1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
|
// Copyright (C) 1999-2018
// Smithsonian Astrophysical Observatory, Cambridge, MA, USA
// For conditions of distribution and use, see copyright notice in "copyright"
#include "fitsimage.h"
#include "context.h"
Matrix FitsImage::bin(const Vector& vv)
{
// v is in bin (physical) coords
return hist_ ? nextBin(vv) : Matrix();
}
Matrix FitsImage::binCenter()
{
return hist_ ? nextBin(getHistCenter()) : Matrix();
}
Matrix FitsImage::binCursor()
{
return hist_ ? nextBin(histCursor) : Matrix();
}
void FitsImage::initBin()
{
// make sure we have rows and cols
{
FitsHead* head = fits_->head();
if (head) {
FitsTableHDU* hdu = (FitsTableHDU*)(head->hdu());
if (!hdu->width() || !hdu->rows())
return;
}
}
// make sure we have cols to bin on
if (!fits_->pBinX() || !fits_->pBinY()) {
FitsHead* head = fits_->head();
if (head) {
FitsTableHDU* hdu = (FitsTableHDU*)head->hdu();
// try for X and Y
FitsColumn* x = hdu->find("X");
FitsColumn* y = hdu->find("Y");
// next, try for ra and dec
if (!x)
x = hdu->find("RA");
if (!y)
y = hdu->find("DEC");
// last chance, try first and second column
if (!x)
x = hdu->find(0);
if (!y)
y = hdu->find(1);
if (x) {
char* str = trim(x->ttype());
fits_->setpBinX(str);
delete [] str;
}
else
return;
if (y) {
char* str = trim(y->ttype());
fits_->setpBinY(str);
delete [] str;
}
else
return;
}
}
if (!fits_->pBinZ()) {
FitsHead* head = fits_->head();
if (head) {
FitsTableHDU* hdu = (FitsTableHDU*)head->hdu();
// try for TIME
FitsColumn* z = hdu->find("TIME");
// last chance, try third column
if (!z)
z = hdu->find(2);
if (z) {
char* str = trim(z->ttype());
fits_->setpBinZ(str);
delete [] str;
}
}
}
nextBin(getHistCenter());
}
int FitsImage::hasBinCol(const char* str)
{
if (fits_) {
FitsHead* head = fits_->head();
if (head) {
FitsTableHDU* hdu = (FitsTableHDU*)head->hdu();
return hdu->find(str) ? 1 : 0;
}
}
return 0;
}
void FitsImage::setBinCursor(const Vector& v)
{
histCursor = v * refToPhysical;
}
Matrix FitsImage::nextBin(const Vector& c)
{
if (hist_)
delete hist_;
hist_ = NULL;
if (manageBlock_) {
if (block_)
delete block_;
if (blockdata_)
delete blockdata_;
}
manageBlock_ =0;
block_ = base_;
blockdata_ = basedata_;
if (manageAnalysis_) {
if (analysis_)
delete analysis_;
if (analysisdata_)
delete analysisdata_;
}
manageAnalysis_ =0;
// cursor, c is in bin (physical) coords
// remember where we are pointing
histCursor = c;
// Vector s = getHistDim()/binFactor_;
Vector d = getHistDim();
Vector s;
Vector binFactor = context_->binFactor();
s[0] = d[0]/binFactor[0];
s[1] = d[1]/binFactor[1];
// make sure that we have a width/height of at least 1
if (s[0]<1)
s[0]=1;
if (s[1]<1)
s[1]=1;
int bufferSize = context_->binBufferSize();
int width = (int)(s[0]<bufferSize ? s[0] : bufferSize);
int height= (int)(s[1]<bufferSize ? s[1] : bufferSize);
int depth = context_->binDepth();
Vector center = Vector(width, height)/2;
if (DebugBin) {
cerr << "width height: " << width << ' ' << height << endl;
cerr << "center: " << center << endl;
cerr << "center.ceil(): " << center.ceil() << endl;
}
if (binFactor[0]<1 || binFactor[1]<1) {
actualHistCursor = histCursor;
if (DebugBin)
cerr << "histCursor: " << histCursor << endl;
}
else {
// force to a bin boundary, then translate to center of bin cell
// actualHistCursor = ((histCursor/binFactor_).floor() * binFactor_) +
// Vector(.5,.5);
actualHistCursor[0] = (floor(histCursor[0]/binFactor[0]) * binFactor[0])
+ .5;
actualHistCursor[1] = (floor(histCursor[1]/binFactor[1]) * binFactor[1])
+ .5;
// now, figure out any offset due to mod(lowerleft,binFactor_)
FitsTableHDU* hdu = (FitsTableHDU*)(fits_->head())->hdu();
Vector xd = hdu->dimension(fits_->pBinX());
Vector yd = hdu->dimension(fits_->pBinY());
Vector ll(xd[0],yd[0]);
// Vector a = ((ll/binFactor_).floor() * binFactor_) + Vector(.5,.5);
Vector a;
a[0] = (floor(ll[0]/binFactor[0]) * binFactor[0]) + .5;
a[1] = (floor(ll[1]/binFactor[1]) * binFactor[1]) + .5;
Vector offset = a-ll;
actualHistCursor -= offset;
if (DebugBin) {
cerr << "histCursor: " << histCursor << endl;
cerr << "actualHistCursor: " << actualHistCursor << endl;
cerr << "ll: " << ll << endl;
cerr << "offset: " << offset << endl;
}
}
// new physicalToData
Matrix mm =
Translate(-actualHistCursor) *
Scale(1./binFactor[0],1./binFactor[1]) *
Translate(center.ceil());
if (DebugBin)
cerr << "mm: " << mm << endl << endl;
FitsHist::Function binFunction = context_->binFunction();
hist_ = new FitsHist(fits_, width, height, depth, mm, binFunction, binFactor);
if (!hist_->isValid()) {
reset();
return Matrix();
}
load();
return refToPhysical * mm * dataToRef;
}
Vector FitsImage::getHistColMinMax(const char* col)
{
return fits_ ? fits_->getColMinMax(col) : Vector();
}
Vector FitsImage::getHistColDim(const char* col)
{
return fits_ ? fits_->getColDim(col) : Vector();
}
Vector FitsImage::getHistDim()
{
if (!isBinTable())
return Vector();
// assumes we aready have our columns
FitsTableHDU* hdu = (FitsTableHDU*)(fits_->head())->hdu();
Vector xd = hdu->dimension(fits_->pBinX());
Vector yd = hdu->dimension(fits_->pBinY());
// if DBL_MAX, we will get nan
Vector r(xd[1]-xd[0],yd[1]-yd[0]);
if (isfinite(r[0]) && isfinite(r[1]))
return r;
else
return Vector(DBL_MAX,DBL_MAX);
}
Vector FitsImage::getHistCenter()
{
// return bin (physical) coords
if (!isBinTable())
return Vector();
// assumes we aready have our columns
FitsTableHDU* hdu = (FitsTableHDU*)(fits_->head())->hdu();
Vector xd = hdu->dimension(fits_->pBinX());
Vector yd = hdu->dimension(fits_->pBinY());
// if DBL_MAX, we will get nan
Vector r = Vector(xd[1]-xd[0],yd[1]-yd[0])/2 + Vector(xd[0],yd[0]);
if (isfinite(r[0]) && isfinite(r[1]))
return r;
else
return Vector();
}
const char* FitsImage::getHistFilter()
{
return fits_ ? fits_->pFilter() : NULL;
}
const char* FitsImage::getHistX()
{
return fits_ ? fits_->pBinX() : NULL;
}
const char* FitsImage::getHistY()
{
return fits_ ? fits_->pBinY() : NULL;
}
const char* FitsImage::getHistZ()
{
return fits_ ? fits_->pBinZ() : NULL;
}
char* FitsImage::getHistList()
{
if (!isHist())
return NULL;
FitsHead* head = fits_->head();
return ((FitsTableHDU*)head->hdu())->list();
}
|