diff options
author | Raymond Hettinger <rhettinger@users.noreply.github.com> | 2020-01-26 04:21:17 (GMT) |
---|---|---|
committer | GitHub <noreply@github.com> | 2020-01-26 04:21:17 (GMT) |
commit | 10355ed7f132ed10f1e0d8bd64ccb744b86b1cce (patch) | |
tree | 8fe80f251921aa769730e089c93ee4d4d5401b28 /Doc/library | |
parent | 4515a590a4a4c09231a66e81782f33b4bfcd5054 (diff) | |
download | cpython-10355ed7f132ed10f1e0d8bd64ccb744b86b1cce.zip cpython-10355ed7f132ed10f1e0d8bd64ccb744b86b1cce.tar.gz cpython-10355ed7f132ed10f1e0d8bd64ccb744b86b1cce.tar.bz2 |
bpo-36018: Add another example for NormalDist() (#18191)
Diffstat (limited to 'Doc/library')
-rw-r--r-- | Doc/library/statistics.rst | 36 |
1 files changed, 36 insertions, 0 deletions
diff --git a/Doc/library/statistics.rst b/Doc/library/statistics.rst index 4c7239c..09b02ca 100644 --- a/Doc/library/statistics.rst +++ b/Doc/library/statistics.rst @@ -772,6 +772,42 @@ Carlo simulation <https://en.wikipedia.org/wiki/Monte_Carlo_method>`_: >>> quantiles(map(model, X, Y, Z)) # doctest: +SKIP [1.4591308524824727, 1.8035946855390597, 2.175091447274739] +Normal distributions can be used to approximate `Binomial +distributions <http://mathworld.wolfram.com/BinomialDistribution.html>`_ +when the sample size is large and when the probability of a successful +trial is near 50%. + +For example, an open source conference has 750 attendees and two rooms with a +500 person capacity. There is a talk about Python and another about Ruby. +In previous conferences, 65% of the attendees preferred to listen to Python +talks. Assuming the population preferences haven't changed, what is the +probability that the rooms will stay within their capacity limits? + +.. doctest:: + + >>> n = 750 # Sample size + >>> p = 0.65 # Preference for Python + >>> q = 1.0 - p # Preference for Ruby + >>> k = 500 # Room capacity + + >>> # Approximation using the cumulative normal distribution + >>> from math import sqrt + >>> round(NormalDist(mu=n*p, sigma=sqrt(n*p*q)).cdf(k + 0.5), 4) + 0.8402 + + >>> # Solution using the cumulative binomial distribution + >>> from math import comb, fsum + >>> round(fsum(comb(n, r) * p**r * q**(n-r) for r in range(k+1)), 4) + 0.8402 + + >>> # Approximation using a simulation + >>> from random import seed, choices + >>> seed(8675309) + >>> def trial(): + ... return choices(('Python', 'Ruby'), (p, q), k=n).count('Python') + >>> mean(trial() <= k for i in range(10_000)) + 0.8398 + Normal distributions commonly arise in machine learning problems. Wikipedia has a `nice example of a Naive Bayesian Classifier |