summaryrefslogtreecommitdiffstats
path: root/tcllib/modules/math/calculus.man
blob: 2bad0b78bfaf2e702776d2bebffada1f30bd444e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
[vset VERSION 0.8.1]
[manpage_begin math::calculus n [vset VERSION]]
[see_also romberg]
[keywords calculus]
[keywords {differential equations}]
[keywords integration]
[keywords math]
[keywords roots]
[copyright {2002,2003,2004 Arjen Markus}]
[moddesc   {Tcl Math Library}]
[titledesc {Integration and ordinary differential equations}]
[category  Mathematics]
[require Tcl 8.4]
[require math::calculus [vset VERSION]]
[description]
[para]
This package implements several simple mathematical algorithms:

[list_begin itemized]
[item]
The integration of a function over an interval

[item]
The numerical integration of a system of ordinary differential
equations.

[item]
Estimating the root(s) of an equation of one variable.

[list_end]

[para]
The package is fully implemented in Tcl. No particular attention has
been paid to the accuracy of the calculations. Instead, well-known
algorithms have been used in a straightforward manner.
[para]
This document describes the procedures and explains their usage.

[section "PROCEDURES"]
This package defines the following public procedures:
[list_begin definitions]

[call [cmd ::math::calculus::integral] [arg begin] [arg end] [arg nosteps] [arg func]]
Determine the integral of the given function using the Simpson
rule. The interval for the integration is [lb][arg begin], [arg end][rb].
The remaining arguments are:

[list_begin definitions]
[def [arg nosteps]]
Number of steps in which the interval is divided.

[def [arg func]]
Function to be integrated. It should take one single argument.
[list_end]
[para]

[call [cmd ::math::calculus::integralExpr] [arg begin] [arg end] [arg nosteps] [arg expression]]
Similar to the previous proc, this one determines the integral of
the given [arg expression] using the Simpson rule.
The interval for the integration is [lb][arg begin], [arg end][rb].
The remaining arguments are:

[list_begin definitions]
[def [arg nosteps]]
Number of steps in which the interval is divided.

[def [arg expression]]
Expression to be integrated. It should
use the variable "x" as the only variable (the "integrate")
[list_end]
[para]

[call [cmd ::math::calculus::integral2D] [arg xinterval] [arg yinterval] [arg func]]
[call [cmd ::math::calculus::integral2D_accurate] [arg xinterval] [arg yinterval] [arg func]]
The commands [cmd integral2D] and [cmd integral2D_accurate] calculate the
integral of a function of two variables over the rectangle given by the
first two arguments, each a list of three items, the start and
stop interval for the variable and the number of steps.
[para]
The command [cmd integral2D] evaluates the function at the centre of
each rectangle, whereas the command [cmd integral2D_accurate] uses a
four-point quadrature formula. This results in an exact integration of
polynomials of third degree or less.
[para]
The function must take two arguments and return the function
value.

[call [cmd ::math::calculus::integral3D] [arg xinterval] [arg yinterval] [arg zinterval] [arg func]]
[call [cmd ::math::calculus::integral3D_accurate] [arg xinterval] [arg yinterval] [arg zinterval] [arg func]]
The commands [cmd integral3D] and [cmd integral3D_accurate] are the
three-dimensional equivalent of [cmd integral2D] and [cmd integral3D_accurate].
The function [emph func] takes three arguments and is integrated over the block in
3D space given by three intervals.

[call [cmd ::math::calculus::qk15] [arg xstart] [arg xend] [arg func] [arg nosteps]]
Determine the integral of the given function using the Gauss-Kronrod 15 points quadrature rule.
The returned value is the estimate of the integral over the interval [lb][arg xstart], [arg xend][rb].
The remaining arguments are:

[list_begin definitions]
[def [arg func]]
Function to be integrated. It should take one single argument.

[def [opt nosteps]]
Number of steps in which the interval is divided. Defaults to 1.
[list_end]
[para]

[call [cmd ::math::calculus::qk15_detailed] [arg xstart] [arg xend] [arg func] [arg nosteps]]
Determine the integral of the given function using the Gauss-Kronrod 15 points quadrature rule.
The interval for the integration is [lb][arg xstart], [arg xend][rb].
The procedure returns a list of four values:
[list_begin itemized]
[item]
The estimate of the integral over the specified interval (I).
[item]
An estimate of the absolute error in I.
[item]
The estimate of the integral of the absolute value of the function over the interval.
[item]
The estimate of the integral of the absolute value of the function minus its mean over the interval.
[list_end]
The remaining arguments are:

[list_begin definitions]
[def [arg func]]
Function to be integrated. It should take one single argument.

[def [opt nosteps]]
Number of steps in which the interval is divided. Defaults to 1.
[list_end]
[para]

[call [cmd ::math::calculus::eulerStep] [arg t] [arg tstep] [arg xvec] [arg func]]
Set a single step in the numerical integration of a system of
differential equations. The method used is Euler's.

[list_begin definitions]
[def [arg t]]
Value of the independent variable (typically time)
at the beginning of the step.

[def [arg tstep]]
Step size for the independent variable.

[def [arg xvec]]
List (vector) of dependent values

[def [arg func]]
Function of t and the dependent values, returning
a list of the derivatives of the dependent values. (The lengths of
xvec and the return value of "func" must match).
[list_end]
[para]

[call [cmd ::math::calculus::heunStep] [arg t] [arg tstep] [arg xvec] [arg func]]
Set a single step in the numerical integration of a system of
differential equations. The method used is Heun's.

[list_begin definitions]
[def [arg t]]
Value of the independent variable (typically time)
at the beginning of the step.

[def [arg tstep]]
Step size for the independent variable.

[def [arg xvec]]
List (vector) of dependent values

[def [arg func]]
Function of t and the dependent values, returning
a list of the derivatives of the dependent values. (The lengths of
xvec and the return value of "func" must match).
[list_end]
[para]

[call [cmd ::math::calculus::rungeKuttaStep] [arg t] [arg tstep] [arg xvec] [arg func]]
Set a single step in the numerical integration of a system of
differential equations. The method used is Runge-Kutta 4th
order.

[list_begin definitions]
[def [arg t]]
Value of the independent variable (typically time)
at the beginning of the step.

[def [arg tstep]]
Step size for the independent variable.

[def [arg xvec]]
List (vector) of dependent values

[def [arg func]]
Function of t and the dependent values, returning
a list of the derivatives of the dependent values. (The lengths of
xvec and the return value of "func" must match).
[list_end]
[para]

[call [cmd ::math::calculus::boundaryValueSecondOrder] [arg coeff_func] [arg force_func] [arg leftbnd] [arg rightbnd] [arg nostep]]
Solve a second order linear differential equation with boundary
values at two sides. The equation has to be of the form (the
"conservative" form):
[example_begin]
         d      dy     d
         -- A(x)--  +  -- B(x)y + C(x)y  =  D(x)
         dx     dx     dx
[example_end]
Ordinarily, such an equation would be written as:
[example_begin]
             d2y        dy
         a(x)---  + b(x)-- + c(x) y  =  D(x)
             dx2        dx
[example_end]
The first form is easier to discretise (by integrating over a
finite volume) than the second form. The relation between the two
forms is fairly straightforward:
[example_begin]
         A(x)  =  a(x)
         B(x)  =  b(x) - a'(x)
         C(x)  =  c(x) - B'(x)  =  c(x) - b'(x) + a''(x)
[example_end]
Because of the differentiation, however, it is much easier to ask
the user to provide the functions A, B and C directly.

[list_begin definitions]
[def [arg coeff_func]]
Procedure returning the three coefficients
(A, B, C) of the equation, taking as its one argument the x-coordinate.

[def [arg force_func]]
Procedure returning the right-hand side
(D) as a function of the x-coordinate.

[def [arg leftbnd]]
A list of two values: the x-coordinate of the
left boundary and the value at that boundary.

[def [arg rightbnd]]
A list of two values: the x-coordinate of the
right boundary and the value at that boundary.

[def [arg nostep]]
Number of steps by which to discretise the
interval.

The procedure returns a list of x-coordinates and the approximated
values of the solution.
[list_end]
[para]

[call [cmd ::math::calculus::solveTriDiagonal] [arg acoeff] [arg bcoeff] [arg ccoeff] [arg dvalue]]
Solve a system of linear equations Ax = b with A a tridiagonal
matrix. Returns the solution as a list.

[list_begin definitions]
[def [arg acoeff]]
List of values on the lower diagonal

[def [arg bcoeff]]
List of values on the main diagonal

[def [arg ccoeff]]
List of values on the upper diagonal

[def [arg dvalue]]
List of values on the righthand-side
[list_end]
[para]

[call [cmd ::math::calculus::newtonRaphson] [arg func] [arg deriv] [arg initval]]
Determine the root of an equation given by
[example_begin]
    func(x) = 0
[example_end]
using the method of Newton-Raphson. The procedure takes the following
arguments:

[list_begin definitions]
[def [arg func]]
Procedure that returns the value the function at x

[def [arg deriv]]
Procedure that returns the derivative of the function at x

[def [arg initval]]
Initial value for x
[list_end]
[para]

[call [cmd ::math::calculus::newtonRaphsonParameters] [arg maxiter] [arg tolerance]]
Set the numerical parameters for the Newton-Raphson method:

[list_begin definitions]
[def [arg maxiter]]
Maximum number of iteration steps (defaults to 20)

[def [arg tolerance]]
Relative precision (defaults to 0.001)
[list_end]

[call [cmd ::math::calculus::regula_falsi] [arg f] [arg xb] [arg xe] [arg eps]]

Return an estimate of the zero or one of the zeros of the function
contained in the interval [lb]xb,xe[rb]. The error in this estimate is of the
order of eps*abs(xe-xb), the actual error may be slightly larger.

[para]
The method used is the so-called [emph {regula falsi}] or
[emph "false position"] method. It is a straightforward implementation.
The method is robust, but requires that the interval brackets a zero or
at least an uneven number of zeros, so that the value of the function at
the start has a different sign than the value at the end.

[para]
In contrast to Newton-Raphson there is no need for the computation of
the function's derivative.

[list_begin arguments]
[arg_def command f] Name of the command that evaluates the function for
which the zero is to be returned

[arg_def float xb] Start of the interval in which the zero is supposed
to lie

[arg_def float xe] End of the interval

[arg_def float eps] Relative allowed error (defaults to 1.0e-4)

[list_end]

[list_end]
[para]

[emph Notes:]
[para]
Several of the above procedures take the [emph names] of procedures as
arguments. To avoid problems with the [emph visibility] of these
procedures, the fully-qualified name of these procedures is determined
inside the calculus routines. For the user this has only one
consequence: the named procedure must be visible in the calling
procedure. For instance:
[example_begin]
    namespace eval ::mySpace {
       namespace export calcfunc
       proc calcfunc { x } { return $x }
    }
    #
    # Use a fully-qualified name
    #
    namespace eval ::myCalc {
       proc detIntegral { begin end } {
          return [lb]integral $begin $end 100 ::mySpace::calcfunc[rb]
       }
    }
    #
    # Import the name
    #
    namespace eval ::myCalc {
       namespace import ::mySpace::calcfunc
       proc detIntegral { begin end } {
          return [lb]integral $begin $end 100 calcfunc[rb]
       }
    }
[example_end]
[para]
Enhancements for the second-order boundary value problem:
[list_begin itemized]
[item]
Other types of boundary conditions (zero gradient, zero flux)
[item]
Other schematisation of the first-order term (now central
differences are used, but upstream differences might be useful too).
[list_end]

[section EXAMPLES]
Let us take a few simple examples:
[para]
Integrate x over the interval [lb]0,100[rb] (20 steps):
[example_begin]
proc linear_func { x } { return $x }
puts "Integral: [lb]::math::calculus::integral 0 100 20 linear_func[rb]"
[example_end]
For simple functions, the alternative could be:
[example_begin]
puts "Integral: [lb]::math::calculus::integralExpr 0 100 20 {$x}[rb]"
[example_end]
Do not forget the braces!
[para]
The differential equation for a dampened oscillator:
[para]
[example_begin]
x'' + rx' + wx = 0
[example_end]
[para]
can be split into a system of first-order equations:
[para]
[example_begin]
x' = y
y' = -ry - wx
[example_end]
[para]
Then this system can be solved with code like this:
[para]
[example_begin]
proc dampened_oscillator { t xvec } {
   set x  [lb]lindex $xvec 0[rb]
   set x1 [lb]lindex $xvec 1[rb]
   return [lb]list $x1 [lb]expr {-$x1-$x}[rb][rb]
}

set xvec   { 1.0 0.0 }
set t      0.0
set tstep  0.1
for { set i 0 } { $i < 20 } { incr i } {
   set result [lb]::math::calculus::eulerStep $t $tstep $xvec dampened_oscillator[rb]
   puts "Result ($t): $result"
   set t      [lb]expr {$t+$tstep}[rb]
   set xvec   $result
}
[example_end]
[para]
Suppose we have the boundary value problem:
[para]
[example_begin]
    Dy'' + ky = 0
    x = 0: y = 1
    x = L: y = 0
[example_end]
[para]
This boundary value problem could originate from the diffusion of a
decaying substance.
[para]
It can be solved with the following fragment:
[para]
[example_begin]
   proc coeffs { x } { return [lb]list $::Diff 0.0 $::decay[rb] }
   proc force  { x } { return 0.0 }

   set Diff   1.0e-2
   set decay  0.0001
   set length 100.0

   set y [lb]::math::calculus::boundaryValueSecondOrder \
      coeffs force {0.0 1.0} [lb]list $length 0.0[rb] 100[rb]
[example_end]

[vset CATEGORY {math :: calculus}]
[include ../doctools2base/include/feedback.inc]
[manpage_end]