summaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
authorAlex Waygood <Alex.Waygood@Gmail.com>2022-03-16 15:51:26 (GMT)
committerGitHub <noreply@github.com>2022-03-16 15:51:26 (GMT)
commit81b425d4dc43b60dd11a3e9abc5c84a4b8b384db (patch)
treef145ef7ff2f284fd73018c21b72f7fb1420beded
parentd56a237e160b8e38fc9bd29c6be272b9d92eb67a (diff)
downloadcpython-81b425d4dc43b60dd11a3e9abc5c84a4b8b384db.zip
cpython-81b425d4dc43b60dd11a3e9abc5c84a4b8b384db.tar.gz
cpython-81b425d4dc43b60dd11a3e9abc5c84a4b8b384db.tar.bz2
bpo-46769: Improve documentation for `typing.TypeVar` (GH-31712)
Co-authored-by: Jelle Zijlstra <jelle.zijlstra@gmail.com>
-rw-r--r--Doc/library/typing.rst76
1 files changed, 55 insertions, 21 deletions
diff --git a/Doc/library/typing.rst b/Doc/library/typing.rst
index 0c23a23..c7c2cd6 100644
--- a/Doc/library/typing.rst
+++ b/Doc/library/typing.rst
@@ -249,7 +249,7 @@ subscription to denote expected types for container elements.
def notify_by_email(employees: Sequence[Employee],
overrides: Mapping[str, str]) -> None: ...
-Generics can be parameterized by using a new factory available in typing
+Generics can be parameterized by using a factory available in typing
called :class:`TypeVar`.
::
@@ -306,16 +306,16 @@ that ``LoggedVar[t]`` is valid as a type::
for var in vars:
var.set(0)
-A generic type can have any number of type variables, and type variables may
-be constrained::
+A generic type can have any number of type variables. All varieties of
+:class:`TypeVar` are permissible as parameters for a generic type::
- from typing import TypeVar, Generic
- ...
+ from typing import TypeVar, Generic, Sequence
- T = TypeVar('T')
+ T = TypeVar('T', contravariant=True)
+ B = TypeVar('B', bound=Sequence[bytes], covariant=True)
S = TypeVar('S', int, str)
- class StrangePair(Generic[T, S]):
+ class WeirdTrio(Generic[T, B, S]):
...
Each type variable argument to :class:`Generic` must be distinct.
@@ -1165,7 +1165,8 @@ These are not used in annotations. They are building blocks for creating generic
Usage::
T = TypeVar('T') # Can be anything
- A = TypeVar('A', str, bytes) # Must be str or bytes
+ S = TypeVar('S', bound=str) # Can be any subtype of str
+ A = TypeVar('A', str, bytes) # Must be exactly str or bytes
Type variables exist primarily for the benefit of static type
checkers. They serve as the parameters for generic types as well
@@ -1176,25 +1177,58 @@ These are not used in annotations. They are building blocks for creating generic
"""Return a list containing n references to x."""
return [x]*n
- def longest(x: A, y: A) -> A:
- """Return the longest of two strings."""
- return x if len(x) >= len(y) else y
- The latter example's signature is essentially the overloading
- of ``(str, str) -> str`` and ``(bytes, bytes) -> bytes``. Also note
- that if the arguments are instances of some subclass of :class:`str`,
- the return type is still plain :class:`str`.
+ def print_capitalized(x: S) -> S:
+ """Print x capitalized, and return x."""
+ print(x.capitalize())
+ return x
+
+
+ def concatenate(x: A, y: A) -> A:
+ """Add two strings or bytes objects together."""
+ return x + y
+
+ Note that type variables can be *bound*, *constrained*, or neither, but
+ cannot be both bound *and* constrained.
+
+ Bound type variables and constrained type variables have different
+ semantics in several important ways. Using a *bound* type variable means
+ that the ``TypeVar`` will be solved using the most specific type possible::
+
+ x = print_capitalized('a string')
+ reveal_type(x) # revealed type is str
+
+ class StringSubclass(str):
+ pass
+
+ y = print_capitalized(StringSubclass('another string'))
+ reveal_type(y) # revealed type is StringSubclass
+
+ z = print_capitalized(45) # error: int is not a subtype of str
+
+ Type variables can be bound to concrete types, abstract types (ABCs or
+ protocols), and even unions of types::
+
+ U = TypeVar('U', bound=str|bytes) # Can be any subtype of the union str|bytes
+ V = TypeVar('V', bound=SupportsAbs) # Can be anything with an __abs__ method
+
+ Using a *constrained* type variable, however, means that the ``TypeVar``
+ can only ever be solved as being exactly one of the constraints given::
+
+ a = concatenate('one', 'two')
+ reveal_type(a) # revealed type is str
+
+ b = concatenate(StringSubclass('one'), StringSubclass('two'))
+ reveal_type(b) # revealed type is str, despite StringSubclass being passed in
+
+ c = concatenate('one', b'two') # error: type variable 'A' can be either str or bytes in a function call, but not both
At runtime, ``isinstance(x, T)`` will raise :exc:`TypeError`. In general,
:func:`isinstance` and :func:`issubclass` should not be used with types.
Type variables may be marked covariant or contravariant by passing
``covariant=True`` or ``contravariant=True``. See :pep:`484` for more
- details. By default type variables are invariant. Alternatively,
- a type variable may specify an upper bound using ``bound=<type>``.
- This means that an actual type substituted (explicitly or implicitly)
- for the type variable must be a subclass of the boundary type,
- see :pep:`484`.
+ details. By default, type variables are invariant.
.. class:: ParamSpec(name, *, bound=None, covariant=False, contravariant=False)
@@ -1296,7 +1330,7 @@ These are not used in annotations. They are building blocks for creating generic
.. data:: AnyStr
- ``AnyStr`` is a type variable defined as
+ ``AnyStr`` is a :class:`constrained type variable <TypeVar>` defined as
``AnyStr = TypeVar('AnyStr', str, bytes)``.
It is meant to be used for functions that may accept any kind of string