1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
|
/*
* Smithsonian Astrophysical Observatory, Cambridge, MA, USA
* This code has been modified under the terms listed below and is made
* available under the same terms.
*/
/*
* Copyright 2009 George A Howlett.
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
* LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
* OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
* WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
*/
#include <float.h>
#include <stdlib.h>
#include <string.h>
#include <cmath>
#include "tkbltGrElemLine.h"
using namespace Blt;
typedef double TriDiagonalMatrix[3];
typedef struct {
double b, c, d;
} Cubic2D;
typedef struct {
double b, c, d, e, f;
} Quint2D;
// Quadratic spline parameters
#define E1 param[0]
#define E2 param[1]
#define V1 param[2]
#define V2 param[3]
#define W1 param[4]
#define W2 param[5]
#define Z1 param[6]
#define Z2 param[7]
#define Y1 param[8]
#define Y2 param[9]
/*
*---------------------------------------------------------------------------
*
* Search --
*
* Conducts a binary search for a value. This routine is called
* only if key is between x(0) and x(len - 1).
*
* Results:
* Returns the index of the largest value in xtab for which
* x[i] < key.
*
*---------------------------------------------------------------------------
*/
static int Search(Point2d points[], int nPoints, double key, int *foundPtr)
{
int low = 0;
int high = nPoints - 1;
while (high >= low) {
int mid = (high + low) / 2;
if (key > points[mid].x)
low = mid + 1;
else if (key < points[mid].x)
high = mid - 1;
else {
*foundPtr = 1;
return mid;
}
}
*foundPtr = 0;
return low;
}
/*
*---------------------------------------------------------------------------
*
* QuadChoose --
*
* Determines the case needed for the computation of the parame-
* ters of the quadratic spline.
*
* Results:
* Returns a case number (1-4) which controls how the parameters
* of the quadratic spline are evaluated.
*
*---------------------------------------------------------------------------
*/
static int QuadChoose(Point2d* p, Point2d* q, double m1, double m2,
double epsilon)
{
// Calculate the slope of the line joining P and Q
double slope = (q->y - p->y) / (q->x - p->x);
if (slope != 0.0) {
double prod1 = slope * m1;
double prod2 = slope * m2;
// Find the absolute values of the slopes slope, m1, and m2
double mref = fabs(slope);
double mref1 = fabs(m1);
double mref2 = fabs(m2);
// If the relative deviation of m1 or m2 from slope is less than
// epsilon, then choose case 2 or case 3.
double relerr = epsilon * mref;
if ((fabs(slope - m1) > relerr) && (fabs(slope - m2) > relerr) &&
(prod1 >= 0.0) && (prod2 >= 0.0)) {
double prod = (mref - mref1) * (mref - mref2);
if (prod < 0.0) {
// l1, the line through (x1,y1) with slope m1, and l2,
// the line through (x2,y2) with slope m2, intersect
// at a point whose abscissa is between x1 and x2.
// The abscissa becomes a knot of the spline.
return 1;
}
if (mref1 > (mref * 2.0)) {
if (mref2 <= ((2.0 - epsilon) * mref))
return 3;
}
else if (mref2 <= (mref * 2.0)) {
// Both l1 and l2 cross the line through
// (x1+x2)/2.0,y1 and (x1+x2)/2.0,y2, which is the
// midline of the rectangle formed by P and Q or both
// m1 and m2 have signs different than the sign of
// slope, or one of m1 and m2 has opposite sign from
// slope and l1 and l2 intersect to the left of x1 or
// to the right of x2. The point (x1+x2)/2. is a knot
// of the spline.
return 2;
}
else if (mref1 <= ((2.0 - epsilon) * mref)) {
// In cases 3 and 4, sign(m1)=sign(m2)=sign(slope).
// Either l1 or l2 crosses the midline, but not both.
// Choose case 4 if mref1 is greater than
// (2.-epsilon)*mref; otherwise, choose case 3.
return 3;
}
// If neither l1 nor l2 crosses the midline, the spline
// requires two knots between x1 and x2.
return 4;
}
else {
// The sign of at least one of the slopes m1 or m2 does not
// agree with the sign of *slope*.
if ((prod1 < 0.0) && (prod2 < 0.0)) {
return 2;
}
else if (prod1 < 0.0) {
if (mref2 > ((epsilon + 1.0) * mref))
return 1;
else
return 2;
}
else if (mref1 > ((epsilon + 1.0) * mref))
return 1;
else
return 2;
}
}
else if ((m1 * m2) >= 0.0)
return 2;
else
return 1;
}
/*
*---------------------------------------------------------------------------
* Computes the knots and other parameters of the spline on the
* interval PQ.
* On input--
* P and Q are the coordinates of the points of interpolation.
* m1 is the slope at P.
* m2 is the slope at Q.
* ncase controls the number and location of the knots.
* On output--
*
* (v1,v2),(w1,w2),(z1,z2), and (e1,e2) are the coordinates of
* the knots and other parameters of the spline on P.
* (e1,e2) and Q are used only if ncase=4.
*---------------------------------------------------------------------------
*/
static void QuadCases(Point2d* p, Point2d* q, double m1, double m2,
double param[], int which)
{
if ((which == 3) || (which == 4)) {
double c1 = p->x + (q->y - p->y) / m1;
double d1 = q->x + (p->y - q->y) / m2;
double h1 = c1 * 2.0 - p->x;
double j1 = d1 * 2.0 - q->x;
double mbar1 = (q->y - p->y) / (h1 - p->x);
double mbar2 = (p->y - q->y) / (j1 - q->x);
if (which == 4) {
// Case 4
Y1 = (p->x + c1) / 2.0;
V1 = (p->x + Y1) / 2.0;
V2 = m1 * (V1 - p->x) + p->y;
Z1 = (d1 + q->x) / 2.0;
W1 = (q->x + Z1) / 2.0;
W2 = m2 * (W1 - q->x) + q->y;
double mbar3 = (W2 - V2) / (W1 - V1);
Y2 = mbar3 * (Y1 - V1) + V2;
Z2 = mbar3 * (Z1 - V1) + V2;
E1 = (Y1 + Z1) / 2.0;
E2 = mbar3 * (E1 - V1) + V2;
}
else {
// Case 3
double k1 = (p->y - q->y + q->x * mbar2 - p->x * mbar1) / (mbar2 - mbar1);
if (fabs(m1) > fabs(m2)) {
Z1 = (k1 + p->x) / 2.0;
} else {
Z1 = (k1 + q->x) / 2.0;
}
V1 = (p->x + Z1) / 2.0;
V2 = p->y + m1 * (V1 - p->x);
W1 = (q->x + Z1) / 2.0;
W2 = q->y + m2 * (W1 - q->x);
Z2 = V2 + (W2 - V2) / (W1 - V1) * (Z1 - V1);
}
}
else if (which == 2) {
// Case 2
Z1 = (p->x + q->x) / 2.0;
V1 = (p->x + Z1) / 2.0;
V2 = p->y + m1 * (V1 - p->x);
W1 = (Z1 + q->x) / 2.0;
W2 = q->y + m2 * (W1 - q->x);
Z2 = (V2 + W2) / 2.0;
}
else {
// Case 1
Z1 = (p->y - q->y + m2 * q->x - m1 * p->x) / (m2 - m1);
double ztwo = p->y + m1 * (Z1 - p->x);
V1 = (p->x + Z1) / 2.0;
V2 = (p->y + ztwo) / 2.0;
W1 = (Z1 + q->x) / 2.0;
W2 = (ztwo + q->y) / 2.0;
Z2 = V2 + (W2 - V2) / (W1 - V1) * (Z1 - V1);
}
}
static int QuadSelect(Point2d* p, Point2d* q, double m1, double m2,
double epsilon, double param[])
{
int ncase = QuadChoose(p, q, m1, m2, epsilon);
QuadCases(p, q, m1, m2, param, ncase);
return ncase;
}
static double QuadGetImage(double p1, double p2, double p3, double x1,
double x2, double x3)
{
double A = x1 - x2;
double B = x2 - x3;
double C = x1 - x3;
double y = (p1 * (A * A) + p2 * 2.0 * B * A + p3 * (B * B)) / (C * C);
return y;
}
/*
*---------------------------------------------------------------------------
* Finds the image of a point in x.
* On input
* x Contains the value at which the spline is evaluated.
* leftX, leftY
* Coordinates of the left-hand data point used in the
* evaluation of x values.
* rightX, rightY
* Coordinates of the right-hand data point used in the
* evaluation of x values.
* Z1, Z2, Y1, Y2, E2, W2, V2
* Parameters of the spline.
* ncase Controls the evaluation of the spline by indicating
* whether one or two knots were placed in the interval
* (xtabs,xtabs1).
*---------------------------------------------------------------------------
*/
static void QuadSpline(Point2d* intp, Point2d* left, Point2d* right,
double param[], int ncase)
{
double y;
if (ncase == 4) {
// Case 4: More than one knot was placed in the interval.
// Determine the location of data point relative to the 1st knot.
if (Y1 > intp->x)
y = QuadGetImage(left->y, V2, Y2, Y1, intp->x, left->x);
else if (Y1 < intp->x) {
// Determine the location of the data point relative to the 2nd knot.
if (Z1 > intp->x)
y = QuadGetImage(Y2, E2, Z2, Z1, intp->x, Y1);
else if (Z1 < intp->x)
y = QuadGetImage(Z2, W2, right->y, right->x, intp->x, Z1);
else
y = Z2;
}
else
y = Y2;
}
else {
// Cases 1, 2, or 3:
// Determine the location of the data point relative to the knot.
if (Z1 < intp->x)
y = QuadGetImage(Z2, W2, right->y, right->x, intp->x, Z1);
else if (Z1 > intp->x)
y = QuadGetImage(left->y, V2, Z2, Z1, intp->x, left->x);
else
y = Z2;
}
intp->y = y;
}
/*
*---------------------------------------------------------------------------
* Calculates the derivative at each of the data points. The
* slopes computed will insure that an osculatory quadratic
* spline will have one additional knot between two adjacent
* points of interpolation. Convexity and monotonicity are
* preserved wherever these conditions are compatible with the
* data.
*---------------------------------------------------------------------------
*/
static void QuadSlopes(Point2d *points, double *m, int nPoints)
{
double m1s =0;
double m2s =0;
double m1 =0;
double m2 =0;
int i, n, l;
for (l = 0, i = 1, n = 2; i < (nPoints - 1); l++, i++, n++) {
// Calculate the slopes of the two lines joining three
// consecutive data points.
double ydif1 = points[i].y - points[l].y;
double ydif2 = points[n].y - points[i].y;
m1 = ydif1 / (points[i].x - points[l].x);
m2 = ydif2 / (points[n].x - points[i].x);
if (i == 1) {
// Save slopes of starting point
m1s = m1;
m2s = m2;
}
// If one of the preceding slopes is zero or if they have opposite
// sign, assign the value zero to the derivative at the middle point.
if ((m1 == 0.0) || (m2 == 0.0) || ((m1 * m2) <= 0.0))
m[i] = 0.0;
else if (fabs(m1) > fabs(m2)) {
// Calculate the slope by extending the line with slope m1.
double xbar = ydif2 / m1 + points[i].x;
double xhat = (xbar + points[n].x) / 2.0;
m[i] = ydif2 / (xhat - points[i].x);
}
else {
// Calculate the slope by extending the line with slope m2.
double xbar = -ydif1 / m2 + points[i].x;
double xhat = (points[l].x + xbar) / 2.0;
m[i] = ydif1 / (points[i].x - xhat);
}
}
// Calculate the slope at the last point, x(n).
i = nPoints - 2;
n = nPoints - 1;
if ((m1 * m2) < 0.0)
m[n] = m2 * 2.0;
else {
double xmid = (points[i].x + points[n].x) / 2.0;
double yxmid = m[i] * (xmid - points[i].x) + points[i].y;
m[n] = (points[n].y - yxmid) / (points[n].x - xmid);
if ((m[n] * m2) < 0.0)
m[n] = 0.0;
}
// Calculate the slope at the first point, x(0).
if ((m1s * m2s) < 0.0)
m[0] = m1s * 2.0;
else {
double xmid = (points[0].x + points[1].x) / 2.0;
double yxmid = m[1] * (xmid - points[1].x) + points[1].y;
m[0] = (yxmid - points[0].y) / (xmid - points[0].x);
if ((m[0] * m1s) < 0.0)
m[0] = 0.0;
}
}
/*
*---------------------------------------------------------------------------
*
* QuadEval --
*
* QuadEval controls the evaluation of an osculatory quadratic
* spline. The user may provide his own slopes at the points of
* interpolation or use the subroutine 'QuadSlopes' to calculate
* slopes which are consistent with the shape of the data.
*
* ON INPUT--
* intpPts must be a nondecreasing vector of points at which the
* spline will be evaluated.
* origPts contains the abscissas of the data points to be
* interpolated. xtab must be increasing.
* y contains the ordinates of the data points to be
* interpolated.
* m contains the slope of the spline at each point of
* interpolation.
* nPoints number of data points (dimension of xtab and y).
* numEval is the number of points of evaluation (dimension of
* xval and yval).
* epsilon is a relative error tolerance used in subroutine
* 'QuadChoose' to distinguish the situation m(i) or
* m(i+1) is relatively close to the slope or twice
* the slope of the linear segment between xtab(i) and
* xtab(i+1). If this situation occurs, roundoff may
* cause a change in convexity or monotonicity of the
* resulting spline and a change in the case number
* provided by 'QuadChoose'. If epsilon is not equal to zero,
* then epsilon should be greater than or equal to machine
* epsilon.
* ON OUTPUT--
* yval contains the images of the points in xval.
* err is one of the following error codes:
* 0 - QuadEval ran normally.
* 1 - xval(i) is less than xtab(1) for at least one
* i or xval(i) is greater than xtab(num) for at
* least one i. QuadEval will extrapolate to provide
* function values for these abscissas.
* 2 - xval(i+1) < xval(i) for some i.
*
*
* QuadEval calls the following subroutines or functions:
* Search
* QuadCases
* QuadChoose
* QuadSpline
*---------------------------------------------------------------------------
*/
static int QuadEval(Point2d origPts[], int nOrigPts, Point2d intpPts[],
int nIntpPts, double *m, double epsilon)
{
double param[10];
// Initialize indices and set error result
int error = 0;
int l = nOrigPts - 1;
int p = l - 1;
int ncase = 1;
// Determine if abscissas of new vector are non-decreasing.
for (int jj=1; jj<nIntpPts; jj++) {
if (intpPts[jj].x < intpPts[jj - 1].x)
return 2;
}
// Determine if any of the points in xval are LESS than the
// abscissa of the first data point.
int start;
for (start = 0; start < nIntpPts; start++) {
if (intpPts[start].x >= origPts[0].x)
break;
}
// Determine if any of the points in xval are GREATER than the
// abscissa of the l data point.
int end;
for (end = nIntpPts - 1; end >= 0; end--) {
if (intpPts[end].x <= origPts[l].x)
break;
}
if (start > 0) {
// Set error value to indicate that extrapolation has occurred
error = 1;
// Calculate the images of points of evaluation whose abscissas
// are less than the abscissa of the first data point.
ncase = QuadSelect(origPts, origPts + 1, m[0], m[1], epsilon, param);
for (int jj=0; jj<(start - 1); jj++)
QuadSpline(intpPts + jj, origPts, origPts + 1, param, ncase);
if (nIntpPts == 1)
return error;
}
int ii;
int nn;
if ((nIntpPts == 1) && (end != (nIntpPts - 1)))
goto noExtrapolation;
// Search locates the interval in which the first in-range
// point of evaluation lies.
int found;
ii = Search(origPts, nOrigPts, intpPts[start].x, &found);
nn = ii + 1;
if (nn >= nOrigPts) {
nn = nOrigPts - 1;
ii = nOrigPts - 2;
}
/*
* If the first in-range point of evaluation is equal to one
* of the data points, assign the appropriate value from y.
* Continue until a point of evaluation is found which is not
* equal to a data point.
*/
if (found) {
do {
intpPts[start].y = origPts[ii].y;
start++;
if (start >= nIntpPts) {
return error;
}
} while (intpPts[start - 1].x == intpPts[start].x);
for (;;) {
if (intpPts[start].x < origPts[nn].x) {
break; /* Break out of for-loop */
}
if (intpPts[start].x == origPts[nn].x) {
do {
intpPts[start].y = origPts[nn].y;
start++;
if (start >= nIntpPts) {
return error;
}
} while (intpPts[start].x == intpPts[start - 1].x);
}
ii++;
nn++;
}
}
/*
* Calculate the images of all the points which lie within
* range of the data.
*/
if ((ii > 0) || (error != 1))
ncase = QuadSelect(origPts+ii, origPts+nn, m[ii], m[nn], epsilon, param);
for (int jj=start; jj<=end; jj++) {
// If xx(j) - x(n) is negative, do not recalculate
// the parameters for this section of the spline since
// they are already known.
if (intpPts[jj].x == origPts[nn].x) {
intpPts[jj].y = origPts[nn].y;
continue;
}
else if (intpPts[jj].x > origPts[nn].x) {
double delta;
// Determine that the routine is in the correct part of the spline
do {
ii++;
nn++;
delta = intpPts[jj].x - origPts[nn].x;
} while (delta > 0.0);
if (delta < 0.0)
ncase = QuadSelect(origPts+ii, origPts+nn, m[ii], m[nn],
epsilon, param);
else if (delta == 0.0) {
intpPts[jj].y = origPts[nn].y;
continue;
}
}
QuadSpline(intpPts+jj, origPts+ii, origPts+nn, param, ncase);
}
if (end == (nIntpPts - 1))
return error;
if ((nn == l) && (intpPts[end].x != origPts[l].x))
goto noExtrapolation;
// Set error value to indicate that extrapolation has occurred
error = 1;
ncase = QuadSelect(origPts + p, origPts + l, m[p], m[l], epsilon, param);
noExtrapolation:
// Calculate the images of the points of evaluation whose
// abscissas are greater than the abscissa of the last data point.
for (int jj=(end + 1); jj<nIntpPts; jj++)
QuadSpline(intpPts + jj, origPts + p, origPts + l, param, ncase);
return error;
}
/*
*---------------------------------------------------------------------------
*
* Shape preserving quadratic splines
* by D.F.Mcallister & J.A.Roulier
* Coded by S.L.Dodd & M.Roulier
* N.C.State University
*
*---------------------------------------------------------------------------
*/
/*
* Driver routine for quadratic spline package
* On input--
* X,Y Contain n-long arrays of data (x is increasing)
* XM Contains m-long array of x values (increasing)
* eps Relative error tolerance
* n Number of input data points
* m Number of output data points
* On output--
* work Contains the value of the first derivative at each data point
* ym Contains the interpolated spline value at each data point
*/
int LineElement::quadraticSpline(Point2d *origPts, int nOrigPts,
Point2d *intpPts, int nIntpPts)
{
double* work = new double[nOrigPts];
double epsilon = 0.0;
/* allocate space for vectors used in calculation */
QuadSlopes(origPts, work, nOrigPts);
int result = QuadEval(origPts, nOrigPts, intpPts, nIntpPts, work, epsilon);
delete [] work;
if (result > 1) {
return 0;
}
return 1;
}
/*
*---------------------------------------------------------------------------
* Reference:
* Numerical Analysis, R. Burden, J. Faires and A. Reynolds.
* Prindle, Weber & Schmidt 1981 pp 112
*---------------------------------------------------------------------------
*/
int LineElement::naturalSpline(Point2d *origPts, int nOrigPts,
Point2d *intpPts, int nIntpPts)
{
Point2d *ip, *iend;
double x, dy, alpha;
int isKnot;
int i, j, n;
double* dx = new double[nOrigPts];
/* Calculate vector of differences */
for (i = 0, j = 1; j < nOrigPts; i++, j++) {
dx[i] = origPts[j].x - origPts[i].x;
if (dx[i] < 0.0) {
return 0;
}
}
n = nOrigPts - 1; /* Number of intervals. */
TriDiagonalMatrix* A = new TriDiagonalMatrix[nOrigPts];
if (!A) {
delete [] dx;
return 0;
}
/* Vectors to solve the tridiagonal matrix */
A[0][0] = A[n][0] = 1.0;
A[0][1] = A[n][1] = 0.0;
A[0][2] = A[n][2] = 0.0;
/* Calculate the intermediate results */
for (i = 0, j = 1; j < n; j++, i++) {
alpha = 3.0 * ((origPts[j + 1].y / dx[j]) - (origPts[j].y / dx[i]) -
(origPts[j].y / dx[j]) + (origPts[i].y / dx[i]));
A[j][0] = 2 * (dx[j] + dx[i]) - dx[i] * A[i][1];
A[j][1] = dx[j] / A[j][0];
A[j][2] = (alpha - dx[i] * A[i][2]) / A[j][0];
}
Cubic2D* eq = new Cubic2D[nOrigPts];
if (!eq) {
delete [] A;
delete [] dx;
return 0;
}
eq[0].c = eq[n].c = 0.0;
for (j = n, i = n - 1; i >= 0; i--, j--) {
eq[i].c = A[i][2] - A[i][1] * eq[j].c;
dy = origPts[i+1].y - origPts[i].y;
eq[i].b = (dy) / dx[i] - dx[i] * (eq[j].c + 2.0 * eq[i].c) / 3.0;
eq[i].d = (eq[j].c - eq[i].c) / (3.0 * dx[i]);
}
delete [] A;
delete [] dx;
/* Now calculate the new values */
for (ip = intpPts, iend = ip + nIntpPts; ip < iend; ip++) {
ip->y = 0.0;
x = ip->x;
/* Is it outside the interval? */
if ((x < origPts[0].x) || (x > origPts[n].x)) {
continue;
}
/* Search for the interval containing x in the point array */
i = Search(origPts, nOrigPts, x, &isKnot);
if (isKnot) {
ip->y = origPts[i].y;
} else {
i--;
x -= origPts[i].x;
ip->y = origPts[i].y + x * (eq[i].b + x * (eq[i].c + x * eq[i].d));
}
}
delete [] eq;
return 1;
}
typedef struct {
double t; /* Arc length of interval. */
double x; /* 2nd derivative of X with respect to T */
double y; /* 2nd derivative of Y with respect to T */
} CubicSpline;
/*
* The following two procedures solve the special linear system which arise
* in cubic spline interpolation. If x is assumed cyclic ( x[i]=x[n+i] ) the
* equations can be written as (i=0,1,...,n-1):
* m[i][0] * x[i-1] + m[i][1] * x[i] + m[i][2] * x[i+1] = b[i] .
* In matrix notation one gets A * x = b, where the matrix A is tridiagonal
* with additional elements in the upper right and lower left position:
* A[i][0] = A_{i,i-1} for i=1,2,...,n-1 and m[0][0] = A_{0,n-1} ,
* A[i][1] = A_{i, i } for i=0,1,...,n-1
* A[i][2] = A_{i,i+1} for i=0,1,...,n-2 and m[n-1][2] = A_{n-1,0}.
* A should be symmetric (A[i+1][0] == A[i][2]) and positive definite.
* The size of the system is given in n (n>=1).
*
* In the first procedure the Cholesky decomposition A = C^T * D * C
* (C is upper triangle with unit diagonal, D is diagonal) is calculated.
* Return TRUE if decomposition exist.
*/
static int SolveCubic1(TriDiagonalMatrix A[], int n)
{
int i;
double m_ij, m_n, m_nn, d;
if (n < 1) {
return 0; /* Dimension should be at least 1 */
}
d = A[0][1]; /* D_{0,0} = A_{0,0} */
if (d <= 0.0) {
return 0; /* A (or D) should be positive definite */
}
m_n = A[0][0]; /* A_{0,n-1} */
m_nn = A[n - 1][1]; /* A_{n-1,n-1} */
for (i = 0; i < n - 2; i++) {
m_ij = A[i][2]; /* A_{i,1} */
A[i][2] = m_ij / d; /* C_{i,i+1} */
A[i][0] = m_n / d; /* C_{i,n-1} */
m_nn -= A[i][0] * m_n; /* to get C_{n-1,n-1} */
m_n = -A[i][2] * m_n; /* to get C_{i+1,n-1} */
d = A[i + 1][1] - A[i][2] * m_ij; /* D_{i+1,i+1} */
if (d <= 0.0) {
return 0; /* Elements of D should be positive */
}
A[i + 1][1] = d;
}
if (n >= 2) { /* Complete last column */
m_n += A[n - 2][2]; /* add A_{n-2,n-1} */
A[n - 2][0] = m_n / d; /* C_{n-2,n-1} */
A[n - 1][1] = d = m_nn - A[n - 2][0] * m_n; /* D_{n-1,n-1} */
if (d <= 0.0) {
return 0;
}
}
return 1;
}
/*
* The second procedure solves the linear system, with the Cholesky
* decomposition calculated above (in m[][]) and the right side b given
* in x[]. The solution x overwrites the right side in x[].
*/
static void SolveCubic2(TriDiagonalMatrix A[], CubicSpline spline[],
int nIntervals)
{
int n = nIntervals - 2;
int m = nIntervals - 1;
// Division by transpose of C : b = C^{-T} * b
double x = spline[m].x;
double y = spline[m].y;
for (int ii=0; ii<n; ii++) {
spline[ii + 1].x -= A[ii][2] * spline[ii].x; /* C_{i,i+1} * x(i) */
spline[ii + 1].y -= A[ii][2] * spline[ii].y; /* C_{i,i+1} * x(i) */
x -= A[ii][0] * spline[ii].x; /* C_{i,n-1} * x(i) */
y -= A[ii][0] * spline[ii].y; /* C_{i,n-1} * x(i) */
}
if (n >= 0) {
// C_{n-2,n-1} * x_{n-1}
spline[m].x = x - A[n][0] * spline[n].x;
spline[m].y = y - A[n][0] * spline[n].y;
}
// Division by D: b = D^{-1} * b
for (int ii=0; ii<nIntervals; ii++) {
spline[ii].x /= A[ii][1];
spline[ii].y /= A[ii][1];
}
// Division by C: b = C^{-1} * b
x = spline[m].x;
y = spline[m].y;
if (n >= 0) {
// C_{n-2,n-1} * x_{n-1}
spline[n].x -= A[n][0] * x;
spline[n].y -= A[n][0] * y;
}
for (int ii=(n - 1); ii>=0; ii--) {
// C_{i,i+1} * x_{i+1} + C_{i,n-1} * x_{n-1}
spline[ii].x -= A[ii][2] * spline[ii + 1].x + A[ii][0] * x;
spline[ii].y -= A[ii][2] * spline[ii + 1].y + A[ii][0] * y;
}
}
/*
* Find second derivatives (x''(t_i),y''(t_i)) of cubic spline interpolation
* through list of points (x_i,y_i). The parameter t is calculated as the
* length of the linear stroke. The number of points must be at least 3.
* Note: For CLOSED_CONTOURs the first and last point must be equal.
*/
static CubicSpline* CubicSlopes(Point2d points[], int nPoints,
int isClosed, double unitX, double unitY)
{
CubicSpline *s1, *s2;
int n, i;
double norm, dx, dy;
CubicSpline* spline = new CubicSpline[nPoints];
if (!spline)
return NULL;
TriDiagonalMatrix *A = new TriDiagonalMatrix[nPoints];
if (!A) {
delete [] spline;
return NULL;
}
/*
* Calculate first differences in (dxdt2[i], y[i]) and interval lengths
* in dist[i]:
*/
s1 = spline;
for (i = 0; i < nPoints - 1; i++) {
s1->x = points[i+1].x - points[i].x;
s1->y = points[i+1].y - points[i].y;
/*
* The Norm of a linear stroke is calculated in "normal coordinates"
* and used as interval length:
*/
dx = s1->x / unitX;
dy = s1->y / unitY;
s1->t = sqrt(dx * dx + dy * dy);
s1->x /= s1->t; /* first difference, with unit norm: */
s1->y /= s1->t; /* || (dxdt2[i], y[i]) || = 1 */
s1++;
}
/*
* Setup linear System: Ax = b
*/
n = nPoints - 2; /* Without first and last point */
if (isClosed) {
/* First and last points must be equal for CLOSED_CONTOURs */
spline[nPoints - 1].t = spline[0].t;
spline[nPoints - 1].x = spline[0].x;
spline[nPoints - 1].y = spline[0].y;
n++; /* Add last point (= first point) */
}
s1 = spline, s2 = s1 + 1;
for (i = 0; i < n; i++) {
/* Matrix A, mainly tridiagonal with cyclic second index
("j = j+n mod n")
*/
A[i][0] = s1->t; /* Off-diagonal element A_{i,i-1} */
A[i][1] = 2.0 * (s1->t + s2->t); /* A_{i,i} */
A[i][2] = s2->t; /* Off-diagonal element A_{i,i+1} */
/* Right side b_x and b_y */
s1->x = (s2->x - s1->x) * 6.0;
s1->y = (s2->y - s1->y) * 6.0;
/*
* If the linear stroke shows a cusp of more than 90 degree,
* the right side is reduced to avoid oscillations in the
* spline:
*/
/*
* The Norm of a linear stroke is calculated in "normal coordinates"
* and used as interval length:
*/
dx = s1->x / unitX;
dy = s1->y / unitY;
norm = sqrt(dx * dx + dy * dy) / 8.5;
if (norm > 1.0) {
/* The first derivative will not be continuous */
s1->x /= norm;
s1->y /= norm;
}
s1++, s2++;
}
if (!isClosed) {
/* Third derivative is set to zero at both ends */
A[0][1] += A[0][0]; /* A_{0,0} */
A[0][0] = 0.0; /* A_{0,n-1} */
A[n-1][1] += A[n-1][2]; /* A_{n-1,n-1} */
A[n-1][2] = 0.0; /* A_{n-1,0} */
}
/* Solve linear systems for dxdt2[] and y[] */
if (SolveCubic1(A, n)) { /* Cholesky decomposition */
SolveCubic2(A, spline, n); /* A * dxdt2 = b_x */
}
else { /* Should not happen, but who knows ... */
delete [] A;
delete [] spline;
return NULL;
}
/* Shift all second derivatives one place right and update the ends. */
s2 = spline + n, s1 = s2 - 1;
for (/* empty */; s2 > spline; s2--, s1--) {
s2->x = s1->x;
s2->y = s1->y;
}
if (isClosed) {
spline[0].x = spline[n].x;
spline[0].y = spline[n].y;
} else {
/* Third derivative is 0.0 for the first and last interval. */
spline[0].x = spline[1].x;
spline[0].y = spline[1].y;
spline[n + 1].x = spline[n].x;
spline[n + 1].y = spline[n].y;
}
delete [] A;
return spline;
}
// Calculate interpolated values of the spline function (defined via p_cntr
// and the second derivatives dxdt2[] and dydt2[]). The number of tabulated
// values is n. On an equidistant grid n_intpol values are calculated.
static int CubicEval(Point2d *origPts, int nOrigPts, Point2d *intpPts,
int nIntpPts, CubicSpline *spline)
{
double t, tSkip;
Point2d q;
int count;
/* Sum the lengths of all the segments (intervals). */
double tMax = 0.0;
for (int ii=0; ii<nOrigPts - 1; ii++)
tMax += spline[ii].t;
/* Need a better way of doing this... */
/* The distance between interpolated points */
tSkip = (1. - 1e-7) * tMax / (nIntpPts - 1);
t = 0.0; /* Spline parameter value. */
q = origPts[0];
count = 0;
intpPts[count++] = q; /* First point. */
t += tSkip;
for (int ii=0, jj=1; jj<nOrigPts; ii++, jj++) {
// Interval length
double d = spline[ii].t;
Point2d p = q;
q = origPts[ii+1];
double hx = (q.x - p.x) / d;
double hy = (q.y - p.y) / d;
double dx0 = (spline[jj].x + 2 * spline[ii].x) / 6.0;
double dy0 = (spline[jj].y + 2 * spline[ii].y) / 6.0;
double dx01 = (spline[jj].x - spline[ii].x) / (6.0 * d);
double dy01 = (spline[jj].y - spline[ii].y) / (6.0 * d);
while (t <= spline[ii].t) { /* t in current interval ? */
p.x += t * (hx + (t - d) * (dx0 + t * dx01));
p.y += t * (hy + (t - d) * (dy0 + t * dy01));
intpPts[count++] = p;
t += tSkip;
}
// Parameter t relative to start of next interval
t -= spline[ii].t;
}
return count;
}
int LineElement::naturalParametricSpline(Point2d *origPts, int nOrigPts,
Region2d *extsPtr, int isClosed,
Point2d *intpPts, int nIntpPts)
{
// Generate a cubic spline curve through the points (x_i,y_i) which are
// stored in the linked list p_cntr.
// The spline is defined as a 2d-function s(t) = (x(t),y(t)), where the
// parameter t is the length of the linear stroke.
if (nOrigPts < 3)
return 0;
if (isClosed) {
origPts[nOrigPts].x = origPts[0].x;
origPts[nOrigPts].y = origPts[0].y;
nOrigPts++;
}
// Width and height of the grid is used at unit length (2d-norm)
double unitX = extsPtr->right - extsPtr->left;
double unitY = extsPtr->bottom - extsPtr->top;
if (unitX < FLT_EPSILON)
unitX = FLT_EPSILON;
if (unitY < FLT_EPSILON)
unitY = FLT_EPSILON;
/* Calculate parameters for cubic spline:
* t = arc length of interval.
* dxdt2 = second derivatives of x with respect to t,
* dydt2 = second derivatives of y with respect to t,
*/
CubicSpline* spline = CubicSlopes(origPts, nOrigPts, isClosed, unitX, unitY);
if (spline == NULL)
return 0;
int result= CubicEval(origPts, nOrigPts, intpPts, nIntpPts, spline);
delete [] spline;
return result;
}
static void CatromCoeffs(Point2d* p, Point2d* a, Point2d* b,
Point2d* c, Point2d* d)
{
a->x = -p[0].x + 3.0 * p[1].x - 3.0 * p[2].x + p[3].x;
b->x = 2.0 * p[0].x - 5.0 * p[1].x + 4.0 * p[2].x - p[3].x;
c->x = -p[0].x + p[2].x;
d->x = 2.0 * p[1].x;
a->y = -p[0].y + 3.0 * p[1].y - 3.0 * p[2].y + p[3].y;
b->y = 2.0 * p[0].y - 5.0 * p[1].y + 4.0 * p[2].y - p[3].y;
c->y = -p[0].y + p[2].y;
d->y = 2.0 * p[1].y;
}
int LineElement::catromParametricSpline(Point2d* points, int nPoints,
Point2d* intpPts, int nIntpPts)
{
// The spline is computed in screen coordinates instead of data points so
// that we can select the abscissas of the interpolated points from each
// pixel horizontally across the plotting area.
Point2d* origPts = new Point2d[nPoints + 4];
memcpy(origPts + 1, points, sizeof(Point2d) * nPoints);
origPts[0] = origPts[1];
origPts[nPoints + 2] = origPts[nPoints + 1] = origPts[nPoints];
for (int ii=0; ii<nIntpPts; ii++) {
int interval = (int)intpPts[ii].x;
double t = intpPts[ii].y;
Point2d a, b, c, d;
CatromCoeffs(origPts + interval, &a, &b, &c, &d);
intpPts[ii].x = (d.x + t * (c.x + t * (b.x + t * a.x))) / 2.0;
intpPts[ii].y = (d.y + t * (c.y + t * (b.y + t * a.y))) / 2.0;
}
delete [] origPts;
return 1;
}
|