diff options
Diffstat (limited to 'Doc/c-api/gcsupport.rst')
-rw-r--r-- | Doc/c-api/gcsupport.rst | 147 |
1 files changed, 147 insertions, 0 deletions
diff --git a/Doc/c-api/gcsupport.rst b/Doc/c-api/gcsupport.rst new file mode 100644 index 0000000..03947e9 --- /dev/null +++ b/Doc/c-api/gcsupport.rst @@ -0,0 +1,147 @@ +.. highlightlang:: c + +.. _supporting-cycle-detection: + +Supporting Cyclic Garbage Collection +==================================== + +Python's support for detecting and collecting garbage which involves circular +references requires support from object types which are "containers" for other +objects which may also be containers. Types which do not store references to +other objects, or which only store references to atomic types (such as numbers +or strings), do not need to provide any explicit support for garbage collection. + +To create a container type, the :attr:`tp_flags` field of the type object must +include the :const:`Py_TPFLAGS_HAVE_GC` and provide an implementation of the +:attr:`tp_traverse` handler. If instances of the type are mutable, a +:attr:`tp_clear` implementation must also be provided. + + +.. data:: Py_TPFLAGS_HAVE_GC + + Objects with a type with this flag set must conform with the rules documented + here. For convenience these objects will be referred to as container objects. + +Constructors for container types must conform to two rules: + +#. The memory for the object must be allocated using :cfunc:`PyObject_GC_New` or + :cfunc:`PyObject_GC_VarNew`. + +#. Once all the fields which may contain references to other containers are + initialized, it must call :cfunc:`PyObject_GC_Track`. + + +.. cfunction:: TYPE* PyObject_GC_New(TYPE, PyTypeObject *type) + + Analogous to :cfunc:`PyObject_New` but for container objects with the + :const:`Py_TPFLAGS_HAVE_GC` flag set. + + +.. cfunction:: TYPE* PyObject_GC_NewVar(TYPE, PyTypeObject *type, Py_ssize_t size) + + Analogous to :cfunc:`PyObject_NewVar` but for container objects with the + :const:`Py_TPFLAGS_HAVE_GC` flag set. + + +.. cfunction:: PyVarObject * PyObject_GC_Resize(PyVarObject *op, Py_ssize_t) + + Resize an object allocated by :cfunc:`PyObject_NewVar`. Returns the resized + object or *NULL* on failure. + + +.. cfunction:: void PyObject_GC_Track(PyObject *op) + + Adds the object *op* to the set of container objects tracked by the collector. + The collector can run at unexpected times so objects must be valid while being + tracked. This should be called once all the fields followed by the + :attr:`tp_traverse` handler become valid, usually near the end of the + constructor. + + +.. cfunction:: void _PyObject_GC_TRACK(PyObject *op) + + A macro version of :cfunc:`PyObject_GC_Track`. It should not be used for + extension modules. + +Similarly, the deallocator for the object must conform to a similar pair of +rules: + +#. Before fields which refer to other containers are invalidated, + :cfunc:`PyObject_GC_UnTrack` must be called. + +#. The object's memory must be deallocated using :cfunc:`PyObject_GC_Del`. + + +.. cfunction:: void PyObject_GC_Del(void *op) + + Releases memory allocated to an object using :cfunc:`PyObject_GC_New` or + :cfunc:`PyObject_GC_NewVar`. + + +.. cfunction:: void PyObject_GC_UnTrack(void *op) + + Remove the object *op* from the set of container objects tracked by the + collector. Note that :cfunc:`PyObject_GC_Track` can be called again on this + object to add it back to the set of tracked objects. The deallocator + (:attr:`tp_dealloc` handler) should call this for the object before any of the + fields used by the :attr:`tp_traverse` handler become invalid. + + +.. cfunction:: void _PyObject_GC_UNTRACK(PyObject *op) + + A macro version of :cfunc:`PyObject_GC_UnTrack`. It should not be used for + extension modules. + +The :attr:`tp_traverse` handler accepts a function parameter of this type: + + +.. ctype:: int (*visitproc)(PyObject *object, void *arg) + + Type of the visitor function passed to the :attr:`tp_traverse` handler. The + function should be called with an object to traverse as *object* and the third + parameter to the :attr:`tp_traverse` handler as *arg*. The Python core uses + several visitor functions to implement cyclic garbage detection; it's not + expected that users will need to write their own visitor functions. + +The :attr:`tp_traverse` handler must have the following type: + + +.. ctype:: int (*traverseproc)(PyObject *self, visitproc visit, void *arg) + + Traversal function for a container object. Implementations must call the + *visit* function for each object directly contained by *self*, with the + parameters to *visit* being the contained object and the *arg* value passed to + the handler. The *visit* function must not be called with a *NULL* object + argument. If *visit* returns a non-zero value that value should be returned + immediately. + +To simplify writing :attr:`tp_traverse` handlers, a :cfunc:`Py_VISIT` macro is +provided. In order to use this macro, the :attr:`tp_traverse` implementation +must name its arguments exactly *visit* and *arg*: + + +.. cfunction:: void Py_VISIT(PyObject *o) + + Call the *visit* callback, with arguments *o* and *arg*. If *visit* returns a + non-zero value, then return it. Using this macro, :attr:`tp_traverse` handlers + look like:: + + static int + my_traverse(Noddy *self, visitproc visit, void *arg) + { + Py_VISIT(self->foo); + Py_VISIT(self->bar); + return 0; + } + +The :attr:`tp_clear` handler must be of the :ctype:`inquiry` type, or *NULL* if +the object is immutable. + + +.. ctype:: int (*inquiry)(PyObject *self) + + Drop references that may have created reference cycles. Immutable objects do + not have to define this method since they can never directly create reference + cycles. Note that the object must still be valid after calling this method + (don't just call :cfunc:`Py_DECREF` on a reference). The collector will call + this method if it detects that this object is involved in a reference cycle. |