] && ![llength $mapb]} {
# No state reorganizations, signal up
set map {}
} elseif {[llength $mapa] && ![llength $mapb]} {
# Only one reorg, this is the combined reorg as well.
set map $mapa
} elseif {![llength $mapa] && [llength $mapb]} {
# Only one reorg, this is the combined reorg as well.
set map $mapb
} else {
# Two reorgs. Compose the maps into the final map signaled
# up.
# mapb : final state -> set of states in mapa -> sets of original states.
set map {}
array set tmp $mapa
foreach {b aset} $mapb {
set compose {}
foreach a $aset {foreach o $tmp($a) {lappend compose $o}}
lappend map $b [lsort -uniq $compose]
}
}
}
# The FA is implicitly trimmed by the determinize's.
return
}
# ### ### ### ######### ######### #########
## API implementation. Language.
proc ::grammar::fa::op::complement {fa} {
# Complementing is possible if and only if the FA is complete,
# and accomplished by swapping the final and non-final states.
if {![$fa is complete]} {
return -code error "Unable to complement incomplete FA"
}
if {![$fa is deterministic]} {
return -code error "Unable to complement non-deterministic FA"
}
set newfinal [struct::set difference [$fa states] [$fa finalstates]]
$fa final set $newfinal
return
}
# --- --- --- --------- --------- ---------
proc ::grammar::fa::op::kleene {fa} {
# The Kleene Closure of the FA makes no sense if we don't have
# start and final states we can work from.
set start [$fa startstates]
set final [$fa finalstates]
if {![llength $start] || ![llength $final]} {
return -code error "Unable to add Kleene's closure to a FA without start/final states"
}
# FUTURE :: If final states have no outgoing transitions, and start
# FUTURE :: states have no input transitions, then place the new
# FUTURE :: transitions directly between start and final
# FUTURE :: states. In that case we don't need new states.
# We need new start/final states, like for optional (see below)
set ns [NewState $fa s]
set nf [NewState $fa f]
foreach s $start {$fa next $ns "" --> $s}
foreach f $final {$fa next $f "" --> $nf}
$fa start clear ; $fa start add $ns
$fa final clear ; $fa final add $nf
$fa next $ns "" --> $nf ; # Optionality
$fa next $nf "" --> $ns ; # Loop for closure
return
}
# --- --- --- --------- --------- ---------
proc ::grammar::fa::op::optional {fa} {
# The Optionality of the FA makes no sense if we don't have
# start and final states we can work from.
set start [$fa startstates]
set final [$fa finalstates]
if {![llength $start] || ![llength $final]} {
return -code error "Unable to make a FA without start/final states optional"
}
# We have to introduce new start and final states to ensure
# that we do not get additional recognized words from the FA
# due to epsilon transitions. IOW just placing epsilons from
# all start to all final states is wrong. Consider unreachable
# final states, they become reachable. Or final states able to
# reach final states from. Again the epsilons would extend the
# language. We have to detach our optional epsilon from anything
# in the existing start/final states. Hence the new start/final.
# FUTURE : Recognize if there are no problems with placing direct
# FUTURE : epsilons from start to final.
set ns [NewState $fa s]
set nf [NewState $fa f]
foreach s $start {$fa next $ns "" --> $s}
foreach f $final {$fa next $f "" --> $nf}
$fa start clear ; $fa start add $ns
$fa final clear ; $fa final add $nf
$fa next $ns "" --> $nf ; # This is the transition which creates the optionality.
return
}
# --- --- --- --------- --------- ---------
proc ::grammar::fa::op::union {fa fb {mapvar {}}} {
# We union the input symbols, then add the states and
# transitions of the second FA to the first, adding in
# epsilons for the start and final states as well. When
# adding states we make sure that the new states do not
# intersect with the existing states.
struct::list assign \
[MergePrepare $fa $fb union smap] \
astart afinal bstart bfinal
if {$mapvar ne ""} {
upvar 1 $mapvar map
set map $smap
}
# And now the new start & final states
set ns [NewState $fa s]
set nf [NewState $fa f]
eLink1N $fa $ns $astart
eLink1N $fa $ns $bstart
eLinkN1 $fa $afinal $nf
eLinkN1 $fa $bfinal $nf
$fa start clear ; $fa start add $ns
$fa final clear ; $fa final add $nf
return
}
# --- --- --- --------- --------- ---------
proc ::grammar::fa::op::intersect {fa fb {mapvar {}} {idstart 0}} {
# Intersection has to run the two automata in parallel, using
# paired states. If we have start states we begin the
# construction with them. This leads to a smaller result as we
# do not have create a full cross-crossproduct. The latter is
# unfortunately required if there are no start states.
struct::list assign [CrossPrepare $fa $fb intersection] tmp res
# The start states of the new FA consist of the cross-product of
# the start states of fa with fb. These are also the states used
# to seed DoCross.
set id $idstart
set smap {}
set bstart [$tmp startstates]
foreach a [$fa startstates] {
foreach b $bstart {
set pair [list $a $b]
lappend smap $id $pair
lappend pending $pair $id
$res state add $id
$res start add $id
incr id
}
}
set cp [DoCross $fa $tmp $res $id $pending smap]
foreach {id pair} $smap {
struct::list assign $pair a b
if {[$fa final? $a] && [$tmp final? $b]} {
$res final add $id
}
}
# Remove excess states (generated because of the sinks).
trim $res
if {$mapvar ne ""} {
upvar 1 $mapvar map
# The loop is required to filter out the mappings for all
# states which were trimmed off.
set map {}
foreach {id pair} $smap {
if {![$res state exists $id]} continue
lappend map $id $pair
}
}
# Copy result into permanent storage and delete all intermediaries
$fa = $res
$res destroy
if {$tmp ne $fb} {$tmp destroy}
return
}
# --- --- --- --------- --------- ---------
proc ::grammar::fa::op::difference {fa fb {mapvar {}}} {
# Difference has to run the two automata in parallel, using
# paired states. Only the final states are defined differently
# than for intersection. It has to be final in fa and _not_ final
# in fb to be a final state of the result. <=> Accepted by A, but
# not B, to be in the difference.
struct::list assign [CrossPrepare $fa $fb difference] tmp res
# The start states of the new FA consist of the cross-product of
# the start states of fa with fb. These are also the states used
# to seed DoCross.
set id 0
set smap {}
set bstart [$tmp startstates]
foreach a [$fa startstates] {
foreach b $bstart {
set pair [list $a $b]
lappend smap $id $pair
lappend pending $pair $id
$res state add $id
$res start add $id
incr id
}
}
set cp [DoCross $fa $tmp $res $id $pending smap]
foreach {id pair} $smap {
struct::list assign $pair a b
if {[$fa final? $a] && ![$tmp final? $b]} {
$res final add $id
}
}
# Remove excess states (generated because of the sinks).
trim $res
if {$mapvar ne ""} {
upvar 1 $mapvar map
# The loop is required to filter out the mappings for all
# states which were trimmed off.
set map {}
foreach {id pair} $smap {
if {![$res state exists $id]} continue
lappend map $id $pair
}
}
# Copy result into permanent storage and delete all intermediaries
$fa = $res
$res destroy
if {$tmp ne $fb} {$tmp destroy}
return
}
# --- --- --- --------- --------- ---------
proc ::grammar::fa::op::concatenate {fa fb {mapvar {}}} {
# Like union, only the interconnect between existing and new FA is different.
struct::list assign \
[MergePrepare $fa $fb concatenate smap] \
astart afinal bstart bfinal
if {$mapvar ne ""} {
upvar 1 $mapvar map
set map $smap
}
set ns [NewState $fa s]
set nm [NewState $fa m] ;# Midpoint.
set nf [NewState $fa f]
eLink1N $fa $ns $astart
eLinkN1 $fa $afinal $nm
eLink1N $fa $nm $bstart
eLinkN1 $fa $bfinal $nf
$fa start clear ; $fa start add $ns
$fa final clear ; $fa final add $nf
return
}
# ### ### ### ######### ######### #########
## API implementation. Compilation (regexp -> FA).
proc ::grammar::fa::op::fromRegex {fa regex {over {}}} {
# Convert a regular expression into a FA. The regex is given as
# parse tree in the form of a nested list.
# {. A B ...} ... Concatenation (accepts zero|one arguments).
# {| A B ...} ... Alternatives (accepts zero|one arguments).
# {? A} ... Optional.
# {* A} ... Kleene.
# {+ A} ... Pos.Kleene.
# {! A} ... Complement/Negation.
# {S Symbol} ... Atom, Symbol
#
# Recursive descent with a helper ...
if {![llength $regex]} {
$fa clear
return
}
set tmp [[cons] %AUTO%]
if {![llength $over]} {
set over [lsort -uniq [RESymbols $regex]]
}
foreach sym $over {
$tmp symbol add $sym
}
set id 0
struct::list assign [Regex $tmp $regex id] s f
$tmp start set [list $s]
$tmp final set [list $f]
$fa = $tmp
$tmp destroy
return
}
# ### ### ### ######### ######### #########
## Internal helpers.
proc ::grammar::fa::op::RESymbols {regex} {
set cmd [lindex $regex 0]
switch -exact -- $cmd {
? - * - ! - + {
return [RESymbols [lindex $regex 1]]
}
. - | - & {
set res {}
foreach sub [lrange $regex 1 end] {
foreach sym [RESymbols $sub] {lappend res $sym}
}
return $res
}
S {
return [list [lindex $regex 1]]
}
default {
return -code error "Expected . ! ? * | &, or S, got \"$cmd\""
}
}
}
proc ::grammar::fa::op::Regex {fa regex idvar} {
upvar 1 $idvar id
set cmd [lindex $regex 0]
switch -exact -- $cmd {
? {
# Optional
set a $id ; incr id ; $fa state add $a
set b $id ; incr id ; $fa state add $b
struct::list assign [Regex $fa [lindex $regex 1] id] s f
$fa next $a "" --> $s
$fa next $f "" --> $b
$fa next $a "" --> $b
}
* {
# Kleene
set a $id ; incr id ; $fa state add $a
set b $a
struct::list assign [Regex $fa [lindex $regex 1] id] s f
$fa next $a "" --> $s
$fa next $f "" --> $a ;# == b
}
+ {
# Pos. Kleene
set a $id ; incr id ; $fa state add $a
set b $id ; incr id ; $fa state add $b
struct::list assign [Regex $fa [lindex $regex 1] id] s f
$fa next $a "" --> $s
$fa next $f "" --> $b
$fa next $b "" --> $a
}
! {
# Complement.
# Build up in a temp FA, complement, and
# merge nack into the current
set a $id ; incr id ; $fa state add $a
set b $id ; incr id ; $fa state add $b
set tmp [[cons] %AUTO%]
foreach sym [$fa symbols] {$tmp symbol add $sym}
struct::list assign [Regex $tmp [lindex $regex 1] id] s f
$tmp start add $s
$tmp final add $f
determinize $tmp {} $id
incr id [llength [$tmp states]]
if {![$tmp is complete]} {
complete $tmp $id
incr id
}
complement $tmp
# Merge and link.
$fa deserialize_merge [$tmp serialize]
eLink1N $fa $a [$tmp startstates]
eLinkN1 $fa [$tmp finalstates] $b
$tmp destroy
}
& {
# Intersection ... /And
if {[llength $regex] < 3} {
# Optimized path. Intersection of one sub-expression
# is the sub-expression itself.
struct::list assign [Regex $fa [lindex $regex 1] id] a b
} else {
set a $id ; incr id ; $fa state add $a
set b $id ; incr id ; $fa state add $b
set tmp [[cons] %AUTO%]
foreach sym [$fa symbols] {$tmp symbol add $sym}
set idsub 0
struct::list assign [Regex $tmp [lindex $regex 1] idsub] s f
$tmp start add $s
$tmp final add $f
set beta [[cons] %AUTO%]
foreach sub [lrange $regex 2 end] {
foreach sym [$fa symbols] {$beta symbol add $sym}
struct::list assign [Regex $beta $sub idsub] s f
$beta start add $s
$beta final add $f
intersect $tmp $beta {} $id
}
$beta destroy
determinize $tmp {} $id
incr id [llength [$tmp states]]
# Merge and link.
$fa deserialize_merge [$tmp serialize]
eLink1N $fa $a [$tmp startstates]
eLinkN1 $fa [$tmp finalstates] $b
$tmp destroy
}
}
. {
# Concatenation ...
if {[llength $regex] == 1} {
# Optimized path. No sub-expressions. This represents
# language containing only the empty string, aka
# epsilon.
set a $id ; incr id ; $fa state add $a
set b $id ; incr id ; $fa state add $b
$fa next $a "" --> $b
} elseif {[llength $regex] == 2} {
# Optimized path. Concatenation of one sub-expression
# is the sub-expression itself.
struct::list assign [Regex $fa [lindex $regex 1] id] a b
} else {
set first 1
set last {}
foreach sub [lrange $regex 1 end] {
struct::list assign [Regex $fa $sub id] s f
if {$first} {set first 0 ; set a $s}
if {$last != {}} {
$fa next $last "" --> $s
}
set last $f
}
set b $f
}
}
| {
# Alternatives ... (Union)
if {[llength $regex] == 1} {
# Optimized path. No sub-expressions. This represents
# the empty language, i.e. the language without words.
set a $id ; incr id ; $fa state add $a
set b $id ; incr id ; $fa state add $b
} elseif {[llength $regex] == 2} {
# Optimized path. Choice/Union of one sub-expression
# is the sub-expression itself.
struct::list assign [Regex $fa [lindex $regex 1] id] a b
} else {
set a $id ; incr id ; $fa state add $a
set b $id ; incr id ; $fa state add $b
foreach sub [lrange $regex 1 end] {
struct::list assign [Regex $fa $sub id] s f
$fa next $a "" --> $s
$fa next $f "" --> $b
}
}
}
S {
# Atom, base transition.
set sym [lindex $regex 1]
set a $id ; incr id ; $fa state add $a
set b $id ; incr id ; $fa state add $b
$fa next $a $sym --> $b
}
default {
return -code error "Expected . ! ? * | &, or S, got \"$cmd\""
}
}
return [list $a $b]
}
# --- --- --- --------- --------- ---------
proc ::grammar::fa::op::CrossPrepare {fa fb label} {
set starta [$fa startstates]
set finala [$fa finalstates]
set startb [$fb startstates]
set finalb [$fb finalstates]
if {
![llength $starta] || ![llength $finala] ||
![llength $startb] || ![llength $finalb]
} {
return -code error "Unable to perform the $label of two FAs without start/final states"
}
# The inputs are made complete over the union of their symbol
# sets. A temp. container is used for the second input if necessary.
set totals [struct::set union [$fa symbols] [$fb symbols]]
foreach sym [struct::set difference $totals [$fa symbols]] {
$fa symbol add $sym
}
if {![$fa is epsilon-free]} {
remove_eps $fa
trim $fa
}
if {![$fa is complete]} {
complete $fa
}
set tmp $fb
set bnew [struct::set difference $totals [$fb symbols]]
if {[llength $bnew]} {
set tmp [[cons] %AUTO% = $fb]
foreach sym $bnew {
$tmp symbol add $sym
}
}
if {![$fb is epsilon-free]} {
if {$tmp eq $fb} {set tmp [[cons] %AUTO% = $fb]}
remove_eps $tmp
trim $tmp
}
if {![$fb is complete]} {
if {$tmp eq $fb} {set tmp [[cons] %AUTO% = $fb]}
complete $tmp
}
set res [[cons] %AUTO%]
foreach sym $totals {
$res symbol add $sym
}
return [list $tmp $res]
}
# --- --- --- --------- --------- ---------
proc ::grammar::fa::op::DoCross {fa fb res id seed smapvar} {
upvar 1 $smapvar smap
set symbols [$fa symbols]
array set tmp $seed
set pending $seed
while {[llength $pending]} {
set cpair [struct::list shift pending]
set cid [struct::list shift pending]
struct::list assign $cpair a b
# ASSERT: /res state exists /cid
# Generate the transitions for the pair, add the resulting
# destinations to the FA, and schedule them for a visit if
# they are new.
foreach sym $symbols {
set adestinations [$fa next $a $sym]
set bdestinations [$fb next $b $sym]
foreach ad $adestinations {
foreach bd $bdestinations {
set dest [list $ad $bd]
if {![info exists tmp($dest)]} {
$res state add $id
lappend smap $id $dest
lappend pending $dest $id
set tmp($dest) $id
incr id
}
$res next $cid $sym --> $tmp($dest)
}
}
}
}
return
}
# --- --- --- --------- --------- ---------
proc ::grammar::fa::op::MergePrepare {fa fb label mapvar} {
upvar 1 $mapvar map
set starta [$fa startstates]
set finala [$fa finalstates]
set startb [$fb startstates]
set finalb [$fb finalstates]
if {
![llength $starta] || ![llength $finala] ||
![llength $startb] || ![llength $finalb]
} {
return -code error "Unable to $label FAs without start/final states"
}
# FUTURE: add {*}[symbols], ignore dup's
foreach sym [$fb symbols] {catch {$fa symbol add $sym}}
set dup [struct::set intersect [$fa states] [$fb states]]
if {![llength $dup]} {
# The states do not overlap. A plain merge of fb is enough to
# copy the information.
$fa deserialize_merge [$fb serialize]
set map {}
} else {
# We have duplicate states, therefore we have to remap fb to
# prevent interference between the two.
set map {}
set tmp [[cons] %AUTO% = $fb]
set id 0
foreach s $dup {
# The renaming process has to ensure that the new name is
# in neither fa, nor already in fb as well.
while {
[$fa state exists $id] ||
[$tmp state exists $id]
} {incr id}
$tmp state rename $s $id
lappend map $id $s
incr id
}
set startb [$tmp startstates]
set finalb [$tmp finalstates]
$fa deserialize_merge [$tmp serialize]
$tmp destroy
}
return [list $starta $finala $startb $finalb]
}
# --- --- --- --------- --------- ---------
proc ::grammar::fa::op::eLink1N {fa from states} {
foreach s $states {
$fa next $from "" --> $s
}
return
}
# --- --- --- --------- --------- ---------
proc ::grammar::fa::op::eLinkN1 {fa states to} {
foreach s $states {
$fa next $s "" --> $to
}
return
}
# --- --- --- --------- --------- ---------
proc ::grammar::fa::op::NewState {fa prefix} {
set newstate [FindNewState $fa $prefix]
$fa state add $newstate
return $newstate
}
# --- --- --- --------- --------- ---------
proc ::grammar::fa::op::FindNewState {fa prefix} {
#if {![$fa state exists $prefix]} {return $prefix}
set n 0
while {[$fa state exists ${prefix}.$n]} {incr n}
return ${prefix}.$n
}
# ### ### ### ######### ######### #########
## API implementation. Decompilation (FA -> regexp).
proc ::grammar::fa::op::toRegexp {fa} {
# NOTE: FUTURE - Do not go through the serialization, nor through
# a matrix. The algorithm can be expressed more directly as
# operations on the automaton (states and transitions).
set ET [ser_to_ematrix [$fa serialize]]
while {[llength $ET] > 2} {
set ET [matrix_drop_state $ET]
}
return [lindex $ET 0 1]
}
proc ::grammar::fa::op::toRegexp2 {fa} {
# NOTE: FUTURE - See above.
set ET [ser_to_ematrix [$fa serialize]]
while {[llength $ET] > 2} {
set ET [matrix_drop_state $ET re2]
}
return [lindex $ET 0 1]
}
# ### ### ### ######### ######### #########
## Internal helpers.
proc ::grammar::fa::op::ser_to_ematrix {ser} {
if {[lindex $ser 0] ne "grammar::fa"} then {
error "Expected grammar::fa automaton serialisation"
}
set stateL {}
set n 2; foreach {state des} [lindex $ser 2] {
lappend stateL $state
set N($state) $n
incr n
}
set row0 {}
for {set k 0} {$k<$n} {incr k} {lappend row0 [list |]}
set res [list $row0 $row0]
foreach {from des} [lindex $ser 2] {
set row [lrange $row0 0 1]
if {[lindex $des 0]} then {lset res 0 $N($from) [list .]}
if {[lindex $des 1]} then {lset row 1 [list .]}
foreach to $stateL {set S($to) [list |]}
foreach {symbol targetL} [lindex $des 2] {
if {$symbol eq ""} then {
set atom [list .]
} else {
set atom [list S $symbol]
}
foreach to $targetL {lappend S($to) $atom}
}
foreach to $stateL {
if {[llength $S($to)] == 2} then {
lappend row [lindex $S($to) 1]
} else {
lappend row $S($to)
}
}
lappend res $row
}
return $res
}
proc ::grammar::fa::op::matrix_drop_state {T_in {ns re1}} {
set sumcmd ${ns}::|
set prodcmd ${ns}::.
set T1 {}
set lastcol {}
foreach row $T_in {
lappend T1 [lreplace $row end end]
lappend lastcol [lindex $row end]
}
set lastrow [lindex $T1 end]
set T1 [lreplace $T1 end end]
set b [${ns}::* [lindex $lastcol end]]
set lastcol [lreplace $lastcol end end]
set res {}
foreach row $T1 a $lastcol {
set newrow {}
foreach pos $row c $lastrow {
lappend newrow [$sumcmd $pos [$prodcmd $a $b $c]]
}
lappend res $newrow
}
return $res
}
# ### ### ### ######### ######### #########
## Internal helpers. Regexp simplification I.
namespace eval ::grammar::fa::op::re1 {
namespace export | . {\*}
}
proc ::grammar::fa::op::re1::| {args} {
set L {}
# | = Choices.
# Sub-choices are lifted into the top expression (foreach).
# Identical choices are reduced to a single term (lsort -uniq).
foreach re $args {
switch -- [lindex $re 0] "|" {
foreach term [lrange $re 1 end] {lappend L $term}
} default {
lappend L $re
}
}
set L [lsort -unique $L]
if {[llength $L] == 1} then {
return [lindex $L 0]
} else {
return [linsert $L 0 |]
}
}
proc ::grammar::fa::op::re1::. {args} {
set L {}
# . = Sequence.
# One element sub-choices are lifted into the top expression.
# Sub-sequences are lifted into the top expression.
foreach re $args {
switch -- [lindex $re 0] "." {
foreach term [lrange $re 1 end] {lappend L $term}
} "|" {
if {[llength $re] == 1} then {return $re}
lappend L $re
} default {
lappend L $re
}
}
if {[llength $L] == 1} then {
return [lindex $L 0]
} else {
return [linsert $L 0 .]
}
}
proc ::grammar::fa::op::re1::* {re} {
# * = Kleene closure.
# Sub-closures are lifted into the top expression.
# One-element sub-(choices,sequences) are lifted into the top expression.
switch -- [lindex $re 0] "|" - "." {
if {[llength $re] == 1} then {
return [list .]
} else {
return [list * $re]
}
} "*" {
return $re
} default {
return [list * $re]
}
}
# ### ### ### ######### ######### #########
## Internal helpers. Regexp simplification II.
namespace eval ::grammar::fa::op::re2 {
# Inherit choices and kleene-closure from the basic simplifier.
namespace import [namespace parent]::re1::|
namespace import [namespace parent]::re1::\\*
}
proc ::grammar::fa::op::re2::. {args} {
# . = Sequences
# Sub-sequences are lifted into the top expression.
# Sub-choices are multiplied out.
# <Example a(b|c) => ab|ac >
set L {}
set n -1
foreach re $args {
incr n
switch -- [lindex $re 0] "." {
foreach term [lrange $re 1 end] {lappend L $term}
} "|" {
set res [list |]
set L2 [lreplace $args 0 $n]
foreach term [lrange $re 1 end] {
lappend res [eval [list .] $L [list $term] $L2]
}
return [eval $res]
} default {
lappend L $re
}
}
if {[llength $L] == 1} then {
return [lindex $L 0]
} else {
return [linsert $L 0 .]
}
}
# ### ### ### ######### ######### #########
## API. Simplification of regular expressions.
proc ::grammar::fa::op::simplifyRegexp {RE0} {
set RE1 [namespace inscope nonnull $RE0]
if {[lindex $RE1 0] eq "S" || $RE1 eq "." || $RE1 eq "|"} then {
return $RE1
}
set tmp [grammar::fa %AUTO% fromRegex $RE1]
$tmp minimize
set RE1 [toRegexp $tmp]
$tmp destroy
if {[string length $RE1] < [string length $RE0]} then {
set RE0 $RE1
}
if {[lindex $RE0 0] eq "S"} then {return $RE0}
set res [lrange $RE0 0 0]
foreach branch [lrange $RE0 1 end] {
lappend res [simplifyRegexp $branch]
}
return $res
}
# ### ### ### ######### ######### #########
## Internal helpers.
namespace eval ::grammar::fa::op::nonnull {}
proc ::grammar::fa::op::nonnull::| {args} {
set also_empty false
set res [list |]
foreach branch $args {
set RE [eval $branch]
if {[lindex $RE 0] eq "?"} then {
set also_empty true
set RE [lindex $RE 1]
}
switch -- [lindex $RE 0] "|" {
eval [lreplace $RE 0 0 lappend res]
} "." {
if {[llength $RE] == 1} then {
set also_empty true
} else {
lappend res $RE
}
} default {
lappend res $RE
}
}
if {!$also_empty} then {return $res}
foreach branch [lrange $res 1 end] {
if {[lindex $branch 0] eq "*"} then {return $res}
}
if {[llength $res] == 1} then {
return [list .]
} elseif {[llength $res] == 2} then {
return [lreplace $res 0 0 ?]
} else {
return [list ? $res]
}
}
proc ::grammar::fa::op::nonnull::. {args} {
set res [list .]
foreach branch $args {
set RE [eval $branch]
switch -- [lindex $RE 0] "|" {
if {[llength $RE] == 1} then {return $RE}
lappend res $RE
} "." {
eval [lreplace $RE 0 0 lappend res]
} default {
lappend res $RE
}
}
return $res
}
proc ::grammar::fa::op::nonnull::* {sub} {
set RE [eval $sub]
switch -- [lindex $RE 0] "*" - "?" - "+" {
return [lreplace $RE 0 0 *]
} default {
return [list * $RE]
}
}
proc ::grammar::fa::op::nonnull::+ {sub} {
set RE [eval $sub]
switch -- [lindex $RE 0] "+" {
return $RE
} "*" - "?" {
return [lreplace $RE 0 0 *]
} default {
return [list * $RE]
}
}
proc ::grammar::fa::op::nonnull::? {sub} {
set RE [eval $sub]
switch -- [lindex $RE 0] "?" - "*" {
return $RE
} "+" {
return [lreplace $RE 0 0 *]
} default {
return [list ? $RE]
}
}
proc ::grammar::fa::op::nonnull::S {name} {
return [list S $name]
}
# ### ### ### ######### ######### #########
## API. Translate RE of this package to Tcl REs
proc ::grammar::fa::op::toTclRegexp {re symdict} {
return [lindex [namespace inscope tclre $re $symdict] 1]
}
# ### ### ### ######### ######### #########
## Internal helpers.
namespace eval ::grammar::fa::op::tclre {}
proc ::grammar::fa::op::tclre::S {name dict} {
array set A $dict
if {[info exists A($name)]} then {
return $A($name)
} elseif {[string length $name] == 1} then {
if {[regexp {[\\\[\]{}.()*+?^$]} $name]} then {
return [list char \\$name]
} else {
return [list char $name]
}
} else {
return [list class "\[\[:${name}:\]\]"]
}
}
proc ::grammar::fa::op::tclre::. {args} {
set suffix [lrange $args end end]
set L {}
foreach factor [lrange $args 0 end-1] {
set pair [eval $factor $suffix]
switch -- [lindex $pair 0] "sum" {
lappend L ([lindex $pair 1])
} default {
lappend L [lindex $pair 1]
}
}
return [list prod [join $L ""]]
}
proc ::grammar::fa::op::tclre::* {re dict} {
set pair [eval $re [list $dict]]
switch -- [lindex $pair 0] "sum" - "prod" {
return [list prod "([lindex $pair 1])*"]
} default {
return [list prod "[lindex $pair 1]*"]
}
}
proc ::grammar::fa::op::tclre::+ {re dict} {
set pair [eval $re [list $dict]]
switch -- [lindex $pair 0] "sum" - "prod" {
return [list prod "([lindex $pair 1])+"]
} default {
return [list prod "[lindex $pair 1]+"]
}
}
proc ::grammar::fa::op::tclre::? {re dict} {
set pair [eval $re [list $dict]]
switch -- [lindex $pair 0] "sum" - "prod" {
return [list prod "([lindex $pair 1])?"]
} default {
return [list prod "[lindex $pair 1]?"]
}
}
proc ::grammar::fa::op::tclre::| {args} {
set suffix [lrange $args end end]
set charL {}
set classL {}
set prodL {}
foreach factor [lrange $args 0 end-1] {
set pair [eval $factor $suffix]
switch -- [lindex $pair 0] "char" {
lappend charL [lindex $pair 1]
} "class" {
lappend classL [string range [lindex $pair 1] 1 end-1]
} default {
lappend prodL [lindex $pair 1]
}
}
if {[llength $charL]>1 || [llength $classL]>0} then {
while {[set n [lsearch $charL -]] >= 0} {
lset charL $n {\-}
}
set bracket "\[[join $charL ""][join $classL ""]\]"
if {![llength $prodL]} then {
return [list atom $bracket]
}
lappend prodL $bracket
} else {
eval [list lappend prodL] $charL
}
return [list sum [join $prodL |]]
}
proc ::grammar::fa::op::tclre::& {args} {
error "Cannot express language intersection in Tcl-RE's"
# Note: This can be translated by constructing an automaton for
# the intersection, and then translating its conversion to a
# regular expression.
}
proc ::grammar::fa::op::tclre::! {args} {
error "Cannot express language complementation in Tcl-RE's"
# Note: This can be translated by constructing an automaton for
# the complement, and then translating its conversion to a regular
# expression. This however requires knowledge regarding the set of
# symbols. Large (utf-8) for Tcl regexes.
}
# ### ### ### ######### ######### #########
proc ::grammar::fa::op::constructor {cmd} {
variable cons $cmd
return
}
proc ::grammar::fa::op::cons {} {
variable cons
if {$cons ne ""} {return $cons}
return -code error "No constructor for FA container was established."
}
# ### ### ### ######### ######### #########
## Package Management
package provide grammar::fa::op 0.4.1
|