diff options
author | Miss Islington (bot) <31488909+miss-islington@users.noreply.github.com> | 2022-07-10 17:36:01 (GMT) |
---|---|---|
committer | GitHub <noreply@github.com> | 2022-07-10 17:36:01 (GMT) |
commit | 30015de7235e5b4033298b85a164fcd8d96046b3 (patch) | |
tree | 6592419fb4f0c5570f341ab97a85303d96302f85 | |
parent | d4796c2231eef9355814572650f00c3c4662f197 (diff) | |
download | cpython-30015de7235e5b4033298b85a164fcd8d96046b3.zip cpython-30015de7235e5b4033298b85a164fcd8d96046b3.tar.gz cpython-30015de7235e5b4033298b85a164fcd8d96046b3.tar.bz2 |
GH-77265: Document NaN handling in statistics functions that sort or count (GH-94676) (#94725)
-rw-r--r-- | Doc/library/statistics.rst | 29 |
1 files changed, 29 insertions, 0 deletions
diff --git a/Doc/library/statistics.rst b/Doc/library/statistics.rst index 1f55ae8..6484e74 100644 --- a/Doc/library/statistics.rst +++ b/Doc/library/statistics.rst @@ -35,6 +35,35 @@ and implementation-dependent. If your input data consists of mixed types, you may be able to use :func:`map` to ensure a consistent result, for example: ``map(float, input_data)``. +Some datasets use ``NaN`` (not a number) values to represent missing data. +Since NaNs have unusual comparison semantics, they cause surprising or +undefined behaviors in the statistics functions that sort data or that count +occurrences. The functions affected are ``median()``, ``median_low()``, +``median_high()``, ``median_grouped()``, ``mode()``, ``multimode()``, and +``quantiles()``. The ``NaN`` values should be stripped before calling these +functions:: + + >>> from statistics import median + >>> from math import isnan + >>> from itertools import filterfalse + + >>> data = [20.7, float('NaN'),19.2, 18.3, float('NaN'), 14.4] + >>> sorted(data) # This has surprising behavior + [20.7, nan, 14.4, 18.3, 19.2, nan] + >>> median(data) # This result is unexpected + 16.35 + + >>> sum(map(isnan, data)) # Number of missing values + 2 + >>> clean = list(filterfalse(isnan, data)) # Strip NaN values + >>> clean + [20.7, 19.2, 18.3, 14.4] + >>> sorted(clean) # Sorting now works as expected + [14.4, 18.3, 19.2, 20.7] + >>> median(clean) # This result is now well defined + 18.75 + + Averages and measures of central location ----------------------------------------- |