diff options
author | Guido van Rossum <guido@python.org> | 1994-01-02 01:22:07 (GMT) |
---|---|---|
committer | Guido van Rossum <guido@python.org> | 1994-01-02 01:22:07 (GMT) |
commit | 5fdeeeae2a12b9956cc84d62eae82f72cabc8664 (patch) | |
tree | ac0053479e10099850c8e0d06e31cb3afbf632bb /Doc/libtypes.tex | |
parent | 0b0719866e8a32d0a787e73bca9e79df1d1a74f8 (diff) | |
download | cpython-5fdeeeae2a12b9956cc84d62eae82f72cabc8664.zip cpython-5fdeeeae2a12b9956cc84d62eae82f72cabc8664.tar.gz cpython-5fdeeeae2a12b9956cc84d62eae82f72cabc8664.tar.bz2 |
Restructured library documentation
Diffstat (limited to 'Doc/libtypes.tex')
-rw-r--r-- | Doc/libtypes.tex | 618 |
1 files changed, 618 insertions, 0 deletions
diff --git a/Doc/libtypes.tex b/Doc/libtypes.tex new file mode 100644 index 0000000..be8d990 --- /dev/null +++ b/Doc/libtypes.tex @@ -0,0 +1,618 @@ +\section{Built-in Types} + +The following sections describe the standard types that are built into +the interpreter. These are the numeric types, sequence types, and +several others, including types themselves. There is no explicit +Boolean type; use integers instead. +\indexii{built-in}{types} +\indexii{Boolean}{type} + +Some operations are supported by several object types; in particular, +all objects can be compared, tested for truth value, and converted to +a string (with the \code{`{\rm \ldots}`} notation). The latter conversion is +implicitly used when an object is written by the \code{print} statement. +\stindex{print} + +\subsection{Truth Value Testing} + +Any object can be tested for truth value, for use in an \code{if} or +\code{while} condition or as operand of the Boolean operations below. +The following values are false: +\stindex{if} +\stindex{while} +\indexii{truth}{value} +\indexii{Boolean}{operations} +\index{false} + +\begin{itemize} +\renewcommand{\indexsubitem}{(Built-in object)} + +\item \code{None} + \ttindex{None} + +\item zero of any numeric type, e.g., \code{0}, \code{0L}, \code{0.0}. + +\item any empty sequence, e.g., \code{''}, \code{()}, \code{[]}. + +\item any empty mapping, e.g., \code{\{\}}. + +\end{itemize} + +\emph{All} other values are true --- so objects of many types are +always true. +\index{true} + +\subsection{Boolean Operations} + +These are the Boolean operations: +\indexii{Boolean}{operations} + +\begin{tableiii}{|c|l|c|}{code}{Operation}{Result}{Notes} + \lineiii{\var{x} or \var{y}}{if \var{x} is false, then \var{y}, else \var{x}}{(1)} + \lineiii{\var{x} and \var{y}}{if \var{x} is false, then \var{x}, else \var{y}}{(1)} + \lineiii{not \var{x}}{if \var{x} is false, then \code{1}, else \code{0}}{} +\end{tableiii} +\opindex{and} +\opindex{or} +\opindex{not} + +\noindent +Notes: + +\begin{description} + +\item[(1)] +These only evaluate their second argument if needed for their outcome. + +\end{description} + +\subsection{Comparisons} + +Comparison operations are supported by all objects: + +\begin{tableiii}{|c|l|c|}{code}{Operation}{Meaning}{Notes} + \lineiii{<}{strictly less than}{} + \lineiii{<=}{less than or equal}{} + \lineiii{>}{strictly greater than}{} + \lineiii{>=}{greater than or equal}{} + \lineiii{==}{equal}{} + \lineiii{<>}{not equal}{(1)} + \lineiii{!=}{not equal}{(1)} + \lineiii{is}{object identity}{} + \lineiii{is not}{negated object identity}{} +\end{tableiii} +\indexii{operator}{comparison} +\opindex{==} % XXX *All* others have funny characters < ! > +\opindex{is} +\opindex{is not} + +\noindent +Notes: + +\begin{description} + +\item[(1)] +\code{<>} and \code{!=} are alternate spellings for the same operator. +(I couldn't choose between \ABC{} and \C{}! :-) +\indexii{\ABC{}}{language} +\indexii{\C{}}{language} + +\end{description} + +Objects of different types, except different numeric types, never +compare equal; such objects are ordered consistently but arbitrarily +(so that sorting a heterogeneous array yields a consistent result). +Furthermore, some types (e.g., windows) support only a degenerate +notion of comparison where any two objects of that type are unequal. +Again, such objects are ordered arbitrarily but consistently. +\indexii{types}{numeric} +\indexii{objects}{comparing} + +(Implementation note: objects of different types except numbers are +ordered by their type names; objects of the same types that don't +support proper comparison are ordered by their address.) + +Two more operations with the same syntactic priority, \code{in} and +\code{not in}, are supported only by sequence types (below). +\opindex{in} +\opindex{not in} + +\subsection{Numeric Types} + +There are three numeric types: \dfn{plain integers}, \dfn{long integers}, and +\dfn{floating point numbers}. Plain integers (also just called \dfn{integers}) +are implemented using \code{long} in \C{}, which gives them at least 32 +bits of precision. Long integers have unlimited precision. Floating +point numbers are implemented using \code{double} in \C{}. All bets on +their precision are off unless you happen to know the machine you are +working with. +\indexii{numeric}{types} +\indexii{integer}{types} +\indexii{integer}{type} +\indexiii{long}{integer}{type} +\indexii{floating point}{type} +\indexii{\C{}}{language} + +Numbers are created by numeric literals or as the result of built-in +functions and operators. Unadorned integer literals (including hex +and octal numbers) yield plain integers. Integer literals with an \samp{L} +or \samp{l} suffix yield long integers +(\samp{L} is preferred because \code{1l} looks too much like eleven!). +Numeric literals containing a decimal point or an exponent sign yield +floating point numbers. +\indexii{numeric}{literals} +\indexii{integer}{literals} +\indexiii{long}{integer}{literals} +\indexii{floating point}{literals} +\indexii{hexadecimal}{literals} +\indexii{octal}{literals} + +Python fully supports mixed arithmetic: when a binary arithmetic +operator has operands of different numeric types, the operand with the +``smaller'' type is converted to that of the other, where plain +integer is smaller than long integer is smaller than floating point. +Comparisons between numbers of mixed type use the same rule.% +\footnote{As a consequence, the list \code{[1, 2]} is considered equal + to \code{[1.0, 2.0]}, and similar for tuples.} +The functions \code{int()}, \code{long()} and \code{float()} can be used +to coerce numbers to a specific type. +\index{arithmetic} +\bifuncindex{int} +\bifuncindex{long} +\bifuncindex{float} + +All numeric types support the following operations: + +\begin{tableiii}{|c|l|c|}{code}{Operation}{Result}{Notes} + \lineiii{abs(\var{x})}{absolute value of \var{x}}{} + \lineiii{int(\var{x})}{\var{x} converted to integer}{(1)} + \lineiii{long(\var{x})}{\var{x} converted to long integer}{(1)} + \lineiii{float(\var{x})}{\var{x} converted to floating point}{} + \lineiii{-\var{x}}{\var{x} negated}{} + \lineiii{+\var{x}}{\var{x} unchanged}{} + \lineiii{\var{x} + \var{y}}{sum of \var{x} and \var{y}}{} + \lineiii{\var{x} - \var{y}}{difference of \var{x} and \var{y}}{} + \lineiii{\var{x} * \var{y}}{product of \var{x} and \var{y}}{} + \lineiii{\var{x} / \var{y}}{quotient of \var{x} and \var{y}}{(2)} + \lineiii{\var{x} \%{} \var{y}}{remainder of \code{\var{x} / \var{y}}}{} + \lineiii{divmod(\var{x}, \var{y})}{the pair \code{(\var{x} / \var{y}, \var{x} \%{} \var{y})}}{(3)} + \lineiii{pow(\var{x}, \var{y})}{\var{x} to the power \var{y}}{} +\end{tableiii} +\indexiii{operations on}{numeric}{types} + +\noindent +Notes: +\begin{description} +\item[(1)] +Conversion from floating point to (long or plain) integer may round or +% XXXJH xref here +truncate as in \C{}; see functions \code{floor} and \code{ceil} in module +\code{math} for well-defined conversions. +\indexii{numeric}{conversions} +\ttindex{math} +\indexii{\C{}}{language} + +\item[(2)] +For (plain or long) integer division, the result is an integer; it +always truncates towards zero. +% XXXJH integer division is better defined nowadays +\indexii{integer}{division} +\indexiii{long}{integer}{division} + +\item[(3)] +See the section on built-in functions for an exact definition. + +\end{description} +% XXXJH exceptions: overflow (when? what operations?) zerodivision + +\subsubsection{Bit-string Operations on Integer Types.} + +Plain and long integer types support additional operations that make +sense only for bit-strings. Negative numbers are treated as their 2's +complement value: + +\begin{tableiii}{|c|l|c|}{code}{Operation}{Result}{Notes} + \lineiii{\~\var{x}}{the bits of \var{x} inverted}{} + \lineiii{\var{x} \^{} \var{y}}{bitwise \dfn{exclusive or} of \var{x} and \var{y}}{} + \lineiii{\var{x} \&{} \var{y}}{bitwise \dfn{and} of \var{x} and \var{y}}{} + \lineiii{\var{x} | \var{y}}{bitwise \dfn{or} of \var{x} and \var{y}}{} + \lineiii{\var{x} << \var{n}}{\var{x} shifted left by \var{n} bits}{} + \lineiii{\var{x} >> \var{n}}{\var{x} shifted right by \var{n} bits}{} +\end{tableiii} +% XXXJH what's `left'? `right'? maybe better use lsb or msb or something +\indexiii{operations on}{integer}{types} +\indexii{bit-string}{operations} +\indexii{shifting}{operations} +\indexii{masking}{operations} + +\subsection{Sequence Types} + +There are three sequence types: strings, lists and tuples. +Strings literals are written in single quotes: \code{'xyzzy'}. +Lists are constructed with square brackets, +separating items with commas: +\code{[a, b, c]}. +Tuples are constructed by the comma operator +(not within square brackets), with or without enclosing parentheses, +but an empty tuple must have the enclosing parentheses, e.g., +\code{a, b, c} or \code{()}. A single item tuple must have a trailing comma, +e.g., \code{(d,)}. +\indexii{sequence}{types} +\indexii{string}{type} +\indexii{tuple}{type} +\indexii{list}{type} + +Sequence types support the following operations (\var{s} and \var{t} are +sequences of the same type; \var{n}, \var{i} and \var{j} are integers): + +\begin{tableiii}{|c|l|c|}{code}{Operation}{Result}{Notes} + \lineiii{len(\var{s})}{length of \var{s}}{} + \lineiii{min(\var{s})}{smallest item of \var{s}}{} + \lineiii{max(\var{s})}{largest item of \var{s}}{} + \lineiii{\var{x} in \var{s}}{\code{1} if an item of \var{s} is equal to \var{x}, else \code{0}}{} + \lineiii{\var{x} not in \var{s}}{\code{0} if an item of \var{s} is equal to \var{x}, else \code{1}}{} + \lineiii{\var{s} + \var{t}}{the concatenation of \var{s} and \var{t}}{} + \lineiii{\var{s} * \var{n}{\rm ,} \var{n} * \var{s}}{\var{n} copies of \var{s} concatenated}{} + \lineiii{\var{s}[\var{i}]}{\var{i}'th item of \var{s}, origin 0}{(1)} + \lineiii{\var{s}[\var{i}:\var{j}]}{slice of \var{s} from \var{i} to \var{j}}{(1), (2)} +\end{tableiii} +\indexiii{operations on}{sequence}{types} +\bifuncindex{len} +\bifuncindex{min} +\bifuncindex{max} +\indexii{concatenation}{operation} +\indexii{repetition}{operation} +\indexii{subscript}{operation} +\indexii{slice}{operation} +\opindex{in} +\opindex{not in} + +\noindent +Notes: + +% XXXJH all TeX-math expressions replaced by python-syntax expressions +\begin{description} + +\item[(1)] If \var{i} or \var{j} is negative, the index is relative to + the end of the string, i.e., \code{len(\var{s}) + \var{i}} or + \code{len(\var{s}) + \var{j}} is substituted. But note that \code{-0} is + still \code{0}. + +\item[(2)] The slice of \var{s} from \var{i} to \var{j} is defined as + the sequence of items with index \var{k} such that \code{\var{i} <= + \var{k} < \var{j}}. If \var{i} or \var{j} is greater than + \code{len(\var{s})}, use \code{len(\var{s})}. If \var{i} is omitted, + use \code{0}. If \var{j} is omitted, use \code{len(\var{s})}. If + \var{i} is greater than or equal to \var{j}, the slice is empty. + +\end{description} + +\subsubsection{More String Operations.} + +String objects have one unique built-in operation: the \code{\%} +operator (modulo) with a string left argument interprets this string +as a C sprintf format string to be applied to the right argument, and +returns the string resulting from this formatting operation. + +Unless the format string requires exactly one argument, the right +argument should be a tuple of the correct size. The following format +characters are understood: \%, c, s, i, d, u, o, x, X, e, E, f, g, G. +Width and precision may be a * to specify that an integer argument +specifies the actual width or precision. The flag characters -, +, +blank, \# and 0 are understood. The size specifiers h, l or L may be +present but are ignored. The ANSI features \code{\%p} and \code{\%n} +are not supported. Since Python strings have an explicit length, +\code{\%s} conversions don't assume that \code{'\\0'} is the end of +the string. + +For safety reasons, huge floating point precisions are truncated; +\code{\%f} conversions for huge numbers are replaced by +\code{\%g} conversions. All other errors raise exceptions. + +Additional string operations are defined in standard module +\code{string} and in built-in module \code{regex}. +\index{string} +\index{regex} + +\subsubsection{Mutable Sequence Types.} + +List objects support additional operations that allow in-place +modification of the object. +These operations would be supported by other mutable sequence types +(when added to the language) as well. +Strings and tuples are immutable sequence types and such objects cannot +be modified once created. +The following operations are defined on mutable sequence types (where +\var{x} is an arbitrary object): +\indexiii{mutable}{sequence}{types} +\indexii{list}{type} + +\begin{tableiii}{|c|l|c|}{code}{Operation}{Result}{Notes} + \lineiii{\var{s}[\var{i}] = \var{x}} + {item \var{i} of \var{s} is replaced by \var{x}}{} + \lineiii{\var{s}[\var{i}:\var{j}] = \var{t}} + {slice of \var{s} from \var{i} to \var{j} is replaced by \var{t}}{} + \lineiii{del \var{s}[\var{i}:\var{j}]} + {same as \code{\var{s}[\var{i}:\var{j}] = []}}{} + \lineiii{\var{s}.append(\var{x})} + {same as \code{\var{s}[len(\var{x}):len(\var{x})] = [\var{x}]}}{} + \lineiii{\var{s}.count(\var{x})} + {return number of \var{i}'s for which \code{\var{s}[\var{i}] == \var{x}}}{} + \lineiii{\var{s}.index(\var{x})} + {return smallest \var{i} such that \code{\var{s}[\var{i}] == \var{x}}}{(1)} + \lineiii{\var{s}.insert(\var{i}, \var{x})} + {same as \code{\var{s}[\var{i}:\var{i}] = [\var{x}]}}{} + \lineiii{\var{s}.remove(\var{x})} + {same as \code{del \var{s}[\var{s}.index(\var{x})]}}{(1)} + \lineiii{\var{s}.reverse()} + {reverses the items of \var{s} in place}{} + \lineiii{\var{s}.sort()} + {permutes the items of \var{s} to satisfy + \code{\var{s}[\var{i}] <= \var{s}[\var{j}]}, + for \code{\var{i} < \var{j}}}{(2)} +\end{tableiii} +\indexiv{operations on}{mutable}{sequence}{types} +\indexiii{operations on}{sequence}{types} +\indexiii{operations on}{list}{type} +\indexii{subscript}{assignment} +\indexii{slice}{assignment} +\stindex{del} +\renewcommand{\indexsubitem}{(list method)} +\ttindex{append} +\ttindex{count} +\ttindex{index} +\ttindex{insert} +\ttindex{remove} +\ttindex{reverse} +\ttindex{sort} + +\noindent +Notes: +\begin{description} +\item[(1)] Raises an exception when \var{x} is not found in \var{s}. + +\item[(2)] The \code{sort()} method takes an optional argument + specifying a comparison function of two arguments (list items) which + should return \code{-1}, \code{0} or \code{1} depending on whether the + first argument is considered smaller than, equal to, or larger than the + second argument. Note that this slows the sorting process down + considerably; e.g. to sort an array in reverse order it is much faster + to use calls to \code{sort()} and \code{reverse()} than to use + \code{sort()} with a comparison function that reverses the ordering of + the elements. +\end{description} + +\subsection{Mapping Types} + +A \dfn{mapping} object maps values of one type (the key type) to +arbitrary objects. Mappings are mutable objects. There is currently +only one mapping type, the \dfn{dictionary}. A dictionary's keys are +almost arbitrary values. The only types of values not acceptable as +keys are values containing lists or dictionaries or other mutable +types that are compared by value rather than by object identity. +Numeric types used for keys obey the normal rules for numeric +comparison: if two numbers compare equal (e.g. 1 and 1.0) then they +can be used interchangeably to index the same dictionary entry. + +\indexii{mapping}{types} +\indexii{dictionary}{type} + +Dictionaries are created by placing a comma-separated list of +\code{\var{key}: \var{value}} pairs within braces, for example: +\code{\{'jack': 4098, 'sjoerd: 4127\}} or +\code{\{4098: 'jack', 4127: 'sjoerd\}}. + +The following operations are defined on mappings (where \var{a} is a +mapping, \var{k} is a key and \var{x} is an arbitrary object): + +\begin{tableiii}{|c|l|c|}{code}{Operation}{Result}{Notes} + \lineiii{len(\var{a})}{the number of items in \var{a}}{} + \lineiii{\var{a}[\var{k}]}{the item of \var{a} with key \var{k}}{(1)} + \lineiii{\var{a}[\var{k}] = \var{x}}{set \code{\var{a}[\var{k}]} to \var{x}}{} + \lineiii{del \var{a}[\var{k}]}{remove \code{\var{a}[\var{k}]} from \var{a}}{(1)} + \lineiii{\var{a}.items()}{a copy of \var{a}'s list of (key, item) pairs}{(2)} + \lineiii{\var{a}.keys()}{a copy of \var{a}'s list of keys}{(2)} + \lineiii{\var{a}.values()}{a copy of \var{a}'s list of values}{(2)} + \lineiii{\var{a}.has_key(\var{k})}{\code{1} if \var{a} has a key \var{k}, else \code{0}}{} +\end{tableiii} +\indexiii{operations on}{mapping}{types} +\indexiii{operations on}{dictionary}{type} +\stindex{del} +\bifuncindex{len} +\renewcommand{\indexsubitem}{(dictionary method)} +\ttindex{keys} +\ttindex{has_key} + +% XXXJH some lines above, you talk about `true', elsewhere you +% explicitely states \code{0} or \code{1}. +\noindent +Notes: +\begin{description} +\item[(1)] Raises an exception if \var{k} is not in the map. + +\item[(2)] Keys and values are listed in random order, but at any +moment the ordering of the \code{keys()}, \code{values()} and +\code{items()} lists is the consistent with each other. +\end{description} + +\subsection{Other Built-in Types} + +The interpreter supports several other kinds of objects. +Most of these support only one or two operations. + +\subsubsection{Modules.} + +The only special operation on a module is attribute access: +\code{\var{m}.\var{name}}, where \var{m} is a module and \var{name} accesses +a name defined in \var{m}'s symbol table. Module attributes can be +assigned to. (Note that the \code{import} statement is not, strictly +spoken, an operation on a module object; \code{import \var{foo}} does not +require a module object named \var{foo} to exist, rather it requires +an (external) \emph{definition} for a module named \var{foo} +somewhere.) + +A special member of every module is \code{__dict__}. +This is the dictionary containing the module's symbol table. +Modifying this dictionary will actually change the module's symbol +table, but direct assignment to the \code{__dict__} attribute is not +possible (i.e., you can write \code{\var{m}.__dict__['a'] = 1}, which +defines \code{\var{m}.a} to be \code{1}, but you can't write \code{\var{m}.__dict__ = \{\}}. + +Modules are written like this: \code{<module 'sys'>}. + +\subsubsection{Classes and Class Instances.} +% XXXJH cross ref here +(See the Python Reference Manual for these.) + +\subsubsection{Functions.} + +Function objects are created by function definitions. The only +operation on a function object is to call it: +\code{\var{func}(\var{argument-list})}. + +There are really two flavors of function objects: built-in functions +and user-defined functions. Both support the same operation (to call +the function), but the implementation is different, hence the +different object types. + +The implementation adds two special read-only attributes: +\code{\var{f}.func_code} is a function's \dfn{code object} (see below) and +\code{\var{f}.func_globals} is the dictionary used as the function's +global name space (this is the same as \code{\var{m}.__dict__} where +\var{m} is the module in which the function \var{f} was defined). + +\subsubsection{Methods.} + +Methods are functions that are called using the attribute notation. +There are two flavors: built-in methods (such as \code{append()} on +lists) and class instance methods. Built-in methods are described +with the types that support them. + +The implementation adds two special read-only attributes to class +instance methods: \code{\var{m}.im_self} is the object whose method this +is, and \code{\var{m}.im_func} is the function implementing the method. +Calling \code{\var{m}(\var{arg-1}, \var{arg-2}, {\rm \ldots}, +\var{arg-n})} is completely equivalent to calling +\code{\var{m}.im_func(\var{m}.im_self, \var{arg-1}, \var{arg-2}, {\rm +\ldots}, \var{arg-n})}. + +(See the Python Reference Manual for more info.) + +\subsubsection{Type Objects.} + +Type objects represent the various object types. An object's type is +% XXXJH xref here +accessed by the built-in function \code{type()}. There are no special +operations on types. + +Types are written like this: \code{<type 'int'>}. + +\subsubsection{The Null Object.} + +This object is returned by functions that don't explicitly return a +value. It supports no special operations. There is exactly one null +object, named \code{None} (a built-in name). + +It is written as \code{None}. + +\subsubsection{File Objects.} + +File objects are implemented using \C{}'s \code{stdio} package and can be +% XXXJH xref here +created with the built-in function \code{open()} described under +Built-in Functions below. + +When a file operation fails for an I/O-related reason, the exception +\code{IOError} is raised. This includes situations where the +operation is not defined for some reason, like \code{seek()} on a tty +device or writing a file opened for reading. + +Files have the following methods: + + +\renewcommand{\indexsubitem}{(file method)} + +\begin{funcdesc}{close}{} + Close the file. A closed file cannot be read or written anymore. +\end{funcdesc} + +\begin{funcdesc}{flush}{} + Flush the internal buffer, like \code{stdio}'s \code{fflush()}. +\end{funcdesc} + +\begin{funcdesc}{isatty}{} + Return \code{1} if the file is connected to a tty(-like) device, else + \code{0}. +\end{funcdesc} + +\begin{funcdesc}{read}{size} + Read at most \var{size} bytes from the file (less if the read hits + \EOF{} or no more data is immediately available on a pipe, tty or + similar device). If the \var{size} argument is omitted, read all + data until \EOF{} is reached. The bytes are returned as a string + object. An empty string is returned when \EOF{} is encountered + immediately. (For certain files, like ttys, it makes sense to + continue reading after an \EOF{} is hit.) +\end{funcdesc} + +\begin{funcdesc}{readline}{} + Read one entire line from the file. A trailing newline character is + kept in the string (but may be absent when a file ends with an + incomplete line). An empty string is returned when \EOF{} is hit + immediately. Note: unlike \code{stdio}'s \code{fgets()}, the returned + string contains null characters (\code{'\e 0'}) if they occurred in the + input. +\end{funcdesc} + +\begin{funcdesc}{readlines}{} + Read until \EOF{} using \code{readline()} and return a list containing + the lines thus read. +\end{funcdesc} + +\begin{funcdesc}{seek}{offset\, whence} + Set the file's current position, like \code{stdio}'s \code{fseek()}. + The \var{whence} argument is optional and defaults to \code{0} + (absolute file positioning); other values are \code{1} (seek + relative to the current position) and \code{2} (seek relative to the + file's end). There is no return value. +\end{funcdesc} + +\begin{funcdesc}{tell}{} + Return the file's current position, like \code{stdio}'s \code{ftell()}. +\end{funcdesc} + +\begin{funcdesc}{write}{str} + Write a string to the file. There is no return value. +\end{funcdesc} + +\subsubsection{Internal Objects.} + +(See the Python Reference Manual for these.) + +\subsection{Special Attributes} + +The implementation adds a few special read-only attributes to several +object types, where they are relevant: + +\begin{itemize} + +\item +\code{\var{x}.__dict__} is a dictionary of some sort used to store an +object's (writable) attributes; + +\item +\code{\var{x}.__methods__} lists the methods of many built-in object types, +e.g., \code{[].__methods__} is +% XXXJH results in?, yields?, written down as an example +\code{['append', 'count', 'index', 'insert', 'remove', 'reverse', 'sort']}; + +\item +\code{\var{x}.__members__} lists data attributes; + +\item +\code{\var{x}.__class__} is the class to which a class instance belongs; + +\item +\code{\var{x}.__bases__} is the tuple of base classes of a class object. + +\end{itemize} |