diff options
Diffstat (limited to 'Doc/distutils/builtdist.rst')
-rw-r--r-- | Doc/distutils/builtdist.rst | 392 |
1 files changed, 0 insertions, 392 deletions
diff --git a/Doc/distutils/builtdist.rst b/Doc/distutils/builtdist.rst deleted file mode 100644 index c1d9ea5..0000000 --- a/Doc/distutils/builtdist.rst +++ /dev/null @@ -1,392 +0,0 @@ -.. _built-dist: - -**************************** -Creating Built Distributions -**************************** - -.. include:: ./_setuptools_disclaimer.rst - -A "built distribution" is what you're probably used to thinking of either as a -"binary package" or an "installer" (depending on your background). It's not -necessarily binary, though, because it might contain only Python source code -and/or byte-code; and we don't call it a package, because that word is already -spoken for in Python. (And "installer" is a term specific to the world of -mainstream desktop systems.) - -A built distribution is how you make life as easy as possible for installers of -your module distribution: for users of RPM-based Linux systems, it's a binary -RPM; for Windows users, it's an executable installer; for Debian-based Linux -users, it's a Debian package; and so forth. Obviously, no one person will be -able to create built distributions for every platform under the sun, so the -Distutils are designed to enable module developers to concentrate on their -specialty---writing code and creating source distributions---while an -intermediary species called *packagers* springs up to turn source distributions -into built distributions for as many platforms as there are packagers. - -Of course, the module developer could be their own packager; or the packager could -be a volunteer "out there" somewhere who has access to a platform which the -original developer does not; or it could be software periodically grabbing new -source distributions and turning them into built distributions for as many -platforms as the software has access to. Regardless of who they are, a packager -uses the setup script and the :command:`bdist` command family to generate built -distributions. - -As a simple example, if I run the following command in the Distutils source -tree:: - - python setup.py bdist - -then the Distutils builds my module distribution (the Distutils itself in this -case), does a "fake" installation (also in the :file:`build` directory), and -creates the default type of built distribution for my platform. The default -format for built distributions is a "dumb" tar file on Unix, and a simple -executable installer on Windows. (That tar file is considered "dumb" because it -has to be unpacked in a specific location to work.) - -Thus, the above command on a Unix system creates -:file:`Distutils-1.0.{plat}.tar.gz`; unpacking this tarball from the right place -installs the Distutils just as though you had downloaded the source distribution -and run ``python setup.py install``. (The "right place" is either the root of -the filesystem or Python's :file:`{prefix}` directory, depending on the options -given to the :command:`bdist_dumb` command; the default is to make dumb -distributions relative to :file:`{prefix}`.) - -Obviously, for pure Python distributions, this isn't any simpler than just -running ``python setup.py install``\ ---but for non-pure distributions, which -include extensions that would need to be compiled, it can mean the difference -between someone being able to use your extensions or not. And creating "smart" -built distributions, such as an RPM package or an executable installer for -Windows, is far more convenient for users even if your distribution doesn't -include any extensions. - -The :command:`bdist` command has a :option:`!--formats` option, similar to the -:command:`sdist` command, which you can use to select the types of built -distribution to generate: for example, :: - - python setup.py bdist --format=zip - -would, when run on a Unix system, create -:file:`Distutils-1.0.{plat}.zip`\ ---again, this archive would be unpacked -from the root directory to install the Distutils. - -The available formats for built distributions are: - -+-------------+------------------------------+---------+ -| Format | Description | Notes | -+=============+==============================+=========+ -| ``gztar`` | gzipped tar file | \(1) | -| | (:file:`.tar.gz`) | | -+-------------+------------------------------+---------+ -| ``bztar`` | bzipped tar file | | -| | (:file:`.tar.bz2`) | | -+-------------+------------------------------+---------+ -| ``xztar`` | xzipped tar file | | -| | (:file:`.tar.xz`) | | -+-------------+------------------------------+---------+ -| ``ztar`` | compressed tar file | \(3) | -| | (:file:`.tar.Z`) | | -+-------------+------------------------------+---------+ -| ``tar`` | tar file (:file:`.tar`) | | -+-------------+------------------------------+---------+ -| ``zip`` | zip file (:file:`.zip`) | (2),(4) | -+-------------+------------------------------+---------+ -| ``rpm`` | RPM | \(5) | -+-------------+------------------------------+---------+ -| ``pkgtool`` | Solaris :program:`pkgtool` | | -+-------------+------------------------------+---------+ -| ``sdux`` | HP-UX :program:`swinstall` | | -+-------------+------------------------------+---------+ -| ``msi`` | Microsoft Installer. | | -+-------------+------------------------------+---------+ - -.. versionchanged:: 3.5 - Added support for the ``xztar`` format. - - -Notes: - -(1) - default on Unix - -(2) - default on Windows - -(3) - requires external :program:`compress` utility. - -(4) - requires either external :program:`zip` utility or :mod:`zipfile` module (part - of the standard Python library since Python 1.6) - -(5) - requires external :program:`rpm` utility, version 3.0.4 or better (use ``rpm - --version`` to find out which version you have) - -You don't have to use the :command:`bdist` command with the :option:`!--formats` -option; you can also use the command that directly implements the format you're -interested in. Some of these :command:`bdist` "sub-commands" actually generate -several similar formats; for instance, the :command:`bdist_dumb` command -generates all the "dumb" archive formats (``tar``, ``gztar``, ``bztar``, -``xztar``, ``ztar``, and ``zip``), and :command:`bdist_rpm` generates both -binary and source RPMs. The :command:`bdist` sub-commands, and the formats -generated by each, are: - -+--------------------------+-------------------------------------+ -| Command | Formats | -+==========================+=====================================+ -| :command:`bdist_dumb` | tar, gztar, bztar, xztar, ztar, zip | -+--------------------------+-------------------------------------+ -| :command:`bdist_rpm` | rpm, srpm | -+--------------------------+-------------------------------------+ - -The following sections give details on the individual :command:`bdist_\*` -commands. - - -.. .. _creating-dumb: - -.. Creating dumb built distributions -.. ================================= - -.. XXX Need to document absolute vs. prefix-relative packages here, but first - I have to implement it! - - -.. _creating-rpms: - -Creating RPM packages -===================== - -The RPM format is used by many popular Linux distributions, including Red Hat, -SuSE, and Mandrake. If one of these (or any of the other RPM-based Linux -distributions) is your usual environment, creating RPM packages for other users -of that same distribution is trivial. Depending on the complexity of your module -distribution and differences between Linux distributions, you may also be able -to create RPMs that work on different RPM-based distributions. - -The usual way to create an RPM of your module distribution is to run the -:command:`bdist_rpm` command:: - - python setup.py bdist_rpm - -or the :command:`bdist` command with the :option:`!--format` option:: - - python setup.py bdist --formats=rpm - -The former allows you to specify RPM-specific options; the latter allows you to -easily specify multiple formats in one run. If you need to do both, you can -explicitly specify multiple :command:`bdist_\*` commands and their options:: - - python setup.py bdist_rpm --packager="John Doe <jdoe@example.org>" - -Creating RPM packages is driven by a :file:`.spec` file, much as using the -Distutils is driven by the setup script. To make your life easier, the -:command:`bdist_rpm` command normally creates a :file:`.spec` file based on the -information you supply in the setup script, on the command line, and in any -Distutils configuration files. Various options and sections in the -:file:`.spec` file are derived from options in the setup script as follows: - -+------------------------------------------+----------------------------------------------+ -| RPM :file:`.spec` file option or section | Distutils setup script option | -+==========================================+==============================================+ -| Name | ``name`` | -+------------------------------------------+----------------------------------------------+ -| Summary (in preamble) | ``description`` | -+------------------------------------------+----------------------------------------------+ -| Version | ``version`` | -+------------------------------------------+----------------------------------------------+ -| Vendor | ``author`` and ``author_email``, | -| | or --- & ``maintainer`` and | -| | ``maintainer_email`` | -+------------------------------------------+----------------------------------------------+ -| Copyright | ``license`` | -+------------------------------------------+----------------------------------------------+ -| Url | ``url`` | -+------------------------------------------+----------------------------------------------+ -| %description (section) | ``long_description`` | -+------------------------------------------+----------------------------------------------+ - -Additionally, there are many options in :file:`.spec` files that don't have -corresponding options in the setup script. Most of these are handled through -options to the :command:`bdist_rpm` command as follows: - -+-------------------------------+-----------------------------+-------------------------+ -| RPM :file:`.spec` file option | :command:`bdist_rpm` option | default value | -| or section | | | -+===============================+=============================+=========================+ -| Release | ``release`` | "1" | -+-------------------------------+-----------------------------+-------------------------+ -| Group | ``group`` | "Development/Libraries" | -+-------------------------------+-----------------------------+-------------------------+ -| Vendor | ``vendor`` | (see above) | -+-------------------------------+-----------------------------+-------------------------+ -| Packager | ``packager`` | (none) | -+-------------------------------+-----------------------------+-------------------------+ -| Provides | ``provides`` | (none) | -+-------------------------------+-----------------------------+-------------------------+ -| Requires | ``requires`` | (none) | -+-------------------------------+-----------------------------+-------------------------+ -| Conflicts | ``conflicts`` | (none) | -+-------------------------------+-----------------------------+-------------------------+ -| Obsoletes | ``obsoletes`` | (none) | -+-------------------------------+-----------------------------+-------------------------+ -| Distribution | ``distribution_name`` | (none) | -+-------------------------------+-----------------------------+-------------------------+ -| BuildRequires | ``build_requires`` | (none) | -+-------------------------------+-----------------------------+-------------------------+ -| Icon | ``icon`` | (none) | -+-------------------------------+-----------------------------+-------------------------+ - -Obviously, supplying even a few of these options on the command-line would be -tedious and error-prone, so it's usually best to put them in the setup -configuration file, :file:`setup.cfg`\ ---see section :ref:`setup-config`. If -you distribute or package many Python module distributions, you might want to -put options that apply to all of them in your personal Distutils configuration -file (:file:`~/.pydistutils.cfg`). If you want to temporarily disable -this file, you can pass the :option:`!--no-user-cfg` option to :file:`setup.py`. - -There are three steps to building a binary RPM package, all of which are -handled automatically by the Distutils: - -#. create a :file:`.spec` file, which describes the package (analogous to the - Distutils setup script; in fact, much of the information in the setup script - winds up in the :file:`.spec` file) - -#. create the source RPM - -#. create the "binary" RPM (which may or may not contain binary code, depending - on whether your module distribution contains Python extensions) - -Normally, RPM bundles the last two steps together; when you use the Distutils, -all three steps are typically bundled together. - -If you wish, you can separate these three steps. You can use the -:option:`!--spec-only` option to make :command:`bdist_rpm` just create the -:file:`.spec` file and exit; in this case, the :file:`.spec` file will be -written to the "distribution directory"---normally :file:`dist/`, but -customizable with the :option:`!--dist-dir` option. (Normally, the :file:`.spec` -file winds up deep in the "build tree," in a temporary directory created by -:command:`bdist_rpm`.) - -.. % \XXX{this isn't implemented yet---is it needed?!} -.. % You can also specify a custom \file{.spec} file with the -.. % \longprogramopt{spec-file} option; used in conjunction with -.. % \longprogramopt{spec-only}, this gives you an opportunity to customize -.. % the \file{.spec} file manually: -.. % -.. % \ begin{verbatim} -.. % > python setup.py bdist_rpm --spec-only -.. % # ...edit dist/FooBar-1.0.spec -.. % > python setup.py bdist_rpm --spec-file=dist/FooBar-1.0.spec -.. % \ end{verbatim} -.. % -.. % (Although a better way to do this is probably to override the standard -.. % \command{bdist\_rpm} command with one that writes whatever else you want -.. % to the \file{.spec} file.) - - -.. _cross-compile-windows: - -Cross-compiling on Windows -========================== - -Starting with Python 2.6, distutils is capable of cross-compiling between -Windows platforms. In practice, this means that with the correct tools -installed, you can use a 32bit version of Windows to create 64bit extensions -and vice-versa. - -To build for an alternate platform, specify the :option:`!--plat-name` option -to the build command. Valid values are currently 'win32', and 'win-amd64'. -For example, on a 32bit version of Windows, you could execute:: - - python setup.py build --plat-name=win-amd64 - -to build a 64bit version of your extension. - -would create a 64bit installation executable on your 32bit version of Windows. - -To cross-compile, you must download the Python source code and cross-compile -Python itself for the platform you are targeting - it is not possible from a -binary installation of Python (as the .lib etc file for other platforms are -not included.) In practice, this means the user of a 32 bit operating -system will need to use Visual Studio 2008 to open the -:file:`PCbuild/PCbuild.sln` solution in the Python source tree and build the -"x64" configuration of the 'pythoncore' project before cross-compiling -extensions is possible. - -Note that by default, Visual Studio 2008 does not install 64bit compilers or -tools. You may need to reexecute the Visual Studio setup process and select -these tools (using Control Panel->[Add/Remove] Programs is a convenient way to -check or modify your existing install.) - -.. _postinstallation-script: - -The Postinstallation script ---------------------------- - -Starting with Python 2.3, a postinstallation script can be specified with the -:option:`!--install-script` option. The basename of the script must be -specified, and the script filename must also be listed in the scripts argument -to the setup function. - -This script will be run at installation time on the target system after all the -files have been copied, with ``argv[1]`` set to :option:`!-install`, and again at -uninstallation time before the files are removed with ``argv[1]`` set to -:option:`!-remove`. - -The installation script runs embedded in the windows installer, every output -(``sys.stdout``, ``sys.stderr``) is redirected into a buffer and will be -displayed in the GUI after the script has finished. - -Some functions especially useful in this context are available as additional -built-in functions in the installation script. - - -.. function:: directory_created(path) - file_created(path) - - These functions should be called when a directory or file is created by the - postinstall script at installation time. It will register *path* with the - uninstaller, so that it will be removed when the distribution is uninstalled. - To be safe, directories are only removed if they are empty. - - -.. function:: get_special_folder_path(csidl_string) - - This function can be used to retrieve special folder locations on Windows like - the Start Menu or the Desktop. It returns the full path to the folder. - *csidl_string* must be one of the following strings:: - - "CSIDL_APPDATA" - - "CSIDL_COMMON_STARTMENU" - "CSIDL_STARTMENU" - - "CSIDL_COMMON_DESKTOPDIRECTORY" - "CSIDL_DESKTOPDIRECTORY" - - "CSIDL_COMMON_STARTUP" - "CSIDL_STARTUP" - - "CSIDL_COMMON_PROGRAMS" - "CSIDL_PROGRAMS" - - "CSIDL_FONTS" - - If the folder cannot be retrieved, :exc:`OSError` is raised. - - Which folders are available depends on the exact Windows version, and probably - also the configuration. For details refer to Microsoft's documentation of the - :c:func:`SHGetSpecialFolderPath` function. - - -.. function:: create_shortcut(target, description, filename[, arguments[, workdir[, iconpath[, iconindex]]]]) - - This function creates a shortcut. *target* is the path to the program to be - started by the shortcut. *description* is the description of the shortcut. - *filename* is the title of the shortcut that the user will see. *arguments* - specifies the command line arguments, if any. *workdir* is the working directory - for the program. *iconpath* is the file containing the icon for the shortcut, - and *iconindex* is the index of the icon in the file *iconpath*. Again, for - details consult the Microsoft documentation for the :class:`IShellLink` - interface. |