diff options
author | Georg Brandl <georg@python.org> | 2007-08-15 14:27:07 (GMT) |
---|---|---|
committer | Georg Brandl <georg@python.org> | 2007-08-15 14:27:07 (GMT) |
commit | 739c01d47b9118d04e5722333f0e6b4d0c8bdd9e (patch) | |
tree | f82b450d291927fc1758b96d981aa0610947b529 /Doc/api | |
parent | 2d1649094402ef393ea2b128ba2c08c3937e6b93 (diff) | |
download | cpython-739c01d47b9118d04e5722333f0e6b4d0c8bdd9e.zip cpython-739c01d47b9118d04e5722333f0e6b4d0c8bdd9e.tar.gz cpython-739c01d47b9118d04e5722333f0e6b4d0c8bdd9e.tar.bz2 |
Delete the LaTeX doc tree.
Diffstat (limited to 'Doc/api')
-rw-r--r-- | Doc/api/abstract.tex | 1037 | ||||
-rw-r--r-- | Doc/api/api.tex | 60 | ||||
-rw-r--r-- | Doc/api/concrete.tex | 3326 | ||||
-rw-r--r-- | Doc/api/exceptions.tex | 428 | ||||
-rw-r--r-- | Doc/api/init.tex | 884 | ||||
-rw-r--r-- | Doc/api/intro.tex | 624 | ||||
-rw-r--r-- | Doc/api/memory.tex | 204 | ||||
-rw-r--r-- | Doc/api/newtypes.tex | 1780 | ||||
-rw-r--r-- | Doc/api/refcounting.tex | 69 | ||||
-rw-r--r-- | Doc/api/refcounts.dat | 1751 | ||||
-rw-r--r-- | Doc/api/utilities.tex | 1041 | ||||
-rw-r--r-- | Doc/api/veryhigh.tex | 287 |
12 files changed, 0 insertions, 11491 deletions
diff --git a/Doc/api/abstract.tex b/Doc/api/abstract.tex deleted file mode 100644 index c5b53d7..0000000 --- a/Doc/api/abstract.tex +++ /dev/null @@ -1,1037 +0,0 @@ -\chapter{Abstract Objects Layer \label{abstract}} - -The functions in this chapter interact with Python objects regardless -of their type, or with wide classes of object types (e.g. all -numerical types, or all sequence types). When used on object types -for which they do not apply, they will raise a Python exception. - -It is not possible to use these functions on objects that are not properly -initialized, such as a list object that has been created by -\cfunction{PyList_New()}, but whose items have not been set to some -non-\code{NULL} value yet. - -\section{Object Protocol \label{object}} - -\begin{cfuncdesc}{int}{PyObject_Print}{PyObject *o, FILE *fp, int flags} - Print an object \var{o}, on file \var{fp}. Returns \code{-1} on - error. The flags argument is used to enable certain printing - options. The only option currently supported is - \constant{Py_PRINT_RAW}; if given, the \function{str()} of the - object is written instead of the \function{repr()}. -\end{cfuncdesc} - -\begin{cfuncdesc}{int}{PyObject_HasAttrString}{PyObject *o, const char *attr_name} - Returns \code{1} if \var{o} has the attribute \var{attr_name}, and - \code{0} otherwise. This is equivalent to the Python expression - \samp{hasattr(\var{o}, \var{attr_name})}. This function always - succeeds. -\end{cfuncdesc} - -\begin{cfuncdesc}{PyObject*}{PyObject_GetAttrString}{PyObject *o, - const char *attr_name} - Retrieve an attribute named \var{attr_name} from object \var{o}. - Returns the attribute value on success, or \NULL{} on failure. - This is the equivalent of the Python expression - \samp{\var{o}.\var{attr_name}}. -\end{cfuncdesc} - - -\begin{cfuncdesc}{int}{PyObject_HasAttr}{PyObject *o, PyObject *attr_name} - Returns \code{1} if \var{o} has the attribute \var{attr_name}, and - \code{0} otherwise. This is equivalent to the Python expression - \samp{hasattr(\var{o}, \var{attr_name})}. This function always - succeeds. -\end{cfuncdesc} - - -\begin{cfuncdesc}{PyObject*}{PyObject_GetAttr}{PyObject *o, - PyObject *attr_name} - Retrieve an attribute named \var{attr_name} from object \var{o}. - Returns the attribute value on success, or \NULL{} on failure. This - is the equivalent of the Python expression - \samp{\var{o}.\var{attr_name}}. -\end{cfuncdesc} - - -\begin{cfuncdesc}{int}{PyObject_SetAttrString}{PyObject *o, - const char *attr_name, PyObject *v} - Set the value of the attribute named \var{attr_name}, for object - \var{o}, to the value \var{v}. Returns \code{-1} on failure. This - is the equivalent of the Python statement - \samp{\var{o}.\var{attr_name} = \var{v}}. -\end{cfuncdesc} - - -\begin{cfuncdesc}{int}{PyObject_SetAttr}{PyObject *o, - PyObject *attr_name, PyObject *v} - Set the value of the attribute named \var{attr_name}, for object - \var{o}, to the value \var{v}. Returns \code{-1} on failure. This - is the equivalent of the Python statement - \samp{\var{o}.\var{attr_name} = \var{v}}. -\end{cfuncdesc} - - -\begin{cfuncdesc}{int}{PyObject_DelAttrString}{PyObject *o, const char *attr_name} - Delete attribute named \var{attr_name}, for object \var{o}. Returns - \code{-1} on failure. This is the equivalent of the Python - statement: \samp{del \var{o}.\var{attr_name}}. -\end{cfuncdesc} - - -\begin{cfuncdesc}{int}{PyObject_DelAttr}{PyObject *o, PyObject *attr_name} - Delete attribute named \var{attr_name}, for object \var{o}. Returns - \code{-1} on failure. This is the equivalent of the Python - statement \samp{del \var{o}.\var{attr_name}}. -\end{cfuncdesc} - - -\begin{cfuncdesc}{PyObject*}{PyObject_RichCompare}{PyObject *o1, - PyObject *o2, int opid} - Compare the values of \var{o1} and \var{o2} using the operation - specified by \var{opid}, which must be one of - \constant{Py_LT}, - \constant{Py_LE}, - \constant{Py_EQ}, - \constant{Py_NE}, - \constant{Py_GT}, or - \constant{Py_GE}, corresponding to - \code{<}, - \code{<=}, - \code{==}, - \code{!=}, - \code{>}, or - \code{>=} respectively. This is the equivalent of the Python expression - \samp{\var{o1} op \var{o2}}, where \code{op} is the operator - corresponding to \var{opid}. Returns the value of the comparison on - success, or \NULL{} on failure. -\end{cfuncdesc} - -\begin{cfuncdesc}{int}{PyObject_RichCompareBool}{PyObject *o1, - PyObject *o2, int opid} - Compare the values of \var{o1} and \var{o2} using the operation - specified by \var{opid}, which must be one of - \constant{Py_LT}, - \constant{Py_LE}, - \constant{Py_EQ}, - \constant{Py_NE}, - \constant{Py_GT}, or - \constant{Py_GE}, corresponding to - \code{<}, - \code{<=}, - \code{==}, - \code{!=}, - \code{>}, or - \code{>=} respectively. Returns \code{-1} on error, \code{0} if the - result is false, \code{1} otherwise. This is the equivalent of the - Python expression \samp{\var{o1} op \var{o2}}, where - \code{op} is the operator corresponding to \var{opid}. -\end{cfuncdesc} - -\begin{cfuncdesc}{int}{PyObject_Cmp}{PyObject *o1, PyObject *o2, int *result} - Compare the values of \var{o1} and \var{o2} using a routine provided - by \var{o1}, if one exists, otherwise with a routine provided by - \var{o2}. The result of the comparison is returned in - \var{result}. Returns \code{-1} on failure. This is the equivalent - of the Python statement\bifuncindex{cmp} \samp{\var{result} = - cmp(\var{o1}, \var{o2})}. -\end{cfuncdesc} - - -\begin{cfuncdesc}{int}{PyObject_Compare}{PyObject *o1, PyObject *o2} - Compare the values of \var{o1} and \var{o2} using a routine provided - by \var{o1}, if one exists, otherwise with a routine provided by - \var{o2}. Returns the result of the comparison on success. On - error, the value returned is undefined; use - \cfunction{PyErr_Occurred()} to detect an error. This is equivalent - to the Python expression\bifuncindex{cmp} \samp{cmp(\var{o1}, - \var{o2})}. -\end{cfuncdesc} - - -\begin{cfuncdesc}{PyObject*}{PyObject_Repr}{PyObject *o} - Compute a string representation of object \var{o}. Returns the - string representation on success, \NULL{} on failure. This is the - equivalent of the Python expression \samp{repr(\var{o})}. Called by - the \function{repr()}\bifuncindex{repr} built-in function and by - reverse quotes. -\end{cfuncdesc} - - -\begin{cfuncdesc}{PyObject*}{PyObject_Str}{PyObject *o} - Compute a string representation of object \var{o}. Returns the - string representation on success, \NULL{} on failure. This is the - equivalent of the Python expression \samp{str(\var{o})}. Called by - the \function{str()}\bifuncindex{str} built-in function and by the - \keyword{print} statement. -\end{cfuncdesc} - - -\begin{cfuncdesc}{PyObject*}{PyObject_Unicode}{PyObject *o} - Compute a Unicode string representation of object \var{o}. Returns - the Unicode string representation on success, \NULL{} on failure. - This is the equivalent of the Python expression - \samp{unicode(\var{o})}. Called by the - \function{unicode()}\bifuncindex{unicode} built-in function. -\end{cfuncdesc} - -\begin{cfuncdesc}{int}{PyObject_IsInstance}{PyObject *inst, PyObject *cls} - Returns \code{1} if \var{inst} is an instance of the class \var{cls} - or a subclass of \var{cls}, or \code{0} if not. On error, returns - \code{-1} and sets an exception. If \var{cls} is a type object - rather than a class object, \cfunction{PyObject_IsInstance()} - returns \code{1} if \var{inst} is of type \var{cls}. If \var{cls} - is a tuple, the check will be done against every entry in \var{cls}. - The result will be \code{1} when at least one of the checks returns - \code{1}, otherwise it will be \code{0}. If \var{inst} is not a class - instance and \var{cls} is neither a type object, nor a class object, - nor a tuple, \var{inst} must have a \member{__class__} attribute - --- the class relationship of the value of that attribute with - \var{cls} will be used to determine the result of this function. - \versionadded{2.1} - \versionchanged[Support for a tuple as the second argument added]{2.2} -\end{cfuncdesc} - -Subclass determination is done in a fairly straightforward way, but -includes a wrinkle that implementors of extensions to the class system -may want to be aware of. If \class{A} and \class{B} are class -objects, \class{B} is a subclass of \class{A} if it inherits from -\class{A} either directly or indirectly. If either is not a class -object, a more general mechanism is used to determine the class -relationship of the two objects. When testing if \var{B} is a -subclass of \var{A}, if \var{A} is \var{B}, -\cfunction{PyObject_IsSubclass()} returns true. If \var{A} and -\var{B} are different objects, \var{B}'s \member{__bases__} attribute -is searched in a depth-first fashion for \var{A} --- the presence of -the \member{__bases__} attribute is considered sufficient for this -determination. - -\begin{cfuncdesc}{int}{PyObject_IsSubclass}{PyObject *derived, - PyObject *cls} - Returns \code{1} if the class \var{derived} is identical to or - derived from the class \var{cls}, otherwise returns \code{0}. In - case of an error, returns \code{-1}. If \var{cls} - is a tuple, the check will be done against every entry in \var{cls}. - The result will be \code{1} when at least one of the checks returns - \code{1}, otherwise it will be \code{0}. If either \var{derived} or - \var{cls} is not an actual class object (or tuple), this function - uses the generic algorithm described above. - \versionadded{2.1} - \versionchanged[Older versions of Python did not support a tuple - as the second argument]{2.3} -\end{cfuncdesc} - - -\begin{cfuncdesc}{int}{PyCallable_Check}{PyObject *o} - Determine if the object \var{o} is callable. Return \code{1} if the - object is callable and \code{0} otherwise. This function always - succeeds. -\end{cfuncdesc} - - -\begin{cfuncdesc}{PyObject*}{PyObject_Call}{PyObject *callable_object, - PyObject *args, - PyObject *kw} - Call a callable Python object \var{callable_object}, with arguments - given by the tuple \var{args}, and named arguments given by the - dictionary \var{kw}. If no named arguments are needed, \var{kw} may - be \NULL{}. \var{args} must not be \NULL{}, use an empty tuple if - no arguments are needed. Returns the result of the call on success, - or \NULL{} on failure. This is the equivalent of the Python - expression \samp{\var{callable_object}(*\var{args}, **\var{kw})}. - \versionadded{2.2} -\end{cfuncdesc} - - -\begin{cfuncdesc}{PyObject*}{PyObject_CallObject}{PyObject *callable_object, - PyObject *args} - Call a callable Python object \var{callable_object}, with arguments - given by the tuple \var{args}. If no arguments are needed, then - \var{args} may be \NULL. Returns the result of the call on - success, or \NULL{} on failure. This is the equivalent of the - Python expression \samp{\var{callable_object}(*\var{args})}. -\end{cfuncdesc} - -\begin{cfuncdesc}{PyObject*}{PyObject_CallFunction}{PyObject *callable, - char *format, \moreargs} - Call a callable Python object \var{callable}, with a variable - number of C arguments. The C arguments are described using a - \cfunction{Py_BuildValue()} style format string. The format may be - \NULL, indicating that no arguments are provided. Returns the - result of the call on success, or \NULL{} on failure. This is the - equivalent of the Python expression \samp{\var{callable}(*\var{args})}. - Note that if you only pass \ctype{PyObject *} args, - \cfunction{PyObject_CallFunctionObjArgs} is a faster alternative. -\end{cfuncdesc} - - -\begin{cfuncdesc}{PyObject*}{PyObject_CallMethod}{PyObject *o, - char *method, char *format, - \moreargs} - Call the method named \var{method} of object \var{o} with a variable - number of C arguments. The C arguments are described by a - \cfunction{Py_BuildValue()} format string that should - produce a tuple. The format may be \NULL, - indicating that no arguments are provided. Returns the result of the - call on success, or \NULL{} on failure. This is the equivalent of - the Python expression \samp{\var{o}.\var{method}(\var{args})}. - Note that if you only pass \ctype{PyObject *} args, - \cfunction{PyObject_CallMethodObjArgs} is a faster alternative. -\end{cfuncdesc} - - -\begin{cfuncdesc}{PyObject*}{PyObject_CallFunctionObjArgs}{PyObject *callable, - \moreargs, - \code{NULL}} - Call a callable Python object \var{callable}, with a variable - number of \ctype{PyObject*} arguments. The arguments are provided - as a variable number of parameters followed by \NULL. - Returns the result of the call on success, or \NULL{} on failure. - \versionadded{2.2} -\end{cfuncdesc} - - -\begin{cfuncdesc}{PyObject*}{PyObject_CallMethodObjArgs}{PyObject *o, - PyObject *name, - \moreargs, - \code{NULL}} - Calls a method of the object \var{o}, where the name of the method - is given as a Python string object in \var{name}. It is called with - a variable number of \ctype{PyObject*} arguments. The arguments are - provided as a variable number of parameters followed by \NULL. - Returns the result of the call on success, or \NULL{} on failure. - \versionadded{2.2} -\end{cfuncdesc} - - -\begin{cfuncdesc}{long}{PyObject_Hash}{PyObject *o} - Compute and return the hash value of an object \var{o}. On failure, - return \code{-1}. This is the equivalent of the Python expression - \samp{hash(\var{o})}.\bifuncindex{hash} -\end{cfuncdesc} - - -\begin{cfuncdesc}{int}{PyObject_IsTrue}{PyObject *o} - Returns \code{1} if the object \var{o} is considered to be true, and - \code{0} otherwise. This is equivalent to the Python expression - \samp{not not \var{o}}. On failure, return \code{-1}. -\end{cfuncdesc} - - -\begin{cfuncdesc}{int}{PyObject_Not}{PyObject *o} - Returns \code{0} if the object \var{o} is considered to be true, and - \code{1} otherwise. This is equivalent to the Python expression - \samp{not \var{o}}. On failure, return \code{-1}. -\end{cfuncdesc} - - -\begin{cfuncdesc}{PyObject*}{PyObject_Type}{PyObject *o} - When \var{o} is non-\NULL, returns a type object corresponding to - the object type of object \var{o}. On failure, raises - \exception{SystemError} and returns \NULL. This is equivalent to - the Python expression \code{type(\var{o})}.\bifuncindex{type} - This function increments the reference count of the return value. - There's really no reason to use this function instead of the - common expression \code{\var{o}->ob_type}, which returns a pointer - of type \ctype{PyTypeObject*}, except when the incremented reference - count is needed. -\end{cfuncdesc} - -\begin{cfuncdesc}{int}{PyObject_TypeCheck}{PyObject *o, PyTypeObject *type} - Return true if the object \var{o} is of type \var{type} or a subtype - of \var{type}. Both parameters must be non-\NULL. - \versionadded{2.2} -\end{cfuncdesc} - -\begin{cfuncdesc}{Py_ssize_t}{PyObject_Length}{PyObject *o} -\cfuncline{Py_ssize_t}{PyObject_Size}{PyObject *o} - Return the length of object \var{o}. If the object \var{o} provides - either the sequence and mapping protocols, the sequence length is - returned. On error, \code{-1} is returned. This is the equivalent - to the Python expression \samp{len(\var{o})}.\bifuncindex{len} -\end{cfuncdesc} - - -\begin{cfuncdesc}{PyObject*}{PyObject_GetItem}{PyObject *o, PyObject *key} - Return element of \var{o} corresponding to the object \var{key} or - \NULL{} on failure. This is the equivalent of the Python expression - \samp{\var{o}[\var{key}]}. -\end{cfuncdesc} - - -\begin{cfuncdesc}{int}{PyObject_SetItem}{PyObject *o, - PyObject *key, PyObject *v} - Map the object \var{key} to the value \var{v}. Returns \code{-1} on - failure. This is the equivalent of the Python statement - \samp{\var{o}[\var{key}] = \var{v}}. -\end{cfuncdesc} - - -\begin{cfuncdesc}{int}{PyObject_DelItem}{PyObject *o, PyObject *key} - Delete the mapping for \var{key} from \var{o}. Returns \code{-1} on - failure. This is the equivalent of the Python statement \samp{del - \var{o}[\var{key}]}. -\end{cfuncdesc} - -\begin{cfuncdesc}{int}{PyObject_AsFileDescriptor}{PyObject *o} - Derives a file-descriptor from a Python object. If the object is an - integer or long integer, its value is returned. If not, the - object's \method{fileno()} method is called if it exists; the method - must return an integer or long integer, which is returned as the - file descriptor value. Returns \code{-1} on failure. -\end{cfuncdesc} - -\begin{cfuncdesc}{PyObject*}{PyObject_Dir}{PyObject *o} - This is equivalent to the Python expression \samp{dir(\var{o})}, - returning a (possibly empty) list of strings appropriate for the - object argument, or \NULL{} if there was an error. If the argument - is \NULL, this is like the Python \samp{dir()}, returning the names - of the current locals; in this case, if no execution frame is active - then \NULL{} is returned but \cfunction{PyErr_Occurred()} will - return false. -\end{cfuncdesc} - -\begin{cfuncdesc}{PyObject*}{PyObject_GetIter}{PyObject *o} - This is equivalent to the Python expression \samp{iter(\var{o})}. - It returns a new iterator for the object argument, or the object - itself if the object is already an iterator. Raises - \exception{TypeError} and returns \NULL{} if the object cannot be - iterated. -\end{cfuncdesc} - - -\section{Number Protocol \label{number}} - -\begin{cfuncdesc}{int}{PyNumber_Check}{PyObject *o} - Returns \code{1} if the object \var{o} provides numeric protocols, - and false otherwise. This function always succeeds. -\end{cfuncdesc} - - -\begin{cfuncdesc}{PyObject*}{PyNumber_Add}{PyObject *o1, PyObject *o2} - Returns the result of adding \var{o1} and \var{o2}, or \NULL{} on - failure. This is the equivalent of the Python expression - \samp{\var{o1} + \var{o2}}. -\end{cfuncdesc} - - -\begin{cfuncdesc}{PyObject*}{PyNumber_Subtract}{PyObject *o1, PyObject *o2} - Returns the result of subtracting \var{o2} from \var{o1}, or \NULL{} - on failure. This is the equivalent of the Python expression - \samp{\var{o1} - \var{o2}}. -\end{cfuncdesc} - - -\begin{cfuncdesc}{PyObject*}{PyNumber_Multiply}{PyObject *o1, PyObject *o2} - Returns the result of multiplying \var{o1} and \var{o2}, or \NULL{} - on failure. This is the equivalent of the Python expression - \samp{\var{o1} * \var{o2}}. -\end{cfuncdesc} - - -\begin{cfuncdesc}{PyObject*}{PyNumber_Divide}{PyObject *o1, PyObject *o2} - Returns the result of dividing \var{o1} by \var{o2}, or \NULL{} on - failure. This is the equivalent of the Python expression - \samp{\var{o1} / \var{o2}}. -\end{cfuncdesc} - - -\begin{cfuncdesc}{PyObject*}{PyNumber_FloorDivide}{PyObject *o1, PyObject *o2} - Return the floor of \var{o1} divided by \var{o2}, or \NULL{} on - failure. This is equivalent to the ``classic'' division of - integers. - \versionadded{2.2} -\end{cfuncdesc} - - -\begin{cfuncdesc}{PyObject*}{PyNumber_TrueDivide}{PyObject *o1, PyObject *o2} - Return a reasonable approximation for the mathematical value of - \var{o1} divided by \var{o2}, or \NULL{} on failure. The return - value is ``approximate'' because binary floating point numbers are - approximate; it is not possible to represent all real numbers in - base two. This function can return a floating point value when - passed two integers. - \versionadded{2.2} -\end{cfuncdesc} - - -\begin{cfuncdesc}{PyObject*}{PyNumber_Remainder}{PyObject *o1, PyObject *o2} - Returns the remainder of dividing \var{o1} by \var{o2}, or \NULL{} - on failure. This is the equivalent of the Python expression - \samp{\var{o1} \%\ \var{o2}}. -\end{cfuncdesc} - - -\begin{cfuncdesc}{PyObject*}{PyNumber_Divmod}{PyObject *o1, PyObject *o2} - See the built-in function \function{divmod()}\bifuncindex{divmod}. - Returns \NULL{} on failure. This is the equivalent of the Python - expression \samp{divmod(\var{o1}, \var{o2})}. -\end{cfuncdesc} - - -\begin{cfuncdesc}{PyObject*}{PyNumber_Power}{PyObject *o1, - PyObject *o2, PyObject *o3} - See the built-in function \function{pow()}\bifuncindex{pow}. - Returns \NULL{} on failure. This is the equivalent of the Python - expression \samp{pow(\var{o1}, \var{o2}, \var{o3})}, where \var{o3} - is optional. If \var{o3} is to be ignored, pass \cdata{Py_None} in - its place (passing \NULL{} for \var{o3} would cause an illegal - memory access). -\end{cfuncdesc} - - -\begin{cfuncdesc}{PyObject*}{PyNumber_Negative}{PyObject *o} - Returns the negation of \var{o} on success, or \NULL{} on failure. - This is the equivalent of the Python expression \samp{-\var{o}}. -\end{cfuncdesc} - - -\begin{cfuncdesc}{PyObject*}{PyNumber_Positive}{PyObject *o} - Returns \var{o} on success, or \NULL{} on failure. This is the - equivalent of the Python expression \samp{+\var{o}}. -\end{cfuncdesc} - - -\begin{cfuncdesc}{PyObject*}{PyNumber_Absolute}{PyObject *o} - Returns the absolute value of \var{o}, or \NULL{} on failure. This - is the equivalent of the Python expression \samp{abs(\var{o})}. - \bifuncindex{abs} -\end{cfuncdesc} - - -\begin{cfuncdesc}{PyObject*}{PyNumber_Invert}{PyObject *o} - Returns the bitwise negation of \var{o} on success, or \NULL{} on - failure. This is the equivalent of the Python expression - \samp{\~\var{o}}. -\end{cfuncdesc} - - -\begin{cfuncdesc}{PyObject*}{PyNumber_Lshift}{PyObject *o1, PyObject *o2} - Returns the result of left shifting \var{o1} by \var{o2} on success, - or \NULL{} on failure. This is the equivalent of the Python - expression \samp{\var{o1} <\code{<} \var{o2}}. -\end{cfuncdesc} - - -\begin{cfuncdesc}{PyObject*}{PyNumber_Rshift}{PyObject *o1, PyObject *o2} - Returns the result of right shifting \var{o1} by \var{o2} on - success, or \NULL{} on failure. This is the equivalent of the - Python expression \samp{\var{o1} >\code{>} \var{o2}}. -\end{cfuncdesc} - - -\begin{cfuncdesc}{PyObject*}{PyNumber_And}{PyObject *o1, PyObject *o2} - Returns the ``bitwise and'' of \var{o1} and \var{o2} on success and - \NULL{} on failure. This is the equivalent of the Python expression - \samp{\var{o1} \&\ \var{o2}}. -\end{cfuncdesc} - - -\begin{cfuncdesc}{PyObject*}{PyNumber_Xor}{PyObject *o1, PyObject *o2} - Returns the ``bitwise exclusive or'' of \var{o1} by \var{o2} on - success, or \NULL{} on failure. This is the equivalent of the - Python expression \samp{\var{o1} \textasciicircum{} \var{o2}}. -\end{cfuncdesc} - -\begin{cfuncdesc}{PyObject*}{PyNumber_Or}{PyObject *o1, PyObject *o2} - Returns the ``bitwise or'' of \var{o1} and \var{o2} on success, or - \NULL{} on failure. This is the equivalent of the Python expression - \samp{\var{o1} | \var{o2}}. -\end{cfuncdesc} - - -\begin{cfuncdesc}{PyObject*}{PyNumber_InPlaceAdd}{PyObject *o1, PyObject *o2} - Returns the result of adding \var{o1} and \var{o2}, or \NULL{} on - failure. The operation is done \emph{in-place} when \var{o1} - supports it. This is the equivalent of the Python statement - \samp{\var{o1} += \var{o2}}. -\end{cfuncdesc} - - -\begin{cfuncdesc}{PyObject*}{PyNumber_InPlaceSubtract}{PyObject *o1, - PyObject *o2} - Returns the result of subtracting \var{o2} from \var{o1}, or \NULL{} - on failure. The operation is done \emph{in-place} when \var{o1} - supports it. This is the equivalent of the Python statement - \samp{\var{o1} -= \var{o2}}. -\end{cfuncdesc} - - -\begin{cfuncdesc}{PyObject*}{PyNumber_InPlaceMultiply}{PyObject *o1, - PyObject *o2} - Returns the result of multiplying \var{o1} and \var{o2}, or \NULL{} - on failure. The operation is done \emph{in-place} when \var{o1} - supports it. This is the equivalent of the Python statement - \samp{\var{o1} *= \var{o2}}. -\end{cfuncdesc} - - -\begin{cfuncdesc}{PyObject*}{PyNumber_InPlaceDivide}{PyObject *o1, - PyObject *o2} - Returns the result of dividing \var{o1} by \var{o2}, or \NULL{} on - failure. The operation is done \emph{in-place} when \var{o1} - supports it. This is the equivalent of the Python statement - \samp{\var{o1} /= \var{o2}}. -\end{cfuncdesc} - - -\begin{cfuncdesc}{PyObject*}{PyNumber_InPlaceFloorDivide}{PyObject *o1, - PyObject *o2} - Returns the mathematical floor of dividing \var{o1} by \var{o2}, or - \NULL{} on failure. The operation is done \emph{in-place} when - \var{o1} supports it. This is the equivalent of the Python - statement \samp{\var{o1} //= \var{o2}}. - \versionadded{2.2} -\end{cfuncdesc} - - -\begin{cfuncdesc}{PyObject*}{PyNumber_InPlaceTrueDivide}{PyObject *o1, - PyObject *o2} - Return a reasonable approximation for the mathematical value of - \var{o1} divided by \var{o2}, or \NULL{} on failure. The return - value is ``approximate'' because binary floating point numbers are - approximate; it is not possible to represent all real numbers in - base two. This function can return a floating point value when - passed two integers. The operation is done \emph{in-place} when - \var{o1} supports it. - \versionadded{2.2} -\end{cfuncdesc} - - -\begin{cfuncdesc}{PyObject*}{PyNumber_InPlaceRemainder}{PyObject *o1, - PyObject *o2} - Returns the remainder of dividing \var{o1} by \var{o2}, or \NULL{} - on failure. The operation is done \emph{in-place} when \var{o1} - supports it. This is the equivalent of the Python statement - \samp{\var{o1} \%= \var{o2}}. -\end{cfuncdesc} - - -\begin{cfuncdesc}{PyObject*}{PyNumber_InPlacePower}{PyObject *o1, - PyObject *o2, PyObject *o3} - See the built-in function \function{pow()}.\bifuncindex{pow} - Returns \NULL{} on failure. The operation is done \emph{in-place} - when \var{o1} supports it. This is the equivalent of the Python - statement \samp{\var{o1} **= \var{o2}} when o3 is \cdata{Py_None}, - or an in-place variant of \samp{pow(\var{o1}, \var{o2}, \var{o3})} - otherwise. If \var{o3} is to be ignored, pass \cdata{Py_None} in its - place (passing \NULL{} for \var{o3} would cause an illegal memory - access). -\end{cfuncdesc} - -\begin{cfuncdesc}{PyObject*}{PyNumber_InPlaceLshift}{PyObject *o1, - PyObject *o2} - Returns the result of left shifting \var{o1} by \var{o2} on success, - or \NULL{} on failure. The operation is done \emph{in-place} when - \var{o1} supports it. This is the equivalent of the Python - statement \samp{\var{o1} <\code{<=} \var{o2}}. -\end{cfuncdesc} - - -\begin{cfuncdesc}{PyObject*}{PyNumber_InPlaceRshift}{PyObject *o1, - PyObject *o2} - Returns the result of right shifting \var{o1} by \var{o2} on - success, or \NULL{} on failure. The operation is done - \emph{in-place} when \var{o1} supports it. This is the equivalent - of the Python statement \samp{\var{o1} >>= \var{o2}}. -\end{cfuncdesc} - - -\begin{cfuncdesc}{PyObject*}{PyNumber_InPlaceAnd}{PyObject *o1, PyObject *o2} - Returns the ``bitwise and'' of \var{o1} and \var{o2} on success and - \NULL{} on failure. The operation is done \emph{in-place} when - \var{o1} supports it. This is the equivalent of the Python - statement \samp{\var{o1} \&= \var{o2}}. -\end{cfuncdesc} - - -\begin{cfuncdesc}{PyObject*}{PyNumber_InPlaceXor}{PyObject *o1, PyObject *o2} - Returns the ``bitwise exclusive or'' of \var{o1} by \var{o2} on - success, or \NULL{} on failure. The operation is done - \emph{in-place} when \var{o1} supports it. This is the equivalent - of the Python statement \samp{\var{o1} \textasciicircum= \var{o2}}. -\end{cfuncdesc} - -\begin{cfuncdesc}{PyObject*}{PyNumber_InPlaceOr}{PyObject *o1, PyObject *o2} - Returns the ``bitwise or'' of \var{o1} and \var{o2} on success, or - \NULL{} on failure. The operation is done \emph{in-place} when - \var{o1} supports it. This is the equivalent of the Python - statement \samp{\var{o1} |= \var{o2}}. -\end{cfuncdesc} - -\begin{cfuncdesc}{PyObject*}{PyNumber_Int}{PyObject *o} - Returns the \var{o} converted to an integer object on success, or - \NULL{} on failure. If the argument is outside the integer range - a long object will be returned instead. This is the equivalent - of the Python expression \samp{int(\var{o})}.\bifuncindex{int} -\end{cfuncdesc} - -\begin{cfuncdesc}{PyObject*}{PyNumber_Long}{PyObject *o} - Returns the \var{o} converted to a long integer object on success, - or \NULL{} on failure. This is the equivalent of the Python - expression \samp{long(\var{o})}.\bifuncindex{long} -\end{cfuncdesc} - -\begin{cfuncdesc}{PyObject*}{PyNumber_Float}{PyObject *o} - Returns the \var{o} converted to a float object on success, or - \NULL{} on failure. This is the equivalent of the Python expression - \samp{float(\var{o})}.\bifuncindex{float} -\end{cfuncdesc} - -\begin{cfuncdesc}{PyObject*}{PyNumber_Index}{PyObject *o} - Returns the \var{o} converted to a Python int or long on success or \NULL{} - with a TypeError exception raised on failure. - \versionadded{2.5} -\end{cfuncdesc} - -\begin{cfuncdesc}{Py_ssize_t}{PyNumber_AsSsize_t}{PyObject *o, PyObject *exc} - Returns \var{o} converted to a Py_ssize_t value if \var{o} - can be interpreted as an integer. If \var{o} can be converted to a Python - int or long but the attempt to convert to a Py_ssize_t value - would raise an \exception{OverflowError}, then the \var{exc} argument - is the type of exception that will be raised (usually \exception{IndexError} - or \exception{OverflowError}). If \var{exc} is \NULL{}, then the exception - is cleared and the value is clipped to \var{PY_SSIZE_T_MIN} - for a negative integer or \var{PY_SSIZE_T_MAX} for a positive integer. - \versionadded{2.5} -\end{cfuncdesc} - -\begin{cfuncdesc}{int}{PyIndex_Check}{PyObject *o} - Returns True if \var{o} is an index integer (has the nb_index slot of - the tp_as_number structure filled in). - \versionadded{2.5} -\end{cfuncdesc} - - -\section{Sequence Protocol \label{sequence}} - -\begin{cfuncdesc}{int}{PySequence_Check}{PyObject *o} - Return \code{1} if the object provides sequence protocol, and - \code{0} otherwise. This function always succeeds. -\end{cfuncdesc} - -\begin{cfuncdesc}{Py_ssize_t}{PySequence_Size}{PyObject *o} - Returns the number of objects in sequence \var{o} on success, and - \code{-1} on failure. For objects that do not provide sequence - protocol, this is equivalent to the Python expression - \samp{len(\var{o})}.\bifuncindex{len} -\end{cfuncdesc} - -\begin{cfuncdesc}{Py_ssize_t}{PySequence_Length}{PyObject *o} - Alternate name for \cfunction{PySequence_Size()}. -\end{cfuncdesc} - -\begin{cfuncdesc}{PyObject*}{PySequence_Concat}{PyObject *o1, PyObject *o2} - Return the concatenation of \var{o1} and \var{o2} on success, and - \NULL{} on failure. This is the equivalent of the Python - expression \samp{\var{o1} + \var{o2}}. -\end{cfuncdesc} - - -\begin{cfuncdesc}{PyObject*}{PySequence_Repeat}{PyObject *o, Py_ssize_t count} - Return the result of repeating sequence object \var{o} \var{count} - times, or \NULL{} on failure. This is the equivalent of the Python - expression \samp{\var{o} * \var{count}}. -\end{cfuncdesc} - -\begin{cfuncdesc}{PyObject*}{PySequence_InPlaceConcat}{PyObject *o1, - PyObject *o2} - Return the concatenation of \var{o1} and \var{o2} on success, and - \NULL{} on failure. The operation is done \emph{in-place} when - \var{o1} supports it. This is the equivalent of the Python - expression \samp{\var{o1} += \var{o2}}. -\end{cfuncdesc} - - -\begin{cfuncdesc}{PyObject*}{PySequence_InPlaceRepeat}{PyObject *o, Py_ssize_t count} - Return the result of repeating sequence object \var{o} \var{count} - times, or \NULL{} on failure. The operation is done \emph{in-place} - when \var{o} supports it. This is the equivalent of the Python - expression \samp{\var{o} *= \var{count}}. -\end{cfuncdesc} - - -\begin{cfuncdesc}{PyObject*}{PySequence_GetItem}{PyObject *o, Py_ssize_t i} - Return the \var{i}th element of \var{o}, or \NULL{} on failure. - This is the equivalent of the Python expression - \samp{\var{o}[\var{i}]}. -\end{cfuncdesc} - - -\begin{cfuncdesc}{PyObject*}{PySequence_GetSlice}{PyObject *o, Py_ssize_t i1, Py_ssize_t i2} - Return the slice of sequence object \var{o} between \var{i1} and - \var{i2}, or \NULL{} on failure. This is the equivalent of the - Python expression \samp{\var{o}[\var{i1}:\var{i2}]}. -\end{cfuncdesc} - - -\begin{cfuncdesc}{int}{PySequence_SetItem}{PyObject *o, Py_ssize_t i, PyObject *v} - Assign object \var{v} to the \var{i}th element of \var{o}. Returns - \code{-1} on failure. This is the equivalent of the Python - statement \samp{\var{o}[\var{i}] = \var{v}}. This function \emph{does not} - steal a reference to \var{v}. -\end{cfuncdesc} - -\begin{cfuncdesc}{int}{PySequence_DelItem}{PyObject *o, Py_ssize_t i} - Delete the \var{i}th element of object \var{o}. Returns \code{-1} - on failure. This is the equivalent of the Python statement - \samp{del \var{o}[\var{i}]}. -\end{cfuncdesc} - -\begin{cfuncdesc}{int}{PySequence_SetSlice}{PyObject *o, Py_ssize_t i1, - Py_ssize_t i2, PyObject *v} - Assign the sequence object \var{v} to the slice in sequence object - \var{o} from \var{i1} to \var{i2}. This is the equivalent of the - Python statement \samp{\var{o}[\var{i1}:\var{i2}] = \var{v}}. -\end{cfuncdesc} - -\begin{cfuncdesc}{int}{PySequence_DelSlice}{PyObject *o, Py_ssize_t i1, Py_ssize_t i2} - Delete the slice in sequence object \var{o} from \var{i1} to - \var{i2}. Returns \code{-1} on failure. This is the equivalent of - the Python statement \samp{del \var{o}[\var{i1}:\var{i2}]}. -\end{cfuncdesc} - -\begin{cfuncdesc}{Py_ssize_t}{PySequence_Count}{PyObject *o, PyObject *value} - Return the number of occurrences of \var{value} in \var{o}, that is, - return the number of keys for which \code{\var{o}[\var{key}] == - \var{value}}. On failure, return \code{-1}. This is equivalent to - the Python expression \samp{\var{o}.count(\var{value})}. -\end{cfuncdesc} - -\begin{cfuncdesc}{int}{PySequence_Contains}{PyObject *o, PyObject *value} - Determine if \var{o} contains \var{value}. If an item in \var{o} is - equal to \var{value}, return \code{1}, otherwise return \code{0}. - On error, return \code{-1}. This is equivalent to the Python - expression \samp{\var{value} in \var{o}}. -\end{cfuncdesc} - -\begin{cfuncdesc}{Py_ssize_t}{PySequence_Index}{PyObject *o, PyObject *value} - Return the first index \var{i} for which \code{\var{o}[\var{i}] == - \var{value}}. On error, return \code{-1}. This is equivalent to - the Python expression \samp{\var{o}.index(\var{value})}. -\end{cfuncdesc} - -\begin{cfuncdesc}{PyObject*}{PySequence_List}{PyObject *o} - Return a list object with the same contents as the arbitrary - sequence \var{o}. The returned list is guaranteed to be new. -\end{cfuncdesc} - -\begin{cfuncdesc}{PyObject*}{PySequence_Tuple}{PyObject *o} - Return a tuple object with the same contents as the arbitrary - sequence \var{o} or \NULL{} on failure. If \var{o} is a tuple, - a new reference will be returned, otherwise a tuple will be - constructed with the appropriate contents. This is equivalent - to the Python expression \samp{tuple(\var{o})}. - \bifuncindex{tuple} -\end{cfuncdesc} - -\begin{cfuncdesc}{PyObject*}{PySequence_Fast}{PyObject *o, const char *m} - Returns the sequence \var{o} as a tuple, unless it is already a - tuple or list, in which case \var{o} is returned. Use - \cfunction{PySequence_Fast_GET_ITEM()} to access the members of the - result. Returns \NULL{} on failure. If the object is not a - sequence, raises \exception{TypeError} with \var{m} as the message - text. -\end{cfuncdesc} - -\begin{cfuncdesc}{PyObject*}{PySequence_Fast_GET_ITEM}{PyObject *o, Py_ssize_t i} - Return the \var{i}th element of \var{o}, assuming that \var{o} was - returned by \cfunction{PySequence_Fast()}, \var{o} is not \NULL, - and that \var{i} is within bounds. -\end{cfuncdesc} - -\begin{cfuncdesc}{PyObject**}{PySequence_Fast_ITEMS}{PyObject *o} - Return the underlying array of PyObject pointers. Assumes that - \var{o} was returned by \cfunction{PySequence_Fast()} and - \var{o} is not \NULL. - \versionadded{2.4} -\end{cfuncdesc} - -\begin{cfuncdesc}{PyObject*}{PySequence_ITEM}{PyObject *o, Py_ssize_t i} - Return the \var{i}th element of \var{o} or \NULL{} on failure. - Macro form of \cfunction{PySequence_GetItem()} but without checking - that \cfunction{PySequence_Check(\var{o})} is true and without - adjustment for negative indices. - \versionadded{2.3} -\end{cfuncdesc} - -\begin{cfuncdesc}{Py_ssize_t}{PySequence_Fast_GET_SIZE}{PyObject *o} - Returns the length of \var{o}, assuming that \var{o} was - returned by \cfunction{PySequence_Fast()} and that \var{o} is - not \NULL. The size can also be gotten by calling - \cfunction{PySequence_Size()} on \var{o}, but - \cfunction{PySequence_Fast_GET_SIZE()} is faster because it can - assume \var{o} is a list or tuple. -\end{cfuncdesc} - - -\section{Mapping Protocol \label{mapping}} - -\begin{cfuncdesc}{int}{PyMapping_Check}{PyObject *o} - Return \code{1} if the object provides mapping protocol, and - \code{0} otherwise. This function always succeeds. -\end{cfuncdesc} - - -\begin{cfuncdesc}{Py_ssize_t}{PyMapping_Length}{PyObject *o} - Returns the number of keys in object \var{o} on success, and - \code{-1} on failure. For objects that do not provide mapping - protocol, this is equivalent to the Python expression - \samp{len(\var{o})}.\bifuncindex{len} -\end{cfuncdesc} - - -\begin{cfuncdesc}{int}{PyMapping_DelItemString}{PyObject *o, char *key} - Remove the mapping for object \var{key} from the object \var{o}. - Return \code{-1} on failure. This is equivalent to the Python - statement \samp{del \var{o}[\var{key}]}. -\end{cfuncdesc} - - -\begin{cfuncdesc}{int}{PyMapping_DelItem}{PyObject *o, PyObject *key} - Remove the mapping for object \var{key} from the object \var{o}. - Return \code{-1} on failure. This is equivalent to the Python - statement \samp{del \var{o}[\var{key}]}. -\end{cfuncdesc} - - -\begin{cfuncdesc}{int}{PyMapping_HasKeyString}{PyObject *o, char *key} - On success, return \code{1} if the mapping object has the key - \var{key} and \code{0} otherwise. This is equivalent to the Python - expression \samp{\var{o}.has_key(\var{key})}. This function always - succeeds. -\end{cfuncdesc} - - -\begin{cfuncdesc}{int}{PyMapping_HasKey}{PyObject *o, PyObject *key} - Return \code{1} if the mapping object has the key \var{key} and - \code{0} otherwise. This is equivalent to the Python expression - \samp{\var{o}.has_key(\var{key})}. This function always succeeds. -\end{cfuncdesc} - - -\begin{cfuncdesc}{PyObject*}{PyMapping_Keys}{PyObject *o} - On success, return a list of the keys in object \var{o}. On - failure, return \NULL. This is equivalent to the Python expression - \samp{\var{o}.keys()}. -\end{cfuncdesc} - - -\begin{cfuncdesc}{PyObject*}{PyMapping_Values}{PyObject *o} - On success, return a list of the values in object \var{o}. On - failure, return \NULL. This is equivalent to the Python expression - \samp{\var{o}.values()}. -\end{cfuncdesc} - - -\begin{cfuncdesc}{PyObject*}{PyMapping_Items}{PyObject *o} - On success, return a list of the items in object \var{o}, where each - item is a tuple containing a key-value pair. On failure, return - \NULL. This is equivalent to the Python expression - \samp{\var{o}.items()}. -\end{cfuncdesc} - - -\begin{cfuncdesc}{PyObject*}{PyMapping_GetItemString}{PyObject *o, char *key} - Return element of \var{o} corresponding to the object \var{key} or - \NULL{} on failure. This is the equivalent of the Python expression - \samp{\var{o}[\var{key}]}. -\end{cfuncdesc} - -\begin{cfuncdesc}{int}{PyMapping_SetItemString}{PyObject *o, char *key, - PyObject *v} - Map the object \var{key} to the value \var{v} in object \var{o}. - Returns \code{-1} on failure. This is the equivalent of the Python - statement \samp{\var{o}[\var{key}] = \var{v}}. -\end{cfuncdesc} - - -\section{Iterator Protocol \label{iterator}} - -\versionadded{2.2} - -There are only a couple of functions specifically for working with -iterators. - -\begin{cfuncdesc}{int}{PyIter_Check}{PyObject *o} - Return true if the object \var{o} supports the iterator protocol. -\end{cfuncdesc} - -\begin{cfuncdesc}{PyObject*}{PyIter_Next}{PyObject *o} - Return the next value from the iteration \var{o}. If the object is - an iterator, this retrieves the next value from the iteration, and - returns \NULL{} with no exception set if there are no remaining - items. If the object is not an iterator, \exception{TypeError} is - raised, or if there is an error in retrieving the item, returns - \NULL{} and passes along the exception. -\end{cfuncdesc} - -To write a loop which iterates over an iterator, the C code should -look something like this: - -\begin{verbatim} -PyObject *iterator = PyObject_GetIter(obj); -PyObject *item; - -if (iterator == NULL) { - /* propagate error */ -} - -while (item = PyIter_Next(iterator)) { - /* do something with item */ - ... - /* release reference when done */ - Py_DECREF(item); -} - -Py_DECREF(iterator); - -if (PyErr_Occurred()) { - /* propagate error */ -} -else { - /* continue doing useful work */ -} -\end{verbatim} - - -\section{Buffer Protocol \label{abstract-buffer}} - -\begin{cfuncdesc}{int}{PyObject_AsCharBuffer}{PyObject *obj, - const char **buffer, - Py_ssize_t *buffer_len} - Returns a pointer to a read-only memory location useable as character- - based input. The \var{obj} argument must support the single-segment - character buffer interface. On success, returns \code{0}, sets - \var{buffer} to the memory location and \var{buffer_len} to the buffer - length. Returns \code{-1} and sets a \exception{TypeError} on error. - \versionadded{1.6} -\end{cfuncdesc} - -\begin{cfuncdesc}{int}{PyObject_AsReadBuffer}{PyObject *obj, - const void **buffer, - Py_ssize_t *buffer_len} - Returns a pointer to a read-only memory location containing - arbitrary data. The \var{obj} argument must support the - single-segment readable buffer interface. On success, returns - \code{0}, sets \var{buffer} to the memory location and \var{buffer_len} - to the buffer length. Returns \code{-1} and sets a - \exception{TypeError} on error. - \versionadded{1.6} -\end{cfuncdesc} - -\begin{cfuncdesc}{int}{PyObject_CheckReadBuffer}{PyObject *o} - Returns \code{1} if \var{o} supports the single-segment readable - buffer interface. Otherwise returns \code{0}. - \versionadded{2.2} -\end{cfuncdesc} - -\begin{cfuncdesc}{int}{PyObject_AsWriteBuffer}{PyObject *obj, - void **buffer, - Py_ssize_t *buffer_len} - Returns a pointer to a writeable memory location. The \var{obj} - argument must support the single-segment, character buffer - interface. On success, returns \code{0}, sets \var{buffer} to the - memory location and \var{buffer_len} to the buffer length. Returns - \code{-1} and sets a \exception{TypeError} on error. - \versionadded{1.6} -\end{cfuncdesc} diff --git a/Doc/api/api.tex b/Doc/api/api.tex deleted file mode 100644 index cf28f5b..0000000 --- a/Doc/api/api.tex +++ /dev/null @@ -1,60 +0,0 @@ -\documentclass{manual} - -\title{Python/C API Reference Manual} - -\input{boilerplate} - -\makeindex % tell \index to actually write the .idx file - - -\begin{document} - -\maketitle - -\ifhtml -\chapter*{Front Matter\label{front}} -\fi - -\input{copyright} - -\begin{abstract} - -\noindent -This manual documents the API used by C and \Cpp{} programmers who -want to write extension modules or embed Python. It is a companion to -\citetitle[../ext/ext.html]{Extending and Embedding the Python -Interpreter}, which describes the general principles of extension -writing but does not document the API functions in detail. - -\warning{The current version of this document is incomplete. I hope -that it is nevertheless useful. I will continue to work on it, and -release new versions from time to time, independent from Python source -code releases.} - -\end{abstract} - -\tableofcontents - - -\input{intro} -\input{veryhigh} -\input{refcounting} -\input{exceptions} -\input{utilities} -\input{abstract} -\input{concrete} -\input{init} -\input{memory} -\input{newtypes} - - -\appendix -\chapter{Reporting Bugs} -\input{reportingbugs} - -\chapter{History and License} -\input{license} - -\input{api.ind} % Index -- must be last - -\end{document} diff --git a/Doc/api/concrete.tex b/Doc/api/concrete.tex deleted file mode 100644 index ddb19d0..0000000 --- a/Doc/api/concrete.tex +++ /dev/null @@ -1,3326 +0,0 @@ -\chapter{Concrete Objects Layer \label{concrete}} - - -The functions in this chapter are specific to certain Python object -types. Passing them an object of the wrong type is not a good idea; -if you receive an object from a Python program and you are not sure -that it has the right type, you must perform a type check first; -for example, to check that an object is a dictionary, use -\cfunction{PyDict_Check()}. The chapter is structured like the -``family tree'' of Python object types. - -\warning{While the functions described in this chapter carefully check -the type of the objects which are passed in, many of them do not check -for \NULL{} being passed instead of a valid object. Allowing \NULL{} -to be passed in can cause memory access violations and immediate -termination of the interpreter.} - - -\section{Fundamental Objects \label{fundamental}} - -This section describes Python type objects and the singleton object -\code{None}. - - -\subsection{Type Objects \label{typeObjects}} - -\obindex{type} -\begin{ctypedesc}{PyTypeObject} - The C structure of the objects used to describe built-in types. -\end{ctypedesc} - -\begin{cvardesc}{PyObject*}{PyType_Type} - This is the type object for type objects; it is the same object as - \code{type} and \code{types.TypeType} in the Python layer. - \withsubitem{(in module types)}{\ttindex{TypeType}} -\end{cvardesc} - -\begin{cfuncdesc}{int}{PyType_Check}{PyObject *o} - Return true if the object \var{o} is a type object, including - instances of types derived from the standard type object. Return - false in all other cases. -\end{cfuncdesc} - -\begin{cfuncdesc}{int}{PyType_CheckExact}{PyObject *o} - Return true if the object \var{o} is a type object, but not a - subtype of the standard type object. Return false in all other - cases. - \versionadded{2.2} -\end{cfuncdesc} - -\begin{cfuncdesc}{int}{PyType_HasFeature}{PyObject *o, int feature} - Return true if the type object \var{o} sets the feature - \var{feature}. Type features are denoted by single bit flags. -\end{cfuncdesc} - -\begin{cfuncdesc}{int}{PyType_IS_GC}{PyObject *o} - Return true if the type object includes support for the cycle - detector; this tests the type flag \constant{Py_TPFLAGS_HAVE_GC}. - \versionadded{2.0} -\end{cfuncdesc} - -\begin{cfuncdesc}{int}{PyType_IsSubtype}{PyTypeObject *a, PyTypeObject *b} - Return true if \var{a} is a subtype of \var{b}. - \versionadded{2.2} -\end{cfuncdesc} - -\begin{cfuncdesc}{PyObject*}{PyType_GenericAlloc}{PyTypeObject *type, - Py_ssize_t nitems} - \versionadded{2.2} -\end{cfuncdesc} - -\begin{cfuncdesc}{PyObject*}{PyType_GenericNew}{PyTypeObject *type, - PyObject *args, PyObject *kwds} - \versionadded{2.2} -\end{cfuncdesc} - -\begin{cfuncdesc}{int}{PyType_Ready}{PyTypeObject *type} - Finalize a type object. This should be called on all type objects - to finish their initialization. This function is responsible for - adding inherited slots from a type's base class. Return \code{0} - on success, or return \code{-1} and sets an exception on error. - \versionadded{2.2} -\end{cfuncdesc} - - -\subsection{The None Object \label{noneObject}} - -\obindex{None} -Note that the \ctype{PyTypeObject} for \code{None} is not directly -exposed in the Python/C API. Since \code{None} is a singleton, -testing for object identity (using \samp{==} in C) is sufficient. -There is no \cfunction{PyNone_Check()} function for the same reason. - -\begin{cvardesc}{PyObject*}{Py_None} - The Python \code{None} object, denoting lack of value. This object - has no methods. It needs to be treated just like any other object - with respect to reference counts. -\end{cvardesc} - -\begin{csimplemacrodesc}{Py_RETURN_NONE} - Properly handle returning \cdata{Py_None} from within a C function. - \versionadded{2.4} -\end{csimplemacrodesc} - - -\section{Numeric Objects \label{numericObjects}} - -\obindex{numeric} - - -\subsection{Plain Integer Objects \label{intObjects}} - -\obindex{integer} -\begin{ctypedesc}{PyIntObject} - This subtype of \ctype{PyObject} represents a Python integer - object. -\end{ctypedesc} - -\begin{cvardesc}{PyTypeObject}{PyInt_Type} - This instance of \ctype{PyTypeObject} represents the Python plain - integer type. This is the same object as \code{int} and - \code{types.IntType}. - \withsubitem{(in modules types)}{\ttindex{IntType}} -\end{cvardesc} - -\begin{cfuncdesc}{int}{PyInt_Check}{PyObject *o} - Return true if \var{o} is of type \cdata{PyInt_Type} or a subtype - of \cdata{PyInt_Type}. - \versionchanged[Allowed subtypes to be accepted]{2.2} -\end{cfuncdesc} - -\begin{cfuncdesc}{int}{PyInt_CheckExact}{PyObject *o} - Return true if \var{o} is of type \cdata{PyInt_Type}, but not a - subtype of \cdata{PyInt_Type}. - \versionadded{2.2} -\end{cfuncdesc} - -\begin{cfuncdesc}{PyObject*}{PyInt_FromString}{char *str, char **pend, - int base} - Return a new \ctype{PyIntObject} or \ctype{PyLongObject} based on the - string value in \var{str}, which is interpreted according to the radix in - \var{base}. If \var{pend} is non-\NULL{}, \code{*\var{pend}} will point to - the first character in \var{str} which follows the representation of the - number. If \var{base} is \code{0}, the radix will be determined based on - the leading characters of \var{str}: if \var{str} starts with \code{'0x'} - or \code{'0X'}, radix 16 will be used; if \var{str} starts with - \code{'0'}, radix 8 will be used; otherwise radix 10 will be used. If - \var{base} is not \code{0}, it must be between \code{2} and \code{36}, - inclusive. Leading spaces are ignored. If there are no digits, - \exception{ValueError} will be raised. If the string represents a number - too large to be contained within the machine's \ctype{long int} type and - overflow warnings are being suppressed, a \ctype{PyLongObject} will be - returned. If overflow warnings are not being suppressed, \NULL{} will be - returned in this case. -\end{cfuncdesc} - -\begin{cfuncdesc}{PyObject*}{PyInt_FromLong}{long ival} - Create a new integer object with a value of \var{ival}. - - The current implementation keeps an array of integer objects for all - integers between \code{-5} and \code{256}, when you create an int in - that range you actually just get back a reference to the existing - object. So it should be possible to change the value of \code{1}. I - suspect the behaviour of Python in this case is undefined. :-) -\end{cfuncdesc} - -\begin{cfuncdesc}{PyObject*}{PyInt_FromSsize_t}{Py_ssize_t ival} - Create a new integer object with a value of \var{ival}. - If the value exceeds \code{LONG_MAX}, a long integer object is - returned. - - \versionadded{2.5} -\end{cfuncdesc} - -\begin{cfuncdesc}{long}{PyInt_AsLong}{PyObject *io} - Will first attempt to cast the object to a \ctype{PyIntObject}, if - it is not already one, and then return its value. If there is an - error, \code{-1} is returned, and the caller should check - \code{PyErr_Occurred()} to find out whether there was an error, or - whether the value just happened to be -1. -\end{cfuncdesc} - -\begin{cfuncdesc}{long}{PyInt_AS_LONG}{PyObject *io} - Return the value of the object \var{io}. No error checking is - performed. -\end{cfuncdesc} - -\begin{cfuncdesc}{unsigned long}{PyInt_AsUnsignedLongMask}{PyObject *io} - Will first attempt to cast the object to a \ctype{PyIntObject} or - \ctype{PyLongObject}, if it is not already one, and then return its - value as unsigned long. This function does not check for overflow. - \versionadded{2.3} -\end{cfuncdesc} - -\begin{cfuncdesc}{unsigned PY_LONG_LONG}{PyInt_AsUnsignedLongLongMask}{PyObject *io} - Will first attempt to cast the object to a \ctype{PyIntObject} or - \ctype{PyLongObject}, if it is not already one, and then return its - value as unsigned long long, without checking for overflow. - \versionadded{2.3} -\end{cfuncdesc} - -\begin{cfuncdesc}{Py_ssize_t}{PyInt_AsSsize_t}{PyObject *io} - Will first attempt to cast the object to a \ctype{PyIntObject} or - \ctype{PyLongObject}, if it is not already one, and then return its - value as \ctype{Py_ssize_t}. - \versionadded{2.5} -\end{cfuncdesc} - -\begin{cfuncdesc}{long}{PyInt_GetMax}{} - Return the system's idea of the largest integer it can handle - (\constant{LONG_MAX}\ttindex{LONG_MAX}, as defined in the system - header files). -\end{cfuncdesc} - -\subsection{Boolean Objects \label{boolObjects}} - -Booleans in Python are implemented as a subclass of integers. There -are only two booleans, \constant{Py_False} and \constant{Py_True}. As -such, the normal creation and deletion functions don't apply to -booleans. The following macros are available, however. - -\begin{cfuncdesc}{int}{PyBool_Check}{PyObject *o} - Return true if \var{o} is of type \cdata{PyBool_Type}. - \versionadded{2.3} -\end{cfuncdesc} - -\begin{cvardesc}{PyObject*}{Py_False} - The Python \code{False} object. This object has no methods. It needs to - be treated just like any other object with respect to reference counts. -\end{cvardesc} - -\begin{cvardesc}{PyObject*}{Py_True} - The Python \code{True} object. This object has no methods. It needs to - be treated just like any other object with respect to reference counts. -\end{cvardesc} - -\begin{csimplemacrodesc}{Py_RETURN_FALSE} - Return \constant{Py_False} from a function, properly incrementing its - reference count. -\versionadded{2.4} -\end{csimplemacrodesc} - -\begin{csimplemacrodesc}{Py_RETURN_TRUE} - Return \constant{Py_True} from a function, properly incrementing its - reference count. -\versionadded{2.4} -\end{csimplemacrodesc} - -\begin{cfuncdesc}{PyObject*}{PyBool_FromLong}{long v} - Return a new reference to \constant{Py_True} or \constant{Py_False} - depending on the truth value of \var{v}. -\versionadded{2.3} -\end{cfuncdesc} - -\subsection{Long Integer Objects \label{longObjects}} - -\obindex{long integer} -\begin{ctypedesc}{PyLongObject} - This subtype of \ctype{PyObject} represents a Python long integer - object. -\end{ctypedesc} - -\begin{cvardesc}{PyTypeObject}{PyLong_Type} - This instance of \ctype{PyTypeObject} represents the Python long - integer type. This is the same object as \code{long} and - \code{types.LongType}. - \withsubitem{(in modules types)}{\ttindex{LongType}} -\end{cvardesc} - -\begin{cfuncdesc}{int}{PyLong_Check}{PyObject *p} - Return true if its argument is a \ctype{PyLongObject} or a subtype - of \ctype{PyLongObject}. - \versionchanged[Allowed subtypes to be accepted]{2.2} -\end{cfuncdesc} - -\begin{cfuncdesc}{int}{PyLong_CheckExact}{PyObject *p} - Return true if its argument is a \ctype{PyLongObject}, but not a - subtype of \ctype{PyLongObject}. - \versionadded{2.2} -\end{cfuncdesc} - -\begin{cfuncdesc}{PyObject*}{PyLong_FromLong}{long v} - Return a new \ctype{PyLongObject} object from \var{v}, or \NULL{} - on failure. -\end{cfuncdesc} - -\begin{cfuncdesc}{PyObject*}{PyLong_FromUnsignedLong}{unsigned long v} - Return a new \ctype{PyLongObject} object from a C \ctype{unsigned - long}, or \NULL{} on failure. -\end{cfuncdesc} - -\begin{cfuncdesc}{PyObject*}{PyLong_FromLongLong}{PY_LONG_LONG v} - Return a new \ctype{PyLongObject} object from a C \ctype{long long}, - or \NULL{} on failure. -\end{cfuncdesc} - -\begin{cfuncdesc}{PyObject*}{PyLong_FromUnsignedLongLong}{unsigned PY_LONG_LONG v} - Return a new \ctype{PyLongObject} object from a C \ctype{unsigned - long long}, or \NULL{} on failure. -\end{cfuncdesc} - -\begin{cfuncdesc}{PyObject*}{PyLong_FromDouble}{double v} - Return a new \ctype{PyLongObject} object from the integer part of - \var{v}, or \NULL{} on failure. -\end{cfuncdesc} - -\begin{cfuncdesc}{PyObject*}{PyLong_FromString}{char *str, char **pend, - int base} - Return a new \ctype{PyLongObject} based on the string value in - \var{str}, which is interpreted according to the radix in - \var{base}. If \var{pend} is non-\NULL{}, \code{*\var{pend}} will - point to the first character in \var{str} which follows the - representation of the number. If \var{base} is \code{0}, the radix - will be determined based on the leading characters of \var{str}: if - \var{str} starts with \code{'0x'} or \code{'0X'}, radix 16 will be - used; if \var{str} starts with \code{'0'}, radix 8 will be used; - otherwise radix 10 will be used. If \var{base} is not \code{0}, it - must be between \code{2} and \code{36}, inclusive. Leading spaces - are ignored. If there are no digits, \exception{ValueError} will be - raised. -\end{cfuncdesc} - -\begin{cfuncdesc}{PyObject*}{PyLong_FromUnicode}{Py_UNICODE *u, - Py_ssize_t length, int base} - Convert a sequence of Unicode digits to a Python long integer - value. The first parameter, \var{u}, points to the first character - of the Unicode string, \var{length} gives the number of characters, - and \var{base} is the radix for the conversion. The radix must be - in the range [2, 36]; if it is out of range, \exception{ValueError} - will be raised. - \versionadded{1.6} -\end{cfuncdesc} - -\begin{cfuncdesc}{PyObject*}{PyLong_FromVoidPtr}{void *p} - Create a Python integer or long integer from the pointer \var{p}. - The pointer value can be retrieved from the resulting value using - \cfunction{PyLong_AsVoidPtr()}. - \versionadded{1.5.2} - \versionchanged[If the integer is larger than LONG_MAX, - a positive long integer is returned]{2.5} - \end{cfuncdesc} - -\begin{cfuncdesc}{long}{PyLong_AsLong}{PyObject *pylong} - Return a C \ctype{long} representation of the contents of - \var{pylong}. If \var{pylong} is greater than - \constant{LONG_MAX}\ttindex{LONG_MAX}, an \exception{OverflowError} - is raised. - \withsubitem{(built-in exception)}{\ttindex{OverflowError}} -\end{cfuncdesc} - -\begin{cfuncdesc}{unsigned long}{PyLong_AsUnsignedLong}{PyObject *pylong} - Return a C \ctype{unsigned long} representation of the contents of - \var{pylong}. If \var{pylong} is greater than - \constant{ULONG_MAX}\ttindex{ULONG_MAX}, an - \exception{OverflowError} is raised. - \withsubitem{(built-in exception)}{\ttindex{OverflowError}} -\end{cfuncdesc} - -\begin{cfuncdesc}{PY_LONG_LONG}{PyLong_AsLongLong}{PyObject *pylong} - Return a C \ctype{long long} from a Python long integer. If - \var{pylong} cannot be represented as a \ctype{long long}, an - \exception{OverflowError} will be raised. - \versionadded{2.2} -\end{cfuncdesc} - -\begin{cfuncdesc}{unsigned PY_LONG_LONG}{PyLong_AsUnsignedLongLong}{PyObject - *pylong} - Return a C \ctype{unsigned long long} from a Python long integer. - If \var{pylong} cannot be represented as an \ctype{unsigned long - long}, an \exception{OverflowError} will be raised if the value is - positive, or a \exception{TypeError} will be raised if the value is - negative. - \versionadded{2.2} -\end{cfuncdesc} - -\begin{cfuncdesc}{unsigned long}{PyLong_AsUnsignedLongMask}{PyObject *io} - Return a C \ctype{unsigned long} from a Python long integer, without - checking for overflow. - \versionadded{2.3} -\end{cfuncdesc} - -\begin{cfuncdesc}{unsigned PY_LONG_LONG}{PyLong_AsUnsignedLongLongMask}{PyObject *io} - Return a C \ctype{unsigned long long} from a Python long integer, without - checking for overflow. - \versionadded{2.3} -\end{cfuncdesc} - -\begin{cfuncdesc}{double}{PyLong_AsDouble}{PyObject *pylong} - Return a C \ctype{double} representation of the contents of - \var{pylong}. If \var{pylong} cannot be approximately represented - as a \ctype{double}, an \exception{OverflowError} exception is - raised and \code{-1.0} will be returned. -\end{cfuncdesc} - -\begin{cfuncdesc}{void*}{PyLong_AsVoidPtr}{PyObject *pylong} - Convert a Python integer or long integer \var{pylong} to a C - \ctype{void} pointer. If \var{pylong} cannot be converted, an - \exception{OverflowError} will be raised. This is only assured to - produce a usable \ctype{void} pointer for values created with - \cfunction{PyLong_FromVoidPtr()}. - \versionadded{1.5.2} - \versionchanged[For values outside 0..LONG_MAX, both signed and - unsigned integers are acccepted]{2.5} -\end{cfuncdesc} - - -\subsection{Floating Point Objects \label{floatObjects}} - -\obindex{floating point} -\begin{ctypedesc}{PyFloatObject} - This subtype of \ctype{PyObject} represents a Python floating point - object. -\end{ctypedesc} - -\begin{cvardesc}{PyTypeObject}{PyFloat_Type} - This instance of \ctype{PyTypeObject} represents the Python floating - point type. This is the same object as \code{float} and - \code{types.FloatType}. - \withsubitem{(in modules types)}{\ttindex{FloatType}} -\end{cvardesc} - -\begin{cfuncdesc}{int}{PyFloat_Check}{PyObject *p} - Return true if its argument is a \ctype{PyFloatObject} or a subtype - of \ctype{PyFloatObject}. - \versionchanged[Allowed subtypes to be accepted]{2.2} -\end{cfuncdesc} - -\begin{cfuncdesc}{int}{PyFloat_CheckExact}{PyObject *p} - Return true if its argument is a \ctype{PyFloatObject}, but not a - subtype of \ctype{PyFloatObject}. - \versionadded{2.2} -\end{cfuncdesc} - -\begin{cfuncdesc}{PyObject*}{PyFloat_FromString}{PyObject *str} - Create a \ctype{PyFloatObject} object based on the string value in - \var{str}, or \NULL{} on failure. -\end{cfuncdesc} - -\begin{cfuncdesc}{PyObject*}{PyFloat_FromDouble}{double v} - Create a \ctype{PyFloatObject} object from \var{v}, or \NULL{} on - failure. -\end{cfuncdesc} - -\begin{cfuncdesc}{double}{PyFloat_AsDouble}{PyObject *pyfloat} - Return a C \ctype{double} representation of the contents of - \var{pyfloat}. If \var{pyfloat} is not a Python floating point - object but has a \method{__float__} method, this method will first - be called to convert \var{pyfloat} into a float. -\end{cfuncdesc} - -\begin{cfuncdesc}{double}{PyFloat_AS_DOUBLE}{PyObject *pyfloat} - Return a C \ctype{double} representation of the contents of - \var{pyfloat}, but without error checking. -\end{cfuncdesc} - - -\subsection{Complex Number Objects \label{complexObjects}} - -\obindex{complex number} -Python's complex number objects are implemented as two distinct types -when viewed from the C API: one is the Python object exposed to -Python programs, and the other is a C structure which represents the -actual complex number value. The API provides functions for working -with both. - -\subsubsection{Complex Numbers as C Structures} - -Note that the functions which accept these structures as parameters -and return them as results do so \emph{by value} rather than -dereferencing them through pointers. This is consistent throughout -the API. - -\begin{ctypedesc}{Py_complex} - The C structure which corresponds to the value portion of a Python - complex number object. Most of the functions for dealing with - complex number objects use structures of this type as input or - output values, as appropriate. It is defined as: - -\begin{verbatim} -typedef struct { - double real; - double imag; -} Py_complex; -\end{verbatim} -\end{ctypedesc} - -\begin{cfuncdesc}{Py_complex}{_Py_c_sum}{Py_complex left, Py_complex right} - Return the sum of two complex numbers, using the C - \ctype{Py_complex} representation. -\end{cfuncdesc} - -\begin{cfuncdesc}{Py_complex}{_Py_c_diff}{Py_complex left, Py_complex right} - Return the difference between two complex numbers, using the C - \ctype{Py_complex} representation. -\end{cfuncdesc} - -\begin{cfuncdesc}{Py_complex}{_Py_c_neg}{Py_complex complex} - Return the negation of the complex number \var{complex}, using the C - \ctype{Py_complex} representation. -\end{cfuncdesc} - -\begin{cfuncdesc}{Py_complex}{_Py_c_prod}{Py_complex left, Py_complex right} - Return the product of two complex numbers, using the C - \ctype{Py_complex} representation. -\end{cfuncdesc} - -\begin{cfuncdesc}{Py_complex}{_Py_c_quot}{Py_complex dividend, - Py_complex divisor} - Return the quotient of two complex numbers, using the C - \ctype{Py_complex} representation. -\end{cfuncdesc} - -\begin{cfuncdesc}{Py_complex}{_Py_c_pow}{Py_complex num, Py_complex exp} - Return the exponentiation of \var{num} by \var{exp}, using the C - \ctype{Py_complex} representation. -\end{cfuncdesc} - - -\subsubsection{Complex Numbers as Python Objects} - -\begin{ctypedesc}{PyComplexObject} - This subtype of \ctype{PyObject} represents a Python complex number - object. -\end{ctypedesc} - -\begin{cvardesc}{PyTypeObject}{PyComplex_Type} - This instance of \ctype{PyTypeObject} represents the Python complex - number type. It is the same object as \code{complex} and - \code{types.ComplexType}. -\end{cvardesc} - -\begin{cfuncdesc}{int}{PyComplex_Check}{PyObject *p} - Return true if its argument is a \ctype{PyComplexObject} or a - subtype of \ctype{PyComplexObject}. - \versionchanged[Allowed subtypes to be accepted]{2.2} -\end{cfuncdesc} - -\begin{cfuncdesc}{int}{PyComplex_CheckExact}{PyObject *p} - Return true if its argument is a \ctype{PyComplexObject}, but not a - subtype of \ctype{PyComplexObject}. - \versionadded{2.2} -\end{cfuncdesc} - -\begin{cfuncdesc}{PyObject*}{PyComplex_FromCComplex}{Py_complex v} - Create a new Python complex number object from a C - \ctype{Py_complex} value. -\end{cfuncdesc} - -\begin{cfuncdesc}{PyObject*}{PyComplex_FromDoubles}{double real, double imag} - Return a new \ctype{PyComplexObject} object from \var{real} and - \var{imag}. -\end{cfuncdesc} - -\begin{cfuncdesc}{double}{PyComplex_RealAsDouble}{PyObject *op} - Return the real part of \var{op} as a C \ctype{double}. -\end{cfuncdesc} - -\begin{cfuncdesc}{double}{PyComplex_ImagAsDouble}{PyObject *op} - Return the imaginary part of \var{op} as a C \ctype{double}. -\end{cfuncdesc} - -\begin{cfuncdesc}{Py_complex}{PyComplex_AsCComplex}{PyObject *op} - Return the \ctype{Py_complex} value of the complex number \var{op}. - \versionchanged[If \var{op} is not a Python complex number object - but has a \method{__complex__} method, this method - will first be called to convert \var{op} to a Python - complex number object]{2.6} -\end{cfuncdesc} - - - -\section{Sequence Objects \label{sequenceObjects}} - -\obindex{sequence} -Generic operations on sequence objects were discussed in the previous -chapter; this section deals with the specific kinds of sequence -objects that are intrinsic to the Python language. - - -\subsection{String Objects \label{stringObjects}} - -These functions raise \exception{TypeError} when expecting a string -parameter and are called with a non-string parameter. - -\obindex{string} -\begin{ctypedesc}{PyStringObject} - This subtype of \ctype{PyObject} represents a Python string object. -\end{ctypedesc} - -\begin{cvardesc}{PyTypeObject}{PyString_Type} - This instance of \ctype{PyTypeObject} represents the Python string - type; it is the same object as \code{str} and \code{types.StringType} - in the Python layer. - \withsubitem{(in module types)}{\ttindex{StringType}}. -\end{cvardesc} - -\begin{cfuncdesc}{int}{PyString_Check}{PyObject *o} - Return true if the object \var{o} is a string object or an instance - of a subtype of the string type. - \versionchanged[Allowed subtypes to be accepted]{2.2} -\end{cfuncdesc} - -\begin{cfuncdesc}{int}{PyString_CheckExact}{PyObject *o} - Return true if the object \var{o} is a string object, but not an - instance of a subtype of the string type. - \versionadded{2.2} -\end{cfuncdesc} - -\begin{cfuncdesc}{PyObject*}{PyString_FromString}{const char *v} - Return a new string object with a copy of the string \var{v} as value - on success, and \NULL{} on failure. The parameter \var{v} must not be - \NULL{}; it will not be checked. -\end{cfuncdesc} - -\begin{cfuncdesc}{PyObject*}{PyString_FromStringAndSize}{const char *v, - Py_ssize_t len} - Return a new string object with a copy of the string \var{v} as value - and length \var{len} on success, and \NULL{} on failure. If \var{v} is - \NULL{}, the contents of the string are uninitialized. -\end{cfuncdesc} - -\begin{cfuncdesc}{PyObject*}{PyString_FromFormat}{const char *format, ...} - Take a C \cfunction{printf()}-style \var{format} string and a - variable number of arguments, calculate the size of the resulting - Python string and return a string with the values formatted into - it. The variable arguments must be C types and must correspond - exactly to the format characters in the \var{format} string. The - following format characters are allowed: - - % This should be exactly the same as the table in PyErr_Format. - % One should just refer to the other. - - % The descriptions for %zd and %zu are wrong, but the truth is complicated - % because not all compilers support the %z width modifier -- we fake it - % when necessary via interpolating PY_FORMAT_SIZE_T. - - % %u, %lu, %zu should have "new in Python 2.5" blurbs. - - \begin{tableiii}{l|l|l}{member}{Format Characters}{Type}{Comment} - \lineiii{\%\%}{\emph{n/a}}{The literal \% character.} - \lineiii{\%c}{int}{A single character, represented as an C int.} - \lineiii{\%d}{int}{Exactly equivalent to \code{printf("\%d")}.} - \lineiii{\%u}{unsigned int}{Exactly equivalent to \code{printf("\%u")}.} - \lineiii{\%ld}{long}{Exactly equivalent to \code{printf("\%ld")}.} - \lineiii{\%lu}{unsigned long}{Exactly equivalent to \code{printf("\%lu")}.} - \lineiii{\%zd}{Py_ssize_t}{Exactly equivalent to \code{printf("\%zd")}.} - \lineiii{\%zu}{size_t}{Exactly equivalent to \code{printf("\%zu")}.} - \lineiii{\%i}{int}{Exactly equivalent to \code{printf("\%i")}.} - \lineiii{\%x}{int}{Exactly equivalent to \code{printf("\%x")}.} - \lineiii{\%s}{char*}{A null-terminated C character array.} - \lineiii{\%p}{void*}{The hex representation of a C pointer. - Mostly equivalent to \code{printf("\%p")} except that it is - guaranteed to start with the literal \code{0x} regardless of - what the platform's \code{printf} yields.} - \end{tableiii} - - An unrecognized format character causes all the rest of the format - string to be copied as-is to the result string, and any extra - arguments discarded. -\end{cfuncdesc} - -\begin{cfuncdesc}{PyObject*}{PyString_FromFormatV}{const char *format, - va_list vargs} - Identical to \function{PyString_FromFormat()} except that it takes - exactly two arguments. -\end{cfuncdesc} - -\begin{cfuncdesc}{Py_ssize_t}{PyString_Size}{PyObject *string} - Return the length of the string in string object \var{string}. -\end{cfuncdesc} - -\begin{cfuncdesc}{Py_ssize_t}{PyString_GET_SIZE}{PyObject *string} - Macro form of \cfunction{PyString_Size()} but without error - checking. -\end{cfuncdesc} - -\begin{cfuncdesc}{char*}{PyString_AsString}{PyObject *string} - Return a NUL-terminated representation of the contents of - \var{string}. The pointer refers to the internal buffer of - \var{string}, not a copy. The data must not be modified in any way, - unless the string was just created using - \code{PyString_FromStringAndSize(NULL, \var{size})}. - It must not be deallocated. If \var{string} is a Unicode object, - this function computes the default encoding of \var{string} and - operates on that. If \var{string} is not a string object at all, - \cfunction{PyString_AsString()} returns \NULL{} and raises - \exception{TypeError}. -\end{cfuncdesc} - -\begin{cfuncdesc}{char*}{PyString_AS_STRING}{PyObject *string} - Macro form of \cfunction{PyString_AsString()} but without error - checking. Only string objects are supported; no Unicode objects - should be passed. -\end{cfuncdesc} - -\begin{cfuncdesc}{int}{PyString_AsStringAndSize}{PyObject *obj, - char **buffer, - Py_ssize_t *length} - Return a NUL-terminated representation of the contents of the - object \var{obj} through the output variables \var{buffer} and - \var{length}. - - The function accepts both string and Unicode objects as input. For - Unicode objects it returns the default encoded version of the - object. If \var{length} is \NULL{}, the resulting buffer may not - contain NUL characters; if it does, the function returns \code{-1} - and a \exception{TypeError} is raised. - - The buffer refers to an internal string buffer of \var{obj}, not a - copy. The data must not be modified in any way, unless the string - was just created using \code{PyString_FromStringAndSize(NULL, - \var{size})}. It must not be deallocated. If \var{string} is a - Unicode object, this function computes the default encoding of - \var{string} and operates on that. If \var{string} is not a string - object at all, \cfunction{PyString_AsStringAndSize()} returns - \code{-1} and raises \exception{TypeError}. -\end{cfuncdesc} - -\begin{cfuncdesc}{void}{PyString_Concat}{PyObject **string, - PyObject *newpart} - Create a new string object in \var{*string} containing the contents - of \var{newpart} appended to \var{string}; the caller will own the - new reference. The reference to the old value of \var{string} will - be stolen. If the new string cannot be created, the old reference - to \var{string} will still be discarded and the value of - \var{*string} will be set to \NULL{}; the appropriate exception will - be set. -\end{cfuncdesc} - -\begin{cfuncdesc}{void}{PyString_ConcatAndDel}{PyObject **string, - PyObject *newpart} - Create a new string object in \var{*string} containing the contents - of \var{newpart} appended to \var{string}. This version decrements - the reference count of \var{newpart}. -\end{cfuncdesc} - -\begin{cfuncdesc}{int}{_PyString_Resize}{PyObject **string, Py_ssize_t newsize} - A way to resize a string object even though it is ``immutable''. - Only use this to build up a brand new string object; don't use this - if the string may already be known in other parts of the code. It - is an error to call this function if the refcount on the input string - object is not one. - Pass the address of an existing string object as an lvalue (it may - be written into), and the new size desired. On success, \var{*string} - holds the resized string object and \code{0} is returned; the address in - \var{*string} may differ from its input value. If the - reallocation fails, the original string object at \var{*string} is - deallocated, \var{*string} is set to \NULL{}, a memory exception is set, - and \code{-1} is returned. -\end{cfuncdesc} - -\begin{cfuncdesc}{PyObject*}{PyString_Format}{PyObject *format, - PyObject *args} - Return a new string object from \var{format} and \var{args}. - Analogous to \code{\var{format} \%\ \var{args}}. The \var{args} - argument must be a tuple. -\end{cfuncdesc} - -\begin{cfuncdesc}{void}{PyString_InternInPlace}{PyObject **string} - Intern the argument \var{*string} in place. The argument must be - the address of a pointer variable pointing to a Python string - object. If there is an existing interned string that is the same as - \var{*string}, it sets \var{*string} to it (decrementing the - reference count of the old string object and incrementing the - reference count of the interned string object), otherwise it leaves - \var{*string} alone and interns it (incrementing its reference - count). (Clarification: even though there is a lot of talk about - reference counts, think of this function as reference-count-neutral; - you own the object after the call if and only if you owned it before - the call.) -\end{cfuncdesc} - -\begin{cfuncdesc}{PyObject*}{PyString_InternFromString}{const char *v} - A combination of \cfunction{PyString_FromString()} and - \cfunction{PyString_InternInPlace()}, returning either a new string - object that has been interned, or a new (``owned'') reference to an - earlier interned string object with the same value. -\end{cfuncdesc} - -\begin{cfuncdesc}{PyObject*}{PyString_Decode}{const char *s, - Py_ssize_t size, - const char *encoding, - const char *errors} - Create an object by decoding \var{size} bytes of the encoded - buffer \var{s} using the codec registered for - \var{encoding}. \var{encoding} and \var{errors} have the same - meaning as the parameters of the same name in the - \function{unicode()} built-in function. The codec to be used is - looked up using the Python codec registry. Return \NULL{} if - an exception was raised by the codec. -\end{cfuncdesc} - -\begin{cfuncdesc}{PyObject*}{PyString_AsDecodedObject}{PyObject *str, - const char *encoding, - const char *errors} - Decode a string object by passing it to the codec registered for - \var{encoding} and return the result as Python - object. \var{encoding} and \var{errors} have the same meaning as the - parameters of the same name in the string \method{encode()} method. - The codec to be used is looked up using the Python codec registry. - Return \NULL{} if an exception was raised by the codec. -\end{cfuncdesc} - -\begin{cfuncdesc}{PyObject*}{PyString_Encode}{const char *s, - Py_ssize_t size, - const char *encoding, - const char *errors} - Encode the \ctype{char} buffer of the given size by passing it to - the codec registered for \var{encoding} and return a Python object. - \var{encoding} and \var{errors} have the same meaning as the - parameters of the same name in the string \method{encode()} method. - The codec to be used is looked up using the Python codec - registry. Return \NULL{} if an exception was raised by the - codec. -\end{cfuncdesc} - -\begin{cfuncdesc}{PyObject*}{PyString_AsEncodedObject}{PyObject *str, - const char *encoding, - const char *errors} - Encode a string object using the codec registered for - \var{encoding} and return the result as Python object. - \var{encoding} and \var{errors} have the same meaning as the - parameters of the same name in the string \method{encode()} method. - The codec to be used is looked up using the Python codec registry. - Return \NULL{} if an exception was raised by the codec. -\end{cfuncdesc} - - -\subsection{Unicode Objects \label{unicodeObjects}} -\sectionauthor{Marc-Andre Lemburg}{mal@lemburg.com} - -%--- Unicode Type ------------------------------------------------------- - -These are the basic Unicode object types used for the Unicode -implementation in Python: - -\begin{ctypedesc}{Py_UNICODE} - This type represents the storage type which is used by Python - internally as basis for holding Unicode ordinals. Python's default - builds use a 16-bit type for \ctype{Py_UNICODE} and store Unicode - values internally as UCS2. It is also possible to build a UCS4 - version of Python (most recent Linux distributions come with UCS4 - builds of Python). These builds then use a 32-bit type for - \ctype{Py_UNICODE} and store Unicode data internally as UCS4. On - platforms where \ctype{wchar_t} is available and compatible with the - chosen Python Unicode build variant, \ctype{Py_UNICODE} is a typedef - alias for \ctype{wchar_t} to enhance native platform compatibility. - On all other platforms, \ctype{Py_UNICODE} is a typedef alias for - either \ctype{unsigned short} (UCS2) or \ctype{unsigned long} - (UCS4). -\end{ctypedesc} - -Note that UCS2 and UCS4 Python builds are not binary compatible. -Please keep this in mind when writing extensions or interfaces. - -\begin{ctypedesc}{PyUnicodeObject} - This subtype of \ctype{PyObject} represents a Python Unicode object. -\end{ctypedesc} - -\begin{cvardesc}{PyTypeObject}{PyUnicode_Type} - This instance of \ctype{PyTypeObject} represents the Python Unicode - type. It is exposed to Python code as \code{unicode} and - \code{types.UnicodeType}. -\end{cvardesc} - -The following APIs are really C macros and can be used to do fast -checks and to access internal read-only data of Unicode objects: - -\begin{cfuncdesc}{int}{PyUnicode_Check}{PyObject *o} - Return true if the object \var{o} is a Unicode object or an - instance of a Unicode subtype. - \versionchanged[Allowed subtypes to be accepted]{2.2} -\end{cfuncdesc} - -\begin{cfuncdesc}{int}{PyUnicode_CheckExact}{PyObject *o} - Return true if the object \var{o} is a Unicode object, but not an - instance of a subtype. - \versionadded{2.2} -\end{cfuncdesc} - -\begin{cfuncdesc}{Py_ssize_t}{PyUnicode_GET_SIZE}{PyObject *o} - Return the size of the object. \var{o} has to be a - \ctype{PyUnicodeObject} (not checked). -\end{cfuncdesc} - -\begin{cfuncdesc}{Py_ssize_t}{PyUnicode_GET_DATA_SIZE}{PyObject *o} - Return the size of the object's internal buffer in bytes. \var{o} - has to be a \ctype{PyUnicodeObject} (not checked). -\end{cfuncdesc} - -\begin{cfuncdesc}{Py_UNICODE*}{PyUnicode_AS_UNICODE}{PyObject *o} - Return a pointer to the internal \ctype{Py_UNICODE} buffer of the - object. \var{o} has to be a \ctype{PyUnicodeObject} (not checked). -\end{cfuncdesc} - -\begin{cfuncdesc}{const char*}{PyUnicode_AS_DATA}{PyObject *o} - Return a pointer to the internal buffer of the object. - \var{o} has to be a \ctype{PyUnicodeObject} (not checked). -\end{cfuncdesc} - -% --- Unicode character properties --------------------------------------- - -Unicode provides many different character properties. The most often -needed ones are available through these macros which are mapped to C -functions depending on the Python configuration. - -\begin{cfuncdesc}{int}{Py_UNICODE_ISSPACE}{Py_UNICODE ch} - Return 1 or 0 depending on whether \var{ch} is a whitespace - character. -\end{cfuncdesc} - -\begin{cfuncdesc}{int}{Py_UNICODE_ISLOWER}{Py_UNICODE ch} - Return 1 or 0 depending on whether \var{ch} is a lowercase character. -\end{cfuncdesc} - -\begin{cfuncdesc}{int}{Py_UNICODE_ISUPPER}{Py_UNICODE ch} - Return 1 or 0 depending on whether \var{ch} is an uppercase - character. -\end{cfuncdesc} - -\begin{cfuncdesc}{int}{Py_UNICODE_ISTITLE}{Py_UNICODE ch} - Return 1 or 0 depending on whether \var{ch} is a titlecase character. -\end{cfuncdesc} - -\begin{cfuncdesc}{int}{Py_UNICODE_ISLINEBREAK}{Py_UNICODE ch} - Return 1 or 0 depending on whether \var{ch} is a linebreak character. -\end{cfuncdesc} - -\begin{cfuncdesc}{int}{Py_UNICODE_ISDECIMAL}{Py_UNICODE ch} - Return 1 or 0 depending on whether \var{ch} is a decimal character. -\end{cfuncdesc} - -\begin{cfuncdesc}{int}{Py_UNICODE_ISDIGIT}{Py_UNICODE ch} - Return 1 or 0 depending on whether \var{ch} is a digit character. -\end{cfuncdesc} - -\begin{cfuncdesc}{int}{Py_UNICODE_ISNUMERIC}{Py_UNICODE ch} - Return 1 or 0 depending on whether \var{ch} is a numeric character. -\end{cfuncdesc} - -\begin{cfuncdesc}{int}{Py_UNICODE_ISALPHA}{Py_UNICODE ch} - Return 1 or 0 depending on whether \var{ch} is an alphabetic - character. -\end{cfuncdesc} - -\begin{cfuncdesc}{int}{Py_UNICODE_ISALNUM}{Py_UNICODE ch} - Return 1 or 0 depending on whether \var{ch} is an alphanumeric - character. -\end{cfuncdesc} - -These APIs can be used for fast direct character conversions: - -\begin{cfuncdesc}{Py_UNICODE}{Py_UNICODE_TOLOWER}{Py_UNICODE ch} - Return the character \var{ch} converted to lower case. -\end{cfuncdesc} - -\begin{cfuncdesc}{Py_UNICODE}{Py_UNICODE_TOUPPER}{Py_UNICODE ch} - Return the character \var{ch} converted to upper case. -\end{cfuncdesc} - -\begin{cfuncdesc}{Py_UNICODE}{Py_UNICODE_TOTITLE}{Py_UNICODE ch} - Return the character \var{ch} converted to title case. -\end{cfuncdesc} - -\begin{cfuncdesc}{int}{Py_UNICODE_TODECIMAL}{Py_UNICODE ch} - Return the character \var{ch} converted to a decimal positive - integer. Return \code{-1} if this is not possible. This macro - does not raise exceptions. -\end{cfuncdesc} - -\begin{cfuncdesc}{int}{Py_UNICODE_TODIGIT}{Py_UNICODE ch} - Return the character \var{ch} converted to a single digit integer. - Return \code{-1} if this is not possible. This macro does not raise - exceptions. -\end{cfuncdesc} - -\begin{cfuncdesc}{double}{Py_UNICODE_TONUMERIC}{Py_UNICODE ch} - Return the character \var{ch} converted to a double. - Return \code{-1.0} if this is not possible. This macro does not raise - exceptions. -\end{cfuncdesc} - -% --- Plain Py_UNICODE --------------------------------------------------- - -To create Unicode objects and access their basic sequence properties, -use these APIs: - -\begin{cfuncdesc}{PyObject*}{PyUnicode_FromUnicode}{const Py_UNICODE *u, - Py_ssize_t size} - Create a Unicode Object from the Py_UNICODE buffer \var{u} of the - given size. \var{u} may be \NULL{} which causes the contents to be - undefined. It is the user's responsibility to fill in the needed - data. The buffer is copied into the new object. If the buffer is - not \NULL{}, the return value might be a shared object. Therefore, - modification of the resulting Unicode object is only allowed when - \var{u} is \NULL{}. -\end{cfuncdesc} - -\begin{cfuncdesc}{PyObject*}{PyUnicode_FromStringAndSize}{const char *u, - Py_ssize_t size} - Create a Unicode Object from the char buffer \var{u}. - The bytes will be interpreted as being UTF-8 encoded. - \var{u} may also be \NULL{} which causes the - contents to be undefined. It is the user's responsibility to fill - in the needed data. The buffer is copied into the new object. - If the buffer is not \NULL{}, the return value might be a shared object. - Therefore, modification of the resulting Unicode object is only allowed - when \var{u} is \NULL{}. - \versionadded{3.0} -\end{cfuncdesc} - -\begin{cfuncdesc}{PyObject*}{PyUnicode_FromString}{const char*u} - Create a Unicode object from an UTF-8 encoded null-terminated - char buffer \var{u}. - \versionadded{3.0} -\end{cfuncdesc} - -\begin{cfuncdesc}{PyObject*}{PyUnicode_FromFormat}{const char *format, ...} - Take a C \cfunction{printf()}-style \var{format} string and a - variable number of arguments, calculate the size of the resulting - Python unicode string and return a string with the values formatted into - it. The variable arguments must be C types and must correspond - exactly to the format characters in the \var{format} string. The - following format characters are allowed: - - % The descriptions for %zd and %zu are wrong, but the truth is complicated - % because not all compilers support the %z width modifier -- we fake it - % when necessary via interpolating PY_FORMAT_SIZE_T. - - \begin{tableiii}{l|l|l}{member}{Format Characters}{Type}{Comment} - \lineiii{\%\%}{\emph{n/a}}{The literal \% character.} - \lineiii{\%c}{int}{A single character, represented as an C int.} - \lineiii{\%d}{int}{Exactly equivalent to \code{printf("\%d")}.} - \lineiii{\%u}{unsigned int}{Exactly equivalent to \code{printf("\%u")}.} - \lineiii{\%ld}{long}{Exactly equivalent to \code{printf("\%ld")}.} - \lineiii{\%lu}{unsigned long}{Exactly equivalent to \code{printf("\%lu")}.} - \lineiii{\%zd}{Py_ssize_t}{Exactly equivalent to \code{printf("\%zd")}.} - \lineiii{\%zu}{size_t}{Exactly equivalent to \code{printf("\%zu")}.} - \lineiii{\%i}{int}{Exactly equivalent to \code{printf("\%i")}.} - \lineiii{\%x}{int}{Exactly equivalent to \code{printf("\%x")}.} - \lineiii{\%s}{char*}{A null-terminated C character array.} - \lineiii{\%p}{void*}{The hex representation of a C pointer. - Mostly equivalent to \code{printf("\%p")} except that it is - guaranteed to start with the literal \code{0x} regardless of - what the platform's \code{printf} yields.} - \lineiii{\%U}{PyObject*}{A unicode object.} - \lineiii{\%V}{PyObject*, char *}{A unicode object (which may be \NULL{}) - and a null-terminated C character array as a second parameter (which - will be used, if the first parameter is \NULL{}).} - \lineiii{\%S}{PyObject*}{The result of calling \function{PyObject_Unicode()}.} - \lineiii{\%R}{PyObject*}{The result of calling \function{PyObject_Repr()}.} - \end{tableiii} - - An unrecognized format character causes all the rest of the format - string to be copied as-is to the result string, and any extra - arguments discarded. - \versionadded{3.0} -\end{cfuncdesc} - -\begin{cfuncdesc}{PyObject*}{PyUnicode_FromFormatV}{const char *format, - va_list vargs} - Identical to \function{PyUnicode_FromFormat()} except that it takes - exactly two arguments. - \versionadded{3.0} -\end{cfuncdesc} - -\begin{cfuncdesc}{Py_UNICODE*}{PyUnicode_AsUnicode}{PyObject *unicode} - Return a read-only pointer to the Unicode object's internal - \ctype{Py_UNICODE} buffer, \NULL{} if \var{unicode} is not a Unicode - object. -\end{cfuncdesc} - -\begin{cfuncdesc}{Py_ssize_t}{PyUnicode_GetSize}{PyObject *unicode} - Return the length of the Unicode object. -\end{cfuncdesc} - -\begin{cfuncdesc}{PyObject*}{PyUnicode_FromEncodedObject}{PyObject *obj, - const char *encoding, - const char *errors} - Coerce an encoded object \var{obj} to an Unicode object and return a - reference with incremented refcount. - - String and other char buffer compatible objects are decoded - according to the given encoding and using the error handling - defined by errors. Both can be \NULL{} to have the interface - use the default values (see the next section for details). - - All other objects, including Unicode objects, cause a - \exception{TypeError} to be set. - - The API returns \NULL{} if there was an error. The caller is - responsible for decref'ing the returned objects. -\end{cfuncdesc} - -\begin{cfuncdesc}{PyObject*}{PyUnicode_FromObject}{PyObject *obj} - Shortcut for \code{PyUnicode_FromEncodedObject(obj, NULL, "strict")} - which is used throughout the interpreter whenever coercion to - Unicode is needed. -\end{cfuncdesc} - -% --- wchar_t support for platforms which support it --------------------- - -If the platform supports \ctype{wchar_t} and provides a header file -wchar.h, Python can interface directly to this type using the -following functions. Support is optimized if Python's own -\ctype{Py_UNICODE} type is identical to the system's \ctype{wchar_t}. - -\begin{cfuncdesc}{PyObject*}{PyUnicode_FromWideChar}{const wchar_t *w, - Py_ssize_t size} - Create a Unicode object from the \ctype{wchar_t} buffer \var{w} of - the given size. Return \NULL{} on failure. -\end{cfuncdesc} - -\begin{cfuncdesc}{Py_ssize_t}{PyUnicode_AsWideChar}{PyUnicodeObject *unicode, - wchar_t *w, - Py_ssize_t size} - Copy the Unicode object contents into the \ctype{wchar_t} buffer - \var{w}. At most \var{size} \ctype{wchar_t} characters are copied - (excluding a possibly trailing 0-termination character). Return - the number of \ctype{wchar_t} characters copied or -1 in case of an - error. Note that the resulting \ctype{wchar_t} string may or may - not be 0-terminated. It is the responsibility of the caller to make - sure that the \ctype{wchar_t} string is 0-terminated in case this is - required by the application. -\end{cfuncdesc} - - -\subsubsection{Built-in Codecs \label{builtinCodecs}} - -Python provides a set of builtin codecs which are written in C -for speed. All of these codecs are directly usable via the -following functions. - -Many of the following APIs take two arguments encoding and -errors. These parameters encoding and errors have the same semantics -as the ones of the builtin unicode() Unicode object constructor. - -Setting encoding to \NULL{} causes the default encoding to be used -which is \ASCII. The file system calls should use -\cdata{Py_FileSystemDefaultEncoding} as the encoding for file -names. This variable should be treated as read-only: On some systems, -it will be a pointer to a static string, on others, it will change at -run-time (such as when the application invokes setlocale). - -Error handling is set by errors which may also be set to \NULL{} -meaning to use the default handling defined for the codec. Default -error handling for all builtin codecs is ``strict'' -(\exception{ValueError} is raised). - -The codecs all use a similar interface. Only deviation from the -following generic ones are documented for simplicity. - -% --- Generic Codecs ----------------------------------------------------- - -These are the generic codec APIs: - -\begin{cfuncdesc}{PyObject*}{PyUnicode_Decode}{const char *s, - Py_ssize_t size, - const char *encoding, - const char *errors} - Create a Unicode object by decoding \var{size} bytes of the encoded - string \var{s}. \var{encoding} and \var{errors} have the same - meaning as the parameters of the same name in the - \function{unicode()} builtin function. The codec to be used is - looked up using the Python codec registry. Return \NULL{} if an - exception was raised by the codec. -\end{cfuncdesc} - -\begin{cfuncdesc}{PyObject*}{PyUnicode_Encode}{const Py_UNICODE *s, - Py_ssize_t size, - const char *encoding, - const char *errors} - Encode the \ctype{Py_UNICODE} buffer of the given size and return - a Python string object. \var{encoding} and \var{errors} have the - same meaning as the parameters of the same name in the Unicode - \method{encode()} method. The codec to be used is looked up using - the Python codec registry. Return \NULL{} if an exception was - raised by the codec. -\end{cfuncdesc} - -\begin{cfuncdesc}{PyObject*}{PyUnicode_AsEncodedString}{PyObject *unicode, - const char *encoding, - const char *errors} - Encode a Unicode object and return the result as Python string - object. \var{encoding} and \var{errors} have the same meaning as the - parameters of the same name in the Unicode \method{encode()} method. - The codec to be used is looked up using the Python codec registry. - Return \NULL{} if an exception was raised by the codec. -\end{cfuncdesc} - -% --- UTF-8 Codecs ------------------------------------------------------- - -These are the UTF-8 codec APIs: - -\begin{cfuncdesc}{PyObject*}{PyUnicode_DecodeUTF8}{const char *s, - Py_ssize_t size, - const char *errors} - Create a Unicode object by decoding \var{size} bytes of the UTF-8 - encoded string \var{s}. Return \NULL{} if an exception was raised - by the codec. -\end{cfuncdesc} - -\begin{cfuncdesc}{PyObject*}{PyUnicode_DecodeUTF8Stateful}{const char *s, - Py_ssize_t size, - const char *errors, - Py_ssize_t *consumed} - If \var{consumed} is \NULL{}, behave like \cfunction{PyUnicode_DecodeUTF8()}. - If \var{consumed} is not \NULL{}, trailing incomplete UTF-8 byte sequences - will not be treated as an error. Those bytes will not be decoded and the - number of bytes that have been decoded will be stored in \var{consumed}. - \versionadded{2.4} -\end{cfuncdesc} - -\begin{cfuncdesc}{PyObject*}{PyUnicode_EncodeUTF8}{const Py_UNICODE *s, - Py_ssize_t size, - const char *errors} - Encode the \ctype{Py_UNICODE} buffer of the given size using UTF-8 - and return a Python string object. Return \NULL{} if an exception - was raised by the codec. -\end{cfuncdesc} - -\begin{cfuncdesc}{PyObject*}{PyUnicode_AsUTF8String}{PyObject *unicode} - Encode a Unicode objects using UTF-8 and return the result as - Python string object. Error handling is ``strict''. Return - \NULL{} if an exception was raised by the codec. -\end{cfuncdesc} - -% --- UTF-16 Codecs ------------------------------------------------------ */ - -These are the UTF-16 codec APIs: - -\begin{cfuncdesc}{PyObject*}{PyUnicode_DecodeUTF16}{const char *s, - Py_ssize_t size, - const char *errors, - int *byteorder} - Decode \var{length} bytes from a UTF-16 encoded buffer string and - return the corresponding Unicode object. \var{errors} (if - non-\NULL{}) defines the error handling. It defaults to ``strict''. - - If \var{byteorder} is non-\NULL{}, the decoder starts decoding using - the given byte order: - -\begin{verbatim} - *byteorder == -1: little endian - *byteorder == 0: native order - *byteorder == 1: big endian -\end{verbatim} - - and then switches if the first two bytes of the input data are a byte order - mark (BOM) and the specified byte order is native order. This BOM is not - copied into the resulting Unicode string. After completion, \var{*byteorder} - is set to the current byte order at the. - - If \var{byteorder} is \NULL{}, the codec starts in native order mode. - - Return \NULL{} if an exception was raised by the codec. -\end{cfuncdesc} - -\begin{cfuncdesc}{PyObject*}{PyUnicode_DecodeUTF16Stateful}{const char *s, - Py_ssize_t size, - const char *errors, - int *byteorder, - Py_ssize_t *consumed} - If \var{consumed} is \NULL{}, behave like - \cfunction{PyUnicode_DecodeUTF16()}. If \var{consumed} is not \NULL{}, - \cfunction{PyUnicode_DecodeUTF16Stateful()} will not treat trailing incomplete - UTF-16 byte sequences (such as an odd number of bytes or a split surrogate pair) - as an error. Those bytes will not be decoded and the number of bytes that - have been decoded will be stored in \var{consumed}. - \versionadded{2.4} -\end{cfuncdesc} - -\begin{cfuncdesc}{PyObject*}{PyUnicode_EncodeUTF16}{const Py_UNICODE *s, - Py_ssize_t size, - const char *errors, - int byteorder} - Return a Python string object holding the UTF-16 encoded value of - the Unicode data in \var{s}. If \var{byteorder} is not \code{0}, - output is written according to the following byte order: - -\begin{verbatim} - byteorder == -1: little endian - byteorder == 0: native byte order (writes a BOM mark) - byteorder == 1: big endian -\end{verbatim} - - If byteorder is \code{0}, the output string will always start with - the Unicode BOM mark (U+FEFF). In the other two modes, no BOM mark - is prepended. - - If \var{Py_UNICODE_WIDE} is defined, a single \ctype{Py_UNICODE} - value may get represented as a surrogate pair. If it is not - defined, each \ctype{Py_UNICODE} values is interpreted as an - UCS-2 character. - - Return \NULL{} if an exception was raised by the codec. -\end{cfuncdesc} - -\begin{cfuncdesc}{PyObject*}{PyUnicode_AsUTF16String}{PyObject *unicode} - Return a Python string using the UTF-16 encoding in native byte - order. The string always starts with a BOM mark. Error handling is - ``strict''. Return \NULL{} if an exception was raised by the - codec. -\end{cfuncdesc} - -% --- Unicode-Escape Codecs ---------------------------------------------- - -These are the ``Unicode Escape'' codec APIs: - -\begin{cfuncdesc}{PyObject*}{PyUnicode_DecodeUnicodeEscape}{const char *s, - Py_ssize_t size, - const char *errors} - Create a Unicode object by decoding \var{size} bytes of the - Unicode-Escape encoded string \var{s}. Return \NULL{} if an - exception was raised by the codec. -\end{cfuncdesc} - -\begin{cfuncdesc}{PyObject*}{PyUnicode_EncodeUnicodeEscape}{const Py_UNICODE *s, - Py_ssize_t size} - Encode the \ctype{Py_UNICODE} buffer of the given size using - Unicode-Escape and return a Python string object. Return \NULL{} - if an exception was raised by the codec. -\end{cfuncdesc} - -\begin{cfuncdesc}{PyObject*}{PyUnicode_AsUnicodeEscapeString}{PyObject *unicode} - Encode a Unicode objects using Unicode-Escape and return the - result as Python string object. Error handling is ``strict''. - Return \NULL{} if an exception was raised by the codec. -\end{cfuncdesc} - -% --- Raw-Unicode-Escape Codecs ------------------------------------------ - -These are the ``Raw Unicode Escape'' codec APIs: - -\begin{cfuncdesc}{PyObject*}{PyUnicode_DecodeRawUnicodeEscape}{const char *s, - Py_ssize_t size, - const char *errors} - Create a Unicode object by decoding \var{size} bytes of the - Raw-Unicode-Escape encoded string \var{s}. Return \NULL{} if an - exception was raised by the codec. -\end{cfuncdesc} - -\begin{cfuncdesc}{PyObject*}{PyUnicode_EncodeRawUnicodeEscape}{const Py_UNICODE *s, - Py_ssize_t size, - const char *errors} - Encode the \ctype{Py_UNICODE} buffer of the given size using - Raw-Unicode-Escape and return a Python string object. Return - \NULL{} if an exception was raised by the codec. -\end{cfuncdesc} - -\begin{cfuncdesc}{PyObject*}{PyUnicode_AsRawUnicodeEscapeString}{PyObject *unicode} - Encode a Unicode objects using Raw-Unicode-Escape and return the - result as Python string object. Error handling is ``strict''. - Return \NULL{} if an exception was raised by the codec. -\end{cfuncdesc} - -% --- Latin-1 Codecs ----------------------------------------------------- - -These are the Latin-1 codec APIs: -Latin-1 corresponds to the first 256 Unicode ordinals and only these -are accepted by the codecs during encoding. - -\begin{cfuncdesc}{PyObject*}{PyUnicode_DecodeLatin1}{const char *s, - Py_ssize_t size, - const char *errors} - Create a Unicode object by decoding \var{size} bytes of the Latin-1 - encoded string \var{s}. Return \NULL{} if an exception was raised - by the codec. -\end{cfuncdesc} - -\begin{cfuncdesc}{PyObject*}{PyUnicode_EncodeLatin1}{const Py_UNICODE *s, - Py_ssize_t size, - const char *errors} - Encode the \ctype{Py_UNICODE} buffer of the given size using - Latin-1 and return a Python string object. Return \NULL{} if an - exception was raised by the codec. -\end{cfuncdesc} - -\begin{cfuncdesc}{PyObject*}{PyUnicode_AsLatin1String}{PyObject *unicode} - Encode a Unicode objects using Latin-1 and return the result as - Python string object. Error handling is ``strict''. Return - \NULL{} if an exception was raised by the codec. -\end{cfuncdesc} - -% --- ASCII Codecs ------------------------------------------------------- - -These are the \ASCII{} codec APIs. Only 7-bit \ASCII{} data is -accepted. All other codes generate errors. - -\begin{cfuncdesc}{PyObject*}{PyUnicode_DecodeASCII}{const char *s, - Py_ssize_t size, - const char *errors} - Create a Unicode object by decoding \var{size} bytes of the - \ASCII{} encoded string \var{s}. Return \NULL{} if an exception - was raised by the codec. -\end{cfuncdesc} - -\begin{cfuncdesc}{PyObject*}{PyUnicode_EncodeASCII}{const Py_UNICODE *s, - Py_ssize_t size, - const char *errors} - Encode the \ctype{Py_UNICODE} buffer of the given size using - \ASCII{} and return a Python string object. Return \NULL{} if an - exception was raised by the codec. -\end{cfuncdesc} - -\begin{cfuncdesc}{PyObject*}{PyUnicode_AsASCIIString}{PyObject *unicode} - Encode a Unicode objects using \ASCII{} and return the result as - Python string object. Error handling is ``strict''. Return - \NULL{} if an exception was raised by the codec. -\end{cfuncdesc} - -% --- Character Map Codecs ----------------------------------------------- - -These are the mapping codec APIs: - -This codec is special in that it can be used to implement many -different codecs (and this is in fact what was done to obtain most of -the standard codecs included in the \module{encodings} package). The -codec uses mapping to encode and decode characters. - -Decoding mappings must map single string characters to single Unicode -characters, integers (which are then interpreted as Unicode ordinals) -or None (meaning "undefined mapping" and causing an error). - -Encoding mappings must map single Unicode characters to single string -characters, integers (which are then interpreted as Latin-1 ordinals) -or None (meaning "undefined mapping" and causing an error). - -The mapping objects provided must only support the __getitem__ mapping -interface. - -If a character lookup fails with a LookupError, the character is -copied as-is meaning that its ordinal value will be interpreted as -Unicode or Latin-1 ordinal resp. Because of this, mappings only need -to contain those mappings which map characters to different code -points. - -\begin{cfuncdesc}{PyObject*}{PyUnicode_DecodeCharmap}{const char *s, - Py_ssize_t size, - PyObject *mapping, - const char *errors} - Create a Unicode object by decoding \var{size} bytes of the encoded - string \var{s} using the given \var{mapping} object. Return - \NULL{} if an exception was raised by the codec. If \var{mapping} is \NULL{} - latin-1 decoding will be done. Else it can be a dictionary mapping byte or a - unicode string, which is treated as a lookup table. Byte values greater - that the length of the string and U+FFFE "characters" are treated as - "undefined mapping". - \versionchanged[Allowed unicode string as mapping argument]{2.4} -\end{cfuncdesc} - -\begin{cfuncdesc}{PyObject*}{PyUnicode_EncodeCharmap}{const Py_UNICODE *s, - Py_ssize_t size, - PyObject *mapping, - const char *errors} - Encode the \ctype{Py_UNICODE} buffer of the given size using the - given \var{mapping} object and return a Python string object. - Return \NULL{} if an exception was raised by the codec. -\end{cfuncdesc} - -\begin{cfuncdesc}{PyObject*}{PyUnicode_AsCharmapString}{PyObject *unicode, - PyObject *mapping} - Encode a Unicode objects using the given \var{mapping} object and - return the result as Python string object. Error handling is - ``strict''. Return \NULL{} if an exception was raised by the - codec. -\end{cfuncdesc} - -The following codec API is special in that maps Unicode to Unicode. - -\begin{cfuncdesc}{PyObject*}{PyUnicode_TranslateCharmap}{const Py_UNICODE *s, - Py_ssize_t size, - PyObject *table, - const char *errors} - Translate a \ctype{Py_UNICODE} buffer of the given length by - applying a character mapping \var{table} to it and return the - resulting Unicode object. Return \NULL{} when an exception was - raised by the codec. - - The \var{mapping} table must map Unicode ordinal integers to Unicode - ordinal integers or None (causing deletion of the character). - - Mapping tables need only provide the \method{__getitem__()} - interface; dictionaries and sequences work well. Unmapped character - ordinals (ones which cause a \exception{LookupError}) are left - untouched and are copied as-is. -\end{cfuncdesc} - -% --- MBCS codecs for Windows -------------------------------------------- - -These are the MBCS codec APIs. They are currently only available on -Windows and use the Win32 MBCS converters to implement the -conversions. Note that MBCS (or DBCS) is a class of encodings, not -just one. The target encoding is defined by the user settings on the -machine running the codec. - -\begin{cfuncdesc}{PyObject*}{PyUnicode_DecodeMBCS}{const char *s, - Py_ssize_t size, - const char *errors} - Create a Unicode object by decoding \var{size} bytes of the MBCS - encoded string \var{s}. Return \NULL{} if an exception was - raised by the codec. -\end{cfuncdesc} - -\begin{cfuncdesc}{PyObject*}{PyUnicode_DecodeMBCSStateful}{const char *s, - int size, - const char *errors, - int *consumed} - If \var{consumed} is \NULL{}, behave like - \cfunction{PyUnicode_DecodeMBCS()}. If \var{consumed} is not \NULL{}, - \cfunction{PyUnicode_DecodeMBCSStateful()} will not decode trailing lead - byte and the number of bytes that have been decoded will be stored in - \var{consumed}. - \versionadded{2.5} -\end{cfuncdesc} - -\begin{cfuncdesc}{PyObject*}{PyUnicode_EncodeMBCS}{const Py_UNICODE *s, - Py_ssize_t size, - const char *errors} - Encode the \ctype{Py_UNICODE} buffer of the given size using MBCS - and return a Python string object. Return \NULL{} if an exception - was raised by the codec. -\end{cfuncdesc} - -\begin{cfuncdesc}{PyObject*}{PyUnicode_AsMBCSString}{PyObject *unicode} - Encode a Unicode objects using MBCS and return the result as - Python string object. Error handling is ``strict''. Return - \NULL{} if an exception was raised by the codec. -\end{cfuncdesc} - -% --- Methods & Slots ---------------------------------------------------- - -\subsubsection{Methods and Slot Functions \label{unicodeMethodsAndSlots}} - -The following APIs are capable of handling Unicode objects and strings -on input (we refer to them as strings in the descriptions) and return -Unicode objects or integers as appropriate. - -They all return \NULL{} or \code{-1} if an exception occurs. - -\begin{cfuncdesc}{PyObject*}{PyUnicode_Concat}{PyObject *left, - PyObject *right} - Concat two strings giving a new Unicode string. -\end{cfuncdesc} - -\begin{cfuncdesc}{PyObject*}{PyUnicode_Split}{PyObject *s, - PyObject *sep, - Py_ssize_t maxsplit} - Split a string giving a list of Unicode strings. If sep is \NULL{}, - splitting will be done at all whitespace substrings. Otherwise, - splits occur at the given separator. At most \var{maxsplit} splits - will be done. If negative, no limit is set. Separators are not - included in the resulting list. -\end{cfuncdesc} - -\begin{cfuncdesc}{PyObject*}{PyUnicode_Splitlines}{PyObject *s, - int keepend} - Split a Unicode string at line breaks, returning a list of Unicode - strings. CRLF is considered to be one line break. If \var{keepend} - is 0, the Line break characters are not included in the resulting - strings. -\end{cfuncdesc} - -\begin{cfuncdesc}{PyObject*}{PyUnicode_Translate}{PyObject *str, - PyObject *table, - const char *errors} - Translate a string by applying a character mapping table to it and - return the resulting Unicode object. - - The mapping table must map Unicode ordinal integers to Unicode - ordinal integers or None (causing deletion of the character). - - Mapping tables need only provide the \method{__getitem__()} - interface; dictionaries and sequences work well. Unmapped character - ordinals (ones which cause a \exception{LookupError}) are left - untouched and are copied as-is. - - \var{errors} has the usual meaning for codecs. It may be \NULL{} - which indicates to use the default error handling. -\end{cfuncdesc} - -\begin{cfuncdesc}{PyObject*}{PyUnicode_Join}{PyObject *separator, - PyObject *seq} - Join a sequence of strings using the given separator and return the - resulting Unicode string. -\end{cfuncdesc} - -\begin{cfuncdesc}{int}{PyUnicode_Tailmatch}{PyObject *str, - PyObject *substr, - Py_ssize_t start, - Py_ssize_t end, - int direction} - Return 1 if \var{substr} matches \var{str}[\var{start}:\var{end}] at - the given tail end (\var{direction} == -1 means to do a prefix - match, \var{direction} == 1 a suffix match), 0 otherwise. - Return \code{-1} if an error occurred. -\end{cfuncdesc} - -\begin{cfuncdesc}{Py_ssize_t}{PyUnicode_Find}{PyObject *str, - PyObject *substr, - Py_ssize_t start, - Py_ssize_t end, - int direction} - Return the first position of \var{substr} in - \var{str}[\var{start}:\var{end}] using the given \var{direction} - (\var{direction} == 1 means to do a forward search, - \var{direction} == -1 a backward search). The return value is the - index of the first match; a value of \code{-1} indicates that no - match was found, and \code{-2} indicates that an error occurred and - an exception has been set. -\end{cfuncdesc} - -\begin{cfuncdesc}{Py_ssize_t}{PyUnicode_Count}{PyObject *str, - PyObject *substr, - Py_ssize_t start, - Py_ssize_t end} - Return the number of non-overlapping occurrences of \var{substr} in - \code{\var{str}[\var{start}:\var{end}]}. Return \code{-1} if an - error occurred. -\end{cfuncdesc} - -\begin{cfuncdesc}{PyObject*}{PyUnicode_Replace}{PyObject *str, - PyObject *substr, - PyObject *replstr, - Py_ssize_t maxcount} - Replace at most \var{maxcount} occurrences of \var{substr} in - \var{str} with \var{replstr} and return the resulting Unicode object. - \var{maxcount} == -1 means replace all occurrences. -\end{cfuncdesc} - -\begin{cfuncdesc}{int}{PyUnicode_Compare}{PyObject *left, PyObject *right} - Compare two strings and return -1, 0, 1 for less than, equal, and - greater than, respectively. -\end{cfuncdesc} - -\begin{cfuncdesc}{int}{PyUnicode_RichCompare}{PyObject *left, - PyObject *right, - int op} - - Rich compare two unicode strings and return one of the following: - \begin{itemize} - \item \code{NULL} in case an exception was raised - \item \constant{Py_True} or \constant{Py_False} for successful comparisons - \item \constant{Py_NotImplemented} in case the type combination is unknown - \end{itemize} - - Note that \constant{Py_EQ} and \constant{Py_NE} comparisons can cause a - \exception{UnicodeWarning} in case the conversion of the arguments to - Unicode fails with a \exception{UnicodeDecodeError}. - - Possible values for \var{op} are - \constant{Py_GT}, \constant{Py_GE}, \constant{Py_EQ}, - \constant{Py_NE}, \constant{Py_LT}, and \constant{Py_LE}. -\end{cfuncdesc} - -\begin{cfuncdesc}{PyObject*}{PyUnicode_Format}{PyObject *format, - PyObject *args} - Return a new string object from \var{format} and \var{args}; this - is analogous to \code{\var{format} \%\ \var{args}}. The - \var{args} argument must be a tuple. -\end{cfuncdesc} - -\begin{cfuncdesc}{int}{PyUnicode_Contains}{PyObject *container, - PyObject *element} - Check whether \var{element} is contained in \var{container} and - return true or false accordingly. - - \var{element} has to coerce to a one element Unicode - string. \code{-1} is returned if there was an error. -\end{cfuncdesc} - -\begin{cfuncdesc}{void}{PyUnicode_InternInPlace}{PyObject **string} - Intern the argument \var{*string} in place. The argument must be - the address of a pointer variable pointing to a Python unicode string - object. If there is an existing interned string that is the same as - \var{*string}, it sets \var{*string} to it (decrementing the - reference count of the old string object and incrementing the - reference count of the interned string object), otherwise it leaves - \var{*string} alone and interns it (incrementing its reference - count). (Clarification: even though there is a lot of talk about - reference counts, think of this function as reference-count-neutral; - you own the object after the call if and only if you owned it before - the call.) -\end{cfuncdesc} - -\begin{cfuncdesc}{PyObject*}{PyUnicode_InternFromString}{const char *v} - A combination of \cfunction{PyUnicode_FromString()} and - \cfunction{PyUnicode_InternInPlace()}, returning either a new unicode - string object that has been interned, or a new (``owned'') reference to - an earlier interned string object with the same value. -\end{cfuncdesc} - - -\subsection{Buffer Objects \label{bufferObjects}} -\sectionauthor{Greg Stein}{gstein@lyra.org} - -\obindex{buffer} -Python objects implemented in C can export a group of functions called -the ``buffer\index{buffer interface} interface.'' These functions can -be used by an object to expose its data in a raw, byte-oriented -format. Clients of the object can use the buffer interface to access -the object data directly, without needing to copy it first. - -Two examples of objects that support -the buffer interface are strings and arrays. The string object exposes -the character contents in the buffer interface's byte-oriented -form. An array can also expose its contents, but it should be noted -that array elements may be multi-byte values. - -An example user of the buffer interface is the file object's -\method{write()} method. Any object that can export a series of bytes -through the buffer interface can be written to a file. There are a -number of format codes to \cfunction{PyArg_ParseTuple()} that operate -against an object's buffer interface, returning data from the target -object. - -More information on the buffer interface is provided in the section -``Buffer Object Structures'' (section~\ref{buffer-structs}), under -the description for \ctype{PyBufferProcs}\ttindex{PyBufferProcs}. - -A ``buffer object'' is defined in the \file{bufferobject.h} header -(included by \file{Python.h}). These objects look very similar to -string objects at the Python programming level: they support slicing, -indexing, concatenation, and some other standard string -operations. However, their data can come from one of two sources: from -a block of memory, or from another object which exports the buffer -interface. - -Buffer objects are useful as a way to expose the data from another -object's buffer interface to the Python programmer. They can also be -used as a zero-copy slicing mechanism. Using their ability to -reference a block of memory, it is possible to expose any data to the -Python programmer quite easily. The memory could be a large, constant -array in a C extension, it could be a raw block of memory for -manipulation before passing to an operating system library, or it -could be used to pass around structured data in its native, in-memory -format. - -\begin{ctypedesc}{PyBufferObject} - This subtype of \ctype{PyObject} represents a buffer object. -\end{ctypedesc} - -\begin{cvardesc}{PyTypeObject}{PyBuffer_Type} - The instance of \ctype{PyTypeObject} which represents the Python - buffer type; it is the same object as \code{buffer} and - \code{types.BufferType} in the Python layer. - \withsubitem{(in module types)}{\ttindex{BufferType}}. -\end{cvardesc} - -\begin{cvardesc}{int}{Py_END_OF_BUFFER} - This constant may be passed as the \var{size} parameter to - \cfunction{PyBuffer_FromObject()} or - \cfunction{PyBuffer_FromReadWriteObject()}. It indicates that the - new \ctype{PyBufferObject} should refer to \var{base} object from - the specified \var{offset} to the end of its exported buffer. Using - this enables the caller to avoid querying the \var{base} object for - its length. -\end{cvardesc} - -\begin{cfuncdesc}{int}{PyBuffer_Check}{PyObject *p} - Return true if the argument has type \cdata{PyBuffer_Type}. -\end{cfuncdesc} - -\begin{cfuncdesc}{PyObject*}{PyBuffer_FromObject}{PyObject *base, - Py_ssize_t offset, Py_ssize_t size} - Return a new read-only buffer object. This raises - \exception{TypeError} if \var{base} doesn't support the read-only - buffer protocol or doesn't provide exactly one buffer segment, or it - raises \exception{ValueError} if \var{offset} is less than zero. The - buffer will hold a reference to the \var{base} object, and the - buffer's contents will refer to the \var{base} object's buffer - interface, starting as position \var{offset} and extending for - \var{size} bytes. If \var{size} is \constant{Py_END_OF_BUFFER}, then - the new buffer's contents extend to the length of the \var{base} - object's exported buffer data. -\end{cfuncdesc} - -\begin{cfuncdesc}{PyObject*}{PyBuffer_FromReadWriteObject}{PyObject *base, - Py_ssize_t offset, - Py_ssize_t size} - Return a new writable buffer object. Parameters and exceptions are - similar to those for \cfunction{PyBuffer_FromObject()}. If the - \var{base} object does not export the writeable buffer protocol, - then \exception{TypeError} is raised. -\end{cfuncdesc} - -\begin{cfuncdesc}{PyObject*}{PyBuffer_FromMemory}{void *ptr, Py_ssize_t size} - Return a new read-only buffer object that reads from a specified - location in memory, with a specified size. The caller is - responsible for ensuring that the memory buffer, passed in as - \var{ptr}, is not deallocated while the returned buffer object - exists. Raises \exception{ValueError} if \var{size} is less than - zero. Note that \constant{Py_END_OF_BUFFER} may \emph{not} be - passed for the \var{size} parameter; \exception{ValueError} will be - raised in that case. -\end{cfuncdesc} - -\begin{cfuncdesc}{PyObject*}{PyBuffer_FromReadWriteMemory}{void *ptr, Py_ssize_t size} - Similar to \cfunction{PyBuffer_FromMemory()}, but the returned - buffer is writable. -\end{cfuncdesc} - -\begin{cfuncdesc}{PyObject*}{PyBuffer_New}{Py_ssize_t size} - Return a new writable buffer object that maintains its own memory - buffer of \var{size} bytes. \exception{ValueError} is returned if - \var{size} is not zero or positive. Note that the memory buffer (as - returned by \cfunction{PyObject_AsWriteBuffer()}) is not specifically - aligned. -\end{cfuncdesc} - - -\subsection{Tuple Objects \label{tupleObjects}} - -\obindex{tuple} -\begin{ctypedesc}{PyTupleObject} - This subtype of \ctype{PyObject} represents a Python tuple object. -\end{ctypedesc} - -\begin{cvardesc}{PyTypeObject}{PyTuple_Type} - This instance of \ctype{PyTypeObject} represents the Python tuple - type; it is the same object as \code{tuple} and \code{types.TupleType} - in the Python layer.\withsubitem{(in module types)}{\ttindex{TupleType}}. -\end{cvardesc} - -\begin{cfuncdesc}{int}{PyTuple_Check}{PyObject *p} - Return true if \var{p} is a tuple object or an instance of a subtype - of the tuple type. - \versionchanged[Allowed subtypes to be accepted]{2.2} -\end{cfuncdesc} - -\begin{cfuncdesc}{int}{PyTuple_CheckExact}{PyObject *p} - Return true if \var{p} is a tuple object, but not an instance of a - subtype of the tuple type. - \versionadded{2.2} -\end{cfuncdesc} - -\begin{cfuncdesc}{PyObject*}{PyTuple_New}{Py_ssize_t len} - Return a new tuple object of size \var{len}, or \NULL{} on failure. -\end{cfuncdesc} - -\begin{cfuncdesc}{PyObject*}{PyTuple_Pack}{Py_ssize_t n, \moreargs} - Return a new tuple object of size \var{n}, or \NULL{} on failure. - The tuple values are initialized to the subsequent \var{n} C arguments - pointing to Python objects. \samp{PyTuple_Pack(2, \var{a}, \var{b})} - is equivalent to \samp{Py_BuildValue("(OO)", \var{a}, \var{b})}. - \versionadded{2.4} -\end{cfuncdesc} - -\begin{cfuncdesc}{int}{PyTuple_Size}{PyObject *p} - Take a pointer to a tuple object, and return the size of that - tuple. -\end{cfuncdesc} - -\begin{cfuncdesc}{int}{PyTuple_GET_SIZE}{PyObject *p} - Return the size of the tuple \var{p}, which must be non-\NULL{} and - point to a tuple; no error checking is performed. -\end{cfuncdesc} - -\begin{cfuncdesc}{PyObject*}{PyTuple_GetItem}{PyObject *p, Py_ssize_t pos} - Return the object at position \var{pos} in the tuple pointed to by - \var{p}. If \var{pos} is out of bounds, return \NULL{} and sets an - \exception{IndexError} exception. -\end{cfuncdesc} - -\begin{cfuncdesc}{PyObject*}{PyTuple_GET_ITEM}{PyObject *p, Py_ssize_t pos} - Like \cfunction{PyTuple_GetItem()}, but does no checking of its - arguments. -\end{cfuncdesc} - -\begin{cfuncdesc}{PyObject*}{PyTuple_GetSlice}{PyObject *p, - Py_ssize_t low, Py_ssize_t high} - Take a slice of the tuple pointed to by \var{p} from \var{low} to - \var{high} and return it as a new tuple. -\end{cfuncdesc} - -\begin{cfuncdesc}{int}{PyTuple_SetItem}{PyObject *p, - Py_ssize_t pos, PyObject *o} - Insert a reference to object \var{o} at position \var{pos} of the - tuple pointed to by \var{p}. Return \code{0} on success. - \note{This function ``steals'' a reference to \var{o}.} -\end{cfuncdesc} - -\begin{cfuncdesc}{void}{PyTuple_SET_ITEM}{PyObject *p, - Py_ssize_t pos, PyObject *o} - Like \cfunction{PyTuple_SetItem()}, but does no error checking, and - should \emph{only} be used to fill in brand new tuples. \note{This - function ``steals'' a reference to \var{o}.} -\end{cfuncdesc} - -\begin{cfuncdesc}{int}{_PyTuple_Resize}{PyObject **p, Py_ssize_t newsize} - Can be used to resize a tuple. \var{newsize} will be the new length - of the tuple. Because tuples are \emph{supposed} to be immutable, - this should only be used if there is only one reference to the - object. Do \emph{not} use this if the tuple may already be known to - some other part of the code. The tuple will always grow or shrink - at the end. Think of this as destroying the old tuple and creating - a new one, only more efficiently. Returns \code{0} on success. - Client code should never assume that the resulting value of - \code{*\var{p}} will be the same as before calling this function. - If the object referenced by \code{*\var{p}} is replaced, the - original \code{*\var{p}} is destroyed. On failure, returns - \code{-1} and sets \code{*\var{p}} to \NULL{}, and raises - \exception{MemoryError} or - \exception{SystemError}. - \versionchanged[Removed unused third parameter, \var{last_is_sticky}]{2.2} -\end{cfuncdesc} - - -\subsection{List Objects \label{listObjects}} - -\obindex{list} -\begin{ctypedesc}{PyListObject} - This subtype of \ctype{PyObject} represents a Python list object. -\end{ctypedesc} - -\begin{cvardesc}{PyTypeObject}{PyList_Type} - This instance of \ctype{PyTypeObject} represents the Python list - type. This is the same object as \code{list} and \code{types.ListType} - in the Python layer.\withsubitem{(in module types)}{\ttindex{ListType}} -\end{cvardesc} - -\begin{cfuncdesc}{int}{PyList_Check}{PyObject *p} - Return true if \var{p} is a list object or an instance of a - subtype of the list type. - \versionchanged[Allowed subtypes to be accepted]{2.2} -\end{cfuncdesc} - -\begin{cfuncdesc}{int}{PyList_CheckExact}{PyObject *p} - Return true if \var{p} is a list object, but not an instance of a - subtype of the list type. - \versionadded{2.2} -\end{cfuncdesc} - -\begin{cfuncdesc}{PyObject*}{PyList_New}{Py_ssize_t len} - Return a new list of length \var{len} on success, or \NULL{} on - failure. - \note{If \var{length} is greater than zero, the returned list object's - items are set to \code{NULL}. Thus you cannot use abstract - API functions such as \cfunction{PySequence_SetItem()} - or expose the object to Python code before setting all items to a - real object with \cfunction{PyList_SetItem()}.} -\end{cfuncdesc} - -\begin{cfuncdesc}{Py_ssize_t}{PyList_Size}{PyObject *list} - Return the length of the list object in \var{list}; this is - equivalent to \samp{len(\var{list})} on a list object. - \bifuncindex{len} -\end{cfuncdesc} - -\begin{cfuncdesc}{Py_ssize_t}{PyList_GET_SIZE}{PyObject *list} - Macro form of \cfunction{PyList_Size()} without error checking. -\end{cfuncdesc} - -\begin{cfuncdesc}{PyObject*}{PyList_GetItem}{PyObject *list, Py_ssize_t index} - Return the object at position \var{pos} in the list pointed to by - \var{p}. The position must be positive, indexing from the end of the - list is not supported. If \var{pos} is out of bounds, return \NULL{} - and set an \exception{IndexError} exception. -\end{cfuncdesc} - -\begin{cfuncdesc}{PyObject*}{PyList_GET_ITEM}{PyObject *list, Py_ssize_t i} - Macro form of \cfunction{PyList_GetItem()} without error checking. -\end{cfuncdesc} - -\begin{cfuncdesc}{int}{PyList_SetItem}{PyObject *list, Py_ssize_t index, - PyObject *item} - Set the item at index \var{index} in list to \var{item}. Return - \code{0} on success or \code{-1} on failure. \note{This function - ``steals'' a reference to \var{item} and discards a reference to an - item already in the list at the affected position.} -\end{cfuncdesc} - -\begin{cfuncdesc}{void}{PyList_SET_ITEM}{PyObject *list, Py_ssize_t i, - PyObject *o} - Macro form of \cfunction{PyList_SetItem()} without error checking. - This is normally only used to fill in new lists where there is no - previous content. - \note{This function ``steals'' a reference to \var{item}, and, - unlike \cfunction{PyList_SetItem()}, does \emph{not} discard a - reference to any item that it being replaced; any reference in - \var{list} at position \var{i} will be leaked.} -\end{cfuncdesc} - -\begin{cfuncdesc}{int}{PyList_Insert}{PyObject *list, Py_ssize_t index, - PyObject *item} - Insert the item \var{item} into list \var{list} in front of index - \var{index}. Return \code{0} if successful; return \code{-1} and - set an exception if unsuccessful. Analogous to - \code{\var{list}.insert(\var{index}, \var{item})}. -\end{cfuncdesc} - -\begin{cfuncdesc}{int}{PyList_Append}{PyObject *list, PyObject *item} - Append the object \var{item} at the end of list \var{list}. - Return \code{0} if successful; return \code{-1} and set an - exception if unsuccessful. Analogous to - \code{\var{list}.append(\var{item})}. -\end{cfuncdesc} - -\begin{cfuncdesc}{PyObject*}{PyList_GetSlice}{PyObject *list, - Py_ssize_t low, Py_ssize_t high} - Return a list of the objects in \var{list} containing the objects - \emph{between} \var{low} and \var{high}. Return \NULL{} and set - an exception if unsuccessful. - Analogous to \code{\var{list}[\var{low}:\var{high}]}. -\end{cfuncdesc} - -\begin{cfuncdesc}{int}{PyList_SetSlice}{PyObject *list, - Py_ssize_t low, Py_ssize_t high, - PyObject *itemlist} - Set the slice of \var{list} between \var{low} and \var{high} to the - contents of \var{itemlist}. Analogous to - \code{\var{list}[\var{low}:\var{high}] = \var{itemlist}}. - The \var{itemlist} may be \NULL{}, indicating the assignment - of an empty list (slice deletion). - Return \code{0} on success, \code{-1} on failure. -\end{cfuncdesc} - -\begin{cfuncdesc}{int}{PyList_Sort}{PyObject *list} - Sort the items of \var{list} in place. Return \code{0} on - success, \code{-1} on failure. This is equivalent to - \samp{\var{list}.sort()}. -\end{cfuncdesc} - -\begin{cfuncdesc}{int}{PyList_Reverse}{PyObject *list} - Reverse the items of \var{list} in place. Return \code{0} on - success, \code{-1} on failure. This is the equivalent of - \samp{\var{list}.reverse()}. -\end{cfuncdesc} - -\begin{cfuncdesc}{PyObject*}{PyList_AsTuple}{PyObject *list} - Return a new tuple object containing the contents of \var{list}; - equivalent to \samp{tuple(\var{list})}.\bifuncindex{tuple} -\end{cfuncdesc} - - -\section{Mapping Objects \label{mapObjects}} - -\obindex{mapping} - - -\subsection{Dictionary Objects \label{dictObjects}} - -\obindex{dictionary} -\begin{ctypedesc}{PyDictObject} - This subtype of \ctype{PyObject} represents a Python dictionary - object. -\end{ctypedesc} - -\begin{cvardesc}{PyTypeObject}{PyDict_Type} - This instance of \ctype{PyTypeObject} represents the Python - dictionary type. This is exposed to Python programs as - \code{dict} and \code{types.DictType}. - \withsubitem{(in module types)}{\ttindex{DictType}\ttindex{DictionaryType}} -\end{cvardesc} - -\begin{cfuncdesc}{int}{PyDict_Check}{PyObject *p} - Return true if \var{p} is a dict object or an instance of a - subtype of the dict type. - \versionchanged[Allowed subtypes to be accepted]{2.2} -\end{cfuncdesc} - -\begin{cfuncdesc}{int}{PyDict_CheckExact}{PyObject *p} - Return true if \var{p} is a dict object, but not an instance of a - subtype of the dict type. - \versionadded{2.4} -\end{cfuncdesc} - -\begin{cfuncdesc}{PyObject*}{PyDict_New}{} - Return a new empty dictionary, or \NULL{} on failure. -\end{cfuncdesc} - -\begin{cfuncdesc}{PyObject*}{PyDictProxy_New}{PyObject *dict} - Return a proxy object for a mapping which enforces read-only - behavior. This is normally used to create a proxy to prevent - modification of the dictionary for non-dynamic class types. - \versionadded{2.2} -\end{cfuncdesc} - -\begin{cfuncdesc}{void}{PyDict_Clear}{PyObject *p} - Empty an existing dictionary of all key-value pairs. -\end{cfuncdesc} - -\begin{cfuncdesc}{int}{PyDict_Contains}{PyObject *p, PyObject *key} - Determine if dictionary \var{p} contains \var{key}. If an item - in \var{p} is matches \var{key}, return \code{1}, otherwise return - \code{0}. On error, return \code{-1}. This is equivalent to the - Python expression \samp{\var{key} in \var{p}}. - \versionadded{2.4} -\end{cfuncdesc} - -\begin{cfuncdesc}{PyObject*}{PyDict_Copy}{PyObject *p} - Return a new dictionary that contains the same key-value pairs as - \var{p}. - \versionadded{1.6} -\end{cfuncdesc} - -\begin{cfuncdesc}{int}{PyDict_SetItem}{PyObject *p, PyObject *key, - PyObject *val} - Insert \var{value} into the dictionary \var{p} with a key of - \var{key}. \var{key} must be hashable; if it isn't, - \exception{TypeError} will be raised. - Return \code{0} on success or \code{-1} on failure. -\end{cfuncdesc} - -\begin{cfuncdesc}{int}{PyDict_SetItemString}{PyObject *p, - const char *key, - PyObject *val} - Insert \var{value} into the dictionary \var{p} using \var{key} as a - key. \var{key} should be a \ctype{char*}. The key object is created - using \code{PyString_FromString(\var{key})}. Return \code{0} on - success or \code{-1} on failure. - \ttindex{PyString_FromString()} -\end{cfuncdesc} - -\begin{cfuncdesc}{int}{PyDict_DelItem}{PyObject *p, PyObject *key} - Remove the entry in dictionary \var{p} with key \var{key}. - \var{key} must be hashable; if it isn't, \exception{TypeError} is - raised. Return \code{0} on success or \code{-1} on failure. -\end{cfuncdesc} - -\begin{cfuncdesc}{int}{PyDict_DelItemString}{PyObject *p, char *key} - Remove the entry in dictionary \var{p} which has a key specified by - the string \var{key}. Return \code{0} on success or \code{-1} on - failure. -\end{cfuncdesc} - -\begin{cfuncdesc}{PyObject*}{PyDict_GetItem}{PyObject *p, PyObject *key} - Return the object from dictionary \var{p} which has a key - \var{key}. Return \NULL{} if the key \var{key} is not present, but - \emph{without} setting an exception. -\end{cfuncdesc} - -\begin{cfuncdesc}{PyObject*}{PyDict_GetItemString}{PyObject *p, const char *key} - This is the same as \cfunction{PyDict_GetItem()}, but \var{key} is - specified as a \ctype{char*}, rather than a \ctype{PyObject*}. -\end{cfuncdesc} - -\begin{cfuncdesc}{PyObject*}{PyDict_Items}{PyObject *p} - Return a \ctype{PyListObject} containing all the items from the - dictionary, as in the dictionary method \method{items()} (see the - \citetitle[../lib/lib.html]{Python Library Reference}). -\end{cfuncdesc} - -\begin{cfuncdesc}{PyObject*}{PyDict_Keys}{PyObject *p} - Return a \ctype{PyListObject} containing all the keys from the - dictionary, as in the dictionary method \method{keys()} (see the - \citetitle[../lib/lib.html]{Python Library Reference}). -\end{cfuncdesc} - -\begin{cfuncdesc}{PyObject*}{PyDict_Values}{PyObject *p} - Return a \ctype{PyListObject} containing all the values from the - dictionary \var{p}, as in the dictionary method \method{values()} - (see the \citetitle[../lib/lib.html]{Python Library Reference}). -\end{cfuncdesc} - -\begin{cfuncdesc}{Py_ssize_t}{PyDict_Size}{PyObject *p} - Return the number of items in the dictionary. This is equivalent - to \samp{len(\var{p})} on a dictionary.\bifuncindex{len} -\end{cfuncdesc} - -\begin{cfuncdesc}{int}{PyDict_Next}{PyObject *p, Py_ssize_t *ppos, - PyObject **pkey, PyObject **pvalue} - Iterate over all key-value pairs in the dictionary \var{p}. The - \ctype{int} referred to by \var{ppos} must be initialized to - \code{0} prior to the first call to this function to start the - iteration; the function returns true for each pair in the - dictionary, and false once all pairs have been reported. The - parameters \var{pkey} and \var{pvalue} should either point to - \ctype{PyObject*} variables that will be filled in with each key and - value, respectively, or may be \NULL{}. Any references returned through - them are borrowed. \var{ppos} should not be altered during iteration. - Its value represents offsets within the internal dictionary structure, - and since the structure is sparse, the offsets are not consecutive. - - For example: - -\begin{verbatim} -PyObject *key, *value; -Py_ssize_t pos = 0; - -while (PyDict_Next(self->dict, &pos, &key, &value)) { - /* do something interesting with the values... */ - ... -} -\end{verbatim} - - The dictionary \var{p} should not be mutated during iteration. It - is safe (since Python 2.1) to modify the values of the keys as you - iterate over the dictionary, but only so long as the set of keys - does not change. For example: - -\begin{verbatim} -PyObject *key, *value; -Py_ssize_t pos = 0; - -while (PyDict_Next(self->dict, &pos, &key, &value)) { - int i = PyInt_AS_LONG(value) + 1; - PyObject *o = PyInt_FromLong(i); - if (o == NULL) - return -1; - if (PyDict_SetItem(self->dict, key, o) < 0) { - Py_DECREF(o); - return -1; - } - Py_DECREF(o); -} -\end{verbatim} -\end{cfuncdesc} - -\begin{cfuncdesc}{int}{PyDict_Merge}{PyObject *a, PyObject *b, int override} - Iterate over mapping object \var{b} adding key-value pairs to dictionary - \var{a}. - \var{b} may be a dictionary, or any object supporting - \function{PyMapping_Keys()} and \function{PyObject_GetItem()}. - If \var{override} is true, existing pairs in \var{a} will - be replaced if a matching key is found in \var{b}, otherwise pairs - will only be added if there is not a matching key in \var{a}. - Return \code{0} on success or \code{-1} if an exception was - raised. -\versionadded{2.2} -\end{cfuncdesc} - -\begin{cfuncdesc}{int}{PyDict_Update}{PyObject *a, PyObject *b} - This is the same as \code{PyDict_Merge(\var{a}, \var{b}, 1)} in C, - or \code{\var{a}.update(\var{b})} in Python. Return \code{0} on - success or \code{-1} if an exception was raised. - \versionadded{2.2} -\end{cfuncdesc} - -\begin{cfuncdesc}{int}{PyDict_MergeFromSeq2}{PyObject *a, PyObject *seq2, - int override} - Update or merge into dictionary \var{a}, from the key-value pairs in - \var{seq2}. \var{seq2} must be an iterable object producing - iterable objects of length 2, viewed as key-value pairs. In case of - duplicate keys, the last wins if \var{override} is true, else the - first wins. - Return \code{0} on success or \code{-1} if an exception - was raised. - Equivalent Python (except for the return value): - -\begin{verbatim} -def PyDict_MergeFromSeq2(a, seq2, override): - for key, value in seq2: - if override or key not in a: - a[key] = value -\end{verbatim} - - \versionadded{2.2} -\end{cfuncdesc} - - -\section{Other Objects \label{otherObjects}} - -\subsection{Class Objects \label{classObjects}} - -\obindex{class} -Note that the class objects described here represent old-style classes, -which will go away in Python 3. When creating new types for extension -modules, you will want to work with type objects (section -\ref{typeObjects}). - -\begin{ctypedesc}{PyClassObject} - The C structure of the objects used to describe built-in classes. -\end{ctypedesc} - -\begin{cvardesc}{PyObject*}{PyClass_Type} - This is the type object for class objects; it is the same object as - \code{types.ClassType} in the Python layer. - \withsubitem{(in module types)}{\ttindex{ClassType}} -\end{cvardesc} - -\begin{cfuncdesc}{int}{PyClass_Check}{PyObject *o} - Return true if the object \var{o} is a class object, including - instances of types derived from the standard class object. Return - false in all other cases. -\end{cfuncdesc} - -\begin{cfuncdesc}{int}{PyClass_IsSubclass}{PyObject *klass, PyObject *base} - Return true if \var{klass} is a subclass of \var{base}. Return false in - all other cases. -\end{cfuncdesc} - -\subsection{File Objects \label{fileObjects}} - -\obindex{file} -Python's built-in file objects are implemented entirely on the -\ctype{FILE*} support from the C standard library. This is an -implementation detail and may change in future releases of Python. - -\begin{ctypedesc}{PyFileObject} - This subtype of \ctype{PyObject} represents a Python file object. -\end{ctypedesc} - -\begin{cvardesc}{PyTypeObject}{PyFile_Type} - This instance of \ctype{PyTypeObject} represents the Python file - type. This is exposed to Python programs as \code{file} and - \code{types.FileType}. - \withsubitem{(in module types)}{\ttindex{FileType}} -\end{cvardesc} - -\begin{cfuncdesc}{int}{PyFile_Check}{PyObject *p} - Return true if its argument is a \ctype{PyFileObject} or a subtype - of \ctype{PyFileObject}. - \versionchanged[Allowed subtypes to be accepted]{2.2} -\end{cfuncdesc} - -\begin{cfuncdesc}{int}{PyFile_CheckExact}{PyObject *p} - Return true if its argument is a \ctype{PyFileObject}, but not a - subtype of \ctype{PyFileObject}. - \versionadded{2.2} -\end{cfuncdesc} - -\begin{cfuncdesc}{PyObject*}{PyFile_FromString}{char *filename, char *mode} - On success, return a new file object that is opened on the file - given by \var{filename}, with a file mode given by \var{mode}, where - \var{mode} has the same semantics as the standard C routine - \cfunction{fopen()}\ttindex{fopen()}. On failure, return \NULL{}. -\end{cfuncdesc} - -\begin{cfuncdesc}{PyObject*}{PyFile_FromFile}{FILE *fp, - char *name, char *mode, - int (*close)(FILE*)} - Create a new \ctype{PyFileObject} from the already-open standard C - file pointer, \var{fp}. The function \var{close} will be called - when the file should be closed. Return \NULL{} on failure. -\end{cfuncdesc} - -\begin{cfuncdesc}{FILE*}{PyFile_AsFile}{PyObject *p} - Return the file object associated with \var{p} as a \ctype{FILE*}. -\end{cfuncdesc} - -\begin{cfuncdesc}{PyObject*}{PyFile_GetLine}{PyObject *p, int n} - Equivalent to \code{\var{p}.readline(\optional{\var{n}})}, this - function reads one line from the object \var{p}. \var{p} may be a - file object or any object with a \method{readline()} method. If - \var{n} is \code{0}, exactly one line is read, regardless of the - length of the line. If \var{n} is greater than \code{0}, no more - than \var{n} bytes will be read from the file; a partial line can be - returned. In both cases, an empty string is returned if the end of - the file is reached immediately. If \var{n} is less than \code{0}, - however, one line is read regardless of length, but - \exception{EOFError} is raised if the end of the file is reached - immediately. - \withsubitem{(built-in exception)}{\ttindex{EOFError}} -\end{cfuncdesc} - -\begin{cfuncdesc}{PyObject*}{PyFile_Name}{PyObject *p} - Return the name of the file specified by \var{p} as a string - object. -\end{cfuncdesc} - -\begin{cfuncdesc}{void}{PyFile_SetBufSize}{PyFileObject *p, int n} - Available on systems with \cfunction{setvbuf()}\ttindex{setvbuf()} - only. This should only be called immediately after file object - creation. -\end{cfuncdesc} - -\begin{cfuncdesc}{int}{PyFile_Encoding}{PyFileObject *p, char *enc} - Set the file's encoding for Unicode output to \var{enc}. Return - 1 on success and 0 on failure. - \versionadded{2.3} -\end{cfuncdesc} - -\begin{cfuncdesc}{int}{PyFile_SoftSpace}{PyObject *p, int newflag} - This function exists for internal use by the interpreter. Set the - \member{softspace} attribute of \var{p} to \var{newflag} and - \withsubitem{(file attribute)}{\ttindex{softspace}}return the - previous value. \var{p} does not have to be a file object for this - function to work properly; any object is supported (thought its only - interesting if the \member{softspace} attribute can be set). This - function clears any errors, and will return \code{0} as the previous - value if the attribute either does not exist or if there were errors - in retrieving it. There is no way to detect errors from this - function, but doing so should not be needed. -\end{cfuncdesc} - -\begin{cfuncdesc}{int}{PyFile_WriteObject}{PyObject *obj, PyObject *p, - int flags} - Write object \var{obj} to file object \var{p}. The only supported - flag for \var{flags} is - \constant{Py_PRINT_RAW}\ttindex{Py_PRINT_RAW}; if given, the - \function{str()} of the object is written instead of the - \function{repr()}. Return \code{0} on success or \code{-1} on - failure; the appropriate exception will be set. -\end{cfuncdesc} - -\begin{cfuncdesc}{int}{PyFile_WriteString}{const char *s, PyObject *p} - Write string \var{s} to file object \var{p}. Return \code{0} on - success or \code{-1} on failure; the appropriate exception will be - set. -\end{cfuncdesc} - - -\subsection{Instance Objects \label{instanceObjects}} - -\obindex{instance} -There are very few functions specific to instance objects. - -\begin{cvardesc}{PyTypeObject}{PyInstance_Type} - Type object for class instances. -\end{cvardesc} - -\begin{cfuncdesc}{int}{PyInstance_Check}{PyObject *obj} - Return true if \var{obj} is an instance. -\end{cfuncdesc} - -\begin{cfuncdesc}{PyObject*}{PyInstance_New}{PyObject *class, - PyObject *arg, - PyObject *kw} - Create a new instance of a specific class. The parameters \var{arg} - and \var{kw} are used as the positional and keyword parameters to - the object's constructor. -\end{cfuncdesc} - -\begin{cfuncdesc}{PyObject*}{PyInstance_NewRaw}{PyObject *class, - PyObject *dict} - Create a new instance of a specific class without calling its - constructor. \var{class} is the class of new object. The - \var{dict} parameter will be used as the object's \member{__dict__}; - if \NULL{}, a new dictionary will be created for the instance. -\end{cfuncdesc} - - -\subsection{Function Objects \label{function-objects}} - -\obindex{function} -There are a few functions specific to Python functions. - -\begin{ctypedesc}{PyFunctionObject} - The C structure used for functions. -\end{ctypedesc} - -\begin{cvardesc}{PyTypeObject}{PyFunction_Type} - This is an instance of \ctype{PyTypeObject} and represents the - Python function type. It is exposed to Python programmers as - \code{types.FunctionType}. - \withsubitem{(in module types)}{\ttindex{MethodType}} -\end{cvardesc} - -\begin{cfuncdesc}{int}{PyFunction_Check}{PyObject *o} - Return true if \var{o} is a function object (has type - \cdata{PyFunction_Type}). The parameter must not be \NULL{}. -\end{cfuncdesc} - -\begin{cfuncdesc}{PyObject*}{PyFunction_New}{PyObject *code, - PyObject *globals} - Return a new function object associated with the code object - \var{code}. \var{globals} must be a dictionary with the global - variables accessible to the function. - - The function's docstring, name and \var{__module__} are retrieved - from the code object, the argument defaults and closure are set to - \NULL{}. -\end{cfuncdesc} - -\begin{cfuncdesc}{PyObject*}{PyFunction_GetCode}{PyObject *op} - Return the code object associated with the function object \var{op}. -\end{cfuncdesc} - -\begin{cfuncdesc}{PyObject*}{PyFunction_GetGlobals}{PyObject *op} - Return the globals dictionary associated with the function object - \var{op}. -\end{cfuncdesc} - -\begin{cfuncdesc}{PyObject*}{PyFunction_GetModule}{PyObject *op} - Return the \var{__module__} attribute of the function object \var{op}. - This is normally a string containing the module name, but can be set - to any other object by Python code. -\end{cfuncdesc} - -\begin{cfuncdesc}{PyObject*}{PyFunction_GetDefaults}{PyObject *op} - Return the argument default values of the function object \var{op}. - This can be a tuple of arguments or \NULL{}. -\end{cfuncdesc} - -\begin{cfuncdesc}{int}{PyFunction_SetDefaults}{PyObject *op, - PyObject *defaults} - Set the argument default values for the function object \var{op}. - \var{defaults} must be \var{Py_None} or a tuple. - - Raises \exception{SystemError} and returns \code{-1} on failure. -\end{cfuncdesc} - -\begin{cfuncdesc}{PyObject*}{PyFunction_GetClosure}{PyObject *op} - Return the closure associated with the function object \var{op}. - This can be \NULL{} or a tuple of cell objects. -\end{cfuncdesc} - -\begin{cfuncdesc}{int}{PyFunction_SetClosure}{PyObject *op, - PyObject *closure} - Set the closure associated with the function object \var{op}. - \var{closure} must be \var{Py_None} or a tuple of cell objects. - - Raises \exception{SystemError} and returns \code{-1} on failure. -\end{cfuncdesc} - - -\subsection{Method Objects \label{method-objects}} - -\obindex{method} -There are some useful functions that are useful for working with -method objects. - -\begin{cvardesc}{PyTypeObject}{PyMethod_Type} - This instance of \ctype{PyTypeObject} represents the Python method - type. This is exposed to Python programs as \code{types.MethodType}. - \withsubitem{(in module types)}{\ttindex{MethodType}} -\end{cvardesc} - -\begin{cfuncdesc}{int}{PyMethod_Check}{PyObject *o} - Return true if \var{o} is a method object (has type - \cdata{PyMethod_Type}). The parameter must not be \NULL{}. -\end{cfuncdesc} - -\begin{cfuncdesc}{PyObject*}{PyMethod_New}{PyObject *func, - PyObject *self, PyObject *class} - Return a new method object, with \var{func} being any callable - object; this is the function that will be called when the method is - called. If this method should be bound to an instance, \var{self} - should be the instance and \var{class} should be the class of - \var{self}, otherwise \var{self} should be \NULL{} and \var{class} - should be the class which provides the unbound method.. -\end{cfuncdesc} - -\begin{cfuncdesc}{PyObject*}{PyMethod_Class}{PyObject *meth} - Return the class object from which the method \var{meth} was - created; if this was created from an instance, it will be the class - of the instance. -\end{cfuncdesc} - -\begin{cfuncdesc}{PyObject*}{PyMethod_GET_CLASS}{PyObject *meth} - Macro version of \cfunction{PyMethod_Class()} which avoids error - checking. -\end{cfuncdesc} - -\begin{cfuncdesc}{PyObject*}{PyMethod_Function}{PyObject *meth} - Return the function object associated with the method \var{meth}. -\end{cfuncdesc} - -\begin{cfuncdesc}{PyObject*}{PyMethod_GET_FUNCTION}{PyObject *meth} - Macro version of \cfunction{PyMethod_Function()} which avoids error - checking. -\end{cfuncdesc} - -\begin{cfuncdesc}{PyObject*}{PyMethod_Self}{PyObject *meth} - Return the instance associated with the method \var{meth} if it is - bound, otherwise return \NULL{}. -\end{cfuncdesc} - -\begin{cfuncdesc}{PyObject*}{PyMethod_GET_SELF}{PyObject *meth} - Macro version of \cfunction{PyMethod_Self()} which avoids error - checking. -\end{cfuncdesc} - - -\subsection{Module Objects \label{moduleObjects}} - -\obindex{module} -There are only a few functions special to module objects. - -\begin{cvardesc}{PyTypeObject}{PyModule_Type} - This instance of \ctype{PyTypeObject} represents the Python module - type. This is exposed to Python programs as - \code{types.ModuleType}. - \withsubitem{(in module types)}{\ttindex{ModuleType}} -\end{cvardesc} - -\begin{cfuncdesc}{int}{PyModule_Check}{PyObject *p} - Return true if \var{p} is a module object, or a subtype of a module - object. - \versionchanged[Allowed subtypes to be accepted]{2.2} -\end{cfuncdesc} - -\begin{cfuncdesc}{int}{PyModule_CheckExact}{PyObject *p} - Return true if \var{p} is a module object, but not a subtype of - \cdata{PyModule_Type}. - \versionadded{2.2} -\end{cfuncdesc} - -\begin{cfuncdesc}{PyObject*}{PyModule_New}{const char *name} - Return a new module object with the \member{__name__} attribute set - to \var{name}. Only the module's \member{__doc__} and - \member{__name__} attributes are filled in; the caller is - responsible for providing a \member{__file__} attribute. - \withsubitem{(module attribute)}{ - \ttindex{__name__}\ttindex{__doc__}\ttindex{__file__}} -\end{cfuncdesc} - -\begin{cfuncdesc}{PyObject*}{PyModule_GetDict}{PyObject *module} - Return the dictionary object that implements \var{module}'s - namespace; this object is the same as the \member{__dict__} - attribute of the module object. This function never fails. - \withsubitem{(module attribute)}{\ttindex{__dict__}} - It is recommended extensions use other \cfunction{PyModule_*()} - and \cfunction{PyObject_*()} functions rather than directly - manipulate a module's \member{__dict__}. -\end{cfuncdesc} - -\begin{cfuncdesc}{char*}{PyModule_GetName}{PyObject *module} - Return \var{module}'s \member{__name__} value. If the module does - not provide one, or if it is not a string, \exception{SystemError} - is raised and \NULL{} is returned. - \withsubitem{(module attribute)}{\ttindex{__name__}} - \withsubitem{(built-in exception)}{\ttindex{SystemError}} -\end{cfuncdesc} - -\begin{cfuncdesc}{char*}{PyModule_GetFilename}{PyObject *module} - Return the name of the file from which \var{module} was loaded using - \var{module}'s \member{__file__} attribute. If this is not defined, - or if it is not a string, raise \exception{SystemError} and return - \NULL{}. - \withsubitem{(module attribute)}{\ttindex{__file__}} - \withsubitem{(built-in exception)}{\ttindex{SystemError}} -\end{cfuncdesc} - -\begin{cfuncdesc}{int}{PyModule_AddObject}{PyObject *module, - const char *name, PyObject *value} - Add an object to \var{module} as \var{name}. This is a convenience - function which can be used from the module's initialization - function. This steals a reference to \var{value}. Return - \code{-1} on error, \code{0} on success. - \versionadded{2.0} -\end{cfuncdesc} - -\begin{cfuncdesc}{int}{PyModule_AddIntConstant}{PyObject *module, - const char *name, long value} - Add an integer constant to \var{module} as \var{name}. This - convenience function can be used from the module's initialization - function. Return \code{-1} on error, \code{0} on success. - \versionadded{2.0} -\end{cfuncdesc} - -\begin{cfuncdesc}{int}{PyModule_AddStringConstant}{PyObject *module, - const char *name, const char *value} - Add a string constant to \var{module} as \var{name}. This - convenience function can be used from the module's initialization - function. The string \var{value} must be null-terminated. Return - \code{-1} on error, \code{0} on success. - \versionadded{2.0} -\end{cfuncdesc} - - -\subsection{Iterator Objects \label{iterator-objects}} - -Python provides two general-purpose iterator objects. The first, a -sequence iterator, works with an arbitrary sequence supporting the -\method{__getitem__()} method. The second works with a callable -object and a sentinel value, calling the callable for each item in the -sequence, and ending the iteration when the sentinel value is -returned. - -\begin{cvardesc}{PyTypeObject}{PySeqIter_Type} - Type object for iterator objects returned by - \cfunction{PySeqIter_New()} and the one-argument form of the - \function{iter()} built-in function for built-in sequence types. - \versionadded{2.2} -\end{cvardesc} - -\begin{cfuncdesc}{int}{PySeqIter_Check}{op} - Return true if the type of \var{op} is \cdata{PySeqIter_Type}. - \versionadded{2.2} -\end{cfuncdesc} - -\begin{cfuncdesc}{PyObject*}{PySeqIter_New}{PyObject *seq} - Return an iterator that works with a general sequence object, - \var{seq}. The iteration ends when the sequence raises - \exception{IndexError} for the subscripting operation. - \versionadded{2.2} -\end{cfuncdesc} - -\begin{cvardesc}{PyTypeObject}{PyCallIter_Type} - Type object for iterator objects returned by - \cfunction{PyCallIter_New()} and the two-argument form of the - \function{iter()} built-in function. - \versionadded{2.2} -\end{cvardesc} - -\begin{cfuncdesc}{int}{PyCallIter_Check}{op} - Return true if the type of \var{op} is \cdata{PyCallIter_Type}. - \versionadded{2.2} -\end{cfuncdesc} - -\begin{cfuncdesc}{PyObject*}{PyCallIter_New}{PyObject *callable, - PyObject *sentinel} - Return a new iterator. The first parameter, \var{callable}, can be - any Python callable object that can be called with no parameters; - each call to it should return the next item in the iteration. When - \var{callable} returns a value equal to \var{sentinel}, the - iteration will be terminated. - \versionadded{2.2} -\end{cfuncdesc} - - -\subsection{Descriptor Objects \label{descriptor-objects}} - -``Descriptors'' are objects that describe some attribute of an object. -They are found in the dictionary of type objects. - -\begin{cvardesc}{PyTypeObject}{PyProperty_Type} - The type object for the built-in descriptor types. - \versionadded{2.2} -\end{cvardesc} - -\begin{cfuncdesc}{PyObject*}{PyDescr_NewGetSet}{PyTypeObject *type, - struct PyGetSetDef *getset} - \versionadded{2.2} -\end{cfuncdesc} - -\begin{cfuncdesc}{PyObject*}{PyDescr_NewMember}{PyTypeObject *type, - struct PyMemberDef *meth} - \versionadded{2.2} -\end{cfuncdesc} - -\begin{cfuncdesc}{PyObject*}{PyDescr_NewMethod}{PyTypeObject *type, - struct PyMethodDef *meth} - \versionadded{2.2} -\end{cfuncdesc} - -\begin{cfuncdesc}{PyObject*}{PyDescr_NewWrapper}{PyTypeObject *type, - struct wrapperbase *wrapper, - void *wrapped} - \versionadded{2.2} -\end{cfuncdesc} - -\begin{cfuncdesc}{PyObject*}{PyDescr_NewClassMethod}{PyTypeObject *type, - PyMethodDef *method} - \versionadded{2.3} -\end{cfuncdesc} - -\begin{cfuncdesc}{int}{PyDescr_IsData}{PyObject *descr} - Return true if the descriptor objects \var{descr} describes a data - attribute, or false if it describes a method. \var{descr} must be a - descriptor object; there is no error checking. - \versionadded{2.2} -\end{cfuncdesc} - -\begin{cfuncdesc}{PyObject*}{PyWrapper_New}{PyObject *, PyObject *} - \versionadded{2.2} -\end{cfuncdesc} - - -\subsection{Slice Objects \label{slice-objects}} - -\begin{cvardesc}{PyTypeObject}{PySlice_Type} - The type object for slice objects. This is the same as - \code{slice} and \code{types.SliceType}. - \withsubitem{(in module types)}{\ttindex{SliceType}} -\end{cvardesc} - -\begin{cfuncdesc}{int}{PySlice_Check}{PyObject *ob} - Return true if \var{ob} is a slice object; \var{ob} must not be - \NULL{}. -\end{cfuncdesc} - -\begin{cfuncdesc}{PyObject*}{PySlice_New}{PyObject *start, PyObject *stop, - PyObject *step} - Return a new slice object with the given values. The \var{start}, - \var{stop}, and \var{step} parameters are used as the values of the - slice object attributes of the same names. Any of the values may be - \NULL{}, in which case the \code{None} will be used for the - corresponding attribute. Return \NULL{} if the new object could - not be allocated. -\end{cfuncdesc} - -\begin{cfuncdesc}{int}{PySlice_GetIndices}{PySliceObject *slice, Py_ssize_t length, - Py_ssize_t *start, Py_ssize_t *stop, Py_ssize_t *step} -Retrieve the start, stop and step indices from the slice object -\var{slice}, assuming a sequence of length \var{length}. Treats -indices greater than \var{length} as errors. - -Returns 0 on success and -1 on error with no exception set (unless one -of the indices was not \constant{None} and failed to be converted to -an integer, in which case -1 is returned with an exception set). - -You probably do not want to use this function. If you want to use -slice objects in versions of Python prior to 2.3, you would probably -do well to incorporate the source of \cfunction{PySlice_GetIndicesEx}, -suitably renamed, in the source of your extension. -\end{cfuncdesc} - -\begin{cfuncdesc}{int}{PySlice_GetIndicesEx}{PySliceObject *slice, Py_ssize_t length, - Py_ssize_t *start, Py_ssize_t *stop, Py_ssize_t *step, - Py_ssize_t *slicelength} -Usable replacement for \cfunction{PySlice_GetIndices}. Retrieve the -start, stop, and step indices from the slice object \var{slice} -assuming a sequence of length \var{length}, and store the length of -the slice in \var{slicelength}. Out of bounds indices are clipped in -a manner consistent with the handling of normal slices. - -Returns 0 on success and -1 on error with exception set. - -\versionadded{2.3} -\end{cfuncdesc} - - -\subsection{Weak Reference Objects \label{weakref-objects}} - -Python supports \emph{weak references} as first-class objects. There -are two specific object types which directly implement weak -references. The first is a simple reference object, and the second -acts as a proxy for the original object as much as it can. - -\begin{cfuncdesc}{int}{PyWeakref_Check}{ob} - Return true if \var{ob} is either a reference or proxy object. - \versionadded{2.2} -\end{cfuncdesc} - -\begin{cfuncdesc}{int}{PyWeakref_CheckRef}{ob} - Return true if \var{ob} is a reference object. - \versionadded{2.2} -\end{cfuncdesc} - -\begin{cfuncdesc}{int}{PyWeakref_CheckProxy}{ob} - Return true if \var{ob} is a proxy object. - \versionadded{2.2} -\end{cfuncdesc} - -\begin{cfuncdesc}{PyObject*}{PyWeakref_NewRef}{PyObject *ob, - PyObject *callback} - Return a weak reference object for the object \var{ob}. This will - always return a new reference, but is not guaranteed to create a new - object; an existing reference object may be returned. The second - parameter, \var{callback}, can be a callable object that receives - notification when \var{ob} is garbage collected; it should accept a - single parameter, which will be the weak reference object itself. - \var{callback} may also be \code{None} or \NULL{}. If \var{ob} - is not a weakly-referencable object, or if \var{callback} is not - callable, \code{None}, or \NULL{}, this will return \NULL{} and - raise \exception{TypeError}. - \versionadded{2.2} -\end{cfuncdesc} - -\begin{cfuncdesc}{PyObject*}{PyWeakref_NewProxy}{PyObject *ob, - PyObject *callback} - Return a weak reference proxy object for the object \var{ob}. This - will always return a new reference, but is not guaranteed to create - a new object; an existing proxy object may be returned. The second - parameter, \var{callback}, can be a callable object that receives - notification when \var{ob} is garbage collected; it should accept a - single parameter, which will be the weak reference object itself. - \var{callback} may also be \code{None} or \NULL{}. If \var{ob} is not - a weakly-referencable object, or if \var{callback} is not callable, - \code{None}, or \NULL{}, this will return \NULL{} and raise - \exception{TypeError}. - \versionadded{2.2} -\end{cfuncdesc} - -\begin{cfuncdesc}{PyObject*}{PyWeakref_GetObject}{PyObject *ref} - Return the referenced object from a weak reference, \var{ref}. If - the referent is no longer live, returns \code{None}. - \versionadded{2.2} -\end{cfuncdesc} - -\begin{cfuncdesc}{PyObject*}{PyWeakref_GET_OBJECT}{PyObject *ref} - Similar to \cfunction{PyWeakref_GetObject()}, but implemented as a - macro that does no error checking. - \versionadded{2.2} -\end{cfuncdesc} - - -\subsection{CObjects \label{cObjects}} - -\obindex{CObject} -Refer to \emph{Extending and Embedding the Python Interpreter}, -section~1.12, ``Providing a C API for an Extension Module,'' for more -information on using these objects. - - -\begin{ctypedesc}{PyCObject} - This subtype of \ctype{PyObject} represents an opaque value, useful - for C extension modules who need to pass an opaque value (as a - \ctype{void*} pointer) through Python code to other C code. It is - often used to make a C function pointer defined in one module - available to other modules, so the regular import mechanism can be - used to access C APIs defined in dynamically loaded modules. -\end{ctypedesc} - -\begin{cfuncdesc}{int}{PyCObject_Check}{PyObject *p} - Return true if its argument is a \ctype{PyCObject}. -\end{cfuncdesc} - -\begin{cfuncdesc}{PyObject*}{PyCObject_FromVoidPtr}{void* cobj, - void (*destr)(void *)} - Create a \ctype{PyCObject} from the \code{void *}\var{cobj}. The - \var{destr} function will be called when the object is reclaimed, - unless it is \NULL{}. -\end{cfuncdesc} - -\begin{cfuncdesc}{PyObject*}{PyCObject_FromVoidPtrAndDesc}{void* cobj, - void* desc, void (*destr)(void *, void *)} - Create a \ctype{PyCObject} from the \ctype{void *}\var{cobj}. The - \var{destr} function will be called when the object is reclaimed. - The \var{desc} argument can be used to pass extra callback data for - the destructor function. -\end{cfuncdesc} - -\begin{cfuncdesc}{void*}{PyCObject_AsVoidPtr}{PyObject* self} - Return the object \ctype{void *} that the \ctype{PyCObject} - \var{self} was created with. -\end{cfuncdesc} - -\begin{cfuncdesc}{void*}{PyCObject_GetDesc}{PyObject* self} - Return the description \ctype{void *} that the \ctype{PyCObject} - \var{self} was created with. -\end{cfuncdesc} - -\begin{cfuncdesc}{int}{PyCObject_SetVoidPtr}{PyObject* self, void* cobj} - Set the void pointer inside \var{self} to \var{cobj}. - The \ctype{PyCObject} must not have an associated destructor. - Return true on success, false on failure. -\end{cfuncdesc} - - -\subsection{Cell Objects \label{cell-objects}} - -``Cell'' objects are used to implement variables referenced by -multiple scopes. For each such variable, a cell object is created to -store the value; the local variables of each stack frame that -references the value contains a reference to the cells from outer -scopes which also use that variable. When the value is accessed, the -value contained in the cell is used instead of the cell object -itself. This de-referencing of the cell object requires support from -the generated byte-code; these are not automatically de-referenced -when accessed. Cell objects are not likely to be useful elsewhere. - -\begin{ctypedesc}{PyCellObject} - The C structure used for cell objects. -\end{ctypedesc} - -\begin{cvardesc}{PyTypeObject}{PyCell_Type} - The type object corresponding to cell objects. -\end{cvardesc} - -\begin{cfuncdesc}{int}{PyCell_Check}{ob} - Return true if \var{ob} is a cell object; \var{ob} must not be - \NULL{}. -\end{cfuncdesc} - -\begin{cfuncdesc}{PyObject*}{PyCell_New}{PyObject *ob} - Create and return a new cell object containing the value \var{ob}. - The parameter may be \NULL{}. -\end{cfuncdesc} - -\begin{cfuncdesc}{PyObject*}{PyCell_Get}{PyObject *cell} - Return the contents of the cell \var{cell}. -\end{cfuncdesc} - -\begin{cfuncdesc}{PyObject*}{PyCell_GET}{PyObject *cell} - Return the contents of the cell \var{cell}, but without checking - that \var{cell} is non-\NULL{} and a cell object. -\end{cfuncdesc} - -\begin{cfuncdesc}{int}{PyCell_Set}{PyObject *cell, PyObject *value} - Set the contents of the cell object \var{cell} to \var{value}. This - releases the reference to any current content of the cell. - \var{value} may be \NULL{}. \var{cell} must be non-\NULL{}; if it is - not a cell object, \code{-1} will be returned. On success, \code{0} - will be returned. -\end{cfuncdesc} - -\begin{cfuncdesc}{void}{PyCell_SET}{PyObject *cell, PyObject *value} - Sets the value of the cell object \var{cell} to \var{value}. No - reference counts are adjusted, and no checks are made for safety; - \var{cell} must be non-\NULL{} and must be a cell object. -\end{cfuncdesc} - - -\subsection{Generator Objects \label{gen-objects}} - -Generator objects are what Python uses to implement generator iterators. -They are normally created by iterating over a function that yields values, -rather than explicitly calling \cfunction{PyGen_New}. - -\begin{ctypedesc}{PyGenObject} - The C structure used for generator objects. -\end{ctypedesc} - -\begin{cvardesc}{PyTypeObject}{PyGen_Type} - The type object corresponding to generator objects -\end{cvardesc} - -\begin{cfuncdesc}{int}{PyGen_Check}{ob} - Return true if \var{ob} is a generator object; \var{ob} must not be - \NULL{}. -\end{cfuncdesc} - -\begin{cfuncdesc}{int}{PyGen_CheckExact}{ob} - Return true if \var{ob}'s type is \var{PyGen_Type} - is a generator object; \var{ob} must not be - \NULL{}. -\end{cfuncdesc} - -\begin{cfuncdesc}{PyObject*}{PyGen_New}{PyFrameObject *frame} - Create and return a new generator object based on the \var{frame} object. - A reference to \var{frame} is stolen by this function. - The parameter must not be \NULL{}. -\end{cfuncdesc} - - -\subsection{DateTime Objects \label{datetime-objects}} - -Various date and time objects are supplied by the \module{datetime} -module. Before using any of these functions, the header file -\file{datetime.h} must be included in your source (note that this is -not included by \file{Python.h}), and the macro -\cfunction{PyDateTime_IMPORT} must be invoked. The macro puts a -pointer to a C structure into a static variable, -\code{PyDateTimeAPI}, that is used by the following macros. - -Type-check macros: - -\begin{cfuncdesc}{int}{PyDate_Check}{PyObject *ob} - Return true if \var{ob} is of type \cdata{PyDateTime_DateType} or - a subtype of \cdata{PyDateTime_DateType}. \var{ob} must not be - \NULL{}. - \versionadded{2.4} -\end{cfuncdesc} - -\begin{cfuncdesc}{int}{PyDate_CheckExact}{PyObject *ob} - Return true if \var{ob} is of type \cdata{PyDateTime_DateType}. - \var{ob} must not be \NULL{}. - \versionadded{2.4} -\end{cfuncdesc} - -\begin{cfuncdesc}{int}{PyDateTime_Check}{PyObject *ob} - Return true if \var{ob} is of type \cdata{PyDateTime_DateTimeType} or - a subtype of \cdata{PyDateTime_DateTimeType}. \var{ob} must not be - \NULL{}. - \versionadded{2.4} -\end{cfuncdesc} - -\begin{cfuncdesc}{int}{PyDateTime_CheckExact}{PyObject *ob} - Return true if \var{ob} is of type \cdata{PyDateTime_DateTimeType}. - \var{ob} must not be \NULL{}. - \versionadded{2.4} -\end{cfuncdesc} - -\begin{cfuncdesc}{int}{PyTime_Check}{PyObject *ob} - Return true if \var{ob} is of type \cdata{PyDateTime_TimeType} or - a subtype of \cdata{PyDateTime_TimeType}. \var{ob} must not be - \NULL{}. - \versionadded{2.4} -\end{cfuncdesc} - -\begin{cfuncdesc}{int}{PyTime_CheckExact}{PyObject *ob} - Return true if \var{ob} is of type \cdata{PyDateTime_TimeType}. - \var{ob} must not be \NULL{}. - \versionadded{2.4} -\end{cfuncdesc} - -\begin{cfuncdesc}{int}{PyDelta_Check}{PyObject *ob} - Return true if \var{ob} is of type \cdata{PyDateTime_DeltaType} or - a subtype of \cdata{PyDateTime_DeltaType}. \var{ob} must not be - \NULL{}. - \versionadded{2.4} -\end{cfuncdesc} - -\begin{cfuncdesc}{int}{PyDelta_CheckExact}{PyObject *ob} - Return true if \var{ob} is of type \cdata{PyDateTime_DeltaType}. - \var{ob} must not be \NULL{}. - \versionadded{2.4} -\end{cfuncdesc} - -\begin{cfuncdesc}{int}{PyTZInfo_Check}{PyObject *ob} - Return true if \var{ob} is of type \cdata{PyDateTime_TZInfoType} or - a subtype of \cdata{PyDateTime_TZInfoType}. \var{ob} must not be - \NULL{}. - \versionadded{2.4} -\end{cfuncdesc} - -\begin{cfuncdesc}{int}{PyTZInfo_CheckExact}{PyObject *ob} - Return true if \var{ob} is of type \cdata{PyDateTime_TZInfoType}. - \var{ob} must not be \NULL{}. - \versionadded{2.4} -\end{cfuncdesc} - -Macros to create objects: - -\begin{cfuncdesc}{PyObject*}{PyDate_FromDate}{int year, int month, int day} - Return a \code{datetime.date} object with the specified year, month - and day. - \versionadded{2.4} -\end{cfuncdesc} - -\begin{cfuncdesc}{PyObject*}{PyDateTime_FromDateAndTime}{int year, int month, - int day, int hour, int minute, int second, int usecond} - Return a \code{datetime.datetime} object with the specified year, month, - day, hour, minute, second and microsecond. - \versionadded{2.4} -\end{cfuncdesc} - -\begin{cfuncdesc}{PyObject*}{PyTime_FromTime}{int hour, int minute, - int second, int usecond} - Return a \code{datetime.time} object with the specified hour, minute, - second and microsecond. - \versionadded{2.4} -\end{cfuncdesc} - -\begin{cfuncdesc}{PyObject*}{PyDelta_FromDSU}{int days, int seconds, - int useconds} - Return a \code{datetime.timedelta} object representing the given number - of days, seconds and microseconds. Normalization is performed so that - the resulting number of microseconds and seconds lie in the ranges - documented for \code{datetime.timedelta} objects. - \versionadded{2.4} -\end{cfuncdesc} - -Macros to extract fields from date objects. The argument must be an -instance of \cdata{PyDateTime_Date}, including subclasses (such as -\cdata{PyDateTime_DateTime}). The argument must not be \NULL{}, and -the type is not checked: - -\begin{cfuncdesc}{int}{PyDateTime_GET_YEAR}{PyDateTime_Date *o} - Return the year, as a positive int. - \versionadded{2.4} -\end{cfuncdesc} - -\begin{cfuncdesc}{int}{PyDateTime_GET_MONTH}{PyDateTime_Date *o} - Return the month, as an int from 1 through 12. - \versionadded{2.4} -\end{cfuncdesc} - -\begin{cfuncdesc}{int}{PyDateTime_GET_DAY}{PyDateTime_Date *o} - Return the day, as an int from 1 through 31. - \versionadded{2.4} -\end{cfuncdesc} - -Macros to extract fields from datetime objects. The argument must be an -instance of \cdata{PyDateTime_DateTime}, including subclasses. -The argument must not be \NULL{}, and the type is not checked: - -\begin{cfuncdesc}{int}{PyDateTime_DATE_GET_HOUR}{PyDateTime_DateTime *o} - Return the hour, as an int from 0 through 23. - \versionadded{2.4} -\end{cfuncdesc} - -\begin{cfuncdesc}{int}{PyDateTime_DATE_GET_MINUTE}{PyDateTime_DateTime *o} - Return the minute, as an int from 0 through 59. - \versionadded{2.4} -\end{cfuncdesc} - -\begin{cfuncdesc}{int}{PyDateTime_DATE_GET_SECOND}{PyDateTime_DateTime *o} - Return the second, as an int from 0 through 59. - \versionadded{2.4} -\end{cfuncdesc} - -\begin{cfuncdesc}{int}{PyDateTime_DATE_GET_MICROSECOND}{PyDateTime_DateTime *o} - Return the microsecond, as an int from 0 through 999999. - \versionadded{2.4} -\end{cfuncdesc} - -Macros to extract fields from time objects. The argument must be an -instance of \cdata{PyDateTime_Time}, including subclasses. -The argument must not be \NULL{}, and the type is not checked: - -\begin{cfuncdesc}{int}{PyDateTime_TIME_GET_HOUR}{PyDateTime_Time *o} - Return the hour, as an int from 0 through 23. - \versionadded{2.4} -\end{cfuncdesc} - -\begin{cfuncdesc}{int}{PyDateTime_TIME_GET_MINUTE}{PyDateTime_Time *o} - Return the minute, as an int from 0 through 59. - \versionadded{2.4} -\end{cfuncdesc} - -\begin{cfuncdesc}{int}{PyDateTime_TIME_GET_SECOND}{PyDateTime_Time *o} - Return the second, as an int from 0 through 59. - \versionadded{2.4} -\end{cfuncdesc} - -\begin{cfuncdesc}{int}{PyDateTime_TIME_GET_MICROSECOND}{PyDateTime_Time *o} - Return the microsecond, as an int from 0 through 999999. - \versionadded{2.4} -\end{cfuncdesc} - -Macros for the convenience of modules implementing the DB API: - -\begin{cfuncdesc}{PyObject*}{PyDateTime_FromTimestamp}{PyObject *args} - Create and return a new \code{datetime.datetime} object given an argument - tuple suitable for passing to \code{datetime.datetime.fromtimestamp()}. - \versionadded{2.4} -\end{cfuncdesc} - -\begin{cfuncdesc}{PyObject*}{PyDate_FromTimestamp}{PyObject *args} - Create and return a new \code{datetime.date} object given an argument - tuple suitable for passing to \code{datetime.date.fromtimestamp()}. - \versionadded{2.4} -\end{cfuncdesc} - - -\subsection{Set Objects \label{setObjects}} -\sectionauthor{Raymond D. Hettinger}{python@rcn.com} - -\obindex{set} -\obindex{frozenset} -\versionadded{2.5} - -This section details the public API for \class{set} and \class{frozenset} -objects. Any functionality not listed below is best accessed using the -either the abstract object protocol (including -\cfunction{PyObject_CallMethod()}, \cfunction{PyObject_RichCompareBool()}, -\cfunction{PyObject_Hash()}, \cfunction{PyObject_Repr()}, -\cfunction{PyObject_IsTrue()}, \cfunction{PyObject_Print()}, and -\cfunction{PyObject_GetIter()}) -or the abstract number protocol (including -\cfunction{PyNumber_And()}, \cfunction{PyNumber_Subtract()}, -\cfunction{PyNumber_Or()}, \cfunction{PyNumber_Xor()}, -\cfunction{PyNumber_InPlaceAnd()}, \cfunction{PyNumber_InPlaceSubtract()}, -\cfunction{PyNumber_InPlaceOr()}, and \cfunction{PyNumber_InPlaceXor()}). - -\begin{ctypedesc}{PySetObject} - This subtype of \ctype{PyObject} is used to hold the internal data for - both \class{set} and \class{frozenset} objects. It is like a - \ctype{PyDictObject} in that it is a fixed size for small sets - (much like tuple storage) and will point to a separate, variable sized - block of memory for medium and large sized sets (much like list storage). - None of the fields of this structure should be considered public and - are subject to change. All access should be done through the - documented API rather than by manipulating the values in the structure. - -\end{ctypedesc} - -\begin{cvardesc}{PyTypeObject}{PySet_Type} - This is an instance of \ctype{PyTypeObject} representing the Python - \class{set} type. -\end{cvardesc} - -\begin{cvardesc}{PyTypeObject}{PyFrozenSet_Type} - This is an instance of \ctype{PyTypeObject} representing the Python - \class{frozenset} type. -\end{cvardesc} - - -The following type check macros work on pointers to any Python object. -Likewise, the constructor functions work with any iterable Python object. - -\begin{cfuncdesc}{int}{PyAnySet_Check}{PyObject *p} - Return true if \var{p} is a \class{set} object, a \class{frozenset} - object, or an instance of a subtype. -\end{cfuncdesc} - -\begin{cfuncdesc}{int}{PyAnySet_CheckExact}{PyObject *p} - Return true if \var{p} is a \class{set} object or a \class{frozenset} - object but not an instance of a subtype. -\end{cfuncdesc} - -\begin{cfuncdesc}{int}{PyFrozenSet_CheckExact}{PyObject *p} - Return true if \var{p} is a \class{frozenset} object - but not an instance of a subtype. -\end{cfuncdesc} - -\begin{cfuncdesc}{PyObject*}{PySet_New}{PyObject *iterable} - Return a new \class{set} containing objects returned by the - \var{iterable}. The \var{iterable} may be \NULL{} to create a - new empty set. Return the new set on success or \NULL{} on - failure. Raise \exception{TypeError} if \var{iterable} is - not actually iterable. The constructor is also useful for - copying a set (\code{c=set(s)}). -\end{cfuncdesc} - -\begin{cfuncdesc}{PyObject*}{PyFrozenSet_New}{PyObject *iterable} - Return a new \class{frozenset} containing objects returned by the - \var{iterable}. The \var{iterable} may be \NULL{} to create a - new empty frozenset. Return the new set on success or \NULL{} on - failure. Raise \exception{TypeError} if \var{iterable} is - not actually iterable. -\end{cfuncdesc} - - -The following functions and macros are available for instances of -\class{set} or \class{frozenset} or instances of their subtypes. - -\begin{cfuncdesc}{int}{PySet_Size}{PyObject *anyset} - Return the length of a \class{set} or \class{frozenset} object. - Equivalent to \samp{len(\var{anyset})}. Raises a - \exception{PyExc_SystemError} if \var{anyset} is not a \class{set}, - \class{frozenset}, or an instance of a subtype. - \bifuncindex{len} -\end{cfuncdesc} - -\begin{cfuncdesc}{int}{PySet_GET_SIZE}{PyObject *anyset} - Macro form of \cfunction{PySet_Size()} without error checking. -\end{cfuncdesc} - -\begin{cfuncdesc}{int}{PySet_Contains}{PyObject *anyset, PyObject *key} - Return 1 if found, 0 if not found, and -1 if an error is - encountered. Unlike the Python \method{__contains__()} method, this - function does not automatically convert unhashable sets into temporary - frozensets. Raise a \exception{TypeError} if the \var{key} is unhashable. - Raise \exception{PyExc_SystemError} if \var{anyset} is not a \class{set}, - \class{frozenset}, or an instance of a subtype. -\end{cfuncdesc} - -The following functions are available for instances of \class{set} or -its subtypes but not for instances of \class{frozenset} or its subtypes. - -\begin{cfuncdesc}{int}{PySet_Add}{PyObject *set, PyObject *key} - Add \var{key} to a \class{set} instance. Does not apply to - \class{frozenset} instances. Return 0 on success or -1 on failure. - Raise a \exception{TypeError} if the \var{key} is unhashable. - Raise a \exception{MemoryError} if there is no room to grow. - Raise a \exception{SystemError} if \var{set} is an not an instance - of \class{set} or its subtype. -\end{cfuncdesc} - -\begin{cfuncdesc}{int}{PySet_Discard}{PyObject *set, PyObject *key} - Return 1 if found and removed, 0 if not found (no action taken), - and -1 if an error is encountered. Does not raise \exception{KeyError} - for missing keys. Raise a \exception{TypeError} if the \var{key} is - unhashable. Unlike the Python \method{discard()} method, this function - does not automatically convert unhashable sets into temporary frozensets. - Raise \exception{PyExc_SystemError} if \var{set} is an not an instance - of \class{set} or its subtype. -\end{cfuncdesc} - -\begin{cfuncdesc}{PyObject*}{PySet_Pop}{PyObject *set} - Return a new reference to an arbitrary object in the \var{set}, - and removes the object from the \var{set}. Return \NULL{} on - failure. Raise \exception{KeyError} if the set is empty. - Raise a \exception{SystemError} if \var{set} is an not an instance - of \class{set} or its subtype. -\end{cfuncdesc} - -\begin{cfuncdesc}{int}{PySet_Clear}{PyObject *set} - Empty an existing set of all elements. -\end{cfuncdesc} diff --git a/Doc/api/exceptions.tex b/Doc/api/exceptions.tex deleted file mode 100644 index 8676963..0000000 --- a/Doc/api/exceptions.tex +++ /dev/null @@ -1,428 +0,0 @@ -\chapter{Exception Handling \label{exceptionHandling}} - -The functions described in this chapter will let you handle and raise Python -exceptions. It is important to understand some of the basics of -Python exception handling. It works somewhat like the -\UNIX{} \cdata{errno} variable: there is a global indicator (per -thread) of the last error that occurred. Most functions don't clear -this on success, but will set it to indicate the cause of the error on -failure. Most functions also return an error indicator, usually -\NULL{} if they are supposed to return a pointer, or \code{-1} if they -return an integer (exception: the \cfunction{PyArg_*()} functions -return \code{1} for success and \code{0} for failure). - -When a function must fail because some function it called failed, it -generally doesn't set the error indicator; the function it called -already set it. It is responsible for either handling the error and -clearing the exception or returning after cleaning up any resources it -holds (such as object references or memory allocations); it should -\emph{not} continue normally if it is not prepared to handle the -error. If returning due to an error, it is important to indicate to -the caller that an error has been set. If the error is not handled or -carefully propagated, additional calls into the Python/C API may not -behave as intended and may fail in mysterious ways. - -The error indicator consists of three Python objects corresponding to -the result of \code{sys.exc_info()}. API functions exist to interact -with the error indicator in various ways. There is a separate -error indicator for each thread. - -% XXX Order of these should be more thoughtful. -% Either alphabetical or some kind of structure. - -\begin{cfuncdesc}{void}{PyErr_Print}{} - Print a standard traceback to \code{sys.stderr} and clear the error - indicator. Call this function only when the error indicator is - set. (Otherwise it will cause a fatal error!) -\end{cfuncdesc} - -\begin{cfuncdesc}{PyObject*}{PyErr_Occurred}{} - Test whether the error indicator is set. If set, return the - exception \emph{type} (the first argument to the last call to one of - the \cfunction{PyErr_Set*()} functions or to - \cfunction{PyErr_Restore()}). If not set, return \NULL. You do - not own a reference to the return value, so you do not need to - \cfunction{Py_DECREF()} it. \note{Do not compare the return value - to a specific exception; use \cfunction{PyErr_ExceptionMatches()} - instead, shown below. (The comparison could easily fail since the - exception may be an instance instead of a class, in the case of a - class exception, or it may the a subclass of the expected - exception.)} -\end{cfuncdesc} - -\begin{cfuncdesc}{int}{PyErr_ExceptionMatches}{PyObject *exc} - Equivalent to \samp{PyErr_GivenExceptionMatches(PyErr_Occurred(), - \var{exc})}. This should only be called when an exception is - actually set; a memory access violation will occur if no exception - has been raised. -\end{cfuncdesc} - -\begin{cfuncdesc}{int}{PyErr_GivenExceptionMatches}{PyObject *given, PyObject *exc} - Return true if the \var{given} exception matches the exception in - \var{exc}. If \var{exc} is a class object, this also returns true - when \var{given} is an instance of a subclass. If \var{exc} is a - tuple, all exceptions in the tuple (and recursively in subtuples) - are searched for a match. If \var{given} is \NULL, a memory access - violation will occur. -\end{cfuncdesc} - -\begin{cfuncdesc}{void}{PyErr_NormalizeException}{PyObject**exc, PyObject**val, PyObject**tb} - Under certain circumstances, the values returned by - \cfunction{PyErr_Fetch()} below can be ``unnormalized'', meaning - that \code{*\var{exc}} is a class object but \code{*\var{val}} is - not an instance of the same class. This function can be used to - instantiate the class in that case. If the values are already - normalized, nothing happens. The delayed normalization is - implemented to improve performance. -\end{cfuncdesc} - -\begin{cfuncdesc}{void}{PyErr_Clear}{} - Clear the error indicator. If the error indicator is not set, there - is no effect. -\end{cfuncdesc} - -\begin{cfuncdesc}{void}{PyErr_Fetch}{PyObject **ptype, PyObject **pvalue, - PyObject **ptraceback} - Retrieve the error indicator into three variables whose addresses - are passed. If the error indicator is not set, set all three - variables to \NULL. If it is set, it will be cleared and you own a - reference to each object retrieved. The value and traceback object - may be \NULL{} even when the type object is not. \note{This - function is normally only used by code that needs to handle - exceptions or by code that needs to save and restore the error - indicator temporarily.} -\end{cfuncdesc} - -\begin{cfuncdesc}{void}{PyErr_Restore}{PyObject *type, PyObject *value, - PyObject *traceback} - Set the error indicator from the three objects. If the error - indicator is already set, it is cleared first. If the objects are - \NULL, the error indicator is cleared. Do not pass a \NULL{} type - and non-\NULL{} value or traceback. The exception type should be a - class. Do not pass an invalid exception type or value. - (Violating these rules will cause subtle problems later.) This call - takes away a reference to each object: you must own a reference to - each object before the call and after the call you no longer own - these references. (If you don't understand this, don't use this - function. I warned you.) \note{This function is normally only used - by code that needs to save and restore the error indicator - temporarily; use \cfunction{PyErr_Fetch()} to save the current - exception state.} -\end{cfuncdesc} - -\begin{cfuncdesc}{void}{PyErr_SetString}{PyObject *type, const char *message} - This is the most common way to set the error indicator. The first - argument specifies the exception type; it is normally one of the - standard exceptions, e.g. \cdata{PyExc_RuntimeError}. You need not - increment its reference count. The second argument is an error - message; it is converted to a string object. -\end{cfuncdesc} - -\begin{cfuncdesc}{void}{PyErr_SetObject}{PyObject *type, PyObject *value} - This function is similar to \cfunction{PyErr_SetString()} but lets - you specify an arbitrary Python object for the ``value'' of the - exception. -\end{cfuncdesc} - -\begin{cfuncdesc}{PyObject*}{PyErr_Format}{PyObject *exception, - const char *format, \moreargs} - This function sets the error indicator and returns \NULL. - \var{exception} should be a Python exception (class, not - an instance). \var{format} should be a string, containing format - codes, similar to \cfunction{printf()}. The \code{width.precision} - before a format code is parsed, but the width part is ignored. - - % This should be exactly the same as the table in PyString_FromFormat. - % One should just refer to the other. - - % The descriptions for %zd and %zu are wrong, but the truth is complicated - % because not all compilers support the %z width modifier -- we fake it - % when necessary via interpolating PY_FORMAT_SIZE_T. - - % %u, %lu, %zu should have "new in Python 2.5" blurbs. - - \begin{tableiii}{l|l|l}{member}{Format Characters}{Type}{Comment} - \lineiii{\%\%}{\emph{n/a}}{The literal \% character.} - \lineiii{\%c}{int}{A single character, represented as an C int.} - \lineiii{\%d}{int}{Exactly equivalent to \code{printf("\%d")}.} - \lineiii{\%u}{unsigned int}{Exactly equivalent to \code{printf("\%u")}.} - \lineiii{\%ld}{long}{Exactly equivalent to \code{printf("\%ld")}.} - \lineiii{\%lu}{unsigned long}{Exactly equivalent to \code{printf("\%lu")}.} - \lineiii{\%zd}{Py_ssize_t}{Exactly equivalent to \code{printf("\%zd")}.} - \lineiii{\%zu}{size_t}{Exactly equivalent to \code{printf("\%zu")}.} - \lineiii{\%i}{int}{Exactly equivalent to \code{printf("\%i")}.} - \lineiii{\%x}{int}{Exactly equivalent to \code{printf("\%x")}.} - \lineiii{\%s}{char*}{A null-terminated C character array.} - \lineiii{\%p}{void*}{The hex representation of a C pointer. - Mostly equivalent to \code{printf("\%p")} except that it is - guaranteed to start with the literal \code{0x} regardless of - what the platform's \code{printf} yields.} - \end{tableiii} - - An unrecognized format character causes all the rest of the format - string to be copied as-is to the result string, and any extra - arguments discarded. -\end{cfuncdesc} - -\begin{cfuncdesc}{void}{PyErr_SetNone}{PyObject *type} - This is a shorthand for \samp{PyErr_SetObject(\var{type}, - Py_None)}. -\end{cfuncdesc} - -\begin{cfuncdesc}{int}{PyErr_BadArgument}{} - This is a shorthand for \samp{PyErr_SetString(PyExc_TypeError, - \var{message})}, where \var{message} indicates that a built-in - operation was invoked with an illegal argument. It is mostly for - internal use. -\end{cfuncdesc} - -\begin{cfuncdesc}{PyObject*}{PyErr_NoMemory}{} - This is a shorthand for \samp{PyErr_SetNone(PyExc_MemoryError)}; it - returns \NULL{} so an object allocation function can write - \samp{return PyErr_NoMemory();} when it runs out of memory. -\end{cfuncdesc} - -\begin{cfuncdesc}{PyObject*}{PyErr_SetFromErrno}{PyObject *type} - This is a convenience function to raise an exception when a C - library function has returned an error and set the C variable - \cdata{errno}. It constructs a tuple object whose first item is the - integer \cdata{errno} value and whose second item is the - corresponding error message (gotten from - \cfunction{strerror()}\ttindex{strerror()}), and then calls - \samp{PyErr_SetObject(\var{type}, \var{object})}. On \UNIX, when - the \cdata{errno} value is \constant{EINTR}, indicating an - interrupted system call, this calls - \cfunction{PyErr_CheckSignals()}, and if that set the error - indicator, leaves it set to that. The function always returns - \NULL, so a wrapper function around a system call can write - \samp{return PyErr_SetFromErrno(\var{type});} when the system call - returns an error. -\end{cfuncdesc} - -\begin{cfuncdesc}{PyObject*}{PyErr_SetFromErrnoWithFilename}{PyObject *type, - const char *filename} - Similar to \cfunction{PyErr_SetFromErrno()}, with the additional - behavior that if \var{filename} is not \NULL, it is passed to the - constructor of \var{type} as a third parameter. In the case of - exceptions such as \exception{IOError} and \exception{OSError}, this - is used to define the \member{filename} attribute of the exception - instance. -\end{cfuncdesc} - -\begin{cfuncdesc}{PyObject*}{PyErr_SetFromWindowsErr}{int ierr} - This is a convenience function to raise \exception{WindowsError}. - If called with \var{ierr} of \cdata{0}, the error code returned by a - call to \cfunction{GetLastError()} is used instead. It calls the - Win32 function \cfunction{FormatMessage()} to retrieve the Windows - description of error code given by \var{ierr} or - \cfunction{GetLastError()}, then it constructs a tuple object whose - first item is the \var{ierr} value and whose second item is the - corresponding error message (gotten from - \cfunction{FormatMessage()}), and then calls - \samp{PyErr_SetObject(\var{PyExc_WindowsError}, \var{object})}. - This function always returns \NULL. - Availability: Windows. -\end{cfuncdesc} - -\begin{cfuncdesc}{PyObject*}{PyErr_SetExcFromWindowsErr}{PyObject *type, - int ierr} - Similar to \cfunction{PyErr_SetFromWindowsErr()}, with an additional - parameter specifying the exception type to be raised. - Availability: Windows. - \versionadded{2.3} -\end{cfuncdesc} - -\begin{cfuncdesc}{PyObject*}{PyErr_SetFromWindowsErrWithFilename}{int ierr, - const char *filename} - Similar to \cfunction{PyErr_SetFromWindowsErr()}, with the - additional behavior that if \var{filename} is not \NULL, it is - passed to the constructor of \exception{WindowsError} as a third - parameter. - Availability: Windows. -\end{cfuncdesc} - -\begin{cfuncdesc}{PyObject*}{PyErr_SetExcFromWindowsErrWithFilename} - {PyObject *type, int ierr, char *filename} - Similar to \cfunction{PyErr_SetFromWindowsErrWithFilename()}, with - an additional parameter specifying the exception type to be raised. - Availability: Windows. - \versionadded{2.3} -\end{cfuncdesc} - -\begin{cfuncdesc}{void}{PyErr_BadInternalCall}{} - This is a shorthand for \samp{PyErr_SetString(PyExc_TypeError, - \var{message})}, where \var{message} indicates that an internal - operation (e.g. a Python/C API function) was invoked with an illegal - argument. It is mostly for internal use. -\end{cfuncdesc} - -\begin{cfuncdesc}{int}{PyErr_WarnEx}{PyObject *category, char *message, int stacklevel} - Issue a warning message. The \var{category} argument is a warning - category (see below) or \NULL; the \var{message} argument is a - message string. \var{stacklevel} is a positive number giving a - number of stack frames; the warning will be issued from the - currently executing line of code in that stack frame. A \var{stacklevel} - of 1 is the function calling \cfunction{PyErr_WarnEx()}, 2 is - the function above that, and so forth. - - This function normally prints a warning message to \var{sys.stderr}; - however, it is also possible that the user has specified that - warnings are to be turned into errors, and in that case this will - raise an exception. It is also possible that the function raises an - exception because of a problem with the warning machinery (the - implementation imports the \module{warnings} module to do the heavy - lifting). The return value is \code{0} if no exception is raised, - or \code{-1} if an exception is raised. (It is not possible to - determine whether a warning message is actually printed, nor what - the reason is for the exception; this is intentional.) If an - exception is raised, the caller should do its normal exception - handling (for example, \cfunction{Py_DECREF()} owned references and - return an error value). - - Warning categories must be subclasses of \cdata{Warning}; the - default warning category is \cdata{RuntimeWarning}. The standard - Python warning categories are available as global variables whose - names are \samp{PyExc_} followed by the Python exception name. - These have the type \ctype{PyObject*}; they are all class objects. - Their names are \cdata{PyExc_Warning}, \cdata{PyExc_UserWarning}, - \cdata{PyExc_UnicodeWarning}, \cdata{PyExc_DeprecationWarning}, - \cdata{PyExc_SyntaxWarning}, \cdata{PyExc_RuntimeWarning}, and - \cdata{PyExc_FutureWarning}. \cdata{PyExc_Warning} is a subclass of - \cdata{PyExc_Exception}; the other warning categories are subclasses - of \cdata{PyExc_Warning}. - - For information about warning control, see the documentation for the - \module{warnings} module and the \programopt{-W} option in the - command line documentation. There is no C API for warning control. -\end{cfuncdesc} - -\begin{cfuncdesc}{int}{PyErr_WarnExplicit}{PyObject *category, - const char *message, const char *filename, int lineno, - const char *module, PyObject *registry} - Issue a warning message with explicit control over all warning - attributes. This is a straightforward wrapper around the Python - function \function{warnings.warn_explicit()}, see there for more - information. The \var{module} and \var{registry} arguments may be - set to \NULL{} to get the default effect described there. -\end{cfuncdesc} - -\begin{cfuncdesc}{int}{PyErr_CheckSignals}{} - This function interacts with Python's signal handling. It checks - whether a signal has been sent to the processes and if so, invokes - the corresponding signal handler. If the - \module{signal}\refbimodindex{signal} module is supported, this can - invoke a signal handler written in Python. In all cases, the - default effect for \constant{SIGINT}\ttindex{SIGINT} is to raise the - \withsubitem{(built-in exception)}{\ttindex{KeyboardInterrupt}} - \exception{KeyboardInterrupt} exception. If an exception is raised - the error indicator is set and the function returns \code{-1}; - otherwise the function returns \code{0}. The error indicator may or - may not be cleared if it was previously set. -\end{cfuncdesc} - -\begin{cfuncdesc}{void}{PyErr_SetInterrupt}{} - This function simulates the effect of a - \constant{SIGINT}\ttindex{SIGINT} signal arriving --- the next time - \cfunction{PyErr_CheckSignals()} is called, - \withsubitem{(built-in exception)}{\ttindex{KeyboardInterrupt}} - \exception{KeyboardInterrupt} will be raised. It may be called - without holding the interpreter lock. - % XXX This was described as obsolete, but is used in - % thread.interrupt_main() (used from IDLE), so it's still needed. -\end{cfuncdesc} - -\begin{cfuncdesc}{PyObject*}{PyErr_NewException}{char *name, - PyObject *base, - PyObject *dict} - This utility function creates and returns a new exception object. - The \var{name} argument must be the name of the new exception, a C - string of the form \code{module.class}. The \var{base} and - \var{dict} arguments are normally \NULL. This creates a class - object derived from \exception{Exception} (accessible in C as - \cdata{PyExc_Exception}). - - The \member{__module__} attribute of the new class is set to the - first part (up to the last dot) of the \var{name} argument, and the - class name is set to the last part (after the last dot). The - \var{base} argument can be used to specify alternate base classes; - it can either be only one class or a tuple of classes. - The \var{dict} argument can be used to specify a dictionary of class - variables and methods. -\end{cfuncdesc} - -\begin{cfuncdesc}{void}{PyErr_WriteUnraisable}{PyObject *obj} - This utility function prints a warning message to \code{sys.stderr} - when an exception has been set but it is impossible for the - interpreter to actually raise the exception. It is used, for - example, when an exception occurs in an \method{__del__()} method. - - The function is called with a single argument \var{obj} that - identifies the context in which the unraisable exception occurred. - The repr of \var{obj} will be printed in the warning message. -\end{cfuncdesc} - -\section{Standard Exceptions \label{standardExceptions}} - -All standard Python exceptions are available as global variables whose -names are \samp{PyExc_} followed by the Python exception name. These -have the type \ctype{PyObject*}; they are all class objects. For -completeness, here are all the variables: - -\begin{tableiii}{l|l|c}{cdata}{C Name}{Python Name}{Notes} - \lineiii{PyExc_BaseException\ttindex{PyExc_BaseException}}{\exception{BaseException}}{(1), (4)} - \lineiii{PyExc_Exception\ttindex{PyExc_Exception}}{\exception{Exception}}{(1)} - \lineiii{PyExc_ArithmeticError\ttindex{PyExc_ArithmeticError}}{\exception{ArithmeticError}}{(1)} - \lineiii{PyExc_LookupError\ttindex{PyExc_LookupError}}{\exception{LookupError}}{(1)} - \lineiii{PyExc_AssertionError\ttindex{PyExc_AssertionError}}{\exception{AssertionError}}{} - \lineiii{PyExc_AttributeError\ttindex{PyExc_AttributeError}}{\exception{AttributeError}}{} - \lineiii{PyExc_EOFError\ttindex{PyExc_EOFError}}{\exception{EOFError}}{} - \lineiii{PyExc_EnvironmentError\ttindex{PyExc_EnvironmentError}}{\exception{EnvironmentError}}{(1)} - \lineiii{PyExc_FloatingPointError\ttindex{PyExc_FloatingPointError}}{\exception{FloatingPointError}}{} - \lineiii{PyExc_IOError\ttindex{PyExc_IOError}}{\exception{IOError}}{} - \lineiii{PyExc_ImportError\ttindex{PyExc_ImportError}}{\exception{ImportError}}{} - \lineiii{PyExc_IndexError\ttindex{PyExc_IndexError}}{\exception{IndexError}}{} - \lineiii{PyExc_KeyError\ttindex{PyExc_KeyError}}{\exception{KeyError}}{} - \lineiii{PyExc_KeyboardInterrupt\ttindex{PyExc_KeyboardInterrupt}}{\exception{KeyboardInterrupt}}{} - \lineiii{PyExc_MemoryError\ttindex{PyExc_MemoryError}}{\exception{MemoryError}}{} - \lineiii{PyExc_NameError\ttindex{PyExc_NameError}}{\exception{NameError}}{} - \lineiii{PyExc_NotImplementedError\ttindex{PyExc_NotImplementedError}}{\exception{NotImplementedError}}{} - \lineiii{PyExc_OSError\ttindex{PyExc_OSError}}{\exception{OSError}}{} - \lineiii{PyExc_OverflowError\ttindex{PyExc_OverflowError}}{\exception{OverflowError}}{} - \lineiii{PyExc_ReferenceError\ttindex{PyExc_ReferenceError}}{\exception{ReferenceError}}{(2)} - \lineiii{PyExc_RuntimeError\ttindex{PyExc_RuntimeError}}{\exception{RuntimeError}}{} - \lineiii{PyExc_SyntaxError\ttindex{PyExc_SyntaxError}}{\exception{SyntaxError}}{} - \lineiii{PyExc_SystemError\ttindex{PyExc_SystemError}}{\exception{SystemError}}{} - \lineiii{PyExc_SystemExit\ttindex{PyExc_SystemExit}}{\exception{SystemExit}}{} - \lineiii{PyExc_TypeError\ttindex{PyExc_TypeError}}{\exception{TypeError}}{} - \lineiii{PyExc_ValueError\ttindex{PyExc_ValueError}}{\exception{ValueError}}{} - \lineiii{PyExc_WindowsError\ttindex{PyExc_WindowsError}}{\exception{WindowsError}}{(3)} - \lineiii{PyExc_ZeroDivisionError\ttindex{PyExc_ZeroDivisionError}}{\exception{ZeroDivisionError}}{} -\end{tableiii} - -\noindent -Notes: -\begin{description} -\item[(1)] - This is a base class for other standard exceptions. - -\item[(2)] - This is the same as \exception{weakref.ReferenceError}. - -\item[(3)] - Only defined on Windows; protect code that uses this by testing that - the preprocessor macro \code{MS_WINDOWS} is defined. - -\item[(4)] - \versionadded{2.5} -\end{description} - - -\section{Deprecation of String Exceptions} - -All exceptions built into Python or provided in the standard library -are derived from \exception{BaseException}. -\withsubitem{(built-in exception)}{\ttindex{BaseException}} - -String exceptions are still supported in the interpreter to allow -existing code to run unmodified, but this will also change in a future -release. diff --git a/Doc/api/init.tex b/Doc/api/init.tex deleted file mode 100644 index 76fcf61..0000000 --- a/Doc/api/init.tex +++ /dev/null @@ -1,884 +0,0 @@ -\chapter{Initialization, Finalization, and Threads - \label{initialization}} - -\begin{cfuncdesc}{void}{Py_Initialize}{} - Initialize the Python interpreter. In an application embedding - Python, this should be called before using any other Python/C API - functions; with the exception of - \cfunction{Py_SetProgramName()}\ttindex{Py_SetProgramName()}, - \cfunction{PyEval_InitThreads()}\ttindex{PyEval_InitThreads()}, - \cfunction{PyEval_ReleaseLock()}\ttindex{PyEval_ReleaseLock()}, - and \cfunction{PyEval_AcquireLock()}\ttindex{PyEval_AcquireLock()}. - This initializes the table of loaded modules (\code{sys.modules}), - and\withsubitem{(in module sys)}{\ttindex{modules}\ttindex{path}} - creates the fundamental modules - \module{__builtin__}\refbimodindex{__builtin__}, - \module{__main__}\refbimodindex{__main__} and - \module{sys}\refbimodindex{sys}. It also initializes the module - search\indexiii{module}{search}{path} path (\code{sys.path}). - It does not set \code{sys.argv}; use - \cfunction{PySys_SetArgv()}\ttindex{PySys_SetArgv()} for that. This - is a no-op when called for a second time (without calling - \cfunction{Py_Finalize()}\ttindex{Py_Finalize()} first). There is - no return value; it is a fatal error if the initialization fails. -\end{cfuncdesc} - -\begin{cfuncdesc}{void}{Py_InitializeEx}{int initsigs} - This function works like \cfunction{Py_Initialize()} if - \var{initsigs} is 1. If \var{initsigs} is 0, it skips - initialization registration of signal handlers, which - might be useful when Python is embedded. \versionadded{2.4} -\end{cfuncdesc} - -\begin{cfuncdesc}{int}{Py_IsInitialized}{} - Return true (nonzero) when the Python interpreter has been - initialized, false (zero) if not. After \cfunction{Py_Finalize()} - is called, this returns false until \cfunction{Py_Initialize()} is - called again. -\end{cfuncdesc} - -\begin{cfuncdesc}{void}{Py_Finalize}{} - Undo all initializations made by \cfunction{Py_Initialize()} and - subsequent use of Python/C API functions, and destroy all - sub-interpreters (see \cfunction{Py_NewInterpreter()} below) that - were created and not yet destroyed since the last call to - \cfunction{Py_Initialize()}. Ideally, this frees all memory - allocated by the Python interpreter. This is a no-op when called - for a second time (without calling \cfunction{Py_Initialize()} again - first). There is no return value; errors during finalization are - ignored. - - This function is provided for a number of reasons. An embedding - application might want to restart Python without having to restart - the application itself. An application that has loaded the Python - interpreter from a dynamically loadable library (or DLL) might want - to free all memory allocated by Python before unloading the - DLL. During a hunt for memory leaks in an application a developer - might want to free all memory allocated by Python before exiting - from the application. - - \strong{Bugs and caveats:} The destruction of modules and objects in - modules is done in random order; this may cause destructors - (\method{__del__()} methods) to fail when they depend on other - objects (even functions) or modules. Dynamically loaded extension - modules loaded by Python are not unloaded. Small amounts of memory - allocated by the Python interpreter may not be freed (if you find a - leak, please report it). Memory tied up in circular references - between objects is not freed. Some memory allocated by extension - modules may not be freed. Some extensions may not work properly if - their initialization routine is called more than once; this can - happen if an application calls \cfunction{Py_Initialize()} and - \cfunction{Py_Finalize()} more than once. -\end{cfuncdesc} - -\begin{cfuncdesc}{PyThreadState*}{Py_NewInterpreter}{} - Create a new sub-interpreter. This is an (almost) totally separate - environment for the execution of Python code. In particular, the - new interpreter has separate, independent versions of all imported - modules, including the fundamental modules - \module{__builtin__}\refbimodindex{__builtin__}, - \module{__main__}\refbimodindex{__main__} and - \module{sys}\refbimodindex{sys}. The table of loaded modules - (\code{sys.modules}) and the module search path (\code{sys.path}) - are also separate. The new environment has no \code{sys.argv} - variable. It has new standard I/O stream file objects - \code{sys.stdin}, \code{sys.stdout} and \code{sys.stderr} (however - these refer to the same underlying \ctype{FILE} structures in the C - library). - \withsubitem{(in module sys)}{ - \ttindex{stdout}\ttindex{stderr}\ttindex{stdin}} - - The return value points to the first thread state created in the new - sub-interpreter. This thread state is made in the current thread - state. Note that no actual thread is created; see the discussion of - thread states below. If creation of the new interpreter is - unsuccessful, \NULL{} is returned; no exception is set since the - exception state is stored in the current thread state and there may - not be a current thread state. (Like all other Python/C API - functions, the global interpreter lock must be held before calling - this function and is still held when it returns; however, unlike - most other Python/C API functions, there needn't be a current thread - state on entry.) - - Extension modules are shared between (sub-)interpreters as follows: - the first time a particular extension is imported, it is initialized - normally, and a (shallow) copy of its module's dictionary is - squirreled away. When the same extension is imported by another - (sub-)interpreter, a new module is initialized and filled with the - contents of this copy; the extension's \code{init} function is not - called. Note that this is different from what happens when an - extension is imported after the interpreter has been completely - re-initialized by calling - \cfunction{Py_Finalize()}\ttindex{Py_Finalize()} and - \cfunction{Py_Initialize()}\ttindex{Py_Initialize()}; in that case, - the extension's \code{init\var{module}} function \emph{is} called - again. - - \strong{Bugs and caveats:} Because sub-interpreters (and the main - interpreter) are part of the same process, the insulation between - them isn't perfect --- for example, using low-level file operations - like \withsubitem{(in module os)}{\ttindex{close()}} - \function{os.close()} they can (accidentally or maliciously) affect - each other's open files. Because of the way extensions are shared - between (sub-)interpreters, some extensions may not work properly; - this is especially likely when the extension makes use of (static) - global variables, or when the extension manipulates its module's - dictionary after its initialization. It is possible to insert - objects created in one sub-interpreter into a namespace of another - sub-interpreter; this should be done with great care to avoid - sharing user-defined functions, methods, instances or classes - between sub-interpreters, since import operations executed by such - objects may affect the wrong (sub-)interpreter's dictionary of - loaded modules. (XXX This is a hard-to-fix bug that will be - addressed in a future release.) - - Also note that the use of this functionality is incompatible with - extension modules such as PyObjC and ctypes that use the - \cfunction{PyGILState_*} APIs (and this is inherent in the way the - \cfunction{PyGILState_*} functions work). Simple things may work, - but confusing behavior will always be near. -\end{cfuncdesc} - -\begin{cfuncdesc}{void}{Py_EndInterpreter}{PyThreadState *tstate} - Destroy the (sub-)interpreter represented by the given thread state. - The given thread state must be the current thread state. See the - discussion of thread states below. When the call returns, the - current thread state is \NULL. All thread states associated with - this interpreter are destroyed. (The global interpreter lock must - be held before calling this function and is still held when it - returns.) \cfunction{Py_Finalize()}\ttindex{Py_Finalize()} will - destroy all sub-interpreters that haven't been explicitly destroyed - at that point. -\end{cfuncdesc} - -\begin{cfuncdesc}{void}{Py_SetProgramName}{char *name} - This function should be called before - \cfunction{Py_Initialize()}\ttindex{Py_Initialize()} is called - for the first time, if it is called at all. It tells the - interpreter the value of the \code{argv[0]} argument to the - \cfunction{main()}\ttindex{main()} function of the program. This is - used by \cfunction{Py_GetPath()}\ttindex{Py_GetPath()} and some - other functions below to find the Python run-time libraries relative - to the interpreter executable. The default value is - \code{'python'}. The argument should point to a zero-terminated - character string in static storage whose contents will not change - for the duration of the program's execution. No code in the Python - interpreter will change the contents of this storage. -\end{cfuncdesc} - -\begin{cfuncdesc}{char*}{Py_GetProgramName}{} - Return the program name set with - \cfunction{Py_SetProgramName()}\ttindex{Py_SetProgramName()}, or the - default. The returned string points into static storage; the caller - should not modify its value. -\end{cfuncdesc} - -\begin{cfuncdesc}{char*}{Py_GetPrefix}{} - Return the \emph{prefix} for installed platform-independent files. - This is derived through a number of complicated rules from the - program name set with \cfunction{Py_SetProgramName()} and some - environment variables; for example, if the program name is - \code{'/usr/local/bin/python'}, the prefix is \code{'/usr/local'}. - The returned string points into static storage; the caller should - not modify its value. This corresponds to the \makevar{prefix} - variable in the top-level \file{Makefile} and the - \longprogramopt{prefix} argument to the \program{configure} script - at build time. The value is available to Python code as - \code{sys.prefix}. It is only useful on \UNIX{}. See also the next - function. -\end{cfuncdesc} - -\begin{cfuncdesc}{char*}{Py_GetExecPrefix}{} - Return the \emph{exec-prefix} for installed - platform-\emph{de}pendent files. This is derived through a number - of complicated rules from the program name set with - \cfunction{Py_SetProgramName()} and some environment variables; for - example, if the program name is \code{'/usr/local/bin/python'}, the - exec-prefix is \code{'/usr/local'}. The returned string points into - static storage; the caller should not modify its value. This - corresponds to the \makevar{exec_prefix} variable in the top-level - \file{Makefile} and the \longprogramopt{exec-prefix} argument to the - \program{configure} script at build time. The value is available - to Python code as \code{sys.exec_prefix}. It is only useful on - \UNIX. - - Background: The exec-prefix differs from the prefix when platform - dependent files (such as executables and shared libraries) are - installed in a different directory tree. In a typical installation, - platform dependent files may be installed in the - \file{/usr/local/plat} subtree while platform independent may be - installed in \file{/usr/local}. - - Generally speaking, a platform is a combination of hardware and - software families, e.g. Sparc machines running the Solaris 2.x - operating system are considered the same platform, but Intel - machines running Solaris 2.x are another platform, and Intel - machines running Linux are yet another platform. Different major - revisions of the same operating system generally also form different - platforms. Non-\UNIX{} operating systems are a different story; the - installation strategies on those systems are so different that the - prefix and exec-prefix are meaningless, and set to the empty string. - Note that compiled Python bytecode files are platform independent - (but not independent from the Python version by which they were - compiled!). - - System administrators will know how to configure the \program{mount} - or \program{automount} programs to share \file{/usr/local} between - platforms while having \file{/usr/local/plat} be a different - filesystem for each platform. -\end{cfuncdesc} - -\begin{cfuncdesc}{char*}{Py_GetProgramFullPath}{} - Return the full program name of the Python executable; this is - computed as a side-effect of deriving the default module search path - from the program name (set by - \cfunction{Py_SetProgramName()}\ttindex{Py_SetProgramName()} above). - The returned string points into static storage; the caller should - not modify its value. The value is available to Python code as - \code{sys.executable}. - \withsubitem{(in module sys)}{\ttindex{executable}} -\end{cfuncdesc} - -\begin{cfuncdesc}{char*}{Py_GetPath}{} - \indexiii{module}{search}{path} - Return the default module search path; this is computed from the - program name (set by \cfunction{Py_SetProgramName()} above) and some - environment variables. The returned string consists of a series of - directory names separated by a platform dependent delimiter - character. The delimiter character is \character{:} on \UNIX{} and Mac OS X, - \character{;} on Windows. The returned string points into - static storage; the caller should not modify its value. The value - is available to Python code as the list - \code{sys.path}\withsubitem{(in module sys)}{\ttindex{path}}, which - may be modified to change the future search path for loaded - modules. - - % XXX should give the exact rules -\end{cfuncdesc} - -\begin{cfuncdesc}{const char*}{Py_GetVersion}{} - Return the version of this Python interpreter. This is a string - that looks something like - -\begin{verbatim} -"1.5 (#67, Dec 31 1997, 22:34:28) [GCC 2.7.2.2]" -\end{verbatim} - - The first word (up to the first space character) is the current - Python version; the first three characters are the major and minor - version separated by a period. The returned string points into - static storage; the caller should not modify its value. The value - is available to Python code as \code{sys.version}. - \withsubitem{(in module sys)}{\ttindex{version}} -\end{cfuncdesc} - -\begin{cfuncdesc}{const char*}{Py_GetBuildNumber}{} - Return a string representing the Subversion revision that this Python - executable was built from. This number is a string because it may contain a - trailing 'M' if Python was built from a mixed revision source tree. - \versionadded{2.5} -\end{cfuncdesc} - -\begin{cfuncdesc}{const char*}{Py_GetPlatform}{} - Return the platform identifier for the current platform. On \UNIX, - this is formed from the ``official'' name of the operating system, - converted to lower case, followed by the major revision number; - e.g., for Solaris 2.x, which is also known as SunOS 5.x, the value - is \code{'sunos5'}. On Mac OS X, it is \code{'darwin'}. On Windows, - it is \code{'win'}. The returned string points into static storage; - the caller should not modify its value. The value is available to - Python code as \code{sys.platform}. - \withsubitem{(in module sys)}{\ttindex{platform}} -\end{cfuncdesc} - -\begin{cfuncdesc}{const char*}{Py_GetCopyright}{} - Return the official copyright string for the current Python version, - for example - - \code{'Copyright 1991-1995 Stichting Mathematisch Centrum, Amsterdam'} - - The returned string points into static storage; the caller should - not modify its value. The value is available to Python code as - \code{sys.copyright}. - \withsubitem{(in module sys)}{\ttindex{copyright}} -\end{cfuncdesc} - -\begin{cfuncdesc}{const char*}{Py_GetCompiler}{} - Return an indication of the compiler used to build the current - Python version, in square brackets, for example: - -\begin{verbatim} -"[GCC 2.7.2.2]" -\end{verbatim} - - The returned string points into static storage; the caller should - not modify its value. The value is available to Python code as part - of the variable \code{sys.version}. - \withsubitem{(in module sys)}{\ttindex{version}} -\end{cfuncdesc} - -\begin{cfuncdesc}{const char*}{Py_GetBuildInfo}{} - Return information about the sequence number and build date and time - of the current Python interpreter instance, for example - -\begin{verbatim} -"#67, Aug 1 1997, 22:34:28" -\end{verbatim} - - The returned string points into static storage; the caller should - not modify its value. The value is available to Python code as part - of the variable \code{sys.version}. - \withsubitem{(in module sys)}{\ttindex{version}} -\end{cfuncdesc} - -\begin{cfuncdesc}{void}{PySys_SetArgv}{int argc, char **argv} - Set \code{sys.argv} based on \var{argc} and \var{argv}. These - parameters are similar to those passed to the program's - \cfunction{main()}\ttindex{main()} function with the difference that - the first entry should refer to the script file to be executed - rather than the executable hosting the Python interpreter. If there - isn't a script that will be run, the first entry in \var{argv} can - be an empty string. If this function fails to initialize - \code{sys.argv}, a fatal condition is signalled using - \cfunction{Py_FatalError()}\ttindex{Py_FatalError()}. - \withsubitem{(in module sys)}{\ttindex{argv}} - % XXX impl. doesn't seem consistent in allowing 0/NULL for the params; - % check w/ Guido. -\end{cfuncdesc} - -% XXX Other PySys thingies (doesn't really belong in this chapter) - -\section{Thread State and the Global Interpreter Lock - \label{threads}} - -\index{global interpreter lock} -\index{interpreter lock} -\index{lock, interpreter} - -The Python interpreter is not fully thread safe. In order to support -multi-threaded Python programs, there's a global lock that must be -held by the current thread before it can safely access Python objects. -Without the lock, even the simplest operations could cause problems in -a multi-threaded program: for example, when two threads simultaneously -increment the reference count of the same object, the reference count -could end up being incremented only once instead of twice. - -Therefore, the rule exists that only the thread that has acquired the -global interpreter lock may operate on Python objects or call Python/C -API functions. In order to support multi-threaded Python programs, -the interpreter regularly releases and reacquires the lock --- by -default, every 100 bytecode instructions (this can be changed with -\withsubitem{(in module sys)}{\ttindex{setcheckinterval()}} -\function{sys.setcheckinterval()}). The lock is also released and -reacquired around potentially blocking I/O operations like reading or -writing a file, so that other threads can run while the thread that -requests the I/O is waiting for the I/O operation to complete. - -The Python interpreter needs to keep some bookkeeping information -separate per thread --- for this it uses a data structure called -\ctype{PyThreadState}\ttindex{PyThreadState}. There's one global -variable, however: the pointer to the current -\ctype{PyThreadState}\ttindex{PyThreadState} structure. While most -thread packages have a way to store ``per-thread global data,'' -Python's internal platform independent thread abstraction doesn't -support this yet. Therefore, the current thread state must be -manipulated explicitly. - -This is easy enough in most cases. Most code manipulating the global -interpreter lock has the following simple structure: - -\begin{verbatim} -Save the thread state in a local variable. -Release the interpreter lock. -...Do some blocking I/O operation... -Reacquire the interpreter lock. -Restore the thread state from the local variable. -\end{verbatim} - -This is so common that a pair of macros exists to simplify it: - -\begin{verbatim} -Py_BEGIN_ALLOW_THREADS -...Do some blocking I/O operation... -Py_END_ALLOW_THREADS -\end{verbatim} - -The -\csimplemacro{Py_BEGIN_ALLOW_THREADS}\ttindex{Py_BEGIN_ALLOW_THREADS} -macro opens a new block and declares a hidden local variable; the -\csimplemacro{Py_END_ALLOW_THREADS}\ttindex{Py_END_ALLOW_THREADS} -macro closes the block. Another advantage of using these two macros -is that when Python is compiled without thread support, they are -defined empty, thus saving the thread state and lock manipulations. - -When thread support is enabled, the block above expands to the -following code: - -\begin{verbatim} - PyThreadState *_save; - - _save = PyEval_SaveThread(); - ...Do some blocking I/O operation... - PyEval_RestoreThread(_save); -\end{verbatim} - -Using even lower level primitives, we can get roughly the same effect -as follows: - -\begin{verbatim} - PyThreadState *_save; - - _save = PyThreadState_Swap(NULL); - PyEval_ReleaseLock(); - ...Do some blocking I/O operation... - PyEval_AcquireLock(); - PyThreadState_Swap(_save); -\end{verbatim} - -There are some subtle differences; in particular, -\cfunction{PyEval_RestoreThread()}\ttindex{PyEval_RestoreThread()} saves -and restores the value of the global variable -\cdata{errno}\ttindex{errno}, since the lock manipulation does not -guarantee that \cdata{errno} is left alone. Also, when thread support -is disabled, -\cfunction{PyEval_SaveThread()}\ttindex{PyEval_SaveThread()} and -\cfunction{PyEval_RestoreThread()} don't manipulate the lock; in this -case, \cfunction{PyEval_ReleaseLock()}\ttindex{PyEval_ReleaseLock()} and -\cfunction{PyEval_AcquireLock()}\ttindex{PyEval_AcquireLock()} are not -available. This is done so that dynamically loaded extensions -compiled with thread support enabled can be loaded by an interpreter -that was compiled with disabled thread support. - -The global interpreter lock is used to protect the pointer to the -current thread state. When releasing the lock and saving the thread -state, the current thread state pointer must be retrieved before the -lock is released (since another thread could immediately acquire the -lock and store its own thread state in the global variable). -Conversely, when acquiring the lock and restoring the thread state, -the lock must be acquired before storing the thread state pointer. - -Why am I going on with so much detail about this? Because when -threads are created from C, they don't have the global interpreter -lock, nor is there a thread state data structure for them. Such -threads must bootstrap themselves into existence, by first creating a -thread state data structure, then acquiring the lock, and finally -storing their thread state pointer, before they can start using the -Python/C API. When they are done, they should reset the thread state -pointer, release the lock, and finally free their thread state data -structure. - -Beginning with version 2.3, threads can now take advantage of the -\cfunction{PyGILState_*()} functions to do all of the above -automatically. The typical idiom for calling into Python from a C -thread is now: - -\begin{verbatim} - PyGILState_STATE gstate; - gstate = PyGILState_Ensure(); - - /* Perform Python actions here. */ - result = CallSomeFunction(); - /* evaluate result */ - - /* Release the thread. No Python API allowed beyond this point. */ - PyGILState_Release(gstate); -\end{verbatim} - -Note that the \cfunction{PyGILState_*()} functions assume there is -only one global interpreter (created automatically by -\cfunction{Py_Initialize()}). Python still supports the creation of -additional interpreters (using \cfunction{Py_NewInterpreter()}), but -mixing multiple interpreters and the \cfunction{PyGILState_*()} API is -unsupported. - -\begin{ctypedesc}{PyInterpreterState} - This data structure represents the state shared by a number of - cooperating threads. Threads belonging to the same interpreter - share their module administration and a few other internal items. - There are no public members in this structure. - - Threads belonging to different interpreters initially share nothing, - except process state like available memory, open file descriptors - and such. The global interpreter lock is also shared by all - threads, regardless of to which interpreter they belong. -\end{ctypedesc} - -\begin{ctypedesc}{PyThreadState} - This data structure represents the state of a single thread. The - only public data member is \ctype{PyInterpreterState - *}\member{interp}, which points to this thread's interpreter state. -\end{ctypedesc} - -\begin{cfuncdesc}{void}{PyEval_InitThreads}{} - Initialize and acquire the global interpreter lock. It should be - called in the main thread before creating a second thread or - engaging in any other thread operations such as - \cfunction{PyEval_ReleaseLock()}\ttindex{PyEval_ReleaseLock()} or - \code{PyEval_ReleaseThread(\var{tstate})}\ttindex{PyEval_ReleaseThread()}. - It is not needed before calling - \cfunction{PyEval_SaveThread()}\ttindex{PyEval_SaveThread()} or - \cfunction{PyEval_RestoreThread()}\ttindex{PyEval_RestoreThread()}. - - This is a no-op when called for a second time. It is safe to call - this function before calling - \cfunction{Py_Initialize()}\ttindex{Py_Initialize()}. - - When only the main thread exists, no lock operations are needed. - This is a common situation (most Python programs do not use - threads), and the lock operations slow the interpreter down a bit. - Therefore, the lock is not created initially. This situation is - equivalent to having acquired the lock: when there is only a single - thread, all object accesses are safe. Therefore, when this function - initializes the lock, it also acquires it. Before the Python - \module{thread}\refbimodindex{thread} module creates a new thread, - knowing that either it has the lock or the lock hasn't been created - yet, it calls \cfunction{PyEval_InitThreads()}. When this call - returns, it is guaranteed that the lock has been created and that the - calling thread has acquired it. - - It is \strong{not} safe to call this function when it is unknown - which thread (if any) currently has the global interpreter lock. - - This function is not available when thread support is disabled at - compile time. -\end{cfuncdesc} - -\begin{cfuncdesc}{int}{PyEval_ThreadsInitialized}{} - Returns a non-zero value if \cfunction{PyEval_InitThreads()} has been - called. This function can be called without holding the lock, and - therefore can be used to avoid calls to the locking API when running - single-threaded. This function is not available when thread support - is disabled at compile time. \versionadded{2.4} -\end{cfuncdesc} - -\begin{cfuncdesc}{void}{PyEval_AcquireLock}{} - Acquire the global interpreter lock. The lock must have been - created earlier. If this thread already has the lock, a deadlock - ensues. This function is not available when thread support is - disabled at compile time. -\end{cfuncdesc} - -\begin{cfuncdesc}{void}{PyEval_ReleaseLock}{} - Release the global interpreter lock. The lock must have been - created earlier. This function is not available when thread support - is disabled at compile time. -\end{cfuncdesc} - -\begin{cfuncdesc}{void}{PyEval_AcquireThread}{PyThreadState *tstate} - Acquire the global interpreter lock and set the current thread - state to \var{tstate}, which should not be \NULL. The lock must - have been created earlier. If this thread already has the lock, - deadlock ensues. This function is not available when thread support - is disabled at compile time. -\end{cfuncdesc} - -\begin{cfuncdesc}{void}{PyEval_ReleaseThread}{PyThreadState *tstate} - Reset the current thread state to \NULL{} and release the global - interpreter lock. The lock must have been created earlier and must - be held by the current thread. The \var{tstate} argument, which - must not be \NULL, is only used to check that it represents the - current thread state --- if it isn't, a fatal error is reported. - This function is not available when thread support is disabled at - compile time. -\end{cfuncdesc} - -\begin{cfuncdesc}{PyThreadState*}{PyEval_SaveThread}{} - Release the interpreter lock (if it has been created and thread - support is enabled) and reset the thread state to \NULL, returning - the previous thread state (which is not \NULL). If the lock has - been created, the current thread must have acquired it. (This - function is available even when thread support is disabled at - compile time.) -\end{cfuncdesc} - -\begin{cfuncdesc}{void}{PyEval_RestoreThread}{PyThreadState *tstate} - Acquire the interpreter lock (if it has been created and thread - support is enabled) and set the thread state to \var{tstate}, which - must not be \NULL. If the lock has been created, the current thread - must not have acquired it, otherwise deadlock ensues. (This - function is available even when thread support is disabled at - compile time.) -\end{cfuncdesc} - -The following macros are normally used without a trailing semicolon; -look for example usage in the Python source distribution. - -\begin{csimplemacrodesc}{Py_BEGIN_ALLOW_THREADS} - This macro expands to - \samp{\{ PyThreadState *_save; _save = PyEval_SaveThread();}. - Note that it contains an opening brace; it must be matched with a - following \csimplemacro{Py_END_ALLOW_THREADS} macro. See above for - further discussion of this macro. It is a no-op when thread support - is disabled at compile time. -\end{csimplemacrodesc} - -\begin{csimplemacrodesc}{Py_END_ALLOW_THREADS} - This macro expands to \samp{PyEval_RestoreThread(_save); \}}. - Note that it contains a closing brace; it must be matched with an - earlier \csimplemacro{Py_BEGIN_ALLOW_THREADS} macro. See above for - further discussion of this macro. It is a no-op when thread support - is disabled at compile time. -\end{csimplemacrodesc} - -\begin{csimplemacrodesc}{Py_BLOCK_THREADS} - This macro expands to \samp{PyEval_RestoreThread(_save);}: it is - equivalent to \csimplemacro{Py_END_ALLOW_THREADS} without the - closing brace. It is a no-op when thread support is disabled at - compile time. -\end{csimplemacrodesc} - -\begin{csimplemacrodesc}{Py_UNBLOCK_THREADS} - This macro expands to \samp{_save = PyEval_SaveThread();}: it is - equivalent to \csimplemacro{Py_BEGIN_ALLOW_THREADS} without the - opening brace and variable declaration. It is a no-op when thread - support is disabled at compile time. -\end{csimplemacrodesc} - -All of the following functions are only available when thread support -is enabled at compile time, and must be called only when the -interpreter lock has been created. - -\begin{cfuncdesc}{PyInterpreterState*}{PyInterpreterState_New}{} - Create a new interpreter state object. The interpreter lock need - not be held, but may be held if it is necessary to serialize calls - to this function. -\end{cfuncdesc} - -\begin{cfuncdesc}{void}{PyInterpreterState_Clear}{PyInterpreterState *interp} - Reset all information in an interpreter state object. The - interpreter lock must be held. -\end{cfuncdesc} - -\begin{cfuncdesc}{void}{PyInterpreterState_Delete}{PyInterpreterState *interp} - Destroy an interpreter state object. The interpreter lock need not - be held. The interpreter state must have been reset with a previous - call to \cfunction{PyInterpreterState_Clear()}. -\end{cfuncdesc} - -\begin{cfuncdesc}{PyThreadState*}{PyThreadState_New}{PyInterpreterState *interp} - Create a new thread state object belonging to the given interpreter - object. The interpreter lock need not be held, but may be held if - it is necessary to serialize calls to this function. -\end{cfuncdesc} - -\begin{cfuncdesc}{void}{PyThreadState_Clear}{PyThreadState *tstate} - Reset all information in a thread state object. The interpreter lock - must be held. -\end{cfuncdesc} - -\begin{cfuncdesc}{void}{PyThreadState_Delete}{PyThreadState *tstate} - Destroy a thread state object. The interpreter lock need not be - held. The thread state must have been reset with a previous call to - \cfunction{PyThreadState_Clear()}. -\end{cfuncdesc} - -\begin{cfuncdesc}{PyThreadState*}{PyThreadState_Get}{} - Return the current thread state. The interpreter lock must be - held. When the current thread state is \NULL, this issues a fatal - error (so that the caller needn't check for \NULL). -\end{cfuncdesc} - -\begin{cfuncdesc}{PyThreadState*}{PyThreadState_Swap}{PyThreadState *tstate} - Swap the current thread state with the thread state given by the - argument \var{tstate}, which may be \NULL. The interpreter lock - must be held. -\end{cfuncdesc} - -\begin{cfuncdesc}{PyObject*}{PyThreadState_GetDict}{} - Return a dictionary in which extensions can store thread-specific - state information. Each extension should use a unique key to use to - store state in the dictionary. It is okay to call this function - when no current thread state is available. - If this function returns \NULL, no exception has been raised and the - caller should assume no current thread state is available. - \versionchanged[Previously this could only be called when a current - thread is active, and \NULL{} meant that an exception was raised]{2.3} -\end{cfuncdesc} - -\begin{cfuncdesc}{int}{PyThreadState_SetAsyncExc}{long id, PyObject *exc} - Asynchronously raise an exception in a thread. - The \var{id} argument is the thread id of the target thread; - \var{exc} is the exception object to be raised. - This function does not steal any references to \var{exc}. - To prevent naive misuse, you must write your own C extension - to call this. Must be called with the GIL held. - Returns the number of thread states modified; this is normally one, but - will be zero if the thread id isn't found. If \var{exc} is - \constant{NULL}, the pending exception (if any) for the thread is cleared. - This raises no exceptions. - \versionadded{2.3} -\end{cfuncdesc} - -\begin{cfuncdesc}{PyGILState_STATE}{PyGILState_Ensure}{} -Ensure that the current thread is ready to call the Python C API -regardless of the current state of Python, or of its thread lock. -This may be called as many times as desired by a thread as long as -each call is matched with a call to \cfunction{PyGILState_Release()}. -In general, other thread-related APIs may be used between -\cfunction{PyGILState_Ensure()} and \cfunction{PyGILState_Release()} -calls as long as the thread state is restored to its previous state -before the Release(). For example, normal usage of the -\csimplemacro{Py_BEGIN_ALLOW_THREADS} and -\csimplemacro{Py_END_ALLOW_THREADS} macros is acceptable. - -The return value is an opaque "handle" to the thread state when -\cfunction{PyGILState_Acquire()} was called, and must be passed to -\cfunction{PyGILState_Release()} to ensure Python is left in the same -state. Even though recursive calls are allowed, these handles -\emph{cannot} be shared - each unique call to -\cfunction{PyGILState_Ensure} must save the handle for its call to -\cfunction{PyGILState_Release}. - -When the function returns, the current thread will hold the GIL. -Failure is a fatal error. - \versionadded{2.3} -\end{cfuncdesc} - -\begin{cfuncdesc}{void}{PyGILState_Release}{PyGILState_STATE} -Release any resources previously acquired. After this call, Python's -state will be the same as it was prior to the corresponding -\cfunction{PyGILState_Ensure} call (but generally this state will be -unknown to the caller, hence the use of the GILState API.) - -Every call to \cfunction{PyGILState_Ensure()} must be matched by a call to -\cfunction{PyGILState_Release()} on the same thread. - \versionadded{2.3} -\end{cfuncdesc} - - -\section{Profiling and Tracing \label{profiling}} - -\sectionauthor{Fred L. Drake, Jr.}{fdrake@acm.org} - -The Python interpreter provides some low-level support for attaching -profiling and execution tracing facilities. These are used for -profiling, debugging, and coverage analysis tools. - -Starting with Python 2.2, the implementation of this facility was -substantially revised, and an interface from C was added. This C -interface allows the profiling or tracing code to avoid the overhead -of calling through Python-level callable objects, making a direct C -function call instead. The essential attributes of the facility have -not changed; the interface allows trace functions to be installed -per-thread, and the basic events reported to the trace function are -the same as had been reported to the Python-level trace functions in -previous versions. - -\begin{ctypedesc}[Py_tracefunc]{int (*Py_tracefunc)(PyObject *obj, - PyFrameObject *frame, int what, - PyObject *arg)} - The type of the trace function registered using - \cfunction{PyEval_SetProfile()} and \cfunction{PyEval_SetTrace()}. - The first parameter is the object passed to the registration - function as \var{obj}, \var{frame} is the frame object to which the - event pertains, \var{what} is one of the constants - \constant{PyTrace_CALL}, \constant{PyTrace_EXCEPTION}, - \constant{PyTrace_LINE}, \constant{PyTrace_RETURN}, - \constant{PyTrace_C_CALL}, \constant{PyTrace_C_EXCEPTION}, - or \constant{PyTrace_C_RETURN}, and \var{arg} - depends on the value of \var{what}: - - \begin{tableii}{l|l}{constant}{Value of \var{what}}{Meaning of \var{arg}} - \lineii{PyTrace_CALL}{Always \NULL.} - \lineii{PyTrace_EXCEPTION}{Exception information as returned by - \function{sys.exc_info()}.} - \lineii{PyTrace_LINE}{Always \NULL.} - \lineii{PyTrace_RETURN}{Value being returned to the caller.} - \lineii{PyTrace_C_CALL}{Name of function being called.} - \lineii{PyTrace_C_EXCEPTION}{Always \NULL.} - \lineii{PyTrace_C_RETURN}{Always \NULL.} - \end{tableii} -\end{ctypedesc} - -\begin{cvardesc}{int}{PyTrace_CALL} - The value of the \var{what} parameter to a \ctype{Py_tracefunc} - function when a new call to a function or method is being reported, - or a new entry into a generator. Note that the creation of the - iterator for a generator function is not reported as there is no - control transfer to the Python bytecode in the corresponding frame. -\end{cvardesc} - -\begin{cvardesc}{int}{PyTrace_EXCEPTION} - The value of the \var{what} parameter to a \ctype{Py_tracefunc} - function when an exception has been raised. The callback function - is called with this value for \var{what} when after any bytecode is - processed after which the exception becomes set within the frame - being executed. The effect of this is that as exception propagation - causes the Python stack to unwind, the callback is called upon - return to each frame as the exception propagates. Only trace - functions receives these events; they are not needed by the - profiler. -\end{cvardesc} - -\begin{cvardesc}{int}{PyTrace_LINE} - The value passed as the \var{what} parameter to a trace function - (but not a profiling function) when a line-number event is being - reported. -\end{cvardesc} - -\begin{cvardesc}{int}{PyTrace_RETURN} - The value for the \var{what} parameter to \ctype{Py_tracefunc} - functions when a call is returning without propagating an exception. -\end{cvardesc} - -\begin{cvardesc}{int}{PyTrace_C_CALL} - The value for the \var{what} parameter to \ctype{Py_tracefunc} - functions when a C function is about to be called. -\end{cvardesc} - -\begin{cvardesc}{int}{PyTrace_C_EXCEPTION} - The value for the \var{what} parameter to \ctype{Py_tracefunc} - functions when a C function has thrown an exception. -\end{cvardesc} - -\begin{cvardesc}{int}{PyTrace_C_RETURN} - The value for the \var{what} parameter to \ctype{Py_tracefunc} - functions when a C function has returned. -\end{cvardesc} - -\begin{cfuncdesc}{void}{PyEval_SetProfile}{Py_tracefunc func, PyObject *obj} - Set the profiler function to \var{func}. The \var{obj} parameter is - passed to the function as its first parameter, and may be any Python - object, or \NULL. If the profile function needs to maintain state, - using a different value for \var{obj} for each thread provides a - convenient and thread-safe place to store it. The profile function - is called for all monitored events except the line-number events. -\end{cfuncdesc} - -\begin{cfuncdesc}{void}{PyEval_SetTrace}{Py_tracefunc func, PyObject *obj} - Set the tracing function to \var{func}. This is similar to - \cfunction{PyEval_SetProfile()}, except the tracing function does - receive line-number events. -\end{cfuncdesc} - - -\section{Advanced Debugger Support \label{advanced-debugging}} -\sectionauthor{Fred L. Drake, Jr.}{fdrake@acm.org} - -These functions are only intended to be used by advanced debugging -tools. - -\begin{cfuncdesc}{PyInterpreterState*}{PyInterpreterState_Head}{} - Return the interpreter state object at the head of the list of all - such objects. - \versionadded{2.2} -\end{cfuncdesc} - -\begin{cfuncdesc}{PyInterpreterState*}{PyInterpreterState_Next}{PyInterpreterState *interp} - Return the next interpreter state object after \var{interp} from the - list of all such objects. - \versionadded{2.2} -\end{cfuncdesc} - -\begin{cfuncdesc}{PyThreadState *}{PyInterpreterState_ThreadHead}{PyInterpreterState *interp} - Return the a pointer to the first \ctype{PyThreadState} object in - the list of threads associated with the interpreter \var{interp}. - \versionadded{2.2} -\end{cfuncdesc} - -\begin{cfuncdesc}{PyThreadState*}{PyThreadState_Next}{PyThreadState *tstate} - Return the next thread state object after \var{tstate} from the list - of all such objects belonging to the same \ctype{PyInterpreterState} - object. - \versionadded{2.2} -\end{cfuncdesc} diff --git a/Doc/api/intro.tex b/Doc/api/intro.tex deleted file mode 100644 index a945180..0000000 --- a/Doc/api/intro.tex +++ /dev/null @@ -1,624 +0,0 @@ -\chapter{Introduction \label{intro}} - - -The Application Programmer's Interface to Python gives C and -\Cpp{} programmers access to the Python interpreter at a variety of -levels. The API is equally usable from \Cpp, but for brevity it is -generally referred to as the Python/C API. There are two -fundamentally different reasons for using the Python/C API. The first -reason is to write \emph{extension modules} for specific purposes; -these are C modules that extend the Python interpreter. This is -probably the most common use. The second reason is to use Python as a -component in a larger application; this technique is generally -referred to as \dfn{embedding} Python in an application. - -Writing an extension module is a relatively well-understood process, -where a ``cookbook'' approach works well. There are several tools -that automate the process to some extent. While people have embedded -Python in other applications since its early existence, the process of -embedding Python is less straightforward than writing an extension. - -Many API functions are useful independent of whether you're embedding -or extending Python; moreover, most applications that embed Python -will need to provide a custom extension as well, so it's probably a -good idea to become familiar with writing an extension before -attempting to embed Python in a real application. - - -\section{Include Files \label{includes}} - -All function, type and macro definitions needed to use the Python/C -API are included in your code by the following line: - -\begin{verbatim} -#include "Python.h" -\end{verbatim} - -This implies inclusion of the following standard headers: -\code{<stdio.h>}, \code{<string.h>}, \code{<errno.h>}, -\code{<limits.h>}, and \code{<stdlib.h>} (if available). - -\begin{notice}[warning] - Since Python may define some pre-processor definitions which affect - the standard headers on some systems, you \emph{must} include - \file{Python.h} before any standard headers are included. -\end{notice} - -All user visible names defined by Python.h (except those defined by -the included standard headers) have one of the prefixes \samp{Py} or -\samp{_Py}. Names beginning with \samp{_Py} are for internal use by -the Python implementation and should not be used by extension writers. -Structure member names do not have a reserved prefix. - -\strong{Important:} user code should never define names that begin -with \samp{Py} or \samp{_Py}. This confuses the reader, and -jeopardizes the portability of the user code to future Python -versions, which may define additional names beginning with one of -these prefixes. - -The header files are typically installed with Python. On \UNIX, these -are located in the directories -\file{\envvar{prefix}/include/python\var{version}/} and -\file{\envvar{exec_prefix}/include/python\var{version}/}, where -\envvar{prefix} and \envvar{exec_prefix} are defined by the -corresponding parameters to Python's \program{configure} script and -\var{version} is \code{sys.version[:3]}. On Windows, the headers are -installed in \file{\envvar{prefix}/include}, where \envvar{prefix} is -the installation directory specified to the installer. - -To include the headers, place both directories (if different) on your -compiler's search path for includes. Do \emph{not} place the parent -directories on the search path and then use -\samp{\#include <python\shortversion/Python.h>}; this will break on -multi-platform builds since the platform independent headers under -\envvar{prefix} include the platform specific headers from -\envvar{exec_prefix}. - -\Cpp{} users should note that though the API is defined entirely using -C, the header files do properly declare the entry points to be -\code{extern "C"}, so there is no need to do anything special to use -the API from \Cpp. - - -\section{Objects, Types and Reference Counts \label{objects}} - -Most Python/C API functions have one or more arguments as well as a -return value of type \ctype{PyObject*}. This type is a pointer -to an opaque data type representing an arbitrary Python -object. Since all Python object types are treated the same way by the -Python language in most situations (e.g., assignments, scope rules, -and argument passing), it is only fitting that they should be -represented by a single C type. Almost all Python objects live on the -heap: you never declare an automatic or static variable of type -\ctype{PyObject}, only pointer variables of type \ctype{PyObject*} can -be declared. The sole exception are the type objects\obindex{type}; -since these must never be deallocated, they are typically static -\ctype{PyTypeObject} objects. - -All Python objects (even Python integers) have a \dfn{type} and a -\dfn{reference count}. An object's type determines what kind of object -it is (e.g., an integer, a list, or a user-defined function; there are -many more as explained in the \citetitle[../ref/ref.html]{Python -Reference Manual}). For each of the well-known types there is a macro -to check whether an object is of that type; for instance, -\samp{PyList_Check(\var{a})} is true if (and only if) the object -pointed to by \var{a} is a Python list. - - -\subsection{Reference Counts \label{refcounts}} - -The reference count is important because today's computers have a -finite (and often severely limited) memory size; it counts how many -different places there are that have a reference to an object. Such a -place could be another object, or a global (or static) C variable, or -a local variable in some C function. When an object's reference count -becomes zero, the object is deallocated. If it contains references to -other objects, their reference count is decremented. Those other -objects may be deallocated in turn, if this decrement makes their -reference count become zero, and so on. (There's an obvious problem -with objects that reference each other here; for now, the solution is -``don't do that.'') - -Reference counts are always manipulated explicitly. The normal way is -to use the macro \cfunction{Py_INCREF()}\ttindex{Py_INCREF()} to -increment an object's reference count by one, and -\cfunction{Py_DECREF()}\ttindex{Py_DECREF()} to decrement it by -one. The \cfunction{Py_DECREF()} macro is considerably more complex -than the incref one, since it must check whether the reference count -becomes zero and then cause the object's deallocator to be called. -The deallocator is a function pointer contained in the object's type -structure. The type-specific deallocator takes care of decrementing -the reference counts for other objects contained in the object if this -is a compound object type, such as a list, as well as performing any -additional finalization that's needed. There's no chance that the -reference count can overflow; at least as many bits are used to hold -the reference count as there are distinct memory locations in virtual -memory (assuming \code{sizeof(long) >= sizeof(char*)}). Thus, the -reference count increment is a simple operation. - -It is not necessary to increment an object's reference count for every -local variable that contains a pointer to an object. In theory, the -object's reference count goes up by one when the variable is made to -point to it and it goes down by one when the variable goes out of -scope. However, these two cancel each other out, so at the end the -reference count hasn't changed. The only real reason to use the -reference count is to prevent the object from being deallocated as -long as our variable is pointing to it. If we know that there is at -least one other reference to the object that lives at least as long as -our variable, there is no need to increment the reference count -temporarily. An important situation where this arises is in objects -that are passed as arguments to C functions in an extension module -that are called from Python; the call mechanism guarantees to hold a -reference to every argument for the duration of the call. - -However, a common pitfall is to extract an object from a list and -hold on to it for a while without incrementing its reference count. -Some other operation might conceivably remove the object from the -list, decrementing its reference count and possible deallocating it. -The real danger is that innocent-looking operations may invoke -arbitrary Python code which could do this; there is a code path which -allows control to flow back to the user from a \cfunction{Py_DECREF()}, -so almost any operation is potentially dangerous. - -A safe approach is to always use the generic operations (functions -whose name begins with \samp{PyObject_}, \samp{PyNumber_}, -\samp{PySequence_} or \samp{PyMapping_}). These operations always -increment the reference count of the object they return. This leaves -the caller with the responsibility to call -\cfunction{Py_DECREF()} when they are done with the result; this soon -becomes second nature. - - -\subsubsection{Reference Count Details \label{refcountDetails}} - -The reference count behavior of functions in the Python/C API is best -explained in terms of \emph{ownership of references}. Ownership -pertains to references, never to objects (objects are not owned: they -are always shared). "Owning a reference" means being responsible for -calling Py_DECREF on it when the reference is no longer needed. -Ownership can also be transferred, meaning that the code that receives -ownership of the reference then becomes responsible for eventually -decref'ing it by calling \cfunction{Py_DECREF()} or -\cfunction{Py_XDECREF()} when it's no longer needed---or passing on -this responsibility (usually to its caller). -When a function passes ownership of a reference on to its caller, the -caller is said to receive a \emph{new} reference. When no ownership -is transferred, the caller is said to \emph{borrow} the reference. -Nothing needs to be done for a borrowed reference. - -Conversely, when a calling function passes it a reference to an -object, there are two possibilities: the function \emph{steals} a -reference to the object, or it does not. \emph{Stealing a reference} -means that when you pass a reference to a function, that function -assumes that it now owns that reference, and you are not responsible -for it any longer. - -Few functions steal references; the two notable exceptions are -\cfunction{PyList_SetItem()}\ttindex{PyList_SetItem()} and -\cfunction{PyTuple_SetItem()}\ttindex{PyTuple_SetItem()}, which -steal a reference to the item (but not to the tuple or list into which -the item is put!). These functions were designed to steal a reference -because of a common idiom for populating a tuple or list with newly -created objects; for example, the code to create the tuple \code{(1, -2, "three")} could look like this (forgetting about error handling for -the moment; a better way to code this is shown below): - -\begin{verbatim} -PyObject *t; - -t = PyTuple_New(3); -PyTuple_SetItem(t, 0, PyInt_FromLong(1L)); -PyTuple_SetItem(t, 1, PyInt_FromLong(2L)); -PyTuple_SetItem(t, 2, PyString_FromString("three")); -\end{verbatim} - -Here, \cfunction{PyInt_FromLong()} returns a new reference which is -immediately stolen by \cfunction{PyTuple_SetItem()}. When you want to -keep using an object although the reference to it will be stolen, -use \cfunction{Py_INCREF()} to grab another reference before calling the -reference-stealing function. - -Incidentally, \cfunction{PyTuple_SetItem()} is the \emph{only} way to -set tuple items; \cfunction{PySequence_SetItem()} and -\cfunction{PyObject_SetItem()} refuse to do this since tuples are an -immutable data type. You should only use -\cfunction{PyTuple_SetItem()} for tuples that you are creating -yourself. - -Equivalent code for populating a list can be written using -\cfunction{PyList_New()} and \cfunction{PyList_SetItem()}. - -However, in practice, you will rarely use these ways of -creating and populating a tuple or list. There's a generic function, -\cfunction{Py_BuildValue()}, that can create most common objects from -C values, directed by a \dfn{format string}. For example, the -above two blocks of code could be replaced by the following (which -also takes care of the error checking): - -\begin{verbatim} -PyObject *tuple, *list; - -tuple = Py_BuildValue("(iis)", 1, 2, "three"); -list = Py_BuildValue("[iis]", 1, 2, "three"); -\end{verbatim} - -It is much more common to use \cfunction{PyObject_SetItem()} and -friends with items whose references you are only borrowing, like -arguments that were passed in to the function you are writing. In -that case, their behaviour regarding reference counts is much saner, -since you don't have to increment a reference count so you can give a -reference away (``have it be stolen''). For example, this function -sets all items of a list (actually, any mutable sequence) to a given -item: - -\begin{verbatim} -int -set_all(PyObject *target, PyObject *item) -{ - int i, n; - - n = PyObject_Length(target); - if (n < 0) - return -1; - for (i = 0; i < n; i++) { - PyObject *index = PyInt_FromLong(i); - if (!index) - return -1; - if (PyObject_SetItem(target, index, item) < 0) - return -1; - Py_DECREF(index); - } - return 0; -} -\end{verbatim} -\ttindex{set_all()} - -The situation is slightly different for function return values. -While passing a reference to most functions does not change your -ownership responsibilities for that reference, many functions that -return a reference to an object give you ownership of the reference. -The reason is simple: in many cases, the returned object is created -on the fly, and the reference you get is the only reference to the -object. Therefore, the generic functions that return object -references, like \cfunction{PyObject_GetItem()} and -\cfunction{PySequence_GetItem()}, always return a new reference (the -caller becomes the owner of the reference). - -It is important to realize that whether you own a reference returned -by a function depends on which function you call only --- \emph{the -plumage} (the type of the object passed as an -argument to the function) \emph{doesn't enter into it!} Thus, if you -extract an item from a list using \cfunction{PyList_GetItem()}, you -don't own the reference --- but if you obtain the same item from the -same list using \cfunction{PySequence_GetItem()} (which happens to -take exactly the same arguments), you do own a reference to the -returned object. - -Here is an example of how you could write a function that computes the -sum of the items in a list of integers; once using -\cfunction{PyList_GetItem()}\ttindex{PyList_GetItem()}, and once using -\cfunction{PySequence_GetItem()}\ttindex{PySequence_GetItem()}. - -\begin{verbatim} -long -sum_list(PyObject *list) -{ - int i, n; - long total = 0; - PyObject *item; - - n = PyList_Size(list); - if (n < 0) - return -1; /* Not a list */ - for (i = 0; i < n; i++) { - item = PyList_GetItem(list, i); /* Can't fail */ - if (!PyInt_Check(item)) continue; /* Skip non-integers */ - total += PyInt_AsLong(item); - } - return total; -} -\end{verbatim} -\ttindex{sum_list()} - -\begin{verbatim} -long -sum_sequence(PyObject *sequence) -{ - int i, n; - long total = 0; - PyObject *item; - n = PySequence_Length(sequence); - if (n < 0) - return -1; /* Has no length */ - for (i = 0; i < n; i++) { - item = PySequence_GetItem(sequence, i); - if (item == NULL) - return -1; /* Not a sequence, or other failure */ - if (PyInt_Check(item)) - total += PyInt_AsLong(item); - Py_DECREF(item); /* Discard reference ownership */ - } - return total; -} -\end{verbatim} -\ttindex{sum_sequence()} - - -\subsection{Types \label{types}} - -There are few other data types that play a significant role in -the Python/C API; most are simple C types such as \ctype{int}, -\ctype{long}, \ctype{double} and \ctype{char*}. A few structure types -are used to describe static tables used to list the functions exported -by a module or the data attributes of a new object type, and another -is used to describe the value of a complex number. These will -be discussed together with the functions that use them. - - -\section{Exceptions \label{exceptions}} - -The Python programmer only needs to deal with exceptions if specific -error handling is required; unhandled exceptions are automatically -propagated to the caller, then to the caller's caller, and so on, until -they reach the top-level interpreter, where they are reported to the -user accompanied by a stack traceback. - -For C programmers, however, error checking always has to be explicit. -All functions in the Python/C API can raise exceptions, unless an -explicit claim is made otherwise in a function's documentation. In -general, when a function encounters an error, it sets an exception, -discards any object references that it owns, and returns an -error indicator --- usually \NULL{} or \code{-1}. A few functions -return a Boolean true/false result, with false indicating an error. -Very few functions return no explicit error indicator or have an -ambiguous return value, and require explicit testing for errors with -\cfunction{PyErr_Occurred()}\ttindex{PyErr_Occurred()}. - -Exception state is maintained in per-thread storage (this is -equivalent to using global storage in an unthreaded application). A -thread can be in one of two states: an exception has occurred, or not. -The function \cfunction{PyErr_Occurred()} can be used to check for -this: it returns a borrowed reference to the exception type object -when an exception has occurred, and \NULL{} otherwise. There are a -number of functions to set the exception state: -\cfunction{PyErr_SetString()}\ttindex{PyErr_SetString()} is the most -common (though not the most general) function to set the exception -state, and \cfunction{PyErr_Clear()}\ttindex{PyErr_Clear()} clears the -exception state. - -The full exception state consists of three objects (all of which can -be \NULL): the exception type, the corresponding exception -value, and the traceback. These have the same meanings as the Python -result of \code{sys.exc_info()}; however, they are not the same: the Python -objects represent the last exception being handled by a Python -\keyword{try} \ldots\ \keyword{except} statement, while the C level -exception state only exists while an exception is being passed on -between C functions until it reaches the Python bytecode interpreter's -main loop, which takes care of transferring it to \code{sys.exc_info()} -and friends. - -Note that starting with Python 1.5, the preferred, thread-safe way to -access the exception state from Python code is to call the function -\withsubitem{(in module sys)}{\ttindex{exc_info()}} -\function{sys.exc_info()}, which returns the per-thread exception state -for Python code. Also, the semantics of both ways to access the -exception state have changed so that a function which catches an -exception will save and restore its thread's exception state so as to -preserve the exception state of its caller. This prevents common bugs -in exception handling code caused by an innocent-looking function -overwriting the exception being handled; it also reduces the often -unwanted lifetime extension for objects that are referenced by the -stack frames in the traceback. - -As a general principle, a function that calls another function to -perform some task should check whether the called function raised an -exception, and if so, pass the exception state on to its caller. It -should discard any object references that it owns, and return an -error indicator, but it should \emph{not} set another exception --- -that would overwrite the exception that was just raised, and lose -important information about the exact cause of the error. - -A simple example of detecting exceptions and passing them on is shown -in the \cfunction{sum_sequence()}\ttindex{sum_sequence()} example -above. It so happens that that example doesn't need to clean up any -owned references when it detects an error. The following example -function shows some error cleanup. First, to remind you why you like -Python, we show the equivalent Python code: - -\begin{verbatim} -def incr_item(dict, key): - try: - item = dict[key] - except KeyError: - item = 0 - dict[key] = item + 1 -\end{verbatim} -\ttindex{incr_item()} - -Here is the corresponding C code, in all its glory: - -\begin{verbatim} -int -incr_item(PyObject *dict, PyObject *key) -{ - /* Objects all initialized to NULL for Py_XDECREF */ - PyObject *item = NULL, *const_one = NULL, *incremented_item = NULL; - int rv = -1; /* Return value initialized to -1 (failure) */ - - item = PyObject_GetItem(dict, key); - if (item == NULL) { - /* Handle KeyError only: */ - if (!PyErr_ExceptionMatches(PyExc_KeyError)) - goto error; - - /* Clear the error and use zero: */ - PyErr_Clear(); - item = PyInt_FromLong(0L); - if (item == NULL) - goto error; - } - const_one = PyInt_FromLong(1L); - if (const_one == NULL) - goto error; - - incremented_item = PyNumber_Add(item, const_one); - if (incremented_item == NULL) - goto error; - - if (PyObject_SetItem(dict, key, incremented_item) < 0) - goto error; - rv = 0; /* Success */ - /* Continue with cleanup code */ - - error: - /* Cleanup code, shared by success and failure path */ - - /* Use Py_XDECREF() to ignore NULL references */ - Py_XDECREF(item); - Py_XDECREF(const_one); - Py_XDECREF(incremented_item); - - return rv; /* -1 for error, 0 for success */ -} -\end{verbatim} -\ttindex{incr_item()} - -This example represents an endorsed use of the \keyword{goto} statement -in C! It illustrates the use of -\cfunction{PyErr_ExceptionMatches()}\ttindex{PyErr_ExceptionMatches()} and -\cfunction{PyErr_Clear()}\ttindex{PyErr_Clear()} to -handle specific exceptions, and the use of -\cfunction{Py_XDECREF()}\ttindex{Py_XDECREF()} to -dispose of owned references that may be \NULL{} (note the -\character{X} in the name; \cfunction{Py_DECREF()} would crash when -confronted with a \NULL{} reference). It is important that the -variables used to hold owned references are initialized to \NULL{} for -this to work; likewise, the proposed return value is initialized to -\code{-1} (failure) and only set to success after the final call made -is successful. - - -\section{Embedding Python \label{embedding}} - -The one important task that only embedders (as opposed to extension -writers) of the Python interpreter have to worry about is the -initialization, and possibly the finalization, of the Python -interpreter. Most functionality of the interpreter can only be used -after the interpreter has been initialized. - -The basic initialization function is -\cfunction{Py_Initialize()}\ttindex{Py_Initialize()}. -This initializes the table of loaded modules, and creates the -fundamental modules \module{__builtin__}\refbimodindex{__builtin__}, -\module{__main__}\refbimodindex{__main__}, \module{sys}\refbimodindex{sys}, -and \module{exceptions}.\refbimodindex{exceptions} It also initializes -the module search path (\code{sys.path}).% -\indexiii{module}{search}{path} -\withsubitem{(in module sys)}{\ttindex{path}} - -\cfunction{Py_Initialize()} does not set the ``script argument list'' -(\code{sys.argv}). If this variable is needed by Python code that -will be executed later, it must be set explicitly with a call to -\code{PySys_SetArgv(\var{argc}, -\var{argv})}\ttindex{PySys_SetArgv()} subsequent to the call to -\cfunction{Py_Initialize()}. - -On most systems (in particular, on \UNIX{} and Windows, although the -details are slightly different), -\cfunction{Py_Initialize()} calculates the module search path based -upon its best guess for the location of the standard Python -interpreter executable, assuming that the Python library is found in a -fixed location relative to the Python interpreter executable. In -particular, it looks for a directory named -\file{lib/python\shortversion} relative to the parent directory where -the executable named \file{python} is found on the shell command -search path (the environment variable \envvar{PATH}). - -For instance, if the Python executable is found in -\file{/usr/local/bin/python}, it will assume that the libraries are in -\file{/usr/local/lib/python\shortversion}. (In fact, this particular path -is also the ``fallback'' location, used when no executable file named -\file{python} is found along \envvar{PATH}.) The user can override -this behavior by setting the environment variable \envvar{PYTHONHOME}, -or insert additional directories in front of the standard path by -setting \envvar{PYTHONPATH}. - -The embedding application can steer the search by calling -\code{Py_SetProgramName(\var{file})}\ttindex{Py_SetProgramName()} \emph{before} calling -\cfunction{Py_Initialize()}. Note that \envvar{PYTHONHOME} still -overrides this and \envvar{PYTHONPATH} is still inserted in front of -the standard path. An application that requires total control has to -provide its own implementation of -\cfunction{Py_GetPath()}\ttindex{Py_GetPath()}, -\cfunction{Py_GetPrefix()}\ttindex{Py_GetPrefix()}, -\cfunction{Py_GetExecPrefix()}\ttindex{Py_GetExecPrefix()}, and -\cfunction{Py_GetProgramFullPath()}\ttindex{Py_GetProgramFullPath()} (all -defined in \file{Modules/getpath.c}). - -Sometimes, it is desirable to ``uninitialize'' Python. For instance, -the application may want to start over (make another call to -\cfunction{Py_Initialize()}) or the application is simply done with its -use of Python and wants to free memory allocated by Python. This -can be accomplished by calling \cfunction{Py_Finalize()}. The function -\cfunction{Py_IsInitialized()}\ttindex{Py_IsInitialized()} returns -true if Python is currently in the initialized state. More -information about these functions is given in a later chapter. -Notice that \cfunction{Py_Finalize} does \emph{not} free all memory -allocated by the Python interpreter, e.g. memory allocated by extension -modules currently cannot be released. - - -\section{Debugging Builds \label{debugging}} - -Python can be built with several macros to enable extra checks of the -interpreter and extension modules. These checks tend to add a large -amount of overhead to the runtime so they are not enabled by default. - -A full list of the various types of debugging builds is in the file -\file{Misc/SpecialBuilds.txt} in the Python source distribution. -Builds are available that support tracing of reference counts, -debugging the memory allocator, or low-level profiling of the main -interpreter loop. Only the most frequently-used builds will be -described in the remainder of this section. - -Compiling the interpreter with the \csimplemacro{Py_DEBUG} macro -defined produces what is generally meant by "a debug build" of Python. -\csimplemacro{Py_DEBUG} is enabled in the \UNIX{} build by adding -\longprogramopt{with-pydebug} to the \file{configure} command. It is also -implied by the presence of the not-Python-specific -\csimplemacro{_DEBUG} macro. When \csimplemacro{Py_DEBUG} is enabled -in the \UNIX{} build, compiler optimization is disabled. - -In addition to the reference count debugging described below, the -following extra checks are performed: - -\begin{itemize} - \item Extra checks are added to the object allocator. - \item Extra checks are added to the parser and compiler. - \item Downcasts from wide types to narrow types are checked for - loss of information. - \item A number of assertions are added to the dictionary and set - implementations. In addition, the set object acquires a - \method{test_c_api} method. - \item Sanity checks of the input arguments are added to frame - creation. - \item The storage for long ints is initialized with a known - invalid pattern to catch reference to uninitialized - digits. - \item Low-level tracing and extra exception checking are added - to the runtime virtual machine. - \item Extra checks are added to the memory arena implementation. - \item Extra debugging is added to the thread module. -\end{itemize} - -There may be additional checks not mentioned here. - -Defining \csimplemacro{Py_TRACE_REFS} enables reference tracing. When -defined, a circular doubly linked list of active objects is maintained -by adding two extra fields to every \ctype{PyObject}. Total -allocations are tracked as well. Upon exit, all existing references -are printed. (In interactive mode this happens after every statement -run by the interpreter.) Implied by \csimplemacro{Py_DEBUG}. - -Please refer to \file{Misc/SpecialBuilds.txt} in the Python source -distribution for more detailed information. diff --git a/Doc/api/memory.tex b/Doc/api/memory.tex deleted file mode 100644 index 18abe98..0000000 --- a/Doc/api/memory.tex +++ /dev/null @@ -1,204 +0,0 @@ -\chapter{Memory Management \label{memory}} -\sectionauthor{Vladimir Marangozov}{Vladimir.Marangozov@inrialpes.fr} - - -\section{Overview \label{memoryOverview}} - -Memory management in Python involves a private heap containing all -Python objects and data structures. The management of this private -heap is ensured internally by the \emph{Python memory manager}. The -Python memory manager has different components which deal with various -dynamic storage management aspects, like sharing, segmentation, -preallocation or caching. - -At the lowest level, a raw memory allocator ensures that there is -enough room in the private heap for storing all Python-related data -by interacting with the memory manager of the operating system. On top -of the raw memory allocator, several object-specific allocators -operate on the same heap and implement distinct memory management -policies adapted to the peculiarities of every object type. For -example, integer objects are managed differently within the heap than -strings, tuples or dictionaries because integers imply different -storage requirements and speed/space tradeoffs. The Python memory -manager thus delegates some of the work to the object-specific -allocators, but ensures that the latter operate within the bounds of -the private heap. - -It is important to understand that the management of the Python heap -is performed by the interpreter itself and that the user has no -control over it, even if she regularly manipulates object pointers to -memory blocks inside that heap. The allocation of heap space for -Python objects and other internal buffers is performed on demand by -the Python memory manager through the Python/C API functions listed in -this document. - -To avoid memory corruption, extension writers should never try to -operate on Python objects with the functions exported by the C -library: \cfunction{malloc()}\ttindex{malloc()}, -\cfunction{calloc()}\ttindex{calloc()}, -\cfunction{realloc()}\ttindex{realloc()} and -\cfunction{free()}\ttindex{free()}. This will result in -mixed calls between the C allocator and the Python memory manager -with fatal consequences, because they implement different algorithms -and operate on different heaps. However, one may safely allocate and -release memory blocks with the C library allocator for individual -purposes, as shown in the following example: - -\begin{verbatim} - PyObject *res; - char *buf = (char *) malloc(BUFSIZ); /* for I/O */ - - if (buf == NULL) - return PyErr_NoMemory(); - ...Do some I/O operation involving buf... - res = PyString_FromString(buf); - free(buf); /* malloc'ed */ - return res; -\end{verbatim} - -In this example, the memory request for the I/O buffer is handled by -the C library allocator. The Python memory manager is involved only -in the allocation of the string object returned as a result. - -In most situations, however, it is recommended to allocate memory from -the Python heap specifically because the latter is under control of -the Python memory manager. For example, this is required when the -interpreter is extended with new object types written in C. Another -reason for using the Python heap is the desire to \emph{inform} the -Python memory manager about the memory needs of the extension module. -Even when the requested memory is used exclusively for internal, -highly-specific purposes, delegating all memory requests to the Python -memory manager causes the interpreter to have a more accurate image of -its memory footprint as a whole. Consequently, under certain -circumstances, the Python memory manager may or may not trigger -appropriate actions, like garbage collection, memory compaction or -other preventive procedures. Note that by using the C library -allocator as shown in the previous example, the allocated memory for -the I/O buffer escapes completely the Python memory manager. - - -\section{Memory Interface \label{memoryInterface}} - -The following function sets, modeled after the ANSI C standard, -but specifying behavior when requesting zero bytes, -are available for allocating and releasing memory from the Python heap: - - -\begin{cfuncdesc}{void*}{PyMem_Malloc}{size_t n} - Allocates \var{n} bytes and returns a pointer of type \ctype{void*} - to the allocated memory, or \NULL{} if the request fails. - Requesting zero bytes returns a distinct non-\NULL{} pointer if - possible, as if \cfunction{PyMem_Malloc(1)} had been called instead. - The memory will not have been initialized in any way. -\end{cfuncdesc} - -\begin{cfuncdesc}{void*}{PyMem_Realloc}{void *p, size_t n} - Resizes the memory block pointed to by \var{p} to \var{n} bytes. - The contents will be unchanged to the minimum of the old and the new - sizes. If \var{p} is \NULL, the call is equivalent to - \cfunction{PyMem_Malloc(\var{n})}; else if \var{n} is equal to zero, the - memory block is resized but is not freed, and the returned pointer - is non-\NULL. Unless \var{p} is \NULL, it must have been - returned by a previous call to \cfunction{PyMem_Malloc()} or - \cfunction{PyMem_Realloc()}. If the request fails, - \cfunction{PyMem_Realloc()} returns \NULL{} and \var{p} remains a - valid pointer to the previous memory area. -\end{cfuncdesc} - -\begin{cfuncdesc}{void}{PyMem_Free}{void *p} - Frees the memory block pointed to by \var{p}, which must have been - returned by a previous call to \cfunction{PyMem_Malloc()} or - \cfunction{PyMem_Realloc()}. Otherwise, or if - \cfunction{PyMem_Free(p)} has been called before, undefined - behavior occurs. If \var{p} is \NULL, no operation is performed. -\end{cfuncdesc} - -The following type-oriented macros are provided for convenience. Note -that \var{TYPE} refers to any C type. - -\begin{cfuncdesc}{\var{TYPE}*}{PyMem_New}{TYPE, size_t n} - Same as \cfunction{PyMem_Malloc()}, but allocates \code{(\var{n} * - sizeof(\var{TYPE}))} bytes of memory. Returns a pointer cast to - \ctype{\var{TYPE}*}. The memory will not have been initialized in - any way. -\end{cfuncdesc} - -\begin{cfuncdesc}{\var{TYPE}*}{PyMem_Resize}{void *p, TYPE, size_t n} - Same as \cfunction{PyMem_Realloc()}, but the memory block is resized - to \code{(\var{n} * sizeof(\var{TYPE}))} bytes. Returns a pointer - cast to \ctype{\var{TYPE}*}. On return, \var{p} will be a pointer to - the new memory area, or \NULL{} in the event of failure. -\end{cfuncdesc} - -\begin{cfuncdesc}{void}{PyMem_Del}{void *p} - Same as \cfunction{PyMem_Free()}. -\end{cfuncdesc} - -In addition, the following macro sets are provided for calling the -Python memory allocator directly, without involving the C API functions -listed above. However, note that their use does not preserve binary -compatibility across Python versions and is therefore deprecated in -extension modules. - -\cfunction{PyMem_MALLOC()}, \cfunction{PyMem_REALLOC()}, \cfunction{PyMem_FREE()}. - -\cfunction{PyMem_NEW()}, \cfunction{PyMem_RESIZE()}, \cfunction{PyMem_DEL()}. - - -\section{Examples \label{memoryExamples}} - -Here is the example from section \ref{memoryOverview}, rewritten so -that the I/O buffer is allocated from the Python heap by using the -first function set: - -\begin{verbatim} - PyObject *res; - char *buf = (char *) PyMem_Malloc(BUFSIZ); /* for I/O */ - - if (buf == NULL) - return PyErr_NoMemory(); - /* ...Do some I/O operation involving buf... */ - res = PyString_FromString(buf); - PyMem_Free(buf); /* allocated with PyMem_Malloc */ - return res; -\end{verbatim} - -The same code using the type-oriented function set: - -\begin{verbatim} - PyObject *res; - char *buf = PyMem_New(char, BUFSIZ); /* for I/O */ - - if (buf == NULL) - return PyErr_NoMemory(); - /* ...Do some I/O operation involving buf... */ - res = PyString_FromString(buf); - PyMem_Del(buf); /* allocated with PyMem_New */ - return res; -\end{verbatim} - -Note that in the two examples above, the buffer is always -manipulated via functions belonging to the same set. Indeed, it -is required to use the same memory API family for a given -memory block, so that the risk of mixing different allocators is -reduced to a minimum. The following code sequence contains two errors, -one of which is labeled as \emph{fatal} because it mixes two different -allocators operating on different heaps. - -\begin{verbatim} -char *buf1 = PyMem_New(char, BUFSIZ); -char *buf2 = (char *) malloc(BUFSIZ); -char *buf3 = (char *) PyMem_Malloc(BUFSIZ); -... -PyMem_Del(buf3); /* Wrong -- should be PyMem_Free() */ -free(buf2); /* Right -- allocated via malloc() */ -free(buf1); /* Fatal -- should be PyMem_Del() */ -\end{verbatim} - -In addition to the functions aimed at handling raw memory blocks from -the Python heap, objects in Python are allocated and released with -\cfunction{PyObject_New()}, \cfunction{PyObject_NewVar()} and -\cfunction{PyObject_Del()}. - -These will be explained in the next chapter on defining and -implementing new object types in C. diff --git a/Doc/api/newtypes.tex b/Doc/api/newtypes.tex deleted file mode 100644 index 77ad7a5..0000000 --- a/Doc/api/newtypes.tex +++ /dev/null @@ -1,1780 +0,0 @@ -\chapter{Object Implementation Support \label{newTypes}} - - -This chapter describes the functions, types, and macros used when -defining new object types. - - -\section{Allocating Objects on the Heap - \label{allocating-objects}} - -\begin{cfuncdesc}{PyObject*}{_PyObject_New}{PyTypeObject *type} -\end{cfuncdesc} - -\begin{cfuncdesc}{PyVarObject*}{_PyObject_NewVar}{PyTypeObject *type, Py_ssize_t size} -\end{cfuncdesc} - -\begin{cfuncdesc}{void}{_PyObject_Del}{PyObject *op} -\end{cfuncdesc} - -\begin{cfuncdesc}{PyObject*}{PyObject_Init}{PyObject *op, - PyTypeObject *type} - Initialize a newly-allocated object \var{op} with its type and - initial reference. Returns the initialized object. If \var{type} - indicates that the object participates in the cyclic garbage - detector, it is added to the detector's set of observed objects. - Other fields of the object are not affected. -\end{cfuncdesc} - -\begin{cfuncdesc}{PyVarObject*}{PyObject_InitVar}{PyVarObject *op, - PyTypeObject *type, Py_ssize_t size} - This does everything \cfunction{PyObject_Init()} does, and also - initializes the length information for a variable-size object. -\end{cfuncdesc} - -\begin{cfuncdesc}{\var{TYPE}*}{PyObject_New}{TYPE, PyTypeObject *type} - Allocate a new Python object using the C structure type \var{TYPE} - and the Python type object \var{type}. Fields not defined by the - Python object header are not initialized; the object's reference - count will be one. The size of the memory - allocation is determined from the \member{tp_basicsize} field of the - type object. -\end{cfuncdesc} - -\begin{cfuncdesc}{\var{TYPE}*}{PyObject_NewVar}{TYPE, PyTypeObject *type, - Py_ssize_t size} - Allocate a new Python object using the C structure type \var{TYPE} - and the Python type object \var{type}. Fields not defined by the - Python object header are not initialized. The allocated memory - allows for the \var{TYPE} structure plus \var{size} fields of the - size given by the \member{tp_itemsize} field of \var{type}. This is - useful for implementing objects like tuples, which are able to - determine their size at construction time. Embedding the array of - fields into the same allocation decreases the number of allocations, - improving the memory management efficiency. -\end{cfuncdesc} - -\begin{cfuncdesc}{void}{PyObject_Del}{PyObject *op} - Releases memory allocated to an object using - \cfunction{PyObject_New()} or \cfunction{PyObject_NewVar()}. This - is normally called from the \member{tp_dealloc} handler specified in - the object's type. The fields of the object should not be accessed - after this call as the memory is no longer a valid Python object. -\end{cfuncdesc} - -\begin{cfuncdesc}{PyObject*}{Py_InitModule}{char *name, - PyMethodDef *methods} - Create a new module object based on a name and table of functions, - returning the new module object. - - \versionchanged[Older versions of Python did not support \NULL{} as - the value for the \var{methods} argument]{2.3} -\end{cfuncdesc} - -\begin{cfuncdesc}{PyObject*}{Py_InitModule3}{char *name, - PyMethodDef *methods, - char *doc} - Create a new module object based on a name and table of functions, - returning the new module object. If \var{doc} is non-\NULL, it will - be used to define the docstring for the module. - - \versionchanged[Older versions of Python did not support \NULL{} as - the value for the \var{methods} argument]{2.3} -\end{cfuncdesc} - -\begin{cfuncdesc}{PyObject*}{Py_InitModule4}{char *name, - PyMethodDef *methods, - char *doc, PyObject *self, - int apiver} - Create a new module object based on a name and table of functions, - returning the new module object. If \var{doc} is non-\NULL, it will - be used to define the docstring for the module. If \var{self} is - non-\NULL, it will passed to the functions of the module as their - (otherwise \NULL) first parameter. (This was added as an - experimental feature, and there are no known uses in the current - version of Python.) For \var{apiver}, the only value which should - be passed is defined by the constant \constant{PYTHON_API_VERSION}. - - \note{Most uses of this function should probably be using - the \cfunction{Py_InitModule3()} instead; only use this if you are - sure you need it.} - - \versionchanged[Older versions of Python did not support \NULL{} as - the value for the \var{methods} argument]{2.3} -\end{cfuncdesc} - -\begin{cvardesc}{PyObject}{_Py_NoneStruct} - Object which is visible in Python as \code{None}. This should only - be accessed using the \code{Py_None} macro, which evaluates to a - pointer to this object. -\end{cvardesc} - - -\section{Common Object Structures \label{common-structs}} - -There are a large number of structures which are used in the -definition of object types for Python. This section describes these -structures and how they are used. - -All Python objects ultimately share a small number of fields at the -beginning of the object's representation in memory. These are -represented by the \ctype{PyObject} and \ctype{PyVarObject} types, -which are defined, in turn, by the expansions of some macros also -used, whether directly or indirectly, in the definition of all other -Python objects. - -\begin{ctypedesc}{PyObject} - All object types are extensions of this type. This is a type which - contains the information Python needs to treat a pointer to an - object as an object. In a normal ``release'' build, it contains - only the objects reference count and a pointer to the corresponding - type object. It corresponds to the fields defined by the - expansion of the \code{PyObject_HEAD} macro. -\end{ctypedesc} - -\begin{ctypedesc}{PyVarObject} - This is an extension of \ctype{PyObject} that adds the - \member{ob_size} field. This is only used for objects that have - some notion of \emph{length}. This type does not often appear in - the Python/C API. It corresponds to the fields defined by the - expansion of the \code{PyObject_VAR_HEAD} macro. -\end{ctypedesc} - -These macros are used in the definition of \ctype{PyObject} and -\ctype{PyVarObject}: - -\begin{csimplemacrodesc}{PyObject_HEAD} - This is a macro which expands to the declarations of the fields of - the \ctype{PyObject} type; it is used when declaring new types which - represent objects without a varying length. The specific fields it - expands to depend on the definition of - \csimplemacro{Py_TRACE_REFS}. By default, that macro is not - defined, and \csimplemacro{PyObject_HEAD} expands to: - \begin{verbatim} - Py_ssize_t ob_refcnt; - PyTypeObject *ob_type; - \end{verbatim} - When \csimplemacro{Py_TRACE_REFS} is defined, it expands to: - \begin{verbatim} - PyObject *_ob_next, *_ob_prev; - Py_ssize_t ob_refcnt; - PyTypeObject *ob_type; - \end{verbatim} -\end{csimplemacrodesc} - -\begin{csimplemacrodesc}{PyObject_VAR_HEAD} - This is a macro which expands to the declarations of the fields of - the \ctype{PyVarObject} type; it is used when declaring new types which - represent objects with a length that varies from instance to - instance. This macro always expands to: - \begin{verbatim} - PyObject_HEAD - Py_ssize_t ob_size; - \end{verbatim} - Note that \csimplemacro{PyObject_HEAD} is part of the expansion, and - that its own expansion varies depending on the definition of - \csimplemacro{Py_TRACE_REFS}. -\end{csimplemacrodesc} - -PyObject_HEAD_INIT - -\begin{ctypedesc}{PyCFunction} - Type of the functions used to implement most Python callables in C. - Functions of this type take two \ctype{PyObject*} parameters and - return one such value. If the return value is \NULL, an exception - shall have been set. If not \NULL, the return value is interpreted - as the return value of the function as exposed in Python. The - function must return a new reference. -\end{ctypedesc} - -\begin{ctypedesc}{PyMethodDef} - Structure used to describe a method of an extension type. This - structure has four fields: - - \begin{tableiii}{l|l|l}{member}{Field}{C Type}{Meaning} - \lineiii{ml_name}{char *}{name of the method} - \lineiii{ml_meth}{PyCFunction}{pointer to the C implementation} - \lineiii{ml_flags}{int}{flag bits indicating how the call should be - constructed} - \lineiii{ml_doc}{char *}{points to the contents of the docstring} - \end{tableiii} -\end{ctypedesc} - -The \member{ml_meth} is a C function pointer. The functions may be of -different types, but they always return \ctype{PyObject*}. If the -function is not of the \ctype{PyCFunction}, the compiler will require -a cast in the method table. Even though \ctype{PyCFunction} defines -the first parameter as \ctype{PyObject*}, it is common that the method -implementation uses a the specific C type of the \var{self} object. - -The \member{ml_flags} field is a bitfield which can include the -following flags. The individual flags indicate either a calling -convention or a binding convention. Of the calling convention flags, -only \constant{METH_VARARGS} and \constant{METH_KEYWORDS} can be -combined (but note that \constant{METH_KEYWORDS} alone is equivalent -to \code{\constant{METH_VARARGS} | \constant{METH_KEYWORDS}}). -Any of the calling convention flags can be combined with a -binding flag. - -\begin{datadesc}{METH_VARARGS} - This is the typical calling convention, where the methods have the - type \ctype{PyCFunction}. The function expects two - \ctype{PyObject*} values. The first one is the \var{self} object for - methods; for module functions, it has the value given to - \cfunction{Py_InitModule4()} (or \NULL{} if - \cfunction{Py_InitModule()} was used). The second parameter - (often called \var{args}) is a tuple object representing all - arguments. This parameter is typically processed using - \cfunction{PyArg_ParseTuple()} or \cfunction{PyArg_UnpackTuple}. -\end{datadesc} - -\begin{datadesc}{METH_KEYWORDS} - Methods with these flags must be of type - \ctype{PyCFunctionWithKeywords}. The function expects three - parameters: \var{self}, \var{args}, and a dictionary of all the - keyword arguments. The flag is typically combined with - \constant{METH_VARARGS}, and the parameters are typically processed - using \cfunction{PyArg_ParseTupleAndKeywords()}. -\end{datadesc} - -\begin{datadesc}{METH_NOARGS} - Methods without parameters don't need to check whether arguments are - given if they are listed with the \constant{METH_NOARGS} flag. They - need to be of type \ctype{PyCFunction}. When used with object - methods, the first parameter is typically named \code{self} and will - hold a reference to the object instance. In all cases the second - parameter will be \NULL. -\end{datadesc} - -\begin{datadesc}{METH_O} - Methods with a single object argument can be listed with the - \constant{METH_O} flag, instead of invoking - \cfunction{PyArg_ParseTuple()} with a \code{"O"} argument. They have - the type \ctype{PyCFunction}, with the \var{self} parameter, and a - \ctype{PyObject*} parameter representing the single argument. -\end{datadesc} - -\begin{datadesc}{METH_OLDARGS} - This calling convention is deprecated. The method must be of type - \ctype{PyCFunction}. The second argument is \NULL{} if no arguments - are given, a single object if exactly one argument is given, and a - tuple of objects if more than one argument is given. There is no - way for a function using this convention to distinguish between a - call with multiple arguments and a call with a tuple as the only - argument. -\end{datadesc} - -These two constants are not used to indicate the calling convention -but the binding when use with methods of classes. These may not be -used for functions defined for modules. At most one of these flags -may be set for any given method. - -\begin{datadesc}{METH_CLASS} - The method will be passed the type object as the first parameter - rather than an instance of the type. This is used to create - \emph{class methods}, similar to what is created when using the - \function{classmethod()}\bifuncindex{classmethod} built-in - function. - \versionadded{2.3} -\end{datadesc} - -\begin{datadesc}{METH_STATIC} - The method will be passed \NULL{} as the first parameter rather than - an instance of the type. This is used to create \emph{static - methods}, similar to what is created when using the - \function{staticmethod()}\bifuncindex{staticmethod} built-in - function. - \versionadded{2.3} -\end{datadesc} - -One other constant controls whether a method is loaded in place of -another definition with the same method name. - -\begin{datadesc}{METH_COEXIST} - The method will be loaded in place of existing definitions. Without - \var{METH_COEXIST}, the default is to skip repeated definitions. Since - slot wrappers are loaded before the method table, the existence of a - \var{sq_contains} slot, for example, would generate a wrapped method - named \method{__contains__()} and preclude the loading of a - corresponding PyCFunction with the same name. With the flag defined, - the PyCFunction will be loaded in place of the wrapper object and will - co-exist with the slot. This is helpful because calls to PyCFunctions - are optimized more than wrapper object calls. - \versionadded{2.4} -\end{datadesc} - -\begin{cfuncdesc}{PyObject*}{Py_FindMethod}{PyMethodDef table[], - PyObject *ob, char *name} - Return a bound method object for an extension type implemented in - C. This can be useful in the implementation of a - \member{tp_getattro} or \member{tp_getattr} handler that does not - use the \cfunction{PyObject_GenericGetAttr()} function. -\end{cfuncdesc} - - -\section{Type Objects \label{type-structs}} - -Perhaps one of the most important structures of the Python object -system is the structure that defines a new type: the -\ctype{PyTypeObject} structure. Type objects can be handled using any -of the \cfunction{PyObject_*()} or \cfunction{PyType_*()} functions, -but do not offer much that's interesting to most Python applications. -These objects are fundamental to how objects behave, so they are very -important to the interpreter itself and to any extension module that -implements new types. - -Type objects are fairly large compared to most of the standard types. -The reason for the size is that each type object stores a large number -of values, mostly C function pointers, each of which implements a -small part of the type's functionality. The fields of the type object -are examined in detail in this section. The fields will be described -in the order in which they occur in the structure. - -Typedefs: -unaryfunc, binaryfunc, ternaryfunc, inquiry, coercion, intargfunc, -intintargfunc, intobjargproc, intintobjargproc, objobjargproc, -destructor, freefunc, printfunc, getattrfunc, getattrofunc, setattrfunc, -setattrofunc, cmpfunc, reprfunc, hashfunc - -The structure definition for \ctype{PyTypeObject} can be found in -\file{Include/object.h}. For convenience of reference, this repeats -the definition found there: - -\verbatiminput{typestruct.h} - -The type object structure extends the \ctype{PyVarObject} structure. -The \member{ob_size} field is used for dynamic types (created -by \function{type_new()}, usually called from a class statement). -Note that \cdata{PyType_Type} (the metatype) initializes -\member{tp_itemsize}, which means that its instances (i.e. type -objects) \emph{must} have the \member{ob_size} field. - -\begin{cmemberdesc}{PyObject}{PyObject*}{_ob_next} -\cmemberline{PyObject}{PyObject*}{_ob_prev} - These fields are only present when the macro \code{Py_TRACE_REFS} is - defined. Their initialization to \NULL{} is taken care of by the - \code{PyObject_HEAD_INIT} macro. For statically allocated objects, - these fields always remain \NULL. For dynamically allocated - objects, these two fields are used to link the object into a - doubly-linked list of \emph{all} live objects on the heap. This - could be used for various debugging purposes; currently the only use - is to print the objects that are still alive at the end of a run - when the environment variable \envvar{PYTHONDUMPREFS} is set. - - These fields are not inherited by subtypes. -\end{cmemberdesc} - -\begin{cmemberdesc}{PyObject}{Py_ssize_t}{ob_refcnt} - This is the type object's reference count, initialized to \code{1} - by the \code{PyObject_HEAD_INIT} macro. Note that for statically - allocated type objects, the type's instances (objects whose - \member{ob_type} points back to the type) do \emph{not} count as - references. But for dynamically allocated type objects, the - instances \emph{do} count as references. - - This field is not inherited by subtypes. -\end{cmemberdesc} - -\begin{cmemberdesc}{PyObject}{PyTypeObject*}{ob_type} - This is the type's type, in other words its metatype. It is - initialized by the argument to the \code{PyObject_HEAD_INIT} macro, - and its value should normally be \code{\&PyType_Type}. However, for - dynamically loadable extension modules that must be usable on - Windows (at least), the compiler complains that this is not a valid - initializer. Therefore, the convention is to pass \NULL{} to the - \code{PyObject_HEAD_INIT} macro and to initialize this field - explicitly at the start of the module's initialization function, - before doing anything else. This is typically done like this: - -\begin{verbatim} -Foo_Type.ob_type = &PyType_Type; -\end{verbatim} - - This should be done before any instances of the type are created. - \cfunction{PyType_Ready()} checks if \member{ob_type} is \NULL, and - if so, initializes it: in Python 2.2, it is set to - \code{\&PyType_Type}; in Python 2.2.1 and later it is - initialized to the \member{ob_type} field of the base class. - \cfunction{PyType_Ready()} will not change this field if it is - non-zero. - - In Python 2.2, this field is not inherited by subtypes. In 2.2.1, - and in 2.3 and beyond, it is inherited by subtypes. -\end{cmemberdesc} - -\begin{cmemberdesc}{PyVarObject}{Py_ssize_t}{ob_size} - For statically allocated type objects, this should be initialized - to zero. For dynamically allocated type objects, this field has a - special internal meaning. - - This field is not inherited by subtypes. -\end{cmemberdesc} - -\begin{cmemberdesc}{PyTypeObject}{char*}{tp_name} - Pointer to a NUL-terminated string containing the name of the type. - For types that are accessible as module globals, the string should - be the full module name, followed by a dot, followed by the type - name; for built-in types, it should be just the type name. If the - module is a submodule of a package, the full package name is part of - the full module name. For example, a type named \class{T} defined - in module \module{M} in subpackage \module{Q} in package \module{P} - should have the \member{tp_name} initializer \code{"P.Q.M.T"}. - - For dynamically allocated type objects, this should just be the type - name, and the module name explicitly stored in the type dict as the - value for key \code{'__module__'}. - - For statically allocated type objects, the tp_name field should - contain a dot. Everything before the last dot is made accessible as - the \member{__module__} attribute, and everything after the last dot - is made accessible as the \member{__name__} attribute. - - If no dot is present, the entire \member{tp_name} field is made - accessible as the \member{__name__} attribute, and the - \member{__module__} attribute is undefined (unless explicitly set in - the dictionary, as explained above). This means your type will be - impossible to pickle. - - This field is not inherited by subtypes. -\end{cmemberdesc} - -\begin{cmemberdesc}{PyTypeObject}{Py_ssize_t}{tp_basicsize} -\cmemberline{PyTypeObject}{Py_ssize_t}{tp_itemsize} - These fields allow calculating the size in bytes of instances of - the type. - - There are two kinds of types: types with fixed-length instances have - a zero \member{tp_itemsize} field, types with variable-length - instances have a non-zero \member{tp_itemsize} field. For a type - with fixed-length instances, all instances have the same size, - given in \member{tp_basicsize}. - - For a type with variable-length instances, the instances must have - an \member{ob_size} field, and the instance size is - \member{tp_basicsize} plus N times \member{tp_itemsize}, where N is - the ``length'' of the object. The value of N is typically stored in - the instance's \member{ob_size} field. There are exceptions: for - example, long ints use a negative \member{ob_size} to indicate a - negative number, and N is \code{abs(\member{ob_size})} there. Also, - the presence of an \member{ob_size} field in the instance layout - doesn't mean that the instance structure is variable-length (for - example, the structure for the list type has fixed-length instances, - yet those instances have a meaningful \member{ob_size} field). - - The basic size includes the fields in the instance declared by the - macro \csimplemacro{PyObject_HEAD} or - \csimplemacro{PyObject_VAR_HEAD} (whichever is used to declare the - instance struct) and this in turn includes the \member{_ob_prev} and - \member{_ob_next} fields if they are present. This means that the - only correct way to get an initializer for the \member{tp_basicsize} - is to use the \keyword{sizeof} operator on the struct used to - declare the instance layout. The basic size does not include the GC - header size (this is new in Python 2.2; in 2.1 and 2.0, the GC - header size was included in \member{tp_basicsize}). - - These fields are inherited separately by subtypes. If the base type - has a non-zero \member{tp_itemsize}, it is generally not safe to set - \member{tp_itemsize} to a different non-zero value in a subtype - (though this depends on the implementation of the base type). - - A note about alignment: if the variable items require a particular - alignment, this should be taken care of by the value of - \member{tp_basicsize}. Example: suppose a type implements an array - of \code{double}. \member{tp_itemsize} is \code{sizeof(double)}. - It is the programmer's responsibility that \member{tp_basicsize} is - a multiple of \code{sizeof(double)} (assuming this is the alignment - requirement for \code{double}). -\end{cmemberdesc} - -\begin{cmemberdesc}{PyTypeObject}{destructor}{tp_dealloc} - A pointer to the instance destructor function. This function must - be defined unless the type guarantees that its instances will never - be deallocated (as is the case for the singletons \code{None} and - \code{Ellipsis}). - - The destructor function is called by the \cfunction{Py_DECREF()} and - \cfunction{Py_XDECREF()} macros when the new reference count is - zero. At this point, the instance is still in existence, but there - are no references to it. The destructor function should free all - references which the instance owns, free all memory buffers owned by - the instance (using the freeing function corresponding to the - allocation function used to allocate the buffer), and finally (as - its last action) call the type's \member{tp_free} function. If the - type is not subtypable (doesn't have the - \constant{Py_TPFLAGS_BASETYPE} flag bit set), it is permissible to - call the object deallocator directly instead of via - \member{tp_free}. The object deallocator should be the one used to - allocate the instance; this is normally \cfunction{PyObject_Del()} - if the instance was allocated using \cfunction{PyObject_New()} or - \cfunction{PyObject_VarNew()}, or \cfunction{PyObject_GC_Del()} if - the instance was allocated using \cfunction{PyObject_GC_New()} or - \cfunction{PyObject_GC_VarNew()}. - - This field is inherited by subtypes. -\end{cmemberdesc} - -\begin{cmemberdesc}{PyTypeObject}{printfunc}{tp_print} - An optional pointer to the instance print function. - - The print function is only called when the instance is printed to a - \emph{real} file; when it is printed to a pseudo-file (like a - \class{StringIO} instance), the instance's \member{tp_repr} or - \member{tp_str} function is called to convert it to a string. These - are also called when the type's \member{tp_print} field is \NULL. A - type should never implement \member{tp_print} in a way that produces - different output than \member{tp_repr} or \member{tp_str} would. - - The print function is called with the same signature as - \cfunction{PyObject_Print()}: \code{int tp_print(PyObject *self, FILE - *file, int flags)}. The \var{self} argument is the instance to be - printed. The \var{file} argument is the stdio file to which it is - to be printed. The \var{flags} argument is composed of flag bits. - The only flag bit currently defined is \constant{Py_PRINT_RAW}. - When the \constant{Py_PRINT_RAW} flag bit is set, the instance - should be printed the same way as \member{tp_str} would format it; - when the \constant{Py_PRINT_RAW} flag bit is clear, the instance - should be printed the same was as \member{tp_repr} would format it. - It should return \code{-1} and set an exception condition when an - error occurred during the comparison. - - It is possible that the \member{tp_print} field will be deprecated. - In any case, it is recommended not to define \member{tp_print}, but - instead to rely on \member{tp_repr} and \member{tp_str} for - printing. - - This field is inherited by subtypes. -\end{cmemberdesc} - -\begin{cmemberdesc}{PyTypeObject}{getattrfunc}{tp_getattr} - An optional pointer to the get-attribute-string function. - - This field is deprecated. When it is defined, it should point to a - function that acts the same as the \member{tp_getattro} function, - but taking a C string instead of a Python string object to give the - attribute name. The signature is the same as for - \cfunction{PyObject_GetAttrString()}. - - This field is inherited by subtypes together with - \member{tp_getattro}: a subtype inherits both \member{tp_getattr} - and \member{tp_getattro} from its base type when the subtype's - \member{tp_getattr} and \member{tp_getattro} are both \NULL. -\end{cmemberdesc} - -\begin{cmemberdesc}{PyTypeObject}{setattrfunc}{tp_setattr} - An optional pointer to the set-attribute-string function. - - This field is deprecated. When it is defined, it should point to a - function that acts the same as the \member{tp_setattro} function, - but taking a C string instead of a Python string object to give the - attribute name. The signature is the same as for - \cfunction{PyObject_SetAttrString()}. - - This field is inherited by subtypes together with - \member{tp_setattro}: a subtype inherits both \member{tp_setattr} - and \member{tp_setattro} from its base type when the subtype's - \member{tp_setattr} and \member{tp_setattro} are both \NULL. -\end{cmemberdesc} - -\begin{cmemberdesc}{PyTypeObject}{cmpfunc}{tp_compare} - An optional pointer to the three-way comparison function. - - The signature is the same as for \cfunction{PyObject_Compare()}. - The function should return \code{1} if \var{self} greater than - \var{other}, \code{0} if \var{self} is equal to \var{other}, and - \code{-1} if \var{self} less than \var{other}. It should return - \code{-1} and set an exception condition when an error occurred - during the comparison. - - This field is inherited by subtypes together with - \member{tp_richcompare} and \member{tp_hash}: a subtypes inherits - all three of \member{tp_compare}, \member{tp_richcompare}, and - \member{tp_hash} when the subtype's \member{tp_compare}, - \member{tp_richcompare}, and \member{tp_hash} are all \NULL. -\end{cmemberdesc} - -\begin{cmemberdesc}{PyTypeObject}{reprfunc}{tp_repr} - An optional pointer to a function that implements the built-in - function \function{repr()}.\bifuncindex{repr} - - The signature is the same as for \cfunction{PyObject_Repr()}; it - must return a string or a Unicode object. Ideally, this function - should return a string that, when passed to \function{eval()}, given - a suitable environment, returns an object with the same value. If - this is not feasible, it should return a string starting with - \character{\textless} and ending with \character{\textgreater} from - which both the type and the value of the object can be deduced. - - When this field is not set, a string of the form \samp{<\%s object - at \%p>} is returned, where \code{\%s} is replaced by the type name, - and \code{\%p} by the object's memory address. - - This field is inherited by subtypes. -\end{cmemberdesc} - -PyNumberMethods *tp_as_number; - - XXX - -PySequenceMethods *tp_as_sequence; - - XXX - -PyMappingMethods *tp_as_mapping; - - XXX - -\begin{cmemberdesc}{PyTypeObject}{hashfunc}{tp_hash} - An optional pointer to a function that implements the built-in - function \function{hash()}.\bifuncindex{hash} - - The signature is the same as for \cfunction{PyObject_Hash()}; it - must return a C long. The value \code{-1} should not be returned as - a normal return value; when an error occurs during the computation - of the hash value, the function should set an exception and return - \code{-1}. - - When this field is not set, two possibilities exist: if the - \member{tp_compare} and \member{tp_richcompare} fields are both - \NULL, a default hash value based on the object's address is - returned; otherwise, a \exception{TypeError} is raised. - - This field is inherited by subtypes together with - \member{tp_richcompare} and \member{tp_compare}: a subtypes inherits - all three of \member{tp_compare}, \member{tp_richcompare}, and - \member{tp_hash}, when the subtype's \member{tp_compare}, - \member{tp_richcompare} and \member{tp_hash} are all \NULL. -\end{cmemberdesc} - -\begin{cmemberdesc}{PyTypeObject}{ternaryfunc}{tp_call} - An optional pointer to a function that implements calling the - object. This should be \NULL{} if the object is not callable. The - signature is the same as for \cfunction{PyObject_Call()}. - - This field is inherited by subtypes. -\end{cmemberdesc} - -\begin{cmemberdesc}{PyTypeObject}{reprfunc}{tp_str} - An optional pointer to a function that implements the built-in - operation \function{str()}. (Note that \class{str} is a type now, - and \function{str()} calls the constructor for that type. This - constructor calls \cfunction{PyObject_Str()} to do the actual work, - and \cfunction{PyObject_Str()} will call this handler.) - - The signature is the same as for \cfunction{PyObject_Str()}; it must - return a string or a Unicode object. This function should return a - ``friendly'' string representation of the object, as this is the - representation that will be used by the print statement. - - When this field is not set, \cfunction{PyObject_Repr()} is called to - return a string representation. - - This field is inherited by subtypes. -\end{cmemberdesc} - -\begin{cmemberdesc}{PyTypeObject}{getattrofunc}{tp_getattro} - An optional pointer to the get-attribute function. - - The signature is the same as for \cfunction{PyObject_GetAttr()}. It - is usually convenient to set this field to - \cfunction{PyObject_GenericGetAttr()}, which implements the normal - way of looking for object attributes. - - This field is inherited by subtypes together with - \member{tp_getattr}: a subtype inherits both \member{tp_getattr} and - \member{tp_getattro} from its base type when the subtype's - \member{tp_getattr} and \member{tp_getattro} are both \NULL. -\end{cmemberdesc} - -\begin{cmemberdesc}{PyTypeObject}{setattrofunc}{tp_setattro} - An optional pointer to the set-attribute function. - - The signature is the same as for \cfunction{PyObject_SetAttr()}. It - is usually convenient to set this field to - \cfunction{PyObject_GenericSetAttr()}, which implements the normal - way of setting object attributes. - - This field is inherited by subtypes together with - \member{tp_setattr}: a subtype inherits both \member{tp_setattr} and - \member{tp_setattro} from its base type when the subtype's - \member{tp_setattr} and \member{tp_setattro} are both \NULL. -\end{cmemberdesc} - -\begin{cmemberdesc}{PyTypeObject}{PyBufferProcs*}{tp_as_buffer} - Pointer to an additional structure that contains fields relevant only to - objects which implement the buffer interface. These fields are - documented in ``Buffer Object Structures'' (section - \ref{buffer-structs}). - - The \member{tp_as_buffer} field is not inherited, but the contained - fields are inherited individually. -\end{cmemberdesc} - -\begin{cmemberdesc}{PyTypeObject}{long}{tp_flags} - This field is a bit mask of various flags. Some flags indicate - variant semantics for certain situations; others are used to - indicate that certain fields in the type object (or in the extension - structures referenced via \member{tp_as_number}, - \member{tp_as_sequence}, \member{tp_as_mapping}, and - \member{tp_as_buffer}) that were historically not always present are - valid; if such a flag bit is clear, the type fields it guards must - not be accessed and must be considered to have a zero or \NULL{} - value instead. - - Inheritance of this field is complicated. Most flag bits are - inherited individually, i.e. if the base type has a flag bit set, - the subtype inherits this flag bit. The flag bits that pertain to - extension structures are strictly inherited if the extension - structure is inherited, i.e. the base type's value of the flag bit - is copied into the subtype together with a pointer to the extension - structure. The \constant{Py_TPFLAGS_HAVE_GC} flag bit is inherited - together with the \member{tp_traverse} and \member{tp_clear} fields, - i.e. if the \constant{Py_TPFLAGS_HAVE_GC} flag bit is clear in the - subtype and the \member{tp_traverse} and \member{tp_clear} fields in - the subtype exist (as indicated by the - \constant{Py_TPFLAGS_HAVE_RICHCOMPARE} flag bit) and have \NULL{} - values. - - The following bit masks are currently defined; these can be or-ed - together using the \code{|} operator to form the value of the - \member{tp_flags} field. The macro \cfunction{PyType_HasFeature()} - takes a type and a flags value, \var{tp} and \var{f}, and checks - whether \code{\var{tp}->tp_flags \& \var{f}} is non-zero. - - \begin{datadesc}{Py_TPFLAGS_HAVE_GETCHARBUFFER} - If this bit is set, the \ctype{PyBufferProcs} struct referenced by - \member{tp_as_buffer} has the \member{bf_getcharbuffer} field. - \end{datadesc} - - \begin{datadesc}{Py_TPFLAGS_HAVE_SEQUENCE_IN} - If this bit is set, the \ctype{PySequenceMethods} struct - referenced by \member{tp_as_sequence} has the \member{sq_contains} - field. - \end{datadesc} - - \begin{datadesc}{Py_TPFLAGS_GC} - This bit is obsolete. The bit it used to name is no longer in - use. The symbol is now defined as zero. - \end{datadesc} - - \begin{datadesc}{Py_TPFLAGS_HAVE_INPLACEOPS} - If this bit is set, the \ctype{PySequenceMethods} struct - referenced by \member{tp_as_sequence} and the - \ctype{PyNumberMethods} structure referenced by - \member{tp_as_number} contain the fields for in-place operators. - In particular, this means that the \ctype{PyNumberMethods} - structure has the fields \member{nb_inplace_add}, - \member{nb_inplace_subtract}, \member{nb_inplace_multiply}, - \member{nb_inplace_divide}, \member{nb_inplace_remainder}, - \member{nb_inplace_power}, \member{nb_inplace_lshift}, - \member{nb_inplace_rshift}, \member{nb_inplace_and}, - \member{nb_inplace_xor}, and \member{nb_inplace_or}; and the - \ctype{PySequenceMethods} struct has the fields - \member{sq_inplace_concat} and \member{sq_inplace_repeat}. - \end{datadesc} - - \begin{datadesc}{Py_TPFLAGS_CHECKTYPES} - If this bit is set, the binary and ternary operations in the - \ctype{PyNumberMethods} structure referenced by - \member{tp_as_number} accept arguments of arbitrary object types, - and do their own type conversions if needed. If this bit is - clear, those operations require that all arguments have the - current type as their type, and the caller is supposed to perform - a coercion operation first. This applies to \member{nb_add}, - \member{nb_subtract}, \member{nb_multiply}, \member{nb_divide}, - \member{nb_remainder}, \member{nb_divmod}, \member{nb_power}, - \member{nb_lshift}, \member{nb_rshift}, \member{nb_and}, - \member{nb_xor}, and \member{nb_or}. - \end{datadesc} - - \begin{datadesc}{Py_TPFLAGS_HAVE_RICHCOMPARE} - If this bit is set, the type object has the - \member{tp_richcompare} field, as well as the \member{tp_traverse} - and the \member{tp_clear} fields. - \end{datadesc} - - \begin{datadesc}{Py_TPFLAGS_HAVE_WEAKREFS} - If this bit is set, the \member{tp_weaklistoffset} field is - defined. Instances of a type are weakly referenceable if the - type's \member{tp_weaklistoffset} field has a value greater than - zero. - \end{datadesc} - - \begin{datadesc}{Py_TPFLAGS_HAVE_ITER} - If this bit is set, the type object has the \member{tp_iter} and - \member{tp_iternext} fields. - \end{datadesc} - - \begin{datadesc}{Py_TPFLAGS_HAVE_CLASS} - If this bit is set, the type object has several new fields defined - starting in Python 2.2: \member{tp_methods}, \member{tp_members}, - \member{tp_getset}, \member{tp_base}, \member{tp_dict}, - \member{tp_descr_get}, \member{tp_descr_set}, - \member{tp_dictoffset}, \member{tp_init}, \member{tp_alloc}, - \member{tp_new}, \member{tp_free}, \member{tp_is_gc}, - \member{tp_bases}, \member{tp_mro}, \member{tp_cache}, - \member{tp_subclasses}, and \member{tp_weaklist}. - \end{datadesc} - - \begin{datadesc}{Py_TPFLAGS_HEAPTYPE} - This bit is set when the type object itself is allocated on the - heap. In this case, the \member{ob_type} field of its instances - is considered a reference to the type, and the type object is - INCREF'ed when a new instance is created, and DECREF'ed when an - instance is destroyed (this does not apply to instances of - subtypes; only the type referenced by the instance's ob_type gets - INCREF'ed or DECREF'ed). - \end{datadesc} - - \begin{datadesc}{Py_TPFLAGS_BASETYPE} - This bit is set when the type can be used as the base type of - another type. If this bit is clear, the type cannot be subtyped - (similar to a "final" class in Java). - \end{datadesc} - - \begin{datadesc}{Py_TPFLAGS_READY} - This bit is set when the type object has been fully initialized by - \cfunction{PyType_Ready()}. - \end{datadesc} - - \begin{datadesc}{Py_TPFLAGS_READYING} - This bit is set while \cfunction{PyType_Ready()} is in the process - of initializing the type object. - \end{datadesc} - - \begin{datadesc}{Py_TPFLAGS_HAVE_GC} - This bit is set when the object supports garbage collection. If - this bit is set, instances must be created using - \cfunction{PyObject_GC_New()} and destroyed using - \cfunction{PyObject_GC_Del()}. More information in section XXX - about garbage collection. This bit also implies that the - GC-related fields \member{tp_traverse} and \member{tp_clear} are - present in the type object; but those fields also exist when - \constant{Py_TPFLAGS_HAVE_GC} is clear but - \constant{Py_TPFLAGS_HAVE_RICHCOMPARE} is set. - \end{datadesc} - - \begin{datadesc}{Py_TPFLAGS_DEFAULT} - This is a bitmask of all the bits that pertain to the existence of - certain fields in the type object and its extension structures. - Currently, it includes the following bits: - \constant{Py_TPFLAGS_HAVE_GETCHARBUFFER}, - \constant{Py_TPFLAGS_HAVE_SEQUENCE_IN}, - \constant{Py_TPFLAGS_HAVE_INPLACEOPS}, - \constant{Py_TPFLAGS_HAVE_RICHCOMPARE}, - \constant{Py_TPFLAGS_HAVE_WEAKREFS}, - \constant{Py_TPFLAGS_HAVE_ITER}, and - \constant{Py_TPFLAGS_HAVE_CLASS}. - \end{datadesc} -\end{cmemberdesc} - -\begin{cmemberdesc}{PyTypeObject}{char*}{tp_doc} - An optional pointer to a NUL-terminated C string giving the - docstring for this type object. This is exposed as the - \member{__doc__} attribute on the type and instances of the type. - - This field is \emph{not} inherited by subtypes. -\end{cmemberdesc} - -The following three fields only exist if the -\constant{Py_TPFLAGS_HAVE_RICHCOMPARE} flag bit is set. - -\begin{cmemberdesc}{PyTypeObject}{traverseproc}{tp_traverse} - An optional pointer to a traversal function for the garbage - collector. This is only used if the \constant{Py_TPFLAGS_HAVE_GC} - flag bit is set. More information about Python's garbage collection - scheme can be found in section \ref{supporting-cycle-detection}. - - The \member{tp_traverse} pointer is used by the garbage collector - to detect reference cycles. A typical implementation of a - \member{tp_traverse} function simply calls \cfunction{Py_VISIT()} on - each of the instance's members that are Python objects. For exampe, this - is function \cfunction{local_traverse} from the \module{thread} extension - module: - - \begin{verbatim} - static int - local_traverse(localobject *self, visitproc visit, void *arg) - { - Py_VISIT(self->args); - Py_VISIT(self->kw); - Py_VISIT(self->dict); - return 0; - } - \end{verbatim} - - Note that \cfunction{Py_VISIT()} is called only on those members that can - participate in reference cycles. Although there is also a - \samp{self->key} member, it can only be \NULL{} or a Python string and - therefore cannot be part of a reference cycle. - - On the other hand, even if you know a member can never be part of a cycle, - as a debugging aid you may want to visit it anyway just so the - \module{gc} module's \function{get_referents()} function will include it. - - Note that \cfunction{Py_VISIT()} requires the \var{visit} and \var{arg} - parameters to \cfunction{local_traverse} to have these specific names; - don't name them just anything. - - This field is inherited by subtypes together with \member{tp_clear} - and the \constant{Py_TPFLAGS_HAVE_GC} flag bit: the flag bit, - \member{tp_traverse}, and \member{tp_clear} are all inherited from - the base type if they are all zero in the subtype \emph{and} the - subtype has the \constant{Py_TPFLAGS_HAVE_RICHCOMPARE} flag bit set. -\end{cmemberdesc} - -\begin{cmemberdesc}{PyTypeObject}{inquiry}{tp_clear} - An optional pointer to a clear function for the garbage collector. - This is only used if the \constant{Py_TPFLAGS_HAVE_GC} flag bit is - set. - - The \member{tp_clear} member function is used to break reference - cycles in cyclic garbage detected by the garbage collector. Taken - together, all \member{tp_clear} functions in the system must combine to - break all reference cycles. This is subtle, and if in any doubt supply a - \member{tp_clear} function. For example, the tuple type does not - implement a \member{tp_clear} function, because it's possible to prove - that no reference cycle can be composed entirely of tuples. Therefore - the \member{tp_clear} functions of other types must be sufficient to - break any cycle containing a tuple. This isn't immediately obvious, and - there's rarely a good reason to avoid implementing \member{tp_clear}. - - Implementations of \member{tp_clear} should drop the instance's - references to those of its members that may be Python objects, and set - its pointers to those members to \NULL{}, as in the following example: - - \begin{verbatim} - static int - local_clear(localobject *self) - { - Py_CLEAR(self->key); - Py_CLEAR(self->args); - Py_CLEAR(self->kw); - Py_CLEAR(self->dict); - return 0; - } - \end{verbatim} - - The \cfunction{Py_CLEAR()} macro should be used, because clearing - references is delicate: the reference to the contained object must not be - decremented until after the pointer to the contained object is set to - \NULL{}. This is because decrementing the reference count may cause - the contained object to become trash, triggering a chain of reclamation - activity that may include invoking arbitrary Python code (due to - finalizers, or weakref callbacks, associated with the contained object). - If it's possible for such code to reference \var{self} again, it's - important that the pointer to the contained object be \NULL{} at that - time, so that \var{self} knows the contained object can no longer be - used. The \cfunction{Py_CLEAR()} macro performs the operations in a - safe order. - - Because the goal of \member{tp_clear} functions is to break reference - cycles, it's not necessary to clear contained objects like Python strings - or Python integers, which can't participate in reference cycles. - On the other hand, it may be convenient to clear all contained Python - objects, and write the type's \member{tp_dealloc} function to - invoke \member{tp_clear}. - - More information about Python's garbage collection - scheme can be found in section \ref{supporting-cycle-detection}. - - This field is inherited by subtypes together with \member{tp_traverse} - and the \constant{Py_TPFLAGS_HAVE_GC} flag bit: the flag bit, - \member{tp_traverse}, and \member{tp_clear} are all inherited from - the base type if they are all zero in the subtype \emph{and} the - subtype has the \constant{Py_TPFLAGS_HAVE_RICHCOMPARE} flag bit set. -\end{cmemberdesc} - -\begin{cmemberdesc}{PyTypeObject}{richcmpfunc}{tp_richcompare} - An optional pointer to the rich comparison function. - - The signature is the same as for \cfunction{PyObject_RichCompare()}. - The function should return the result of the comparison (usually - \code{Py_True} or \code{Py_False}). If the comparison is undefined, - it must return \code{Py_NotImplemented}, if another error occurred - it must return \code{NULL} and set an exception condition. - - This field is inherited by subtypes together with - \member{tp_compare} and \member{tp_hash}: a subtype inherits all - three of \member{tp_compare}, \member{tp_richcompare}, and - \member{tp_hash}, when the subtype's \member{tp_compare}, - \member{tp_richcompare}, and \member{tp_hash} are all \NULL. - - The following constants are defined to be used as the third argument - for \member{tp_richcompare} and for \cfunction{PyObject_RichCompare()}: - - \begin{tableii}{l|c}{constant}{Constant}{Comparison} - \lineii{Py_LT}{\code{<}} - \lineii{Py_LE}{\code{<=}} - \lineii{Py_EQ}{\code{==}} - \lineii{Py_NE}{\code{!=}} - \lineii{Py_GT}{\code{>}} - \lineii{Py_GE}{\code{>=}} - \end{tableii} -\end{cmemberdesc} - -The next field only exists if the \constant{Py_TPFLAGS_HAVE_WEAKREFS} -flag bit is set. - -\begin{cmemberdesc}{PyTypeObject}{long}{tp_weaklistoffset} - If the instances of this type are weakly referenceable, this field - is greater than zero and contains the offset in the instance - structure of the weak reference list head (ignoring the GC header, - if present); this offset is used by - \cfunction{PyObject_ClearWeakRefs()} and the - \cfunction{PyWeakref_*()} functions. The instance structure needs - to include a field of type \ctype{PyObject*} which is initialized to - \NULL. - - Do not confuse this field with \member{tp_weaklist}; that is the - list head for weak references to the type object itself. - - This field is inherited by subtypes, but see the rules listed below. - A subtype may override this offset; this means that the subtype uses - a different weak reference list head than the base type. Since the - list head is always found via \member{tp_weaklistoffset}, this - should not be a problem. - - When a type defined by a class statement has no \member{__slots__} - declaration, and none of its base types are weakly referenceable, - the type is made weakly referenceable by adding a weak reference - list head slot to the instance layout and setting the - \member{tp_weaklistoffset} of that slot's offset. - - When a type's \member{__slots__} declaration contains a slot named - \member{__weakref__}, that slot becomes the weak reference list head - for instances of the type, and the slot's offset is stored in the - type's \member{tp_weaklistoffset}. - - When a type's \member{__slots__} declaration does not contain a slot - named \member{__weakref__}, the type inherits its - \member{tp_weaklistoffset} from its base type. -\end{cmemberdesc} - -The next two fields only exist if the -\constant{Py_TPFLAGS_HAVE_CLASS} flag bit is set. - -\begin{cmemberdesc}{PyTypeObject}{getiterfunc}{tp_iter} - An optional pointer to a function that returns an iterator for the - object. Its presence normally signals that the instances of this - type are iterable (although sequences may be iterable without this - function, and classic instances always have this function, even if - they don't define an \method{__iter__()} method). - - This function has the same signature as - \cfunction{PyObject_GetIter()}. - - This field is inherited by subtypes. -\end{cmemberdesc} - -\begin{cmemberdesc}{PyTypeObject}{iternextfunc}{tp_iternext} - An optional pointer to a function that returns the next item in an - iterator, or raises \exception{StopIteration} when the iterator is - exhausted. Its presence normally signals that the instances of this - type are iterators (although classic instances always have this - function, even if they don't define a \method{__next__()} method). - - Iterator types should also define the \member{tp_iter} function, and - that function should return the iterator instance itself (not a new - iterator instance). - - This function has the same signature as \cfunction{PyIter_Next()}. - - This field is inherited by subtypes. -\end{cmemberdesc} - -The next fields, up to and including \member{tp_weaklist}, only exist -if the \constant{Py_TPFLAGS_HAVE_CLASS} flag bit is set. - -\begin{cmemberdesc}{PyTypeObject}{struct PyMethodDef*}{tp_methods} - An optional pointer to a static \NULL-terminated array of - \ctype{PyMethodDef} structures, declaring regular methods of this - type. - - For each entry in the array, an entry is added to the type's - dictionary (see \member{tp_dict} below) containing a method - descriptor. - - This field is not inherited by subtypes (methods are - inherited through a different mechanism). -\end{cmemberdesc} - -\begin{cmemberdesc}{PyTypeObject}{struct PyMemberDef*}{tp_members} - An optional pointer to a static \NULL-terminated array of - \ctype{PyMemberDef} structures, declaring regular data members - (fields or slots) of instances of this type. - - For each entry in the array, an entry is added to the type's - dictionary (see \member{tp_dict} below) containing a member - descriptor. - - This field is not inherited by subtypes (members are inherited - through a different mechanism). -\end{cmemberdesc} - -\begin{cmemberdesc}{PyTypeObject}{struct PyGetSetDef*}{tp_getset} - An optional pointer to a static \NULL-terminated array of - \ctype{PyGetSetDef} structures, declaring computed attributes of - instances of this type. - - For each entry in the array, an entry is added to the type's - dictionary (see \member{tp_dict} below) containing a getset - descriptor. - - This field is not inherited by subtypes (computed attributes are - inherited through a different mechanism). - - Docs for PyGetSetDef (XXX belong elsewhere): - -\begin{verbatim} -typedef PyObject *(*getter)(PyObject *, void *); -typedef int (*setter)(PyObject *, PyObject *, void *); - -typedef struct PyGetSetDef { - char *name; /* attribute name */ - getter get; /* C function to get the attribute */ - setter set; /* C function to set the attribute */ - char *doc; /* optional doc string */ - void *closure; /* optional additional data for getter and setter */ -} PyGetSetDef; -\end{verbatim} -\end{cmemberdesc} - -\begin{cmemberdesc}{PyTypeObject}{PyTypeObject*}{tp_base} - An optional pointer to a base type from which type properties are - inherited. At this level, only single inheritance is supported; - multiple inheritance require dynamically creating a type object by - calling the metatype. - - This field is not inherited by subtypes (obviously), but it defaults - to \code{\&PyBaseObject_Type} (which to Python programmers is known - as the type \class{object}). -\end{cmemberdesc} - -\begin{cmemberdesc}{PyTypeObject}{PyObject*}{tp_dict} - The type's dictionary is stored here by \cfunction{PyType_Ready()}. - - This field should normally be initialized to \NULL{} before - PyType_Ready is called; it may also be initialized to a dictionary - containing initial attributes for the type. Once - \cfunction{PyType_Ready()} has initialized the type, extra - attributes for the type may be added to this dictionary only if they - don't correspond to overloaded operations (like \method{__add__()}). - - This field is not inherited by subtypes (though the attributes - defined in here are inherited through a different mechanism). -\end{cmemberdesc} - -\begin{cmemberdesc}{PyTypeObject}{descrgetfunc}{tp_descr_get} - An optional pointer to a "descriptor get" function. - - - The function signature is - -\begin{verbatim} -PyObject * tp_descr_get(PyObject *self, PyObject *obj, PyObject *type); -\end{verbatim} - - XXX blah, blah. - - This field is inherited by subtypes. -\end{cmemberdesc} - -\begin{cmemberdesc}{PyTypeObject}{descrsetfunc}{tp_descr_set} - An optional pointer to a "descriptor set" function. - - The function signature is - -\begin{verbatim} -int tp_descr_set(PyObject *self, PyObject *obj, PyObject *value); -\end{verbatim} - - This field is inherited by subtypes. - - XXX blah, blah. - -\end{cmemberdesc} - -\begin{cmemberdesc}{PyTypeObject}{long}{tp_dictoffset} - If the instances of this type have a dictionary containing instance - variables, this field is non-zero and contains the offset in the - instances of the type of the instance variable dictionary; this - offset is used by \cfunction{PyObject_GenericGetAttr()}. - - Do not confuse this field with \member{tp_dict}; that is the - dictionary for attributes of the type object itself. - - If the value of this field is greater than zero, it specifies the - offset from the start of the instance structure. If the value is - less than zero, it specifies the offset from the \emph{end} of the - instance structure. A negative offset is more expensive to use, and - should only be used when the instance structure contains a - variable-length part. This is used for example to add an instance - variable dictionary to subtypes of \class{str} or \class{tuple}. - Note that the \member{tp_basicsize} field should account for the - dictionary added to the end in that case, even though the dictionary - is not included in the basic object layout. On a system with a - pointer size of 4 bytes, \member{tp_dictoffset} should be set to - \code{-4} to indicate that the dictionary is at the very end of the - structure. - - The real dictionary offset in an instance can be computed from a - negative \member{tp_dictoffset} as follows: - -\begin{verbatim} -dictoffset = tp_basicsize + abs(ob_size)*tp_itemsize + tp_dictoffset -if dictoffset is not aligned on sizeof(void*): - round up to sizeof(void*) -\end{verbatim} - - where \member{tp_basicsize}, \member{tp_itemsize} and - \member{tp_dictoffset} are taken from the type object, and - \member{ob_size} is taken from the instance. The absolute value is - taken because long ints use the sign of \member{ob_size} to store - the sign of the number. (There's never a need to do this - calculation yourself; it is done for you by - \cfunction{_PyObject_GetDictPtr()}.) - - This field is inherited by subtypes, but see the rules listed below. - A subtype may override this offset; this means that the subtype - instances store the dictionary at a difference offset than the base - type. Since the dictionary is always found via - \member{tp_dictoffset}, this should not be a problem. - - When a type defined by a class statement has no \member{__slots__} - declaration, and none of its base types has an instance variable - dictionary, a dictionary slot is added to the instance layout and - the \member{tp_dictoffset} is set to that slot's offset. - - When a type defined by a class statement has a \member{__slots__} - declaration, the type inherits its \member{tp_dictoffset} from its - base type. - - (Adding a slot named \member{__dict__} to the \member{__slots__} - declaration does not have the expected effect, it just causes - confusion. Maybe this should be added as a feature just like - \member{__weakref__} though.) -\end{cmemberdesc} - -\begin{cmemberdesc}{PyTypeObject}{initproc}{tp_init} - An optional pointer to an instance initialization function. - - This function corresponds to the \method{__init__()} method of - classes. Like \method{__init__()}, it is possible to create an - instance without calling \method{__init__()}, and it is possible to - reinitialize an instance by calling its \method{__init__()} method - again. - - The function signature is - -\begin{verbatim} -int tp_init(PyObject *self, PyObject *args, PyObject *kwds) -\end{verbatim} - - The self argument is the instance to be initialized; the \var{args} - and \var{kwds} arguments represent positional and keyword arguments - of the call to \method{__init__()}. - - The \member{tp_init} function, if not \NULL, is called when an - instance is created normally by calling its type, after the type's - \member{tp_new} function has returned an instance of the type. If - the \member{tp_new} function returns an instance of some other type - that is not a subtype of the original type, no \member{tp_init} - function is called; if \member{tp_new} returns an instance of a - subtype of the original type, the subtype's \member{tp_init} is - called. (VERSION NOTE: described here is what is implemented in - Python 2.2.1 and later. In Python 2.2, the \member{tp_init} of the - type of the object returned by \member{tp_new} was always called, if - not \NULL.) - - This field is inherited by subtypes. -\end{cmemberdesc} - -\begin{cmemberdesc}{PyTypeObject}{allocfunc}{tp_alloc} - An optional pointer to an instance allocation function. - - The function signature is - -\begin{verbatim} -PyObject *tp_alloc(PyTypeObject *self, Py_ssize_t nitems) -\end{verbatim} - - The purpose of this function is to separate memory allocation from - memory initialization. It should return a pointer to a block of - memory of adequate length for the instance, suitably aligned, and - initialized to zeros, but with \member{ob_refcnt} set to \code{1} - and \member{ob_type} set to the type argument. If the type's - \member{tp_itemsize} is non-zero, the object's \member{ob_size} field - should be initialized to \var{nitems} and the length of the - allocated memory block should be \code{tp_basicsize + - \var{nitems}*tp_itemsize}, rounded up to a multiple of - \code{sizeof(void*)}; otherwise, \var{nitems} is not used and the - length of the block should be \member{tp_basicsize}. - - Do not use this function to do any other instance initialization, - not even to allocate additional memory; that should be done by - \member{tp_new}. - - This field is inherited by static subtypes, but not by dynamic - subtypes (subtypes created by a class statement); in the latter, - this field is always set to \cfunction{PyType_GenericAlloc}, to - force a standard heap allocation strategy. That is also the - recommended value for statically defined types. -\end{cmemberdesc} - -\begin{cmemberdesc}{PyTypeObject}{newfunc}{tp_new} - An optional pointer to an instance creation function. - - If this function is \NULL{} for a particular type, that type cannot - be called to create new instances; presumably there is some other - way to create instances, like a factory function. - - The function signature is - -\begin{verbatim} -PyObject *tp_new(PyTypeObject *subtype, PyObject *args, PyObject *kwds) -\end{verbatim} - - The subtype argument is the type of the object being created; the - \var{args} and \var{kwds} arguments represent positional and keyword - arguments of the call to the type. Note that subtype doesn't have - to equal the type whose \member{tp_new} function is called; it may - be a subtype of that type (but not an unrelated type). - - The \member{tp_new} function should call - \code{\var{subtype}->tp_alloc(\var{subtype}, \var{nitems})} to - allocate space for the object, and then do only as much further - initialization as is absolutely necessary. Initialization that can - safely be ignored or repeated should be placed in the - \member{tp_init} handler. A good rule of thumb is that for - immutable types, all initialization should take place in - \member{tp_new}, while for mutable types, most initialization should - be deferred to \member{tp_init}. - - This field is inherited by subtypes, except it is not inherited by - static types whose \member{tp_base} is \NULL{} or - \code{\&PyBaseObject_Type}. The latter exception is a precaution so - that old extension types don't become callable simply by being - linked with Python 2.2. -\end{cmemberdesc} - -\begin{cmemberdesc}{PyTypeObject}{destructor}{tp_free} - An optional pointer to an instance deallocation function. - - The signature of this function has changed slightly: in Python - 2.2 and 2.2.1, its signature is \ctype{destructor}: - -\begin{verbatim} -void tp_free(PyObject *) -\end{verbatim} - - In Python 2.3 and beyond, its signature is \ctype{freefunc}: - -\begin{verbatim} -void tp_free(void *) -\end{verbatim} - - The only initializer that is compatible with both versions is - \code{_PyObject_Del}, whose definition has suitably adapted in - Python 2.3. - - This field is inherited by static subtypes, but not by dynamic - subtypes (subtypes created by a class statement); in the latter, - this field is set to a deallocator suitable to match - \cfunction{PyType_GenericAlloc()} and the value of the - \constant{Py_TPFLAGS_HAVE_GC} flag bit. -\end{cmemberdesc} - -\begin{cmemberdesc}{PyTypeObject}{inquiry}{tp_is_gc} - An optional pointer to a function called by the garbage collector. - - The garbage collector needs to know whether a particular object is - collectible or not. Normally, it is sufficient to look at the - object's type's \member{tp_flags} field, and check the - \constant{Py_TPFLAGS_HAVE_GC} flag bit. But some types have a - mixture of statically and dynamically allocated instances, and the - statically allocated instances are not collectible. Such types - should define this function; it should return \code{1} for a - collectible instance, and \code{0} for a non-collectible instance. - The signature is - -\begin{verbatim} -int tp_is_gc(PyObject *self) -\end{verbatim} - - (The only example of this are types themselves. The metatype, - \cdata{PyType_Type}, defines this function to distinguish between - statically and dynamically allocated types.) - - This field is inherited by subtypes. (VERSION NOTE: in Python - 2.2, it was not inherited. It is inherited in 2.2.1 and later - versions.) -\end{cmemberdesc} - -\begin{cmemberdesc}{PyTypeObject}{PyObject*}{tp_bases} - Tuple of base types. - - This is set for types created by a class statement. It should be - \NULL{} for statically defined types. - - This field is not inherited. -\end{cmemberdesc} - -\begin{cmemberdesc}{PyTypeObject}{PyObject*}{tp_mro} - Tuple containing the expanded set of base types, starting with the - type itself and ending with \class{object}, in Method Resolution - Order. - - This field is not inherited; it is calculated fresh by - \cfunction{PyType_Ready()}. -\end{cmemberdesc} - -\begin{cmemberdesc}{PyTypeObject}{PyObject*}{tp_cache} - Unused. Not inherited. Internal use only. -\end{cmemberdesc} - -\begin{cmemberdesc}{PyTypeObject}{PyObject*}{tp_subclasses} - List of weak references to subclasses. Not inherited. Internal - use only. -\end{cmemberdesc} - -\begin{cmemberdesc}{PyTypeObject}{PyObject*}{tp_weaklist} - Weak reference list head, for weak references to this type - object. Not inherited. Internal use only. -\end{cmemberdesc} - -The remaining fields are only defined if the feature test macro -\constant{COUNT_ALLOCS} is defined, and are for internal use only. -They are documented here for completeness. None of these fields are -inherited by subtypes. - -\begin{cmemberdesc}{PyTypeObject}{Py_ssize_t}{tp_allocs} - Number of allocations. -\end{cmemberdesc} - -\begin{cmemberdesc}{PyTypeObject}{Py_ssize_t}{tp_frees} - Number of frees. -\end{cmemberdesc} - -\begin{cmemberdesc}{PyTypeObject}{Py_ssize_t}{tp_maxalloc} - Maximum simultaneously allocated objects. -\end{cmemberdesc} - -\begin{cmemberdesc}{PyTypeObject}{PyTypeObject*}{tp_next} - Pointer to the next type object with a non-zero \member{tp_allocs} - field. -\end{cmemberdesc} - -Also, note that, in a garbage collected Python, tp_dealloc may be -called from any Python thread, not just the thread which created the -object (if the object becomes part of a refcount cycle, that cycle -might be collected by a garbage collection on any thread). This is -not a problem for Python API calls, since the thread on which -tp_dealloc is called will own the Global Interpreter Lock (GIL). -However, if the object being destroyed in turn destroys objects from -some other C or \Cpp{} library, care should be taken to ensure that -destroying those objects on the thread which called tp_dealloc will -not violate any assumptions of the library. - -\section{Mapping Object Structures \label{mapping-structs}} - -\begin{ctypedesc}{PyMappingMethods} - Structure used to hold pointers to the functions used to implement - the mapping protocol for an extension type. -\end{ctypedesc} - - -\section{Number Object Structures \label{number-structs}} - -\begin{ctypedesc}{PyNumberMethods} - Structure used to hold pointers to the functions an extension type - uses to implement the number protocol. -\end{ctypedesc} - - -\section{Sequence Object Structures \label{sequence-structs}} - -\begin{ctypedesc}{PySequenceMethods} - Structure used to hold pointers to the functions which an object - uses to implement the sequence protocol. -\end{ctypedesc} - - -\section{Buffer Object Structures \label{buffer-structs}} -\sectionauthor{Greg J. Stein}{greg@lyra.org} - -The buffer interface exports a model where an object can expose its -internal data as a set of chunks of data, where each chunk is -specified as a pointer/length pair. These chunks are called -\dfn{segments} and are presumed to be non-contiguous in memory. - -If an object does not export the buffer interface, then its -\member{tp_as_buffer} member in the \ctype{PyTypeObject} structure -should be \NULL. Otherwise, the \member{tp_as_buffer} will point to -a \ctype{PyBufferProcs} structure. - -\note{It is very important that your \ctype{PyTypeObject} structure -uses \constant{Py_TPFLAGS_DEFAULT} for the value of the -\member{tp_flags} member rather than \code{0}. This tells the Python -runtime that your \ctype{PyBufferProcs} structure contains the -\member{bf_getcharbuffer} slot. Older versions of Python did not have -this member, so a new Python interpreter using an old extension needs -to be able to test for its presence before using it.} - -\begin{ctypedesc}{PyBufferProcs} - Structure used to hold the function pointers which define an - implementation of the buffer protocol. - - The first slot is \member{bf_getreadbuffer}, of type - \ctype{getreadbufferproc}. If this slot is \NULL, then the object - does not support reading from the internal data. This is - non-sensical, so implementors should fill this in, but callers - should test that the slot contains a non-\NULL{} value. - - The next slot is \member{bf_getwritebuffer} having type - \ctype{getwritebufferproc}. This slot may be \NULL{} if the object - does not allow writing into its returned buffers. - - The third slot is \member{bf_getsegcount}, with type - \ctype{getsegcountproc}. This slot must not be \NULL{} and is used - to inform the caller how many segments the object contains. Simple - objects such as \ctype{PyString_Type} and \ctype{PyBuffer_Type} - objects contain a single segment. - - The last slot is \member{bf_getcharbuffer}, of type - \ctype{getcharbufferproc}. This slot will only be present if the - \constant{Py_TPFLAGS_HAVE_GETCHARBUFFER} flag is present in the - \member{tp_flags} field of the object's \ctype{PyTypeObject}. - Before using this slot, the caller should test whether it is present - by using the - \cfunction{PyType_HasFeature()}\ttindex{PyType_HasFeature()} - function. If the flag is present, \member{bf_getcharbuffer} may be - \NULL, - indicating that the object's - contents cannot be used as \emph{8-bit characters}. - The slot function may also raise an error if the object's contents - cannot be interpreted as 8-bit characters. For example, if the - object is an array which is configured to hold floating point - values, an exception may be raised if a caller attempts to use - \member{bf_getcharbuffer} to fetch a sequence of 8-bit characters. - This notion of exporting the internal buffers as ``text'' is used to - distinguish between objects that are binary in nature, and those - which have character-based content. - - \note{The current policy seems to state that these characters - may be multi-byte characters. This implies that a buffer size of - \var{N} does not mean there are \var{N} characters present.} -\end{ctypedesc} - -\begin{datadesc}{Py_TPFLAGS_HAVE_GETCHARBUFFER} - Flag bit set in the type structure to indicate that the - \member{bf_getcharbuffer} slot is known. This being set does not - indicate that the object supports the buffer interface or that the - \member{bf_getcharbuffer} slot is non-\NULL. -\end{datadesc} - -\begin{ctypedesc}[getreadbufferproc]{Py_ssize_t (*readbufferproc) - (PyObject *self, Py_ssize_t segment, void **ptrptr)} - Return a pointer to a readable segment of the buffer in - \code{*\var{ptrptr}}. This function - is allowed to raise an exception, in which case it must return - \code{-1}. The \var{segment} which is specified must be zero or - positive, and strictly less than the number of segments returned by - the \member{bf_getsegcount} slot function. On success, it returns - the length of the segment, and sets \code{*\var{ptrptr}} to a - pointer to that memory. -\end{ctypedesc} - -\begin{ctypedesc}[getwritebufferproc]{Py_ssize_t (*writebufferproc) - (PyObject *self, Py_ssize_t segment, void **ptrptr)} - Return a pointer to a writable memory buffer in - \code{*\var{ptrptr}}, and the length of that segment as the function - return value. The memory buffer must correspond to buffer segment - \var{segment}. Must return \code{-1} and set an exception on - error. \exception{TypeError} should be raised if the object only - supports read-only buffers, and \exception{SystemError} should be - raised when \var{segment} specifies a segment that doesn't exist. -% Why doesn't it raise ValueError for this one? -% GJS: because you shouldn't be calling it with an invalid -% segment. That indicates a blatant programming error in the C -% code. -\end{ctypedesc} - -\begin{ctypedesc}[getsegcountproc]{Py_ssize_t (*segcountproc) - (PyObject *self, Py_ssize_t *lenp)} - Return the number of memory segments which comprise the buffer. If - \var{lenp} is not \NULL, the implementation must report the sum of - the sizes (in bytes) of all segments in \code{*\var{lenp}}. - The function cannot fail. -\end{ctypedesc} - -\begin{ctypedesc}[getcharbufferproc]{Py_ssize_t (*charbufferproc) - (PyObject *self, Py_ssize_t segment, const char **ptrptr)} - Return the size of the segment \var{segment} that \var{ptrptr} - is set to. \code{*\var{ptrptr}} is set to the memory buffer. - Returns \code{-1} on error. -\end{ctypedesc} - - -\section{Supporting the Iterator Protocol - \label{supporting-iteration}} - - -\section{Supporting Cyclic Garbage Collection - \label{supporting-cycle-detection}} - -Python's support for detecting and collecting garbage which involves -circular references requires support from object types which are -``containers'' for other objects which may also be containers. Types -which do not store references to other objects, or which only store -references to atomic types (such as numbers or strings), do not need -to provide any explicit support for garbage collection. - -An example showing the use of these interfaces can be found in -``\ulink{Supporting the Cycle -Collector}{../ext/example-cycle-support.html}'' in -\citetitle[../ext/ext.html]{Extending and Embedding the Python -Interpreter}. - -To create a container type, the \member{tp_flags} field of the type -object must include the \constant{Py_TPFLAGS_HAVE_GC} and provide an -implementation of the \member{tp_traverse} handler. If instances of the -type are mutable, a \member{tp_clear} implementation must also be -provided. - -\begin{datadesc}{Py_TPFLAGS_HAVE_GC} - Objects with a type with this flag set must conform with the rules - documented here. For convenience these objects will be referred to - as container objects. -\end{datadesc} - -Constructors for container types must conform to two rules: - -\begin{enumerate} -\item The memory for the object must be allocated using - \cfunction{PyObject_GC_New()} or \cfunction{PyObject_GC_VarNew()}. - -\item Once all the fields which may contain references to other - containers are initialized, it must call - \cfunction{PyObject_GC_Track()}. -\end{enumerate} - -\begin{cfuncdesc}{\var{TYPE}*}{PyObject_GC_New}{TYPE, PyTypeObject *type} - Analogous to \cfunction{PyObject_New()} but for container objects with - the \constant{Py_TPFLAGS_HAVE_GC} flag set. -\end{cfuncdesc} - -\begin{cfuncdesc}{\var{TYPE}*}{PyObject_GC_NewVar}{TYPE, PyTypeObject *type, - Py_ssize_t size} - Analogous to \cfunction{PyObject_NewVar()} but for container objects - with the \constant{Py_TPFLAGS_HAVE_GC} flag set. -\end{cfuncdesc} - -\begin{cfuncdesc}{PyVarObject *}{PyObject_GC_Resize}{PyVarObject *op, Py_ssize_t} - Resize an object allocated by \cfunction{PyObject_NewVar()}. Returns - the resized object or \NULL{} on failure. -\end{cfuncdesc} - -\begin{cfuncdesc}{void}{PyObject_GC_Track}{PyObject *op} - Adds the object \var{op} to the set of container objects tracked by - the collector. The collector can run at unexpected times so objects - must be valid while being tracked. This should be called once all - the fields followed by the \member{tp_traverse} handler become valid, - usually near the end of the constructor. -\end{cfuncdesc} - -\begin{cfuncdesc}{void}{_PyObject_GC_TRACK}{PyObject *op} - A macro version of \cfunction{PyObject_GC_Track()}. It should not be - used for extension modules. -\end{cfuncdesc} - -Similarly, the deallocator for the object must conform to a similar -pair of rules: - -\begin{enumerate} -\item Before fields which refer to other containers are invalidated, - \cfunction{PyObject_GC_UnTrack()} must be called. - -\item The object's memory must be deallocated using - \cfunction{PyObject_GC_Del()}. -\end{enumerate} - -\begin{cfuncdesc}{void}{PyObject_GC_Del}{void *op} - Releases memory allocated to an object using - \cfunction{PyObject_GC_New()} or \cfunction{PyObject_GC_NewVar()}. -\end{cfuncdesc} - -\begin{cfuncdesc}{void}{PyObject_GC_UnTrack}{void *op} - Remove the object \var{op} from the set of container objects tracked - by the collector. Note that \cfunction{PyObject_GC_Track()} can be - called again on this object to add it back to the set of tracked - objects. The deallocator (\member{tp_dealloc} handler) should call - this for the object before any of the fields used by the - \member{tp_traverse} handler become invalid. -\end{cfuncdesc} - -\begin{cfuncdesc}{void}{_PyObject_GC_UNTRACK}{PyObject *op} - A macro version of \cfunction{PyObject_GC_UnTrack()}. It should not be - used for extension modules. -\end{cfuncdesc} - -The \member{tp_traverse} handler accepts a function parameter of this -type: - -\begin{ctypedesc}[visitproc]{int (*visitproc)(PyObject *object, void *arg)} - Type of the visitor function passed to the \member{tp_traverse} - handler. The function should be called with an object to traverse - as \var{object} and the third parameter to the \member{tp_traverse} - handler as \var{arg}. The Python core uses several visitor functions - to implement cyclic garbage detection; it's not expected that users will - need to write their own visitor functions. -\end{ctypedesc} - -The \member{tp_traverse} handler must have the following type: - -\begin{ctypedesc}[traverseproc]{int (*traverseproc)(PyObject *self, - visitproc visit, void *arg)} - Traversal function for a container object. Implementations must - call the \var{visit} function for each object directly contained by - \var{self}, with the parameters to \var{visit} being the contained - object and the \var{arg} value passed to the handler. The \var{visit} - function must not be called with a \NULL{} object argument. If - \var{visit} returns a non-zero value - that value should be returned immediately. -\end{ctypedesc} - -To simplify writing \member{tp_traverse} handlers, a -\cfunction{Py_VISIT()} macro is provided. In order to use this macro, -the \member{tp_traverse} implementation must name its arguments -exactly \var{visit} and \var{arg}: - -\begin{cfuncdesc}{void}{Py_VISIT}{PyObject *o} - Call the \var{visit} callback, with arguments \var{o} and \var{arg}. - If \var{visit} returns a non-zero value, then return it. Using this - macro, \member{tp_traverse} handlers look like: - -\begin{verbatim} -static int -my_traverse(Noddy *self, visitproc visit, void *arg) -{ - Py_VISIT(self->foo); - Py_VISIT(self->bar); - return 0; -} -\end{verbatim} - -\versionadded{2.4} -\end{cfuncdesc} - - -The \member{tp_clear} handler must be of the \ctype{inquiry} type, or -\NULL{} if the object is immutable. - -\begin{ctypedesc}[inquiry]{int (*inquiry)(PyObject *self)} - Drop references that may have created reference cycles. Immutable - objects do not have to define this method since they can never - directly create reference cycles. Note that the object must still - be valid after calling this method (don't just call - \cfunction{Py_DECREF()} on a reference). The collector will call - this method if it detects that this object is involved in a - reference cycle. -\end{ctypedesc} diff --git a/Doc/api/refcounting.tex b/Doc/api/refcounting.tex deleted file mode 100644 index 077543b..0000000 --- a/Doc/api/refcounting.tex +++ /dev/null @@ -1,69 +0,0 @@ -\chapter{Reference Counting \label{countingRefs}} - - -The macros in this section are used for managing reference counts -of Python objects. - - -\begin{cfuncdesc}{void}{Py_INCREF}{PyObject *o} - Increment the reference count for object \var{o}. The object must - not be \NULL; if you aren't sure that it isn't \NULL, use - \cfunction{Py_XINCREF()}. -\end{cfuncdesc} - -\begin{cfuncdesc}{void}{Py_XINCREF}{PyObject *o} - Increment the reference count for object \var{o}. The object may be - \NULL, in which case the macro has no effect. -\end{cfuncdesc} - -\begin{cfuncdesc}{void}{Py_DECREF}{PyObject *o} - Decrement the reference count for object \var{o}. The object must - not be \NULL; if you aren't sure that it isn't \NULL, use - \cfunction{Py_XDECREF()}. If the reference count reaches zero, the - object's type's deallocation function (which must not be \NULL) is - invoked. - - \warning{The deallocation function can cause arbitrary Python code - to be invoked (e.g. when a class instance with a \method{__del__()} - method is deallocated). While exceptions in such code are not - propagated, the executed code has free access to all Python global - variables. This means that any object that is reachable from a - global variable should be in a consistent state before - \cfunction{Py_DECREF()} is invoked. For example, code to delete an - object from a list should copy a reference to the deleted object in - a temporary variable, update the list data structure, and then call - \cfunction{Py_DECREF()} for the temporary variable.} -\end{cfuncdesc} - -\begin{cfuncdesc}{void}{Py_XDECREF}{PyObject *o} - Decrement the reference count for object \var{o}. The object may be - \NULL, in which case the macro has no effect; otherwise the effect - is the same as for \cfunction{Py_DECREF()}, and the same warning - applies. -\end{cfuncdesc} - -\begin{cfuncdesc}{void}{Py_CLEAR}{PyObject *o} - Decrement the reference count for object \var{o}. The object may be - \NULL, in which case the macro has no effect; otherwise the effect - is the same as for \cfunction{Py_DECREF()}, except that the argument - is also set to \NULL. The warning for \cfunction{Py_DECREF()} does - not apply with respect to the object passed because the macro - carefully uses a temporary variable and sets the argument to \NULL - before decrementing its reference count. - - It is a good idea to use this macro whenever decrementing the value - of a variable that might be traversed during garbage collection. - -\versionadded{2.4} -\end{cfuncdesc} - - -The following functions are for runtime dynamic embedding of Python: -\cfunction{Py_IncRef(PyObject *o)}, \cfunction{Py_DecRef(PyObject *o)}. -They are simply exported function versions of \cfunction{Py_XINCREF()} and -\cfunction{Py_XDECREF()}, respectively. - -The following functions or macros are only for use within the -interpreter core: \cfunction{_Py_Dealloc()}, -\cfunction{_Py_ForgetReference()}, \cfunction{_Py_NewReference()}, as -well as the global variable \cdata{_Py_RefTotal}. diff --git a/Doc/api/refcounts.dat b/Doc/api/refcounts.dat deleted file mode 100644 index 54197c8..0000000 --- a/Doc/api/refcounts.dat +++ /dev/null @@ -1,1751 +0,0 @@ -# Created by Skip Montanaro <skip@mojam.com>. - -# Format: -# function ':' type ':' [param name] ':' [refcount effect] ':' [comment] -# If the param name slot is empty, that line corresponds to the function's -# return value, otherwise it's the type of the named parameter. - -# The first line of a function block gives type/refcount information for the -# function's return value. Successive lines with the same function name -# correspond to the function's parameter list and appear in the order the -# parameters appear in the function's prototype. - -# For readability, each function's lines are surrounded by a blank line. -# The blocks are sorted alphabetically by function name. - -# Refcount behavior is given for all PyObject* types: 0 (no change), +1 -# (increment) and -1 (decrement). A blank refcount field indicates the -# parameter or function value is not a PyObject* and is therefore not -# subject to reference counting. A special case for the value "null" -# (without quotes) is used for functions which return a PyObject* type but -# always return NULL. This is used by some of the PyErr_*() functions, in -# particular. - -# XXX NOTE: the 0/+1/-1 refcount information for arguments is -# confusing! Much more useful would be to indicate whether the -# function "steals" a reference to the argument or not. Take for -# example PyList_SetItem(list, i, item). This lists as a 0 change for -# both the list and the item arguments. However, in fact it steals a -# reference to the item argument! - -# The parameter names are as they appear in the API manual, not the source -# code. - -PyBool_FromLong:PyObject*::+1: -PyBool_FromLong:long:v:0: - -PyBuffer_FromObject:PyObject*::+1: -PyBuffer_FromObject:PyObject*:base:+1: -PyBuffer_FromObject:int:offset:: -PyBuffer_FromObject:int:size:: - -PyBuffer_FromReadWriteObject:PyObject*::+1: -PyBuffer_FromReadWriteObject:PyObject*:base:+1: -PyBuffer_FromReadWriteObject:int:offset:: -PyBuffer_FromReadWriteObject:int:size:: - -PyBuffer_FromMemory:PyObject*::+1: -PyBuffer_FromMemory:void*:ptr:: -PyBuffer_FromMemory:int:size:: - -PyBuffer_FromReadWriteMemory:PyObject*::+1: -PyBuffer_FromReadWriteMemory:void*:ptr:: -PyBuffer_FromReadWriteMemory:int:size:: - -PyBuffer_New:PyObject*::+1: -PyBuffer_New:int:size:: - -PyCObject_AsVoidPtr:void*::: -PyCObject_AsVoidPtr:PyObject*:self:0: - -PyCObject_FromVoidPtr:PyObject*::+1: -PyCObject_FromVoidPtr:void*:cobj:: -PyCObject_FromVoidPtr::void (* destr)(void* ):: - -PyCObject_FromVoidPtrAndDesc:PyObject*::+1: -PyCObject_FromVoidPtrAndDesc:void*:cobj:: -PyCObject_FromVoidPtrAndDesc:void*:desc:: -PyCObject_FromVoidPtrAndDesc:void(*)(void*,void*):destr:: - -PyCObject_GetDesc:void*::: -PyCObject_GetDesc:PyObject*:self:0: - -PyCell_New:PyObject*::+1: -PyCell_New:PyObject*:ob:0: - -PyCell_GET:PyObject*::0: -PyCell_GET:PyObject*:ob:0: - -PyCell_Get:PyObject*::+1: -PyCell_Get:PyObject*:cell:0: - -PyCell_SET:void::: -PyCell_SET:PyObject*:cell:0: -PyCell_SET:PyObject*:value:0: - -PyCell_Set:int::: -PyCell_Set:PyObject*:cell:0: -PyCell_Set:PyObject*:value:0: - -PyCallIter_New:PyObject*::+1: -PyCallIter_New:PyObject*:callable:: -PyCallIter_New:PyObject*:sentinel:: - -PyCallable_Check:int::: -PyCallable_Check:PyObject*:o:0: - -PyComplex_AsCComplex:Py_complex::: -PyComplex_AsCComplex:PyObject*:op:0: - -PyComplex_Check:int::: -PyComplex_Check:PyObject*:p:0: - -PyComplex_FromCComplex:PyObject*::+1: -PyComplex_FromCComplex::Py_complex v:: - -PyComplex_FromDoubles:PyObject*::+1: -PyComplex_FromDoubles::double real:: -PyComplex_FromDoubles::double imag:: - -PyComplex_ImagAsDouble:double::: -PyComplex_ImagAsDouble:PyObject*:op:0: - -PyComplex_RealAsDouble:double::: -PyComplex_RealAsDouble:PyObject*:op:0: - -PyDate_FromDate:PyObject*::+1: -PyDate_FromDate:int:year:: -PyDate_FromDate:int:month:: -PyDate_FromDate:int:day:: - -PyDate_FromTimestamp:PyObject*::+1: -PyDate_FromTimestamp:PyObject*:args:0: - -PyDateTime_FromDateAndTime:PyObject*::+1: -PyDateTime_FromDateAndTime:int:year:: -PyDateTime_FromDateAndTime:int:month:: -PyDateTime_FromDateAndTime:int:day:: -PyDateTime_FromDateAndTime:int:hour:: -PyDateTime_FromDateAndTime:int:minute:: -PyDateTime_FromDateAndTime:int:second:: -PyDateTime_FromDateAndTime:int:usecond:: - -PyDateTime_FromTimestamp:PyObject*::+1: -PyDateTime_FromTimestamp:PyObject*:args:0: - -PyDelta_FromDSU:PyObject*::+1: -PyDelta_FromDSU:int:days:: -PyDelta_FromDSU:int:seconds:: -PyDelta_FromDSU:int:useconds:: - -PyDescr_NewClassMethod:PyObject*::+1: -PyDescr_NewClassMethod:PyTypeObject*:type:: -PyDescr_NewClassMethod:PyMethodDef*:method:: - -PyDescr_NewGetSet:PyObject*::+1: -PyDescr_NewGetSet:PyTypeObject*:type:: -PyDescr_NewGetSet:PyGetSetDef*:getset:: - -PyDescr_NewMember:PyObject*::+1: -PyDescr_NewMember:PyTypeObject*:type:: -PyDescr_NewMember:PyMemberDef*:member:: - -PyDescr_NewMethod:PyObject*::+1: -PyDescr_NewMethod:PyTypeObject*:type:: -PyDescr_NewMethod:PyMethodDef*:meth:: - -PyDescr_NewWrapper:PyObject*::+1: -PyDescr_NewWrapper:PyTypeObject*:type:: -PyDescr_NewWrapper:struct wrapperbase*:base:: -PyDescr_NewWrapper:void*:wrapped:: - -PyDict_Check:int::: -PyDict_Check:PyObject*:p:0: - -PyDict_Clear:void::: -PyDict_Clear:PyObject*:p:0: - -PyDict_DelItem:int::: -PyDict_DelItem:PyObject*:p:0: -PyDict_DelItem:PyObject*:key:0: - -PyDict_DelItemString:int::: -PyDict_DelItemString:PyObject*:p:0: -PyDict_DelItemString:char*:key:: - -PyDict_GetItem:PyObject*::0:0 -PyDict_GetItem:PyObject*:p:0: -PyDict_GetItem:PyObject*:key:0: - -PyDict_GetItemString:PyObject*::0: -PyDict_GetItemString:PyObject*:p:0: -PyDict_GetItemString:char*:key:: - -PyDict_Items:PyObject*::+1: -PyDict_Items:PyObject*:p:0: - -PyDict_Keys:PyObject*::+1: -PyDict_Keys:PyObject*:p:0: - -PyDict_New:PyObject*::+1: - -PyDict_Copy:PyObject*::+1: -PyDict_Copy:PyObject*:p:0: - -PyDict_Next:int::: -PyDict_Next:PyObject*:p:0: -PyDict_Next:int:ppos:: -PyDict_Next:PyObject**:pkey:0: -PyDict_Next:PyObject**:pvalue:0: - -PyDict_SetItem:int::: -PyDict_SetItem:PyObject*:p:0: -PyDict_SetItem:PyObject*:key:+1: -PyDict_SetItem:PyObject*:val:+1: - -PyDict_SetItemString:int::: -PyDict_SetItemString:PyObject*:p:0: -PyDict_SetItemString:char*:key:: -PyDict_SetItemString:PyObject*:val:+1: - -PyDict_Size:int::: -PyDict_Size:PyObject*:p:: - -PyDict_Values:PyObject*::+1: -PyDict_Values:PyObject*:p:0: - -PyDictProxy_New:PyObject*::+1: -PyDictProxy_New:PyObject*:dict:0: - -PyErr_BadArgument:int::: - -PyErr_BadInternalCall:void::: - -PyErr_CheckSignals:int::: - -PyErr_Clear:void::: - -PyErr_ExceptionMatches:int::: -PyErr_ExceptionMatches:PyObject*:exc:0: - -PyErr_Fetch:void::: -PyErr_Fetch:PyObject**:ptype:0: -PyErr_Fetch:PyObject**:pvalue:0: -PyErr_Fetch:PyObject**:ptraceback:0: - -PyErr_GivenExceptionMatches:int::: -PyErr_GivenExceptionMatches:PyObject*:given:0: -PyErr_GivenExceptionMatches:PyObject*:exc:0: - -PyErr_NewException:PyObject*::+1: -PyErr_NewException:char*:name:: -PyErr_NewException:PyObject*:base:0: -PyErr_NewException:PyObject*:dict:0: - -PyErr_NoMemory:PyObject*::null: - -PyErr_NormalizeException:void::: -PyErr_NormalizeException:PyObject**:exc::??? -PyErr_NormalizeException:PyObject**:val::??? -PyErr_NormalizeException:PyObject**:tb::??? - -PyErr_Occurred:PyObject*::0: - -PyErr_Print:void::: - -PyErr_Restore:void::: -PyErr_Restore:PyObject*:type:-1: -PyErr_Restore:PyObject*:value:-1: -PyErr_Restore:PyObject*:traceback:-1: - -PyErr_SetExcFromWindowsErr:PyObject*::null: -PyErr_SetExcFromWindowsErr:PyObject*:type:0: -PyErr_SetExcFromWindowsErr:int:ierr:: - -PyErr_SetExcFromWindowsErrWithFilename:PyObject*::null: -PyErr_SetExcFromWindowsErrWithFilename:PyObject*:type:0: -PyErr_SetExcFromWindowsErrWithFilename:int:ierr:: -PyErr_SetExcFromWindowsErrWithFilename:char*:filename:: - -PyErr_SetFromErrno:PyObject*::null: -PyErr_SetFromErrno:PyObject*:type:0: - -PyErr_SetFromErrnoWithFilename:PyObject*::null: -PyErr_SetFromErrnoWithFilename:PyObject*:type:0: -PyErr_SetFromErrnoWithFilename:char*:filename:: - -PyErr_SetFromWindowsErr:PyObject*::null: -PyErr_SetFromWindowsErr:int:ierr:: - -PyErr_SetFromWindowsErrWithFilename:PyObject*::null: -PyErr_SetFromWindowsErrWithFilename:int:ierr:: -PyErr_SetFromWindowsErrWithFilename:char*:filename:: - -PyErr_SetInterrupt:void::: - -PyErr_SetNone:void::: -PyErr_SetNone:PyObject*:type:+1: - -PyErr_SetObject:void::: -PyErr_SetObject:PyObject*:type:+1: -PyErr_SetObject:PyObject*:value:+1: - -PyErr_SetString:void::: -PyErr_SetString:PyObject*:type:+1: -PyErr_SetString:char*:message:: - -PyErr_Format:PyObject*::null: -PyErr_Format:PyObject*:exception:+1: -PyErr_Format:char*:format:: -PyErr_Format::...:: - -PyErr_Warn:int::: -PyErr_Warn:PyObject*:category:0: -PyErr_Warn:char*:message:: - -PyErr_WarnEx:int::: -PyErr_WarnEx:PyObject*:category:0: -PyErr_WarnEx:const char*:message:: -PyErr_WarnEx:Py_ssize_t:stack_level:: - -PyEval_AcquireLock:void::: - -PyEval_AcquireThread:void::: -PyEval_AcquireThread:PyThreadState*:tstate:: - -PyEval_InitThreads:void::: - -PyEval_ReleaseLock:void::: - -PyEval_ReleaseThread:void::: -PyEval_ReleaseThread:PyThreadState*:tstate:: - -PyEval_RestoreThread:void::: -PyEval_RestoreThread:PyThreadState*:tstate:: - -PyEval_SaveThread:PyThreadState*::: - -PyEval_EvalCode:PyObject*::+1: -PyEval_EvalCode:PyCodeObject*:co:0: -PyEval_EvalCode:PyObject*:globals:0: -PyEval_EvalCode:PyObject*:locals:0: - -PyFile_AsFile:FILE*::: -PyFile_AsFile:PyFileObject*:p:0: - -PyFile_Check:int::: -PyFile_Check:PyObject*:p:0: - -PyFile_FromFile:PyObject*::+1: -PyFile_FromFile:FILE*:fp:: -PyFile_FromFile:char*:name:: -PyFile_FromFile:char*:mode:: -PyFile_FromFile:int(*:close):: - -PyFile_FromString:PyObject*::+1: -PyFile_FromString:char*:name:: -PyFile_FromString:char*:mode:: - -PyFile_GetLine:PyObject*::+1: -PyFile_GetLine:PyObject*:p:: -PyFile_GetLine:int:n:: - -PyFile_Name:PyObject*::0: -PyFile_Name:PyObject*:p:0: - -PyFile_SetBufSize:void::: -PyFile_SetBufSize:PyFileObject*:p:0: -PyFile_SetBufSize:int:n:: - -PyFile_SoftSpace:int::: -PyFile_SoftSpace:PyFileObject*:p:0: -PyFile_SoftSpace:int:newflag:: - -PyFile_WriteObject:int::: -PyFile_WriteObject:PyObject*:obj:0: -PyFile_WriteObject:PyFileObject*:p:0: -PyFile_WriteObject:int:flags:: - -PyFile_WriteString:int::: -PyFile_WriteString:const char*:s:: -PyFile_WriteString:PyFileObject*:p:0: -PyFile_WriteString:int:flags:: - -PyFloat_AS_DOUBLE:double::: -PyFloat_AS_DOUBLE:PyObject*:pyfloat:0: - -PyFloat_AsDouble:double::: -PyFloat_AsDouble:PyObject*:pyfloat:0: - -PyFloat_Check:int::: -PyFloat_Check:PyObject*:p:0: - -PyFloat_FromDouble:PyObject*::+1: -PyFloat_FromDouble:double:v:: - -PyFloat_FromString:PyObject*::+1: -PyFloat_FromString:PyObject*:str:0: - -PyFrozenSet_New:PyObject*::+1: -PyFrozenSet_New:PyObject*:iterable:0: - -PyFunction_GetClosure:PyObject*::0: -PyFunction_GetClosure:PyObject*:op:0: - -PyFunction_GetCode:PyObject*::0: -PyFunction_GetCode:PyObject*:op:0: - -PyFunction_GetDefaults:PyObject*::0: -PyFunction_GetDefaults:PyObject*:op:0: - -PyFunction_GetGlobals:PyObject*::0: -PyFunction_GetGlobals:PyObject*:op:0: - -PyFunction_GetModule:PyObject*::0: -PyFunction_GetModule:PyObject*:op:0: - -PyFunction_New:PyObject*::+1: -PyFunction_New:PyObject*:code:+1: -PyFunction_New:PyObject*:globals:+1: - -PyFunction_SetClosure:int::: -PyFunction_SetClosure:PyObject*:op:0: -PyFunction_SetClosure:PyObject*:closure:+1: - -PyFunction_SetDefaults:int::: -PyFunction_SetDefaults:PyObject*:op:0: -PyFunction_SetDefaults:PyObject*:defaults:+1: - -PyGen_New:PyObject*::+1: -PyGen_New:PyFrameObject*:frame:0: - -Py_InitModule:PyObject*::0: -Py_InitModule:char*:name:: -Py_InitModule:PyMethodDef[]:methods:: - -Py_InitModule3:PyObject*::0: -Py_InitModule3:char*:name:: -Py_InitModule3:PyMethodDef[]:methods:: -Py_InitModule3:char*:doc:: - -Py_InitModule4:PyObject*::0: -Py_InitModule4:char*:name:: -Py_InitModule4:PyMethodDef[]:methods:: -Py_InitModule4:char*:doc:: -Py_InitModule4:PyObject*:self:: -Py_InitModule4:int:apiver::usually provided by Py_InitModule or Py_InitModule3 - -PyImport_AddModule:PyObject*::0:reference borrowed from sys.modules -PyImport_AddModule:char*:name:: - -PyImport_Cleanup:void::: - -PyImport_ExecCodeModule:PyObject*::+1: -PyImport_ExecCodeModule:char*:name:: -PyImport_ExecCodeModule:PyObject*:co:0: - -PyImport_GetMagicNumber:long::: - -PyImport_GetModuleDict:PyObject*::0: - -PyImport_Import:PyObject*::+1: -PyImport_Import:PyObject*:name:0: - -PyImport_ImportFrozenModule:int::: -PyImport_ImportFrozenModule:char*::: - -PyImport_ImportModule:PyObject*::+1: -PyImport_ImportModule:char*:name:: - -PyImport_ImportModuleEx:PyObject*::+1: -PyImport_ImportModuleEx:char*:name:: -PyImport_ImportModuleEx:PyObject*:globals:0:??? -PyImport_ImportModuleEx:PyObject*:locals:0:??? -PyImport_ImportModuleEx:PyObject*:fromlist:0:??? - -PyImport_ReloadModule:PyObject*::+1: -PyImport_ReloadModule:PyObject*:m:0: - -PyInstance_New:PyObject*::+1: -PyInstance_New:PyObject*:klass:+1: -PyInstance_New:PyObject*:arg:0: -PyInstance_New:PyObject*:kw:0: - -PyInstance_NewRaw:PyObject*::+1: -PyInstance_NewRaw:PyObject*:klass:+1: -PyInstance_NewRaw:PyObject*:dict:+1: - -PyInt_AS_LONG:long::: -PyInt_AS_LONG:PyIntObject*:io:0: - -PyInt_AsLong:long::: -PyInt_AsLong:PyObject*:io:0: - -PyInt_Check:int::: -PyInt_Check:PyObject*:op:0: - -PyInt_FromLong:PyObject*::+1: -PyInt_FromLong:long:ival:: - -PyInt_FromString:PyObject*::+1: -PyInt_FromString:char*:str:0: -PyInt_FromString:char**:pend:0: -PyInt_FromString:int:base:0: - -PyInt_FromSsize_t:PyObject*::+1: -PyInt_FromSsize_t:Py_ssize_t:ival:: - -PyInt_GetMax:long::: - -PyInterpreterState_Clear:void::: -PyInterpreterState_Clear:PyInterpreterState*:interp:: - -PyInterpreterState_Delete:void::: -PyInterpreterState_Delete:PyInterpreterState*:interp:: - -PyInterpreterState_New:PyInterpreterState*::: - -PyIter_Check:int:o:0: - -PyIter_Next:PyObject*::+1: -PyIter_Next:PyObject*:o:0: - -PyList_Append:int::: -PyList_Append:PyObject*:list:0: -PyList_Append:PyObject*:item:+1: - -PyList_AsTuple:PyObject*::+1: -PyList_AsTuple:PyObject*:list:0: - -PyList_Check:int::: -PyList_Check:PyObject*:p:0: - -PyList_GET_ITEM:PyObject*::0: -PyList_GET_ITEM:PyObject*:list:0: -PyList_GET_ITEM:int:i:0: - -PyList_GET_SIZE:int::: -PyList_GET_SIZE:PyObject*:list:0: - -PyList_GetItem:PyObject*::0: -PyList_GetItem:PyObject*:list:0: -PyList_GetItem:int:index:: - -PyList_GetSlice:PyObject*::+1: -PyList_GetSlice:PyObject*:list:0: -PyList_GetSlice:int:low:: -PyList_GetSlice:int:high:: - -PyList_Insert:int::: -PyList_Insert:PyObject*:list:0: -PyList_Insert:int:index:: -PyList_Insert:PyObject*:item:+1: - -PyList_New:PyObject*::+1: -PyList_New:int:len:: - -PyList_Reverse:int::: -PyList_Reverse:PyObject*:list:0: - -PyList_SET_ITEM:void::: -PyList_SET_ITEM:PyObject*:list:0: -PyList_SET_ITEM:int:i:: -PyList_SET_ITEM:PyObject*:o:0: - -PyList_SetItem:int::: -PyList_SetItem:PyObject*:list:0: -PyList_SetItem:int:index:: -PyList_SetItem:PyObject*:item:0: - -PyList_SetSlice:int::: -PyList_SetSlice:PyObject*:list:0: -PyList_SetSlice:int:low:: -PyList_SetSlice:int:high:: -PyList_SetSlice:PyObject*:itemlist:0:but increfs its elements? - -PyList_Size:int::: -PyList_Size:PyObject*:list:0: - -PyList_Sort:int::: -PyList_Sort:PyObject*:list:0: - -PyLong_AsDouble:double::: -PyLong_AsDouble:PyObject*:pylong:0: - -PyLong_AsLong:long::: -PyLong_AsLong:PyObject*:pylong:0: - -PyLong_AsUnsignedLong:unsigned long::: -PyLong_AsUnsignedLong:PyObject*:pylong:0: - -PyLong_Check:int::: -PyLong_Check:PyObject*:p:0: - -PyLong_FromDouble:PyObject*::+1: -PyLong_FromDouble:double:v:: - -PyLong_FromLong:PyObject*::+1: -PyLong_FromLong:long:v:: - -PyLong_FromLongLong:PyObject*::+1: -PyLong_FromLongLong:long long:v:: - -PyLong_FromUnsignedLongLong:PyObject*::+1: -PyLong_FromUnsignedLongLong:unsigned long long:v:: - -PyLong_FromString:PyObject*::+1: -PyLong_FromString:char*:str:: -PyLong_FromString:char**:pend:: -PyLong_FromString:int:base:: - -PyLong_FromUnicode:PyObject*::+1: -PyLong_FromUnicode:Py_UNICODE:u:: -PyLong_FromUnicode:int:length:: -PyLong_FromUnicode:int:base:: - -PyLong_FromUnsignedLong:PyObject*::+1: -PyLong_FromUnsignedLong:unsignedlong:v:: - -PyLong_FromVoidPtr:PyObject*::+1: -PyLong_FromVoidPtr:void*:p:: - -PyMapping_Check:int::: -PyMapping_Check:PyObject*:o:0: - -PyMapping_DelItem:int::: -PyMapping_DelItem:PyObject*:o:0: -PyMapping_DelItem:PyObject*:key:0: - -PyMapping_DelItemString:int::: -PyMapping_DelItemString:PyObject*:o:0: -PyMapping_DelItemString:char*:key:: - -PyMapping_GetItemString:PyObject*::+1: -PyMapping_GetItemString:PyObject*:o:0: -PyMapping_GetItemString:char*:key:: - -PyMapping_HasKey:int::: -PyMapping_HasKey:PyObject*:o:0: -PyMapping_HasKey:PyObject*:key:: - -PyMapping_HasKeyString:int::: -PyMapping_HasKeyString:PyObject*:o:0: -PyMapping_HasKeyString:char*:key:: - -PyMapping_Items:PyObject*::+1: -PyMapping_Items:PyObject*:o:0: - -PyMapping_Keys:PyObject*::+1: -PyMapping_Keys:PyObject*:o:0: - -PyMapping_Length:int::: -PyMapping_Length:PyObject*:o:0: - -PyMapping_SetItemString:int::: -PyMapping_SetItemString:PyObject*:o:0: -PyMapping_SetItemString:char*:key:: -PyMapping_SetItemString:PyObject*:v:+1: - -PyMapping_Values:PyObject*::+1: -PyMapping_Values:PyObject*:o:0: - -PyMarshal_ReadLastObjectFromFile:PyObject*::+1: -PyMarshal_ReadLastObjectFromFile:FILE*:file:: - -PyMarshal_ReadObjectFromFile:PyObject*::+1: -PyMarshal_ReadObjectFromFile:FILE*:file:: - -PyMarshal_ReadObjectFromString:PyObject*::+1: -PyMarshal_ReadObjectFromString:char*:string:: -PyMarshal_ReadObjectFromString:int:len:: - -PyMarshal_WriteObjectToString:PyObject*::+1: -PyMarshal_WriteObjectToString:PyObject*:value:0: - -PyMethod_Class:PyObject*::0: -PyMethod_Class:PyObject*:im:0: - -PyMethod_Function:PyObject*::0: -PyMethod_Function:PyObject*:im:0: - -PyMethod_GET_CLASS:PyObject*::0: -PyMethod_GET_CLASS:PyObject*:im:0: - -PyMethod_GET_FUNCTION:PyObject*::0: -PyMethod_GET_FUNCTION:PyObject*:im:0: - -PyMethod_GET_SELF:PyObject*::0: -PyMethod_GET_SELF:PyObject*:im:0: - -PyMethod_New:PyObject*::+1: -PyMethod_New:PyObject*:func:0: -PyMethod_New:PyObject*:self:0: -PyMethod_New:PyObject*:class:0: - -PyMethod_Self:PyObject*::0: -PyMethod_Self:PyObject*:im:0: - -PyModule_GetDict:PyObject*::0: -PyModule_GetDict::PyObject* module:0: - -PyModule_GetFilename:char*::: -PyModule_GetFilename:PyObject*:module:0: - -PyModule_GetName:char*::: -PyModule_GetName:PyObject*:module:0: - -PyModule_New:PyObject*::+1: -PyModule_New::char* name:: - -PyNumber_Absolute:PyObject*::+1: -PyNumber_Absolute:PyObject*:o:0: - -PyNumber_Add:PyObject*::+1: -PyNumber_Add:PyObject*:o1:0: -PyNumber_Add:PyObject*:o2:0: - -PyNumber_And:PyObject*::+1: -PyNumber_And:PyObject*:o1:0: -PyNumber_And:PyObject*:o2:0: - -PyNumber_Check:PyObject*:o:0: -PyNumber_Check:int::: - -PyNumber_Divide:PyObject*::+1: -PyNumber_Divide:PyObject*:o1:0: -PyNumber_Divide:PyObject*:o2:0: - -PyNumber_Divmod:PyObject*::+1: -PyNumber_Divmod:PyObject*:o1:0: -PyNumber_Divmod:PyObject*:o2:0: - -PyNumber_Float:PyObject*::+1: -PyNumber_Float:PyObject*:o:0: - -PyNumber_FloorDivide:PyObject*::+1: -PyNumber_FloorDivide:PyObject*:v:0: -PyNumber_FloorDivide:PyObject*:w:0: - -PyNumber_InPlaceAdd:PyObject*::+1: -PyNumber_InPlaceAdd:PyObject*:v:0: -PyNumber_InPlaceAdd:PyObject*:w:0: - -PyNumber_InPlaceAnd:PyObject*::+1: -PyNumber_InPlaceAnd:PyObject*:v:0: -PyNumber_InPlaceAnd:PyObject*:w:0: - -PyNumber_InPlaceDivide:PyObject*::+1: -PyNumber_InPlaceDivide:PyObject*:v:0: -PyNumber_InPlaceDivide:PyObject*:w:0: - -PyNumber_InPlaceFloorDivide:PyObject*::+1: -PyNumber_InPlaceFloorDivide:PyObject*:v:0: -PyNumber_InPlaceFloorDivide:PyObject*:w:0: - -PyNumber_InPlaceLshift:PyObject*::+1: -PyNumber_InPlaceLshift:PyObject*:v:0: -PyNumber_InPlaceLshift:PyObject*:w:0: - -PyNumber_InPlaceMultiply:PyObject*::+1: -PyNumber_InPlaceMultiply:PyObject*:v:0: -PyNumber_InPlaceMultiply:PyObject*:w:0: - -PyNumber_InPlaceOr:PyObject*::+1: -PyNumber_InPlaceOr:PyObject*:v:0: -PyNumber_InPlaceOr:PyObject*:w:0: - -PyNumber_InPlacePower:PyObject*::+1: -PyNumber_InPlacePower:PyObject*:v:0: -PyNumber_InPlacePower:PyObject*:w:0: -PyNumber_InPlacePower:PyObject*:z:0: - -PyNumber_InPlaceRemainder:PyObject*::+1: -PyNumber_InPlaceRemainder:PyObject*:v:0: -PyNumber_InPlaceRemainder:PyObject*:w:0: - -PyNumber_InPlaceRshift:PyObject*::+1: -PyNumber_InPlaceRshift:PyObject*:v:0: -PyNumber_InPlaceRshift:PyObject*:w:0: - -PyNumber_InPlaceSubtract:PyObject*::+1: -PyNumber_InPlaceSubtract:PyObject*:v:0: -PyNumber_InPlaceSubtract:PyObject*:w:0: - -PyNumber_InPlaceTrueDivide:PyObject*::+1: -PyNumber_InPlaceTrueDivide:PyObject*:v:0: -PyNumber_InPlaceTrueDivide:PyObject*:w:0: - -PyNumber_InPlaceXor:PyObject*::+1: -PyNumber_InPlaceXor:PyObject*:v:0: -PyNumber_InPlaceXor:PyObject*:w:0: - -PyNumber_Int:PyObject*::+1: -PyNumber_Int:PyObject*:o:0: - -PyNumber_Invert:PyObject*::+1: -PyNumber_Invert:PyObject*:o:0: - -PyNumber_Long:PyObject*::+1: -PyNumber_Long:PyObject*:o:0: - -PyNumber_Lshift:PyObject*::+1: -PyNumber_Lshift:PyObject*:o1:0: -PyNumber_Lshift:PyObject*:o2:0: - -PyNumber_Multiply:PyObject*::+1: -PyNumber_Multiply:PyObject*:o1:0: -PyNumber_Multiply:PyObject*:o2:0: - -PyNumber_Negative:PyObject*::+1: -PyNumber_Negative:PyObject*:o:0: - -PyNumber_Or:PyObject*::+1: -PyNumber_Or:PyObject*:o1:0: -PyNumber_Or:PyObject*:o2:0: - -PyNumber_Positive:PyObject*::+1: -PyNumber_Positive:PyObject*:o:0: - -PyNumber_Power:PyObject*::+1: -PyNumber_Power:PyObject*:o1:0: -PyNumber_Power:PyObject*:o2:0: -PyNumber_Power:PyObject*:o3:0: - -PyNumber_Remainder:PyObject*::+1: -PyNumber_Remainder:PyObject*:o1:0: -PyNumber_Remainder:PyObject*:o2:0: - -PyNumber_Rshift:PyObject*::+1: -PyNumber_Rshift:PyObject*:o1:0: -PyNumber_Rshift:PyObject*:o2:0: - -PyNumber_Subtract:PyObject*::+1: -PyNumber_Subtract:PyObject*:o1:0: -PyNumber_Subtract:PyObject*:o2:0: - -PyNumber_TrueDivide:PyObject*::+1: -PyNumber_TrueDivide:PyObject*:v:0: -PyNumber_TrueDivide:PyObject*:w:0: - -PyNumber_Xor:PyObject*::+1: -PyNumber_Xor:PyObject*:o1:0: -PyNumber_Xor:PyObject*:o2:0: - -PyOS_GetLastModificationTime:long::: -PyOS_GetLastModificationTime:char*:filename:: - -PyObject_AsFileDescriptor:int::: -PyObject_AsFileDescriptor:PyObject*:o:0: - -PyObject_Call:PyObject*::+1: -PyObject_Call:PyObject*:callable_object:0: -PyObject_Call:PyObject*:args:0: -PyObject_Call:PyObject*:kw:0: - -PyObject_CallFunction:PyObject*::+1: -PyObject_CallFunction:PyObject*:callable_object:0: -PyObject_CallFunction:char*:format:: -PyObject_CallFunction::...:: - -PyObject_CallFunctionObjArgs:PyObject*::+1: -PyObject_CallFunctionObjArgs:PyObject*:callable:0: -PyObject_CallFunctionObjArgs::...:: - -PyObject_CallMethod:PyObject*::+1: -PyObject_CallMethod:PyObject*:o:0: -PyObject_CallMethod:char*:m:: -PyObject_CallMethod:char*:format:: -PyObject_CallMethod::...:: - -PyObject_CallMethodObjArgs:PyObject*::+1: -PyObject_CallMethodObjArgs:PyObject*:o:0: -PyObject_CallMethodObjArgs:char*:name:: -PyObject_CallMethodObjArgs::...:: - -PyObject_CallObject:PyObject*::+1: -PyObject_CallObject:PyObject*:callable_object:0: -PyObject_CallObject:PyObject*:args:0: - -PyObject_Cmp:int::: -PyObject_Cmp:PyObject*:o1:0: -PyObject_Cmp:PyObject*:o2:0: -PyObject_Cmp:int*:result:: - -PyObject_Compare:int::: -PyObject_Compare:PyObject*:o1:0: -PyObject_Compare:PyObject*:o2:0: - -PyObject_DelAttr:int::: -PyObject_DelAttr:PyObject*:o:0: -PyObject_DelAttr:PyObject*:attr_name:0: - -PyObject_DelAttrString:int::: -PyObject_DelAttrString:PyObject*:o:0: -PyObject_DelAttrString:char*:attr_name:: - -PyObject_DelItem:int::: -PyObject_DelItem:PyObject*:o:0: -PyObject_DelItem:PyObject*:key:0: - -PyObject_Dir:PyObject*::+1: -PyObject_Dir:PyObject*:o:0: - -PyObject_GetAttr:PyObject*::+1: -PyObject_GetAttr:PyObject*:o:0: -PyObject_GetAttr:PyObject*:attr_name:0: - -PyObject_GetAttrString:PyObject*::+1: -PyObject_GetAttrString:PyObject*:o:0: -PyObject_GetAttrString:char*:attr_name:: - -PyObject_GetItem:PyObject*::+1: -PyObject_GetItem:PyObject*:o:0: -PyObject_GetItem:PyObject*:key:0: - -PyObject_GetIter:PyObject*::+1: -PyObject_GetIter:PyObject*:o:0: - -PyObject_HasAttr:int::: -PyObject_HasAttr:PyObject*:o:0: -PyObject_HasAttr:PyObject*:attr_name:0: - -PyObject_HasAttrString:int::: -PyObject_HasAttrString:PyObject*:o:0: -PyObject_HasAttrString:char*:attr_name:0: - -PyObject_Hash:int::: -PyObject_Hash:PyObject*:o:0: - -PyObject_IsTrue:int::: -PyObject_IsTrue:PyObject*:o:0: - -PyObject_Init:PyObject*::0: -PyObject_Init:PyObject*:op:0: - -PyObject_InitVar:PyVarObject*::0: -PyObject_InitVar:PyVarObject*:op:0: - -PyObject_Length:int::: -PyObject_Length:PyObject*:o:0: - -PyObject_NEW:PyObject*::+1: - -PyObject_New:PyObject*::+1: - -PyObject_NEW_VAR:PyObject*::+1: - -PyObject_NewVar:PyObject*::+1: - -PyObject_Print:int::: -PyObject_Print:PyObject*:o:0: -PyObject_Print:FILE*:fp:: -PyObject_Print:int:flags:: - -PyObject_Repr:PyObject*::+1: -PyObject_Repr:PyObject*:o:0: - -PyObject_RichCompare:PyObject*::+1: -PyObject_RichCompare:PyObject*:o1:0: -PyObject_RichCompare:PyObject*:o2:0: -PyObject_RichCompare:int:opid:: - -PyObject_RichCompareBool:int::: -PyObject_RichCompareBool:PyObject*:o1:0: -PyObject_RichCompareBool:PyObject*:o2:0: -PyObject_RichCompareBool:int:opid:: - -PyObject_SetAttr:int::: -PyObject_SetAttr:PyObject*:o:0: -PyObject_SetAttr:PyObject*:attr_name:0: -PyObject_SetAttr:PyObject*:v:+1: - -PyObject_SetAttrString:int::: -PyObject_SetAttrString:PyObject*:o:0: -PyObject_SetAttrString:char*:attr_name:: -PyObject_SetAttrString:PyObject*:v:+1: - -PyObject_SetItem:int::: -PyObject_SetItem:PyObject*:o:0: -PyObject_SetItem:PyObject*:key:0: -PyObject_SetItem:PyObject*:v:+1: - -PyObject_Str:PyObject*::+1: -PyObject_Str:PyObject*:o:0: - -PyObject_Type:PyObject*::+1: -PyObject_Type:PyObject*:o:0: - -PyObject_Unicode:PyObject*::+1: -PyObject_Unicode:PyObject*:o:0: - -PyParser_SimpleParseFile:struct _node*::: -PyParser_SimpleParseFile:FILE*:fp:: -PyParser_SimpleParseFile:char*:filename:: -PyParser_SimpleParseFile:int:start:: - -PyParser_SimpleParseString:struct _node*::: -PyParser_SimpleParseString:char*:str:: -PyParser_SimpleParseString:int:start:: - -PyRun_AnyFile:int::: -PyRun_AnyFile:FILE*:fp:: -PyRun_AnyFile:char*:filename:: - -PyRun_File:PyObject*::+1:??? -- same as eval_code2() -PyRun_File:FILE*:fp:: -PyRun_File:char*:filename:: -PyRun_File:int:start:: -PyRun_File:PyObject*:globals:0: -PyRun_File:PyObject*:locals:0: - -PyRun_FileEx:PyObject*::+1:??? -- same as eval_code2() -PyRun_FileEx:FILE*:fp:: -PyRun_FileEx:char*:filename:: -PyRun_FileEx:int:start:: -PyRun_FileEx:PyObject*:globals:0: -PyRun_FileEx:PyObject*:locals:0: -PyRun_FileEx:int:closeit:: - -PyRun_FileFlags:PyObject*::+1:??? -- same as eval_code2() -PyRun_FileFlags:FILE*:fp:: -PyRun_FileFlags:char*:filename:: -PyRun_FileFlags:int:start:: -PyRun_FileFlags:PyObject*:globals:0: -PyRun_FileFlags:PyObject*:locals:0: -PyRun_FileFlags:PyCompilerFlags*:flags:: - -PyRun_FileExFlags:PyObject*::+1:??? -- same as eval_code2() -PyRun_FileExFlags:FILE*:fp:: -PyRun_FileExFlags:char*:filename:: -PyRun_FileExFlags:int:start:: -PyRun_FileExFlags:PyObject*:globals:0: -PyRun_FileExFlags:PyObject*:locals:0: -PyRun_FileExFlags:int:closeit:: -PyRun_FileExFlags:PyCompilerFlags*:flags:: - -PyRun_InteractiveLoop:int::: -PyRun_InteractiveLoop:FILE*:fp:: -PyRun_InteractiveLoop:char*:filename:: - -PyRun_InteractiveOne:int::: -PyRun_InteractiveOne:FILE*:fp:: -PyRun_InteractiveOne:char*:filename:: - -PyRun_SimpleFile:int::: -PyRun_SimpleFile:FILE*:fp:: -PyRun_SimpleFile:char*:filename:: - -PyRun_SimpleString:int::: -PyRun_SimpleString:char*:command:: - -PyRun_String:PyObject*::+1:??? -- same as eval_code2() -PyRun_String:char*:str:: -PyRun_String:int:start:: -PyRun_String:PyObject*:globals:0: -PyRun_String:PyObject*:locals:0: - -PyRun_StringFlags:PyObject*::+1:??? -- same as eval_code2() -PyRun_StringFlags:char*:str:: -PyRun_StringFlags:int:start:: -PyRun_StringFlags:PyObject*:globals:0: -PyRun_StringFlags:PyObject*:locals:0: -PyRun_StringFlags:PyCompilerFlags*:flags:: - -PySeqIter_New:PyObject*::+1: -PySeqIter_New:PyObject*:seq:: - -PySequence_Check:int::: -PySequence_Check:PyObject*:o:0: - -PySequence_Concat:PyObject*::+1: -PySequence_Concat:PyObject*:o1:0: -PySequence_Concat:PyObject*:o2:0: - -PySequence_Count:int::: -PySequence_Count:PyObject*:o:0: -PySequence_Count:PyObject*:value:0: - -PySequence_DelItem:int::: -PySequence_DelItem:PyObject*:o:0: -PySequence_DelItem:int:i:: - -PySequence_DelSlice:int::: -PySequence_DelSlice:PyObject*:o:0: -PySequence_DelSlice:int:i1:: -PySequence_DelSlice:int:i2:: - -PySequence_Fast:PyObject*::+1: -PySequence_Fast:PyObject*:v:0: -PySequence_Fast:const char*:m:: - -PySequence_Fast_GET_ITEM:PyObject*::0: -PySequence_Fast_GET_ITEM:PyObject*:o:0: -PySequence_Fast_GET_ITEM:int:i:: - -PySequence_GetItem:PyObject*::+1: -PySequence_GetItem:PyObject*:o:0: -PySequence_GetItem:int:i:: - -PySequence_GetSlice:PyObject*::+1: -PySequence_GetSlice:PyObject*:o:0: -PySequence_GetSlice:int:i1:: -PySequence_GetSlice:int:i2:: - -PySequence_In:int::: -PySequence_In:PyObject*:o:0: -PySequence_In:PyObject*:value:0: - -PySequence_Index:int::: -PySequence_Index:PyObject*:o:0: -PySequence_Index:PyObject*:value:0: - -PySequence_InPlaceConcat:PyObject*::+1: -PySequence_InPlaceConcat:PyObject*:s:0: -PySequence_InPlaceConcat:PyObject*:o:0: - -PySequence_InPlaceRepeat:PyObject*::+1: -PySequence_InPlaceRepeat:PyObject*:s:0: -PySequence_InPlaceRepeat:PyObject*:o:0: - -PySequence_ITEM:PyObject*::+1: -PySequence_ITEM:PyObject*:o:0: -PySequence_ITEM:int:i:: - -PySequence_Repeat:PyObject*::+1: -PySequence_Repeat:PyObject*:o:0: -PySequence_Repeat:int:count:: - -PySequence_SetItem:int::: -PySequence_SetItem:PyObject*:o:0: -PySequence_SetItem:int:i:: -PySequence_SetItem:PyObject*:v:+1: - -PySequence_SetSlice:int::: -PySequence_SetSlice:PyObject*:o:0: -PySequence_SetSlice:int:i1:: -PySequence_SetSlice:int:i2:: -PySequence_SetSlice:PyObject*:v:+1: - -PySequence_List:PyObject*::+1: -PySequence_List:PyObject*:o:0: - -PySequence_Tuple:PyObject*::+1: -PySequence_Tuple:PyObject*:o:0: - -PySet_Append:int::: -PySet_Append:PyObject*:set:0: -PySet_Append:PyObject*:key:+1: - -PySet_Contains:int::: -PySet_Contains:PyObject*:anyset:0: -PySet_Contains:PyObject*:key:0: - -PySet_Discard:int::: -PySet_Discard:PyObject*:set:0: -PySet_Discard:PyObject*:key:-1:no effect if key not found - -PySet_New:PyObject*::+1: -PySet_New:PyObject*:iterable:0: - -PySet_Pop:PyObject*::+1:or returns NULL and raises KeyError if set is empty -PySet_Pop:PyObject*:set:0: - -PySet_Size:int::: -PySet_Size:PyObject*:anyset:0: - -PySlice_Check:int::: -PySlice_Check:PyObject*:ob:0: - -PySlice_New:PyObject*::+1: -PySlice_New:PyObject*:start:0: -PySlice_New:PyObject*:stop:0: -PySlice_New:PyObject*:step:0: - -PyString_AS_STRING:char*::: -PyString_AS_STRING:PyObject*:string:0: - -PyString_AsDecodedObject:PyObject*::+1: -PyString_AsDecodedObject:PyObject*:str:0: -PyString_AsDecodedObject:const char*:encoding:: -PyString_AsDecodedObject:const char*:errors:: - -PyString_AsEncodedObject:PyObject*::+1: -PyString_AsEncodedObject:PyObject*:str:0: -PyString_AsEncodedObject:const char*:encoding:: -PyString_AsEncodedObject:const char*:errors:: - -PyString_AsString:char*::: -PyString_AsString:PyObject*:string:0: - -PyString_AsStringAndSize:int::: -PyString_AsStringAndSize:PyObject*:obj:0: -PyString_AsStringAndSize:char**:buffer:: -PyString_AsStringAndSize:int*:length:: - -PyString_Check:int::: -PyString_Check:PyObject*:o:0: - -PyString_Concat:void::: -PyString_Concat:PyObject**:string:0:??? -- replaces w/ new string or NULL -PyString_Concat:PyObject*:newpart:0: - -PyString_ConcatAndDel:void::: -PyString_ConcatAndDel:PyObject**:string:0:??? -- replaces w/ new string or NULL -PyString_ConcatAndDel:PyObject*:newpart:-1: - -PyString_Format:PyObject*::+1: -PyString_Format:PyObject*:format:0: -PyString_Format:PyObject*:args:0: - -PyString_FromString:PyObject*::+1: -PyString_FromString:const char*:v:: - -PyString_FromStringAndSize:PyObject*::+1: -PyString_FromStringAndSize:const char*:v:: -PyString_FromStringAndSize:int:len:: - -PyString_FromFormat:PyObject*::+1: -PyString_FromFormat:const char*:format:: -PyString_FromFormat::...:: - -PyString_FromFormatV:PyObject*::+1: -PyString_FromFormatV:const char*:format:: -PyString_FromFormatV:va_list:vargs:: - -PyString_GET_SIZE:int::: -PyString_GET_SIZE:PyObject*:string:0: - -PyString_InternFromString:PyObject*::+1: -PyString_InternFromString:const char*:v:: - -PyString_InternInPlace:void::: -PyString_InternInPlace:PyObject**:string:+1:??? - -PyString_Size:int::: -PyString_Size:PyObject*:string:0: - -PyString_Decode:PyObject*::+1: -PyString_Decode:const char*:s:: -PyString_Decode:int:size:: -PyString_Decode:const char*:encoding:: -PyString_Decode:const char*:errors:: - -PyString_Encode:PyObject*::+1: -PyString_Encode:const char*:s:: -PyString_Encode:int:size:: -PyString_Encode:const char*:encoding:: -PyString_Encode:const char*:errors:: - -PyString_AsEncodedString:PyObject*::+1: -PyString_AsEncodedString:PyObject*:str:: -PyString_AsEncodedString:const char*:encoding:: -PyString_AsEncodedString:const char*:errors:: - -PySys_SetArgv:int::: -PySys_SetArgv:int:argc:: -PySys_SetArgv:char**:argv:: - -PyThreadState_Clear:void::: -PyThreadState_Clear:PyThreadState*:tstate:: - -PyThreadState_Delete:void::: -PyThreadState_Delete:PyThreadState*:tstate:: - -PyThreadState_Get:PyThreadState*::: - -PyThreadState_GetDict:PyObject*::0: - -PyThreadState_New:PyThreadState*::: -PyThreadState_New:PyInterpreterState*:interp:: - -PyThreadState_Swap:PyThreadState*::: -PyThreadState_Swap:PyThreadState*:tstate:: - -PyTime_FromTime:PyObject*::+1: -PyTime_FromTime:int:hour:: -PyTime_FromTime:int:minute:: -PyTime_FromTime:int:second:: -PyTime_FromTime:int:usecond:: - -PyTuple_Check:int::: -PyTuple_Check:PyObject*:p:0: - -PyTuple_GET_ITEM:PyObject*::0: -PyTuple_GET_ITEM:PyTupleObject*:p:0: -PyTuple_GET_ITEM:int:pos:: - -PyTuple_GetItem:PyObject*::0: -PyTuple_GetItem:PyTupleObject*:p:0: -PyTuple_GetItem:int:pos:: - -PyTuple_GetSlice:PyObject*::+1: -PyTuple_GetSlice:PyTupleObject*:p:0: -PyTuple_GetSlice:int:low:: -PyTuple_GetSlice:int:high:: - -PyTuple_New:PyObject*::+1: -PyTuple_New:int:len:: - -PyTuple_Pack:PyObject*::+1: -PyTuple_Pack:int:len:: -PyTuple_Pack:PyObject*:...:0: - -PyTuple_SET_ITEM:void::: -PyTuple_SET_ITEM:PyTupleObject*:p:0: -PyTuple_SET_ITEM:int:pos:: -PyTuple_SET_ITEM:PyObject*:o:0: - -PyTuple_SetItem:int::: -PyTuple_SetItem:PyTupleObject*:p:0: -PyTuple_SetItem:int:pos:: -PyTuple_SetItem:PyObject*:o:0: - -PyTuple_Size:int::: -PyTuple_Size:PyTupleObject*:p:0: - -PyType_GenericAlloc:PyObject*::+1: -PyType_GenericAlloc:PyObject*:type:0: -PyType_GenericAlloc:int:nitems:0: - -PyType_GenericNew:PyObject*::+1: -PyType_GenericNew:PyObject*:type:0: -PyType_GenericNew:PyObject*:args:0: -PyType_GenericNew:PyObject*:kwds:0: - -PyUnicode_Check:int::: -PyUnicode_Check:PyObject*:o:0: - -PyUnicode_GET_SIZE:int::: -PyUnicode_GET_SIZE:PyObject*:o:0: - -PyUnicode_GET_DATA_SIZE:int::: -PyUnicode_GET_DATA_SIZE:PyObject*:o:0: - -PyUnicode_AS_UNICODE:Py_UNICODE*::: -PyUnicode_AS_UNICODE:PyObject*:o:0: - -PyUnicode_AS_DATA:const char*::: -PyUnicode_AS_DATA:PyObject*:o:0: - -Py_UNICODE_ISSPACE:int::: -Py_UNICODE_ISSPACE:Py_UNICODE:ch:: - -Py_UNICODE_ISLOWER:int::: -Py_UNICODE_ISLOWER:Py_UNICODE:ch:: - -Py_UNICODE_ISUPPER:int::: -Py_UNICODE_ISUPPER:Py_UNICODE:ch:: - -Py_UNICODE_ISTITLE:int::: -Py_UNICODE_ISTITLE:Py_UNICODE:ch:: - -Py_UNICODE_ISLINEBREAK:int::: -Py_UNICODE_ISLINEBREAK:Py_UNICODE:ch:: - -Py_UNICODE_ISDECIMAL:int::: -Py_UNICODE_ISDECIMAL:Py_UNICODE:ch:: - -Py_UNICODE_ISDIGIT:int::: -Py_UNICODE_ISDIGIT:Py_UNICODE:ch:: - -Py_UNICODE_ISNUMERIC:int::: -Py_UNICODE_ISNUMERIC:Py_UNICODE:ch:: - -Py_UNICODE_TOLOWER:Py_UNICODE::: -Py_UNICODE_TOLOWER:Py_UNICODE:ch:: - -Py_UNICODE_TOUPPER:Py_UNICODE::: -Py_UNICODE_TOUPPER:Py_UNICODE:ch:: - -Py_UNICODE_TOTITLE:Py_UNICODE::: -Py_UNICODE_TOTITLE:Py_UNICODE:ch:: - -Py_UNICODE_TODECIMAL:int::: -Py_UNICODE_TODECIMAL:Py_UNICODE:ch:: - -Py_UNICODE_TODIGIT:int::: -Py_UNICODE_TODIGIT:Py_UNICODE:ch:: - -Py_UNICODE_TONUMERIC:double::: -Py_UNICODE_TONUMERIC:Py_UNICODE:ch:: - -PyUnicode_FromUnicode:PyObject*::+1: -PyUnicode_FromUnicode:const Py_UNICODE*:u:: -PyUnicode_FromUnicode:int:size:: - -PyUnicode_AsUnicode:Py_UNICODE*::: -PyUnicode_AsUnicode:PyObject :*unicode:0: - -PyUnicode_GetSize:int::: -PyUnicode_GetSize:PyObject :*unicode:0: - -PyUnicode_FromObject:PyObject*::+1: -PyUnicode_FromObject:PyObject*:*obj:0: - -PyUnicode_FromEncodedObject:PyObject*::+1: -PyUnicode_FromEncodedObject:PyObject*:*obj:0: -PyUnicode_FromEncodedObject:const char*:encoding:: -PyUnicode_FromEncodedObject:const char*:errors:: - -PyUnicode_FromWideChar:PyObject*::+1: -PyUnicode_FromWideChar:const wchar_t*:w:: -PyUnicode_FromWideChar:int:size:: - -PyUnicode_AsWideChar:int::: -PyUnicode_AsWideChar:PyObject*:*unicode:0: -PyUnicode_AsWideChar:wchar_t*:w:: -PyUnicode_AsWideChar:int:size:: - -PyUnicode_Decode:PyObject*::+1: -PyUnicode_Decode:const char*:s:: -PyUnicode_Decode:int:size:: -PyUnicode_Decode:const char*:encoding:: -PyUnicode_Decode:const char*:errors:: - -PyUnicode_DecodeUTF16Stateful:PyObject*::+1: -PyUnicode_DecodeUTF16Stateful:const char*:s:: -PyUnicode_DecodeUTF16Stateful:int:size:: -PyUnicode_DecodeUTF16Stateful:const char*:errors:: -PyUnicode_DecodeUTF16Stateful:int*:byteorder:: -PyUnicode_DecodeUTF16Stateful:int*:consumed:: - -PyUnicode_DecodeUTF8Stateful:PyObject*::+1: -PyUnicode_DecodeUTF8Stateful:const char*:s:: -PyUnicode_DecodeUTF8Stateful:int:size:: -PyUnicode_DecodeUTF8Stateful:const char*:errors:: -PyUnicode_DecodeUTF8Stateful:int*:consumed:: - -PyUnicode_Encode:PyObject*::+1: -PyUnicode_Encode:const Py_UNICODE*:s:: -PyUnicode_Encode:int:size:: -PyUnicode_Encode:const char*:encoding:: -PyUnicode_Encode:const char*:errors:: - -PyUnicode_AsEncodedString:PyObject*::+1: -PyUnicode_AsEncodedString:PyObject*:unicode:: -PyUnicode_AsEncodedString:const char*:encoding:: -PyUnicode_AsEncodedString:const char*:errors:: - -PyUnicode_DecodeUTF8:PyObject*::+1: -PyUnicode_DecodeUTF8:const char*:s:: -PyUnicode_DecodeUTF8:int:size:: -PyUnicode_DecodeUTF8:const char*:errors:: - -PyUnicode_EncodeUTF8:PyObject*::+1: -PyUnicode_EncodeUTF8:const Py_UNICODE*:s:: -PyUnicode_EncodeUTF8:int:size:: -PyUnicode_EncodeUTF8:const char*:errors:: - -PyUnicode_AsUTF8String:PyObject*::+1: -PyUnicode_AsUTF8String:PyObject*:unicode:: - -PyUnicode_DecodeUTF16:PyObject*::+1: -PyUnicode_DecodeUTF16:const char*:s:: -PyUnicode_DecodeUTF16:int:size:: -PyUnicode_DecodeUTF16:const char*:errors:: -PyUnicode_DecodeUTF16:int*:byteorder:: - -PyUnicode_EncodeUTF16:PyObject*::+1: -PyUnicode_EncodeUTF16:const Py_UNICODE*:s:: -PyUnicode_EncodeUTF16:int:size:: -PyUnicode_EncodeUTF16:const char*:errors:: -PyUnicode_EncodeUTF16:int:byteorder:: - -PyUnicode_AsUTF16String:PyObject*::+1: -PyUnicode_AsUTF16String:PyObject*:unicode:: - -PyUnicode_DecodeUnicodeEscape:PyObject*::+1: -PyUnicode_DecodeUnicodeEscape:const char*:s:: -PyUnicode_DecodeUnicodeEscape:int:size:: -PyUnicode_DecodeUnicodeEscape:const char*:errors:: - -PyUnicode_EncodeUnicodeEscape:PyObject*::+1: -PyUnicode_EncodeUnicodeEscape:const Py_UNICODE*:s:: -PyUnicode_EncodeUnicodeEscape:int:size:: -PyUnicode_EncodeUnicodeEscape:const char*:errors:: - -PyUnicode_AsUnicodeEscapeString:PyObject*::+1: -PyUnicode_AsUnicodeEscapeString:PyObject*:unicode:: - -PyUnicode_DecodeRawUnicodeEscape:PyObject*::+1: -PyUnicode_DecodeRawUnicodeEscape:const char*:s:: -PyUnicode_DecodeRawUnicodeEscape:int:size:: -PyUnicode_DecodeRawUnicodeEscape:const char*:errors:: - -PyUnicode_EncodeRawUnicodeEscape:PyObject*::+1: -PyUnicode_EncodeRawUnicodeEscape:const Py_UNICODE*:s:: -PyUnicode_EncodeRawUnicodeEscape:int:size:: -PyUnicode_EncodeRawUnicodeEscape:const char*:errors:: - -PyUnicode_AsRawUnicodeEscapeString:PyObject*::+1: -PyUnicode_AsRawUnicodeEscapeString:PyObject*:unicode:: - -PyUnicode_DecodeLatin1:PyObject*::+1: -PyUnicode_DecodeLatin1:const char*:s:: -PyUnicode_DecodeLatin1:int:size:: -PyUnicode_DecodeLatin1:const char*:errors:: - -PyUnicode_EncodeLatin1:PyObject*::+1: -PyUnicode_EncodeLatin1:const Py_UNICODE*:s:: -PyUnicode_EncodeLatin1:int:size:: -PyUnicode_EncodeLatin1:const char*:errors:: - -PyUnicode_AsLatin1String:PyObject*::+1: -PyUnicode_AsLatin1String:PyObject*:unicode:: - -PyUnicode_DecodeASCII:PyObject*::+1: -PyUnicode_DecodeASCII:const char*:s:: -PyUnicode_DecodeASCII:int:size:: -PyUnicode_DecodeASCII:const char*:errors:: - -PyUnicode_EncodeASCII:PyObject*::+1: -PyUnicode_EncodeASCII:const Py_UNICODE*:s:: -PyUnicode_EncodeASCII:int:size:: -PyUnicode_EncodeASCII:const char*:errors:: - -PyUnicode_AsASCIIString:PyObject*::+1: -PyUnicode_AsASCIIString:PyObject*:unicode:: - -PyUnicode_DecodeCharmap:PyObject*::+1: -PyUnicode_DecodeCharmap:const char*:s:: -PyUnicode_DecodeCharmap:int:size:: -PyUnicode_DecodeCharmap:PyObject*:mapping:0: -PyUnicode_DecodeCharmap:const char*:errors:: - -PyUnicode_EncodeCharmap:PyObject*::+1: -PyUnicode_EncodeCharmap:const Py_UNICODE*:s:: -PyUnicode_EncodeCharmap:int:size:: -PyUnicode_EncodeCharmap:PyObject*:mapping:0: -PyUnicode_EncodeCharmap:const char*:errors:: - -PyUnicode_AsCharmapString:PyObject*::+1: -PyUnicode_AsCharmapString:PyObject*:unicode:0: -PyUnicode_AsCharmapString:PyObject*:mapping:0: - -PyUnicode_TranslateCharmap:PyObject*::+1: -PyUnicode_TranslateCharmap:const Py_UNICODE*:s:: -PyUnicode_TranslateCharmap:int:size:: -PyUnicode_TranslateCharmap:PyObject*:table:0: -PyUnicode_TranslateCharmap:const char*:errors:: - -PyUnicode_DecodeMBCS:PyObject*::+1: -PyUnicode_DecodeMBCS:const char*:s:: -PyUnicode_DecodeMBCS:int:size:: -PyUnicode_DecodeMBCS:const char*:errors:: - -PyUnicode_EncodeMBCS:PyObject*::+1: -PyUnicode_EncodeMBCS:const Py_UNICODE*:s:: -PyUnicode_EncodeMBCS:int:size:: -PyUnicode_EncodeMBCS:const char*:errors:: - -PyUnicode_AsMBCSString:PyObject*::+1: -PyUnicode_AsMBCSString:PyObject*:unicode:: - -PyUnicode_Concat:PyObject*::+1: -PyUnicode_Concat:PyObject*:left:0: -PyUnicode_Concat:PyObject*:right:0: - -PyUnicode_Split:PyObject*::+1: -PyUnicode_Split:PyObject*:left:0: -PyUnicode_Split:PyObject*:right:0: -PyUnicode_Split:int:maxsplit:: - -PyUnicode_Splitlines:PyObject*::+1: -PyUnicode_Splitlines:PyObject*:s:0: -PyUnicode_Splitlines:int:maxsplit:: - -PyUnicode_Translate:PyObject*::+1: -PyUnicode_Translate:PyObject*:str:0: -PyUnicode_Translate:PyObject*:table:0: -PyUnicode_Translate:const char*:errors:: - -PyUnicode_Join:PyObject*::+1: -PyUnicode_Join:PyObject*:separator:0: -PyUnicode_Join:PyObject*:seq:0: - -PyUnicode_Tailmatch:PyObject*::+1: -PyUnicode_Tailmatch:PyObject*:str:0: -PyUnicode_Tailmatch:PyObject*:substr:0: -PyUnicode_Tailmatch:int:start:: -PyUnicode_Tailmatch:int:end:: -PyUnicode_Tailmatch:int:direction:: - -PyUnicode_Find:int::: -PyUnicode_Find:PyObject*:str:0: -PyUnicode_Find:PyObject*:substr:0: -PyUnicode_Find:int:start:: -PyUnicode_Find:int:end:: -PyUnicode_Find:int:direction:: - -PyUnicode_Count:int::: -PyUnicode_Count:PyObject*:str:0: -PyUnicode_Count:PyObject*:substr:0: -PyUnicode_Count:int:start:: -PyUnicode_Count:int:end:: - -PyUnicode_Replace:PyObject*::+1: -PyUnicode_Replace:PyObject*:str:0: -PyUnicode_Replace:PyObject*:substr:0: -PyUnicode_Replace:PyObject*:replstr:0: -PyUnicode_Replace:int:maxcount:: - -PyUnicode_Compare:int::: -PyUnicode_Compare:PyObject*:left:0: -PyUnicode_Compare:PyObject*:right:0: - -PyUnicode_Format:PyObject*::+1: -PyUnicode_Format:PyObject*:format:0: -PyUnicode_Format:PyObject*:args:0: - -PyUnicode_Contains:int::: -PyUnicode_Contains:PyObject*:container:0: -PyUnicode_Contains:PyObject*:element:0: - -PyWeakref_GET_OBJECT:PyObject*::0: -PyWeakref_GET_OBJECT:PyObject*:ref:0: - -PyWeakref_GetObject:PyObject*::0: -PyWeakref_GetObject:PyObject*:ref:0: - -PyWeakref_NewProxy:PyObject*::+1: -PyWeakref_NewProxy:PyObject*:ob:0: -PyWeakref_NewProxy:PyObject*:callback:0: - -PyWeakref_NewRef:PyObject*::+1: -PyWeakref_NewRef:PyObject*:ob:0: -PyWeakref_NewRef:PyObject*:callback:0: - -PyWrapper_New:PyObject*::+1: -PyWrapper_New:PyObject*:d:0: -PyWrapper_New:PyObject*:self:0: - -Py_AtExit:int::: -Py_AtExit:void (*)():func:: - -Py_BuildValue:PyObject*::+1: -Py_BuildValue:char*:format:: - -Py_CompileString:PyObject*::+1: -Py_CompileString:char*:str:: -Py_CompileString:char*:filename:: -Py_CompileString:int:start:: - -Py_CompileStringFlags:PyObject*::+1: -Py_CompileStringFlags:char*:str:: -Py_CompileStringFlags:char*:filename:: -Py_CompileStringFlags:int:start:: -Py_CompileStringFlags:PyCompilerFlags*:flags:: - -Py_DECREF:void::: -Py_DECREF:PyObject*:o:-1: - -Py_EndInterpreter:void::: -Py_EndInterpreter:PyThreadState*:tstate:: - -Py_Exit:void::: -Py_Exit:int:status:: - -Py_FatalError:void::: -Py_FatalError:char*:message:: - -Py_FdIsInteractive:int::: -Py_FdIsInteractive:FILE*:fp:: -Py_FdIsInteractive:char*:filename:: - -Py_Finalize:void::: - -Py_FindMethod:PyObject*::+1: -Py_FindMethod:PyMethodDef[]:methods:: -Py_FindMethod:PyObject*:self:+1: -Py_FindMethod:char*:name:: - -Py_GetBuildInfoconst:char*::: - -Py_GetCompilerconst:char*::: - -Py_GetCopyrightconst:char*::: - -Py_GetExecPrefix:char*::: - -Py_GetPath:char*::: - -Py_GetPlatformconst:char*::: - -Py_GetPrefix:char*::: - -Py_GetProgramFullPath:char*::: - -Py_GetProgramName:char*::: - -Py_GetVersionconst:char*::: - -Py_INCREF:void::: -Py_INCREF:PyObject*:o:+1: - -Py_Initialize:void::: - -Py_IsInitialized:int::: - -Py_NewInterpreter:PyThreadState*::: - -Py_SetProgramName:void::: -Py_SetProgramName:char*:name:: - -Py_XDECREF:void::: -Py_XDECREF:PyObject*:o:-1:if o is not NULL - -Py_XINCREF:void::: -Py_XINCREF:PyObject*:o:+1:if o is not NULL - -_PyImport_FindExtension:PyObject*::0:??? see PyImport_AddModule -_PyImport_FindExtension:char*::: -_PyImport_FindExtension:char*::: - -_PyImport_Fini:void::: - -_PyImport_FixupExtension:PyObject*:::??? -_PyImport_FixupExtension:char*::: -_PyImport_FixupExtension:char*::: - -_PyImport_Init:void::: - -_PyObject_Del:void::: -_PyObject_Del:PyObject*:op:0: - -_PyObject_New:PyObject*::+1: -_PyObject_New:PyTypeObject*:type:0: - -_PyObject_NewVar:PyObject*::+1: -_PyObject_NewVar:PyTypeObject*:type:0: -_PyObject_NewVar:int:size:: - -_PyString_Resize:int::: -_PyString_Resize:PyObject**:string:+1: -_PyString_Resize:int:newsize:: - -_PyTuple_Resize:int::: -_PyTuple_Resize:PyTupleObject**:p:+1: -_PyTuple_Resize:int:new:: - -_Py_c_diff:Py_complex::: -_Py_c_diff:Py_complex:left:: -_Py_c_diff:Py_complex:right:: - -_Py_c_neg:Py_complex::: -_Py_c_neg:Py_complex:complex:: - -_Py_c_pow:Py_complex::: -_Py_c_pow:Py_complex:num:: -_Py_c_pow:Py_complex:exp:: - -_Py_c_prod:Py_complex::: -_Py_c_prod:Py_complex:left:: -_Py_c_prod:Py_complex:right:: - -_Py_c_quot:Py_complex::: -_Py_c_quot:Py_complex:dividend:: -_Py_c_quot:Py_complex:divisor:: - -_Py_c_sum:Py_complex::: -_Py_c_sum:Py_complex:left:: -_Py_c_sum:Py_complex:right:: diff --git a/Doc/api/utilities.tex b/Doc/api/utilities.tex deleted file mode 100644 index 037c087..0000000 --- a/Doc/api/utilities.tex +++ /dev/null @@ -1,1041 +0,0 @@ -\chapter{Utilities \label{utilities}} - -The functions in this chapter perform various utility tasks, ranging -from helping C code be more portable across platforms, using Python -modules from C, and parsing function arguments and constructing Python -values from C values. - - -\section{Operating System Utilities \label{os}} - -\begin{cfuncdesc}{int}{Py_FdIsInteractive}{FILE *fp, const char *filename} - Return true (nonzero) if the standard I/O file \var{fp} with name - \var{filename} is deemed interactive. This is the case for files - for which \samp{isatty(fileno(\var{fp}))} is true. If the global - flag \cdata{Py_InteractiveFlag} is true, this function also returns - true if the \var{filename} pointer is \NULL{} or if the name is - equal to one of the strings \code{'<stdin>'} or \code{'???'}. -\end{cfuncdesc} - -\begin{cfuncdesc}{long}{PyOS_GetLastModificationTime}{char *filename} - Return the time of last modification of the file \var{filename}. - The result is encoded in the same way as the timestamp returned by - the standard C library function \cfunction{time()}. -\end{cfuncdesc} - -\begin{cfuncdesc}{void}{PyOS_AfterFork}{} - Function to update some internal state after a process fork; this - should be called in the new process if the Python interpreter will - continue to be used. If a new executable is loaded into the new - process, this function does not need to be called. -\end{cfuncdesc} - -\begin{cfuncdesc}{int}{PyOS_CheckStack}{} - Return true when the interpreter runs out of stack space. This is a - reliable check, but is only available when \constant{USE_STACKCHECK} - is defined (currently on Windows using the Microsoft Visual \Cpp{} - compiler). \constant{USE_STACKCHECK} will be - defined automatically; you should never change the definition in - your own code. -\end{cfuncdesc} - -\begin{cfuncdesc}{PyOS_sighandler_t}{PyOS_getsig}{int i} - Return the current signal handler for signal \var{i}. This is a - thin wrapper around either \cfunction{sigaction()} or - \cfunction{signal()}. Do not call those functions directly! - \ctype{PyOS_sighandler_t} is a typedef alias for \ctype{void - (*)(int)}. -\end{cfuncdesc} - -\begin{cfuncdesc}{PyOS_sighandler_t}{PyOS_setsig}{int i, PyOS_sighandler_t h} - Set the signal handler for signal \var{i} to be \var{h}; return the - old signal handler. This is a thin wrapper around either - \cfunction{sigaction()} or \cfunction{signal()}. Do not call those - functions directly! \ctype{PyOS_sighandler_t} is a typedef alias - for \ctype{void (*)(int)}. -\end{cfuncdesc} - - -\section{Process Control \label{processControl}} - -\begin{cfuncdesc}{void}{Py_FatalError}{const char *message} - Print a fatal error message and kill the process. No cleanup is - performed. This function should only be invoked when a condition is - detected that would make it dangerous to continue using the Python - interpreter; e.g., when the object administration appears to be - corrupted. On \UNIX, the standard C library function - \cfunction{abort()}\ttindex{abort()} is called which will attempt to - produce a \file{core} file. -\end{cfuncdesc} - -\begin{cfuncdesc}{void}{Py_Exit}{int status} - Exit the current process. This calls - \cfunction{Py_Finalize()}\ttindex{Py_Finalize()} and then calls the - standard C library function - \code{exit(\var{status})}\ttindex{exit()}. -\end{cfuncdesc} - -\begin{cfuncdesc}{int}{Py_AtExit}{void (*func) ()} - Register a cleanup function to be called by - \cfunction{Py_Finalize()}\ttindex{Py_Finalize()}. The cleanup - function will be called with no arguments and should return no - value. At most 32 \index{cleanup functions}cleanup functions can be - registered. When the registration is successful, - \cfunction{Py_AtExit()} returns \code{0}; on failure, it returns - \code{-1}. The cleanup function registered last is called first. - Each cleanup function will be called at most once. Since Python's - internal finalization will have completed before the cleanup - function, no Python APIs should be called by \var{func}. -\end{cfuncdesc} - - -\section{Importing Modules \label{importing}} - -\begin{cfuncdesc}{PyObject*}{PyImport_ImportModule}{const char *name} - This is a simplified interface to - \cfunction{PyImport_ImportModuleEx()} below, leaving the - \var{globals} and \var{locals} arguments set to \NULL. When the - \var{name} argument contains a dot (when it specifies a submodule of - a package), the \var{fromlist} argument is set to the list - \code{['*']} so that the return value is the named module rather - than the top-level package containing it as would otherwise be the - case. (Unfortunately, this has an additional side effect when - \var{name} in fact specifies a subpackage instead of a submodule: - the submodules specified in the package's \code{__all__} variable - are \index{package variable!\code{__all__}} - \withsubitem{(package variable)}{\ttindex{__all__}}loaded.) Return - a new reference to the imported module, or \NULL{} with an exception - set on failure. Before Python 2.4, the module may still be created in - the failure case --- examine \code{sys.modules} to find out. Starting - with Python 2.4, a failing import of a module no longer leaves the - module in \code{sys.modules}. - \versionchanged[failing imports remove incomplete module objects]{2.4} - \withsubitem{(in module sys)}{\ttindex{modules}} -\end{cfuncdesc} - -\begin{cfuncdesc}{PyObject*}{PyImport_ImportModuleEx}{char *name, - PyObject *globals, PyObject *locals, PyObject *fromlist} - Import a module. This is best described by referring to the - built-in Python function - \function{__import__()}\bifuncindex{__import__}, as the standard - \function{__import__()} function calls this function directly. - - The return value is a new reference to the imported module or - top-level package, or \NULL{} with an exception set on failure (before - Python 2.4, the - module may still be created in this case). Like for - \function{__import__()}, the return value when a submodule of a - package was requested is normally the top-level package, unless a - non-empty \var{fromlist} was given. - \versionchanged[failing imports remove incomplete module objects]{2.4} -\end{cfuncdesc} - -\begin{cfuncdesc}{PyObject*}{PyImport_Import}{PyObject *name} - This is a higher-level interface that calls the current ``import - hook function''. It invokes the \function{__import__()} function - from the \code{__builtins__} of the current globals. This means - that the import is done using whatever import hooks are installed in - the current environment, e.g. by \module{rexec}\refstmodindex{rexec} - or \module{ihooks}\refstmodindex{ihooks}. -\end{cfuncdesc} - -\begin{cfuncdesc}{PyObject*}{PyImport_ReloadModule}{PyObject *m} - Reload a module. Return a new reference to the reloaded module, or \NULL{} - with an exception set on failure (the module still exists in this - case). -\end{cfuncdesc} - -\begin{cfuncdesc}{PyObject*}{PyImport_AddModule}{const char *name} - Return the module object corresponding to a module name. The - \var{name} argument may be of the form \code{package.module}. - First check the modules dictionary if there's one there, and if not, - create a new one and insert it in the modules dictionary. - Return \NULL{} with an exception set on failure. - \note{This function does not load or import the module; if the - module wasn't already loaded, you will get an empty module object. - Use \cfunction{PyImport_ImportModule()} or one of its variants to - import a module. Package structures implied by a dotted name for - \var{name} are not created if not already present.} -\end{cfuncdesc} - -\begin{cfuncdesc}{PyObject*}{PyImport_ExecCodeModule}{char *name, PyObject *co} - Given a module name (possibly of the form \code{package.module}) and - a code object read from a Python bytecode file or obtained from the - built-in function \function{compile()}\bifuncindex{compile}, load - the module. Return a new reference to the module object, or \NULL{} - with an exception set if an error occurred. Before Python 2.4, the module - could still be created in error cases. Starting with Python 2.4, - \var{name} is removed from \code{sys.modules} in error cases, and even - if \var{name} was already in \code{sys.modules} on entry to - \cfunction{PyImport_ExecCodeModule()}. Leaving incompletely initialized - modules in \code{sys.modules} is dangerous, as imports of such modules - have no way to know that the module object is an unknown (and probably - damaged with respect to the module author's intents) state. - - This function will reload the module if it was already imported. See - \cfunction{PyImport_ReloadModule()} for the intended way to reload a - module. - - If \var{name} points to a dotted name of the - form \code{package.module}, any package structures not already - created will still not be created. - - \versionchanged[\var{name} is removed from \code{sys.modules} in error cases]{2.4} - -\end{cfuncdesc} - -\begin{cfuncdesc}{long}{PyImport_GetMagicNumber}{} - Return the magic number for Python bytecode files - (a.k.a. \file{.pyc} and \file{.pyo} files). The magic number should - be present in the first four bytes of the bytecode file, in - little-endian byte order. -\end{cfuncdesc} - -\begin{cfuncdesc}{PyObject*}{PyImport_GetModuleDict}{} - Return the dictionary used for the module administration - (a.k.a.\ \code{sys.modules}). Note that this is a per-interpreter - variable. -\end{cfuncdesc} - -\begin{cfuncdesc}{void}{_PyImport_Init}{} - Initialize the import mechanism. For internal use only. -\end{cfuncdesc} - -\begin{cfuncdesc}{void}{PyImport_Cleanup}{} - Empty the module table. For internal use only. -\end{cfuncdesc} - -\begin{cfuncdesc}{void}{_PyImport_Fini}{} - Finalize the import mechanism. For internal use only. -\end{cfuncdesc} - -\begin{cfuncdesc}{PyObject*}{_PyImport_FindExtension}{char *, char *} - For internal use only. -\end{cfuncdesc} - -\begin{cfuncdesc}{PyObject*}{_PyImport_FixupExtension}{char *, char *} - For internal use only. -\end{cfuncdesc} - -\begin{cfuncdesc}{int}{PyImport_ImportFrozenModule}{char *name} - Load a frozen module named \var{name}. Return \code{1} for success, - \code{0} if the module is not found, and \code{-1} with an exception - set if the initialization failed. To access the imported module on - a successful load, use \cfunction{PyImport_ImportModule()}. (Note - the misnomer --- this function would reload the module if it was - already imported.) -\end{cfuncdesc} - -\begin{ctypedesc}[_frozen]{struct _frozen} - This is the structure type definition for frozen module descriptors, - as generated by the \program{freeze}\index{freeze utility} utility - (see \file{Tools/freeze/} in the Python source distribution). Its - definition, found in \file{Include/import.h}, is: - -\begin{verbatim} -struct _frozen { - char *name; - unsigned char *code; - int size; -}; -\end{verbatim} -\end{ctypedesc} - -\begin{cvardesc}{struct _frozen*}{PyImport_FrozenModules} - This pointer is initialized to point to an array of \ctype{struct - _frozen} records, terminated by one whose members are all \NULL{} or - zero. When a frozen module is imported, it is searched in this - table. Third-party code could play tricks with this to provide a - dynamically created collection of frozen modules. -\end{cvardesc} - -\begin{cfuncdesc}{int}{PyImport_AppendInittab}{char *name, - void (*initfunc)(void)} - Add a single module to the existing table of built-in modules. This - is a convenience wrapper around - \cfunction{PyImport_ExtendInittab()}, returning \code{-1} if the - table could not be extended. The new module can be imported by the - name \var{name}, and uses the function \var{initfunc} as the - initialization function called on the first attempted import. This - should be called before \cfunction{Py_Initialize()}. -\end{cfuncdesc} - -\begin{ctypedesc}[_inittab]{struct _inittab} - Structure describing a single entry in the list of built-in - modules. Each of these structures gives the name and initialization - function for a module built into the interpreter. Programs which - embed Python may use an array of these structures in conjunction - with \cfunction{PyImport_ExtendInittab()} to provide additional - built-in modules. The structure is defined in - \file{Include/import.h} as: - -\begin{verbatim} -struct _inittab { - char *name; - void (*initfunc)(void); -}; -\end{verbatim} -\end{ctypedesc} - -\begin{cfuncdesc}{int}{PyImport_ExtendInittab}{struct _inittab *newtab} - Add a collection of modules to the table of built-in modules. The - \var{newtab} array must end with a sentinel entry which contains - \NULL{} for the \member{name} field; failure to provide the sentinel - value can result in a memory fault. Returns \code{0} on success or - \code{-1} if insufficient memory could be allocated to extend the - internal table. In the event of failure, no modules are added to - the internal table. This should be called before - \cfunction{Py_Initialize()}. -\end{cfuncdesc} - - -\section{Data marshalling support \label{marshalling-utils}} - -These routines allow C code to work with serialized objects using the -same data format as the \module{marshal} module. There are functions -to write data into the serialization format, and additional functions -that can be used to read the data back. Files used to store marshalled -data must be opened in binary mode. - -Numeric values are stored with the least significant byte first. - -The module supports two versions of the data format: version 0 is the -historical version, version 1 (new in Python 2.4) shares interned -strings in the file, and upon unmarshalling. \var{Py_MARSHAL_VERSION} -indicates the current file format (currently 1). - -\begin{cfuncdesc}{void}{PyMarshal_WriteLongToFile}{long value, FILE *file, int version} - Marshal a \ctype{long} integer, \var{value}, to \var{file}. This - will only write the least-significant 32 bits of \var{value}; - regardless of the size of the native \ctype{long} type. - - \versionchanged[\var{version} indicates the file format]{2.4} -\end{cfuncdesc} - -\begin{cfuncdesc}{void}{PyMarshal_WriteObjectToFile}{PyObject *value, - FILE *file, int version} - Marshal a Python object, \var{value}, to \var{file}. - - \versionchanged[\var{version} indicates the file format]{2.4} -\end{cfuncdesc} - -\begin{cfuncdesc}{PyObject*}{PyMarshal_WriteObjectToString}{PyObject *value, int version} - Return a string object containing the marshalled representation of - \var{value}. - - \versionchanged[\var{version} indicates the file format]{2.4} -\end{cfuncdesc} - -The following functions allow marshalled values to be read back in. - -XXX What about error detection? It appears that reading past the end -of the file will always result in a negative numeric value (where -that's relevant), but it's not clear that negative values won't be -handled properly when there's no error. What's the right way to tell? -Should only non-negative values be written using these routines? - -\begin{cfuncdesc}{long}{PyMarshal_ReadLongFromFile}{FILE *file} - Return a C \ctype{long} from the data stream in a \ctype{FILE*} - opened for reading. Only a 32-bit value can be read in using - this function, regardless of the native size of \ctype{long}. -\end{cfuncdesc} - -\begin{cfuncdesc}{int}{PyMarshal_ReadShortFromFile}{FILE *file} - Return a C \ctype{short} from the data stream in a \ctype{FILE*} - opened for reading. Only a 16-bit value can be read in using - this function, regardless of the native size of \ctype{short}. -\end{cfuncdesc} - -\begin{cfuncdesc}{PyObject*}{PyMarshal_ReadObjectFromFile}{FILE *file} - Return a Python object from the data stream in a \ctype{FILE*} - opened for reading. On error, sets the appropriate exception - (\exception{EOFError} or \exception{TypeError}) and returns \NULL. -\end{cfuncdesc} - -\begin{cfuncdesc}{PyObject*}{PyMarshal_ReadLastObjectFromFile}{FILE *file} - Return a Python object from the data stream in a \ctype{FILE*} - opened for reading. Unlike - \cfunction{PyMarshal_ReadObjectFromFile()}, this function assumes - that no further objects will be read from the file, allowing it to - aggressively load file data into memory so that the de-serialization - can operate from data in memory rather than reading a byte at a time - from the file. Only use these variant if you are certain that you - won't be reading anything else from the file. On error, sets the - appropriate exception (\exception{EOFError} or - \exception{TypeError}) and returns \NULL. -\end{cfuncdesc} - -\begin{cfuncdesc}{PyObject*}{PyMarshal_ReadObjectFromString}{char *string, - Py_ssize_t len} - Return a Python object from the data stream in a character buffer - containing \var{len} bytes pointed to by \var{string}. On error, - sets the appropriate exception (\exception{EOFError} or - \exception{TypeError}) and returns \NULL. -\end{cfuncdesc} - - -\section{Parsing arguments and building values - \label{arg-parsing}} - -These functions are useful when creating your own extensions functions -and methods. Additional information and examples are available in -\citetitle[../ext/ext.html]{Extending and Embedding the Python -Interpreter}. - -The first three of these functions described, -\cfunction{PyArg_ParseTuple()}, -\cfunction{PyArg_ParseTupleAndKeywords()}, and -\cfunction{PyArg_Parse()}, all use \emph{format strings} which are -used to tell the function about the expected arguments. The format -strings use the same syntax for each of these functions. - -A format string consists of zero or more ``format units.'' A format -unit describes one Python object; it is usually a single character or -a parenthesized sequence of format units. With a few exceptions, a -format unit that is not a parenthesized sequence normally corresponds -to a single address argument to these functions. In the following -description, the quoted form is the format unit; the entry in (round) -parentheses is the Python object type that matches the format unit; -and the entry in [square] brackets is the type of the C variable(s) -whose address should be passed. - -\begin{description} - \item[\samp{s} (string or Unicode object) {[const char *]}] - Convert a Python string or Unicode object to a C pointer to a - character string. You must not provide storage for the string - itself; a pointer to an existing string is stored into the character - pointer variable whose address you pass. The C string is - NUL-terminated. The Python string must not contain embedded NUL - bytes; if it does, a \exception{TypeError} exception is raised. - Unicode objects are converted to C strings using the default - encoding. If this conversion fails, a \exception{UnicodeError} is - raised. - - \item[\samp{s\#} (string, Unicode or any read buffer compatible object) - {[const char *, int]}] - This variant on \samp{s} stores into two C variables, the first one - a pointer to a character string, the second one its length. In this - case the Python string may contain embedded null bytes. Unicode - objects pass back a pointer to the default encoded string version of - the object if such a conversion is possible. All other read-buffer - compatible objects pass back a reference to the raw internal data - representation. - - \item[\samp{y} (bytes object) - {[const char *]}] - This variant on \samp{s} convert a Python bytes object to a C pointer to a - character string. The bytes object must not contain embedded NUL bytes; - if it does, a \exception{TypeError} exception is raised. - - \item[\samp{y\#} (bytes object) - {[const char *, int]}] - This variant on \samp{s\#} stores into two C variables, the first one - a pointer to a character string, the second one its length. This only - accepts bytes objects. - - \item[\samp{z} (string or \code{None}) {[const char *]}] - Like \samp{s}, but the Python object may also be \code{None}, in - which case the C pointer is set to \NULL. - - \item[\samp{z\#} (string or \code{None} or any read buffer - compatible object) {[const char *, int]}] - This is to \samp{s\#} as \samp{z} is to \samp{s}. - - \item[\samp{u} (Unicode object) {[Py_UNICODE *]}] - Convert a Python Unicode object to a C pointer to a NUL-terminated - buffer of 16-bit Unicode (UTF-16) data. As with \samp{s}, there is - no need to provide storage for the Unicode data buffer; a pointer to - the existing Unicode data is stored into the \ctype{Py_UNICODE} - pointer variable whose address you pass. - - \item[\samp{u\#} (Unicode object) {[Py_UNICODE *, int]}] - This variant on \samp{u} stores into two C variables, the first one - a pointer to a Unicode data buffer, the second one its length. - Non-Unicode objects are handled by interpreting their read-buffer - pointer as pointer to a \ctype{Py_UNICODE} array. - - \item[\samp{es} (string, Unicode object or character buffer - compatible object) {[const char *encoding, char **buffer]}] - This variant on \samp{s} is used for encoding Unicode and objects - convertible to Unicode into a character buffer. It only works for - encoded data without embedded NUL bytes. - - This format requires two arguments. The first is only used as - input, and must be a \ctype{const char*} which points to the name of an - encoding as a NUL-terminated string, or \NULL, in which case the - default encoding is used. An exception is raised if the named - encoding is not known to Python. The second argument must be a - \ctype{char**}; the value of the pointer it references will be set - to a buffer with the contents of the argument text. The text will - be encoded in the encoding specified by the first argument. - - \cfunction{PyArg_ParseTuple()} will allocate a buffer of the needed - size, copy the encoded data into this buffer and adjust - \var{*buffer} to reference the newly allocated storage. The caller - is responsible for calling \cfunction{PyMem_Free()} to free the - allocated buffer after use. - - \item[\samp{et} (string, Unicode object or character buffer - compatible object) {[const char *encoding, char **buffer]}] - Same as \samp{es} except that 8-bit string objects are passed - through without recoding them. Instead, the implementation assumes - that the string object uses the encoding passed in as parameter. - - \item[\samp{es\#} (string, Unicode object or character buffer compatible - object) {[const char *encoding, char **buffer, int *buffer_length]}] - This variant on \samp{s\#} is used for encoding Unicode and objects - convertible to Unicode into a character buffer. Unlike the - \samp{es} format, this variant allows input data which contains NUL - characters. - - It requires three arguments. The first is only used as input, and - must be a \ctype{const char*} which points to the name of an encoding as a - NUL-terminated string, or \NULL, in which case the default encoding - is used. An exception is raised if the named encoding is not known - to Python. The second argument must be a \ctype{char**}; the value - of the pointer it references will be set to a buffer with the - contents of the argument text. The text will be encoded in the - encoding specified by the first argument. The third argument must - be a pointer to an integer; the referenced integer will be set to - the number of bytes in the output buffer. - - There are two modes of operation: - - If \var{*buffer} points a \NULL{} pointer, the function will - allocate a buffer of the needed size, copy the encoded data into - this buffer and set \var{*buffer} to reference the newly allocated - storage. The caller is responsible for calling - \cfunction{PyMem_Free()} to free the allocated buffer after usage. - - If \var{*buffer} points to a non-\NULL{} pointer (an already - allocated buffer), \cfunction{PyArg_ParseTuple()} will use this - location as the buffer and interpret the initial value of - \var{*buffer_length} as the buffer size. It will then copy the - encoded data into the buffer and NUL-terminate it. If the buffer - is not large enough, a \exception{ValueError} will be set. - - In both cases, \var{*buffer_length} is set to the length of the - encoded data without the trailing NUL byte. - - \item[\samp{et\#} (string, Unicode object or character buffer compatible - object) {[const char *encoding, char **buffer]}] - Same as \samp{es\#} except that string objects are passed through - without recoding them. Instead, the implementation assumes that the - string object uses the encoding passed in as parameter. - - \item[\samp{b} (integer) {[char]}] - Convert a Python integer to a tiny int, stored in a C \ctype{char}. - - \item[\samp{B} (integer) {[unsigned char]}] - Convert a Python integer to a tiny int without overflow checking, - stored in a C \ctype{unsigned char}. \versionadded{2.3} - - \item[\samp{h} (integer) {[short int]}] - Convert a Python integer to a C \ctype{short int}. - - \item[\samp{H} (integer) {[unsigned short int]}] - Convert a Python integer to a C \ctype{unsigned short int}, without - overflow checking. \versionadded{2.3} - - \item[\samp{i} (integer) {[int]}] - Convert a Python integer to a plain C \ctype{int}. - - \item[\samp{I} (integer) {[unsigned int]}] - Convert a Python integer to a C \ctype{unsigned int}, without - overflow checking. \versionadded{2.3} - - \item[\samp{l} (integer) {[long int]}] - Convert a Python integer to a C \ctype{long int}. - - \item[\samp{k} (integer) {[unsigned long]}] - Convert a Python integer or long integer to a C \ctype{unsigned long} without - overflow checking. \versionadded{2.3} - - \item[\samp{L} (integer) {[PY_LONG_LONG]}] - Convert a Python integer to a C \ctype{long long}. This format is - only available on platforms that support \ctype{long long} (or - \ctype{_int64} on Windows). - - \item[\samp{K} (integer) {[unsigned PY_LONG_LONG]}] - Convert a Python integer or long integer to a C \ctype{unsigned long long} - without overflow checking. This format is only available on - platforms that support \ctype{unsigned long long} (or - \ctype{unsigned _int64} on Windows). \versionadded{2.3} - - \item[\samp{n} (integer) {[Py_ssize_t]}] - Convert a Python integer or long integer to a C \ctype{Py_ssize_t}. - \versionadded{2.5} - - \item[\samp{c} (string of length 1) {[char]}] - Convert a Python character, represented as a string of length 1, to - a C \ctype{char}. - - \item[\samp{f} (float) {[float]}] - Convert a Python floating point number to a C \ctype{float}. - - \item[\samp{d} (float) {[double]}] - Convert a Python floating point number to a C \ctype{double}. - - \item[\samp{D} (complex) {[Py_complex]}] - Convert a Python complex number to a C \ctype{Py_complex} structure. - - \item[\samp{O} (object) {[PyObject *]}] - Store a Python object (without any conversion) in a C object - pointer. The C program thus receives the actual object that was - passed. The object's reference count is not increased. The pointer - stored is not \NULL. - - \item[\samp{O!} (object) {[\var{typeobject}, PyObject *]}] - Store a Python object in a C object pointer. This is similar to - \samp{O}, but takes two C arguments: the first is the address of a - Python type object, the second is the address of the C variable (of - type \ctype{PyObject*}) into which the object pointer is stored. If - the Python object does not have the required type, - \exception{TypeError} is raised. - - \item[\samp{O\&} (object) {[\var{converter}, \var{anything}]}] - Convert a Python object to a C variable through a \var{converter} - function. This takes two arguments: the first is a function, the - second is the address of a C variable (of arbitrary type), converted - to \ctype{void *}. The \var{converter} function in turn is called - as follows: - - \var{status}\code{ = }\var{converter}\code{(}\var{object}, - \var{address}\code{);} - - where \var{object} is the Python object to be converted and - \var{address} is the \ctype{void*} argument that was passed to the - \cfunction{PyArg_Parse*()} function. The returned \var{status} - should be \code{1} for a successful conversion and \code{0} if the - conversion has failed. When the conversion fails, the - \var{converter} function should raise an exception. - - \item[\samp{S} (string) {[PyStringObject *]}] - Like \samp{O} but requires that the Python object is a string - object. Raises \exception{TypeError} if the object is not a string - object. The C variable may also be declared as \ctype{PyObject*}. - - \item[\samp{U} (Unicode string) {[PyUnicodeObject *]}] - Like \samp{O} but requires that the Python object is a Unicode - object. Raises \exception{TypeError} if the object is not a Unicode - object. The C variable may also be declared as \ctype{PyObject*}. - - \item[\samp{t\#} (read-only character buffer) {[char *, int]}] - Like \samp{s\#}, but accepts any object which implements the - read-only buffer interface. The \ctype{char*} variable is set to - point to the first byte of the buffer, and the \ctype{int} is set to - the length of the buffer. Only single-segment buffer objects are - accepted; \exception{TypeError} is raised for all others. - - \item[\samp{w} (read-write character buffer) {[char *]}] - Similar to \samp{s}, but accepts any object which implements the - read-write buffer interface. The caller must determine the length - of the buffer by other means, or use \samp{w\#} instead. Only - single-segment buffer objects are accepted; \exception{TypeError} is - raised for all others. - - \item[\samp{w\#} (read-write character buffer) {[char *, int]}] - Like \samp{s\#}, but accepts any object which implements the - read-write buffer interface. The \ctype{char *} variable is set to - point to the first byte of the buffer, and the \ctype{int} is set to - the length of the buffer. Only single-segment buffer objects are - accepted; \exception{TypeError} is raised for all others. - - \item[\samp{(\var{items})} (tuple) {[\var{matching-items}]}] - The object must be a Python sequence whose length is the number of - format units in \var{items}. The C arguments must correspond to the - individual format units in \var{items}. Format units for sequences - may be nested. - - \note{Prior to Python version 1.5.2, this format specifier only - accepted a tuple containing the individual parameters, not an - arbitrary sequence. Code which previously caused - \exception{TypeError} to be raised here may now proceed without an - exception. This is not expected to be a problem for existing code.} -\end{description} - -It is possible to pass Python long integers where integers are -requested; however no proper range checking is done --- the most -significant bits are silently truncated when the receiving field is -too small to receive the value (actually, the semantics are inherited -from downcasts in C --- your mileage may vary). - -A few other characters have a meaning in a format string. These may -not occur inside nested parentheses. They are: - -\begin{description} - \item[\samp{|}] - Indicates that the remaining arguments in the Python argument list - are optional. The C variables corresponding to optional arguments - should be initialized to their default value --- when an optional - argument is not specified, \cfunction{PyArg_ParseTuple()} does not - touch the contents of the corresponding C variable(s). - - \item[\samp{:}] - The list of format units ends here; the string after the colon is - used as the function name in error messages (the ``associated - value'' of the exception that \cfunction{PyArg_ParseTuple()} - raises). - - \item[\samp{;}] - The list of format units ends here; the string after the semicolon - is used as the error message \emph{instead} of the default error - message. Clearly, \samp{:} and \samp{;} mutually exclude each - other. -\end{description} - -Note that any Python object references which are provided to the -caller are \emph{borrowed} references; do not decrement their -reference count! - -Additional arguments passed to these functions must be addresses of -variables whose type is determined by the format string; these are -used to store values from the input tuple. There are a few cases, as -described in the list of format units above, where these parameters -are used as input values; they should match what is specified for the -corresponding format unit in that case. - -For the conversion to succeed, the \var{arg} object must match the -format and the format must be exhausted. On success, the -\cfunction{PyArg_Parse*()} functions return true, otherwise they -return false and raise an appropriate exception. - -\begin{cfuncdesc}{int}{PyArg_ParseTuple}{PyObject *args, const char *format, - \moreargs} - Parse the parameters of a function that takes only positional - parameters into local variables. Returns true on success; on - failure, it returns false and raises the appropriate exception. -\end{cfuncdesc} - -\begin{cfuncdesc}{int}{PyArg_VaParse}{PyObject *args, const char *format, - va_list vargs} - Identical to \cfunction{PyArg_ParseTuple()}, except that it accepts a - va_list rather than a variable number of arguments. -\end{cfuncdesc} - -\begin{cfuncdesc}{int}{PyArg_ParseTupleAndKeywords}{PyObject *args, - PyObject *kw, const char *format, char *keywords[], - \moreargs} - Parse the parameters of a function that takes both positional and - keyword parameters into local variables. Returns true on success; - on failure, it returns false and raises the appropriate exception. -\end{cfuncdesc} - -\begin{cfuncdesc}{int}{PyArg_VaParseTupleAndKeywords}{PyObject *args, - PyObject *kw, const char *format, char *keywords[], - va_list vargs} - Identical to \cfunction{PyArg_ParseTupleAndKeywords()}, except that it - accepts a va_list rather than a variable number of arguments. -\end{cfuncdesc} - -\begin{cfuncdesc}{int}{PyArg_Parse}{PyObject *args, const char *format, - \moreargs} - Function used to deconstruct the argument lists of ``old-style'' - functions --- these are functions which use the - \constant{METH_OLDARGS} parameter parsing method. This is not - recommended for use in parameter parsing in new code, and most code - in the standard interpreter has been modified to no longer use this - for that purpose. It does remain a convenient way to decompose - other tuples, however, and may continue to be used for that - purpose. -\end{cfuncdesc} - -\begin{cfuncdesc}{int}{PyArg_UnpackTuple}{PyObject *args, const char *name, - Py_ssize_t min, Py_ssize_t max, \moreargs} - A simpler form of parameter retrieval which does not use a format - string to specify the types of the arguments. Functions which use - this method to retrieve their parameters should be declared as - \constant{METH_VARARGS} in function or method tables. The tuple - containing the actual parameters should be passed as \var{args}; it - must actually be a tuple. The length of the tuple must be at least - \var{min} and no more than \var{max}; \var{min} and \var{max} may be - equal. Additional arguments must be passed to the function, each of - which should be a pointer to a \ctype{PyObject*} variable; these - will be filled in with the values from \var{args}; they will contain - borrowed references. The variables which correspond to optional - parameters not given by \var{args} will not be filled in; these - should be initialized by the caller. - This function returns true on success and false if \var{args} is not - a tuple or contains the wrong number of elements; an exception will - be set if there was a failure. - - This is an example of the use of this function, taken from the - sources for the \module{_weakref} helper module for weak references: - -\begin{verbatim} -static PyObject * -weakref_ref(PyObject *self, PyObject *args) -{ - PyObject *object; - PyObject *callback = NULL; - PyObject *result = NULL; - - if (PyArg_UnpackTuple(args, "ref", 1, 2, &object, &callback)) { - result = PyWeakref_NewRef(object, callback); - } - return result; -} -\end{verbatim} - - The call to \cfunction{PyArg_UnpackTuple()} in this example is - entirely equivalent to this call to \cfunction{PyArg_ParseTuple()}: - -\begin{verbatim} -PyArg_ParseTuple(args, "O|O:ref", &object, &callback) -\end{verbatim} - - \versionadded{2.2} -\end{cfuncdesc} - -\begin{cfuncdesc}{PyObject*}{Py_BuildValue}{const char *format, - \moreargs} - Create a new value based on a format string similar to those - accepted by the \cfunction{PyArg_Parse*()} family of functions and a - sequence of values. Returns the value or \NULL{} in the case of an - error; an exception will be raised if \NULL{} is returned. - - \cfunction{Py_BuildValue()} does not always build a tuple. It - builds a tuple only if its format string contains two or more format - units. If the format string is empty, it returns \code{None}; if it - contains exactly one format unit, it returns whatever object is - described by that format unit. To force it to return a tuple of - size 0 or one, parenthesize the format string. - - When memory buffers are passed as parameters to supply data to build - objects, as for the \samp{s} and \samp{s\#} formats, the required - data is copied. Buffers provided by the caller are never referenced - by the objects created by \cfunction{Py_BuildValue()}. In other - words, if your code invokes \cfunction{malloc()} and passes the - allocated memory to \cfunction{Py_BuildValue()}, your code is - responsible for calling \cfunction{free()} for that memory once - \cfunction{Py_BuildValue()} returns. - - In the following description, the quoted form is the format unit; - the entry in (round) parentheses is the Python object type that the - format unit will return; and the entry in [square] brackets is the - type of the C value(s) to be passed. - - The characters space, tab, colon and comma are ignored in format - strings (but not within format units such as \samp{s\#}). This can - be used to make long format strings a tad more readable. - - \begin{description} - \item[\samp{s} (string) {[char *]}] - Convert a null-terminated C string to a Python object. If the C - string pointer is \NULL, \code{None} is used. - - \item[\samp{s\#} (string) {[char *, int]}] - Convert a C string and its length to a Python object. If the C - string pointer is \NULL, the length is ignored and \code{None} is - returned. - - \item[\samp{z} (string or \code{None}) {[char *]}] - Same as \samp{s}. - - \item[\samp{z\#} (string or \code{None}) {[char *, int]}] - Same as \samp{s\#}. - - \item[\samp{u} (Unicode string) {[Py_UNICODE *]}] - Convert a null-terminated buffer of Unicode (UCS-2 or UCS-4) - data to a Python Unicode object. If the Unicode buffer pointer - is \NULL, \code{None} is returned. - - \item[\samp{u\#} (Unicode string) {[Py_UNICODE *, int]}] - Convert a Unicode (UCS-2 or UCS-4) data buffer and its length - to a Python Unicode object. If the Unicode buffer pointer - is \NULL, the length is ignored and \code{None} is returned. - - \item[\samp{U} (string) {[char *]}] - Convert a null-terminated C string to a Python unicode object. - If the C string pointer is \NULL, \code{None} is used. - - \item[\samp{U\#} (string) {[char *, int]}] - Convert a C string and its length to a Python unicode object. - If the C string pointer is \NULL, the length is ignored and \code{None} - is returned. - - \item[\samp{i} (integer) {[int]}] - Convert a plain C \ctype{int} to a Python integer object. - - \item[\samp{b} (integer) {[char]}] - Convert a plain C \ctype{char} to a Python integer object. - - \item[\samp{h} (integer) {[short int]}] - Convert a plain C \ctype{short int} to a Python integer object. - - \item[\samp{l} (integer) {[long int]}] - Convert a C \ctype{long int} to a Python integer object. - - \item[\samp{B} (integer) {[unsigned char]}] - Convert a C \ctype{unsigned char} to a Python integer object. - - \item[\samp{H} (integer) {[unsigned short int]}] - Convert a C \ctype{unsigned short int} to a Python integer object. - - \item[\samp{I} (integer/long) {[unsigned int]}] - Convert a C \ctype{unsigned int} to a Python integer object - or a Python long integer object, if it is larger than \code{sys.maxint}. - - \item[\samp{k} (integer/long) {[unsigned long]}] - Convert a C \ctype{unsigned long} to a Python integer object - or a Python long integer object, if it is larger than \code{sys.maxint}. - - \item[\samp{L} (long) {[PY_LONG_LONG]}] - Convert a C \ctype{long long} to a Python long integer object. Only - available on platforms that support \ctype{long long}. - - \item[\samp{K} (long) {[unsigned PY_LONG_LONG]}] - Convert a C \ctype{unsigned long long} to a Python long integer object. - Only available on platforms that support \ctype{unsigned long long}. - - \item[\samp{n} (int) {[Py_ssize_t]}] - Convert a C \ctype{Py_ssize_t} to a Python integer or long integer. - \versionadded{2.5} - - \item[\samp{c} (string of length 1) {[char]}] - Convert a C \ctype{int} representing a character to a Python - string of length 1. - - \item[\samp{d} (float) {[double]}] - Convert a C \ctype{double} to a Python floating point number. - - \item[\samp{f} (float) {[float]}] - Same as \samp{d}. - - \item[\samp{D} (complex) {[Py_complex *]}] - Convert a C \ctype{Py_complex} structure to a Python complex - number. - - \item[\samp{O} (object) {[PyObject *]}] - Pass a Python object untouched (except for its reference count, - which is incremented by one). If the object passed in is a - \NULL{} pointer, it is assumed that this was caused because the - call producing the argument found an error and set an exception. - Therefore, \cfunction{Py_BuildValue()} will return \NULL{} but - won't raise an exception. If no exception has been raised yet, - \exception{SystemError} is set. - - \item[\samp{S} (object) {[PyObject *]}] - Same as \samp{O}. - - \item[\samp{N} (object) {[PyObject *]}] - Same as \samp{O}, except it doesn't increment the reference count - on the object. Useful when the object is created by a call to an - object constructor in the argument list. - - \item[\samp{O\&} (object) {[\var{converter}, \var{anything}]}] - Convert \var{anything} to a Python object through a - \var{converter} function. The function is called with - \var{anything} (which should be compatible with \ctype{void *}) as - its argument and should return a ``new'' Python object, or \NULL{} - if an error occurred. - - \item[\samp{(\var{items})} (tuple) {[\var{matching-items}]}] - Convert a sequence of C values to a Python tuple with the same - number of items. - - \item[\samp{[\var{items}]} (list) {[\var{matching-items}]}] - Convert a sequence of C values to a Python list with the same - number of items. - - \item[\samp{\{\var{items}\}} (dictionary) {[\var{matching-items}]}] - Convert a sequence of C values to a Python dictionary. Each pair - of consecutive C values adds one item to the dictionary, serving - as key and value, respectively. - - \end{description} - - If there is an error in the format string, the - \exception{SystemError} exception is set and \NULL{} returned. -\end{cfuncdesc} - -\section{String conversion and formatting \label{string-formatting}} - -Functions for number conversion and formatted string output. - -\begin{cfuncdesc}{int}{PyOS_snprintf}{char *str, size_t size, - const char *format, \moreargs} -Output not more than \var{size} bytes to \var{str} according to the format -string \var{format} and the extra arguments. See the \UNIX{} man -page \manpage{snprintf}{2}. -\end{cfuncdesc} - -\begin{cfuncdesc}{int}{PyOS_vsnprintf}{char *str, size_t size, - const char *format, va_list va} -Output not more than \var{size} bytes to \var{str} according to the format -string \var{format} and the variable argument list \var{va}. \UNIX{} -man page \manpage{vsnprintf}{2}. -\end{cfuncdesc} - -\cfunction{PyOS_snprintf} and \cfunction{PyOS_vsnprintf} wrap the -Standard C library functions \cfunction{snprintf()} and -\cfunction{vsnprintf()}. Their purpose is to guarantee consistent -behavior in corner cases, which the Standard C functions do not. - -The wrappers ensure that \var{str}[\var{size}-1] is always -\character{\textbackslash0} upon return. They never write more than -\var{size} bytes (including the trailing \character{\textbackslash0}) -into str. Both functions require that \code{\var{str} != NULL}, -\code{\var{size} > 0} and \code{\var{format} != NULL}. - -If the platform doesn't have \cfunction{vsnprintf()} and the buffer -size needed to avoid truncation exceeds \var{size} by more than 512 -bytes, Python aborts with a \var{Py_FatalError}. - -The return value (\var{rv}) for these functions should be interpreted -as follows: - -\begin{itemize} - -\item When \code{0 <= \var{rv} < \var{size}}, the output conversion - was successful and \var{rv} characters were written to \var{str} - (excluding the trailing \character{\textbackslash0} byte at - \var{str}[\var{rv}]). - -\item When \code{\var{rv} >= \var{size}}, the output conversion was - truncated and a buffer with \code{\var{rv} + 1} bytes would have - been needed to succeed. \var{str}[\var{size}-1] is - \character{\textbackslash0} in this case. - -\item When \code{\var{rv} < 0}, ``something bad happened.'' - \var{str}[\var{size}-1] is \character{\textbackslash0} in this case - too, but the rest of \var{str} is undefined. The exact cause of the - error depends on the underlying platform. - -\end{itemize} - -The following functions provide locale-independent string to number -conversions. - -\begin{cfuncdesc}{double}{PyOS_ascii_strtod}{const char *nptr, char **endptr} -Convert a string to a \ctype{double}. This function behaves like the -Standard C function \cfunction{strtod()} does in the C locale. It does -this without changing the current locale, since that would not be -thread-safe. - -\cfunction{PyOS_ascii_strtod} should typically be used for reading -configuration files or other non-user input that should be locale -independent. \versionadded{2.4} - -See the \UNIX{} man page \manpage{strtod}{2} for details. - -\end{cfuncdesc} - -\begin{cfuncdesc}{char *}{PyOS_ascii_formatd}{char *buffer, size_t buf_len, - const char *format, double d} -Convert a \ctype{double} to a string using the \character{.} as the -decimal separator. \var{format} is a \cfunction{printf()}-style format -string specifying the number format. Allowed conversion characters are -\character{e}, \character{E}, \character{f}, \character{F}, -\character{g} and \character{G}. - -The return value is a pointer to \var{buffer} with the converted -string or NULL if the conversion failed. \versionadded{2.4} -\end{cfuncdesc} - -\begin{cfuncdesc}{double}{PyOS_ascii_atof}{const char *nptr} -Convert a string to a \ctype{double} in a locale-independent -way. \versionadded{2.4} - -See the \UNIX{} man page \manpage{atof}{2} for details. -\end{cfuncdesc} diff --git a/Doc/api/veryhigh.tex b/Doc/api/veryhigh.tex deleted file mode 100644 index 5c79b44..0000000 --- a/Doc/api/veryhigh.tex +++ /dev/null @@ -1,287 +0,0 @@ -\chapter{The Very High Level Layer \label{veryhigh}} - - -The functions in this chapter will let you execute Python source code -given in a file or a buffer, but they will not let you interact in a -more detailed way with the interpreter. - -Several of these functions accept a start symbol from the grammar as a -parameter. The available start symbols are \constant{Py_eval_input}, -\constant{Py_file_input}, and \constant{Py_single_input}. These are -described following the functions which accept them as parameters. - -Note also that several of these functions take \ctype{FILE*} -parameters. On particular issue which needs to be handled carefully -is that the \ctype{FILE} structure for different C libraries can be -different and incompatible. Under Windows (at least), it is possible -for dynamically linked extensions to actually use different libraries, -so care should be taken that \ctype{FILE*} parameters are only passed -to these functions if it is certain that they were created by the same -library that the Python runtime is using. - - -\begin{cfuncdesc}{int}{Py_Main}{int argc, char **argv} - The main program for the standard interpreter. This is made - available for programs which embed Python. The \var{argc} and - \var{argv} parameters should be prepared exactly as those which are - passed to a C program's \cfunction{main()} function. It is - important to note that the argument list may be modified (but the - contents of the strings pointed to by the argument list are not). - The return value will be the integer passed to the - \function{sys.exit()} function, \code{1} if the interpreter exits - due to an exception, or \code{2} if the parameter list does not - represent a valid Python command line. -\end{cfuncdesc} - -\begin{cfuncdesc}{int}{PyRun_AnyFile}{FILE *fp, const char *filename} - This is a simplified interface to \cfunction{PyRun_AnyFileExFlags()} - below, leaving \var{closeit} set to \code{0} and \var{flags} set to \NULL. -\end{cfuncdesc} - -\begin{cfuncdesc}{int}{PyRun_AnyFileFlags}{FILE *fp, const char *filename, - PyCompilerFlags *flags} - This is a simplified interface to \cfunction{PyRun_AnyFileExFlags()} - below, leaving the \var{closeit} argument set to \code{0}. -\end{cfuncdesc} - -\begin{cfuncdesc}{int}{PyRun_AnyFileEx}{FILE *fp, const char *filename, - int closeit} - This is a simplified interface to \cfunction{PyRun_AnyFileExFlags()} - below, leaving the \var{flags} argument set to \NULL. -\end{cfuncdesc} - -\begin{cfuncdesc}{int}{PyRun_AnyFileExFlags}{FILE *fp, const char *filename, - int closeit, - PyCompilerFlags *flags} - If \var{fp} refers to a file associated with an interactive device - (console or terminal input or \UNIX{} pseudo-terminal), return the - value of \cfunction{PyRun_InteractiveLoop()}, otherwise return the - result of \cfunction{PyRun_SimpleFile()}. If \var{filename} is - \NULL, this function uses \code{"???"} as the filename. -\end{cfuncdesc} - -\begin{cfuncdesc}{int}{PyRun_SimpleString}{const char *command} - This is a simplified interface to \cfunction{PyRun_SimpleStringFlags()} - below, leaving the \var{PyCompilerFlags*} argument set to NULL. -\end{cfuncdesc} - -\begin{cfuncdesc}{int}{PyRun_SimpleStringFlags}{const char *command, - PyCompilerFlags *flags} - Executes the Python source code from \var{command} in the - \module{__main__} module according to the \var{flags} argument. - If \module{__main__} does not already exist, it is created. Returns - \code{0} on success or \code{-1} if an exception was raised. If there - was an error, there is no way to get the exception information. - For the meaning of \var{flags}, see below. -\end{cfuncdesc} - -\begin{cfuncdesc}{int}{PyRun_SimpleFile}{FILE *fp, const char *filename} - This is a simplified interface to \cfunction{PyRun_SimpleFileExFlags()} - below, leaving \var{closeit} set to \code{0} and \var{flags} set to - \NULL. -\end{cfuncdesc} - -\begin{cfuncdesc}{int}{PyRun_SimpleFileFlags}{FILE *fp, const char *filename, - PyCompilerFlags *flags} - This is a simplified interface to \cfunction{PyRun_SimpleFileExFlags()} - below, leaving \var{closeit} set to \code{0}. -\end{cfuncdesc} - -\begin{cfuncdesc}{int}{PyRun_SimpleFileEx}{FILE *fp, const char *filename, - int closeit} - This is a simplified interface to \cfunction{PyRun_SimpleFileExFlags()} - below, leaving \var{flags} set to \NULL. -\end{cfuncdesc} - -\begin{cfuncdesc}{int}{PyRun_SimpleFileExFlags}{FILE *fp, const char *filename, - int closeit, - PyCompilerFlags *flags} - Similar to \cfunction{PyRun_SimpleStringFlags()}, but the Python source - code is read from \var{fp} instead of an in-memory string. - \var{filename} should be the name of the file. If \var{closeit} is - true, the file is closed before PyRun_SimpleFileExFlags returns. -\end{cfuncdesc} - -\begin{cfuncdesc}{int}{PyRun_InteractiveOne}{FILE *fp, const char *filename} - This is a simplified interface to \cfunction{PyRun_InteractiveOneFlags()} - below, leaving \var{flags} set to \NULL. -\end{cfuncdesc} - -\begin{cfuncdesc}{int}{PyRun_InteractiveOneFlags}{FILE *fp, - const char *filename, - PyCompilerFlags *flags} - Read and execute a single statement from a file associated with an - interactive device according to the \var{flags} argument. If - \var{filename} is \NULL, \code{"???"} is used instead. The user will - be prompted using \code{sys.ps1} and \code{sys.ps2}. Returns \code{0} - when the input was executed successfully, \code{-1} if there was an - exception, or an error code from the \file{errcode.h} include file - distributed as part of Python if there was a parse error. (Note that - \file{errcode.h} is not included by \file{Python.h}, so must be included - specifically if needed.) -\end{cfuncdesc} - -\begin{cfuncdesc}{int}{PyRun_InteractiveLoop}{FILE *fp, const char *filename} - This is a simplified interface to \cfunction{PyRun_InteractiveLoopFlags()} - below, leaving \var{flags} set to \NULL. -\end{cfuncdesc} - -\begin{cfuncdesc}{int}{PyRun_InteractiveLoopFlags}{FILE *fp, - const char *filename, - PyCompilerFlags *flags} - Read and execute statements from a file associated with an - interactive device until \EOF{} is reached. If \var{filename} is - \NULL, \code{"???"} is used instead. The user will be prompted - using \code{sys.ps1} and \code{sys.ps2}. Returns \code{0} at \EOF. -\end{cfuncdesc} - -\begin{cfuncdesc}{struct _node*}{PyParser_SimpleParseString}{const char *str, - int start} - This is a simplified interface to - \cfunction{PyParser_SimpleParseStringFlagsFilename()} below, leaving - \var{filename} set to \NULL{} and \var{flags} set to \code{0}. -\end{cfuncdesc} - -\begin{cfuncdesc}{struct _node*}{PyParser_SimpleParseStringFlags}{ - const char *str, int start, int flags} - This is a simplified interface to - \cfunction{PyParser_SimpleParseStringFlagsFilename()} below, leaving - \var{filename} set to \NULL. -\end{cfuncdesc} - -\begin{cfuncdesc}{struct _node*}{PyParser_SimpleParseStringFlagsFilename}{ - const char *str, const char *filename, - int start, int flags} - Parse Python source code from \var{str} using the start token - \var{start} according to the \var{flags} argument. The result can - be used to create a code object which can be evaluated efficiently. - This is useful if a code fragment must be evaluated many times. -\end{cfuncdesc} - -\begin{cfuncdesc}{struct _node*}{PyParser_SimpleParseFile}{FILE *fp, - const char *filename, int start} - This is a simplified interface to \cfunction{PyParser_SimpleParseFileFlags()} - below, leaving \var{flags} set to \code{0} -\end{cfuncdesc} - -\begin{cfuncdesc}{struct _node*}{PyParser_SimpleParseFileFlags}{FILE *fp, - const char *filename, int start, int flags} - Similar to \cfunction{PyParser_SimpleParseStringFlagsFilename()}, but - the Python source code is read from \var{fp} instead of an in-memory - string. -\end{cfuncdesc} - -\begin{cfuncdesc}{PyObject*}{PyRun_String}{const char *str, int start, - PyObject *globals, - PyObject *locals} - This is a simplified interface to \cfunction{PyRun_StringFlags()} below, - leaving \var{flags} set to \NULL. -\end{cfuncdesc} - -\begin{cfuncdesc}{PyObject*}{PyRun_StringFlags}{const char *str, int start, - PyObject *globals, - PyObject *locals, - PyCompilerFlags *flags} - Execute Python source code from \var{str} in the context specified - by the dictionaries \var{globals} and \var{locals} with the compiler - flags specified by \var{flags}. The parameter \var{start} specifies - the start token that should be used to parse the source code. - - Returns the result of executing the code as a Python object, or - \NULL{} if an exception was raised. -\end{cfuncdesc} - -\begin{cfuncdesc}{PyObject*}{PyRun_File}{FILE *fp, const char *filename, - int start, PyObject *globals, - PyObject *locals} - This is a simplified interface to \cfunction{PyRun_FileExFlags()} below, - leaving \var{closeit} set to \code{0} and \var{flags} set to \NULL. -\end{cfuncdesc} - -\begin{cfuncdesc}{PyObject*}{PyRun_FileEx}{FILE *fp, const char *filename, - int start, PyObject *globals, - PyObject *locals, int closeit} - This is a simplified interface to \cfunction{PyRun_FileExFlags()} below, - leaving \var{flags} set to \NULL. -\end{cfuncdesc} - -\begin{cfuncdesc}{PyObject*}{PyRun_FileFlags}{FILE *fp, const char *filename, - int start, PyObject *globals, - PyObject *locals, - PyCompilerFlags *flags} - This is a simplified interface to \cfunction{PyRun_FileExFlags()} below, - leaving \var{closeit} set to \code{0}. -\end{cfuncdesc} - -\begin{cfuncdesc}{PyObject*}{PyRun_FileExFlags}{FILE *fp, const char *filename, - int start, PyObject *globals, - PyObject *locals, int closeit, - PyCompilerFlags *flags} - Similar to \cfunction{PyRun_StringFlags()}, but the Python source code is - read from \var{fp} instead of an in-memory string. - \var{filename} should be the name of the file. - If \var{closeit} is true, the file is closed before - \cfunction{PyRun_FileExFlags()} returns. -\end{cfuncdesc} - -\begin{cfuncdesc}{PyObject*}{Py_CompileString}{const char *str, - const char *filename, - int start} - This is a simplified interface to \cfunction{Py_CompileStringFlags()} below, - leaving \var{flags} set to \NULL. -\end{cfuncdesc} - -\begin{cfuncdesc}{PyObject*}{Py_CompileStringFlags}{const char *str, - const char *filename, - int start, - PyCompilerFlags *flags} - Parse and compile the Python source code in \var{str}, returning the - resulting code object. The start token is given by \var{start}; - this can be used to constrain the code which can be compiled and should - be \constant{Py_eval_input}, \constant{Py_file_input}, or - \constant{Py_single_input}. The filename specified by - \var{filename} is used to construct the code object and may appear - in tracebacks or \exception{SyntaxError} exception messages. This - returns \NULL{} if the code cannot be parsed or compiled. -\end{cfuncdesc} - -\begin{cvardesc}{int}{Py_eval_input} - The start symbol from the Python grammar for isolated expressions; - for use with - \cfunction{Py_CompileString()}\ttindex{Py_CompileString()}. -\end{cvardesc} - -\begin{cvardesc}{int}{Py_file_input} - The start symbol from the Python grammar for sequences of statements - as read from a file or other source; for use with - \cfunction{Py_CompileString()}\ttindex{Py_CompileString()}. This is - the symbol to use when compiling arbitrarily long Python source code. -\end{cvardesc} - -\begin{cvardesc}{int}{Py_single_input} - The start symbol from the Python grammar for a single statement; for - use with \cfunction{Py_CompileString()}\ttindex{Py_CompileString()}. - This is the symbol used for the interactive interpreter loop. -\end{cvardesc} - -\begin{ctypedesc}[PyCompilerFlags]{struct PyCompilerFlags} - This is the structure used to hold compiler flags. In cases where - code is only being compiled, it is passed as \code{int flags}, and in - cases where code is being executed, it is passed as - \code{PyCompilerFlags *flags}. In this case, \code{from __future__ - import} can modify \var{flags}. - - Whenever \code{PyCompilerFlags *flags} is \NULL, \member{cf_flags} - is treated as equal to \code{0}, and any modification due to - \code{from __future__ import} is discarded. -\begin{verbatim} -struct PyCompilerFlags { - int cf_flags; -} -\end{verbatim} -\end{ctypedesc} - -\begin{cvardesc}{int}{CO_FUTURE_DIVISION} - This bit can be set in \var{flags} to cause division operator \code{/} - to be interpreted as ``true division'' according to \pep{238}. -\end{cvardesc} |