diff options
author | Walter Dörwald <walter@livinglogic.de> | 2005-06-13 21:44:48 (GMT) |
---|---|---|
committer | Walter Dörwald <walter@livinglogic.de> | 2005-06-13 21:44:48 (GMT) |
commit | a00215983b83552fded39c4efca6d57a6af099fa (patch) | |
tree | 0cb8b95c1ced13373e89abe5ee727084c78b1186 /Lib/test/test_long.py | |
parent | f2ca5af43919e790f4e1b5dc3edeac6561e6e19b (diff) | |
download | cpython-a00215983b83552fded39c4efca6d57a6af099fa.zip cpython-a00215983b83552fded39c4efca6d57a6af099fa.tar.gz cpython-a00215983b83552fded39c4efca6d57a6af099fa.tar.bz2 |
Port test_long.py to unittest.
Diffstat (limited to 'Lib/test/test_long.py')
-rw-r--r-- | Lib/test/test_long.py | 959 |
1 files changed, 451 insertions, 508 deletions
diff --git a/Lib/test/test_long.py b/Lib/test/test_long.py index 74ae7c6..ac786bd 100644 --- a/Lib/test/test_long.py +++ b/Lib/test/test_long.py @@ -1,6 +1,16 @@ -from test.test_support import verify, verbose, TestFailed, fcmp -from string import join -from random import random, randint +import unittest +from test import test_support + +import random + +# Used for lazy formatting of failure messages +class Frm(object): + def __init__(self, format, *args): + self.format = format + self.args = args + + def __str__(self): + return self.format % self.args # SHIFT should match the value in longintrepr.h for best testing. SHIFT = 15 @@ -26,518 +36,451 @@ del p2 special = special + map(lambda x: ~x, special) + \ map(lambda x: -x, special) -# ------------------------------------------------------------ utilities - -# Use check instead of assert so the test still does something -# under -O. - -def check(ok, *args): - if not ok: - raise TestFailed, join(map(str, args), " ") - -# Get quasi-random long consisting of ndigits digits (in base BASE). -# quasi == the most-significant digit will not be 0, and the number -# is constructed to contain long strings of 0 and 1 bits. These are -# more likely than random bits to provoke digit-boundary errors. -# The sign of the number is also random. - -def getran(ndigits): - verify(ndigits > 0) - nbits_hi = ndigits * SHIFT - nbits_lo = nbits_hi - SHIFT + 1 - answer = 0L - nbits = 0 - r = int(random() * (SHIFT * 2)) | 1 # force 1 bits to start - while nbits < nbits_lo: - bits = (r >> 1) + 1 - bits = min(bits, nbits_hi - nbits) - verify(1 <= bits <= SHIFT) - nbits = nbits + bits - answer = answer << bits - if r & 1: - answer = answer | ((1 << bits) - 1) - r = int(random() * (SHIFT * 2)) - verify(nbits_lo <= nbits <= nbits_hi) - if random() < 0.5: - answer = -answer - return answer - -# Get random long consisting of ndigits random digits (relative to base -# BASE). The sign bit is also random. - -def getran2(ndigits): - answer = 0L - for i in range(ndigits): - answer = (answer << SHIFT) | randint(0, MASK) - if random() < 0.5: - answer = -answer - return answer - -# --------------------------------------------------------------- divmod - -def test_division_2(x, y): - q, r = divmod(x, y) - q2, r2 = x//y, x%y - pab, pba = x*y, y*x - check(pab == pba, "multiplication does not commute for", x, y) - check(q == q2, "divmod returns different quotient than / for", x, y) - check(r == r2, "divmod returns different mod than % for", x, y) - check(x == q*y + r, "x != q*y + r after divmod on", x, y) - if y > 0: - check(0 <= r < y, "bad mod from divmod on", x, y) - else: - check(y < r <= 0, "bad mod from divmod on", x, y) - -def test_division(maxdigits=MAXDIGITS): - if verbose: - print "long / * % divmod" - digits = range(1, maxdigits+1) + range(KARATSUBA_CUTOFF, - KARATSUBA_CUTOFF + 14) - digits.append(KARATSUBA_CUTOFF * 3) - for lenx in digits: - x = getran(lenx) - for leny in digits: - y = getran(leny) or 1L - test_division_2(x, y) -# ------------------------------------------------------------ karatsuba - -def test_karatsuba(): - - if verbose: - print "Karatsuba" - - digits = range(1, 5) + range(KARATSUBA_CUTOFF, KARATSUBA_CUTOFF + 10) - digits.extend([KARATSUBA_CUTOFF * 10, KARATSUBA_CUTOFF * 100]) - - bits = [digit * SHIFT for digit in digits] - - # Test products of long strings of 1 bits -- (2**x-1)*(2**y-1) == - # 2**(x+y) - 2**x - 2**y + 1, so the proper result is easy to check. - for abits in bits: - a = (1L << abits) - 1 - for bbits in bits: - if bbits < abits: - continue - b = (1L << bbits) - 1 - x = a * b - y = ((1L << (abits + bbits)) - - (1L << abits) - - (1L << bbits) + - 1) - check(x == y, "bad result for", a, "*", b, x, y) -# -------------------------------------------------------------- ~ & | ^ - -def test_bitop_identities_1(x): - check(x & 0 == 0, "x & 0 != 0 for", x) - check(x | 0 == x, "x | 0 != x for", x) - check(x ^ 0 == x, "x ^ 0 != x for", x) - check(x & -1 == x, "x & -1 != x for", x) - check(x | -1 == -1, "x | -1 != -1 for", x) - check(x ^ -1 == ~x, "x ^ -1 != ~x for", x) - check(x == ~~x, "x != ~~x for", x) - check(x & x == x, "x & x != x for", x) - check(x | x == x, "x | x != x for", x) - check(x ^ x == 0, "x ^ x != 0 for", x) - check(x & ~x == 0, "x & ~x != 0 for", x) - check(x | ~x == -1, "x | ~x != -1 for", x) - check(x ^ ~x == -1, "x ^ ~x != -1 for", x) - check(-x == 1 + ~x == ~(x-1), "not -x == 1 + ~x == ~(x-1) for", x) - for n in range(2*SHIFT): - p2 = 2L ** n - check(x << n >> n == x, "x << n >> n != x for", x, n) - check(x // p2 == x >> n, "x // p2 != x >> n for x n p2", x, n, p2) - check(x * p2 == x << n, "x * p2 != x << n for x n p2", x, n, p2) - check(x & -p2 == x >> n << n == x & ~(p2 - 1), - "not x & -p2 == x >> n << n == x & ~(p2 - 1) for x n p2", - x, n, p2) - -def test_bitop_identities_2(x, y): - check(x & y == y & x, "x & y != y & x for", x, y) - check(x | y == y | x, "x | y != y | x for", x, y) - check(x ^ y == y ^ x, "x ^ y != y ^ x for", x, y) - check(x ^ y ^ x == y, "x ^ y ^ x != y for", x, y) - check(x & y == ~(~x | ~y), "x & y != ~(~x | ~y) for", x, y) - check(x | y == ~(~x & ~y), "x | y != ~(~x & ~y) for", x, y) - check(x ^ y == (x | y) & ~(x & y), - "x ^ y != (x | y) & ~(x & y) for", x, y) - check(x ^ y == (x & ~y) | (~x & y), - "x ^ y == (x & ~y) | (~x & y) for", x, y) - check(x ^ y == (x | y) & (~x | ~y), - "x ^ y == (x | y) & (~x | ~y) for", x, y) - -def test_bitop_identities_3(x, y, z): - check((x & y) & z == x & (y & z), - "(x & y) & z != x & (y & z) for", x, y, z) - check((x | y) | z == x | (y | z), - "(x | y) | z != x | (y | z) for", x, y, z) - check((x ^ y) ^ z == x ^ (y ^ z), - "(x ^ y) ^ z != x ^ (y ^ z) for", x, y, z) - check(x & (y | z) == (x & y) | (x & z), - "x & (y | z) != (x & y) | (x & z) for", x, y, z) - check(x | (y & z) == (x | y) & (x | z), - "x | (y & z) != (x | y) & (x | z) for", x, y, z) - -def test_bitop_identities(maxdigits=MAXDIGITS): - if verbose: - print "long bit-operation identities" - for x in special: - test_bitop_identities_1(x) - digits = range(1, maxdigits+1) - for lenx in digits: - x = getran(lenx) - test_bitop_identities_1(x) - for leny in digits: - y = getran(leny) - test_bitop_identities_2(x, y) - test_bitop_identities_3(x, y, getran((lenx + leny)//2)) - -# ------------------------------------------------- hex oct repr str atol - -def slow_format(x, base): - if (x, base) == (0, 8): - # this is an oddball! - return "0L" - digits = [] - sign = 0 - if x < 0: - sign, x = 1, -x - while x: - x, r = divmod(x, base) - digits.append(int(r)) - digits.reverse() - digits = digits or [0] - return '-'[:sign] + \ - {8: '0', 10: '', 16: '0x'}[base] + \ - join(map(lambda i: "0123456789ABCDEF"[i], digits), '') + \ - "L" - -def test_format_1(x): - from string import atol - for base, mapper in (8, oct), (10, repr), (16, hex): - got = mapper(x) - expected = slow_format(x, base) - check(got == expected, mapper.__name__, "returned", - got, "but expected", expected, "for", x) - check(atol(got, 0) == x, 'atol("%s", 0) !=' % got, x) - # str() has to be checked a little differently since there's no - # trailing "L" - got = str(x) - expected = slow_format(x, 10)[:-1] - check(got == expected, mapper.__name__, "returned", - got, "but expected", expected, "for", x) - -def test_format(maxdigits=MAXDIGITS): - if verbose: - print "long str/hex/oct/atol" - for x in special: - test_format_1(x) - for i in range(10): - for lenx in range(1, maxdigits+1): - x = getran(lenx) - test_format_1(x) - -# ----------------------------------------------------------------- misc - -def test_misc(maxdigits=MAXDIGITS): - if verbose: - print "long miscellaneous operations" - import sys - - # check the extremes in int<->long conversion - hugepos = sys.maxint - hugeneg = -hugepos - 1 - hugepos_aslong = long(hugepos) - hugeneg_aslong = long(hugeneg) - check(hugepos == hugepos_aslong, "long(sys.maxint) != sys.maxint") - check(hugeneg == hugeneg_aslong, - "long(-sys.maxint-1) != -sys.maxint-1") - - # long -> int should not fail for hugepos_aslong or hugeneg_aslong - try: - check(int(hugepos_aslong) == hugepos, - "converting sys.maxint to long and back to int fails") - except OverflowError: - raise TestFailed, "int(long(sys.maxint)) overflowed!" - try: - check(int(hugeneg_aslong) == hugeneg, - "converting -sys.maxint-1 to long and back to int fails") - except OverflowError: - raise TestFailed, "int(long(-sys.maxint-1)) overflowed!" - - # but long -> int should overflow for hugepos+1 and hugeneg-1 - x = hugepos_aslong + 1 - try: - y = int(x) - except OverflowError: - raise TestFailed, "int(long(sys.maxint) + 1) mustn't overflow" - if not isinstance(y, long): - raise TestFailed("int(long(sys.maxint) + 1) should have returned long") - - x = hugeneg_aslong - 1 - try: - y = int(x) - except OverflowError: - raise TestFailed, "int(long(-sys.maxint-1) - 1) mustn't overflow" - if not isinstance(y, long): - raise TestFailed("int(long(-sys.maxint-1) - 1) should have returned long") - - class long2(long): - pass - x = long2(1L<<100) - y = int(x) - if type(y) is not long: - raise TestFailed("overflowing int conversion must return long not long subtype") -# ----------------------------------- tests of auto int->long conversion - -def test_auto_overflow(): - import math, sys - - if verbose: - print "auto-convert int->long on overflow" - - special = [0, 1, 2, 3, sys.maxint-1, sys.maxint, sys.maxint+1] - sqrt = int(math.sqrt(sys.maxint)) - special.extend([sqrt-1, sqrt, sqrt+1]) - special.extend([-i for i in special]) - - def checkit(*args): - # Heavy use of nested scopes here! - verify(got == expected, "for %r expected %r got %r" % - (args, expected, got)) - - for x in special: - longx = long(x) - - expected = -longx - got = -x - checkit('-', x) - - for y in special: - longy = long(y) - - expected = longx + longy - got = x + y - checkit(x, '+', y) - - expected = longx - longy - got = x - y - checkit(x, '-', y) - - expected = longx * longy - got = x * y - checkit(x, '*', y) - - if y: - expected = longx / longy - got = x / y - checkit(x, '/', y) - - expected = longx // longy - got = x // y - checkit(x, '//', y) - - expected = divmod(longx, longy) - got = divmod(longx, longy) - checkit(x, 'divmod', y) - - if abs(y) < 5 and not (x == 0 and y < 0): - expected = longx ** longy - got = x ** y - checkit(x, '**', y) - - for z in special: - if z != 0 : - if y >= 0: - expected = pow(longx, longy, long(z)) - got = pow(x, y, z) - checkit('pow', x, y, '%', z) - else: - try: - pow(longx, longy, long(z)) - except TypeError: - pass - else: - raise TestFailed("pow%r should have raised " - "TypeError" % ((longx, longy, long(z)),)) - -# ---------------------------------------- tests of long->float overflow - -def test_float_overflow(): - import math - - if verbose: - print "long->float overflow" - - for x in -2.0, -1.0, 0.0, 1.0, 2.0: - verify(float(long(x)) == x) - - shuge = '12345' * 120 - huge = 1L << 30000 - mhuge = -huge - namespace = {'huge': huge, 'mhuge': mhuge, 'shuge': shuge, 'math': math} - for test in ["float(huge)", "float(mhuge)", - "complex(huge)", "complex(mhuge)", - "complex(huge, 1)", "complex(mhuge, 1)", - "complex(1, huge)", "complex(1, mhuge)", - "1. + huge", "huge + 1.", "1. + mhuge", "mhuge + 1.", - "1. - huge", "huge - 1.", "1. - mhuge", "mhuge - 1.", - "1. * huge", "huge * 1.", "1. * mhuge", "mhuge * 1.", - "1. // huge", "huge // 1.", "1. // mhuge", "mhuge // 1.", - "1. / huge", "huge / 1.", "1. / mhuge", "mhuge / 1.", - "1. ** huge", "huge ** 1.", "1. ** mhuge", "mhuge ** 1.", - "math.sin(huge)", "math.sin(mhuge)", - "math.sqrt(huge)", "math.sqrt(mhuge)", # should do better - "math.floor(huge)", "math.floor(mhuge)"]: +class LongTest(unittest.TestCase): + + # Get quasi-random long consisting of ndigits digits (in base BASE). + # quasi == the most-significant digit will not be 0, and the number + # is constructed to contain long strings of 0 and 1 bits. These are + # more likely than random bits to provoke digit-boundary errors. + # The sign of the number is also random. + + def getran(self, ndigits): + self.assert_(ndigits > 0) + nbits_hi = ndigits * SHIFT + nbits_lo = nbits_hi - SHIFT + 1 + answer = 0L + nbits = 0 + r = int(random.random() * (SHIFT * 2)) | 1 # force 1 bits to start + while nbits < nbits_lo: + bits = (r >> 1) + 1 + bits = min(bits, nbits_hi - nbits) + self.assert_(1 <= bits <= SHIFT) + nbits = nbits + bits + answer = answer << bits + if r & 1: + answer = answer | ((1 << bits) - 1) + r = int(random.random() * (SHIFT * 2)) + self.assert_(nbits_lo <= nbits <= nbits_hi) + if random.random() < 0.5: + answer = -answer + return answer + + # Get random long consisting of ndigits random digits (relative to base + # BASE). The sign bit is also random. + + def getran2(ndigits): + answer = 0L + for i in xrange(ndigits): + answer = (answer << SHIFT) | random.randint(0, MASK) + if random.random() < 0.5: + answer = -answer + return answer + + def check_division(self, x, y): + eq = self.assertEqual + q, r = divmod(x, y) + q2, r2 = x//y, x%y + pab, pba = x*y, y*x + eq(pab, pba, Frm("multiplication does not commute for %r and %r", x, y)) + eq(q, q2, Frm("divmod returns different quotient than / for %r and %r", x, y)) + eq(r, r2, Frm("divmod returns different mod than %% for %r and %r", x, y)) + eq(x, q*y + r, Frm("x != q*y + r after divmod on x=%r, y=%r", x, y)) + if y > 0: + self.assert_(0 <= r < y, Frm("bad mod from divmod on %r and %r", x, y)) + else: + self.assert_(y < r <= 0, Frm("bad mod from divmod on %r and %r", x, y)) + + def test_division(self): + digits = range(1, MAXDIGITS+1) + range(KARATSUBA_CUTOFF, + KARATSUBA_CUTOFF + 14) + digits.append(KARATSUBA_CUTOFF * 3) + for lenx in digits: + x = self.getran(lenx) + for leny in digits: + y = self.getran(leny) or 1L + self.check_division(x, y) + + def test_karatsuba(self): + digits = range(1, 5) + range(KARATSUBA_CUTOFF, KARATSUBA_CUTOFF + 10) + digits.extend([KARATSUBA_CUTOFF * 10, KARATSUBA_CUTOFF * 100]) + + bits = [digit * SHIFT for digit in digits] + + # Test products of long strings of 1 bits -- (2**x-1)*(2**y-1) == + # 2**(x+y) - 2**x - 2**y + 1, so the proper result is easy to check. + for abits in bits: + a = (1L << abits) - 1 + for bbits in bits: + if bbits < abits: + continue + b = (1L << bbits) - 1 + x = a * b + y = ((1L << (abits + bbits)) - + (1L << abits) - + (1L << bbits) + + 1) + self.assertEqual(x, y, + Frm("bad result for a*b: a=%r, b=%r, x=%r, y=%r", a, b, x, y)) + + def check_bitop_identities_1(self, x): + eq = self.assertEqual + eq(x & 0, 0, Frm("x & 0 != 0 for x=%r", x)) + eq(x | 0, x, Frm("x | 0 != x for x=%r", x)) + eq(x ^ 0, x, Frm("x ^ 0 != x for x=%r", x)) + eq(x & -1, x, Frm("x & -1 != x for x=%r", x)) + eq(x | -1, -1, Frm("x | -1 != -1 for x=%r", x)) + eq(x ^ -1, ~x, Frm("x ^ -1 != ~x for x=%r", x)) + eq(x, ~~x, Frm("x != ~~x for x=%r", x)) + eq(x & x, x, Frm("x & x != x for x=%r", x)) + eq(x | x, x, Frm("x | x != x for x=%r", x)) + eq(x ^ x, 0, Frm("x ^ x != 0 for x=%r", x)) + eq(x & ~x, 0, Frm("x & ~x != 0 for x=%r", x)) + eq(x | ~x, -1, Frm("x | ~x != -1 for x=%r", x)) + eq(x ^ ~x, -1, Frm("x ^ ~x != -1 for x=%r", x)) + eq(-x, 1 + ~x, Frm("not -x == 1 + ~x for x=%r", x)) + eq(-x, ~(x-1), Frm("not -x == ~(x-1) forx =%r", x)) + for n in xrange(2*SHIFT): + p2 = 2L ** n + eq(x << n >> n, x, + Frm("x << n >> n != x for x=%r, n=%r", (x, n))) + eq(x // p2, x >> n, + Frm("x // p2 != x >> n for x=%r n=%r p2=%r", (x, n, p2))) + eq(x * p2, x << n, + Frm("x * p2 != x << n for x=%r n=%r p2=%r", (x, n, p2))) + eq(x & -p2, x >> n << n, + Frm("not x & -p2 == x >> n << n for x=%r n=%r p2=%r", (x, n, p2))) + eq(x & -p2, x & ~(p2 - 1), + Frm("not x & -p2 == x & ~(p2 - 1) for x=%r n=%r p2=%r", (x, n, p2))) + + def check_bitop_identities_2(self, x, y): + eq = self.assertEqual + eq(x & y, y & x, Frm("x & y != y & x for x=%r, y=%r", (x, y))) + eq(x | y, y | x, Frm("x | y != y | x for x=%r, y=%r", (x, y))) + eq(x ^ y, y ^ x, Frm("x ^ y != y ^ x for x=%r, y=%r", (x, y))) + eq(x ^ y ^ x, y, Frm("x ^ y ^ x != y for x=%r, y=%r", (x, y))) + eq(x & y, ~(~x | ~y), Frm("x & y != ~(~x | ~y) for x=%r, y=%r", (x, y))) + eq(x | y, ~(~x & ~y), Frm("x | y != ~(~x & ~y) for x=%r, y=%r", (x, y))) + eq(x ^ y, (x | y) & ~(x & y), + Frm("x ^ y != (x | y) & ~(x & y) for x=%r, y=%r", (x, y))) + eq(x ^ y, (x & ~y) | (~x & y), + Frm("x ^ y == (x & ~y) | (~x & y) for x=%r, y=%r", (x, y))) + eq(x ^ y, (x | y) & (~x | ~y), + Frm("x ^ y == (x | y) & (~x | ~y) for x=%r, y=%r", (x, y))) + + def check_bitop_identities_3(self, x, y, z): + eq = self.assertEqual + eq((x & y) & z, x & (y & z), + Frm("(x & y) & z != x & (y & z) for x=%r, y=%r, z=%r", (x, y, z))) + eq((x | y) | z, x | (y | z), + Frm("(x | y) | z != x | (y | z) for x=%r, y=%r, z=%r", (x, y, z))) + eq((x ^ y) ^ z, x ^ (y ^ z), + Frm("(x ^ y) ^ z != x ^ (y ^ z) for x=%r, y=%r, z=%r", (x, y, z))) + eq(x & (y | z), (x & y) | (x & z), + Frm("x & (y | z) != (x & y) | (x & z) for x=%r, y=%r, z=%r", (x, y, z))) + eq(x | (y & z), (x | y) & (x | z), + Frm("x | (y & z) != (x | y) & (x | z) for x=%r, y=%r, z=%r", (x, y, z))) + + def test_bitop_identities(self): + for x in special: + self.check_bitop_identities_1(x) + digits = xrange(1, MAXDIGITS+1) + for lenx in digits: + x = self.getran(lenx) + self.check_bitop_identities_1(x) + for leny in digits: + y = self.getran(leny) + self.check_bitop_identities_2(x, y) + self.check_bitop_identities_3(x, y, self.getran((lenx + leny)//2)) + + def slow_format(self, x, base): + if (x, base) == (0, 8): + # this is an oddball! + return "0L" + digits = [] + sign = 0 + if x < 0: + sign, x = 1, -x + while x: + x, r = divmod(x, base) + digits.append(int(r)) + digits.reverse() + digits = digits or [0] + return '-'[:sign] + \ + {8: '0', 10: '', 16: '0x'}[base] + \ + "".join(map(lambda i: "0123456789ABCDEF"[i], digits)) + "L" + + def check_format_1(self, x): + for base, mapper in (8, oct), (10, repr), (16, hex): + got = mapper(x) + expected = self.slow_format(x, base) + msg = Frm("%s returned %r but expected %r for %r", + mapper.__name__, got, expected, x) + self.assertEqual(got, expected, msg) + self.assertEqual(long(got, 0), x, Frm('long("%s", 0) != %r', got, x)) + # str() has to be checked a little differently since there's no + # trailing "L" + got = str(x) + expected = self.slow_format(x, 10)[:-1] + msg = Frm("%s returned %r but expected %r for %r", + mapper.__name__, got, expected, x) + self.assertEqual(got, expected, msg) + + def test_format(self): + for x in special: + self.check_format_1(x) + for i in xrange(10): + for lenx in xrange(1, MAXDIGITS+1): + x = self.getran(lenx) + self.check_format_1(x) + + def test_misc(self): + import sys + + # check the extremes in int<->long conversion + hugepos = sys.maxint + hugeneg = -hugepos - 1 + hugepos_aslong = long(hugepos) + hugeneg_aslong = long(hugeneg) + self.assertEqual(hugepos, hugepos_aslong, "long(sys.maxint) != sys.maxint") + self.assertEqual(hugeneg, hugeneg_aslong, + "long(-sys.maxint-1) != -sys.maxint-1") + + # long -> int should not fail for hugepos_aslong or hugeneg_aslong try: - eval(test, namespace) + self.assertEqual(int(hugepos_aslong), hugepos, + "converting sys.maxint to long and back to int fails") except OverflowError: - pass - else: - raise TestFailed("expected OverflowError from %s" % test) - - # XXX Perhaps float(shuge) can raise OverflowError on some box? - # The comparison should not. - if float(shuge) == int(shuge): - raise TestFailed("float(shuge) should not equal int(shuge)") - -# ---------------------------------------------- test huge log and log10 - -def test_logs(): - import math - - if verbose: - print "log and log10" - - LOG10E = math.log10(math.e) - - for exp in range(10) + [100, 1000, 10000]: - value = 10 ** exp - log10 = math.log10(value) - verify(fcmp(log10, exp) == 0) - - # log10(value) == exp, so log(value) == log10(value)/log10(e) == - # exp/LOG10E - expected = exp / LOG10E - log = math.log(value) - verify(fcmp(log, expected) == 0) + self.fail("int(long(sys.maxint)) overflowed!") + try: + self.assertEqual(int(hugeneg_aslong), hugeneg, + "converting -sys.maxint-1 to long and back to int fails") + except OverflowError: + self.fail("int(long(-sys.maxint-1)) overflowed!") - for bad in -(1L << 10000), -2L, 0L: + # but long -> int should overflow for hugepos+1 and hugeneg-1 + x = hugepos_aslong + 1 try: - math.log(bad) - raise TestFailed("expected ValueError from log(<= 0)") - except ValueError: - pass + y = int(x) + except OverflowError: + self.fail("int(long(sys.maxint) + 1) mustn't overflow") + self.assert_(isinstance(y, long), + "int(long(sys.maxint) + 1) should have returned long") + x = hugeneg_aslong - 1 try: - math.log10(bad) - raise TestFailed("expected ValueError from log10(<= 0)") - except ValueError: + y = int(x) + except OverflowError: + self.fail("int(long(-sys.maxint-1) - 1) mustn't overflow") + self.assert_(isinstance(y, long), + "int(long(-sys.maxint-1) - 1) should have returned long") + + class long2(long): pass + x = long2(1L<<100) + y = int(x) + self.assert_(type(y) is long, + "overflowing int conversion must return long not long subtype") -# ----------------------------------------------- test mixed comparisons - -def test_mixed_compares(): - import math - import sys - - if verbose: - print "mixed comparisons" - - # We're mostly concerned with that mixing floats and longs does the - # right stuff, even when longs are too large to fit in a float. - # The safest way to check the results is to use an entirely different - # method, which we do here via a skeletal rational class (which - # represents all Python ints, longs and floats exactly). - class Rat: - def __init__(self, value): - if isinstance(value, (int, long)): - self.n = value - self.d = 1 - - elif isinstance(value, float): - # Convert to exact rational equivalent. - f, e = math.frexp(abs(value)) - assert f == 0 or 0.5 <= f < 1.0 - # |value| = f * 2**e exactly - - # Suck up CHUNK bits at a time; 28 is enough so that we suck - # up all bits in 2 iterations for all known binary double- - # precision formats, and small enough to fit in an int. - CHUNK = 28 - top = 0 - # invariant: |value| = (top + f) * 2**e exactly - while f: - f = math.ldexp(f, CHUNK) - digit = int(f) - assert digit >> CHUNK == 0 - top = (top << CHUNK) | digit - f -= digit - assert 0.0 <= f < 1.0 - e -= CHUNK - - # Now |value| = top * 2**e exactly. - if e >= 0: - n = top << e - d = 1 +# ----------------------------------- tests of auto int->long conversion + + def test_auto_overflow(self): + import math, sys + + special = [0, 1, 2, 3, sys.maxint-1, sys.maxint, sys.maxint+1] + sqrt = int(math.sqrt(sys.maxint)) + special.extend([sqrt-1, sqrt, sqrt+1]) + special.extend([-i for i in special]) + + def checkit(*args): + # Heavy use of nested scopes here! + self.assertEqual(got, expected, + Frm("for %r expected %r got %r", args, expected, got)) + + for x in special: + longx = long(x) + + expected = -longx + got = -x + checkit('-', x) + + for y in special: + longy = long(y) + + expected = longx + longy + got = x + y + checkit(x, '+', y) + + expected = longx - longy + got = x - y + checkit(x, '-', y) + + expected = longx * longy + got = x * y + checkit(x, '*', y) + + if y: + expected = longx / longy + got = x / y + checkit(x, '/', y) + + expected = longx // longy + got = x // y + checkit(x, '//', y) + + expected = divmod(longx, longy) + got = divmod(longx, longy) + checkit(x, 'divmod', y) + + if abs(y) < 5 and not (x == 0 and y < 0): + expected = longx ** longy + got = x ** y + checkit(x, '**', y) + + for z in special: + if z != 0 : + if y >= 0: + expected = pow(longx, longy, long(z)) + got = pow(x, y, z) + checkit('pow', x, y, '%', z) + else: + self.assertRaises(TypeError, pow,longx, longy, long(z)) + + def test_float_overflow(self): + import math + + for x in -2.0, -1.0, 0.0, 1.0, 2.0: + self.assertEqual(float(long(x)), x) + + shuge = '12345' * 120 + huge = 1L << 30000 + mhuge = -huge + namespace = {'huge': huge, 'mhuge': mhuge, 'shuge': shuge, 'math': math} + for test in ["float(huge)", "float(mhuge)", + "complex(huge)", "complex(mhuge)", + "complex(huge, 1)", "complex(mhuge, 1)", + "complex(1, huge)", "complex(1, mhuge)", + "1. + huge", "huge + 1.", "1. + mhuge", "mhuge + 1.", + "1. - huge", "huge - 1.", "1. - mhuge", "mhuge - 1.", + "1. * huge", "huge * 1.", "1. * mhuge", "mhuge * 1.", + "1. // huge", "huge // 1.", "1. // mhuge", "mhuge // 1.", + "1. / huge", "huge / 1.", "1. / mhuge", "mhuge / 1.", + "1. ** huge", "huge ** 1.", "1. ** mhuge", "mhuge ** 1.", + "math.sin(huge)", "math.sin(mhuge)", + "math.sqrt(huge)", "math.sqrt(mhuge)", # should do better + "math.floor(huge)", "math.floor(mhuge)"]: + + self.assertRaises(OverflowError, eval, test, namespace) + + # XXX Perhaps float(shuge) can raise OverflowError on some box? + # The comparison should not. + self.assertNotEqual(float(shuge), int(shuge), + "float(shuge) should not equal int(shuge)") + + def test_logs(self): + import math + + LOG10E = math.log10(math.e) + + for exp in range(10) + [100, 1000, 10000]: + value = 10 ** exp + log10 = math.log10(value) + self.assertAlmostEqual(log10, exp) + + # log10(value) == exp, so log(value) == log10(value)/log10(e) == + # exp/LOG10E + expected = exp / LOG10E + log = math.log(value) + self.assertAlmostEqual(log, expected) + + for bad in -(1L << 10000), -2L, 0L: + self.assertRaises(ValueError, math.log, bad) + self.assertRaises(ValueError, math.log10, bad) + + def test_mixed_compares(self): + eq = self.assertEqual + import math + import sys + + # We're mostly concerned with that mixing floats and longs does the + # right stuff, even when longs are too large to fit in a float. + # The safest way to check the results is to use an entirely different + # method, which we do here via a skeletal rational class (which + # represents all Python ints, longs and floats exactly). + class Rat: + def __init__(self, value): + if isinstance(value, (int, long)): + self.n = value + self.d = 1 + elif isinstance(value, float): + # Convert to exact rational equivalent. + f, e = math.frexp(abs(value)) + assert f == 0 or 0.5 <= f < 1.0 + # |value| = f * 2**e exactly + + # Suck up CHUNK bits at a time; 28 is enough so that we suck + # up all bits in 2 iterations for all known binary double- + # precision formats, and small enough to fit in an int. + CHUNK = 28 + top = 0 + # invariant: |value| = (top + f) * 2**e exactly + while f: + f = math.ldexp(f, CHUNK) + digit = int(f) + assert digit >> CHUNK == 0 + top = (top << CHUNK) | digit + f -= digit + assert 0.0 <= f < 1.0 + e -= CHUNK + + # Now |value| = top * 2**e exactly. + if e >= 0: + n = top << e + d = 1 + else: + n = top + d = 1 << -e + if value < 0: + n = -n + self.n = n + self.d = d + assert float(n) / float(d) == value else: - n = top - d = 1 << -e - if value < 0: - n = -n - self.n = n - self.d = d - assert float(n) / float(d) == value - - else: - raise TypeError("can't deal with %r" % val) - - def __cmp__(self, other): - if not isinstance(other, Rat): - other = Rat(other) - return cmp(self.n * other.d, self.d * other.n) - - cases = [0, 0.001, 0.99, 1.0, 1.5, 1e20, 1e200] - # 2**48 is an important boundary in the internals. 2**53 is an - # important boundary for IEEE double precision. - for t in 2.0**48, 2.0**50, 2.0**53: - cases.extend([t - 1.0, t - 0.3, t, t + 0.3, t + 1.0, - long(t-1), long(t), long(t+1)]) - cases.extend([0, 1, 2, sys.maxint, float(sys.maxint)]) - # 1L<<20000 should exceed all double formats. long(1e200) is to - # check that we get equality with 1e200 above. - t = long(1e200) - cases.extend([0L, 1L, 2L, 1L << 20000, t-1, t, t+1]) - cases.extend([-x for x in cases]) - for x in cases: - Rx = Rat(x) - for y in cases: - Ry = Rat(y) - Rcmp = cmp(Rx, Ry) - xycmp = cmp(x, y) - if Rcmp != xycmp: - raise TestFailed('%r %r %d %d' % (x, y, Rcmp, xycmp)) - if (x == y) != (Rcmp == 0): - raise TestFailed('%r == %r %d' % (x, y, Rcmp)) - if (x != y) != (Rcmp != 0): - raise TestFailed('%r != %r %d' % (x, y, Rcmp)) - if (x < y) != (Rcmp < 0): - raise TestFailed('%r < %r %d' % (x, y, Rcmp)) - if (x <= y) != (Rcmp <= 0): - raise TestFailed('%r <= %r %d' % (x, y, Rcmp)) - if (x > y) != (Rcmp > 0): - raise TestFailed('%r > %r %d' % (x, y, Rcmp)) - if (x >= y) != (Rcmp >= 0): - raise TestFailed('%r >= %r %d' % (x, y, Rcmp)) - -# ---------------------------------------------------------------- do it - -test_division() -test_karatsuba() -test_bitop_identities() -test_format() -test_misc() -test_auto_overflow() -test_float_overflow() -test_logs() -test_mixed_compares() + raise TypeError("can't deal with %r" % val) + + def __cmp__(self, other): + if not isinstance(other, Rat): + other = Rat(other) + return cmp(self.n * other.d, self.d * other.n) + + cases = [0, 0.001, 0.99, 1.0, 1.5, 1e20, 1e200] + # 2**48 is an important boundary in the internals. 2**53 is an + # important boundary for IEEE double precision. + for t in 2.0**48, 2.0**50, 2.0**53: + cases.extend([t - 1.0, t - 0.3, t, t + 0.3, t + 1.0, + long(t-1), long(t), long(t+1)]) + cases.extend([0, 1, 2, sys.maxint, float(sys.maxint)]) + # 1L<<20000 should exceed all double formats. long(1e200) is to + # check that we get equality with 1e200 above. + t = long(1e200) + cases.extend([0L, 1L, 2L, 1L << 20000, t-1, t, t+1]) + cases.extend([-x for x in cases]) + for x in cases: + Rx = Rat(x) + for y in cases: + Ry = Rat(y) + Rcmp = cmp(Rx, Ry) + xycmp = cmp(x, y) + eq(Rcmp, xycmp, Frm("%r %r %d %d", x, y, Rcmp, xycmp)) + eq(x == y, Rcmp == 0, Frm("%r == %r %d", x, y, Rcmp)) + eq(x != y, Rcmp != 0, Frm("%r != %r %d", x, y, Rcmp)) + eq(x < y, Rcmp < 0, Frm("%r < %r %d", x, y, Rcmp)) + eq(x <= y, Rcmp <= 0, Frm("%r <= %r %d", x, y, Rcmp)) + eq(x > y, Rcmp > 0, Frm("%r > %r %d", x, y, Rcmp)) + eq(x >= y, Rcmp >= 0, Frm("%r >= %r %d", x, y, Rcmp)) + +def test_main(): + test_support.run_unittest(LongTest) + +if __name__ == "__main__": + test_main() |