summaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
authorRaymond Hettinger <rhettinger@users.noreply.github.com>2024-03-12 22:19:58 (GMT)
committerGitHub <noreply@github.com>2024-03-12 22:19:58 (GMT)
commit126186674ed3d6abd0f87e817100b5ec7290e146 (patch)
treef9dc670a63b17f22c9dac1d84d65c71fdf584445
parent290330714b0af5b46b1df6cff08410bd2f73607b (diff)
downloadcpython-126186674ed3d6abd0f87e817100b5ec7290e146.zip
cpython-126186674ed3d6abd0f87e817100b5ec7290e146.tar.gz
cpython-126186674ed3d6abd0f87e817100b5ec7290e146.tar.bz2
Beef-up tests for the itertool docs. (gh-116679)
-rw-r--r--Doc/library/itertools.rst112
1 files changed, 103 insertions, 9 deletions
diff --git a/Doc/library/itertools.rst b/Doc/library/itertools.rst
index 2ee39fd..debb413 100644
--- a/Doc/library/itertools.rst
+++ b/Doc/library/itertools.rst
@@ -998,7 +998,7 @@ The following recipes have a more mathematical flavor:
def sum_of_squares(it):
"Add up the squares of the input values."
- # sum_of_squares([10, 20, 30]) -> 1400
+ # sum_of_squares([10, 20, 30]) --> 1400
return math.sumprod(*tee(it))
def reshape(matrix, cols):
@@ -1019,17 +1019,16 @@ The following recipes have a more mathematical flavor:
def convolve(signal, kernel):
"""Discrete linear convolution of two iterables.
+ Equivalent to polynomial multiplication.
- The kernel is fully consumed before the calculations begin.
- The signal is consumed lazily and can be infinite.
-
- Convolutions are mathematically commutative.
- If the signal and kernel are swapped,
- the output will be the same.
+ Convolutions are mathematically commutative; however, the inputs are
+ evaluated differently. The signal is consumed lazily and can be
+ infinite. The kernel is fully consumed before the calculations begin.
Article: https://betterexplained.com/articles/intuitive-convolution/
Video: https://www.youtube.com/watch?v=KuXjwB4LzSA
"""
+ # convolve([1, -1, -20], [1, -3]) --> 1 -4 -17 60
# convolve(data, [0.25, 0.25, 0.25, 0.25]) --> Moving average (blur)
# convolve(data, [1/2, 0, -1/2]) --> 1st derivative estimate
# convolve(data, [1, -2, 1]) --> 2nd derivative estimate
@@ -1067,7 +1066,7 @@ The following recipes have a more mathematical flavor:
f(x) = x³ -4x² -17x + 60
f'(x) = 3x² -8x -17
"""
- # polynomial_derivative([1, -4, -17, 60]) -> [3, -8, -17]
+ # polynomial_derivative([1, -4, -17, 60]) --> [3, -8, -17]
n = len(coefficients)
powers = reversed(range(1, n))
return list(map(operator.mul, coefficients, powers))
@@ -1169,6 +1168,12 @@ The following recipes have a more mathematical flavor:
>>> take(10, count())
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
+ >>> # Verify that the input is consumed lazily
+ >>> it = iter('abcdef')
+ >>> take(3, it)
+ ['a', 'b', 'c']
+ >>> list(it)
+ ['d', 'e', 'f']
>>> list(prepend(1, [2, 3, 4]))
[1, 2, 3, 4]
@@ -1181,25 +1186,45 @@ The following recipes have a more mathematical flavor:
>>> list(tail(3, 'ABCDEFG'))
['E', 'F', 'G']
+ >>> # Verify the input is consumed greedily
+ >>> input_iterator = iter('ABCDEFG')
+ >>> output_iterator = tail(3, input_iterator)
+ >>> list(input_iterator)
+ []
>>> it = iter(range(10))
>>> consume(it, 3)
+ >>> # Verify the input is consumed lazily
>>> next(it)
3
+ >>> # Verify the input is consumed completely
>>> consume(it)
>>> next(it, 'Done')
'Done'
>>> nth('abcde', 3)
'd'
-
>>> nth('abcde', 9) is None
True
+ >>> # Verify that the input is consumed lazily
+ >>> it = iter('abcde')
+ >>> nth(it, 2)
+ 'c'
+ >>> list(it)
+ ['d', 'e']
>>> [all_equal(s) for s in ('', 'A', 'AAAA', 'AAAB', 'AAABA')]
[True, True, True, False, False]
>>> [all_equal(s, key=str.casefold) for s in ('', 'A', 'AaAa', 'AAAB', 'AAABA')]
[True, True, True, False, False]
+ >>> # Verify that the input is consumed lazily and that only
+ >>> # one element of a second equivalence class is used to disprove
+ >>> # the assertion that all elements are equal.
+ >>> it = iter('aaabbbccc')
+ >>> all_equal(it)
+ False
+ >>> ''.join(it)
+ 'bbccc'
>>> quantify(range(99), lambda x: x%2==0)
50
@@ -1222,6 +1247,11 @@ The following recipes have a more mathematical flavor:
>>> list(ncycles('abc', 3))
['a', 'b', 'c', 'a', 'b', 'c', 'a', 'b', 'c']
+ >>> # Verify greedy consumption of input iterator
+ >>> input_iterator = iter('abc')
+ >>> output_iterator = ncycles(input_iterator, 3)
+ >>> list(input_iterator)
+ []
>>> sum_of_squares([10, 20, 30])
1400
@@ -1248,12 +1278,22 @@ The following recipes have a more mathematical flavor:
>>> list(transpose([(1, 2, 3), (11, 22, 33)]))
[(1, 11), (2, 22), (3, 33)]
+ >>> # Verify that the inputs are consumed lazily
+ >>> input1 = iter([1, 2, 3])
+ >>> input2 = iter([11, 22, 33])
+ >>> output_iterator = transpose([input1, input2])
+ >>> next(output_iterator)
+ (1, 11)
+ >>> list(zip(input1, input2))
+ [(2, 22), (3, 33)]
>>> list(matmul([(7, 5), (3, 5)], [[2, 5], [7, 9]]))
[(49, 80), (41, 60)]
>>> list(matmul([[2, 5], [7, 9], [3, 4]], [[7, 11, 5, 4, 9], [3, 5, 2, 6, 3]]))
[(29, 47, 20, 38, 33), (76, 122, 53, 82, 90), (33, 53, 23, 36, 39)]
+ >>> list(convolve([1, -1, -20], [1, -3])) == [1, -4, -17, 60]
+ True
>>> data = [20, 40, 24, 32, 20, 28, 16]
>>> list(convolve(data, [0.25, 0.25, 0.25, 0.25]))
[5.0, 15.0, 21.0, 29.0, 29.0, 26.0, 24.0, 16.0, 11.0, 4.0]
@@ -1261,6 +1301,18 @@ The following recipes have a more mathematical flavor:
[20, 20, -16, 8, -12, 8, -12, -16]
>>> list(convolve(data, [1, -2, 1]))
[20, 0, -36, 24, -20, 20, -20, -4, 16]
+ >>> # Verify signal is consumed lazily and the kernel greedily
+ >>> signal_iterator = iter([10, 20, 30, 40, 50])
+ >>> kernel_iterator = iter([1, 2, 3])
+ >>> output_iterator = convolve(signal_iterator, kernel_iterator)
+ >>> list(kernel_iterator)
+ []
+ >>> next(output_iterator)
+ 10
+ >>> next(output_iterator)
+ 40
+ >>> list(signal_iterator)
+ [30, 40, 50]
>>> from fractions import Fraction
>>> from decimal import Decimal
@@ -1348,6 +1400,17 @@ The following recipes have a more mathematical flavor:
>>> # Test list input. Lists do not support None for the stop argument
>>> list(iter_index(list('AABCADEAF'), 'A'))
[0, 1, 4, 7]
+ >>> # Verify that input is consumed lazily
+ >>> input_iterator = iter('AABCADEAF')
+ >>> output_iterator = iter_index(input_iterator, 'A')
+ >>> next(output_iterator)
+ 0
+ >>> next(output_iterator)
+ 1
+ >>> next(output_iterator)
+ 4
+ >>> ''.join(input_iterator)
+ 'DEAF'
>>> list(sieve(30))
[2, 3, 5, 7, 11, 13, 17, 19, 23, 29]
@@ -1499,6 +1562,17 @@ The following recipes have a more mathematical flavor:
[0, 2, 4, 6, 8]
>>> list(odds)
[1, 3, 5, 7, 9]
+ >>> # Verify that the input is consumed lazily
+ >>> input_iterator = iter(range(10))
+ >>> evens, odds = partition(is_odd, input_iterator)
+ >>> next(odds)
+ 1
+ >>> next(odds)
+ 3
+ >>> next(evens)
+ 0
+ >>> list(input_iterator)
+ [4, 5, 6, 7, 8, 9]
>>> list(subslices('ABCD'))
['A', 'AB', 'ABC', 'ABCD', 'B', 'BC', 'BCD', 'C', 'CD', 'D']
@@ -1518,6 +1592,13 @@ The following recipes have a more mathematical flavor:
['A', 'B', 'C', 'D']
>>> list(unique_everseen('ABBcCAD', str.casefold))
['A', 'B', 'c', 'D']
+ >>> # Verify that the input is consumed lazily
+ >>> input_iterator = iter('AAAABBBCCDAABBB')
+ >>> output_iterator = unique_everseen(input_iterator)
+ >>> next(output_iterator)
+ 'A'
+ >>> ''.join(input_iterator)
+ 'AAABBBCCDAABBB'
>>> list(unique_justseen('AAAABBBCCDAABBB'))
['A', 'B', 'C', 'D', 'A', 'B']
@@ -1525,6 +1606,13 @@ The following recipes have a more mathematical flavor:
['A', 'B', 'C', 'A', 'D']
>>> list(unique_justseen('ABBcCAD', str.casefold))
['A', 'B', 'c', 'A', 'D']
+ >>> # Verify that the input is consumed lazily
+ >>> input_iterator = iter('AAAABBBCCDAABBB')
+ >>> output_iterator = unique_justseen(input_iterator)
+ >>> next(output_iterator)
+ 'A'
+ >>> ''.join(input_iterator)
+ 'AAABBBCCDAABBB'
>>> d = dict(a=1, b=2, c=3)
>>> it = iter_except(d.popitem, KeyError)
@@ -1545,6 +1633,12 @@ The following recipes have a more mathematical flavor:
>>> first_true('ABC0DEF1', '9', str.isdigit)
'0'
+ >>> # Verify that inputs are consumed lazily
+ >>> it = iter('ABC0DEF1')
+ >>> first_true(it, predicate=str.isdigit)
+ '0'
+ >>> ''.join(it)
+ 'DEF1'
.. testcode::