diff options
author | Alex Waygood <Alex.Waygood@Gmail.com> | 2022-03-16 15:51:26 (GMT) |
---|---|---|
committer | GitHub <noreply@github.com> | 2022-03-16 15:51:26 (GMT) |
commit | 81b425d4dc43b60dd11a3e9abc5c84a4b8b384db (patch) | |
tree | f145ef7ff2f284fd73018c21b72f7fb1420beded | |
parent | d56a237e160b8e38fc9bd29c6be272b9d92eb67a (diff) | |
download | cpython-81b425d4dc43b60dd11a3e9abc5c84a4b8b384db.zip cpython-81b425d4dc43b60dd11a3e9abc5c84a4b8b384db.tar.gz cpython-81b425d4dc43b60dd11a3e9abc5c84a4b8b384db.tar.bz2 |
bpo-46769: Improve documentation for `typing.TypeVar` (GH-31712)
Co-authored-by: Jelle Zijlstra <jelle.zijlstra@gmail.com>
-rw-r--r-- | Doc/library/typing.rst | 76 |
1 files changed, 55 insertions, 21 deletions
diff --git a/Doc/library/typing.rst b/Doc/library/typing.rst index 0c23a23..c7c2cd6 100644 --- a/Doc/library/typing.rst +++ b/Doc/library/typing.rst @@ -249,7 +249,7 @@ subscription to denote expected types for container elements. def notify_by_email(employees: Sequence[Employee], overrides: Mapping[str, str]) -> None: ... -Generics can be parameterized by using a new factory available in typing +Generics can be parameterized by using a factory available in typing called :class:`TypeVar`. :: @@ -306,16 +306,16 @@ that ``LoggedVar[t]`` is valid as a type:: for var in vars: var.set(0) -A generic type can have any number of type variables, and type variables may -be constrained:: +A generic type can have any number of type variables. All varieties of +:class:`TypeVar` are permissible as parameters for a generic type:: - from typing import TypeVar, Generic - ... + from typing import TypeVar, Generic, Sequence - T = TypeVar('T') + T = TypeVar('T', contravariant=True) + B = TypeVar('B', bound=Sequence[bytes], covariant=True) S = TypeVar('S', int, str) - class StrangePair(Generic[T, S]): + class WeirdTrio(Generic[T, B, S]): ... Each type variable argument to :class:`Generic` must be distinct. @@ -1165,7 +1165,8 @@ These are not used in annotations. They are building blocks for creating generic Usage:: T = TypeVar('T') # Can be anything - A = TypeVar('A', str, bytes) # Must be str or bytes + S = TypeVar('S', bound=str) # Can be any subtype of str + A = TypeVar('A', str, bytes) # Must be exactly str or bytes Type variables exist primarily for the benefit of static type checkers. They serve as the parameters for generic types as well @@ -1176,25 +1177,58 @@ These are not used in annotations. They are building blocks for creating generic """Return a list containing n references to x.""" return [x]*n - def longest(x: A, y: A) -> A: - """Return the longest of two strings.""" - return x if len(x) >= len(y) else y - The latter example's signature is essentially the overloading - of ``(str, str) -> str`` and ``(bytes, bytes) -> bytes``. Also note - that if the arguments are instances of some subclass of :class:`str`, - the return type is still plain :class:`str`. + def print_capitalized(x: S) -> S: + """Print x capitalized, and return x.""" + print(x.capitalize()) + return x + + + def concatenate(x: A, y: A) -> A: + """Add two strings or bytes objects together.""" + return x + y + + Note that type variables can be *bound*, *constrained*, or neither, but + cannot be both bound *and* constrained. + + Bound type variables and constrained type variables have different + semantics in several important ways. Using a *bound* type variable means + that the ``TypeVar`` will be solved using the most specific type possible:: + + x = print_capitalized('a string') + reveal_type(x) # revealed type is str + + class StringSubclass(str): + pass + + y = print_capitalized(StringSubclass('another string')) + reveal_type(y) # revealed type is StringSubclass + + z = print_capitalized(45) # error: int is not a subtype of str + + Type variables can be bound to concrete types, abstract types (ABCs or + protocols), and even unions of types:: + + U = TypeVar('U', bound=str|bytes) # Can be any subtype of the union str|bytes + V = TypeVar('V', bound=SupportsAbs) # Can be anything with an __abs__ method + + Using a *constrained* type variable, however, means that the ``TypeVar`` + can only ever be solved as being exactly one of the constraints given:: + + a = concatenate('one', 'two') + reveal_type(a) # revealed type is str + + b = concatenate(StringSubclass('one'), StringSubclass('two')) + reveal_type(b) # revealed type is str, despite StringSubclass being passed in + + c = concatenate('one', b'two') # error: type variable 'A' can be either str or bytes in a function call, but not both At runtime, ``isinstance(x, T)`` will raise :exc:`TypeError`. In general, :func:`isinstance` and :func:`issubclass` should not be used with types. Type variables may be marked covariant or contravariant by passing ``covariant=True`` or ``contravariant=True``. See :pep:`484` for more - details. By default type variables are invariant. Alternatively, - a type variable may specify an upper bound using ``bound=<type>``. - This means that an actual type substituted (explicitly or implicitly) - for the type variable must be a subclass of the boundary type, - see :pep:`484`. + details. By default, type variables are invariant. .. class:: ParamSpec(name, *, bound=None, covariant=False, contravariant=False) @@ -1296,7 +1330,7 @@ These are not used in annotations. They are building blocks for creating generic .. data:: AnyStr - ``AnyStr`` is a type variable defined as + ``AnyStr`` is a :class:`constrained type variable <TypeVar>` defined as ``AnyStr = TypeVar('AnyStr', str, bytes)``. It is meant to be used for functions that may accept any kind of string |