summaryrefslogtreecommitdiffstats
path: root/tcllib/modules/math/stat_kernel.tcl
blob: 1d1f219b8574733919a5df213147549bf3e07efd (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
# stat_kernel.tcl --
#
#    Part of the statistics package for basic statistical analysis
#    Based on http://en.wikipedia.org/wiki/Kernel_(statistics) and
#             http://en.wikipedia.org/wiki/Kernel_density_estimation
#
# version 0.1:   initial implementation, january 2014

# kernel-density --
#     Estimate the probability density using the kernel density
#     estimation method
#
# Arguments:
#     data            List of univariate data
#     args            List of options in the form of keyword-value pairs:
#                     -weights weights: per data point the weight
#                     -bandwidth value: bandwidth to be used for the estimation
#                     -number value: number of bins to be returned
#                     -interval {begin end}: begin and end of the interval for
#                         which the density is returned
#                     -kernel function: kernel to be used (gaussian, cosine,
#                         epanechnikov, uniform, triangular, biweight,
#                         logistic)
#                     For all options more or less sensible defaults are
#                     provided.
#
# Result:
#     A list of the bin centres, a list of the corresponding density
#     estimates and a list containing several computational parameters:
#     begin and end of the interval, mean, standard deviation and bandwidth
#
# Note:
#     The conditions for the kernel function are fairly weak:
#     - It should integrate to 1
#     - It should be symmetric around 0
#
#     As for the implementation in Tcl: it should be reachable in the
#     ::math::statistics namespace. As a consequence, you can define
#     your own kernel function too. Hence there is no check.
#
proc ::math::statistics::kernel-density {data args} {

    #
    # Determine the basic statistics
    #
    set basicStats [BasicStats all $data]

    set mean       [lindex $basicStats 0]
    set ndata      [lindex $basicStats 3]
    set stdev      [lindex $basicStats 4]

    if { $ndata < 1 } {
        return -code error -errorcode ARG -errorinfo "Too few actual data"
    }

    #
    # Get the options (providing defaults as needed)
    #
    set opt(-weights)   {}
    set opt(-number)    100
    set opt(-kernel)    gaussian

    #
    # The default bandwidth is set via a simple expression, which
    # is supposed to be optimal for the Gaussian kernel.
    # Perhaps a more sophisticated method should be provided as well
    #
    set opt(-bandwidth) [expr {1.06 * $stdev / pow($ndata,0.2)}]

    #
    # The default interval is derived from the mean and the
    # standard deviation
    #
    set opt(-interval) [list [expr {$mean - 3.0 * $stdev}] [expr {$mean + 3.0 * $stdev}]]

    #
    # Retrieve the given options from $args
    #
    if { [llength $args] % 2 != 0 } {
        return -code error -errorcode ARG -errorinfo "The options must all have a value"
    }
    array set opt $args

    #
    # Elementary checks
    #
    if { $opt(-bandwidth) <= 0.0 } {
        return -code error -errorcode ARG -errorinfo "The bandwidth must be positive: $opt(-bandwidth)"
    }

    if { $opt(-number) <= 0.0 } {
        return -code error -errorcode ARG -errorinfo "The number of bins must be positive: $opt(-number)"
    }

    if { [lindex $opt(-interval) 0] == [lindex $opt(-interval) 1] } {
        return -code error -errorcode ARG -errorinfo "The interval has length zero: $opt(-interval)"
    }

    if { [llength [info proc $opt(-kernel)]] == 0 } {
        return -code error -errorcode ARG -errorinfo "Unknown kernel function: $opt(-kernel)"
    }

    #
    # Construct the weights
    #
    if { [llength $opt(-weights)] > 0 } {
        if { [llength $data] != [llength $opt(-weights)] } {
            return -code error -errorcode ARG -errorinfo "The list of weights must match the data"
        }

        set sum 0.0
        foreach d $data w $opt(-weights) {
            if { $d != {} } {
                set sum [expr {$sum + $w}]
            }
        }
        set scale [expr {1.0/$sum/$ndata}]

        set weight {}
        foreach w $opt(-weights) {
            if { $d != {} } {
                lappend weight [expr {$w / $scale}]
            } else {
                lappend weight {}
            }
        }
    } else {
        set weight [lrepeat [llength $data] [expr {1.0/$ndata}]] ;# Note: missing values have weight zero
    }

    #
    # Construct the centres of the bins
    #
    set xbegin [lindex $opt(-interval) 0]
    set xend   [lindex $opt(-interval) 1]
    set dx     [expr {($xend - $xbegin) / double($opt(-number))}]
    set xb     [expr {$xbegin + 0.5 * $dx}]
    set xvalue {}
    for {set i 0} {$i < $opt(-number)} {incr i} {
        lappend xvalue [expr {$xb + $i * $dx}]
    }

    #
    # Construct the density function
    #
    set density {}
    set scale   [expr {1.0/$opt(-bandwidth)}]
    foreach x $xvalue {
        set sum 0.0
        foreach d $data w $weight {
            if { $d != {} } {
                set kvalue [$opt(-kernel) [expr {$scale * ($x-$d)}]]
                set sum [expr {$sum + $w * $kvalue}]
            }
        }
        lappend density [expr {$sum * $scale}]
    }

    #
    # Return the result
    #
    return [list $xvalue $density [list $xbegin $xend $mean $stdev $opt(-bandwidth)]]
}

# gaussian, uniform, triangular, epanechnikov, biweight, cosine, logistic --
#    The Gaussian kernel
#
# Arguments:
#    x            (Scaled) argument
#
# Result:
#    Value of the kernel
#
# Note:
#    The standard deviation is 1.
#
proc ::math::statistics::gaussian {x} {
    return [expr {exp(-0.5*$x*$x) / sqrt(2.0*acos(-1.0))}]
}
proc ::math::statistics::uniform {x} {
    if { abs($x) <= 1.0 } {
        return 0.5
    } else {
        return 0.0
    }
}
proc ::math::statistics::triangular {x} {
    if { abs($x) < 1.0 } {
        return [expr {1.0 - abs($x)}]
    } else {
        return 0.0
    }
}
proc ::math::statistics::epanechnikov {x} {
    if { abs($x) < 1.0 } {
        return [expr {0.75 * (1.0 - abs($x)*abs($x))}]
    } else {
        return 0.0
    }
}
proc ::math::statistics::biweight {x} {
    if { abs($x) < 1.0 } {
        return [expr {0.9375 * pow((1.0 - abs($x)*abs($x)),2)}]
    } else {
        return 0.0
    }
}
proc ::math::statistics::cosine {x} {
    if { abs($x) < 1.0 } {
        return [expr {0.25 * acos(-1.0) * cos(0.5 * acos(-1.0) * $x)}]
    } else {
        return 0.0
    }
}
proc ::math::statistics::logistic {x} {
    return [expr {1.0 / (exp($x) + 2.0 + exp(-$x))}]
}