diff options
Diffstat (limited to 'Include')
-rw-r--r-- | Include/internal/pycore_obmalloc.h | 689 | ||||
-rw-r--r-- | Include/internal/pycore_obmalloc_init.h | 68 | ||||
-rw-r--r-- | Include/internal/pycore_pymem.h | 35 | ||||
-rw-r--r-- | Include/internal/pycore_pymem_init.h | 85 | ||||
-rw-r--r-- | Include/internal/pycore_runtime.h | 5 | ||||
-rw-r--r-- | Include/internal/pycore_runtime_init.h | 10 |
6 files changed, 877 insertions, 15 deletions
diff --git a/Include/internal/pycore_obmalloc.h b/Include/internal/pycore_obmalloc.h new file mode 100644 index 0000000..93349d8 --- /dev/null +++ b/Include/internal/pycore_obmalloc.h @@ -0,0 +1,689 @@ +#ifndef Py_INTERNAL_OBMALLOC_H +#define Py_INTERNAL_OBMALLOC_H +#ifdef __cplusplus +extern "C" { +#endif + +#ifndef Py_BUILD_CORE +# error "this header requires Py_BUILD_CORE define" +#endif + + +typedef unsigned int pymem_uint; /* assuming >= 16 bits */ + +#undef uint +#define uint pymem_uint + + +/* An object allocator for Python. + + Here is an introduction to the layers of the Python memory architecture, + showing where the object allocator is actually used (layer +2), It is + called for every object allocation and deallocation (PyObject_New/Del), + unless the object-specific allocators implement a proprietary allocation + scheme (ex.: ints use a simple free list). This is also the place where + the cyclic garbage collector operates selectively on container objects. + + + Object-specific allocators + _____ ______ ______ ________ + [ int ] [ dict ] [ list ] ... [ string ] Python core | ++3 | <----- Object-specific memory -----> | <-- Non-object memory --> | + _______________________________ | | + [ Python's object allocator ] | | ++2 | ####### Object memory ####### | <------ Internal buffers ------> | + ______________________________________________________________ | + [ Python's raw memory allocator (PyMem_ API) ] | ++1 | <----- Python memory (under PyMem manager's control) ------> | | + __________________________________________________________________ + [ Underlying general-purpose allocator (ex: C library malloc) ] + 0 | <------ Virtual memory allocated for the python process -------> | + + ========================================================================= + _______________________________________________________________________ + [ OS-specific Virtual Memory Manager (VMM) ] +-1 | <--- Kernel dynamic storage allocation & management (page-based) ---> | + __________________________________ __________________________________ + [ ] [ ] +-2 | <-- Physical memory: ROM/RAM --> | | <-- Secondary storage (swap) --> | + +*/ +/*==========================================================================*/ + +/* A fast, special-purpose memory allocator for small blocks, to be used + on top of a general-purpose malloc -- heavily based on previous art. */ + +/* Vladimir Marangozov -- August 2000 */ + +/* + * "Memory management is where the rubber meets the road -- if we do the wrong + * thing at any level, the results will not be good. And if we don't make the + * levels work well together, we are in serious trouble." (1) + * + * (1) Paul R. Wilson, Mark S. Johnstone, Michael Neely, and David Boles, + * "Dynamic Storage Allocation: A Survey and Critical Review", + * in Proc. 1995 Int'l. Workshop on Memory Management, September 1995. + */ + +/* #undef WITH_MEMORY_LIMITS */ /* disable mem limit checks */ + +/*==========================================================================*/ + +/* + * Allocation strategy abstract: + * + * For small requests, the allocator sub-allocates <Big> blocks of memory. + * Requests greater than SMALL_REQUEST_THRESHOLD bytes are routed to the + * system's allocator. + * + * Small requests are grouped in size classes spaced 8 bytes apart, due + * to the required valid alignment of the returned address. Requests of + * a particular size are serviced from memory pools of 4K (one VMM page). + * Pools are fragmented on demand and contain free lists of blocks of one + * particular size class. In other words, there is a fixed-size allocator + * for each size class. Free pools are shared by the different allocators + * thus minimizing the space reserved for a particular size class. + * + * This allocation strategy is a variant of what is known as "simple + * segregated storage based on array of free lists". The main drawback of + * simple segregated storage is that we might end up with lot of reserved + * memory for the different free lists, which degenerate in time. To avoid + * this, we partition each free list in pools and we share dynamically the + * reserved space between all free lists. This technique is quite efficient + * for memory intensive programs which allocate mainly small-sized blocks. + * + * For small requests we have the following table: + * + * Request in bytes Size of allocated block Size class idx + * ---------------------------------------------------------------- + * 1-8 8 0 + * 9-16 16 1 + * 17-24 24 2 + * 25-32 32 3 + * 33-40 40 4 + * 41-48 48 5 + * 49-56 56 6 + * 57-64 64 7 + * 65-72 72 8 + * ... ... ... + * 497-504 504 62 + * 505-512 512 63 + * + * 0, SMALL_REQUEST_THRESHOLD + 1 and up: routed to the underlying + * allocator. + */ + +/*==========================================================================*/ + +/* + * -- Main tunable settings section -- + */ + +/* + * Alignment of addresses returned to the user. 8-bytes alignment works + * on most current architectures (with 32-bit or 64-bit address buses). + * The alignment value is also used for grouping small requests in size + * classes spaced ALIGNMENT bytes apart. + * + * You shouldn't change this unless you know what you are doing. + */ + +#if SIZEOF_VOID_P > 4 +#define ALIGNMENT 16 /* must be 2^N */ +#define ALIGNMENT_SHIFT 4 +#else +#define ALIGNMENT 8 /* must be 2^N */ +#define ALIGNMENT_SHIFT 3 +#endif + +/* Return the number of bytes in size class I, as a uint. */ +#define INDEX2SIZE(I) (((pymem_uint)(I) + 1) << ALIGNMENT_SHIFT) + +/* + * Max size threshold below which malloc requests are considered to be + * small enough in order to use preallocated memory pools. You can tune + * this value according to your application behaviour and memory needs. + * + * Note: a size threshold of 512 guarantees that newly created dictionaries + * will be allocated from preallocated memory pools on 64-bit. + * + * The following invariants must hold: + * 1) ALIGNMENT <= SMALL_REQUEST_THRESHOLD <= 512 + * 2) SMALL_REQUEST_THRESHOLD is evenly divisible by ALIGNMENT + * + * Although not required, for better performance and space efficiency, + * it is recommended that SMALL_REQUEST_THRESHOLD is set to a power of 2. + */ +#define SMALL_REQUEST_THRESHOLD 512 +#define NB_SMALL_SIZE_CLASSES (SMALL_REQUEST_THRESHOLD / ALIGNMENT) + +/* + * The system's VMM page size can be obtained on most unices with a + * getpagesize() call or deduced from various header files. To make + * things simpler, we assume that it is 4K, which is OK for most systems. + * It is probably better if this is the native page size, but it doesn't + * have to be. In theory, if SYSTEM_PAGE_SIZE is larger than the native page + * size, then `POOL_ADDR(p)->arenaindex' could rarely cause a segmentation + * violation fault. 4K is apparently OK for all the platforms that python + * currently targets. + */ +#define SYSTEM_PAGE_SIZE (4 * 1024) + +/* + * Maximum amount of memory managed by the allocator for small requests. + */ +#ifdef WITH_MEMORY_LIMITS +#ifndef SMALL_MEMORY_LIMIT +#define SMALL_MEMORY_LIMIT (64 * 1024 * 1024) /* 64 MB -- more? */ +#endif +#endif + +#if !defined(WITH_PYMALLOC_RADIX_TREE) +/* Use radix-tree to track arena memory regions, for address_in_range(). + * Enable by default since it allows larger pool sizes. Can be disabled + * using -DWITH_PYMALLOC_RADIX_TREE=0 */ +#define WITH_PYMALLOC_RADIX_TREE 1 +#endif + +#if SIZEOF_VOID_P > 4 +/* on 64-bit platforms use larger pools and arenas if we can */ +#define USE_LARGE_ARENAS +#if WITH_PYMALLOC_RADIX_TREE +/* large pools only supported if radix-tree is enabled */ +#define USE_LARGE_POOLS +#endif +#endif + +/* + * The allocator sub-allocates <Big> blocks of memory (called arenas) aligned + * on a page boundary. This is a reserved virtual address space for the + * current process (obtained through a malloc()/mmap() call). In no way this + * means that the memory arenas will be used entirely. A malloc(<Big>) is + * usually an address range reservation for <Big> bytes, unless all pages within + * this space are referenced subsequently. So malloc'ing big blocks and not + * using them does not mean "wasting memory". It's an addressable range + * wastage... + * + * Arenas are allocated with mmap() on systems supporting anonymous memory + * mappings to reduce heap fragmentation. + */ +#ifdef USE_LARGE_ARENAS +#define ARENA_BITS 20 /* 1 MiB */ +#else +#define ARENA_BITS 18 /* 256 KiB */ +#endif +#define ARENA_SIZE (1 << ARENA_BITS) +#define ARENA_SIZE_MASK (ARENA_SIZE - 1) + +#ifdef WITH_MEMORY_LIMITS +#define MAX_ARENAS (SMALL_MEMORY_LIMIT / ARENA_SIZE) +#endif + +/* + * Size of the pools used for small blocks. Must be a power of 2. + */ +#ifdef USE_LARGE_POOLS +#define POOL_BITS 14 /* 16 KiB */ +#else +#define POOL_BITS 12 /* 4 KiB */ +#endif +#define POOL_SIZE (1 << POOL_BITS) +#define POOL_SIZE_MASK (POOL_SIZE - 1) + +#if !WITH_PYMALLOC_RADIX_TREE +#if POOL_SIZE != SYSTEM_PAGE_SIZE +# error "pool size must be equal to system page size" +#endif +#endif + +#define MAX_POOLS_IN_ARENA (ARENA_SIZE / POOL_SIZE) +#if MAX_POOLS_IN_ARENA * POOL_SIZE != ARENA_SIZE +# error "arena size not an exact multiple of pool size" +#endif + +/* + * -- End of tunable settings section -- + */ + +/*==========================================================================*/ + +/* When you say memory, my mind reasons in terms of (pointers to) blocks */ +typedef uint8_t pymem_block; + +/* Pool for small blocks. */ +struct pool_header { + union { pymem_block *_padding; + uint count; } ref; /* number of allocated blocks */ + pymem_block *freeblock; /* pool's free list head */ + struct pool_header *nextpool; /* next pool of this size class */ + struct pool_header *prevpool; /* previous pool "" */ + uint arenaindex; /* index into arenas of base adr */ + uint szidx; /* block size class index */ + uint nextoffset; /* bytes to virgin block */ + uint maxnextoffset; /* largest valid nextoffset */ +}; + +typedef struct pool_header *poolp; + +/* Record keeping for arenas. */ +struct arena_object { + /* The address of the arena, as returned by malloc. Note that 0 + * will never be returned by a successful malloc, and is used + * here to mark an arena_object that doesn't correspond to an + * allocated arena. + */ + uintptr_t address; + + /* Pool-aligned pointer to the next pool to be carved off. */ + pymem_block* pool_address; + + /* The number of available pools in the arena: free pools + never- + * allocated pools. + */ + uint nfreepools; + + /* The total number of pools in the arena, whether or not available. */ + uint ntotalpools; + + /* Singly-linked list of available pools. */ + struct pool_header* freepools; + + /* Whenever this arena_object is not associated with an allocated + * arena, the nextarena member is used to link all unassociated + * arena_objects in the singly-linked `unused_arena_objects` list. + * The prevarena member is unused in this case. + * + * When this arena_object is associated with an allocated arena + * with at least one available pool, both members are used in the + * doubly-linked `usable_arenas` list, which is maintained in + * increasing order of `nfreepools` values. + * + * Else this arena_object is associated with an allocated arena + * all of whose pools are in use. `nextarena` and `prevarena` + * are both meaningless in this case. + */ + struct arena_object* nextarena; + struct arena_object* prevarena; +}; + +#define POOL_OVERHEAD _Py_SIZE_ROUND_UP(sizeof(struct pool_header), ALIGNMENT) + +#define DUMMY_SIZE_IDX 0xffff /* size class of newly cached pools */ + +/* Round pointer P down to the closest pool-aligned address <= P, as a poolp */ +#define POOL_ADDR(P) ((poolp)_Py_ALIGN_DOWN((P), POOL_SIZE)) + +/* Return total number of blocks in pool of size index I, as a uint. */ +#define NUMBLOCKS(I) ((pymem_uint)(POOL_SIZE - POOL_OVERHEAD) / INDEX2SIZE(I)) + +/*==========================================================================*/ + +/* + * Pool table -- headed, circular, doubly-linked lists of partially used pools. + +This is involved. For an index i, usedpools[i+i] is the header for a list of +all partially used pools holding small blocks with "size class idx" i. So +usedpools[0] corresponds to blocks of size 8, usedpools[2] to blocks of size +16, and so on: index 2*i <-> blocks of size (i+1)<<ALIGNMENT_SHIFT. + +Pools are carved off an arena's highwater mark (an arena_object's pool_address +member) as needed. Once carved off, a pool is in one of three states forever +after: + +used == partially used, neither empty nor full + At least one block in the pool is currently allocated, and at least one + block in the pool is not currently allocated (note this implies a pool + has room for at least two blocks). + This is a pool's initial state, as a pool is created only when malloc + needs space. + The pool holds blocks of a fixed size, and is in the circular list headed + at usedpools[i] (see above). It's linked to the other used pools of the + same size class via the pool_header's nextpool and prevpool members. + If all but one block is currently allocated, a malloc can cause a + transition to the full state. If all but one block is not currently + allocated, a free can cause a transition to the empty state. + +full == all the pool's blocks are currently allocated + On transition to full, a pool is unlinked from its usedpools[] list. + It's not linked to from anything then anymore, and its nextpool and + prevpool members are meaningless until it transitions back to used. + A free of a block in a full pool puts the pool back in the used state. + Then it's linked in at the front of the appropriate usedpools[] list, so + that the next allocation for its size class will reuse the freed block. + +empty == all the pool's blocks are currently available for allocation + On transition to empty, a pool is unlinked from its usedpools[] list, + and linked to the front of its arena_object's singly-linked freepools list, + via its nextpool member. The prevpool member has no meaning in this case. + Empty pools have no inherent size class: the next time a malloc finds + an empty list in usedpools[], it takes the first pool off of freepools. + If the size class needed happens to be the same as the size class the pool + last had, some pool initialization can be skipped. + + +Block Management + +Blocks within pools are again carved out as needed. pool->freeblock points to +the start of a singly-linked list of free blocks within the pool. When a +block is freed, it's inserted at the front of its pool's freeblock list. Note +that the available blocks in a pool are *not* linked all together when a pool +is initialized. Instead only "the first two" (lowest addresses) blocks are +set up, returning the first such block, and setting pool->freeblock to a +one-block list holding the second such block. This is consistent with that +pymalloc strives at all levels (arena, pool, and block) never to touch a piece +of memory until it's actually needed. + +So long as a pool is in the used state, we're certain there *is* a block +available for allocating, and pool->freeblock is not NULL. If pool->freeblock +points to the end of the free list before we've carved the entire pool into +blocks, that means we simply haven't yet gotten to one of the higher-address +blocks. The offset from the pool_header to the start of "the next" virgin +block is stored in the pool_header nextoffset member, and the largest value +of nextoffset that makes sense is stored in the maxnextoffset member when a +pool is initialized. All the blocks in a pool have been passed out at least +once when and only when nextoffset > maxnextoffset. + + +Major obscurity: While the usedpools vector is declared to have poolp +entries, it doesn't really. It really contains two pointers per (conceptual) +poolp entry, the nextpool and prevpool members of a pool_header. The +excruciating initialization code below fools C so that + + usedpool[i+i] + +"acts like" a genuine poolp, but only so long as you only reference its +nextpool and prevpool members. The "- 2*sizeof(pymem_block *)" gibberish is +compensating for that a pool_header's nextpool and prevpool members +immediately follow a pool_header's first two members: + + union { pymem_block *_padding; + uint count; } ref; + pymem_block *freeblock; + +each of which consume sizeof(pymem_block *) bytes. So what usedpools[i+i] really +contains is a fudged-up pointer p such that *if* C believes it's a poolp +pointer, then p->nextpool and p->prevpool are both p (meaning that the headed +circular list is empty). + +It's unclear why the usedpools setup is so convoluted. It could be to +minimize the amount of cache required to hold this heavily-referenced table +(which only *needs* the two interpool pointer members of a pool_header). OTOH, +referencing code has to remember to "double the index" and doing so isn't +free, usedpools[0] isn't a strictly legal pointer, and we're crucially relying +on that C doesn't insert any padding anywhere in a pool_header at or before +the prevpool member. +**************************************************************************** */ + +#define OBMALLOC_USED_POOLS_SIZE (2 * ((NB_SMALL_SIZE_CLASSES + 7) / 8) * 8) + +struct _obmalloc_pools { + poolp used[OBMALLOC_USED_POOLS_SIZE]; +}; + + +/*========================================================================== +Arena management. + +`arenas` is a vector of arena_objects. It contains maxarenas entries, some of +which may not be currently used (== they're arena_objects that aren't +currently associated with an allocated arena). Note that arenas proper are +separately malloc'ed. + +Prior to Python 2.5, arenas were never free()'ed. Starting with Python 2.5, +we do try to free() arenas, and use some mild heuristic strategies to increase +the likelihood that arenas eventually can be freed. + +unused_arena_objects + + This is a singly-linked list of the arena_objects that are currently not + being used (no arena is associated with them). Objects are taken off the + head of the list in new_arena(), and are pushed on the head of the list in + PyObject_Free() when the arena is empty. Key invariant: an arena_object + is on this list if and only if its .address member is 0. + +usable_arenas + + This is a doubly-linked list of the arena_objects associated with arenas + that have pools available. These pools are either waiting to be reused, + or have not been used before. The list is sorted to have the most- + allocated arenas first (ascending order based on the nfreepools member). + This means that the next allocation will come from a heavily used arena, + which gives the nearly empty arenas a chance to be returned to the system. + In my unscientific tests this dramatically improved the number of arenas + that could be freed. + +Note that an arena_object associated with an arena all of whose pools are +currently in use isn't on either list. + +Changed in Python 3.8: keeping usable_arenas sorted by number of free pools +used to be done by one-at-a-time linear search when an arena's number of +free pools changed. That could, overall, consume time quadratic in the +number of arenas. That didn't really matter when there were only a few +hundred arenas (typical!), but could be a timing disaster when there were +hundreds of thousands. See bpo-37029. + +Now we have a vector of "search fingers" to eliminate the need to search: +nfp2lasta[nfp] returns the last ("rightmost") arena in usable_arenas +with nfp free pools. This is NULL if and only if there is no arena with +nfp free pools in usable_arenas. +*/ + +/* How many arena_objects do we initially allocate? + * 16 = can allocate 16 arenas = 16 * ARENA_SIZE = 4MB before growing the + * `arenas` vector. + */ +#define INITIAL_ARENA_OBJECTS 16 + +struct _obmalloc_mgmt { + /* Array of objects used to track chunks of memory (arenas). */ + struct arena_object* arenas; + /* Number of slots currently allocated in the `arenas` vector. */ + uint maxarenas; + + /* The head of the singly-linked, NULL-terminated list of available + * arena_objects. + */ + struct arena_object* unused_arena_objects; + + /* The head of the doubly-linked, NULL-terminated at each end, list of + * arena_objects associated with arenas that have pools available. + */ + struct arena_object* usable_arenas; + + /* nfp2lasta[nfp] is the last arena in usable_arenas with nfp free pools */ + struct arena_object* nfp2lasta[MAX_POOLS_IN_ARENA + 1]; + + /* Number of arenas allocated that haven't been free()'d. */ + size_t narenas_currently_allocated; + + /* Total number of times malloc() called to allocate an arena. */ + size_t ntimes_arena_allocated; + /* High water mark (max value ever seen) for narenas_currently_allocated. */ + size_t narenas_highwater; + + Py_ssize_t raw_allocated_blocks; +}; + + +#if WITH_PYMALLOC_RADIX_TREE +/*==========================================================================*/ +/* radix tree for tracking arena usage. If enabled, used to implement + address_in_range(). + + memory address bit allocation for keys + + 64-bit pointers, IGNORE_BITS=0 and 2^20 arena size: + 15 -> MAP_TOP_BITS + 15 -> MAP_MID_BITS + 14 -> MAP_BOT_BITS + 20 -> ideal aligned arena + ---- + 64 + + 64-bit pointers, IGNORE_BITS=16, and 2^20 arena size: + 16 -> IGNORE_BITS + 10 -> MAP_TOP_BITS + 10 -> MAP_MID_BITS + 8 -> MAP_BOT_BITS + 20 -> ideal aligned arena + ---- + 64 + + 32-bit pointers and 2^18 arena size: + 14 -> MAP_BOT_BITS + 18 -> ideal aligned arena + ---- + 32 + +*/ + +#if SIZEOF_VOID_P == 8 + +/* number of bits in a pointer */ +#define POINTER_BITS 64 + +/* High bits of memory addresses that will be ignored when indexing into the + * radix tree. Setting this to zero is the safe default. For most 64-bit + * machines, setting this to 16 would be safe. The kernel would not give + * user-space virtual memory addresses that have significant information in + * those high bits. The main advantage to setting IGNORE_BITS > 0 is that less + * virtual memory will be used for the top and middle radix tree arrays. Those + * arrays are allocated in the BSS segment and so will typically consume real + * memory only if actually accessed. + */ +#define IGNORE_BITS 0 + +/* use the top and mid layers of the radix tree */ +#define USE_INTERIOR_NODES + +#elif SIZEOF_VOID_P == 4 + +#define POINTER_BITS 32 +#define IGNORE_BITS 0 + +#else + + /* Currently this code works for 64-bit or 32-bit pointers only. */ +#error "obmalloc radix tree requires 64-bit or 32-bit pointers." + +#endif /* SIZEOF_VOID_P */ + +/* arena_coverage_t members require this to be true */ +#if ARENA_BITS >= 32 +# error "arena size must be < 2^32" +#endif + +/* the lower bits of the address that are not ignored */ +#define ADDRESS_BITS (POINTER_BITS - IGNORE_BITS) + +#ifdef USE_INTERIOR_NODES +/* number of bits used for MAP_TOP and MAP_MID nodes */ +#define INTERIOR_BITS ((ADDRESS_BITS - ARENA_BITS + 2) / 3) +#else +#define INTERIOR_BITS 0 +#endif + +#define MAP_TOP_BITS INTERIOR_BITS +#define MAP_TOP_LENGTH (1 << MAP_TOP_BITS) +#define MAP_TOP_MASK (MAP_TOP_LENGTH - 1) + +#define MAP_MID_BITS INTERIOR_BITS +#define MAP_MID_LENGTH (1 << MAP_MID_BITS) +#define MAP_MID_MASK (MAP_MID_LENGTH - 1) + +#define MAP_BOT_BITS (ADDRESS_BITS - ARENA_BITS - 2*INTERIOR_BITS) +#define MAP_BOT_LENGTH (1 << MAP_BOT_BITS) +#define MAP_BOT_MASK (MAP_BOT_LENGTH - 1) + +#define MAP_BOT_SHIFT ARENA_BITS +#define MAP_MID_SHIFT (MAP_BOT_BITS + MAP_BOT_SHIFT) +#define MAP_TOP_SHIFT (MAP_MID_BITS + MAP_MID_SHIFT) + +#define AS_UINT(p) ((uintptr_t)(p)) +#define MAP_BOT_INDEX(p) ((AS_UINT(p) >> MAP_BOT_SHIFT) & MAP_BOT_MASK) +#define MAP_MID_INDEX(p) ((AS_UINT(p) >> MAP_MID_SHIFT) & MAP_MID_MASK) +#define MAP_TOP_INDEX(p) ((AS_UINT(p) >> MAP_TOP_SHIFT) & MAP_TOP_MASK) + +#if IGNORE_BITS > 0 +/* Return the ignored part of the pointer address. Those bits should be same + * for all valid pointers if IGNORE_BITS is set correctly. + */ +#define HIGH_BITS(p) (AS_UINT(p) >> ADDRESS_BITS) +#else +#define HIGH_BITS(p) 0 +#endif + + +/* This is the leaf of the radix tree. See arena_map_mark_used() for the + * meaning of these members. */ +typedef struct { + int32_t tail_hi; + int32_t tail_lo; +} arena_coverage_t; + +typedef struct arena_map_bot { + /* The members tail_hi and tail_lo are accessed together. So, it + * better to have them as an array of structs, rather than two + * arrays. + */ + arena_coverage_t arenas[MAP_BOT_LENGTH]; +} arena_map_bot_t; + +#ifdef USE_INTERIOR_NODES +typedef struct arena_map_mid { + struct arena_map_bot *ptrs[MAP_MID_LENGTH]; +} arena_map_mid_t; + +typedef struct arena_map_top { + struct arena_map_mid *ptrs[MAP_TOP_LENGTH]; +} arena_map_top_t; +#endif + +struct _obmalloc_usage { + /* The root of radix tree. Note that by initializing like this, the memory + * should be in the BSS. The OS will only memory map pages as the MAP_MID + * nodes get used (OS pages are demand loaded as needed). + */ +#ifdef USE_INTERIOR_NODES + arena_map_top_t arena_map_root; + /* accounting for number of used interior nodes */ + int arena_map_mid_count; + int arena_map_bot_count; +#else + arena_map_bot_t arena_map_root; +#endif +}; + +#endif /* WITH_PYMALLOC_RADIX_TREE */ + + +struct _obmalloc_state { + struct _obmalloc_pools pools; + struct _obmalloc_mgmt mgmt; + struct _obmalloc_usage usage; +}; + + +#undef uint + + +/* Allocate memory directly from the O/S virtual memory system, + * where supported. Otherwise fallback on malloc */ +void *_PyObject_VirtualAlloc(size_t size); +void _PyObject_VirtualFree(void *, size_t size); + + +/* This function returns the number of allocated memory blocks, regardless of size */ +PyAPI_FUNC(Py_ssize_t) _Py_GetAllocatedBlocks(void); + + +#ifdef WITH_PYMALLOC +// Export the symbol for the 3rd party guppy3 project +PyAPI_FUNC(int) _PyObject_DebugMallocStats(FILE *out); +#endif + + +#ifdef __cplusplus +} +#endif +#endif // !Py_INTERNAL_OBMALLOC_H diff --git a/Include/internal/pycore_obmalloc_init.h b/Include/internal/pycore_obmalloc_init.h new file mode 100644 index 0000000..c0fb057 --- /dev/null +++ b/Include/internal/pycore_obmalloc_init.h @@ -0,0 +1,68 @@ +#ifndef Py_INTERNAL_OBMALLOC_INIT_H +#define Py_INTERNAL_OBMALLOC_INIT_H +#ifdef __cplusplus +extern "C" { +#endif + +#ifndef Py_BUILD_CORE +# error "this header requires Py_BUILD_CORE define" +#endif + + +/****************************************************/ +/* the default object allocator's state initializer */ + +#define PTA(pools, x) \ + ((poolp )((uint8_t *)&(pools.used[2*(x)]) - 2*sizeof(pymem_block *))) +#define PT(p, x) PTA(p, x), PTA(p, x) + +#define PT_8(p, start) \ + PT(p, start), \ + PT(p, start+1), \ + PT(p, start+2), \ + PT(p, start+3), \ + PT(p, start+4), \ + PT(p, start+5), \ + PT(p, start+6), \ + PT(p, start+7) + +#if NB_SMALL_SIZE_CLASSES <= 8 +# define _obmalloc_pools_INIT(p) \ + { PT_8(p, 0) } +#elif NB_SMALL_SIZE_CLASSES <= 16 +# define _obmalloc_pools_INIT(p) \ + { PT_8(p, 0), PT_8(p, 8) } +#elif NB_SMALL_SIZE_CLASSES <= 24 +# define _obmalloc_pools_INIT(p) \ + { PT_8(p, 0), PT_8(p, 8), PT_8(p, 16) } +#elif NB_SMALL_SIZE_CLASSES <= 32 +# define _obmalloc_pools_INIT(p) \ + { PT_8(p, 0), PT_8(p, 8), PT_8(p, 16), PT_8(p, 24) } +#elif NB_SMALL_SIZE_CLASSES <= 40 +# define _obmalloc_pools_INIT(p) \ + { PT_8(p, 0), PT_8(p, 8), PT_8(p, 16), PT_8(p, 24), PT_8(p, 32) } +#elif NB_SMALL_SIZE_CLASSES <= 48 +# define _obmalloc_pools_INIT(p) \ + { PT_8(p, 0), PT_8(p, 8), PT_8(p, 16), PT_8(p, 24), PT_8(p, 32), PT_8(p, 40) } +#elif NB_SMALL_SIZE_CLASSES <= 56 +# define _obmalloc_pools_INIT(p) \ + { PT_8(p, 0), PT_8(p, 8), PT_8(p, 16), PT_8(p, 24), PT_8(p, 32), PT_8(p, 40), PT_8(p, 48) } +#elif NB_SMALL_SIZE_CLASSES <= 64 +# define _obmalloc_pools_INIT(p) \ + { PT_8(p, 0), PT_8(p, 8), PT_8(p, 16), PT_8(p, 24), PT_8(p, 32), PT_8(p, 40), PT_8(p, 48), PT_8(p, 56) } +#else +# error "NB_SMALL_SIZE_CLASSES should be less than 64" +#endif + +#define _obmalloc_state_INIT(obmalloc) \ + { \ + .pools = { \ + .used = _obmalloc_pools_INIT(obmalloc.pools), \ + }, \ + } + + +#ifdef __cplusplus +} +#endif +#endif // !Py_INTERNAL_OBMALLOC_INIT_H diff --git a/Include/internal/pycore_pymem.h b/Include/internal/pycore_pymem.h index b9eea9d..b042a4c 100644 --- a/Include/internal/pycore_pymem.h +++ b/Include/internal/pycore_pymem.h @@ -11,6 +11,27 @@ extern "C" { #include "pymem.h" // PyMemAllocatorName +typedef struct { + /* We tag each block with an API ID in order to tag API violations */ + char api_id; + PyMemAllocatorEx alloc; +} debug_alloc_api_t; + +struct _pymem_allocators { + struct { + PyMemAllocatorEx raw; + PyMemAllocatorEx mem; + PyMemAllocatorEx obj; + } standard; + struct { + debug_alloc_api_t raw; + debug_alloc_api_t mem; + debug_alloc_api_t obj; + } debug; + PyObjectArenaAllocator obj_arena; +}; + + /* Set the memory allocator of the specified domain to the default. Save the old allocator into *old_alloc if it's non-NULL. Return on success, or return -1 if the domain is unknown. */ @@ -94,20 +115,6 @@ struct _PyTraceMalloc_Config { PyAPI_DATA(struct _PyTraceMalloc_Config) _Py_tracemalloc_config; -/* Allocate memory directly from the O/S virtual memory system, - * where supported. Otherwise fallback on malloc */ -void *_PyObject_VirtualAlloc(size_t size); -void _PyObject_VirtualFree(void *, size_t size); - -/* This function returns the number of allocated memory blocks, regardless of size */ -PyAPI_FUNC(Py_ssize_t) _Py_GetAllocatedBlocks(void); - -/* Macros */ -#ifdef WITH_PYMALLOC -// Export the symbol for the 3rd party guppy3 project -PyAPI_FUNC(int) _PyObject_DebugMallocStats(FILE *out); -#endif - #ifdef __cplusplus } #endif diff --git a/Include/internal/pycore_pymem_init.h b/Include/internal/pycore_pymem_init.h new file mode 100644 index 0000000..7823273 --- /dev/null +++ b/Include/internal/pycore_pymem_init.h @@ -0,0 +1,85 @@ +#ifndef Py_INTERNAL_PYMEM_INIT_H +#define Py_INTERNAL_PYMEM_INIT_H +#ifdef __cplusplus +extern "C" { +#endif + +#ifndef Py_BUILD_CORE +# error "this header requires Py_BUILD_CORE define" +#endif + +#include "pycore_pymem.h" + + +/********************************/ +/* the allocators' initializers */ + +extern void * _PyMem_RawMalloc(void *, size_t); +extern void * _PyMem_RawCalloc(void *, size_t, size_t); +extern void * _PyMem_RawRealloc(void *, void *, size_t); +extern void _PyMem_RawFree(void *, void *); +#define PYRAW_ALLOC {NULL, _PyMem_RawMalloc, _PyMem_RawCalloc, _PyMem_RawRealloc, _PyMem_RawFree} + +#ifdef WITH_PYMALLOC +extern void* _PyObject_Malloc(void *, size_t); +extern void* _PyObject_Calloc(void *, size_t, size_t); +extern void _PyObject_Free(void *, void *); +extern void* _PyObject_Realloc(void *, void *, size_t); +# define PYOBJ_ALLOC {NULL, _PyObject_Malloc, _PyObject_Calloc, _PyObject_Realloc, _PyObject_Free} +#else +# define PYOBJ_ALLOC PYRAW_ALLOC +#endif // WITH_PYMALLOC + +#define PYMEM_ALLOC PYOBJ_ALLOC + +extern void* _PyMem_DebugRawMalloc(void *, size_t); +extern void* _PyMem_DebugRawCalloc(void *, size_t, size_t); +extern void* _PyMem_DebugRawRealloc(void *, void *, size_t); +extern void _PyMem_DebugRawFree(void *, void *); + +extern void* _PyMem_DebugMalloc(void *, size_t); +extern void* _PyMem_DebugCalloc(void *, size_t, size_t); +extern void* _PyMem_DebugRealloc(void *, void *, size_t); +extern void _PyMem_DebugFree(void *, void *); + +#define PYDBGRAW_ALLOC(runtime) \ + {&(runtime).allocators.debug.raw, _PyMem_DebugRawMalloc, _PyMem_DebugRawCalloc, _PyMem_DebugRawRealloc, _PyMem_DebugRawFree} +#define PYDBGMEM_ALLOC(runtime) \ + {&(runtime).allocators.debug.mem, _PyMem_DebugMalloc, _PyMem_DebugCalloc, _PyMem_DebugRealloc, _PyMem_DebugFree} +#define PYDBGOBJ_ALLOC(runtime) \ + {&(runtime).allocators.debug.obj, _PyMem_DebugMalloc, _PyMem_DebugCalloc, _PyMem_DebugRealloc, _PyMem_DebugFree} + +extern void * _PyMem_ArenaAlloc(void *, size_t); +extern void _PyMem_ArenaFree(void *, void *, size_t); + +#ifdef Py_DEBUG +# define _pymem_allocators_standard_INIT(runtime) \ + { \ + PYDBGRAW_ALLOC(runtime), \ + PYDBGMEM_ALLOC(runtime), \ + PYDBGOBJ_ALLOC(runtime), \ + } +#else +# define _pymem_allocators_standard_INIT(runtime) \ + { \ + PYRAW_ALLOC, \ + PYMEM_ALLOC, \ + PYOBJ_ALLOC, \ + } +#endif + +#define _pymem_allocators_debug_INIT \ + { \ + {'r', PYRAW_ALLOC}, \ + {'m', PYMEM_ALLOC}, \ + {'o', PYOBJ_ALLOC}, \ + } + +# define _pymem_allocators_obj_arena_INIT \ + { NULL, _PyMem_ArenaAlloc, _PyMem_ArenaFree } + + +#ifdef __cplusplus +} +#endif +#endif // !Py_INTERNAL_PYMEM_INIT_H diff --git a/Include/internal/pycore_runtime.h b/Include/internal/pycore_runtime.h index df35e34..a549068 100644 --- a/Include/internal/pycore_runtime.h +++ b/Include/internal/pycore_runtime.h @@ -13,6 +13,8 @@ extern "C" { #include "pycore_global_objects.h" // struct _Py_global_objects #include "pycore_import.h" // struct _import_runtime_state #include "pycore_interp.h" // PyInterpreterState +#include "pycore_pymem.h" // struct _pymem_allocators +#include "pycore_obmalloc.h" // struct obmalloc_state #include "pycore_unicodeobject.h" // struct _Py_unicode_runtime_ids struct _getargs_runtime_state { @@ -86,6 +88,9 @@ typedef struct pyruntimestate { to access it, don't access it directly. */ _Py_atomic_address _finalizing; + struct _pymem_allocators allocators; + struct _obmalloc_state obmalloc; + struct pyinterpreters { PyThread_type_lock mutex; /* The linked list of interpreters, newest first. */ diff --git a/Include/internal/pycore_runtime_init.h b/Include/internal/pycore_runtime_init.h index 41a7730..38c1747 100644 --- a/Include/internal/pycore_runtime_init.h +++ b/Include/internal/pycore_runtime_init.h @@ -9,13 +9,15 @@ extern "C" { #endif #include "pycore_object.h" +#include "pycore_pymem_init.h" +#include "pycore_obmalloc_init.h" /* The static initializers defined here should only be used in the runtime init code (in pystate.c and pylifecycle.c). */ -#define _PyRuntimeState_INIT \ +#define _PyRuntimeState_INIT(runtime) \ { \ .gilstate = { \ .check_enabled = 1, \ @@ -23,6 +25,12 @@ extern "C" { in accordance with the specification. */ \ .autoTSSkey = Py_tss_NEEDS_INIT, \ }, \ + .allocators = { \ + _pymem_allocators_standard_INIT(runtime), \ + _pymem_allocators_debug_INIT, \ + _pymem_allocators_obj_arena_INIT, \ + }, \ + .obmalloc = _obmalloc_state_INIT(runtime.obmalloc), \ .interpreters = { \ /* This prevents interpreters from getting created \ until _PyInterpreterState_Enable() is called. */ \ |