diff options
author | Nathaniel J. Smith <njs@pobox.com> | 2018-01-06 07:15:34 (GMT) |
---|---|---|
committer | Benjamin Peterson <benjamin@python.org> | 2018-01-06 07:15:34 (GMT) |
commit | 735ae8d139a673b30b321dc10acfd3d14f0d633b (patch) | |
tree | 027e039ce309a5617d15cdf7f2ef8a1f711fcaaa /Include | |
parent | 502d551c6d782963d26957a9e5ff1588946f233f (diff) | |
download | cpython-735ae8d139a673b30b321dc10acfd3d14f0d633b.zip cpython-735ae8d139a673b30b321dc10acfd3d14f0d633b.tar.gz cpython-735ae8d139a673b30b321dc10acfd3d14f0d633b.tar.bz2 |
bpo-29137: Remove fpectl module (#4789)
This module has never been enabled by default, never worked correctly
on x86-64, and caused ABI problems that caused C extension
compatibility. See bpo-29137 for details/discussion.
Diffstat (limited to 'Include')
-rw-r--r-- | Include/pyfpe.h | 170 |
1 files changed, 3 insertions, 167 deletions
diff --git a/Include/pyfpe.h b/Include/pyfpe.h index d86cb74..5a99e39 100644 --- a/Include/pyfpe.h +++ b/Include/pyfpe.h @@ -1,176 +1,12 @@ #ifndef Py_PYFPE_H #define Py_PYFPE_H -#ifdef __cplusplus -extern "C" { -#endif -/* - --------------------------------------------------------------------- - / Copyright (c) 1996. \ - | The Regents of the University of California. | - | All rights reserved. | - | | - | Permission to use, copy, modify, and distribute this software for | - | any purpose without fee is hereby granted, provided that this en- | - | tire notice is included in all copies of any software which is or | - | includes a copy or modification of this software and in all | - | copies of the supporting documentation for such software. | - | | - | This work was produced at the University of California, Lawrence | - | Livermore National Laboratory under contract no. W-7405-ENG-48 | - | between the U.S. Department of Energy and The Regents of the | - | University of California for the operation of UC LLNL. | - | | - | DISCLAIMER | - | | - | This software was prepared as an account of work sponsored by an | - | agency of the United States Government. Neither the United States | - | Government nor the University of California nor any of their em- | - | ployees, makes any warranty, express or implied, or assumes any | - | liability or responsibility for the accuracy, completeness, or | - | usefulness of any information, apparatus, product, or process | - | disclosed, or represents that its use would not infringe | - | privately-owned rights. Reference herein to any specific commer- | - | cial products, process, or service by trade name, trademark, | - | manufacturer, or otherwise, does not necessarily constitute or | - | imply its endorsement, recommendation, or favoring by the United | - | States Government or the University of California. The views and | - | opinions of authors expressed herein do not necessarily state or | - | reflect those of the United States Government or the University | - | of California, and shall not be used for advertising or product | - \ endorsement purposes. / - --------------------------------------------------------------------- -*/ -/* - * Define macros for handling SIGFPE. - * Lee Busby, LLNL, November, 1996 - * busby1@llnl.gov - * - ********************************************* - * Overview of the system for handling SIGFPE: - * - * This file (Include/pyfpe.h) defines a couple of "wrapper" macros for - * insertion into your Python C code of choice. Their proper use is - * discussed below. The file Python/pyfpe.c defines a pair of global - * variables PyFPE_jbuf and PyFPE_counter which are used by the signal - * handler for SIGFPE to decide if a particular exception was protected - * by the macros. The signal handler itself, and code for enabling the - * generation of SIGFPE in the first place, is in a (new) Python module - * named fpectl. This module is standard in every respect. It can be loaded - * either statically or dynamically as you choose, and like any other - * Python module, has no effect until you import it. - * - * In the general case, there are three steps toward handling SIGFPE in any - * Python code: - * - * 1) Add the *_PROTECT macros to your C code as required to protect - * dangerous floating point sections. - * - * 2) Turn on the inclusion of the code by adding the ``--with-fpectl'' - * flag at the time you run configure. If the fpectl or other modules - * which use the *_PROTECT macros are to be dynamically loaded, be - * sure they are compiled with WANT_SIGFPE_HANDLER defined. - * - * 3) When python is built and running, import fpectl, and execute - * fpectl.turnon_sigfpe(). This sets up the signal handler and enables - * generation of SIGFPE whenever an exception occurs. From this point - * on, any properly trapped SIGFPE should result in the Python - * FloatingPointError exception. - * - * Step 1 has been done already for the Python kernel code, and should be - * done soon for the NumPy array package. Step 2 is usually done once at - * python install time. Python's behavior with respect to SIGFPE is not - * changed unless you also do step 3. Thus you can control this new - * facility at compile time, or run time, or both. - * - ******************************** - * Using the macros in your code: - * - * static PyObject *foobar(PyObject *self,PyObject *args) - * { - * .... - * PyFPE_START_PROTECT("Error in foobar", return 0) - * result = dangerous_op(somearg1, somearg2, ...); - * PyFPE_END_PROTECT(result) - * .... - * } - * - * If a floating point error occurs in dangerous_op, foobar returns 0 (NULL), - * after setting the associated value of the FloatingPointError exception to - * "Error in foobar". ``Dangerous_op'' can be a single operation, or a block - * of code, function calls, or any combination, so long as no alternate - * return is possible before the PyFPE_END_PROTECT macro is reached. - * - * The macros can only be used in a function context where an error return - * can be recognized as signaling a Python exception. (Generally, most - * functions that return a PyObject * will qualify.) - * - * Guido's original design suggestion for PyFPE_START_PROTECT and - * PyFPE_END_PROTECT had them open and close a local block, with a locally - * defined jmp_buf and jmp_buf pointer. This would allow recursive nesting - * of the macros. The Ansi C standard makes it clear that such local - * variables need to be declared with the "volatile" type qualifier to keep - * setjmp from corrupting their values. Some current implementations seem - * to be more restrictive. For example, the HPUX man page for setjmp says - * - * Upon the return from a setjmp() call caused by a longjmp(), the - * values of any non-static local variables belonging to the routine - * from which setjmp() was called are undefined. Code which depends on - * such values is not guaranteed to be portable. - * - * I therefore decided on a more limited form of nesting, using a counter - * variable (PyFPE_counter) to keep track of any recursion. If an exception - * occurs in an ``inner'' pair of macros, the return will apparently - * come from the outermost level. - * +/* These macros used to do something when Python was built with --with-fpectl, + * but support for that was dropped in 3.7. We continue to define them though, + * to avoid breaking API users. */ -#ifdef WANT_SIGFPE_HANDLER -#include <signal.h> -#include <setjmp.h> -#include <math.h> -extern jmp_buf PyFPE_jbuf; -extern int PyFPE_counter; -extern double PyFPE_dummy(void *); - -#define PyFPE_START_PROTECT(err_string, leave_stmt) \ -if (!PyFPE_counter++ && setjmp(PyFPE_jbuf)) { \ - PyErr_SetString(PyExc_FloatingPointError, err_string); \ - PyFPE_counter = 0; \ - leave_stmt; \ -} - -/* - * This (following) is a heck of a way to decrement a counter. However, - * unless the macro argument is provided, code optimizers will sometimes move - * this statement so that it gets executed *before* the unsafe expression - * which we're trying to protect. That pretty well messes things up, - * of course. - * - * If the expression(s) you're trying to protect don't happen to return a - * value, you will need to manufacture a dummy result just to preserve the - * correct ordering of statements. Note that the macro passes the address - * of its argument (so you need to give it something which is addressable). - * If your expression returns multiple results, pass the last such result - * to PyFPE_END_PROTECT. - * - * Note that PyFPE_dummy returns a double, which is cast to int. - * This seeming insanity is to tickle the Floating Point Unit (FPU). - * If an exception has occurred in a preceding floating point operation, - * some architectures (notably Intel 80x86) will not deliver the interrupt - * until the *next* floating point operation. This is painful if you've - * already decremented PyFPE_counter. - */ -#define PyFPE_END_PROTECT(v) PyFPE_counter -= (int)PyFPE_dummy(&(v)); - -#else - #define PyFPE_START_PROTECT(err_string, leave_stmt) #define PyFPE_END_PROTECT(v) -#endif - -#ifdef __cplusplus -} -#endif #endif /* !Py_PYFPE_H */ |