diff options
author | Georg Brandl <georg@python.org> | 2007-08-15 14:27:07 (GMT) |
---|---|---|
committer | Georg Brandl <georg@python.org> | 2007-08-15 14:27:07 (GMT) |
commit | 739c01d47b9118d04e5722333f0e6b4d0c8bdd9e (patch) | |
tree | f82b450d291927fc1758b96d981aa0610947b529 /Doc/howto/sockets.tex | |
parent | 2d1649094402ef393ea2b128ba2c08c3937e6b93 (diff) | |
download | cpython-739c01d47b9118d04e5722333f0e6b4d0c8bdd9e.zip cpython-739c01d47b9118d04e5722333f0e6b4d0c8bdd9e.tar.gz cpython-739c01d47b9118d04e5722333f0e6b4d0c8bdd9e.tar.bz2 |
Delete the LaTeX doc tree.
Diffstat (limited to 'Doc/howto/sockets.tex')
-rw-r--r-- | Doc/howto/sockets.tex | 465 |
1 files changed, 0 insertions, 465 deletions
diff --git a/Doc/howto/sockets.tex b/Doc/howto/sockets.tex deleted file mode 100644 index 0cecbb9..0000000 --- a/Doc/howto/sockets.tex +++ /dev/null @@ -1,465 +0,0 @@ -\documentclass{howto} - -\title{Socket Programming HOWTO} - -\release{0.00} - -\author{Gordon McMillan} -\authoraddress{\email{gmcm@hypernet.com}} - -\begin{document} -\maketitle - -\begin{abstract} -\noindent -Sockets are used nearly everywhere, but are one of the most severely -misunderstood technologies around. This is a 10,000 foot overview of -sockets. It's not really a tutorial - you'll still have work to do in -getting things operational. It doesn't cover the fine points (and there -are a lot of them), but I hope it will give you enough background to -begin using them decently. - -This document is available from the Python HOWTO page at -\url{http://www.python.org/doc/howto}. - -\end{abstract} - -\tableofcontents - -\section{Sockets} - -Sockets are used nearly everywhere, but are one of the most severely -misunderstood technologies around. This is a 10,000 foot overview of -sockets. It's not really a tutorial - you'll still have work to do in -getting things working. It doesn't cover the fine points (and there -are a lot of them), but I hope it will give you enough background to -begin using them decently. - -I'm only going to talk about INET sockets, but they account for at -least 99\% of the sockets in use. And I'll only talk about STREAM -sockets - unless you really know what you're doing (in which case this -HOWTO isn't for you!), you'll get better behavior and performance from -a STREAM socket than anything else. I will try to clear up the mystery -of what a socket is, as well as some hints on how to work with -blocking and non-blocking sockets. But I'll start by talking about -blocking sockets. You'll need to know how they work before dealing -with non-blocking sockets. - -Part of the trouble with understanding these things is that "socket" -can mean a number of subtly different things, depending on context. So -first, let's make a distinction between a "client" socket - an -endpoint of a conversation, and a "server" socket, which is more like -a switchboard operator. The client application (your browser, for -example) uses "client" sockets exclusively; the web server it's -talking to uses both "server" sockets and "client" sockets. - - -\subsection{History} - -Of the various forms of IPC (\emph{Inter Process Communication}), -sockets are by far the most popular. On any given platform, there are -likely to be other forms of IPC that are faster, but for -cross-platform communication, sockets are about the only game in town. - -They were invented in Berkeley as part of the BSD flavor of Unix. They -spread like wildfire with the Internet. With good reason --- the -combination of sockets with INET makes talking to arbitrary machines -around the world unbelievably easy (at least compared to other -schemes). - -\section{Creating a Socket} - -Roughly speaking, when you clicked on the link that brought you to -this page, your browser did something like the following: - -\begin{verbatim} - #create an INET, STREAMing socket - s = socket.socket( - socket.AF_INET, socket.SOCK_STREAM) - #now connect to the web server on port 80 - # - the normal http port - s.connect(("www.mcmillan-inc.com", 80)) -\end{verbatim} - -When the \code{connect} completes, the socket \code{s} can -now be used to send in a request for the text of this page. The same -socket will read the reply, and then be destroyed. That's right - -destroyed. Client sockets are normally only used for one exchange (or -a small set of sequential exchanges). - -What happens in the web server is a bit more complex. First, the web -server creates a "server socket". - -\begin{verbatim} - #create an INET, STREAMing socket - serversocket = socket.socket( - socket.AF_INET, socket.SOCK_STREAM) - #bind the socket to a public host, - # and a well-known port - serversocket.bind((socket.gethostname(), 80)) - #become a server socket - serversocket.listen(5) -\end{verbatim} - -A couple things to notice: we used \code{socket.gethostname()} -so that the socket would be visible to the outside world. If we had -used \code{s.bind(('', 80))} or \code{s.bind(('localhost', -80))} or \code{s.bind(('127.0.0.1', 80))} we would still -have a "server" socket, but one that was only visible within the same -machine. - -A second thing to note: low number ports are usually reserved for -"well known" services (HTTP, SNMP etc). If you're playing around, use -a nice high number (4 digits). - -Finally, the argument to \code{listen} tells the socket library that -we want it to queue up as many as 5 connect requests (the normal max) -before refusing outside connections. If the rest of the code is -written properly, that should be plenty. - -OK, now we have a "server" socket, listening on port 80. Now we enter -the mainloop of the web server: - -\begin{verbatim} - while 1: - #accept connections from outside - (clientsocket, address) = serversocket.accept() - #now do something with the clientsocket - #in this case, we'll pretend this is a threaded server - ct = client_thread(clientsocket) - ct.run() -\end{verbatim} - -There's actually 3 general ways in which this loop could work - -dispatching a thread to handle \code{clientsocket}, create a new -process to handle \code{clientsocket}, or restructure this app -to use non-blocking sockets, and mulitplex between our "server" socket -and any active \code{clientsocket}s using -\code{select}. More about that later. The important thing to -understand now is this: this is \emph{all} a "server" socket -does. It doesn't send any data. It doesn't receive any data. It just -produces "client" sockets. Each \code{clientsocket} is created -in response to some \emph{other} "client" socket doing a -\code{connect()} to the host and port we're bound to. As soon as -we've created that \code{clientsocket}, we go back to listening -for more connections. The two "clients" are free to chat it up - they -are using some dynamically allocated port which will be recycled when -the conversation ends. - -\subsection{IPC} If you need fast IPC between two processes -on one machine, you should look into whatever form of shared memory -the platform offers. A simple protocol based around shared memory and -locks or semaphores is by far the fastest technique. - -If you do decide to use sockets, bind the "server" socket to -\code{'localhost'}. On most platforms, this will take a shortcut -around a couple of layers of network code and be quite a bit faster. - - -\section{Using a Socket} - -The first thing to note, is that the web browser's "client" socket and -the web server's "client" socket are identical beasts. That is, this -is a "peer to peer" conversation. Or to put it another way, \emph{as the -designer, you will have to decide what the rules of etiquette are for -a conversation}. Normally, the \code{connect}ing socket -starts the conversation, by sending in a request, or perhaps a -signon. But that's a design decision - it's not a rule of sockets. - -Now there are two sets of verbs to use for communication. You can use -\code{send} and \code{recv}, or you can transform your -client socket into a file-like beast and use \code{read} and -\code{write}. The latter is the way Java presents their -sockets. I'm not going to talk about it here, except to warn you that -you need to use \code{flush} on sockets. These are buffered -"files", and a common mistake is to \code{write} something, and -then \code{read} for a reply. Without a \code{flush} in -there, you may wait forever for the reply, because the request may -still be in your output buffer. - -Now we come the major stumbling block of sockets - \code{send} -and \code{recv} operate on the network buffers. They do not -necessarily handle all the bytes you hand them (or expect from them), -because their major focus is handling the network buffers. In general, -they return when the associated network buffers have been filled -(\code{send}) or emptied (\code{recv}). They then tell you -how many bytes they handled. It is \emph{your} responsibility to call -them again until your message has been completely dealt with. - -When a \code{recv} returns 0 bytes, it means the other side has -closed (or is in the process of closing) the connection. You will not -receive any more data on this connection. Ever. You may be able to -send data successfully; I'll talk about that some on the next page. - -A protocol like HTTP uses a socket for only one transfer. The client -sends a request, the reads a reply. That's it. The socket is -discarded. This means that a client can detect the end of the reply by -receiving 0 bytes. - -But if you plan to reuse your socket for further transfers, you need -to realize that \emph{there is no "EOT" (End of Transfer) on a -socket.} I repeat: if a socket \code{send} or -\code{recv} returns after handling 0 bytes, the connection has -been broken. If the connection has \emph{not} been broken, you may -wait on a \code{recv} forever, because the socket will -\emph{not} tell you that there's nothing more to read (for now). Now -if you think about that a bit, you'll come to realize a fundamental -truth of sockets: \emph{messages must either be fixed length} (yuck), -\emph{or be delimited} (shrug), \emph{or indicate how long they are} -(much better), \emph{or end by shutting down the connection}. The -choice is entirely yours, (but some ways are righter than others). - -Assuming you don't want to end the connection, the simplest solution -is a fixed length message: - -\begin{verbatim} -class mysocket: - '''demonstration class only - - coded for clarity, not efficiency - ''' - - def __init__(self, sock=None): - if sock is None: - self.sock = socket.socket( - socket.AF_INET, socket.SOCK_STREAM) - else: - self.sock = sock - - def connect(self, host, port): - self.sock.connect((host, port)) - - def mysend(self, msg): - totalsent = 0 - while totalsent < MSGLEN: - sent = self.sock.send(msg[totalsent:]) - if sent == 0: - raise RuntimeError, \\ - "socket connection broken" - totalsent = totalsent + sent - - def myreceive(self): - msg = '' - while len(msg) < MSGLEN: - chunk = self.sock.recv(MSGLEN-len(msg)) - if chunk == '': - raise RuntimeError, \\ - "socket connection broken" - msg = msg + chunk - return msg -\end{verbatim} - -The sending code here is usable for almost any messaging scheme - in -Python you send strings, and you can use \code{len()} to -determine its length (even if it has embedded \code{\e 0} -characters). It's mostly the receiving code that gets more -complex. (And in C, it's not much worse, except you can't use -\code{strlen} if the message has embedded \code{\e 0}s.) - -The easiest enhancement is to make the first character of the message -an indicator of message type, and have the type determine the -length. Now you have two \code{recv}s - the first to get (at -least) that first character so you can look up the length, and the -second in a loop to get the rest. If you decide to go the delimited -route, you'll be receiving in some arbitrary chunk size, (4096 or 8192 -is frequently a good match for network buffer sizes), and scanning -what you've received for a delimiter. - -One complication to be aware of: if your conversational protocol -allows multiple messages to be sent back to back (without some kind of -reply), and you pass \code{recv} an arbitrary chunk size, you -may end up reading the start of a following message. You'll need to -put that aside and hold onto it, until it's needed. - -Prefixing the message with it's length (say, as 5 numeric characters) -gets more complex, because (believe it or not), you may not get all 5 -characters in one \code{recv}. In playing around, you'll get -away with it; but in high network loads, your code will very quickly -break unless you use two \code{recv} loops - the first to -determine the length, the second to get the data part of the -message. Nasty. This is also when you'll discover that -\code{send} does not always manage to get rid of everything in -one pass. And despite having read this, you will eventually get bit by -it! - -In the interests of space, building your character, (and preserving my -competitive position), these enhancements are left as an exercise for -the reader. Lets move on to cleaning up. - -\subsection{Binary Data} - -It is perfectly possible to send binary data over a socket. The major -problem is that not all machines use the same formats for binary -data. For example, a Motorola chip will represent a 16 bit integer -with the value 1 as the two hex bytes 00 01. Intel and DEC, however, -are byte-reversed - that same 1 is 01 00. Socket libraries have calls -for converting 16 and 32 bit integers - \code{ntohl, htonl, ntohs, -htons} where "n" means \emph{network} and "h" means \emph{host}, -"s" means \emph{short} and "l" means \emph{long}. Where network order -is host order, these do nothing, but where the machine is -byte-reversed, these swap the bytes around appropriately. - -In these days of 32 bit machines, the ascii representation of binary -data is frequently smaller than the binary representation. That's -because a surprising amount of the time, all those longs have the -value 0, or maybe 1. The string "0" would be two bytes, while binary -is four. Of course, this doesn't fit well with fixed-length -messages. Decisions, decisions. - -\section{Disconnecting} - -Strictly speaking, you're supposed to use \code{shutdown} on a -socket before you \code{close} it. The \code{shutdown} is -an advisory to the socket at the other end. Depending on the argument -you pass it, it can mean "I'm not going to send anymore, but I'll -still listen", or "I'm not listening, good riddance!". Most socket -libraries, however, are so used to programmers neglecting to use this -piece of etiquette that normally a \code{close} is the same as -\code{shutdown(); close()}. So in most situations, an explicit -\code{shutdown} is not needed. - -One way to use \code{shutdown} effectively is in an HTTP-like -exchange. The client sends a request and then does a -\code{shutdown(1)}. This tells the server "This client is done -sending, but can still receive." The server can detect "EOF" by a -receive of 0 bytes. It can assume it has the complete request. The -server sends a reply. If the \code{send} completes successfully -then, indeed, the client was still receiving. - -Python takes the automatic shutdown a step further, and says that when a socket is garbage collected, it will automatically do a \code{close} if it's needed. But relying on this is a very bad habit. If your socket just disappears without doing a \code{close}, the socket at the other end may hang indefinitely, thinking you're just being slow. \emph{Please} \code{close} your sockets when you're done. - - -\subsection{When Sockets Die} - -Probably the worst thing about using blocking sockets is what happens -when the other side comes down hard (without doing a -\code{close}). Your socket is likely to hang. SOCKSTREAM is a -reliable protocol, and it will wait a long, long time before giving up -on a connection. If you're using threads, the entire thread is -essentially dead. There's not much you can do about it. As long as you -aren't doing something dumb, like holding a lock while doing a -blocking read, the thread isn't really consuming much in the way of -resources. Do \emph{not} try to kill the thread - part of the reason -that threads are more efficient than processes is that they avoid the -overhead associated with the automatic recycling of resources. In -other words, if you do manage to kill the thread, your whole process -is likely to be screwed up. - -\section{Non-blocking Sockets} - -If you've understood the preceeding, you already know most of what you -need to know about the mechanics of using sockets. You'll still use -the same calls, in much the same ways. It's just that, if you do it -right, your app will be almost inside-out. - -In Python, you use \code{socket.setblocking(0)} to make it -non-blocking. In C, it's more complex, (for one thing, you'll need to -choose between the BSD flavor \code{O_NONBLOCK} and the almost -indistinguishable Posix flavor \code{O_NDELAY}, which is -completely different from \code{TCP_NODELAY}), but it's the -exact same idea. You do this after creating the socket, but before -using it. (Actually, if you're nuts, you can switch back and forth.) - -The major mechanical difference is that \code{send}, -\code{recv}, \code{connect} and \code{accept} can -return without having done anything. You have (of course) a number of -choices. You can check return code and error codes and generally drive -yourself crazy. If you don't believe me, try it sometime. Your app -will grow large, buggy and suck CPU. So let's skip the brain-dead -solutions and do it right. - -Use \code{select}. - -In C, coding \code{select} is fairly complex. In Python, it's a -piece of cake, but it's close enough to the C version that if you -understand \code{select} in Python, you'll have little trouble -with it in C. - -\begin{verbatim} ready_to_read, ready_to_write, in_error = \\ - select.select( - potential_readers, - potential_writers, - potential_errs, - timeout) -\end{verbatim} - -You pass \code{select} three lists: the first contains all -sockets that you might want to try reading; the second all the sockets -you might want to try writing to, and the last (normally left empty) -those that you want to check for errors. You should note that a -socket can go into more than one list. The \code{select} call is -blocking, but you can give it a timeout. This is generally a sensible -thing to do - give it a nice long timeout (say a minute) unless you -have good reason to do otherwise. - -In return, you will get three lists. They have the sockets that are -actually readable, writable and in error. Each of these lists is a -subset (possbily empty) of the corresponding list you passed in. And -if you put a socket in more than one input list, it will only be (at -most) in one output list. - -If a socket is in the output readable list, you can be -as-close-to-certain-as-we-ever-get-in-this-business that a -\code{recv} on that socket will return \emph{something}. Same -idea for the writable list. You'll be able to send -\emph{something}. Maybe not all you want to, but \emph{something} is -better than nothing. (Actually, any reasonably healthy socket will -return as writable - it just means outbound network buffer space is -available.) - -If you have a "server" socket, put it in the potential_readers -list. If it comes out in the readable list, your \code{accept} -will (almost certainly) work. If you have created a new socket to -\code{connect} to someone else, put it in the ptoential_writers -list. If it shows up in the writable list, you have a decent chance -that it has connected. - -One very nasty problem with \code{select}: if somewhere in those -input lists of sockets is one which has died a nasty death, the -\code{select} will fail. You then need to loop through every -single damn socket in all those lists and do a -\code{select([sock],[],[],0)} until you find the bad one. That -timeout of 0 means it won't take long, but it's ugly. - -Actually, \code{select} can be handy even with blocking sockets. -It's one way of determining whether you will block - the socket -returns as readable when there's something in the buffers. However, -this still doesn't help with the problem of determining whether the -other end is done, or just busy with something else. - -\textbf{Portability alert}: On Unix, \code{select} works both with -the sockets and files. Don't try this on Windows. On Windows, -\code{select} works with sockets only. Also note that in C, many -of the more advanced socket options are done differently on -Windows. In fact, on Windows I usually use threads (which work very, -very well) with my sockets. Face it, if you want any kind of -performance, your code will look very different on Windows than on -Unix. (I haven't the foggiest how you do this stuff on a Mac.) - -\subsection{Performance} - -There's no question that the fastest sockets code uses non-blocking -sockets and select to multiplex them. You can put together something -that will saturate a LAN connection without putting any strain on the -CPU. The trouble is that an app written this way can't do much of -anything else - it needs to be ready to shuffle bytes around at all -times. - -Assuming that your app is actually supposed to do something more than -that, threading is the optimal solution, (and using non-blocking -sockets will be faster than using blocking sockets). Unfortunately, -threading support in Unixes varies both in API and quality. So the -normal Unix solution is to fork a subprocess to deal with each -connection. The overhead for this is significant (and don't do this on -Windows - the overhead of process creation is enormous there). It also -means that unless each subprocess is completely independent, you'll -need to use another form of IPC, say a pipe, or shared memory and -semaphores, to communicate between the parent and child processes. - -Finally, remember that even though blocking sockets are somewhat -slower than non-blocking, in many cases they are the "right" -solution. After all, if your app is driven by the data it receives -over a socket, there's not much sense in complicating the logic just -so your app can wait on \code{select} instead of -\code{recv}. - -\end{document} |