summaryrefslogtreecommitdiffstats
path: root/Python/ceval.c
diff options
context:
space:
mode:
authorGuido van Rossum <guido@python.org>2023-01-18 18:41:07 (GMT)
committerGitHub <noreply@github.com>2023-01-18 18:41:07 (GMT)
commit1f0d0a432cf431882b432eeba8315f84f818da6b (patch)
treec4ea6660f3c06b814479de050f0c08aec7a159c2 /Python/ceval.c
parentd65f48507045c87000c65dc2c4fa727f483caad6 (diff)
downloadcpython-1f0d0a432cf431882b432eeba8315f84f818da6b.zip
cpython-1f0d0a432cf431882b432eeba8315f84f818da6b.tar.gz
cpython-1f0d0a432cf431882b432eeba8315f84f818da6b.tar.bz2
GH-98831: Move assorted macros from ceval.h to a new header (#101116)
Diffstat (limited to 'Python/ceval.c')
-rw-r--r--Python/ceval.c349
1 files changed, 1 insertions, 348 deletions
diff --git a/Python/ceval.c b/Python/ceval.c
index ecbe2f9..a97313c 100644
--- a/Python/ceval.c
+++ b/Python/ceval.c
@@ -215,8 +215,6 @@ _PyEvalFramePushAndInit(PyThreadState *tstate, PyFunctionObject *func,
static void
_PyEvalFrameClearAndPop(PyThreadState *tstate, _PyInterpreterFrame *frame);
-#define NAME_ERROR_MSG \
- "name '%.200s' is not defined"
#define UNBOUNDLOCAL_ERROR_MSG \
"cannot access local variable '%s' where it is not associated with a value"
#define UNBOUNDFREE_ERROR_MSG \
@@ -600,352 +598,7 @@ PyEval_EvalFrameEx(PyFrameObject *f, int throwflag)
return _PyEval_EvalFrame(tstate, f->f_frame, throwflag);
}
-
-/* Computed GOTOs, or
- the-optimization-commonly-but-improperly-known-as-"threaded code"
- using gcc's labels-as-values extension
- (http://gcc.gnu.org/onlinedocs/gcc/Labels-as-Values.html).
-
- The traditional bytecode evaluation loop uses a "switch" statement, which
- decent compilers will optimize as a single indirect branch instruction
- combined with a lookup table of jump addresses. However, since the
- indirect jump instruction is shared by all opcodes, the CPU will have a
- hard time making the right prediction for where to jump next (actually,
- it will be always wrong except in the uncommon case of a sequence of
- several identical opcodes).
-
- "Threaded code" in contrast, uses an explicit jump table and an explicit
- indirect jump instruction at the end of each opcode. Since the jump
- instruction is at a different address for each opcode, the CPU will make a
- separate prediction for each of these instructions, which is equivalent to
- predicting the second opcode of each opcode pair. These predictions have
- a much better chance to turn out valid, especially in small bytecode loops.
-
- A mispredicted branch on a modern CPU flushes the whole pipeline and
- can cost several CPU cycles (depending on the pipeline depth),
- and potentially many more instructions (depending on the pipeline width).
- A correctly predicted branch, however, is nearly free.
-
- At the time of this writing, the "threaded code" version is up to 15-20%
- faster than the normal "switch" version, depending on the compiler and the
- CPU architecture.
-
- NOTE: care must be taken that the compiler doesn't try to "optimize" the
- indirect jumps by sharing them between all opcodes. Such optimizations
- can be disabled on gcc by using the -fno-gcse flag (or possibly
- -fno-crossjumping).
-*/
-
-/* Use macros rather than inline functions, to make it as clear as possible
- * to the C compiler that the tracing check is a simple test then branch.
- * We want to be sure that the compiler knows this before it generates
- * the CFG.
- */
-
-#ifdef WITH_DTRACE
-#define OR_DTRACE_LINE | (PyDTrace_LINE_ENABLED() ? 255 : 0)
-#else
-#define OR_DTRACE_LINE
-#endif
-
-#ifdef HAVE_COMPUTED_GOTOS
- #ifndef USE_COMPUTED_GOTOS
- #define USE_COMPUTED_GOTOS 1
- #endif
-#else
- #if defined(USE_COMPUTED_GOTOS) && USE_COMPUTED_GOTOS
- #error "Computed gotos are not supported on this compiler."
- #endif
- #undef USE_COMPUTED_GOTOS
- #define USE_COMPUTED_GOTOS 0
-#endif
-
-#ifdef Py_STATS
-#define INSTRUCTION_START(op) \
- do { \
- frame->prev_instr = next_instr++; \
- OPCODE_EXE_INC(op); \
- if (_py_stats) _py_stats->opcode_stats[lastopcode].pair_count[op]++; \
- lastopcode = op; \
- } while (0)
-#else
-#define INSTRUCTION_START(op) (frame->prev_instr = next_instr++)
-#endif
-
-#if USE_COMPUTED_GOTOS
-# define TARGET(op) TARGET_##op: INSTRUCTION_START(op);
-# define DISPATCH_GOTO() goto *opcode_targets[opcode]
-#else
-# define TARGET(op) case op: TARGET_##op: INSTRUCTION_START(op);
-# define DISPATCH_GOTO() goto dispatch_opcode
-#endif
-
-/* PRE_DISPATCH_GOTO() does lltrace if enabled. Normally a no-op */
-#ifdef LLTRACE
-#define PRE_DISPATCH_GOTO() if (lltrace) { \
- lltrace_instruction(frame, stack_pointer, next_instr); }
-#else
-#define PRE_DISPATCH_GOTO() ((void)0)
-#endif
-
-
-/* Do interpreter dispatch accounting for tracing and instrumentation */
-#define DISPATCH() \
- { \
- NEXTOPARG(); \
- PRE_DISPATCH_GOTO(); \
- assert(cframe.use_tracing == 0 || cframe.use_tracing == 255); \
- opcode |= cframe.use_tracing OR_DTRACE_LINE; \
- DISPATCH_GOTO(); \
- }
-
-#define DISPATCH_SAME_OPARG() \
- { \
- opcode = _Py_OPCODE(*next_instr); \
- PRE_DISPATCH_GOTO(); \
- opcode |= cframe.use_tracing OR_DTRACE_LINE; \
- DISPATCH_GOTO(); \
- }
-
-#define DISPATCH_INLINED(NEW_FRAME) \
- do { \
- _PyFrame_SetStackPointer(frame, stack_pointer); \
- frame->prev_instr = next_instr - 1; \
- (NEW_FRAME)->previous = frame; \
- frame = cframe.current_frame = (NEW_FRAME); \
- CALL_STAT_INC(inlined_py_calls); \
- goto start_frame; \
- } while (0)
-
-#define CHECK_EVAL_BREAKER() \
- _Py_CHECK_EMSCRIPTEN_SIGNALS_PERIODICALLY(); \
- if (_Py_atomic_load_relaxed_int32(eval_breaker)) { \
- goto handle_eval_breaker; \
- }
-
-
-/* Tuple access macros */
-
-#ifndef Py_DEBUG
-#define GETITEM(v, i) PyTuple_GET_ITEM((v), (i))
-#else
-static inline PyObject *
-GETITEM(PyObject *v, Py_ssize_t i) {
- assert(PyTuple_Check(v));
- assert(i >= 0);
- assert(i < PyTuple_GET_SIZE(v));
- return PyTuple_GET_ITEM(v, i);
-}
-#endif
-
-/* Code access macros */
-
-/* The integer overflow is checked by an assertion below. */
-#define INSTR_OFFSET() ((int)(next_instr - _PyCode_CODE(frame->f_code)))
-#define NEXTOPARG() do { \
- _Py_CODEUNIT word = *next_instr; \
- opcode = _Py_OPCODE(word); \
- oparg = _Py_OPARG(word); \
- } while (0)
-#define JUMPTO(x) (next_instr = _PyCode_CODE(frame->f_code) + (x))
-#define JUMPBY(x) (next_instr += (x))
-
-/* OpCode prediction macros
- Some opcodes tend to come in pairs thus making it possible to
- predict the second code when the first is run. For example,
- COMPARE_OP is often followed by POP_JUMP_IF_FALSE or POP_JUMP_IF_TRUE.
-
- Verifying the prediction costs a single high-speed test of a register
- variable against a constant. If the pairing was good, then the
- processor's own internal branch predication has a high likelihood of
- success, resulting in a nearly zero-overhead transition to the
- next opcode. A successful prediction saves a trip through the eval-loop
- including its unpredictable switch-case branch. Combined with the
- processor's internal branch prediction, a successful PREDICT has the
- effect of making the two opcodes run as if they were a single new opcode
- with the bodies combined.
-
- If collecting opcode statistics, your choices are to either keep the
- predictions turned-on and interpret the results as if some opcodes
- had been combined or turn-off predictions so that the opcode frequency
- counter updates for both opcodes.
-
- Opcode prediction is disabled with threaded code, since the latter allows
- the CPU to record separate branch prediction information for each
- opcode.
-
-*/
-
-#define PREDICT_ID(op) PRED_##op
-
-#if USE_COMPUTED_GOTOS
-#define PREDICT(op) if (0) goto PREDICT_ID(op)
-#else
-#define PREDICT(op) \
- do { \
- _Py_CODEUNIT word = *next_instr; \
- opcode = _Py_OPCODE(word) | cframe.use_tracing OR_DTRACE_LINE; \
- if (opcode == op) { \
- oparg = _Py_OPARG(word); \
- INSTRUCTION_START(op); \
- goto PREDICT_ID(op); \
- } \
- } while(0)
-#endif
-#define PREDICTED(op) PREDICT_ID(op):
-
-
-/* Stack manipulation macros */
-
-/* The stack can grow at most MAXINT deep, as co_nlocals and
- co_stacksize are ints. */
-#define STACK_LEVEL() ((int)(stack_pointer - _PyFrame_Stackbase(frame)))
-#define STACK_SIZE() (frame->f_code->co_stacksize)
-#define EMPTY() (STACK_LEVEL() == 0)
-#define TOP() (stack_pointer[-1])
-#define SECOND() (stack_pointer[-2])
-#define THIRD() (stack_pointer[-3])
-#define FOURTH() (stack_pointer[-4])
-#define PEEK(n) (stack_pointer[-(n)])
-#define POKE(n, v) (stack_pointer[-(n)] = (v))
-#define SET_TOP(v) (stack_pointer[-1] = (v))
-#define SET_SECOND(v) (stack_pointer[-2] = (v))
-#define BASIC_STACKADJ(n) (stack_pointer += n)
-#define BASIC_PUSH(v) (*stack_pointer++ = (v))
-#define BASIC_POP() (*--stack_pointer)
-
-#ifdef Py_DEBUG
-#define PUSH(v) do { \
- BASIC_PUSH(v); \
- assert(STACK_LEVEL() <= STACK_SIZE()); \
- } while (0)
-#define POP() (assert(STACK_LEVEL() > 0), BASIC_POP())
-#define STACK_GROW(n) do { \
- assert(n >= 0); \
- BASIC_STACKADJ(n); \
- assert(STACK_LEVEL() <= STACK_SIZE()); \
- } while (0)
-#define STACK_SHRINK(n) do { \
- assert(n >= 0); \
- assert(STACK_LEVEL() >= n); \
- BASIC_STACKADJ(-(n)); \
- } while (0)
-#else
-#define PUSH(v) BASIC_PUSH(v)
-#define POP() BASIC_POP()
-#define STACK_GROW(n) BASIC_STACKADJ(n)
-#define STACK_SHRINK(n) BASIC_STACKADJ(-(n))
-#endif
-
-/* Local variable macros */
-
-#define GETLOCAL(i) (frame->localsplus[i])
-
-/* The SETLOCAL() macro must not DECREF the local variable in-place and
- then store the new value; it must copy the old value to a temporary
- value, then store the new value, and then DECREF the temporary value.
- This is because it is possible that during the DECREF the frame is
- accessed by other code (e.g. a __del__ method or gc.collect()) and the
- variable would be pointing to already-freed memory. */
-#define SETLOCAL(i, value) do { PyObject *tmp = GETLOCAL(i); \
- GETLOCAL(i) = value; \
- Py_XDECREF(tmp); } while (0)
-
-#define GO_TO_INSTRUCTION(op) goto PREDICT_ID(op)
-
-#ifdef Py_STATS
-#define UPDATE_MISS_STATS(INSTNAME) \
- do { \
- STAT_INC(opcode, miss); \
- STAT_INC((INSTNAME), miss); \
- /* The counter is always the first cache entry: */ \
- if (ADAPTIVE_COUNTER_IS_ZERO(next_instr->cache)) { \
- STAT_INC((INSTNAME), deopt); \
- } \
- else { \
- /* This is about to be (incorrectly) incremented: */ \
- STAT_DEC((INSTNAME), deferred); \
- } \
- } while (0)
-#else
-#define UPDATE_MISS_STATS(INSTNAME) ((void)0)
-#endif
-
-#define DEOPT_IF(COND, INSTNAME) \
- if ((COND)) { \
- /* This is only a single jump on release builds! */ \
- UPDATE_MISS_STATS((INSTNAME)); \
- assert(_PyOpcode_Deopt[opcode] == (INSTNAME)); \
- GO_TO_INSTRUCTION(INSTNAME); \
- }
-
-
-#define GLOBALS() frame->f_globals
-#define BUILTINS() frame->f_builtins
-#define LOCALS() frame->f_locals
-
-/* Shared opcode macros */
-
-#define TRACE_FUNCTION_EXIT() \
- if (cframe.use_tracing) { \
- if (trace_function_exit(tstate, frame, retval)) { \
- Py_DECREF(retval); \
- goto exit_unwind; \
- } \
- }
-
-#define DTRACE_FUNCTION_EXIT() \
- if (PyDTrace_FUNCTION_RETURN_ENABLED()) { \
- dtrace_function_return(frame); \
- }
-
-#define TRACE_FUNCTION_UNWIND() \
- if (cframe.use_tracing) { \
- /* Since we are already unwinding, \
- * we don't care if this raises */ \
- trace_function_exit(tstate, frame, NULL); \
- }
-
-#define TRACE_FUNCTION_ENTRY() \
- if (cframe.use_tracing) { \
- _PyFrame_SetStackPointer(frame, stack_pointer); \
- int err = trace_function_entry(tstate, frame); \
- stack_pointer = _PyFrame_GetStackPointer(frame); \
- if (err) { \
- goto error; \
- } \
- }
-
-#define TRACE_FUNCTION_THROW_ENTRY() \
- if (cframe.use_tracing) { \
- assert(frame->stacktop >= 0); \
- if (trace_function_entry(tstate, frame)) { \
- goto exit_unwind; \
- } \
- }
-
-#define DTRACE_FUNCTION_ENTRY() \
- if (PyDTrace_FUNCTION_ENTRY_ENABLED()) { \
- dtrace_function_entry(frame); \
- }
-
-#define ADAPTIVE_COUNTER_IS_ZERO(COUNTER) \
- (((COUNTER) >> ADAPTIVE_BACKOFF_BITS) == 0)
-
-#define ADAPTIVE_COUNTER_IS_MAX(COUNTER) \
- (((COUNTER) >> ADAPTIVE_BACKOFF_BITS) == ((1 << MAX_BACKOFF_VALUE) - 1))
-
-#define DECREMENT_ADAPTIVE_COUNTER(COUNTER) \
- do { \
- assert(!ADAPTIVE_COUNTER_IS_ZERO((COUNTER))); \
- (COUNTER) -= (1 << ADAPTIVE_BACKOFF_BITS); \
- } while (0);
-
-#define INCREMENT_ADAPTIVE_COUNTER(COUNTER) \
- do { \
- assert(!ADAPTIVE_COUNTER_IS_MAX((COUNTER))); \
- (COUNTER) += (1 << ADAPTIVE_BACKOFF_BITS); \
- } while (0);
+#include "ceval_macros.h"
static int
trace_function_entry(PyThreadState *tstate, _PyInterpreterFrame *frame)