summaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
authorRaymond Hettinger <rhettinger@users.noreply.github.com>2024-03-24 09:35:58 (GMT)
committerGitHub <noreply@github.com>2024-03-24 09:35:58 (GMT)
commita1e948edba9ec6ba61365429857f7a087c5edf51 (patch)
tree1cf07e589f0624d4fececa0da52c074fdb6ccc3b
parentd610d821fd210dce63a1132c274ffdf8acc510bc (diff)
downloadcpython-a1e948edba9ec6ba61365429857f7a087c5edf51.zip
cpython-a1e948edba9ec6ba61365429857f7a087c5edf51.tar.gz
cpython-a1e948edba9ec6ba61365429857f7a087c5edf51.tar.bz2
Add cumulative option for the new statistics.kde() function. (#117033)
-rw-r--r--Doc/library/statistics.rst13
-rw-r--r--Lib/statistics.py67
-rw-r--r--Lib/test/test_statistics.py16
3 files changed, 75 insertions, 21 deletions
diff --git a/Doc/library/statistics.rst b/Doc/library/statistics.rst
index 1785c6b..79c6812 100644
--- a/Doc/library/statistics.rst
+++ b/Doc/library/statistics.rst
@@ -261,11 +261,12 @@ However, for reading convenience, most of the examples show sorted sequences.
Added support for *weights*.
-.. function:: kde(data, h, kernel='normal')
+.. function:: kde(data, h, kernel='normal', *, cumulative=False)
`Kernel Density Estimation (KDE)
<https://www.itm-conferences.org/articles/itmconf/pdf/2018/08/itmconf_sam2018_00037.pdf>`_:
- Create a continuous probability density function from discrete samples.
+ Create a continuous probability density function or cumulative
+ distribution function from discrete samples.
The basic idea is to smooth the data using `a kernel function
<https://en.wikipedia.org/wiki/Kernel_(statistics)>`_.
@@ -280,11 +281,13 @@ However, for reading convenience, most of the examples show sorted sequences.
as much as the more influential bandwidth smoothing parameter.
Kernels that give some weight to every sample point include
- *normal* or *gauss*, *logistic*, and *sigmoid*.
+ *normal* (*gauss*), *logistic*, and *sigmoid*.
Kernels that only give weight to sample points within the bandwidth
- include *rectangular* or *uniform*, *triangular*, *parabolic* or
- *epanechnikov*, *quartic* or *biweight*, *triweight*, and *cosine*.
+ include *rectangular* (*uniform*), *triangular*, *parabolic*
+ (*epanechnikov*), *quartic* (*biweight*), *triweight*, and *cosine*.
+
+ If *cumulative* is true, will return a cumulative distribution function.
A :exc:`StatisticsError` will be raised if the *data* sequence is empty.
diff --git a/Lib/statistics.py b/Lib/statistics.py
index 5d63625..58fb31d 100644
--- a/Lib/statistics.py
+++ b/Lib/statistics.py
@@ -138,7 +138,7 @@ from decimal import Decimal
from itertools import count, groupby, repeat
from bisect import bisect_left, bisect_right
from math import hypot, sqrt, fabs, exp, erf, tau, log, fsum, sumprod
-from math import isfinite, isinf, pi, cos, cosh
+from math import isfinite, isinf, pi, cos, sin, cosh, atan
from functools import reduce
from operator import itemgetter
from collections import Counter, namedtuple, defaultdict
@@ -803,9 +803,9 @@ def multimode(data):
return [value for value, count in counts.items() if count == maxcount]
-def kde(data, h, kernel='normal'):
- """Kernel Density Estimation: Create a continuous probability
- density function from discrete samples.
+def kde(data, h, kernel='normal', *, cumulative=False):
+ """Kernel Density Estimation: Create a continuous probability density
+ function or cumulative distribution function from discrete samples.
The basic idea is to smooth the data using a kernel function
to help draw inferences about a population from a sample.
@@ -820,20 +820,22 @@ def kde(data, h, kernel='normal'):
Kernels that give some weight to every sample point:
- normal or gauss
+ normal (gauss)
logistic
sigmoid
Kernels that only give weight to sample points within
the bandwidth:
- rectangular or uniform
+ rectangular (uniform)
triangular
- parabolic or epanechnikov
- quartic or biweight
+ parabolic (epanechnikov)
+ quartic (biweight)
triweight
cosine
+ If *cumulative* is true, will return a cumulative distribution function.
+
A StatisticsError will be raised if the data sequence is empty.
Example
@@ -847,7 +849,8 @@ def kde(data, h, kernel='normal'):
Compute the area under the curve:
- >>> sum(f_hat(x) for x in range(-20, 20))
+ >>> area = sum(f_hat(x) for x in range(-20, 20))
+ >>> round(area, 4)
1.0
Plot the estimated probability density function at
@@ -876,6 +879,13 @@ def kde(data, h, kernel='normal'):
9: 0.009 x
10: 0.002 x
+ Estimate P(4.5 < X <= 7.5), the probability that a new sample value
+ will be between 4.5 and 7.5:
+
+ >>> cdf = kde(sample, h=1.5, cumulative=True)
+ >>> round(cdf(7.5) - cdf(4.5), 2)
+ 0.22
+
References
----------
@@ -888,6 +898,9 @@ def kde(data, h, kernel='normal'):
Interactive graphical demonstration and exploration:
https://demonstrations.wolfram.com/KernelDensityEstimation/
+ Kernel estimation of cumulative distribution function of a random variable with bounded support
+ https://www.econstor.eu/bitstream/10419/207829/1/10.21307_stattrans-2016-037.pdf
+
"""
n = len(data)
@@ -903,45 +916,56 @@ def kde(data, h, kernel='normal'):
match kernel:
case 'normal' | 'gauss':
- c = 1 / sqrt(2 * pi)
- K = lambda t: c * exp(-1/2 * t * t)
+ sqrt2pi = sqrt(2 * pi)
+ sqrt2 = sqrt(2)
+ K = lambda t: exp(-1/2 * t * t) / sqrt2pi
+ I = lambda t: 1/2 * (1.0 + erf(t / sqrt2))
support = None
case 'logistic':
# 1.0 / (exp(t) + 2.0 + exp(-t))
K = lambda t: 1/2 / (1.0 + cosh(t))
+ I = lambda t: 1.0 - 1.0 / (exp(t) + 1.0)
support = None
case 'sigmoid':
# (2/pi) / (exp(t) + exp(-t))
- c = 1 / pi
- K = lambda t: c / cosh(t)
+ c1 = 1 / pi
+ c2 = 2 / pi
+ K = lambda t: c1 / cosh(t)
+ I = lambda t: c2 * atan(exp(t))
support = None
case 'rectangular' | 'uniform':
K = lambda t: 1/2
+ I = lambda t: 1/2 * t + 1/2
support = 1.0
case 'triangular':
K = lambda t: 1.0 - abs(t)
+ I = lambda t: t*t * (1/2 if t < 0.0 else -1/2) + t + 1/2
support = 1.0
case 'parabolic' | 'epanechnikov':
K = lambda t: 3/4 * (1.0 - t * t)
+ I = lambda t: -1/4 * t**3 + 3/4 * t + 1/2
support = 1.0
case 'quartic' | 'biweight':
K = lambda t: 15/16 * (1.0 - t * t) ** 2
+ I = lambda t: 3/16 * t**5 - 5/8 * t**3 + 15/16 * t + 1/2
support = 1.0
case 'triweight':
K = lambda t: 35/32 * (1.0 - t * t) ** 3
+ I = lambda t: 35/32 * (-1/7*t**7 + 3/5*t**5 - t**3 + t) + 1/2
support = 1.0
case 'cosine':
c1 = pi / 4
c2 = pi / 2
K = lambda t: c1 * cos(c2 * t)
+ I = lambda t: 1/2 * sin(c2 * t) + 1/2
support = 1.0
case _:
@@ -952,6 +976,9 @@ def kde(data, h, kernel='normal'):
def pdf(x):
return sum(K((x - x_i) / h) for x_i in data) / (n * h)
+ def cdf(x):
+ return sum(I((x - x_i) / h) for x_i in data) / n
+
else:
sample = sorted(data)
@@ -963,9 +990,19 @@ def kde(data, h, kernel='normal'):
supported = sample[i : j]
return sum(K((x - x_i) / h) for x_i in supported) / (n * h)
- pdf.__doc__ = f'PDF estimate with {h=!r} and {kernel=!r}'
+ def cdf(x):
+ i = bisect_left(sample, x - bandwidth)
+ j = bisect_right(sample, x + bandwidth)
+ supported = sample[i : j]
+ return sum((I((x - x_i) / h) for x_i in supported), i) / n
- return pdf
+ if cumulative:
+ cdf.__doc__ = f'CDF estimate with {h=!r} and {kernel=!r}'
+ return cdf
+
+ else:
+ pdf.__doc__ = f'PDF estimate with {h=!r} and {kernel=!r}'
+ return pdf
# Notes on methods for computing quantiles
diff --git a/Lib/test/test_statistics.py b/Lib/test/test_statistics.py
index 1cf4163..204787a 100644
--- a/Lib/test/test_statistics.py
+++ b/Lib/test/test_statistics.py
@@ -2379,6 +2379,18 @@ class TestKDE(unittest.TestCase):
area = integrate(f_hat, -20, 20)
self.assertAlmostEqual(area, 1.0, places=4)
+ # Check CDF against an integral of the PDF
+
+ data = [3, 5, 10, 12]
+ h = 2.3
+ x = 10.5
+ for kernel in kernels:
+ with self.subTest(kernel=kernel):
+ cdf = kde(data, h, kernel, cumulative=True)
+ f_hat = kde(data, h, kernel)
+ area = integrate(f_hat, -20, x, 100_000)
+ self.assertAlmostEqual(cdf(x), area, places=4)
+
# Check error cases
with self.assertRaises(StatisticsError):
@@ -2395,6 +2407,8 @@ class TestKDE(unittest.TestCase):
kde(sample, h='str') # Wrong bandwidth type
with self.assertRaises(StatisticsError):
kde(sample, h=1.0, kernel='bogus') # Invalid kernel
+ with self.assertRaises(TypeError):
+ kde(sample, 1.0, 'gauss', True) # Positional cumulative argument
# Test name and docstring of the generated function
@@ -2403,7 +2417,7 @@ class TestKDE(unittest.TestCase):
f_hat = kde(sample, h, kernel)
self.assertEqual(f_hat.__name__, 'pdf')
self.assertIn(kernel, f_hat.__doc__)
- self.assertIn(str(h), f_hat.__doc__)
+ self.assertIn(repr(h), f_hat.__doc__)
# Test closed interval for the support boundaries.
# In particular, 'uniform' should non-zero at the boundaries.