diff options
author | Raymond Hettinger <python@rcn.com> | 2002-12-29 23:03:38 (GMT) |
---|---|---|
committer | Raymond Hettinger <python@rcn.com> | 2002-12-29 23:03:38 (GMT) |
commit | 40f621709286a7a0f7e6f260c0fd020d0fac0de0 (patch) | |
tree | bd602fee432a253a0f454fc696d14734f18dd915 | |
parent | 5e65ce671c3d3113035dd7783b79d395c9d71b3d (diff) | |
download | cpython-40f621709286a7a0f7e6f260c0fd020d0fac0de0.zip cpython-40f621709286a7a0f7e6f260c0fd020d0fac0de0.tar.gz cpython-40f621709286a7a0f7e6f260c0fd020d0fac0de0.tar.bz2 |
SF patch 658251: Install a C implementation of the Mersenne Twister as the
core generator for random.py.
-rw-r--r-- | Doc/lib/librandom.tex | 138 | ||||
-rw-r--r-- | Lib/random.py | 403 | ||||
-rw-r--r-- | Lib/test/test_random.py | 215 | ||||
-rw-r--r-- | Misc/NEWS | 19 | ||||
-rw-r--r-- | Modules/_randommodule.c | 528 | ||||
-rw-r--r-- | setup.py | 2 |
6 files changed, 983 insertions, 322 deletions
diff --git a/Doc/lib/librandom.tex b/Doc/lib/librandom.tex index 1783659..df05203 100644 --- a/Doc/lib/librandom.tex +++ b/Doc/lib/librandom.tex @@ -8,30 +8,26 @@ This module implements pseudo-random number generators for various distributions. + For integers, uniform selection from a range. -For sequences, uniform selection of a random element, and a function to -generate a random permutation of a list in-place. +For sequences, uniform selection of a random element, a function to +generate a random permutation of a list in-place, and a function for +random sampling without replacement. + On the real line, there are functions to compute uniform, normal (Gaussian), lognormal, negative exponential, gamma, and beta distributions. -For generating distribution of angles, the circular uniform and -von Mises distributions are available. +For generating distributions of angles, the von Mises distribution +is available. Almost all module functions depend on the basic function \function{random()}, which generates a random float uniformly in -the semi-open range [0.0, 1.0). Python uses the standard Wichmann-Hill -generator, combining three pure multiplicative congruential -generators of modulus 30269, 30307 and 30323. Its period (how many -numbers it generates before repeating the sequence exactly) is -6,953,607,871,644. While of much higher quality than the \function{rand()} -function supplied by most C libraries, the theoretical properties -are much the same as for a single linear congruential generator of -large modulus. It is not suitable for all purposes, and is completely -unsuitable for cryptographic purposes. - -The functions in this module are not threadsafe: if you want to call these -functions from multiple threads, you should explicitly serialize the calls. -Else, because no critical sections are implemented internally, calls -from different threads may see the same return values. +the semi-open range [0.0, 1.0). Python uses the Mersenne Twister as +the core generator. It produces 53-bit precision floats and has a +period of 2**19937-1. The underlying implementation in C +is both fast and threadsafe. The Mersenne Twister is one of the most +extensively tested random number generators in existence. However, being +completely deterministic, it is not suitable for all purposes, and is +completely unsuitable for cryptographic purposes. The functions supplied by this module are actually bound methods of a hidden instance of the \class{random.Random} class. You can @@ -39,58 +35,19 @@ instantiate your own instances of \class{Random} to get generators that don't share state. This is especially useful for multi-threaded programs, creating a different instance of \class{Random} for each thread, and using the \method{jumpahead()} method to ensure that the -generated sequences seen by each thread don't overlap (see example -below). +generated sequences seen by each thread don't overlap. Class \class{Random} can also be subclassed if you want to use a different basic generator of your own devising: in that case, override the \method{random()}, \method{seed()}, \method{getstate()}, \method{setstate()} and \method{jumpahead()} methods. -Here's one way to create threadsafe distinct and non-overlapping generators: - -\begin{verbatim} -def create_generators(num, delta, firstseed=None): - """Return list of num distinct generators. - Each generator has its own unique segment of delta elements - from Random.random()'s full period. - Seed the first generator with optional arg firstseed (default - is None, to seed from current time). - """ - - from random import Random - g = Random(firstseed) - result = [g] - for i in range(num - 1): - laststate = g.getstate() - g = Random() - g.setstate(laststate) - g.jumpahead(delta) - result.append(g) - return result - -gens = create_generators(10, 1000000) -\end{verbatim} - -That creates 10 distinct generators, which can be passed out to 10 -distinct threads. The generators don't share state so can be called -safely in parallel. So long as no thread calls its \code{g.random()} -more than a million times (the second argument to -\function{create_generators()}, the sequences seen by each thread will -not overlap. The period of the underlying Wichmann-Hill generator -limits how far this technique can be pushed. - -Just for fun, note that since we know the period, \method{jumpahead()} -can also be used to ``move backward in time:'' - -\begin{verbatim} ->>> g = Random(42) # arbitrary ->>> g.random() -0.25420336316883324 ->>> g.jumpahead(6953607871644L - 1) # move *back* one ->>> g.random() -0.25420336316883324 -\end{verbatim} +As an example of subclassing, the \module{random} module provides +the \class{WichmannHill} class which implements an alternative generator +in pure Python. The class provides a backward compatible way to +reproduce results from earlier versions of Python which used the +Wichmann-Hill algorithm as the core generator. +\versionchanged[Substituted MersenneTwister for Wichmann-Hill]{2.3} Bookkeeping functions: @@ -104,18 +61,6 @@ Bookkeeping functions: If \var{x} is not \code{None} or an int or long, \code{hash(\var{x})} is used instead. If \var{x} is an int or long, \var{x} is used directly. - Distinct values between 0 and 27814431486575L inclusive are guaranteed - to yield distinct internal states (this guarantee is specific to the - default Wichmann-Hill generator, and may not apply to subclasses - supplying their own basic generator). -\end{funcdesc} - -\begin{funcdesc}{whseed}{\optional{x}} - This is obsolete, supplied for bit-level compatibility with versions - of Python prior to 2.1. - See \function{seed} for details. \function{whseed} does not guarantee - that distinct integer arguments yield distinct internal states, and can - yield no more than about 2**24 distinct internal states in all. \end{funcdesc} \begin{funcdesc}{getstate}{} @@ -134,17 +79,20 @@ Bookkeeping functions: \end{funcdesc} \begin{funcdesc}{jumpahead}{n} - Change the internal state to what it would be if \function{random()} - were called \var{n} times, but do so quickly. \var{n} is a - non-negative integer. This is most useful in multi-threaded + Change the internal state to one different from and likely far away from + the current state. \var{n} is a non-negative integer which is used to + scramble the current state vector. This is most useful in multi-threaded programs, in conjuction with multiple instances of the \class{Random} - class: \method{setstate()} or \method{seed()} can be used to force - all instances into the same internal state, and then - \method{jumpahead()} can be used to force the instances' states as - far apart as you like (up to the period of the generator). + class: \method{setstate()} or \method{seed()} can be used to force all + instances into the same internal state, and then \method{jumpahead()} + can be used to force the instances' states far apart. \versionadded{2.1} + \versionchanged[Instead of jumping to a specific state, \var{n} steps + ahead, \method{jumpahead(\var{n})} jumps to another state likely to be + separated by many steps.]{2.3} \end{funcdesc} + Functions for integers: \begin{funcdesc}{randrange}{\optional{start,} stop\optional{, step}} @@ -279,8 +227,32 @@ these equations can be found in any statistics text. \var{beta} is the shape parameter. \end{funcdesc} +Alternative Generator + +\begin{classdesc}{WichmannHill}{\optional{seed}} +Class that implements the Wichmann-Hill algorithm as the core generator. +Has all of the same methods as \class{Random} plus the \method{whseed} +method described below. Because this class is implemented in pure +Python, it is not threadsafe and may require locks between calls. The +period of the generator is 6,953,607,871,644 which is small enough to +require care that two independent random sequences do not overlap. +\end{classdesc} + +\begin{funcdesc}{whseed}{\optional{x}} + This is obsolete, supplied for bit-level compatibility with versions + of Python prior to 2.1. + See \function{seed} for details. \function{whseed} does not guarantee + that distinct integer arguments yield distinct internal states, and can + yield no more than about 2**24 distinct internal states in all. +\end{funcdesc} \begin{seealso} + \seetext{M. Matsumoto and T. Nishimura, ``Mersenne Twister: A + 623-dimensionally equidistributed uniform pseudorandom + number generator'', + \citetitle{ACM Transactions on Modeling and Computer Simulation} + Vol. 8, No. 1, January pp.3-30 1998.} + \seetext{Wichmann, B. A. \& Hill, I. D., ``Algorithm AS 183: An efficient and portable pseudo-random number generator'', \citetitle{Applied Statistics} 31 (1982) 188-190.} diff --git a/Lib/random.py b/Lib/random.py index 057571a..8462061 100644 --- a/Lib/random.py +++ b/Lib/random.py @@ -18,61 +18,26 @@ negative exponential gamma beta + pareto + Weibull distributions on the circle (angles 0 to 2pi) --------------------------------------------- circular uniform von Mises -Translated from anonymously contributed C/C++ source. - -Multi-threading note: the random number generator used here is not thread- -safe; it is possible that two calls return the same random value. However, -you can instantiate a different instance of Random() in each thread to get -generators that don't share state, then use .setstate() and .jumpahead() to -move the generators to disjoint segments of the full period. For example, - -def create_generators(num, delta, firstseed=None): - ""\"Return list of num distinct generators. - Each generator has its own unique segment of delta elements from - Random.random()'s full period. - Seed the first generator with optional arg firstseed (default is - None, to seed from current time). - ""\" - - from random import Random - g = Random(firstseed) - result = [g] - for i in range(num - 1): - laststate = g.getstate() - g = Random() - g.setstate(laststate) - g.jumpahead(delta) - result.append(g) - return result - -gens = create_generators(10, 1000000) - -That creates 10 distinct generators, which can be passed out to 10 distinct -threads. The generators don't share state so can be called safely in -parallel. So long as no thread calls its g.random() more than a million -times (the second argument to create_generators), the sequences seen by -each thread will not overlap. - -The period of the underlying Wichmann-Hill generator is 6,953,607,871,644, -and that limits how far this technique can be pushed. - -Just for fun, note that since we know the period, .jumpahead() can also be -used to "move backward in time": - ->>> g = Random(42) # arbitrary ->>> g.random() -0.25420336316883324 ->>> g.jumpahead(6953607871644L - 1) # move *back* one ->>> g.random() -0.25420336316883324 +General notes on the underlying Mersenne Twister core generator: + +* The period is 2**19937-1. +* It is one of the most extensively tested generators in existence +* Without a direct way to compute N steps forward, the + semantics of jumpahead(n) are weakened to simply jump + to another distant state and rely on the large period + to avoid overlapping sequences. +* The random() method is implemented in C, executes in + a single Python step, and is, therefore, threadsafe. + """ -# XXX The docstring sucks. from math import log as _log, exp as _exp, pi as _pi, e as _e from math import sqrt as _sqrt, acos as _acos, cos as _cos, sin as _sin @@ -82,32 +47,20 @@ __all__ = ["Random","seed","random","uniform","randint","choice","sample", "randrange","shuffle","normalvariate","lognormvariate", "cunifvariate","expovariate","vonmisesvariate","gammavariate", "stdgamma","gauss","betavariate","paretovariate","weibullvariate", - "getstate","setstate","jumpahead","whseed"] - -def _verify(name, computed, expected): - if abs(computed - expected) > 1e-7: - raise ValueError( - "computed value for %s deviates too much " - "(computed %g, expected %g)" % (name, computed, expected)) + "getstate","setstate","jumpahead"] NV_MAGICCONST = 4 * _exp(-0.5)/_sqrt(2.0) -_verify('NV_MAGICCONST', NV_MAGICCONST, 1.71552776992141) - TWOPI = 2.0*_pi -_verify('TWOPI', TWOPI, 6.28318530718) - LOG4 = _log(4.0) -_verify('LOG4', LOG4, 1.38629436111989) - SG_MAGICCONST = 1.0 + _log(4.5) -_verify('SG_MAGICCONST', SG_MAGICCONST, 2.50407739677627) - -del _verify # Translated by Guido van Rossum from C source provided by -# Adrian Baddeley. +# Adrian Baddeley. Adapted by Raymond Hettinger for use with +# the Mersenne Twister core generator. -class Random: +from _random import Random as CoreGenerator + +class Random(CoreGenerator): """Random number generator base class used by bound module functions. Used to instantiate instances of Random to get generators that don't @@ -122,7 +75,7 @@ class Random: """ - VERSION = 1 # used by getstate/setstate + VERSION = 2 # used by getstate/setstate def __init__(self, x=None): """Initialize an instance. @@ -131,12 +84,7 @@ class Random: """ self.seed(x) - -## -------------------- core generator ------------------- - - # Specific to Wichmann-Hill generator. Subclasses wishing to use a - # different core generator should override the seed(), random(), - # getstate(), setstate() and jumpahead() methods. + self.gauss_next = None def seed(self, a=None): """Initialize internal state from hashable object. @@ -144,141 +92,26 @@ class Random: None or no argument seeds from current time. If a is not None or an int or long, hash(a) is used instead. - - If a is an int or long, a is used directly. Distinct values between - 0 and 27814431486575L inclusive are guaranteed to yield distinct - internal states (this guarantee is specific to the default - Wichmann-Hill generator). """ - if a is None: - # Initialize from current time - import time - a = long(time.time() * 256) - - if type(a) not in (type(3), type(3L)): - a = hash(a) - - a, x = divmod(a, 30268) - a, y = divmod(a, 30306) - a, z = divmod(a, 30322) - self._seed = int(x)+1, int(y)+1, int(z)+1 - + CoreGenerator.seed(self, a) self.gauss_next = None - def random(self): - """Get the next random number in the range [0.0, 1.0).""" - - # Wichman-Hill random number generator. - # - # Wichmann, B. A. & Hill, I. D. (1982) - # Algorithm AS 183: - # An efficient and portable pseudo-random number generator - # Applied Statistics 31 (1982) 188-190 - # - # see also: - # Correction to Algorithm AS 183 - # Applied Statistics 33 (1984) 123 - # - # McLeod, A. I. (1985) - # A remark on Algorithm AS 183 - # Applied Statistics 34 (1985),198-200 - - # This part is thread-unsafe: - # BEGIN CRITICAL SECTION - x, y, z = self._seed - x = (171 * x) % 30269 - y = (172 * y) % 30307 - z = (170 * z) % 30323 - self._seed = x, y, z - # END CRITICAL SECTION - - # Note: on a platform using IEEE-754 double arithmetic, this can - # never return 0.0 (asserted by Tim; proof too long for a comment). - return (x/30269.0 + y/30307.0 + z/30323.0) % 1.0 - def getstate(self): """Return internal state; can be passed to setstate() later.""" - return self.VERSION, self._seed, self.gauss_next + return self.VERSION, CoreGenerator.getstate(self), self.gauss_next def setstate(self, state): """Restore internal state from object returned by getstate().""" version = state[0] - if version == 1: - version, self._seed, self.gauss_next = state + if version == 2: + version, internalstate, self.gauss_next = state + CoreGenerator.setstate(self, internalstate) else: raise ValueError("state with version %s passed to " "Random.setstate() of version %s" % (version, self.VERSION)) - def jumpahead(self, n): - """Act as if n calls to random() were made, but quickly. - - n is an int, greater than or equal to 0. - - Example use: If you have 2 threads and know that each will - consume no more than a million random numbers, create two Random - objects r1 and r2, then do - r2.setstate(r1.getstate()) - r2.jumpahead(1000000) - Then r1 and r2 will use guaranteed-disjoint segments of the full - period. - """ - - if not n >= 0: - raise ValueError("n must be >= 0") - x, y, z = self._seed - x = int(x * pow(171, n, 30269)) % 30269 - y = int(y * pow(172, n, 30307)) % 30307 - z = int(z * pow(170, n, 30323)) % 30323 - self._seed = x, y, z - - def __whseed(self, x=0, y=0, z=0): - """Set the Wichmann-Hill seed from (x, y, z). - - These must be integers in the range [0, 256). - """ - - if not type(x) == type(y) == type(z) == int: - raise TypeError('seeds must be integers') - if not (0 <= x < 256 and 0 <= y < 256 and 0 <= z < 256): - raise ValueError('seeds must be in range(0, 256)') - if 0 == x == y == z: - # Initialize from current time - import time - t = long(time.time() * 256) - t = int((t&0xffffff) ^ (t>>24)) - t, x = divmod(t, 256) - t, y = divmod(t, 256) - t, z = divmod(t, 256) - # Zero is a poor seed, so substitute 1 - self._seed = (x or 1, y or 1, z or 1) - - self.gauss_next = None - - def whseed(self, a=None): - """Seed from hashable object's hash code. - - None or no argument seeds from current time. It is not guaranteed - that objects with distinct hash codes lead to distinct internal - states. - - This is obsolete, provided for compatibility with the seed routine - used prior to Python 2.1. Use the .seed() method instead. - """ - - if a is None: - self.__whseed() - return - a = hash(a) - a, x = divmod(a, 256) - a, y = divmod(a, 256) - a, z = divmod(a, 256) - x = (x + a) % 256 or 1 - y = (y + a) % 256 or 1 - z = (z + a) % 256 or 1 - self.__whseed(x, y, z) - ## ---- Methods below this point do not need to be overridden when ## ---- subclassing for the purpose of using a different core generator. @@ -744,6 +577,153 @@ class Random: u = self.random() return alpha * pow(-_log(u), 1.0/beta) +## -------------------- Wichmann-Hill ------------------- + +class WichmannHill(Random): + + VERSION = 1 # used by getstate/setstate + + def seed(self, a=None): + """Initialize internal state from hashable object. + + None or no argument seeds from current time. + + If a is not None or an int or long, hash(a) is used instead. + + If a is an int or long, a is used directly. Distinct values between + 0 and 27814431486575L inclusive are guaranteed to yield distinct + internal states (this guarantee is specific to the default + Wichmann-Hill generator). + """ + + if a is None: + # Initialize from current time + import time + a = long(time.time() * 256) + + if not isinstance(a, (int, long)): + a = hash(a) + + a, x = divmod(a, 30268) + a, y = divmod(a, 30306) + a, z = divmod(a, 30322) + self._seed = int(x)+1, int(y)+1, int(z)+1 + + self.gauss_next = None + + def random(self): + """Get the next random number in the range [0.0, 1.0).""" + + # Wichman-Hill random number generator. + # + # Wichmann, B. A. & Hill, I. D. (1982) + # Algorithm AS 183: + # An efficient and portable pseudo-random number generator + # Applied Statistics 31 (1982) 188-190 + # + # see also: + # Correction to Algorithm AS 183 + # Applied Statistics 33 (1984) 123 + # + # McLeod, A. I. (1985) + # A remark on Algorithm AS 183 + # Applied Statistics 34 (1985),198-200 + + # This part is thread-unsafe: + # BEGIN CRITICAL SECTION + x, y, z = self._seed + x = (171 * x) % 30269 + y = (172 * y) % 30307 + z = (170 * z) % 30323 + self._seed = x, y, z + # END CRITICAL SECTION + + # Note: on a platform using IEEE-754 double arithmetic, this can + # never return 0.0 (asserted by Tim; proof too long for a comment). + return (x/30269.0 + y/30307.0 + z/30323.0) % 1.0 + + def getstate(self): + """Return internal state; can be passed to setstate() later.""" + return self.VERSION, self._seed, self.gauss_next + + def setstate(self, state): + """Restore internal state from object returned by getstate().""" + version = state[0] + if version == 1: + version, self._seed, self.gauss_next = state + else: + raise ValueError("state with version %s passed to " + "Random.setstate() of version %s" % + (version, self.VERSION)) + + def jumpahead(self, n): + """Act as if n calls to random() were made, but quickly. + + n is an int, greater than or equal to 0. + + Example use: If you have 2 threads and know that each will + consume no more than a million random numbers, create two Random + objects r1 and r2, then do + r2.setstate(r1.getstate()) + r2.jumpahead(1000000) + Then r1 and r2 will use guaranteed-disjoint segments of the full + period. + """ + + if not n >= 0: + raise ValueError("n must be >= 0") + x, y, z = self._seed + x = int(x * pow(171, n, 30269)) % 30269 + y = int(y * pow(172, n, 30307)) % 30307 + z = int(z * pow(170, n, 30323)) % 30323 + self._seed = x, y, z + + def __whseed(self, x=0, y=0, z=0): + """Set the Wichmann-Hill seed from (x, y, z). + + These must be integers in the range [0, 256). + """ + + if not type(x) == type(y) == type(z) == int: + raise TypeError('seeds must be integers') + if not (0 <= x < 256 and 0 <= y < 256 and 0 <= z < 256): + raise ValueError('seeds must be in range(0, 256)') + if 0 == x == y == z: + # Initialize from current time + import time + t = long(time.time() * 256) + t = int((t&0xffffff) ^ (t>>24)) + t, x = divmod(t, 256) + t, y = divmod(t, 256) + t, z = divmod(t, 256) + # Zero is a poor seed, so substitute 1 + self._seed = (x or 1, y or 1, z or 1) + + self.gauss_next = None + + def whseed(self, a=None): + """Seed from hashable object's hash code. + + None or no argument seeds from current time. It is not guaranteed + that objects with distinct hash codes lead to distinct internal + states. + + This is obsolete, provided for compatibility with the seed routine + used prior to Python 2.1. Use the .seed() method instead. + """ + + if a is None: + self.__whseed() + return + a = hash(a) + a, x = divmod(a, 256) + a, y = divmod(a, 256) + a, z = divmod(a, 256) + x = (x + a) % 256 or 1 + y = (y + a) % 256 or 1 + z = (z + a) % 256 or 1 + self.__whseed(x, y, z) + ## -------------------- test program -------------------- def _test_generator(n, funccall): @@ -768,25 +748,11 @@ def _test_generator(n, funccall): print 'avg %g, stddev %g, min %g, max %g' % \ (avg, stddev, smallest, largest) -def _test_sample(n): - # For the entire allowable range of 0 <= k <= n, validate that - # the sample is of the correct length and contains only unique items - population = xrange(n) - for k in xrange(n+1): - s = sample(population, k) - uniq = dict.fromkeys(s) - assert len(uniq) == len(s) == k - assert None not in uniq - def _sample_generator(n, k): # Return a fixed element from the sample. Validates random ordering. return sample(xrange(n), k)[k//2] def _test(N=2000): - print 'TWOPI =', TWOPI - print 'LOG4 =', LOG4 - print 'NV_MAGICCONST =', NV_MAGICCONST - print 'SG_MAGICCONST =', SG_MAGICCONST _test_generator(N, 'random()') _test_generator(N, 'normalvariate(0.0, 1.0)') _test_generator(N, 'lognormvariate(0.0, 1.0)') @@ -808,25 +774,13 @@ def _test(N=2000): _test_generator(N, 'weibullvariate(1.0, 1.0)') _test_generator(N, '_sample_generator(50, 5)') # expected s.d.: 14.4 _test_generator(N, '_sample_generator(50, 45)') # expected s.d.: 14.4 - _test_sample(500) - - # Test jumpahead. - s = getstate() - jumpahead(N) - r1 = random() - # now do it the slow way - setstate(s) - for i in range(N): - random() - r2 = random() - if r1 != r2: - raise ValueError("jumpahead test failed " + `(N, r1, r2)`) # Create one instance, seeded from current time, and export its methods -# as module-level functions. The functions are not threadsafe, and state -# is shared across all uses (both in the user's code and in the Python -# libraries), but that's fine for most programs and is easier for the -# casual user than making them instantiate their own Random() instance. +# as module-level functions. The functions share state across all uses +#(both in the user's code and in the Python libraries), but that's fine +# for most programs and is easier for the casual user than making them +# instantiate their own Random() instance. + _inst = Random() seed = _inst.seed random = _inst.random @@ -850,7 +804,6 @@ weibullvariate = _inst.weibullvariate getstate = _inst.getstate setstate = _inst.setstate jumpahead = _inst.jumpahead -whseed = _inst.whseed if __name__ == '__main__': _test() diff --git a/Lib/test/test_random.py b/Lib/test/test_random.py index 5f60f4b..d0a2a15 100644 --- a/Lib/test/test_random.py +++ b/Lib/test/test_random.py @@ -1,19 +1,206 @@ -from test import test_support +#!/usr/bin/env python + +import unittest import random +import time +from test import test_support + +class TestBasicOps(unittest.TestCase): + # Superclass with tests common to all generators. + # Subclasses must arrange for self.gen to retrieve the Random instance + # to be tested. + + def randomlist(self, n): + """Helper function to make a list of random numbers""" + return [self.gen.random() for i in xrange(n)] + + def test_autoseed(self): + self.gen.seed() + state1 = self.gen.getstate() + time.sleep(1) + self.gen.seed() # diffent seeds at different times + state2 = self.gen.getstate() + self.assertNotEqual(state1, state2) + + def test_saverestore(self): + N = 1000 + self.gen.seed() + state = self.gen.getstate() + randseq = self.randomlist(N) + self.gen.setstate(state) # should regenerate the same sequence + self.assertEqual(randseq, self.randomlist(N)) + + def test_seedargs(self): + for arg in [None, 0, 0L, 1, 1L, -1, -1L, 10**20, -(10**20), + 3.14, 1+2j, 'a', tuple('abc')]: + self.gen.seed(arg) + for arg in [range(3), dict(one=1)]: + self.assertRaises(TypeError, self.gen.seed, arg) + + def test_jumpahead(self): + self.gen.seed() + state1 = self.gen.getstate() + self.gen.jumpahead(100) + state2 = self.gen.getstate() # s/b distinct from state1 + self.assertNotEqual(state1, state2) + self.gen.jumpahead(100) + state3 = self.gen.getstate() # s/b distinct from state2 + self.assertNotEqual(state2, state3) + + self.assertRaises(TypeError, self.gen.jumpahead) # needs an arg + self.assertRaises(TypeError, self.gen.jumpahead, "ick") # wrong type + self.assertRaises(TypeError, self.gen.jumpahead, 2.3) # wrong type + self.assertRaises(TypeError, self.gen.jumpahead, 2, 3) # too many + + def test_sample(self): + # For the entire allowable range of 0 <= k <= N, validate that + # the sample is of the correct length and contains only unique items + N = 100 + population = xrange(N) + for k in xrange(N+1): + s = self.gen.sample(population, k) + self.assertEqual(len(s), k) + uniq = dict.fromkeys(s) + self.assertEqual(len(uniq), k) + self.failIf(None in uniq) + + def test_gauss(self): + # Ensure that the seed() method initializes all the hidden state. In + # particular, through 2.2.1 it failed to reset a piece of state used + # by (and only by) the .gauss() method. + + for seed in 1, 12, 123, 1234, 12345, 123456, 654321: + self.gen.seed(seed) + x1 = self.gen.random() + y1 = self.gen.gauss(0, 1) + + self.gen.seed(seed) + x2 = self.gen.random() + y2 = self.gen.gauss(0, 1) + + self.assertEqual(x1, x2) + self.assertEqual(y1, y2) + + +class WichmannHill_TestBasicOps(TestBasicOps): + gen = random.WichmannHill() + + def test_strong_jumpahead(self): + # tests that jumpahead(n) semantics correspond to n calls to random() + N = 1000 + s = self.gen.getstate() + self.gen.jumpahead(N) + r1 = self.gen.random() + # now do it the slow way + self.gen.setstate(s) + for i in xrange(N): + self.gen.random() + r2 = self.gen.random() + self.assertEqual(r1, r2) + + def test_gauss_with_whseed(self): + # Ensure that the seed() method initializes all the hidden state. In + # particular, through 2.2.1 it failed to reset a piece of state used + # by (and only by) the .gauss() method. + + for seed in 1, 12, 123, 1234, 12345, 123456, 654321: + self.gen.whseed(seed) + x1 = self.gen.random() + y1 = self.gen.gauss(0, 1) + + self.gen.whseed(seed) + x2 = self.gen.random() + y2 = self.gen.gauss(0, 1) + + self.assertEqual(x1, x2) + self.assertEqual(y1, y2) + +class MersenneTwister_TestBasicOps(TestBasicOps): + gen = random.Random() + + def test_referenceImplementation(self): + # Compare the python implementation with results from the original + # code. Create 2000 53-bit precision random floats. Compare only + # the last ten entries to show that the independent implementations + # are tracking. Here is the main() function needed to create the + # list of expected random numbers: + # void main(void){ + # int i; + # unsigned long init[4]={61731, 24903, 614, 42143}, length=4; + # init_by_array(init, length); + # for (i=0; i<2000; i++) { + # printf("%.15f ", genrand_res53()); + # if (i%5==4) printf("\n"); + # } + # } + expected = [0.45839803073713259, + 0.86057815201978782, + 0.92848331726782152, + 0.35932681119782461, + 0.081823493762449573, + 0.14332226470169329, + 0.084297823823520024, + 0.53814864671831453, + 0.089215024911993401, + 0.78486196105372907] + + self.gen.seed(61731L + (24903L<<32) + (614L<<64) + (42143L<<96)) + actual = self.randomlist(2000)[-10:] + for a, e in zip(actual, expected): + self.assertAlmostEqual(a,e,places=14) + + def test_strong_reference_implementation(self): + # Like test_referenceImplementation, but checks for exact bit-level + # equality. This should pass on any box where C double contains + # at least 53 bits of precision (the underlying algorithm suffers + # no rounding errors -- all results are exact). + from math import ldexp + + expected = [0x0eab3258d2231fL, + 0x1b89db315277a5L, + 0x1db622a5518016L, + 0x0b7f9af0d575bfL, + 0x029e4c4db82240L, + 0x04961892f5d673L, + 0x02b291598e4589L, + 0x11388382c15694L, + 0x02dad977c9e1feL, + 0x191d96d4d334c6L] + + self.gen.seed(61731L + (24903L<<32) + (614L<<64) + (42143L<<96)) + actual = self.randomlist(2000)[-10:] + for a, e in zip(actual, expected): + self.assertEqual(long(ldexp(a, 53)), e) + + def test_long_seed(self): + # This is most interesting to run in debug mode, just to make sure + # nothing blows up. Under the covers, a dynamically resized array + # is allocated, consuming space proportional to the number of bits + # in the seed. Unfortunately, that's a quadratic-time algorithm, + # so don't make this horribly big. + seed = (1L << (10000 * 8)) - 1 # about 10K bytes + self.gen.seed(seed) -# Ensure that the seed() method initializes all the hidden state. In -# particular, through 2.2.1 it failed to reset a piece of state used by -# (and only by) the .gauss() method. +class TestModule(unittest.TestCase): + def testMagicConstants(self): + self.assertAlmostEqual(random.NV_MAGICCONST, 1.71552776992141) + self.assertAlmostEqual(random.TWOPI, 6.28318530718) + self.assertAlmostEqual(random.LOG4, 1.38629436111989) + self.assertAlmostEqual(random.SG_MAGICCONST, 2.50407739677627) -for seed in 1, 12, 123, 1234, 12345, 123456, 654321: - for seeder in random.seed, random.whseed: - seeder(seed) - x1 = random.random() - y1 = random.gauss(0, 1) + def test__all__(self): + # tests validity but not completeness of the __all__ list + defined = dict.fromkeys(dir(random)) + for entry in random.__all__: + self.failUnless(entry in defined) - seeder(seed) - x2 = random.random() - y2 = random.gauss(0, 1) +def test_main(): + suite = unittest.TestSuite() + for testclass in (WichmannHill_TestBasicOps, + MersenneTwister_TestBasicOps, + TestModule): + suite.addTest(unittest.makeSuite(testclass)) + test_support.run_suite(suite) - test_support.vereq(x1, x2) - test_support.vereq(y1, y2) +if __name__ == "__main__": + test_main() @@ -545,6 +545,25 @@ Library and 'stop' arguments so long as each is in the range of Python's bounded integers. +- Thanks to Raymond Hettinger, random.random() now uses a new core + generator. The Mersenne Twister algorithm is implemented in C, + threadsafe, faster than the previous generator, has an astronomically + large period (2**19937-1), creates random floats to full 53-bit + precision, and may be the most widely tested random number generator + in existence. + + The random.jumpahead(n) method has different semantics for the new + generator. Instead of jumping n steps ahead, it uses n and the + existing state to create a new state. This means that jumpahead() + continues to support multi-threaded code needing generators of + non-overlapping sequences. However, it will break code which relies + on jumpahead moving a specific number of steps forward. + + The attributes random.whseed and random.__whseed have no meaning for + the new generator. Code using these attributes should switch to a + new class, random.WichmannHill which is provided for backward + compatibility and to make an alternate generator available. + - New "algorithms" module: heapq, implements a heap queue. Thanks to Kevin O'Connor for the code and François Pinard for an entertaining write-up explaining the theory and practical uses of heaps. diff --git a/Modules/_randommodule.c b/Modules/_randommodule.c new file mode 100644 index 0000000..35f10a5 --- /dev/null +++ b/Modules/_randommodule.c @@ -0,0 +1,528 @@ +/* Random objects */ + +/* ------------------------------------------------------------------ + The code in this module was based on a download from: + http://www.math.keio.ac.jp/~matumoto/MT2002/emt19937ar.html + + It was modified in 2002 by Raymond Hettinger as follows: + + * the principal computational lines untouched except for tabbing. + + * renamed genrand_res53() to random_random() and wrapped + in python calling/return code. + + * genrand_int32() and the helper functions, init_genrand() + and init_by_array(), were declared static, wrapped in + Python calling/return code. also, their global data + references were replaced with structure references. + + * unused functions from the original were deleted. + new, original C python code was added to implement the + Random() interface. + + The following are the verbatim comments from the original code: + + A C-program for MT19937, with initialization improved 2002/1/26. + Coded by Takuji Nishimura and Makoto Matsumoto. + + Before using, initialize the state by using init_genrand(seed) + or init_by_array(init_key, key_length). + + Copyright (C) 1997 - 2002, Makoto Matsumoto and Takuji Nishimura, + All rights reserved. + + Redistribution and use in source and binary forms, with or without + modification, are permitted provided that the following conditions + are met: + + 1. Redistributions of source code must retain the above copyright + notice, this list of conditions and the following disclaimer. + + 2. Redistributions in binary form must reproduce the above copyright + notice, this list of conditions and the following disclaimer in the + documentation and/or other materials provided with the distribution. + + 3. The names of its contributors may not be used to endorse or promote + products derived from this software without specific prior written + permission. + + THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS + "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT + LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR + A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR + CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, + EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, + PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR + PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF + LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING + NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS + SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + + + Any feedback is very welcome. + http://www.math.keio.ac.jp/matumoto/emt.html + email: matumoto@math.keio.ac.jp +*/ + +/* ---------------------------------------------------------------*/ + +#include "Python.h" +#include <time.h> // for seeding to current time + +/* Period parameters -- These are all magic. Don't change. */ +#define N 624 +#define M 397 +#define MATRIX_A 0x9908b0dfUL /* constant vector a */ +#define UPPER_MASK 0x80000000UL /* most significant w-r bits */ +#define LOWER_MASK 0x7fffffffUL /* least significant r bits */ + +typedef struct { + PyObject_HEAD + unsigned long state[N]; + int index; +} RandomObject; + +static PyTypeObject Random_Type; + +#define RandomObject_Check(v) ((v)->ob_type == &Random_Type) + + +/* Random methods */ + + +/* generates a random number on [0,0xffffffff]-interval */ +static unsigned long +genrand_int32(RandomObject *self) +{ + unsigned long y; + static unsigned long mag01[2]={0x0UL, MATRIX_A}; + /* mag01[x] = x * MATRIX_A for x=0,1 */ + unsigned long *mt; + + mt = self->state; + if (self->index >= N) { /* generate N words at one time */ + int kk; + + for (kk=0;kk<N-M;kk++) { + y = (mt[kk]&UPPER_MASK)|(mt[kk+1]&LOWER_MASK); + mt[kk] = mt[kk+M] ^ (y >> 1) ^ mag01[y & 0x1UL]; + } + for (;kk<N-1;kk++) { + y = (mt[kk]&UPPER_MASK)|(mt[kk+1]&LOWER_MASK); + mt[kk] = mt[kk+(M-N)] ^ (y >> 1) ^ mag01[y & 0x1UL]; + } + y = (mt[N-1]&UPPER_MASK)|(mt[0]&LOWER_MASK); + mt[N-1] = mt[M-1] ^ (y >> 1) ^ mag01[y & 0x1UL]; + + self->index = 0; + } + + y = mt[self->index++]; + y ^= (y >> 11); + y ^= (y << 7) & 0x9d2c5680UL; + y ^= (y << 15) & 0xefc60000UL; + y ^= (y >> 18); + return y; +} + +/* random_random is the function named genrand_res53 in the original code; + * generates a random number on [0,1) with 53-bit resolution; note that + * 9007199254740992 == 2**53; I assume they're spelling "/2**53" as + * multiply-by-reciprocal in the (likely vain) hope that the compiler will + * optimize the division away at compile-time. 67108864 is 2**26. In + * effect, a contains 27 random bits shifted left 26, and b fills in the + * lower 26 bits of the 53-bit numerator. + * The orginal code credited Isaku Wada for this algorithm, 2002/01/09. + */ +static PyObject * +random_random(RandomObject *self) +{ + unsigned long a=genrand_int32(self)>>5, b=genrand_int32(self)>>6; + return PyFloat_FromDouble((a*67108864.0+b)*(1.0/9007199254740992.0)); +} + +/* initializes mt[N] with a seed */ +static void +init_genrand(RandomObject *self, unsigned long s) +{ + int mti; + unsigned long *mt; + + mt = self->state; + mt[0]= s & 0xffffffffUL; + for (mti=1; mti<N; mti++) { + mt[mti] = + (1812433253UL * (mt[mti-1] ^ (mt[mti-1] >> 30)) + mti); + /* See Knuth TAOCP Vol2. 3rd Ed. P.106 for multiplier. */ + /* In the previous versions, MSBs of the seed affect */ + /* only MSBs of the array mt[]. */ + /* 2002/01/09 modified by Makoto Matsumoto */ + mt[mti] &= 0xffffffffUL; + /* for >32 bit machines */ + } + self->index = mti; + return; +} + +/* initialize by an array with array-length */ +/* init_key is the array for initializing keys */ +/* key_length is its length */ +static PyObject * +init_by_array(RandomObject *self, unsigned long init_key[], unsigned long key_length) +{ + unsigned int i, j, k; /* was signed in the original code. RDH 12/16/2002 */ + unsigned long *mt; + + mt = self->state; + init_genrand(self, 19650218UL); + i=1; j=0; + k = (N>key_length ? N : key_length); + for (; k; k--) { + mt[i] = (mt[i] ^ ((mt[i-1] ^ (mt[i-1] >> 30)) * 1664525UL)) + + init_key[j] + j; /* non linear */ + mt[i] &= 0xffffffffUL; /* for WORDSIZE > 32 machines */ + i++; j++; + if (i>=N) { mt[0] = mt[N-1]; i=1; } + if (j>=key_length) j=0; + } + for (k=N-1; k; k--) { + mt[i] = (mt[i] ^ ((mt[i-1] ^ (mt[i-1] >> 30)) * 1566083941UL)) + - i; /* non linear */ + mt[i] &= 0xffffffffUL; /* for WORDSIZE > 32 machines */ + i++; + if (i>=N) { mt[0] = mt[N-1]; i=1; } + } + + mt[0] = 0x80000000UL; /* MSB is 1; assuring non-zero initial array */ + Py_INCREF(Py_None); + return Py_None; +} + +/* + * The rest is Python-specific code, neither part of, nor derived from, the + * Twister download. + */ + +static PyObject * +random_seed(RandomObject *self, PyObject *args) +{ + PyObject *result = NULL; /* guilty until proved innocent */ + PyObject *masklower = NULL; + PyObject *thirtytwo = NULL; + PyObject *n = NULL; + unsigned long *key = NULL; + unsigned long keymax; /* # of allocated slots in key */ + unsigned long keyused; /* # of used slots in key */ + + PyObject *arg = NULL; + + if (!PyArg_UnpackTuple(args, "seed", 0, 1, &arg)) + return NULL; + + if (arg == NULL || arg == Py_None) { + time_t now; + + time(&now); + init_genrand(self, (unsigned long)now); + Py_INCREF(Py_None); + return Py_None; + } + /* If the arg is an int or long, use its absolute value; else use + * the absolute value of its hash code. + */ + if (PyInt_Check(arg) || PyLong_Check(arg)) + n = PyNumber_Absolute(arg); + else { + long hash = PyObject_Hash(arg); + if (hash == -1) + goto Done; + n = PyLong_FromUnsignedLong((unsigned long)hash); + } + if (n == NULL) + goto Done; + + /* Now split n into 32-bit chunks, from the right. Each piece is + * stored into key, which has a capacity of keymax chunks, of which + * keyused are filled. Alas, the repeated shifting makes this a + * quadratic-time algorithm; we'd really like to use + * _PyLong_AsByteArray here, but then we'd have to break into the + * long representation to figure out how big an array was needed + * in advance. + */ + keymax = 8; /* arbitrary; grows later if needed */ + keyused = 0; + key = (unsigned long *)PyMem_Malloc(keymax * sizeof(*key)); + if (key == NULL) + goto Done; + + masklower = PyLong_FromUnsignedLong(0xffffffffU); + if (masklower == NULL) + goto Done; + thirtytwo = PyInt_FromLong(32L); + if (thirtytwo == NULL) + goto Done; + while (PyObject_IsTrue(n)) { + PyObject *newn; + PyObject *pychunk; + unsigned long chunk; + + pychunk = PyNumber_And(n, masklower); + if (pychunk == NULL) + goto Done; + chunk = PyLong_AsUnsignedLong(pychunk); + Py_DECREF(pychunk); + if (chunk == (unsigned long)-1 && PyErr_Occurred()) + goto Done; + newn = PyNumber_Rshift(n, thirtytwo); + if (newn == NULL) + goto Done; + Py_DECREF(n); + n = newn; + if (keyused >= keymax) { + unsigned long bigger = keymax << 1; + if ((bigger >> 1) != keymax) { + PyErr_NoMemory(); + goto Done; + } + key = (unsigned long *)PyMem_Realloc(key, + bigger * sizeof(*key)); + if (key == NULL) + goto Done; + keymax = bigger; + } + assert(keyused < keymax); + key[keyused++] = chunk; + } + + if (keyused == 0) + key[keyused++] = 0UL; + result = init_by_array(self, key, keyused); +Done: + Py_XDECREF(masklower); + Py_XDECREF(thirtytwo); + Py_XDECREF(n); + PyMem_Free(key); + return result; +} + +static PyObject * +random_getstate(RandomObject *self) +{ + PyObject *state; + PyObject *element; + int i; + + state = PyTuple_New(N+1); + if (state == NULL) + return NULL; + for (i=0; i<N ; i++) { + element = PyInt_FromLong((long)(self->state[i])); + if (element == NULL) + goto Fail; + PyTuple_SET_ITEM(state, i, element); + } + element = PyInt_FromLong((long)(self->index)); + if (element == NULL) + goto Fail; + PyTuple_SET_ITEM(state, i, element); + return state; + +Fail: + Py_DECREF(state); + return NULL; +} + +static PyObject * +random_setstate(RandomObject *self, PyObject *state) +{ + int i; + long element; + + if (!PyTuple_Check(state)) { + PyErr_SetString(PyExc_TypeError, + "state vector must be a tuple"); + return NULL; + } + if (PyTuple_Size(state) != N+1) { + PyErr_SetString(PyExc_ValueError, + "state vector is the wrong size"); + return NULL; + } + + for (i=0; i<N ; i++) { + element = PyInt_AsLong(PyTuple_GET_ITEM(state, i)); + if (element == -1 && PyErr_Occurred()) + return NULL; + self->state[i] = (unsigned long)element; + } + + element = PyInt_AsLong(PyTuple_GET_ITEM(state, i)); + if (element == -1 && PyErr_Occurred()) + return NULL; + self->index = (int)element; + + Py_INCREF(Py_None); + return Py_None; +} + +/* +Jumpahead should be a fast way advance the generator n-steps ahead, but +lacking a formula for that, the next best is to use n and the existing +state to create a new state far away from the original. + +The generator uses constant spaced additive feedback, so shuffling the +state elements ought to produce a state which would not be encountered +(in the near term) by calls to random(). Shuffling is normally +implemented by swapping the ith element with another element ranging +from 0 to i inclusive. That allows the element to have the possibility +of not being moved. Since the goal is to produce a new, different +state, the swap element is ranged from 0 to i-1 inclusive. This assures +that each element gets moved at least once. + +To make sure that consecutive calls to jumpahead(n) produce different +states (even in the rare case of involutory shuffles), i+1 is added to +each element at position i. Successive calls are then guaranteed to +have changing (growing) values as well as shuffled positions. + +Finally, the self->index value is set to N so that the generator itself +kicks in on the next call to random(). This assures that all results +have been through the generator and do not just reflect alterations to +the underlying state. +*/ + +static PyObject * +random_jumpahead(RandomObject *self, PyObject *n) +{ + long i, j; + PyObject *iobj; + PyObject *remobj; + unsigned long *mt, tmp; + + if (!PyInt_Check(n) && !PyLong_Check(n)) { + PyErr_Format(PyExc_TypeError, "jumpahead requires an " + "integer, not '%s'", + n->ob_type->tp_name); + return NULL; + } + + mt = self->state; + for (i = N-1; i > 1; i--) { + iobj = PyInt_FromLong(i); + if (iobj == NULL) + return NULL; + remobj = PyNumber_Remainder(n, iobj); + Py_DECREF(iobj); + if (remobj == NULL) + return NULL; + j = PyInt_AsLong(remobj); + Py_DECREF(remobj); + if (j == -1L && PyErr_Occurred()) + return NULL; + tmp = mt[i]; + mt[i] = mt[j]; + mt[j] = tmp; + } + + for (i = 0; i < N; i++) + mt[i] += i+1; + + self->index = N; + Py_INCREF(Py_None); + return Py_None; +} + +static PyObject * +random_new(PyTypeObject *type, PyObject *args, PyObject *kwds) +{ + RandomObject *self; + PyObject *tmp; + + self = (RandomObject *)type->tp_alloc(type, 0); + if (self == NULL) + return NULL; + tmp = random_seed(self, args); + if (tmp == NULL) { + Py_DECREF(self); + return NULL; + } + Py_DECREF(tmp); + return (PyObject *)self; +} + +static PyMethodDef random_methods[] = { + {"random", (PyCFunction)random_random, METH_NOARGS, + PyDoc_STR("random() -> x in the interval [0, 1).")}, + {"seed", (PyCFunction)random_seed, METH_VARARGS, + PyDoc_STR("seed([n]) -> None. Defaults to current time.")}, + {"getstate", (PyCFunction)random_getstate, METH_NOARGS, + PyDoc_STR("getstate() -> tuple containing the current state.")}, + {"setstate", (PyCFunction)random_setstate, METH_O, + PyDoc_STR("setstate(state) -> None. Restores generator state.")}, + {"jumpahead", (PyCFunction)random_jumpahead, METH_O, + PyDoc_STR("jumpahead(int) -> None. Create new state from " + "existing state and integer.")}, + {NULL, NULL} /* sentinel */ +}; + +PyDoc_STRVAR(random_doc, +"Random() -> create a random number generator with its own internal state."); + +static PyTypeObject Random_Type = { + PyObject_HEAD_INIT(NULL) + 0, /*ob_size*/ + "_random.Random", /*tp_name*/ + sizeof(RandomObject), /*tp_basicsize*/ + 0, /*tp_itemsize*/ + /* methods */ + 0, /*tp_dealloc*/ + 0, /*tp_print*/ + 0, /*tp_getattr*/ + 0, /*tp_setattr*/ + 0, /*tp_compare*/ + 0, /*tp_repr*/ + 0, /*tp_as_number*/ + 0, /*tp_as_sequence*/ + 0, /*tp_as_mapping*/ + 0, /*tp_hash*/ + 0, /*tp_call*/ + 0, /*tp_str*/ + PyObject_GenericGetAttr, /*tp_getattro*/ + 0, /*tp_setattro*/ + 0, /*tp_as_buffer*/ + Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE, /*tp_flags*/ + random_doc, /*tp_doc*/ + 0, /*tp_traverse*/ + 0, /*tp_clear*/ + 0, /*tp_richcompare*/ + 0, /*tp_weaklistoffset*/ + 0, /*tp_iter*/ + 0, /*tp_iternext*/ + random_methods, /*tp_methods*/ + 0, /*tp_members*/ + 0, /*tp_getset*/ + 0, /*tp_base*/ + 0, /*tp_dict*/ + 0, /*tp_descr_get*/ + 0, /*tp_descr_set*/ + 0, /*tp_dictoffset*/ + 0, /*tp_init*/ + PyType_GenericAlloc, /*tp_alloc*/ + random_new, /*tp_new*/ + _PyObject_Del, /*tp_free*/ + 0, /*tp_is_gc*/ +}; + +PyDoc_STRVAR(module_doc, +"Module implements the Mersenne Twister random number generator."); + +PyMODINIT_FUNC +init_random(void) +{ + PyObject *m; + + if (PyType_Ready(&Random_Type) < 0) + return; + m = Py_InitModule3("_random", NULL, module_doc); + Py_INCREF(&Random_Type); + PyModule_AddObject(m, "Random", (PyObject *)&Random_Type); +} @@ -316,6 +316,8 @@ class PyBuildExt(build_ext): libraries=math_libs) ) exts.append( Extension('datetime', ['datetimemodule.c'], libraries=math_libs) ) + # random number generator implemented in C + exts.append( Extension("_random", ["_randommodule.c"]) ) # operator.add() and similar goodies exts.append( Extension('operator', ['operator.c']) ) # Python C API test module |