summaryrefslogtreecommitdiffstats
path: root/Lib/test/test_long.py
diff options
context:
space:
mode:
authorWalter Dörwald <walter@livinglogic.de>2005-06-13 21:44:48 (GMT)
committerWalter Dörwald <walter@livinglogic.de>2005-06-13 21:44:48 (GMT)
commita00215983b83552fded39c4efca6d57a6af099fa (patch)
tree0cb8b95c1ced13373e89abe5ee727084c78b1186 /Lib/test/test_long.py
parentf2ca5af43919e790f4e1b5dc3edeac6561e6e19b (diff)
downloadcpython-a00215983b83552fded39c4efca6d57a6af099fa.zip
cpython-a00215983b83552fded39c4efca6d57a6af099fa.tar.gz
cpython-a00215983b83552fded39c4efca6d57a6af099fa.tar.bz2
Port test_long.py to unittest.
Diffstat (limited to 'Lib/test/test_long.py')
-rw-r--r--Lib/test/test_long.py959
1 files changed, 451 insertions, 508 deletions
diff --git a/Lib/test/test_long.py b/Lib/test/test_long.py
index 74ae7c6..ac786bd 100644
--- a/Lib/test/test_long.py
+++ b/Lib/test/test_long.py
@@ -1,6 +1,16 @@
-from test.test_support import verify, verbose, TestFailed, fcmp
-from string import join
-from random import random, randint
+import unittest
+from test import test_support
+
+import random
+
+# Used for lazy formatting of failure messages
+class Frm(object):
+ def __init__(self, format, *args):
+ self.format = format
+ self.args = args
+
+ def __str__(self):
+ return self.format % self.args
# SHIFT should match the value in longintrepr.h for best testing.
SHIFT = 15
@@ -26,518 +36,451 @@ del p2
special = special + map(lambda x: ~x, special) + \
map(lambda x: -x, special)
-# ------------------------------------------------------------ utilities
-
-# Use check instead of assert so the test still does something
-# under -O.
-
-def check(ok, *args):
- if not ok:
- raise TestFailed, join(map(str, args), " ")
-
-# Get quasi-random long consisting of ndigits digits (in base BASE).
-# quasi == the most-significant digit will not be 0, and the number
-# is constructed to contain long strings of 0 and 1 bits. These are
-# more likely than random bits to provoke digit-boundary errors.
-# The sign of the number is also random.
-
-def getran(ndigits):
- verify(ndigits > 0)
- nbits_hi = ndigits * SHIFT
- nbits_lo = nbits_hi - SHIFT + 1
- answer = 0L
- nbits = 0
- r = int(random() * (SHIFT * 2)) | 1 # force 1 bits to start
- while nbits < nbits_lo:
- bits = (r >> 1) + 1
- bits = min(bits, nbits_hi - nbits)
- verify(1 <= bits <= SHIFT)
- nbits = nbits + bits
- answer = answer << bits
- if r & 1:
- answer = answer | ((1 << bits) - 1)
- r = int(random() * (SHIFT * 2))
- verify(nbits_lo <= nbits <= nbits_hi)
- if random() < 0.5:
- answer = -answer
- return answer
-
-# Get random long consisting of ndigits random digits (relative to base
-# BASE). The sign bit is also random.
-
-def getran2(ndigits):
- answer = 0L
- for i in range(ndigits):
- answer = (answer << SHIFT) | randint(0, MASK)
- if random() < 0.5:
- answer = -answer
- return answer
-
-# --------------------------------------------------------------- divmod
-
-def test_division_2(x, y):
- q, r = divmod(x, y)
- q2, r2 = x//y, x%y
- pab, pba = x*y, y*x
- check(pab == pba, "multiplication does not commute for", x, y)
- check(q == q2, "divmod returns different quotient than / for", x, y)
- check(r == r2, "divmod returns different mod than % for", x, y)
- check(x == q*y + r, "x != q*y + r after divmod on", x, y)
- if y > 0:
- check(0 <= r < y, "bad mod from divmod on", x, y)
- else:
- check(y < r <= 0, "bad mod from divmod on", x, y)
-
-def test_division(maxdigits=MAXDIGITS):
- if verbose:
- print "long / * % divmod"
- digits = range(1, maxdigits+1) + range(KARATSUBA_CUTOFF,
- KARATSUBA_CUTOFF + 14)
- digits.append(KARATSUBA_CUTOFF * 3)
- for lenx in digits:
- x = getran(lenx)
- for leny in digits:
- y = getran(leny) or 1L
- test_division_2(x, y)
-# ------------------------------------------------------------ karatsuba
-
-def test_karatsuba():
-
- if verbose:
- print "Karatsuba"
-
- digits = range(1, 5) + range(KARATSUBA_CUTOFF, KARATSUBA_CUTOFF + 10)
- digits.extend([KARATSUBA_CUTOFF * 10, KARATSUBA_CUTOFF * 100])
-
- bits = [digit * SHIFT for digit in digits]
-
- # Test products of long strings of 1 bits -- (2**x-1)*(2**y-1) ==
- # 2**(x+y) - 2**x - 2**y + 1, so the proper result is easy to check.
- for abits in bits:
- a = (1L << abits) - 1
- for bbits in bits:
- if bbits < abits:
- continue
- b = (1L << bbits) - 1
- x = a * b
- y = ((1L << (abits + bbits)) -
- (1L << abits) -
- (1L << bbits) +
- 1)
- check(x == y, "bad result for", a, "*", b, x, y)
-# -------------------------------------------------------------- ~ & | ^
-
-def test_bitop_identities_1(x):
- check(x & 0 == 0, "x & 0 != 0 for", x)
- check(x | 0 == x, "x | 0 != x for", x)
- check(x ^ 0 == x, "x ^ 0 != x for", x)
- check(x & -1 == x, "x & -1 != x for", x)
- check(x | -1 == -1, "x | -1 != -1 for", x)
- check(x ^ -1 == ~x, "x ^ -1 != ~x for", x)
- check(x == ~~x, "x != ~~x for", x)
- check(x & x == x, "x & x != x for", x)
- check(x | x == x, "x | x != x for", x)
- check(x ^ x == 0, "x ^ x != 0 for", x)
- check(x & ~x == 0, "x & ~x != 0 for", x)
- check(x | ~x == -1, "x | ~x != -1 for", x)
- check(x ^ ~x == -1, "x ^ ~x != -1 for", x)
- check(-x == 1 + ~x == ~(x-1), "not -x == 1 + ~x == ~(x-1) for", x)
- for n in range(2*SHIFT):
- p2 = 2L ** n
- check(x << n >> n == x, "x << n >> n != x for", x, n)
- check(x // p2 == x >> n, "x // p2 != x >> n for x n p2", x, n, p2)
- check(x * p2 == x << n, "x * p2 != x << n for x n p2", x, n, p2)
- check(x & -p2 == x >> n << n == x & ~(p2 - 1),
- "not x & -p2 == x >> n << n == x & ~(p2 - 1) for x n p2",
- x, n, p2)
-
-def test_bitop_identities_2(x, y):
- check(x & y == y & x, "x & y != y & x for", x, y)
- check(x | y == y | x, "x | y != y | x for", x, y)
- check(x ^ y == y ^ x, "x ^ y != y ^ x for", x, y)
- check(x ^ y ^ x == y, "x ^ y ^ x != y for", x, y)
- check(x & y == ~(~x | ~y), "x & y != ~(~x | ~y) for", x, y)
- check(x | y == ~(~x & ~y), "x | y != ~(~x & ~y) for", x, y)
- check(x ^ y == (x | y) & ~(x & y),
- "x ^ y != (x | y) & ~(x & y) for", x, y)
- check(x ^ y == (x & ~y) | (~x & y),
- "x ^ y == (x & ~y) | (~x & y) for", x, y)
- check(x ^ y == (x | y) & (~x | ~y),
- "x ^ y == (x | y) & (~x | ~y) for", x, y)
-
-def test_bitop_identities_3(x, y, z):
- check((x & y) & z == x & (y & z),
- "(x & y) & z != x & (y & z) for", x, y, z)
- check((x | y) | z == x | (y | z),
- "(x | y) | z != x | (y | z) for", x, y, z)
- check((x ^ y) ^ z == x ^ (y ^ z),
- "(x ^ y) ^ z != x ^ (y ^ z) for", x, y, z)
- check(x & (y | z) == (x & y) | (x & z),
- "x & (y | z) != (x & y) | (x & z) for", x, y, z)
- check(x | (y & z) == (x | y) & (x | z),
- "x | (y & z) != (x | y) & (x | z) for", x, y, z)
-
-def test_bitop_identities(maxdigits=MAXDIGITS):
- if verbose:
- print "long bit-operation identities"
- for x in special:
- test_bitop_identities_1(x)
- digits = range(1, maxdigits+1)
- for lenx in digits:
- x = getran(lenx)
- test_bitop_identities_1(x)
- for leny in digits:
- y = getran(leny)
- test_bitop_identities_2(x, y)
- test_bitop_identities_3(x, y, getran((lenx + leny)//2))
-
-# ------------------------------------------------- hex oct repr str atol
-
-def slow_format(x, base):
- if (x, base) == (0, 8):
- # this is an oddball!
- return "0L"
- digits = []
- sign = 0
- if x < 0:
- sign, x = 1, -x
- while x:
- x, r = divmod(x, base)
- digits.append(int(r))
- digits.reverse()
- digits = digits or [0]
- return '-'[:sign] + \
- {8: '0', 10: '', 16: '0x'}[base] + \
- join(map(lambda i: "0123456789ABCDEF"[i], digits), '') + \
- "L"
-
-def test_format_1(x):
- from string import atol
- for base, mapper in (8, oct), (10, repr), (16, hex):
- got = mapper(x)
- expected = slow_format(x, base)
- check(got == expected, mapper.__name__, "returned",
- got, "but expected", expected, "for", x)
- check(atol(got, 0) == x, 'atol("%s", 0) !=' % got, x)
- # str() has to be checked a little differently since there's no
- # trailing "L"
- got = str(x)
- expected = slow_format(x, 10)[:-1]
- check(got == expected, mapper.__name__, "returned",
- got, "but expected", expected, "for", x)
-
-def test_format(maxdigits=MAXDIGITS):
- if verbose:
- print "long str/hex/oct/atol"
- for x in special:
- test_format_1(x)
- for i in range(10):
- for lenx in range(1, maxdigits+1):
- x = getran(lenx)
- test_format_1(x)
-
-# ----------------------------------------------------------------- misc
-
-def test_misc(maxdigits=MAXDIGITS):
- if verbose:
- print "long miscellaneous operations"
- import sys
-
- # check the extremes in int<->long conversion
- hugepos = sys.maxint
- hugeneg = -hugepos - 1
- hugepos_aslong = long(hugepos)
- hugeneg_aslong = long(hugeneg)
- check(hugepos == hugepos_aslong, "long(sys.maxint) != sys.maxint")
- check(hugeneg == hugeneg_aslong,
- "long(-sys.maxint-1) != -sys.maxint-1")
-
- # long -> int should not fail for hugepos_aslong or hugeneg_aslong
- try:
- check(int(hugepos_aslong) == hugepos,
- "converting sys.maxint to long and back to int fails")
- except OverflowError:
- raise TestFailed, "int(long(sys.maxint)) overflowed!"
- try:
- check(int(hugeneg_aslong) == hugeneg,
- "converting -sys.maxint-1 to long and back to int fails")
- except OverflowError:
- raise TestFailed, "int(long(-sys.maxint-1)) overflowed!"
-
- # but long -> int should overflow for hugepos+1 and hugeneg-1
- x = hugepos_aslong + 1
- try:
- y = int(x)
- except OverflowError:
- raise TestFailed, "int(long(sys.maxint) + 1) mustn't overflow"
- if not isinstance(y, long):
- raise TestFailed("int(long(sys.maxint) + 1) should have returned long")
-
- x = hugeneg_aslong - 1
- try:
- y = int(x)
- except OverflowError:
- raise TestFailed, "int(long(-sys.maxint-1) - 1) mustn't overflow"
- if not isinstance(y, long):
- raise TestFailed("int(long(-sys.maxint-1) - 1) should have returned long")
-
- class long2(long):
- pass
- x = long2(1L<<100)
- y = int(x)
- if type(y) is not long:
- raise TestFailed("overflowing int conversion must return long not long subtype")
-# ----------------------------------- tests of auto int->long conversion
-
-def test_auto_overflow():
- import math, sys
-
- if verbose:
- print "auto-convert int->long on overflow"
-
- special = [0, 1, 2, 3, sys.maxint-1, sys.maxint, sys.maxint+1]
- sqrt = int(math.sqrt(sys.maxint))
- special.extend([sqrt-1, sqrt, sqrt+1])
- special.extend([-i for i in special])
-
- def checkit(*args):
- # Heavy use of nested scopes here!
- verify(got == expected, "for %r expected %r got %r" %
- (args, expected, got))
-
- for x in special:
- longx = long(x)
-
- expected = -longx
- got = -x
- checkit('-', x)
-
- for y in special:
- longy = long(y)
-
- expected = longx + longy
- got = x + y
- checkit(x, '+', y)
-
- expected = longx - longy
- got = x - y
- checkit(x, '-', y)
-
- expected = longx * longy
- got = x * y
- checkit(x, '*', y)
-
- if y:
- expected = longx / longy
- got = x / y
- checkit(x, '/', y)
-
- expected = longx // longy
- got = x // y
- checkit(x, '//', y)
-
- expected = divmod(longx, longy)
- got = divmod(longx, longy)
- checkit(x, 'divmod', y)
-
- if abs(y) < 5 and not (x == 0 and y < 0):
- expected = longx ** longy
- got = x ** y
- checkit(x, '**', y)
-
- for z in special:
- if z != 0 :
- if y >= 0:
- expected = pow(longx, longy, long(z))
- got = pow(x, y, z)
- checkit('pow', x, y, '%', z)
- else:
- try:
- pow(longx, longy, long(z))
- except TypeError:
- pass
- else:
- raise TestFailed("pow%r should have raised "
- "TypeError" % ((longx, longy, long(z)),))
-
-# ---------------------------------------- tests of long->float overflow
-
-def test_float_overflow():
- import math
-
- if verbose:
- print "long->float overflow"
-
- for x in -2.0, -1.0, 0.0, 1.0, 2.0:
- verify(float(long(x)) == x)
-
- shuge = '12345' * 120
- huge = 1L << 30000
- mhuge = -huge
- namespace = {'huge': huge, 'mhuge': mhuge, 'shuge': shuge, 'math': math}
- for test in ["float(huge)", "float(mhuge)",
- "complex(huge)", "complex(mhuge)",
- "complex(huge, 1)", "complex(mhuge, 1)",
- "complex(1, huge)", "complex(1, mhuge)",
- "1. + huge", "huge + 1.", "1. + mhuge", "mhuge + 1.",
- "1. - huge", "huge - 1.", "1. - mhuge", "mhuge - 1.",
- "1. * huge", "huge * 1.", "1. * mhuge", "mhuge * 1.",
- "1. // huge", "huge // 1.", "1. // mhuge", "mhuge // 1.",
- "1. / huge", "huge / 1.", "1. / mhuge", "mhuge / 1.",
- "1. ** huge", "huge ** 1.", "1. ** mhuge", "mhuge ** 1.",
- "math.sin(huge)", "math.sin(mhuge)",
- "math.sqrt(huge)", "math.sqrt(mhuge)", # should do better
- "math.floor(huge)", "math.floor(mhuge)"]:
+class LongTest(unittest.TestCase):
+
+ # Get quasi-random long consisting of ndigits digits (in base BASE).
+ # quasi == the most-significant digit will not be 0, and the number
+ # is constructed to contain long strings of 0 and 1 bits. These are
+ # more likely than random bits to provoke digit-boundary errors.
+ # The sign of the number is also random.
+
+ def getran(self, ndigits):
+ self.assert_(ndigits > 0)
+ nbits_hi = ndigits * SHIFT
+ nbits_lo = nbits_hi - SHIFT + 1
+ answer = 0L
+ nbits = 0
+ r = int(random.random() * (SHIFT * 2)) | 1 # force 1 bits to start
+ while nbits < nbits_lo:
+ bits = (r >> 1) + 1
+ bits = min(bits, nbits_hi - nbits)
+ self.assert_(1 <= bits <= SHIFT)
+ nbits = nbits + bits
+ answer = answer << bits
+ if r & 1:
+ answer = answer | ((1 << bits) - 1)
+ r = int(random.random() * (SHIFT * 2))
+ self.assert_(nbits_lo <= nbits <= nbits_hi)
+ if random.random() < 0.5:
+ answer = -answer
+ return answer
+
+ # Get random long consisting of ndigits random digits (relative to base
+ # BASE). The sign bit is also random.
+
+ def getran2(ndigits):
+ answer = 0L
+ for i in xrange(ndigits):
+ answer = (answer << SHIFT) | random.randint(0, MASK)
+ if random.random() < 0.5:
+ answer = -answer
+ return answer
+
+ def check_division(self, x, y):
+ eq = self.assertEqual
+ q, r = divmod(x, y)
+ q2, r2 = x//y, x%y
+ pab, pba = x*y, y*x
+ eq(pab, pba, Frm("multiplication does not commute for %r and %r", x, y))
+ eq(q, q2, Frm("divmod returns different quotient than / for %r and %r", x, y))
+ eq(r, r2, Frm("divmod returns different mod than %% for %r and %r", x, y))
+ eq(x, q*y + r, Frm("x != q*y + r after divmod on x=%r, y=%r", x, y))
+ if y > 0:
+ self.assert_(0 <= r < y, Frm("bad mod from divmod on %r and %r", x, y))
+ else:
+ self.assert_(y < r <= 0, Frm("bad mod from divmod on %r and %r", x, y))
+
+ def test_division(self):
+ digits = range(1, MAXDIGITS+1) + range(KARATSUBA_CUTOFF,
+ KARATSUBA_CUTOFF + 14)
+ digits.append(KARATSUBA_CUTOFF * 3)
+ for lenx in digits:
+ x = self.getran(lenx)
+ for leny in digits:
+ y = self.getran(leny) or 1L
+ self.check_division(x, y)
+
+ def test_karatsuba(self):
+ digits = range(1, 5) + range(KARATSUBA_CUTOFF, KARATSUBA_CUTOFF + 10)
+ digits.extend([KARATSUBA_CUTOFF * 10, KARATSUBA_CUTOFF * 100])
+
+ bits = [digit * SHIFT for digit in digits]
+
+ # Test products of long strings of 1 bits -- (2**x-1)*(2**y-1) ==
+ # 2**(x+y) - 2**x - 2**y + 1, so the proper result is easy to check.
+ for abits in bits:
+ a = (1L << abits) - 1
+ for bbits in bits:
+ if bbits < abits:
+ continue
+ b = (1L << bbits) - 1
+ x = a * b
+ y = ((1L << (abits + bbits)) -
+ (1L << abits) -
+ (1L << bbits) +
+ 1)
+ self.assertEqual(x, y,
+ Frm("bad result for a*b: a=%r, b=%r, x=%r, y=%r", a, b, x, y))
+
+ def check_bitop_identities_1(self, x):
+ eq = self.assertEqual
+ eq(x & 0, 0, Frm("x & 0 != 0 for x=%r", x))
+ eq(x | 0, x, Frm("x | 0 != x for x=%r", x))
+ eq(x ^ 0, x, Frm("x ^ 0 != x for x=%r", x))
+ eq(x & -1, x, Frm("x & -1 != x for x=%r", x))
+ eq(x | -1, -1, Frm("x | -1 != -1 for x=%r", x))
+ eq(x ^ -1, ~x, Frm("x ^ -1 != ~x for x=%r", x))
+ eq(x, ~~x, Frm("x != ~~x for x=%r", x))
+ eq(x & x, x, Frm("x & x != x for x=%r", x))
+ eq(x | x, x, Frm("x | x != x for x=%r", x))
+ eq(x ^ x, 0, Frm("x ^ x != 0 for x=%r", x))
+ eq(x & ~x, 0, Frm("x & ~x != 0 for x=%r", x))
+ eq(x | ~x, -1, Frm("x | ~x != -1 for x=%r", x))
+ eq(x ^ ~x, -1, Frm("x ^ ~x != -1 for x=%r", x))
+ eq(-x, 1 + ~x, Frm("not -x == 1 + ~x for x=%r", x))
+ eq(-x, ~(x-1), Frm("not -x == ~(x-1) forx =%r", x))
+ for n in xrange(2*SHIFT):
+ p2 = 2L ** n
+ eq(x << n >> n, x,
+ Frm("x << n >> n != x for x=%r, n=%r", (x, n)))
+ eq(x // p2, x >> n,
+ Frm("x // p2 != x >> n for x=%r n=%r p2=%r", (x, n, p2)))
+ eq(x * p2, x << n,
+ Frm("x * p2 != x << n for x=%r n=%r p2=%r", (x, n, p2)))
+ eq(x & -p2, x >> n << n,
+ Frm("not x & -p2 == x >> n << n for x=%r n=%r p2=%r", (x, n, p2)))
+ eq(x & -p2, x & ~(p2 - 1),
+ Frm("not x & -p2 == x & ~(p2 - 1) for x=%r n=%r p2=%r", (x, n, p2)))
+
+ def check_bitop_identities_2(self, x, y):
+ eq = self.assertEqual
+ eq(x & y, y & x, Frm("x & y != y & x for x=%r, y=%r", (x, y)))
+ eq(x | y, y | x, Frm("x | y != y | x for x=%r, y=%r", (x, y)))
+ eq(x ^ y, y ^ x, Frm("x ^ y != y ^ x for x=%r, y=%r", (x, y)))
+ eq(x ^ y ^ x, y, Frm("x ^ y ^ x != y for x=%r, y=%r", (x, y)))
+ eq(x & y, ~(~x | ~y), Frm("x & y != ~(~x | ~y) for x=%r, y=%r", (x, y)))
+ eq(x | y, ~(~x & ~y), Frm("x | y != ~(~x & ~y) for x=%r, y=%r", (x, y)))
+ eq(x ^ y, (x | y) & ~(x & y),
+ Frm("x ^ y != (x | y) & ~(x & y) for x=%r, y=%r", (x, y)))
+ eq(x ^ y, (x & ~y) | (~x & y),
+ Frm("x ^ y == (x & ~y) | (~x & y) for x=%r, y=%r", (x, y)))
+ eq(x ^ y, (x | y) & (~x | ~y),
+ Frm("x ^ y == (x | y) & (~x | ~y) for x=%r, y=%r", (x, y)))
+
+ def check_bitop_identities_3(self, x, y, z):
+ eq = self.assertEqual
+ eq((x & y) & z, x & (y & z),
+ Frm("(x & y) & z != x & (y & z) for x=%r, y=%r, z=%r", (x, y, z)))
+ eq((x | y) | z, x | (y | z),
+ Frm("(x | y) | z != x | (y | z) for x=%r, y=%r, z=%r", (x, y, z)))
+ eq((x ^ y) ^ z, x ^ (y ^ z),
+ Frm("(x ^ y) ^ z != x ^ (y ^ z) for x=%r, y=%r, z=%r", (x, y, z)))
+ eq(x & (y | z), (x & y) | (x & z),
+ Frm("x & (y | z) != (x & y) | (x & z) for x=%r, y=%r, z=%r", (x, y, z)))
+ eq(x | (y & z), (x | y) & (x | z),
+ Frm("x | (y & z) != (x | y) & (x | z) for x=%r, y=%r, z=%r", (x, y, z)))
+
+ def test_bitop_identities(self):
+ for x in special:
+ self.check_bitop_identities_1(x)
+ digits = xrange(1, MAXDIGITS+1)
+ for lenx in digits:
+ x = self.getran(lenx)
+ self.check_bitop_identities_1(x)
+ for leny in digits:
+ y = self.getran(leny)
+ self.check_bitop_identities_2(x, y)
+ self.check_bitop_identities_3(x, y, self.getran((lenx + leny)//2))
+
+ def slow_format(self, x, base):
+ if (x, base) == (0, 8):
+ # this is an oddball!
+ return "0L"
+ digits = []
+ sign = 0
+ if x < 0:
+ sign, x = 1, -x
+ while x:
+ x, r = divmod(x, base)
+ digits.append(int(r))
+ digits.reverse()
+ digits = digits or [0]
+ return '-'[:sign] + \
+ {8: '0', 10: '', 16: '0x'}[base] + \
+ "".join(map(lambda i: "0123456789ABCDEF"[i], digits)) + "L"
+
+ def check_format_1(self, x):
+ for base, mapper in (8, oct), (10, repr), (16, hex):
+ got = mapper(x)
+ expected = self.slow_format(x, base)
+ msg = Frm("%s returned %r but expected %r for %r",
+ mapper.__name__, got, expected, x)
+ self.assertEqual(got, expected, msg)
+ self.assertEqual(long(got, 0), x, Frm('long("%s", 0) != %r', got, x))
+ # str() has to be checked a little differently since there's no
+ # trailing "L"
+ got = str(x)
+ expected = self.slow_format(x, 10)[:-1]
+ msg = Frm("%s returned %r but expected %r for %r",
+ mapper.__name__, got, expected, x)
+ self.assertEqual(got, expected, msg)
+
+ def test_format(self):
+ for x in special:
+ self.check_format_1(x)
+ for i in xrange(10):
+ for lenx in xrange(1, MAXDIGITS+1):
+ x = self.getran(lenx)
+ self.check_format_1(x)
+
+ def test_misc(self):
+ import sys
+
+ # check the extremes in int<->long conversion
+ hugepos = sys.maxint
+ hugeneg = -hugepos - 1
+ hugepos_aslong = long(hugepos)
+ hugeneg_aslong = long(hugeneg)
+ self.assertEqual(hugepos, hugepos_aslong, "long(sys.maxint) != sys.maxint")
+ self.assertEqual(hugeneg, hugeneg_aslong,
+ "long(-sys.maxint-1) != -sys.maxint-1")
+
+ # long -> int should not fail for hugepos_aslong or hugeneg_aslong
try:
- eval(test, namespace)
+ self.assertEqual(int(hugepos_aslong), hugepos,
+ "converting sys.maxint to long and back to int fails")
except OverflowError:
- pass
- else:
- raise TestFailed("expected OverflowError from %s" % test)
-
- # XXX Perhaps float(shuge) can raise OverflowError on some box?
- # The comparison should not.
- if float(shuge) == int(shuge):
- raise TestFailed("float(shuge) should not equal int(shuge)")
-
-# ---------------------------------------------- test huge log and log10
-
-def test_logs():
- import math
-
- if verbose:
- print "log and log10"
-
- LOG10E = math.log10(math.e)
-
- for exp in range(10) + [100, 1000, 10000]:
- value = 10 ** exp
- log10 = math.log10(value)
- verify(fcmp(log10, exp) == 0)
-
- # log10(value) == exp, so log(value) == log10(value)/log10(e) ==
- # exp/LOG10E
- expected = exp / LOG10E
- log = math.log(value)
- verify(fcmp(log, expected) == 0)
+ self.fail("int(long(sys.maxint)) overflowed!")
+ try:
+ self.assertEqual(int(hugeneg_aslong), hugeneg,
+ "converting -sys.maxint-1 to long and back to int fails")
+ except OverflowError:
+ self.fail("int(long(-sys.maxint-1)) overflowed!")
- for bad in -(1L << 10000), -2L, 0L:
+ # but long -> int should overflow for hugepos+1 and hugeneg-1
+ x = hugepos_aslong + 1
try:
- math.log(bad)
- raise TestFailed("expected ValueError from log(<= 0)")
- except ValueError:
- pass
+ y = int(x)
+ except OverflowError:
+ self.fail("int(long(sys.maxint) + 1) mustn't overflow")
+ self.assert_(isinstance(y, long),
+ "int(long(sys.maxint) + 1) should have returned long")
+ x = hugeneg_aslong - 1
try:
- math.log10(bad)
- raise TestFailed("expected ValueError from log10(<= 0)")
- except ValueError:
+ y = int(x)
+ except OverflowError:
+ self.fail("int(long(-sys.maxint-1) - 1) mustn't overflow")
+ self.assert_(isinstance(y, long),
+ "int(long(-sys.maxint-1) - 1) should have returned long")
+
+ class long2(long):
pass
+ x = long2(1L<<100)
+ y = int(x)
+ self.assert_(type(y) is long,
+ "overflowing int conversion must return long not long subtype")
-# ----------------------------------------------- test mixed comparisons
-
-def test_mixed_compares():
- import math
- import sys
-
- if verbose:
- print "mixed comparisons"
-
- # We're mostly concerned with that mixing floats and longs does the
- # right stuff, even when longs are too large to fit in a float.
- # The safest way to check the results is to use an entirely different
- # method, which we do here via a skeletal rational class (which
- # represents all Python ints, longs and floats exactly).
- class Rat:
- def __init__(self, value):
- if isinstance(value, (int, long)):
- self.n = value
- self.d = 1
-
- elif isinstance(value, float):
- # Convert to exact rational equivalent.
- f, e = math.frexp(abs(value))
- assert f == 0 or 0.5 <= f < 1.0
- # |value| = f * 2**e exactly
-
- # Suck up CHUNK bits at a time; 28 is enough so that we suck
- # up all bits in 2 iterations for all known binary double-
- # precision formats, and small enough to fit in an int.
- CHUNK = 28
- top = 0
- # invariant: |value| = (top + f) * 2**e exactly
- while f:
- f = math.ldexp(f, CHUNK)
- digit = int(f)
- assert digit >> CHUNK == 0
- top = (top << CHUNK) | digit
- f -= digit
- assert 0.0 <= f < 1.0
- e -= CHUNK
-
- # Now |value| = top * 2**e exactly.
- if e >= 0:
- n = top << e
- d = 1
+# ----------------------------------- tests of auto int->long conversion
+
+ def test_auto_overflow(self):
+ import math, sys
+
+ special = [0, 1, 2, 3, sys.maxint-1, sys.maxint, sys.maxint+1]
+ sqrt = int(math.sqrt(sys.maxint))
+ special.extend([sqrt-1, sqrt, sqrt+1])
+ special.extend([-i for i in special])
+
+ def checkit(*args):
+ # Heavy use of nested scopes here!
+ self.assertEqual(got, expected,
+ Frm("for %r expected %r got %r", args, expected, got))
+
+ for x in special:
+ longx = long(x)
+
+ expected = -longx
+ got = -x
+ checkit('-', x)
+
+ for y in special:
+ longy = long(y)
+
+ expected = longx + longy
+ got = x + y
+ checkit(x, '+', y)
+
+ expected = longx - longy
+ got = x - y
+ checkit(x, '-', y)
+
+ expected = longx * longy
+ got = x * y
+ checkit(x, '*', y)
+
+ if y:
+ expected = longx / longy
+ got = x / y
+ checkit(x, '/', y)
+
+ expected = longx // longy
+ got = x // y
+ checkit(x, '//', y)
+
+ expected = divmod(longx, longy)
+ got = divmod(longx, longy)
+ checkit(x, 'divmod', y)
+
+ if abs(y) < 5 and not (x == 0 and y < 0):
+ expected = longx ** longy
+ got = x ** y
+ checkit(x, '**', y)
+
+ for z in special:
+ if z != 0 :
+ if y >= 0:
+ expected = pow(longx, longy, long(z))
+ got = pow(x, y, z)
+ checkit('pow', x, y, '%', z)
+ else:
+ self.assertRaises(TypeError, pow,longx, longy, long(z))
+
+ def test_float_overflow(self):
+ import math
+
+ for x in -2.0, -1.0, 0.0, 1.0, 2.0:
+ self.assertEqual(float(long(x)), x)
+
+ shuge = '12345' * 120
+ huge = 1L << 30000
+ mhuge = -huge
+ namespace = {'huge': huge, 'mhuge': mhuge, 'shuge': shuge, 'math': math}
+ for test in ["float(huge)", "float(mhuge)",
+ "complex(huge)", "complex(mhuge)",
+ "complex(huge, 1)", "complex(mhuge, 1)",
+ "complex(1, huge)", "complex(1, mhuge)",
+ "1. + huge", "huge + 1.", "1. + mhuge", "mhuge + 1.",
+ "1. - huge", "huge - 1.", "1. - mhuge", "mhuge - 1.",
+ "1. * huge", "huge * 1.", "1. * mhuge", "mhuge * 1.",
+ "1. // huge", "huge // 1.", "1. // mhuge", "mhuge // 1.",
+ "1. / huge", "huge / 1.", "1. / mhuge", "mhuge / 1.",
+ "1. ** huge", "huge ** 1.", "1. ** mhuge", "mhuge ** 1.",
+ "math.sin(huge)", "math.sin(mhuge)",
+ "math.sqrt(huge)", "math.sqrt(mhuge)", # should do better
+ "math.floor(huge)", "math.floor(mhuge)"]:
+
+ self.assertRaises(OverflowError, eval, test, namespace)
+
+ # XXX Perhaps float(shuge) can raise OverflowError on some box?
+ # The comparison should not.
+ self.assertNotEqual(float(shuge), int(shuge),
+ "float(shuge) should not equal int(shuge)")
+
+ def test_logs(self):
+ import math
+
+ LOG10E = math.log10(math.e)
+
+ for exp in range(10) + [100, 1000, 10000]:
+ value = 10 ** exp
+ log10 = math.log10(value)
+ self.assertAlmostEqual(log10, exp)
+
+ # log10(value) == exp, so log(value) == log10(value)/log10(e) ==
+ # exp/LOG10E
+ expected = exp / LOG10E
+ log = math.log(value)
+ self.assertAlmostEqual(log, expected)
+
+ for bad in -(1L << 10000), -2L, 0L:
+ self.assertRaises(ValueError, math.log, bad)
+ self.assertRaises(ValueError, math.log10, bad)
+
+ def test_mixed_compares(self):
+ eq = self.assertEqual
+ import math
+ import sys
+
+ # We're mostly concerned with that mixing floats and longs does the
+ # right stuff, even when longs are too large to fit in a float.
+ # The safest way to check the results is to use an entirely different
+ # method, which we do here via a skeletal rational class (which
+ # represents all Python ints, longs and floats exactly).
+ class Rat:
+ def __init__(self, value):
+ if isinstance(value, (int, long)):
+ self.n = value
+ self.d = 1
+ elif isinstance(value, float):
+ # Convert to exact rational equivalent.
+ f, e = math.frexp(abs(value))
+ assert f == 0 or 0.5 <= f < 1.0
+ # |value| = f * 2**e exactly
+
+ # Suck up CHUNK bits at a time; 28 is enough so that we suck
+ # up all bits in 2 iterations for all known binary double-
+ # precision formats, and small enough to fit in an int.
+ CHUNK = 28
+ top = 0
+ # invariant: |value| = (top + f) * 2**e exactly
+ while f:
+ f = math.ldexp(f, CHUNK)
+ digit = int(f)
+ assert digit >> CHUNK == 0
+ top = (top << CHUNK) | digit
+ f -= digit
+ assert 0.0 <= f < 1.0
+ e -= CHUNK
+
+ # Now |value| = top * 2**e exactly.
+ if e >= 0:
+ n = top << e
+ d = 1
+ else:
+ n = top
+ d = 1 << -e
+ if value < 0:
+ n = -n
+ self.n = n
+ self.d = d
+ assert float(n) / float(d) == value
else:
- n = top
- d = 1 << -e
- if value < 0:
- n = -n
- self.n = n
- self.d = d
- assert float(n) / float(d) == value
-
- else:
- raise TypeError("can't deal with %r" % val)
-
- def __cmp__(self, other):
- if not isinstance(other, Rat):
- other = Rat(other)
- return cmp(self.n * other.d, self.d * other.n)
-
- cases = [0, 0.001, 0.99, 1.0, 1.5, 1e20, 1e200]
- # 2**48 is an important boundary in the internals. 2**53 is an
- # important boundary for IEEE double precision.
- for t in 2.0**48, 2.0**50, 2.0**53:
- cases.extend([t - 1.0, t - 0.3, t, t + 0.3, t + 1.0,
- long(t-1), long(t), long(t+1)])
- cases.extend([0, 1, 2, sys.maxint, float(sys.maxint)])
- # 1L<<20000 should exceed all double formats. long(1e200) is to
- # check that we get equality with 1e200 above.
- t = long(1e200)
- cases.extend([0L, 1L, 2L, 1L << 20000, t-1, t, t+1])
- cases.extend([-x for x in cases])
- for x in cases:
- Rx = Rat(x)
- for y in cases:
- Ry = Rat(y)
- Rcmp = cmp(Rx, Ry)
- xycmp = cmp(x, y)
- if Rcmp != xycmp:
- raise TestFailed('%r %r %d %d' % (x, y, Rcmp, xycmp))
- if (x == y) != (Rcmp == 0):
- raise TestFailed('%r == %r %d' % (x, y, Rcmp))
- if (x != y) != (Rcmp != 0):
- raise TestFailed('%r != %r %d' % (x, y, Rcmp))
- if (x < y) != (Rcmp < 0):
- raise TestFailed('%r < %r %d' % (x, y, Rcmp))
- if (x <= y) != (Rcmp <= 0):
- raise TestFailed('%r <= %r %d' % (x, y, Rcmp))
- if (x > y) != (Rcmp > 0):
- raise TestFailed('%r > %r %d' % (x, y, Rcmp))
- if (x >= y) != (Rcmp >= 0):
- raise TestFailed('%r >= %r %d' % (x, y, Rcmp))
-
-# ---------------------------------------------------------------- do it
-
-test_division()
-test_karatsuba()
-test_bitop_identities()
-test_format()
-test_misc()
-test_auto_overflow()
-test_float_overflow()
-test_logs()
-test_mixed_compares()
+ raise TypeError("can't deal with %r" % val)
+
+ def __cmp__(self, other):
+ if not isinstance(other, Rat):
+ other = Rat(other)
+ return cmp(self.n * other.d, self.d * other.n)
+
+ cases = [0, 0.001, 0.99, 1.0, 1.5, 1e20, 1e200]
+ # 2**48 is an important boundary in the internals. 2**53 is an
+ # important boundary for IEEE double precision.
+ for t in 2.0**48, 2.0**50, 2.0**53:
+ cases.extend([t - 1.0, t - 0.3, t, t + 0.3, t + 1.0,
+ long(t-1), long(t), long(t+1)])
+ cases.extend([0, 1, 2, sys.maxint, float(sys.maxint)])
+ # 1L<<20000 should exceed all double formats. long(1e200) is to
+ # check that we get equality with 1e200 above.
+ t = long(1e200)
+ cases.extend([0L, 1L, 2L, 1L << 20000, t-1, t, t+1])
+ cases.extend([-x for x in cases])
+ for x in cases:
+ Rx = Rat(x)
+ for y in cases:
+ Ry = Rat(y)
+ Rcmp = cmp(Rx, Ry)
+ xycmp = cmp(x, y)
+ eq(Rcmp, xycmp, Frm("%r %r %d %d", x, y, Rcmp, xycmp))
+ eq(x == y, Rcmp == 0, Frm("%r == %r %d", x, y, Rcmp))
+ eq(x != y, Rcmp != 0, Frm("%r != %r %d", x, y, Rcmp))
+ eq(x < y, Rcmp < 0, Frm("%r < %r %d", x, y, Rcmp))
+ eq(x <= y, Rcmp <= 0, Frm("%r <= %r %d", x, y, Rcmp))
+ eq(x > y, Rcmp > 0, Frm("%r > %r %d", x, y, Rcmp))
+ eq(x >= y, Rcmp >= 0, Frm("%r >= %r %d", x, y, Rcmp))
+
+def test_main():
+ test_support.run_unittest(LongTest)
+
+if __name__ == "__main__":
+ test_main()