diff options
Diffstat (limited to 'Lib/pydoc_data/topics.py')
-rw-r--r-- | Lib/pydoc_data/topics.py | 3150 |
1 files changed, 1902 insertions, 1248 deletions
diff --git a/Lib/pydoc_data/topics.py b/Lib/pydoc_data/topics.py index cb74299..87b0a2d 100644 --- a/Lib/pydoc_data/topics.py +++ b/Lib/pydoc_data/topics.py @@ -1,5 +1,6 @@ # -*- coding: utf-8 -*- -# Autogenerated by Sphinx on Mon May 22 14:02:15 2023 +# Autogenerated by Sphinx on Fri Oct 13 10:51:21 2023 +# as part of the release process. topics = {'assert': 'The "assert" statement\n' '**********************\n' '\n' @@ -208,7 +209,7 @@ topics = {'assert': 'The "assert" statement\n' 'the\n' ' subscript must have a type compatible with the mapping’s key ' 'type,\n' - ' and the mapping is then asked to create a key/datum pair ' + ' and the mapping is then asked to create a key/value pair ' 'which maps\n' ' the subscript to the assigned object. This can either ' 'replace an\n' @@ -538,77 +539,7 @@ topics = {'assert': 'The "assert" statement\n' ' **PEP 492** - Coroutines with async and await syntax\n' ' The proposal that made coroutines a proper standalone concept ' 'in\n' - ' Python, and added supporting syntax.\n' - '\n' - '-[ Footnotes ]-\n' - '\n' - '[1] The exception is propagated to the invocation stack unless ' - 'there\n' - ' is a "finally" clause which happens to raise another ' - 'exception.\n' - ' That new exception causes the old one to be lost.\n' - '\n' - '[2] In pattern matching, a sequence is defined as one of the\n' - ' following:\n' - '\n' - ' * a class that inherits from "collections.abc.Sequence"\n' - '\n' - ' * a Python class that has been registered as\n' - ' "collections.abc.Sequence"\n' - '\n' - ' * a builtin class that has its (CPython) ' - '"Py_TPFLAGS_SEQUENCE"\n' - ' bit set\n' - '\n' - ' * a class that inherits from any of the above\n' - '\n' - ' The following standard library classes are sequences:\n' - '\n' - ' * "array.array"\n' - '\n' - ' * "collections.deque"\n' - '\n' - ' * "list"\n' - '\n' - ' * "memoryview"\n' - '\n' - ' * "range"\n' - '\n' - ' * "tuple"\n' - '\n' - ' Note:\n' - '\n' - ' Subject values of type "str", "bytes", and "bytearray" do ' - 'not\n' - ' match sequence patterns.\n' - '\n' - '[3] In pattern matching, a mapping is defined as one of the ' - 'following:\n' - '\n' - ' * a class that inherits from "collections.abc.Mapping"\n' - '\n' - ' * a Python class that has been registered as\n' - ' "collections.abc.Mapping"\n' - '\n' - ' * a builtin class that has its (CPython) ' - '"Py_TPFLAGS_MAPPING"\n' - ' bit set\n' - '\n' - ' * a class that inherits from any of the above\n' - '\n' - ' The standard library classes "dict" and ' - '"types.MappingProxyType"\n' - ' are mappings.\n' - '\n' - '[4] A string literal appearing as the first statement in the ' - 'function\n' - ' body is transformed into the function’s "__doc__" attribute ' - 'and\n' - ' therefore the function’s *docstring*.\n' - '\n' - '[5] A string literal appearing as the first statement in the class\n' - ' body is transformed into the namespace’s "__doc__" item and\n' - ' therefore the class’s *docstring*.\n', + ' Python, and added supporting syntax.\n', 'atom-identifiers': 'Identifiers (Names)\n' '*******************\n' '\n' @@ -713,7 +644,7 @@ topics = {'assert': 'The "assert" statement\n' '"__getattr__()" would have\n' ' no way to access other attributes of the instance. ' 'Note that at\n' - ' least for instance variables, you can fake total ' + ' least for instance variables, you can take total ' 'control by not\n' ' inserting any values in the instance attribute ' 'dictionary (but\n' @@ -1075,9 +1006,7 @@ topics = {'assert': 'The "assert" statement\n' 'for each\n' ' instance.\n' '\n' - '\n' - 'Notes on using *__slots__*\n' - '--------------------------\n' + 'Notes on using *__slots__*:\n' '\n' '* When inheriting from a class without *__slots__*, the ' '"__dict__" and\n' @@ -1748,8 +1677,8 @@ topics = {'assert': 'The "assert" statement\n' 'standard\n' 'type hierarchy):\n' '\n' - ' classdef ::= [decorators] "class" classname [inheritance] ":" ' - 'suite\n' + ' classdef ::= [decorators] "class" classname [type_params] ' + '[inheritance] ":" suite\n' ' inheritance ::= "(" [argument_list] ")"\n' ' classname ::= identifier\n' '\n' @@ -1813,6 +1742,19 @@ topics = {'assert': 'The "assert" statement\n' '"assignment_expression". Previously, the grammar was much more\n' 'restrictive; see **PEP 614** for details.\n' '\n' + 'A list of type parameters may be given in square brackets ' + 'immediately\n' + 'after the class’s name. This indicates to static type checkers ' + 'that\n' + 'the class is generic. At runtime, the type parameters can be ' + 'retrieved\n' + 'from the class’s "__type_params__" attribute. See Generic classes ' + 'for\n' + 'more.\n' + '\n' + 'Changed in version 3.12: Type parameter lists are new in Python ' + '3.12.\n' + '\n' '**Programmer’s note:** Variables defined in the class definition ' 'are\n' 'class attributes; they are shared by instances. Instance ' @@ -2870,18 +2812,19 @@ topics = {'assert': 'The "assert" statement\n' ' bindings made during a successful pattern match outlive the\n' ' executed block and can be used after the match statement**.\n' '\n' - ' Note:\n' + ' Note:\n' '\n' - ' During failed pattern matches, some subpatterns may ' - 'succeed.\n' - ' Do not rely on bindings being made for a failed match.\n' - ' Conversely, do not rely on variables remaining unchanged ' - 'after\n' - ' a failed match. The exact behavior is dependent on\n' - ' implementation and may vary. This is an intentional ' - 'decision\n' - ' made to allow different implementations to add ' - 'optimizations.\n' + ' During failed pattern matches, some subpatterns may ' + 'succeed. Do\n' + ' not rely on bindings being made for a failed match. ' + 'Conversely,\n' + ' do not rely on variables remaining unchanged after a ' + 'failed\n' + ' match. The exact behavior is dependent on implementation ' + 'and may\n' + ' vary. This is an intentional decision made to allow ' + 'different\n' + ' implementations to add optimizations.\n' '\n' '3. If the pattern succeeds, the corresponding guard (if present) ' 'is\n' @@ -3533,9 +3476,10 @@ topics = {'assert': 'The "assert" statement\n' '* convert "P1" to a keyword pattern using "CLS.__match_args__"\n' '\n' '* For each keyword argument "attr=P2":\n' - ' * "hasattr(<subject>, "attr")"\n' '\n' - ' * "P2" matches "<subject>.attr"\n' + ' * "hasattr(<subject>, "attr")"\n' + '\n' + ' * "P2" matches "<subject>.attr"\n' '\n' '* … and so on for the corresponding keyword argument/pattern ' 'pair.\n' @@ -3554,8 +3498,8 @@ topics = {'assert': 'The "assert" statement\n' '(see\n' 'section The standard type hierarchy):\n' '\n' - ' funcdef ::= [decorators] "def" funcname "(" ' - '[parameter_list] ")"\n' + ' funcdef ::= [decorators] "def" funcname ' + '[type_params] "(" [parameter_list] ")"\n' ' ["->" expression] ":" suite\n' ' decorators ::= decorator+\n' ' decorator ::= "@" assignment_expression ' @@ -3617,6 +3561,19 @@ topics = {'assert': 'The "assert" statement\n' '"assignment_expression". Previously, the grammar was much more\n' 'restrictive; see **PEP 614** for details.\n' '\n' + 'A list of type parameters may be given in square brackets ' + 'between the\n' + 'function’s name and the opening parenthesis for its parameter ' + 'list.\n' + 'This indicates to static type checkers that the function is ' + 'generic.\n' + 'At runtime, the type parameters can be retrieved from the ' + 'function’s\n' + '"__type_params__" attribute. See Generic functions for more.\n' + '\n' + 'Changed in version 3.12: Type parameter lists are new in Python ' + '3.12.\n' + '\n' 'When one or more *parameters* have the form *parameter* "="\n' '*expression*, the function is said to have “default parameter ' 'values.”\n' @@ -3759,8 +3716,8 @@ topics = {'assert': 'The "assert" statement\n' 'standard\n' 'type hierarchy):\n' '\n' - ' classdef ::= [decorators] "class" classname [inheritance] ' - '":" suite\n' + ' classdef ::= [decorators] "class" classname [type_params] ' + '[inheritance] ":" suite\n' ' inheritance ::= "(" [argument_list] ")"\n' ' classname ::= identifier\n' '\n' @@ -3828,6 +3785,19 @@ topics = {'assert': 'The "assert" statement\n' '"assignment_expression". Previously, the grammar was much more\n' 'restrictive; see **PEP 614** for details.\n' '\n' + 'A list of type parameters may be given in square brackets ' + 'immediately\n' + 'after the class’s name. This indicates to static type checkers ' + 'that\n' + 'the class is generic. At runtime, the type parameters can be ' + 'retrieved\n' + 'from the class’s "__type_params__" attribute. See Generic ' + 'classes for\n' + 'more.\n' + '\n' + 'Changed in version 3.12: Type parameter lists are new in Python ' + '3.12.\n' + '\n' '**Programmer’s note:** Variables defined in the class definition ' 'are\n' 'class attributes; they are shared by instances. Instance ' @@ -3985,6 +3955,272 @@ topics = {'assert': 'The "assert" statement\n' 'concept in\n' ' Python, and added supporting syntax.\n' '\n' + '\n' + 'Type parameter lists\n' + '====================\n' + '\n' + 'New in version 3.12.\n' + '\n' + ' type_params ::= "[" type_param ("," type_param)* "]"\n' + ' type_param ::= typevar | typevartuple | paramspec\n' + ' typevar ::= identifier (":" expression)?\n' + ' typevartuple ::= "*" identifier\n' + ' paramspec ::= "**" identifier\n' + '\n' + 'Functions (including coroutines), classes and type aliases may ' + 'contain\n' + 'a type parameter list:\n' + '\n' + ' def max[T](args: list[T]) -> T:\n' + ' ...\n' + '\n' + ' async def amax[T](args: list[T]) -> T:\n' + ' ...\n' + '\n' + ' class Bag[T]:\n' + ' def __iter__(self) -> Iterator[T]:\n' + ' ...\n' + '\n' + ' def add(self, arg: T) -> None:\n' + ' ...\n' + '\n' + ' type ListOrSet[T] = list[T] | set[T]\n' + '\n' + 'Semantically, this indicates that the function, class, or type ' + 'alias\n' + 'is generic over a type variable. This information is primarily ' + 'used by\n' + 'static type checkers, and at runtime, generic objects behave ' + 'much like\n' + 'their non-generic counterparts.\n' + '\n' + 'Type parameters are declared in square brackets ("[]") ' + 'immediately\n' + 'after the name of the function, class, or type alias. The type\n' + 'parameters are accessible within the scope of the generic ' + 'object, but\n' + 'not elsewhere. Thus, after a declaration "def func[T](): pass", ' + 'the\n' + 'name "T" is not available in the module scope. Below, the ' + 'semantics of\n' + 'generic objects are described with more precision. The scope of ' + 'type\n' + 'parameters is modeled with a special function (technically, an\n' + 'annotation scope) that wraps the creation of the generic ' + 'object.\n' + '\n' + 'Generic functions, classes, and type aliases have a ' + '"__type_params__"\n' + 'attribute listing their type parameters.\n' + '\n' + 'Type parameters come in three kinds:\n' + '\n' + '* "typing.TypeVar", introduced by a plain name (e.g., "T").\n' + ' Semantically, this represents a single type to a type ' + 'checker.\n' + '\n' + '* "typing.TypeVarTuple", introduced by a name prefixed with a ' + 'single\n' + ' asterisk (e.g., "*Ts"). Semantically, this stands for a tuple ' + 'of any\n' + ' number of types.\n' + '\n' + '* "typing.ParamSpec", introduced by a name prefixed with two ' + 'asterisks\n' + ' (e.g., "**P"). Semantically, this stands for the parameters of ' + 'a\n' + ' callable.\n' + '\n' + '"typing.TypeVar" declarations can define *bounds* and ' + '*constraints*\n' + 'with a colon (":") followed by an expression. A single ' + 'expression\n' + 'after the colon indicates a bound (e.g. "T: int"). Semantically, ' + 'this\n' + 'means that the "typing.TypeVar" can only represent types that ' + 'are a\n' + 'subtype of this bound. A parenthesized tuple of expressions ' + 'after the\n' + 'colon indicates a set of constraints (e.g. "T: (str, bytes)"). ' + 'Each\n' + 'member of the tuple should be a type (again, this is not ' + 'enforced at\n' + 'runtime). Constrained type variables can only take on one of the ' + 'types\n' + 'in the list of constraints.\n' + '\n' + 'For "typing.TypeVar"s declared using the type parameter list ' + 'syntax,\n' + 'the bound and constraints are not evaluated when the generic ' + 'object is\n' + 'created, but only when the value is explicitly accessed through ' + 'the\n' + 'attributes "__bound__" and "__constraints__". To accomplish ' + 'this, the\n' + 'bounds or constraints are evaluated in a separate annotation ' + 'scope.\n' + '\n' + '"typing.TypeVarTuple"s and "typing.ParamSpec"s cannot have ' + 'bounds or\n' + 'constraints.\n' + '\n' + 'The following example indicates the full set of allowed type ' + 'parameter\n' + 'declarations:\n' + '\n' + ' def overly_generic[\n' + ' SimpleTypeVar,\n' + ' TypeVarWithBound: int,\n' + ' TypeVarWithConstraints: (str, bytes),\n' + ' *SimpleTypeVarTuple,\n' + ' **SimpleParamSpec,\n' + ' ](\n' + ' a: SimpleTypeVar,\n' + ' b: TypeVarWithBound,\n' + ' c: Callable[SimpleParamSpec, TypeVarWithConstraints],\n' + ' *d: SimpleTypeVarTuple,\n' + ' ): ...\n' + '\n' + '\n' + 'Generic functions\n' + '-----------------\n' + '\n' + 'Generic functions are declared as follows:\n' + '\n' + ' def func[T](arg: T): ...\n' + '\n' + 'This syntax is equivalent to:\n' + '\n' + ' annotation-def TYPE_PARAMS_OF_func():\n' + ' T = typing.TypeVar("T")\n' + ' def func(arg: T): ...\n' + ' func.__type_params__ = (T,)\n' + ' return func\n' + ' func = TYPE_PARAMS_OF_func()\n' + '\n' + 'Here "annotation-def" indicates an annotation scope, which is ' + 'not\n' + 'actually bound to any name at runtime. (One other liberty is ' + 'taken in\n' + 'the translation: the syntax does not go through attribute access ' + 'on\n' + 'the "typing" module, but creates an instance of ' + '"typing.TypeVar"\n' + 'directly.)\n' + '\n' + 'The annotations of generic functions are evaluated within the\n' + 'annotation scope used for declaring the type parameters, but ' + 'the\n' + 'function’s defaults and decorators are not.\n' + '\n' + 'The following example illustrates the scoping rules for these ' + 'cases,\n' + 'as well as for additional flavors of type parameters:\n' + '\n' + ' @decorator\n' + ' def func[T: int, *Ts, **P](*args: *Ts, arg: Callable[P, T] = ' + 'some_default):\n' + ' ...\n' + '\n' + 'Except for the lazy evaluation of the "TypeVar" bound, this is\n' + 'equivalent to:\n' + '\n' + ' DEFAULT_OF_arg = some_default\n' + '\n' + ' annotation-def TYPE_PARAMS_OF_func():\n' + '\n' + ' annotation-def BOUND_OF_T():\n' + ' return int\n' + ' # In reality, BOUND_OF_T() is evaluated only on demand.\n' + ' T = typing.TypeVar("T", bound=BOUND_OF_T())\n' + '\n' + ' Ts = typing.TypeVarTuple("Ts")\n' + ' P = typing.ParamSpec("P")\n' + '\n' + ' def func(*args: *Ts, arg: Callable[P, T] = ' + 'DEFAULT_OF_arg):\n' + ' ...\n' + '\n' + ' func.__type_params__ = (T, Ts, P)\n' + ' return func\n' + ' func = decorator(TYPE_PARAMS_OF_func())\n' + '\n' + 'The capitalized names like "DEFAULT_OF_arg" are not actually ' + 'bound at\n' + 'runtime.\n' + '\n' + '\n' + 'Generic classes\n' + '---------------\n' + '\n' + 'Generic classes are declared as follows:\n' + '\n' + ' class Bag[T]: ...\n' + '\n' + 'This syntax is equivalent to:\n' + '\n' + ' annotation-def TYPE_PARAMS_OF_Bag():\n' + ' T = typing.TypeVar("T")\n' + ' class Bag(typing.Generic[T]):\n' + ' __type_params__ = (T,)\n' + ' ...\n' + ' return Bag\n' + ' Bag = TYPE_PARAMS_OF_Bag()\n' + '\n' + 'Here again "annotation-def" (not a real keyword) indicates an\n' + 'annotation scope, and the name "TYPE_PARAMS_OF_Bag" is not ' + 'actually\n' + 'bound at runtime.\n' + '\n' + 'Generic classes implicitly inherit from "typing.Generic". The ' + 'base\n' + 'classes and keyword arguments of generic classes are evaluated ' + 'within\n' + 'the type scope for the type parameters, and decorators are ' + 'evaluated\n' + 'outside that scope. This is illustrated by this example:\n' + '\n' + ' @decorator\n' + ' class Bag(Base[T], arg=T): ...\n' + '\n' + 'This is equivalent to:\n' + '\n' + ' annotation-def TYPE_PARAMS_OF_Bag():\n' + ' T = typing.TypeVar("T")\n' + ' class Bag(Base[T], typing.Generic[T], arg=T):\n' + ' __type_params__ = (T,)\n' + ' ...\n' + ' return Bag\n' + ' Bag = decorator(TYPE_PARAMS_OF_Bag())\n' + '\n' + '\n' + 'Generic type aliases\n' + '--------------------\n' + '\n' + 'The "type" statement can also be used to create a generic type ' + 'alias:\n' + '\n' + ' type ListOrSet[T] = list[T] | set[T]\n' + '\n' + 'Except for the lazy evaluation of the value, this is equivalent ' + 'to:\n' + '\n' + ' annotation-def TYPE_PARAMS_OF_ListOrSet():\n' + ' T = typing.TypeVar("T")\n' + '\n' + ' annotation-def VALUE_OF_ListOrSet():\n' + ' return list[T] | set[T]\n' + ' # In reality, the value is lazily evaluated\n' + ' return typing.TypeAliasType("ListOrSet", ' + 'VALUE_OF_ListOrSet(), type_params=(T,))\n' + ' ListOrSet = TYPE_PARAMS_OF_ListOrSet()\n' + '\n' + 'Here, "annotation-def" (not a real keyword) indicates an ' + 'annotation\n' + 'scope. The capitalized names like "TYPE_PARAMS_OF_ListOrSet" are ' + 'not\n' + 'actually bound at runtime.\n' + '\n' '-[ Footnotes ]-\n' '\n' '[1] The exception is propagated to the invocation stack unless ' @@ -3996,30 +4232,30 @@ topics = {'assert': 'The "assert" statement\n' '[2] In pattern matching, a sequence is defined as one of the\n' ' following:\n' '\n' - ' * a class that inherits from "collections.abc.Sequence"\n' + ' * a class that inherits from "collections.abc.Sequence"\n' '\n' - ' * a Python class that has been registered as\n' - ' "collections.abc.Sequence"\n' + ' * a Python class that has been registered as\n' + ' "collections.abc.Sequence"\n' '\n' - ' * a builtin class that has its (CPython) ' - '"Py_TPFLAGS_SEQUENCE"\n' - ' bit set\n' + ' * a builtin class that has its (CPython) ' + '"Py_TPFLAGS_SEQUENCE" bit\n' + ' set\n' '\n' - ' * a class that inherits from any of the above\n' + ' * a class that inherits from any of the above\n' '\n' ' The following standard library classes are sequences:\n' '\n' - ' * "array.array"\n' + ' * "array.array"\n' '\n' - ' * "collections.deque"\n' + ' * "collections.deque"\n' '\n' - ' * "list"\n' + ' * "list"\n' '\n' - ' * "memoryview"\n' + ' * "memoryview"\n' '\n' - ' * "range"\n' + ' * "range"\n' '\n' - ' * "tuple"\n' + ' * "tuple"\n' '\n' ' Note:\n' '\n' @@ -4030,16 +4266,16 @@ topics = {'assert': 'The "assert" statement\n' '[3] In pattern matching, a mapping is defined as one of the ' 'following:\n' '\n' - ' * a class that inherits from "collections.abc.Mapping"\n' + ' * a class that inherits from "collections.abc.Mapping"\n' '\n' - ' * a Python class that has been registered as\n' - ' "collections.abc.Mapping"\n' + ' * a Python class that has been registered as\n' + ' "collections.abc.Mapping"\n' '\n' - ' * a builtin class that has its (CPython) ' - '"Py_TPFLAGS_MAPPING"\n' - ' bit set\n' + ' * a builtin class that has its (CPython) ' + '"Py_TPFLAGS_MAPPING" bit\n' + ' set\n' '\n' - ' * a class that inherits from any of the above\n' + ' * a class that inherits from any of the above\n' '\n' ' The standard library classes "dict" and ' '"types.MappingProxyType"\n' @@ -4817,8 +5053,8 @@ topics = {'assert': 'The "assert" statement\n' '\n' 'pdb.pm()\n' '\n' - ' Enter post-mortem debugging of the traceback found in\n' - ' "sys.last_traceback".\n' + ' Enter post-mortem debugging of the exception found in\n' + ' "sys.last_exc".\n' '\n' 'The "run*" functions and "set_trace()" are aliases for ' 'instantiating\n' @@ -4914,6 +5150,10 @@ topics = {'assert': 'The "assert" statement\n' 'is\n' 'printed but the debugger’s state is not changed.\n' '\n' + 'Changed in version 3.13: Expressions/Statements whose prefix is ' + 'a pdb\n' + 'command are now correctly identified and executed.\n' + '\n' 'The debugger supports aliases. Aliases can have parameters ' 'which\n' 'allows one a certain level of adaptability to the context under\n' @@ -5415,6 +5655,57 @@ topics = {'assert': 'The "assert" statement\n' ' Print the return value for the last return of the current ' 'function.\n' '\n' + 'exceptions [excnumber]\n' + '\n' + ' List or jump between chained exceptions.\n' + '\n' + ' When using "pdb.pm()" or "Pdb.post_mortem(...)" with a ' + 'chained\n' + ' exception instead of a traceback, it allows the user to move\n' + ' between the chained exceptions using "exceptions" command to ' + 'list\n' + ' exceptions, and "exception <number>" to switch to that ' + 'exception.\n' + '\n' + ' Example:\n' + '\n' + ' def out():\n' + ' try:\n' + ' middle()\n' + ' except Exception as e:\n' + ' raise ValueError("reraise middle() error") from e\n' + '\n' + ' def middle():\n' + ' try:\n' + ' return inner(0)\n' + ' except Exception as e:\n' + ' raise ValueError("Middle fail")\n' + '\n' + ' def inner(x):\n' + ' 1 / x\n' + '\n' + ' out()\n' + '\n' + ' calling "pdb.pm()" will allow to move between exceptions:\n' + '\n' + ' > example.py(5)out()\n' + ' -> raise ValueError("reraise middle() error") from e\n' + '\n' + ' (Pdb) exceptions\n' + " 0 ZeroDivisionError('division by zero')\n" + " 1 ValueError('Middle fail')\n" + " > 2 ValueError('reraise middle() error')\n" + '\n' + ' (Pdb) exceptions 0\n' + ' > example.py(16)inner()\n' + ' -> 1 / x\n' + '\n' + ' (Pdb) up\n' + ' > example.py(10)middle()\n' + ' -> return inner(0)\n' + '\n' + ' New in version 3.13.\n' + '\n' '-[ Footnotes ]-\n' '\n' '[1] Whether a frame is considered to originate in a certain ' @@ -5452,30 +5743,31 @@ topics = {'assert': 'The "assert" statement\n' 'dict': 'Dictionary displays\n' '*******************\n' '\n' - 'A dictionary display is a possibly empty series of key/datum pairs\n' - 'enclosed in curly braces:\n' + 'A dictionary display is a possibly empty series of dict items\n' + '(key/value pairs) enclosed in curly braces:\n' '\n' - ' dict_display ::= "{" [key_datum_list | dict_comprehension] ' + ' dict_display ::= "{" [dict_item_list | dict_comprehension] ' '"}"\n' - ' key_datum_list ::= key_datum ("," key_datum)* [","]\n' - ' key_datum ::= expression ":" expression | "**" or_expr\n' + ' dict_item_list ::= dict_item ("," dict_item)* [","]\n' + ' dict_item ::= expression ":" expression | "**" or_expr\n' ' dict_comprehension ::= expression ":" expression comp_for\n' '\n' 'A dictionary display yields a new dictionary object.\n' '\n' - 'If a comma-separated sequence of key/datum pairs is given, they are\n' + 'If a comma-separated sequence of dict items is given, they are\n' 'evaluated from left to right to define the entries of the ' 'dictionary:\n' 'each key object is used as a key into the dictionary to store the\n' - 'corresponding datum. This means that you can specify the same key\n' - 'multiple times in the key/datum list, and the final dictionary’s ' + 'corresponding value. This means that you can specify the same key\n' + 'multiple times in the dict item list, and the final dictionary’s ' 'value\n' 'for that key will be the last one given.\n' '\n' 'A double asterisk "**" denotes *dictionary unpacking*. Its operand\n' 'must be a *mapping*. Each mapping item is added to the new\n' - 'dictionary. Later values replace values already set by earlier\n' - 'key/datum pairs and earlier dictionary unpackings.\n' + 'dictionary. Later values replace values already set by earlier ' + 'dict\n' + 'items and earlier dictionary unpackings.\n' '\n' 'New in version 3.5: Unpacking into dictionary displays, originally\n' 'proposed by **PEP 448**.\n' @@ -5491,7 +5783,7 @@ topics = {'assert': 'The "assert" statement\n' 'Restrictions on the types of the key values are listed earlier in\n' 'section The standard type hierarchy. (To summarize, the key type\n' 'should be *hashable*, which excludes all mutable objects.) Clashes\n' - 'between duplicate keys are not detected; the last datum (textually\n' + 'between duplicate keys are not detected; the last value (textually\n' 'rightmost in the display) stored for a given key value prevails.\n' '\n' 'Changed in version 3.8: Prior to Python 3.8, in dict ' @@ -5692,6 +5984,10 @@ topics = {'assert': 'The "assert" statement\n' '\n' '* "import" statements.\n' '\n' + '* "type" statements.\n' + '\n' + '* type parameter lists.\n' + '\n' 'The "import" statement of the form "from ... import *" binds ' 'all names\n' 'defined in the imported module, except those beginning with an\n' @@ -5798,7 +6094,9 @@ topics = {'assert': 'The "assert" statement\n' 'scope.\n' '"SyntaxError" is raised at compile time if the given name does ' 'not\n' - 'exist in any enclosing function scope.\n' + 'exist in any enclosing function scope. Type parameters cannot ' + 'be\n' + 'rebound with the "nonlocal" statement.\n' '\n' 'The namespace for a module is automatically created the first ' 'time a\n' @@ -5821,17 +6119,162 @@ topics = {'assert': 'The "assert" statement\n' 'the class. The scope of names defined in a class block is ' 'limited to\n' 'the class block; it does not extend to the code blocks of ' - 'methods –\n' - 'this includes comprehensions and generator expressions since ' - 'they are\n' - 'implemented using a function scope. This means that the ' - 'following\n' - 'will fail:\n' + 'methods.\n' + 'This includes comprehensions and generator expressions, but it ' + 'does\n' + 'not include annotation scopes, which have access to their ' + 'enclosing\n' + 'class scopes. This means that the following will fail:\n' '\n' ' class A:\n' ' a = 42\n' ' b = list(a + i for i in range(10))\n' '\n' + 'However, the following will succeed:\n' + '\n' + ' class A:\n' + ' type Alias = Nested\n' + ' class Nested: pass\n' + '\n' + " print(A.Alias.__value__) # <type 'A.Nested'>\n" + '\n' + '\n' + 'Annotation scopes\n' + '-----------------\n' + '\n' + 'Type parameter lists and "type" statements introduce ' + '*annotation\n' + 'scopes*, which behave mostly like function scopes, but with ' + 'some\n' + 'exceptions discussed below. *Annotations* currently do not use\n' + 'annotation scopes, but they are expected to use annotation ' + 'scopes in\n' + 'Python 3.13 when **PEP 649** is implemented.\n' + '\n' + 'Annotation scopes are used in the following contexts:\n' + '\n' + '* Type parameter lists for generic type aliases.\n' + '\n' + '* Type parameter lists for generic functions. A generic ' + 'function’s\n' + ' annotations are executed within the annotation scope, but ' + 'its\n' + ' defaults and decorators are not.\n' + '\n' + '* Type parameter lists for generic classes. A generic class’s ' + 'base\n' + ' classes and keyword arguments are executed within the ' + 'annotation\n' + ' scope, but its decorators are not.\n' + '\n' + '* The bounds and constraints for type variables (lazily ' + 'evaluated).\n' + '\n' + '* The value of type aliases (lazily evaluated).\n' + '\n' + 'Annotation scopes differ from function scopes in the following ' + 'ways:\n' + '\n' + '* Annotation scopes have access to their enclosing class ' + 'namespace. If\n' + ' an annotation scope is immediately within a class scope, or ' + 'within\n' + ' another annotation scope that is immediately within a class ' + 'scope,\n' + ' the code in the annotation scope can use names defined in the ' + 'class\n' + ' scope as if it were executed directly within the class body. ' + 'This\n' + ' contrasts with regular functions defined within classes, ' + 'which\n' + ' cannot access names defined in the class scope.\n' + '\n' + '* Expressions in annotation scopes cannot contain "yield", ' + '"yield\n' + ' from", "await", or ":=" expressions. (These expressions are ' + 'allowed\n' + ' in other scopes contained within the annotation scope.)\n' + '\n' + '* Names defined in annotation scopes cannot be rebound with ' + '"nonlocal"\n' + ' statements in inner scopes. This includes only type ' + 'parameters, as\n' + ' no other syntactic elements that can appear within annotation ' + 'scopes\n' + ' can introduce new names.\n' + '\n' + '* While annotation scopes have an internal name, that name is ' + 'not\n' + ' reflected in the *__qualname__* of objects defined within the ' + 'scope.\n' + ' Instead, the "__qualname__" of such objects is as if the ' + 'object were\n' + ' defined in the enclosing scope.\n' + '\n' + 'New in version 3.12: Annotation scopes were introduced in ' + 'Python 3.12\n' + 'as part of **PEP 695**.\n' + '\n' + '\n' + 'Lazy evaluation\n' + '---------------\n' + '\n' + 'The values of type aliases created through the "type" statement ' + 'are\n' + '*lazily evaluated*. The same applies to the bounds and ' + 'constraints of\n' + 'type variables created through the type parameter syntax. This ' + 'means\n' + 'that they are not evaluated when the type alias or type ' + 'variable is\n' + 'created. Instead, they are only evaluated when doing so is ' + 'necessary\n' + 'to resolve an attribute access.\n' + '\n' + 'Example:\n' + '\n' + ' >>> type Alias = 1/0\n' + ' >>> Alias.__value__\n' + ' Traceback (most recent call last):\n' + ' ...\n' + ' ZeroDivisionError: division by zero\n' + ' >>> def func[T: 1/0](): pass\n' + ' >>> T = func.__type_params__[0]\n' + ' >>> T.__bound__\n' + ' Traceback (most recent call last):\n' + ' ...\n' + ' ZeroDivisionError: division by zero\n' + '\n' + 'Here the exception is raised only when the "__value__" ' + 'attribute of\n' + 'the type alias or the "__bound__" attribute of the type ' + 'variable is\n' + 'accessed.\n' + '\n' + 'This behavior is primarily useful for references to types that ' + 'have\n' + 'not yet been defined when the type alias or type variable is ' + 'created.\n' + 'For example, lazy evaluation enables creation of mutually ' + 'recursive\n' + 'type aliases:\n' + '\n' + ' from typing import Literal\n' + '\n' + ' type SimpleExpr = int | Parenthesized\n' + ' type Parenthesized = tuple[Literal["("], Expr, ' + 'Literal[")"]]\n' + ' type Expr = SimpleExpr | tuple[SimpleExpr, Literal["+", ' + '"-"], Expr]\n' + '\n' + 'Lazily evaluated values are evaluated in annotation scope, ' + 'which means\n' + 'that names that appear inside the lazily evaluated value are ' + 'looked up\n' + 'as if they were used in the immediately enclosing scope.\n' + '\n' + 'New in version 3.12.\n' + '\n' '\n' 'Builtins and restricted execution\n' '---------------------------------\n' @@ -6101,18 +6544,17 @@ topics = {'assert': 'The "assert" statement\n' '\n' 'The grammar for a replacement field is as follows:\n' '\n' - ' replacement_field ::= "{" [field_name] ["!" ' - 'conversion] [":" format_spec] "}"\n' - ' field_name ::= arg_name ("." attribute_name | ' - '"[" element_index "]")*\n' - ' arg_name ::= [identifier | digit+]\n' - ' attribute_name ::= identifier\n' - ' element_index ::= digit+ | index_string\n' - ' index_string ::= <any source character except ' - '"]"> +\n' - ' conversion ::= "r" | "s" | "a"\n' - ' format_spec ::= <described in the next ' - 'section>\n' + ' replacement_field ::= "{" [field_name] ["!" conversion] ' + '[":" format_spec] "}"\n' + ' field_name ::= arg_name ("." attribute_name | "[" ' + 'element_index "]")*\n' + ' arg_name ::= [identifier | digit+]\n' + ' attribute_name ::= identifier\n' + ' element_index ::= digit+ | index_string\n' + ' index_string ::= <any source character except "]"> ' + '+\n' + ' conversion ::= "r" | "s" | "a"\n' + ' format_spec ::= <described in the next section>\n' '\n' 'In less formal terms, the replacement field can start with ' 'a\n' @@ -6136,22 +6578,26 @@ topics = {'assert': 'The "assert" statement\n' 'positional\n' 'argument, and if it’s a keyword, it refers to a named ' 'keyword\n' - 'argument. If the numerical arg_names in a format string ' - 'are 0, 1, 2,\n' - '… in sequence, they can all be omitted (not just some) and ' - 'the numbers\n' - '0, 1, 2, … will be automatically inserted in that order. ' - 'Because\n' - '*arg_name* is not quote-delimited, it is not possible to ' - 'specify\n' - 'arbitrary dictionary keys (e.g., the strings "\'10\'" or ' - '"\':-]\'") within\n' - 'a format string. The *arg_name* can be followed by any ' - 'number of index\n' - 'or attribute expressions. An expression of the form ' - '"\'.name\'" selects\n' - 'the named attribute using "getattr()", while an expression ' - 'of the form\n' + 'argument. An *arg_name* is treated as a number if a call ' + 'to\n' + '"str.isdecimal()" on the string would return true. If the ' + 'numerical\n' + 'arg_names in a format string are 0, 1, 2, … in sequence, ' + 'they can all\n' + 'be omitted (not just some) and the numbers 0, 1, 2, … will ' + 'be\n' + 'automatically inserted in that order. Because *arg_name* is ' + 'not quote-\n' + 'delimited, it is not possible to specify arbitrary ' + 'dictionary keys\n' + '(e.g., the strings "\'10\'" or "\':-]\'") within a format ' + 'string. The\n' + '*arg_name* can be followed by any number of index or ' + 'attribute\n' + 'expressions. An expression of the form "\'.name\'" selects ' + 'the named\n' + 'attribute using "getattr()", while an expression of the ' + 'form\n' '"\'[index]\'" does an index lookup using "__getitem__()".\n' '\n' 'Changed in version 3.1: The positional argument specifiers ' @@ -6294,43 +6740,37 @@ topics = {'assert': 'The "assert" statement\n' 'The meaning of the various alignment options is as ' 'follows:\n' '\n' - ' ' '+-----------+------------------------------------------------------------+\n' - ' | Option | ' + '| Option | ' 'Meaning ' '|\n' - ' ' '|===========|============================================================|\n' - ' | "\'<\'" | Forces the field to be left-aligned ' - 'within the available |\n' - ' | | space (this is the default for most ' + '| "\'<\'" | Forces the field to be left-aligned within ' + 'the available |\n' + '| | space (this is the default for most ' 'objects). |\n' - ' ' '+-----------+------------------------------------------------------------+\n' - ' | "\'>\'" | Forces the field to be right-aligned ' - 'within the available |\n' - ' | | space (this is the default for ' + '| "\'>\'" | Forces the field to be right-aligned within ' + 'the available |\n' + '| | space (this is the default for ' 'numbers). |\n' - ' ' '+-----------+------------------------------------------------------------+\n' - ' | "\'=\'" | Forces the padding to be placed after ' - 'the sign (if any) |\n' - ' | | but before the digits. This is used for ' + '| "\'=\'" | Forces the padding to be placed after the ' + 'sign (if any) |\n' + '| | but before the digits. This is used for ' 'printing fields |\n' - ' | | in the form ‘+000000120’. This alignment ' + '| | in the form ‘+000000120’. This alignment ' 'option is only |\n' - ' | | valid for numeric types. It becomes the ' + '| | valid for numeric types. It becomes the ' 'default for |\n' - ' | | numbers when ‘0’ immediately precedes the ' + '| | numbers when ‘0’ immediately precedes the ' 'field width. |\n' - ' ' '+-----------+------------------------------------------------------------+\n' - ' | "\'^\'" | Forces the field to be centered within ' - 'the available |\n' - ' | | ' + '| "\'^\'" | Forces the field to be centered within the ' + 'available |\n' + '| | ' 'space. ' '|\n' - ' ' '+-----------+------------------------------------------------------------+\n' '\n' 'Note that unless a minimum field width is defined, the ' @@ -6343,30 +6783,25 @@ topics = {'assert': 'The "assert" statement\n' 'be one of\n' 'the following:\n' '\n' - ' ' '+-----------+------------------------------------------------------------+\n' - ' | Option | ' + '| Option | ' 'Meaning ' '|\n' - ' ' '|===========|============================================================|\n' - ' | "\'+\'" | indicates that a sign should be used for ' + '| "\'+\'" | indicates that a sign should be used for ' 'both positive as |\n' - ' | | well as negative ' + '| | well as negative ' 'numbers. |\n' - ' ' '+-----------+------------------------------------------------------------+\n' - ' | "\'-\'" | indicates that a sign should be used ' - 'only for negative |\n' - ' | | numbers (this is the default ' + '| "\'-\'" | indicates that a sign should be used only ' + 'for negative |\n' + '| | numbers (this is the default ' 'behavior). |\n' - ' ' '+-----------+------------------------------------------------------------+\n' - ' | space | indicates that a leading space should be ' - 'used on positive |\n' - ' | | numbers, and a minus sign on negative ' + '| space | indicates that a leading space should be used ' + 'on positive |\n' + '| | numbers, and a minus sign on negative ' 'numbers. |\n' - ' ' '+-----------+------------------------------------------------------------+\n' '\n' 'The "\'z\'" option coerces negative zero floating-point ' @@ -6872,8 +7307,8 @@ topics = {'assert': 'The "assert" statement\n' '(see\n' 'section The standard type hierarchy):\n' '\n' - ' funcdef ::= [decorators] "def" funcname "(" ' - '[parameter_list] ")"\n' + ' funcdef ::= [decorators] "def" funcname ' + '[type_params] "(" [parameter_list] ")"\n' ' ["->" expression] ":" suite\n' ' decorators ::= decorator+\n' ' decorator ::= "@" assignment_expression ' @@ -6935,6 +7370,19 @@ topics = {'assert': 'The "assert" statement\n' '"assignment_expression". Previously, the grammar was much more\n' 'restrictive; see **PEP 614** for details.\n' '\n' + 'A list of type parameters may be given in square brackets ' + 'between the\n' + 'function’s name and the opening parenthesis for its parameter ' + 'list.\n' + 'This indicates to static type checkers that the function is ' + 'generic.\n' + 'At runtime, the type parameters can be retrieved from the ' + 'function’s\n' + '"__type_params__" attribute. See Generic functions for more.\n' + '\n' + 'Changed in version 3.12: Type parameter lists are new in Python ' + '3.12.\n' + '\n' 'When one or more *parameters* have the form *parameter* "="\n' '*expression*, the function is said to have “default parameter ' 'values.”\n' @@ -7248,8 +7696,8 @@ topics = {'assert': 'The "assert" statement\n' '\n' 'A non-normative HTML file listing all valid identifier ' 'characters for\n' - 'Unicode 15.0.0 can be found at\n' - 'https://www.unicode.org/Public/15.0.0/ucd/DerivedCoreProperties.txt\n' + 'Unicode 15.1.0 can be found at\n' + 'https://www.unicode.org/Public/15.1.0/ucd/DerivedCoreProperties.txt\n' '\n' '\n' 'Keywords\n' @@ -7277,19 +7725,24 @@ topics = {'assert': 'The "assert" statement\n' '\n' 'Some identifiers are only reserved under specific contexts. ' 'These are\n' - 'known as *soft keywords*. The identifiers "match", "case" ' - 'and "_" can\n' - 'syntactically act as keywords in contexts related to the ' - 'pattern\n' - 'matching statement, but this distinction is done at the ' - 'parser level,\n' - 'not when tokenizing.\n' + 'known as *soft keywords*. The identifiers "match", "case", ' + '"type" and\n' + '"_" can syntactically act as keywords in certain contexts, ' + 'but this\n' + 'distinction is done at the parser level, not when ' + 'tokenizing.\n' + '\n' + 'As soft keywords, their use in the grammar is possible while ' + 'still\n' + 'preserving compatibility with existing code that uses these ' + 'names as\n' + 'identifier names.\n' '\n' - 'As soft keywords, their use with pattern matching is possible ' - 'while\n' - 'still preserving compatibility with existing code that uses ' - '"match",\n' - '"case" and "_" as identifier names.\n' + '"match", "case", and "_" are used in the "match" statement. ' + '"type" is\n' + 'used in the "type" statement.\n' + '\n' + 'Changed in version 3.12: "type" is now a soft keyword.\n' '\n' '\n' 'Reserved classes of identifiers\n' @@ -7809,6 +8262,10 @@ topics = {'assert': 'The "assert" statement\n' '\n' '* "import" statements.\n' '\n' + '* "type" statements.\n' + '\n' + '* type parameter lists.\n' + '\n' 'The "import" statement of the form "from ... import *" binds all ' 'names\n' 'defined in the imported module, except those beginning with an\n' @@ -7908,7 +8365,8 @@ topics = {'assert': 'The "assert" statement\n' 'scope.\n' '"SyntaxError" is raised at compile time if the given name does ' 'not\n' - 'exist in any enclosing function scope.\n' + 'exist in any enclosing function scope. Type parameters cannot be\n' + 'rebound with the "nonlocal" statement.\n' '\n' 'The namespace for a module is automatically created the first time ' 'a\n' @@ -7930,18 +8388,156 @@ topics = {'assert': 'The "assert" statement\n' 'of\n' 'the class. The scope of names defined in a class block is limited ' 'to\n' - 'the class block; it does not extend to the code blocks of methods ' - '–\n' - 'this includes comprehensions and generator expressions since they ' - 'are\n' - 'implemented using a function scope. This means that the ' - 'following\n' - 'will fail:\n' + 'the class block; it does not extend to the code blocks of ' + 'methods.\n' + 'This includes comprehensions and generator expressions, but it ' + 'does\n' + 'not include annotation scopes, which have access to their ' + 'enclosing\n' + 'class scopes. This means that the following will fail:\n' '\n' ' class A:\n' ' a = 42\n' ' b = list(a + i for i in range(10))\n' '\n' + 'However, the following will succeed:\n' + '\n' + ' class A:\n' + ' type Alias = Nested\n' + ' class Nested: pass\n' + '\n' + " print(A.Alias.__value__) # <type 'A.Nested'>\n" + '\n' + '\n' + 'Annotation scopes\n' + '=================\n' + '\n' + 'Type parameter lists and "type" statements introduce *annotation\n' + 'scopes*, which behave mostly like function scopes, but with some\n' + 'exceptions discussed below. *Annotations* currently do not use\n' + 'annotation scopes, but they are expected to use annotation scopes ' + 'in\n' + 'Python 3.13 when **PEP 649** is implemented.\n' + '\n' + 'Annotation scopes are used in the following contexts:\n' + '\n' + '* Type parameter lists for generic type aliases.\n' + '\n' + '* Type parameter lists for generic functions. A generic ' + 'function’s\n' + ' annotations are executed within the annotation scope, but its\n' + ' defaults and decorators are not.\n' + '\n' + '* Type parameter lists for generic classes. A generic class’s ' + 'base\n' + ' classes and keyword arguments are executed within the ' + 'annotation\n' + ' scope, but its decorators are not.\n' + '\n' + '* The bounds and constraints for type variables (lazily ' + 'evaluated).\n' + '\n' + '* The value of type aliases (lazily evaluated).\n' + '\n' + 'Annotation scopes differ from function scopes in the following ' + 'ways:\n' + '\n' + '* Annotation scopes have access to their enclosing class ' + 'namespace. If\n' + ' an annotation scope is immediately within a class scope, or ' + 'within\n' + ' another annotation scope that is immediately within a class ' + 'scope,\n' + ' the code in the annotation scope can use names defined in the ' + 'class\n' + ' scope as if it were executed directly within the class body. ' + 'This\n' + ' contrasts with regular functions defined within classes, which\n' + ' cannot access names defined in the class scope.\n' + '\n' + '* Expressions in annotation scopes cannot contain "yield", "yield\n' + ' from", "await", or ":=" expressions. (These expressions are ' + 'allowed\n' + ' in other scopes contained within the annotation scope.)\n' + '\n' + '* Names defined in annotation scopes cannot be rebound with ' + '"nonlocal"\n' + ' statements in inner scopes. This includes only type parameters, ' + 'as\n' + ' no other syntactic elements that can appear within annotation ' + 'scopes\n' + ' can introduce new names.\n' + '\n' + '* While annotation scopes have an internal name, that name is not\n' + ' reflected in the *__qualname__* of objects defined within the ' + 'scope.\n' + ' Instead, the "__qualname__" of such objects is as if the object ' + 'were\n' + ' defined in the enclosing scope.\n' + '\n' + 'New in version 3.12: Annotation scopes were introduced in Python ' + '3.12\n' + 'as part of **PEP 695**.\n' + '\n' + '\n' + 'Lazy evaluation\n' + '===============\n' + '\n' + 'The values of type aliases created through the "type" statement ' + 'are\n' + '*lazily evaluated*. The same applies to the bounds and constraints ' + 'of\n' + 'type variables created through the type parameter syntax. This ' + 'means\n' + 'that they are not evaluated when the type alias or type variable ' + 'is\n' + 'created. Instead, they are only evaluated when doing so is ' + 'necessary\n' + 'to resolve an attribute access.\n' + '\n' + 'Example:\n' + '\n' + ' >>> type Alias = 1/0\n' + ' >>> Alias.__value__\n' + ' Traceback (most recent call last):\n' + ' ...\n' + ' ZeroDivisionError: division by zero\n' + ' >>> def func[T: 1/0](): pass\n' + ' >>> T = func.__type_params__[0]\n' + ' >>> T.__bound__\n' + ' Traceback (most recent call last):\n' + ' ...\n' + ' ZeroDivisionError: division by zero\n' + '\n' + 'Here the exception is raised only when the "__value__" attribute ' + 'of\n' + 'the type alias or the "__bound__" attribute of the type variable ' + 'is\n' + 'accessed.\n' + '\n' + 'This behavior is primarily useful for references to types that ' + 'have\n' + 'not yet been defined when the type alias or type variable is ' + 'created.\n' + 'For example, lazy evaluation enables creation of mutually ' + 'recursive\n' + 'type aliases:\n' + '\n' + ' from typing import Literal\n' + '\n' + ' type SimpleExpr = int | Parenthesized\n' + ' type Parenthesized = tuple[Literal["("], Expr, Literal[")"]]\n' + ' type Expr = SimpleExpr | tuple[SimpleExpr, Literal["+", "-"], ' + 'Expr]\n' + '\n' + 'Lazily evaluated values are evaluated in annotation scope, which ' + 'means\n' + 'that names that appear inside the lazily evaluated value are ' + 'looked up\n' + 'as if they were used in the immediately enclosing scope.\n' + '\n' + 'New in version 3.12.\n' + '\n' '\n' 'Builtins and restricted execution\n' '=================================\n' @@ -9105,6 +9701,14 @@ topics = {'assert': 'The "assert" statement\n' '\n' ' New in version 3.3.\n' '\n' + 'definition.__type_params__\n' + '\n' + ' The type parameters of generic classes, functions, and ' + 'type\n' + ' aliases.\n' + '\n' + ' New in version 3.12.\n' + '\n' 'class.__mro__\n' '\n' ' This attribute is a tuple of classes that are considered ' @@ -9128,7 +9732,8 @@ topics = {'assert': 'The "assert" statement\n' ' still alive. The list is in definition order. Example:\n' '\n' ' >>> int.__subclasses__()\n' - " [<class 'bool'>]\n", + " [<class 'bool'>, <enum 'IntEnum'>, <flag 'IntFlag'>, " + "<class 're._constants._NamedIntConstant'>]\n", 'specialnames': 'Special method names\n' '********************\n' '\n' @@ -9661,7 +10266,7 @@ topics = {'assert': 'The "assert" statement\n' 'would have\n' ' no way to access other attributes of the instance. Note ' 'that at\n' - ' least for instance variables, you can fake total control ' + ' least for instance variables, you can take total control ' 'by not\n' ' inserting any values in the instance attribute dictionary ' '(but\n' @@ -10019,9 +10624,7 @@ topics = {'assert': 'The "assert" statement\n' 'each\n' ' instance.\n' '\n' - '\n' - 'Notes on using *__slots__*\n' - '~~~~~~~~~~~~~~~~~~~~~~~~~~\n' + 'Notes on using *__slots__*:\n' '\n' '* When inheriting from a class without *__slots__*, the ' '"__dict__" and\n' @@ -11951,13 +12554,19 @@ topics = {'assert': 'The "assert" statement\n' '\n' ' New in version 3.9.\n' '\n' - 'str.replace(old, new[, count])\n' + 'str.replace(old, new, count=-1)\n' '\n' ' Return a copy of the string with all occurrences of ' 'substring *old*\n' - ' replaced by *new*. If the optional argument *count* is ' - 'given, only\n' - ' the first *count* occurrences are replaced.\n' + ' replaced by *new*. If *count* is given, only the first ' + '*count*\n' + ' occurrences are replaced. If *count* is not specified ' + 'or "-1", then\n' + ' all occurrences are replaced.\n' + '\n' + ' Changed in version 3.13: *count* is now supported as a ' + 'keyword\n' + ' argument.\n' '\n' 'str.rfind(sub[, start[, end]])\n' '\n' @@ -11997,7 +12606,7 @@ topics = {'assert': 'The "assert" statement\n' 'followed by\n' ' the string itself.\n' '\n' - 'str.rsplit(sep=None, maxsplit=- 1)\n' + 'str.rsplit(sep=None, maxsplit=-1)\n' '\n' ' Return a list of the words in the string, using *sep* ' 'as the\n' @@ -12038,7 +12647,7 @@ topics = {'assert': 'The "assert" statement\n' " >>> 'Monty Python'.removesuffix(' Python')\n" " 'Monty'\n" '\n' - 'str.split(sep=None, maxsplit=- 1)\n' + 'str.split(sep=None, maxsplit=-1)\n' '\n' ' Return a list of the words in the string, using *sep* ' 'as the\n' @@ -12448,77 +13057,81 @@ topics = {'assert': 'The "assert" statement\n' 'the\n' 'literal, i.e. either "\'" or """.)\n' '\n' + '\n' + 'Escape sequences\n' + '================\n' + '\n' 'Unless an "\'r\'" or "\'R\'" prefix is present, escape sequences ' 'in string\n' 'and bytes literals are interpreted according to rules similar to ' 'those\n' 'used by Standard C. The recognized escape sequences are:\n' '\n' - '+-------------------+-----------------------------------+---------+\n' - '| Escape Sequence | Meaning | Notes ' - '|\n' - '|===================|===================================|=========|\n' - '| "\\"<newline> | Backslash and newline ignored | ' - '(1) |\n' - '+-------------------+-----------------------------------+---------+\n' - '| "\\\\" | Backslash ("\\") ' - '| |\n' - '+-------------------+-----------------------------------+---------+\n' - '| "\\\'" | Single quote ("\'") ' + '+---------------------------+-----------------------------------+---------+\n' + '| Escape Sequence | Meaning | ' + 'Notes |\n' + '|===========================|===================================|=========|\n' + '| "\\"<newline> | Backslash and newline ignored ' + '| (1) |\n' + '+---------------------------+-----------------------------------+---------+\n' + '| "\\\\" | Backslash ' + '("\\") | |\n' + '+---------------------------+-----------------------------------+---------+\n' + '| "\\\'" | Single quote ' + '("\'") | |\n' + '+---------------------------+-----------------------------------+---------+\n' + '| "\\"" | Double quote (""") ' '| |\n' - '+-------------------+-----------------------------------+---------+\n' - '| "\\"" | Double quote (""") ' + '+---------------------------+-----------------------------------+---------+\n' + '| "\\a" | ASCII Bell (BEL) ' '| |\n' - '+-------------------+-----------------------------------+---------+\n' - '| "\\a" | ASCII Bell (BEL) ' + '+---------------------------+-----------------------------------+---------+\n' + '| "\\b" | ASCII Backspace (BS) ' '| |\n' - '+-------------------+-----------------------------------+---------+\n' - '| "\\b" | ASCII Backspace (BS) ' + '+---------------------------+-----------------------------------+---------+\n' + '| "\\f" | ASCII Formfeed (FF) ' '| |\n' - '+-------------------+-----------------------------------+---------+\n' - '| "\\f" | ASCII Formfeed (FF) ' + '+---------------------------+-----------------------------------+---------+\n' + '| "\\n" | ASCII Linefeed (LF) ' '| |\n' - '+-------------------+-----------------------------------+---------+\n' - '| "\\n" | ASCII Linefeed (LF) ' + '+---------------------------+-----------------------------------+---------+\n' + '| "\\r" | ASCII Carriage Return (CR) ' '| |\n' - '+-------------------+-----------------------------------+---------+\n' - '| "\\r" | ASCII Carriage Return (CR) ' + '+---------------------------+-----------------------------------+---------+\n' + '| "\\t" | ASCII Horizontal Tab (TAB) ' '| |\n' - '+-------------------+-----------------------------------+---------+\n' - '| "\\t" | ASCII Horizontal Tab (TAB) ' + '+---------------------------+-----------------------------------+---------+\n' + '| "\\v" | ASCII Vertical Tab (VT) ' '| |\n' - '+-------------------+-----------------------------------+---------+\n' - '| "\\v" | ASCII Vertical Tab (VT) ' - '| |\n' - '+-------------------+-----------------------------------+---------+\n' - '| "\\ooo" | Character with octal value *ooo* | ' - '(2,4) |\n' - '+-------------------+-----------------------------------+---------+\n' - '| "\\xhh" | Character with hex value *hh* | ' - '(3,4) |\n' - '+-------------------+-----------------------------------+---------+\n' + '+---------------------------+-----------------------------------+---------+\n' + '| "\\*ooo*" | Character with octal value *ooo* ' + '| (2,4) |\n' + '+---------------------------+-----------------------------------+---------+\n' + '| "\\x*hh*" | Character with hex value *hh* ' + '| (3,4) |\n' + '+---------------------------+-----------------------------------+---------+\n' '\n' 'Escape sequences only recognized in string literals are:\n' '\n' - '+-------------------+-----------------------------------+---------+\n' - '| Escape Sequence | Meaning | Notes ' - '|\n' - '|===================|===================================|=========|\n' - '| "\\N{name}" | Character named *name* in the | ' - '(5) |\n' - '| | Unicode database | ' - '|\n' - '+-------------------+-----------------------------------+---------+\n' - '| "\\uxxxx" | Character with 16-bit hex value | ' - '(6) |\n' - '| | *xxxx* | ' - '|\n' - '+-------------------+-----------------------------------+---------+\n' - '| "\\Uxxxxxxxx" | Character with 32-bit hex value | ' - '(7) |\n' - '| | *xxxxxxxx* | ' - '|\n' - '+-------------------+-----------------------------------+---------+\n' + '+---------------------------+-----------------------------------+---------+\n' + '| Escape Sequence | Meaning | ' + 'Notes |\n' + '|===========================|===================================|=========|\n' + '| "\\N{*name*}" | Character named *name* in the ' + '| (5) |\n' + '| | Unicode database ' + '| |\n' + '+---------------------------+-----------------------------------+---------+\n' + '| "\\u*xxxx*" | Character with 16-bit hex value ' + '| (6) |\n' + '| | *xxxx* ' + '| |\n' + '+---------------------------+-----------------------------------+---------+\n' + '| "\\U*xxxxxxxx*" | Character with 32-bit hex value ' + '| (7) |\n' + '| | *xxxxxxxx* ' + '| |\n' + '+---------------------------+-----------------------------------+---------+\n' '\n' 'Notes:\n' '\n' @@ -12575,15 +13188,13 @@ topics = {'assert': 'The "assert" statement\n' 'bytes\n' 'literals.\n' '\n' - ' Changed in version 3.6: Unrecognized escape sequences produce ' - 'a\n' - ' "DeprecationWarning".\n' + 'Changed in version 3.6: Unrecognized escape sequences produce a\n' + '"DeprecationWarning".\n' '\n' - ' Changed in version 3.12: Unrecognized escape sequences produce ' - 'a\n' - ' "SyntaxWarning". In a future Python version they will be ' - 'eventually\n' - ' a "SyntaxError".\n' + 'Changed in version 3.12: Unrecognized escape sequences produce a\n' + '"SyntaxWarning". In a future Python version they will be ' + 'eventually a\n' + '"SyntaxError".\n' '\n' 'Even in a raw literal, quotes can be escaped with a backslash, ' 'but the\n' @@ -12697,7 +13308,7 @@ topics = {'assert': 'The "assert" statement\n' 'are\n' 'most of the built-in objects considered false:\n' '\n' - '* constants defined to be false: "None" and "False".\n' + '* constants defined to be false: "None" and "False"\n' '\n' '* zero of any numeric type: "0", "0.0", "0j", "Decimal(0)",\n' ' "Fraction(0, 1)"\n' @@ -12978,1144 +13589,1185 @@ topics = {'assert': 'The "assert" statement\n' 'definition\n' 'may change in the future.\n' '\n' + '\n' 'None\n' - ' This type has a single value. There is a single object with ' - 'this\n' - ' value. This object is accessed through the built-in name "None". ' - 'It\n' - ' is used to signify the absence of a value in many situations, ' - 'e.g.,\n' - ' it is returned from functions that don’t explicitly return\n' - ' anything. Its truth value is false.\n' + '====\n' + '\n' + 'This type has a single value. There is a single object with this\n' + 'value. This object is accessed through the built-in name "None". It ' + 'is\n' + 'used to signify the absence of a value in many situations, e.g., it ' + 'is\n' + 'returned from functions that don’t explicitly return anything. Its\n' + 'truth value is false.\n' + '\n' '\n' 'NotImplemented\n' - ' This type has a single value. There is a single object with ' - 'this\n' - ' value. This object is accessed through the built-in name\n' - ' "NotImplemented". Numeric methods and rich comparison methods\n' - ' should return this value if they do not implement the operation ' - 'for\n' - ' the operands provided. (The interpreter will then try the\n' - ' reflected operation, or some other fallback, depending on the\n' - ' operator.) It should not be evaluated in a boolean context.\n' + '==============\n' '\n' - ' See Implementing the arithmetic operations for more details.\n' + 'This type has a single value. There is a single object with this\n' + 'value. This object is accessed through the built-in name\n' + '"NotImplemented". Numeric methods and rich comparison methods ' + 'should\n' + 'return this value if they do not implement the operation for the\n' + 'operands provided. (The interpreter will then try the reflected\n' + 'operation, or some other fallback, depending on the operator.) It\n' + 'should not be evaluated in a boolean context.\n' + '\n' + 'See Implementing the arithmetic operations for more details.\n' + '\n' + 'Changed in version 3.9: Evaluating "NotImplemented" in a boolean\n' + 'context is deprecated. While it currently evaluates as true, it ' + 'will\n' + 'emit a "DeprecationWarning". It will raise a "TypeError" in a ' + 'future\n' + 'version of Python.\n' '\n' - ' Changed in version 3.9: Evaluating "NotImplemented" in a ' - 'boolean\n' - ' context is deprecated. While it currently evaluates as true, it\n' - ' will emit a "DeprecationWarning". It will raise a "TypeError" in ' - 'a\n' - ' future version of Python.\n' '\n' 'Ellipsis\n' - ' This type has a single value. There is a single object with ' - 'this\n' - ' value. This object is accessed through the literal "..." or the\n' - ' built-in name "Ellipsis". Its truth value is true.\n' + '========\n' + '\n' + 'This type has a single value. There is a single object with this\n' + 'value. This object is accessed through the literal "..." or the ' + 'built-\n' + 'in name "Ellipsis". Its truth value is true.\n' + '\n' '\n' '"numbers.Number"\n' - ' These are created by numeric literals and returned as results ' - 'by\n' - ' arithmetic operators and arithmetic built-in functions. ' - 'Numeric\n' - ' objects are immutable; once created their value never changes.\n' - ' Python numbers are of course strongly related to mathematical\n' - ' numbers, but subject to the limitations of numerical ' - 'representation\n' - ' in computers.\n' - '\n' - ' The string representations of the numeric classes, computed by\n' - ' "__repr__()" and "__str__()", have the following properties:\n' - '\n' - ' * They are valid numeric literals which, when passed to their ' + '================\n' + '\n' + 'These are created by numeric literals and returned as results by\n' + 'arithmetic operators and arithmetic built-in functions. Numeric\n' + 'objects are immutable; once created their value never changes. ' + 'Python\n' + 'numbers are of course strongly related to mathematical numbers, ' + 'but\n' + 'subject to the limitations of numerical representation in ' + 'computers.\n' + '\n' + 'The string representations of the numeric classes, computed by\n' + '"__repr__()" and "__str__()", have the following properties:\n' + '\n' + '* They are valid numeric literals which, when passed to their ' 'class\n' - ' constructor, produce an object having the value of the ' - 'original\n' - ' numeric.\n' + ' constructor, produce an object having the value of the original\n' + ' numeric.\n' '\n' - ' * The representation is in base 10, when possible.\n' + '* The representation is in base 10, when possible.\n' '\n' - ' * Leading zeros, possibly excepting a single zero before a ' - 'decimal\n' - ' point, are not shown.\n' + '* Leading zeros, possibly excepting a single zero before a decimal\n' + ' point, are not shown.\n' '\n' - ' * Trailing zeros, possibly excepting a single zero after a ' - 'decimal\n' - ' point, are not shown.\n' + '* Trailing zeros, possibly excepting a single zero after a decimal\n' + ' point, are not shown.\n' '\n' - ' * A sign is shown only when the number is negative.\n' + '* A sign is shown only when the number is negative.\n' '\n' - ' Python distinguishes between integers, floating point numbers, ' - 'and\n' - ' complex numbers:\n' + 'Python distinguishes between integers, floating point numbers, and\n' + 'complex numbers:\n' '\n' - ' "numbers.Integral"\n' - ' These represent elements from the mathematical set of ' - 'integers\n' - ' (positive and negative).\n' '\n' - ' There are two types of integers:\n' + '"numbers.Integral"\n' + '------------------\n' '\n' - ' Integers ("int")\n' - ' These represent numbers in an unlimited range, subject to\n' - ' available (virtual) memory only. For the purpose of ' - 'shift\n' - ' and mask operations, a binary representation is assumed, ' - 'and\n' - ' negative numbers are represented in a variant of 2’s\n' - ' complement which gives the illusion of an infinite string ' - 'of\n' - ' sign bits extending to the left.\n' + 'These represent elements from the mathematical set of integers\n' + '(positive and negative).\n' '\n' - ' Booleans ("bool")\n' - ' These represent the truth values False and True. The two\n' - ' objects representing the values "False" and "True" are ' - 'the\n' - ' only Boolean objects. The Boolean type is a subtype of ' + 'Note:\n' + '\n' + ' The rules for integer representation are intended to give the ' + 'most\n' + ' meaningful interpretation of shift and mask operations involving\n' + ' negative integers.\n' + '\n' + 'There are two types of integers:\n' + '\n' + 'Integers ("int")\n' + ' These represent numbers in an unlimited range, subject to ' + 'available\n' + ' (virtual) memory only. For the purpose of shift and mask\n' + ' operations, a binary representation is assumed, and negative\n' + ' numbers are represented in a variant of 2’s complement which ' + 'gives\n' + ' the illusion of an infinite string of sign bits extending to ' 'the\n' - ' integer type, and Boolean values behave like the values 0 ' - 'and\n' - ' 1, respectively, in almost all contexts, the exception ' - 'being\n' - ' that when converted to a string, the strings ""False"" or\n' - ' ""True"" are returned, respectively.\n' + ' left.\n' + '\n' + 'Booleans ("bool")\n' + ' These represent the truth values False and True. The two ' + 'objects\n' + ' representing the values "False" and "True" are the only Boolean\n' + ' objects. The Boolean type is a subtype of the integer type, and\n' + ' Boolean values behave like the values 0 and 1, respectively, in\n' + ' almost all contexts, the exception being that when converted to ' + 'a\n' + ' string, the strings ""False"" or ""True"" are returned,\n' + ' respectively.\n' + '\n' '\n' - ' The rules for integer representation are intended to give ' + '"numbers.Real" ("float")\n' + '------------------------\n' + '\n' + 'These represent machine-level double precision floating point ' + 'numbers.\n' + 'You are at the mercy of the underlying machine architecture (and C ' + 'or\n' + 'Java implementation) for the accepted range and handling of ' + 'overflow.\n' + 'Python does not support single-precision floating point numbers; ' 'the\n' - ' most meaningful interpretation of shift and mask operations\n' - ' involving negative integers.\n' - '\n' - ' "numbers.Real" ("float")\n' - ' These represent machine-level double precision floating ' - 'point\n' - ' numbers. You are at the mercy of the underlying machine\n' - ' architecture (and C or Java implementation) for the accepted\n' - ' range and handling of overflow. Python does not support ' - 'single-\n' - ' precision floating point numbers; the savings in processor ' - 'and\n' - ' memory usage that are usually the reason for using these are\n' - ' dwarfed by the overhead of using objects in Python, so there ' - 'is\n' - ' no reason to complicate the language with two kinds of ' - 'floating\n' - ' point numbers.\n' - '\n' - ' "numbers.Complex" ("complex")\n' - ' These represent complex numbers as a pair of machine-level\n' - ' double precision floating point numbers. The same caveats ' - 'apply\n' - ' as for floating point numbers. The real and imaginary parts ' - 'of a\n' - ' complex number "z" can be retrieved through the read-only\n' - ' attributes "z.real" and "z.imag".\n' + 'savings in processor and memory usage that are usually the reason ' + 'for\n' + 'using these are dwarfed by the overhead of using objects in Python, ' + 'so\n' + 'there is no reason to complicate the language with two kinds of\n' + 'floating point numbers.\n' + '\n' + '\n' + '"numbers.Complex" ("complex")\n' + '-----------------------------\n' + '\n' + 'These represent complex numbers as a pair of machine-level double\n' + 'precision floating point numbers. The same caveats apply as for\n' + 'floating point numbers. The real and imaginary parts of a complex\n' + 'number "z" can be retrieved through the read-only attributes ' + '"z.real"\n' + 'and "z.imag".\n' + '\n' '\n' 'Sequences\n' - ' These represent finite ordered sets indexed by non-negative\n' - ' numbers. The built-in function "len()" returns the number of ' - 'items\n' - ' of a sequence. When the length of a sequence is *n*, the index ' + '=========\n' + '\n' + 'These represent finite ordered sets indexed by non-negative ' + 'numbers.\n' + 'The built-in function "len()" returns the number of items of a\n' + 'sequence. When the length of a sequence is *n*, the index set ' + 'contains\n' + 'the numbers 0, 1, …, *n*-1. Item *i* of sequence *a* is selected ' + 'by\n' + '"a[i]".\n' + '\n' + 'Sequences also support slicing: "a[i:j]" selects all items with ' + 'index\n' + '*k* such that *i* "<=" *k* "<" *j*. When used as an expression, a\n' + 'slice is a sequence of the same type. This implies that the index ' 'set\n' - ' contains the numbers 0, 1, …, *n*-1. Item *i* of sequence *a* ' - 'is\n' - ' selected by "a[i]".\n' + 'is renumbered so that it starts at 0.\n' '\n' - ' Sequences also support slicing: "a[i:j]" selects all items with\n' - ' index *k* such that *i* "<=" *k* "<" *j*. When used as an\n' - ' expression, a slice is a sequence of the same type. This ' - 'implies\n' - ' that the index set is renumbered so that it starts at 0.\n' + 'Some sequences also support “extended slicing” with a third “step”\n' + 'parameter: "a[i:j:k]" selects all items of *a* with index *x* where ' + '"x\n' + '= i + n*k", *n* ">=" "0" and *i* "<=" *x* "<" *j*.\n' '\n' - ' Some sequences also support “extended slicing” with a third ' - '“step”\n' - ' parameter: "a[i:j:k]" selects all items of *a* with index *x* ' - 'where\n' - ' "x = i + n*k", *n* ">=" "0" and *i* "<=" *x* "<" *j*.\n' + 'Sequences are distinguished according to their mutability:\n' '\n' - ' Sequences are distinguished according to their mutability:\n' '\n' - ' Immutable sequences\n' - ' An object of an immutable sequence type cannot change once it ' - 'is\n' - ' created. (If the object contains references to other ' - 'objects,\n' - ' these other objects may be mutable and may be changed; ' - 'however,\n' - ' the collection of objects directly referenced by an ' - 'immutable\n' - ' object cannot change.)\n' + 'Immutable sequences\n' + '-------------------\n' '\n' - ' The following types are immutable sequences:\n' + 'An object of an immutable sequence type cannot change once it is\n' + 'created. (If the object contains references to other objects, ' + 'these\n' + 'other objects may be mutable and may be changed; however, the\n' + 'collection of objects directly referenced by an immutable object\n' + 'cannot change.)\n' '\n' - ' Strings\n' - ' A string is a sequence of values that represent Unicode ' - 'code\n' - ' points. All the code points in the range "U+0000 - ' - 'U+10FFFF"\n' - ' can be represented in a string. Python doesn’t have a ' - 'char\n' - ' type; instead, every code point in the string is ' - 'represented\n' - ' as a string object with length "1". The built-in ' - 'function\n' - ' "ord()" converts a code point from its string form to an\n' - ' integer in the range "0 - 10FFFF"; "chr()" converts an\n' - ' integer in the range "0 - 10FFFF" to the corresponding ' - 'length\n' - ' "1" string object. "str.encode()" can be used to convert ' - 'a\n' - ' "str" to "bytes" using the given text encoding, and\n' - ' "bytes.decode()" can be used to achieve the opposite.\n' + 'The following types are immutable sequences:\n' '\n' - ' Tuples\n' - ' The items of a tuple are arbitrary Python objects. Tuples ' - 'of\n' - ' two or more items are formed by comma-separated lists of\n' - ' expressions. A tuple of one item (a ‘singleton’) can be\n' - ' formed by affixing a comma to an expression (an expression ' - 'by\n' - ' itself does not create a tuple, since parentheses must be\n' - ' usable for grouping of expressions). An empty tuple can ' + 'Strings\n' + ' A string is a sequence of values that represent Unicode code\n' + ' points. All the code points in the range "U+0000 - U+10FFFF" can ' 'be\n' - ' formed by an empty pair of parentheses.\n' - '\n' - ' Bytes\n' - ' A bytes object is an immutable array. The items are ' - '8-bit\n' - ' bytes, represented by integers in the range 0 <= x < 256.\n' - ' Bytes literals (like "b\'abc\'") and the built-in ' - '"bytes()"\n' - ' constructor can be used to create bytes objects. Also, ' - 'bytes\n' - ' objects can be decoded to strings via the "decode()" ' - 'method.\n' + ' represented in a string. Python doesn’t have a char type; ' + 'instead,\n' + ' every code point in the string is represented as a string ' + 'object\n' + ' with length "1". The built-in function "ord()" converts a code\n' + ' point from its string form to an integer in the range "0 - ' + '10FFFF";\n' + ' "chr()" converts an integer in the range "0 - 10FFFF" to the\n' + ' corresponding length "1" string object. "str.encode()" can be ' + 'used\n' + ' to convert a "str" to "bytes" using the given text encoding, ' + 'and\n' + ' "bytes.decode()" can be used to achieve the opposite.\n' '\n' - ' Mutable sequences\n' - ' Mutable sequences can be changed after they are created. ' - 'The\n' - ' subscription and slicing notations can be used as the target ' + 'Tuples\n' + ' The items of a tuple are arbitrary Python objects. Tuples of two ' + 'or\n' + ' more items are formed by comma-separated lists of expressions. ' + 'A\n' + ' tuple of one item (a ‘singleton’) can be formed by affixing a ' + 'comma\n' + ' to an expression (an expression by itself does not create a ' + 'tuple,\n' + ' since parentheses must be usable for grouping of expressions). ' + 'An\n' + ' empty tuple can be formed by an empty pair of parentheses.\n' + '\n' + 'Bytes\n' + ' A bytes object is an immutable array. The items are 8-bit ' + 'bytes,\n' + ' represented by integers in the range 0 <= x < 256. Bytes ' + 'literals\n' + ' (like "b\'abc\'") and the built-in "bytes()" constructor can be ' + 'used\n' + ' to create bytes objects. Also, bytes objects can be decoded to\n' + ' strings via the "decode()" method.\n' + '\n' + '\n' + 'Mutable sequences\n' + '-----------------\n' + '\n' + 'Mutable sequences can be changed after they are created. The\n' + 'subscription and slicing notations can be used as the target of\n' + 'assignment and "del" (delete) statements.\n' + '\n' + 'Note:\n' + '\n' + ' The "collections" and "array" module provide additional examples ' 'of\n' - ' assignment and "del" (delete) statements.\n' + ' mutable sequence types.\n' '\n' - ' There are currently two intrinsic mutable sequence types:\n' + 'There are currently two intrinsic mutable sequence types:\n' '\n' - ' Lists\n' - ' The items of a list are arbitrary Python objects. Lists ' - 'are\n' - ' formed by placing a comma-separated list of expressions ' - 'in\n' - ' square brackets. (Note that there are no special cases ' - 'needed\n' - ' to form lists of length 0 or 1.)\n' + 'Lists\n' + ' The items of a list are arbitrary Python objects. Lists are ' + 'formed\n' + ' by placing a comma-separated list of expressions in square\n' + ' brackets. (Note that there are no special cases needed to form\n' + ' lists of length 0 or 1.)\n' '\n' - ' Byte Arrays\n' - ' A bytearray object is a mutable array. They are created ' - 'by\n' - ' the built-in "bytearray()" constructor. Aside from being\n' - ' mutable (and hence unhashable), byte arrays otherwise ' - 'provide\n' - ' the same interface and functionality as immutable "bytes"\n' - ' objects.\n' + 'Byte Arrays\n' + ' A bytearray object is a mutable array. They are created by the\n' + ' built-in "bytearray()" constructor. Aside from being mutable ' + '(and\n' + ' hence unhashable), byte arrays otherwise provide the same ' + 'interface\n' + ' and functionality as immutable "bytes" objects.\n' '\n' - ' The extension module "array" provides an additional example ' - 'of a\n' - ' mutable sequence type, as does the "collections" module.\n' '\n' 'Set types\n' - ' These represent unordered, finite sets of unique, immutable\n' - ' objects. As such, they cannot be indexed by any subscript. ' - 'However,\n' - ' they can be iterated over, and the built-in function "len()"\n' - ' returns the number of items in a set. Common uses for sets are ' - 'fast\n' - ' membership testing, removing duplicates from a sequence, and\n' - ' computing mathematical operations such as intersection, union,\n' - ' difference, and symmetric difference.\n' - '\n' - ' For set elements, the same immutability rules apply as for\n' - ' dictionary keys. Note that numeric types obey the normal rules ' - 'for\n' - ' numeric comparison: if two numbers compare equal (e.g., "1" and\n' - ' "1.0"), only one of them can be contained in a set.\n' + '=========\n' '\n' - ' There are currently two intrinsic set types:\n' + 'These represent unordered, finite sets of unique, immutable ' + 'objects.\n' + 'As such, they cannot be indexed by any subscript. However, they can ' + 'be\n' + 'iterated over, and the built-in function "len()" returns the number ' + 'of\n' + 'items in a set. Common uses for sets are fast membership testing,\n' + 'removing duplicates from a sequence, and computing mathematical\n' + 'operations such as intersection, union, difference, and symmetric\n' + 'difference.\n' + '\n' + 'For set elements, the same immutability rules apply as for ' + 'dictionary\n' + 'keys. Note that numeric types obey the normal rules for numeric\n' + 'comparison: if two numbers compare equal (e.g., "1" and "1.0"), ' + 'only\n' + 'one of them can be contained in a set.\n' + '\n' + 'There are currently two intrinsic set types:\n' '\n' - ' Sets\n' - ' These represent a mutable set. They are created by the ' + 'Sets\n' + ' These represent a mutable set. They are created by the built-in\n' + ' "set()" constructor and can be modified afterwards by several\n' + ' methods, such as "add()".\n' + '\n' + 'Frozen sets\n' + ' These represent an immutable set. They are created by the ' 'built-in\n' - ' "set()" constructor and can be modified afterwards by ' - 'several\n' - ' methods, such as "add()".\n' - '\n' - ' Frozen sets\n' - ' These represent an immutable set. They are created by the\n' - ' built-in "frozenset()" constructor. As a frozenset is ' - 'immutable\n' - ' and *hashable*, it can be used again as an element of ' - 'another\n' - ' set, or as a dictionary key.\n' + ' "frozenset()" constructor. As a frozenset is immutable and\n' + ' *hashable*, it can be used again as an element of another set, ' + 'or\n' + ' as a dictionary key.\n' + '\n' '\n' 'Mappings\n' - ' These represent finite sets of objects indexed by arbitrary ' - 'index\n' - ' sets. The subscript notation "a[k]" selects the item indexed by ' + '========\n' + '\n' + 'These represent finite sets of objects indexed by arbitrary index\n' + 'sets. The subscript notation "a[k]" selects the item indexed by ' '"k"\n' - ' from the mapping "a"; this can be used in expressions and as ' - 'the\n' - ' target of assignments or "del" statements. The built-in ' - 'function\n' - ' "len()" returns the number of items in a mapping.\n' + 'from the mapping "a"; this can be used in expressions and as the\n' + 'target of assignments or "del" statements. The built-in function\n' + '"len()" returns the number of items in a mapping.\n' '\n' - ' There is currently a single intrinsic mapping type:\n' + 'There is currently a single intrinsic mapping type:\n' '\n' - ' Dictionaries\n' - ' These represent finite sets of objects indexed by nearly\n' - ' arbitrary values. The only types of values not acceptable ' - 'as\n' - ' keys are values containing lists or dictionaries or other\n' - ' mutable types that are compared by value rather than by ' - 'object\n' - ' identity, the reason being that the efficient implementation ' - 'of\n' - ' dictionaries requires a key’s hash value to remain constant.\n' - ' Numeric types used for keys obey the normal rules for ' - 'numeric\n' - ' comparison: if two numbers compare equal (e.g., "1" and ' - '"1.0")\n' - ' then they can be used interchangeably to index the same\n' - ' dictionary entry.\n' - '\n' - ' Dictionaries preserve insertion order, meaning that keys will ' - 'be\n' - ' produced in the same order they were added sequentially over ' - 'the\n' - ' dictionary. Replacing an existing key does not change the ' - 'order,\n' - ' however removing a key and re-inserting it will add it to ' + '\n' + 'Dictionaries\n' + '------------\n' + '\n' + 'These represent finite sets of objects indexed by nearly arbitrary\n' + 'values. The only types of values not acceptable as keys are ' + 'values\n' + 'containing lists or dictionaries or other mutable types that are\n' + 'compared by value rather than by object identity, the reason being\n' + 'that the efficient implementation of dictionaries requires a key’s\n' + 'hash value to remain constant. Numeric types used for keys obey ' 'the\n' - ' end instead of keeping its old place.\n' + 'normal rules for numeric comparison: if two numbers compare equal\n' + '(e.g., "1" and "1.0") then they can be used interchangeably to ' + 'index\n' + 'the same dictionary entry.\n' + '\n' + 'Dictionaries preserve insertion order, meaning that keys will be\n' + 'produced in the same order they were added sequentially over the\n' + 'dictionary. Replacing an existing key does not change the order,\n' + 'however removing a key and re-inserting it will add it to the end\n' + 'instead of keeping its old place.\n' '\n' - ' Dictionaries are mutable; they can be created by the "{...}"\n' - ' notation (see section Dictionary displays).\n' + 'Dictionaries are mutable; they can be created by the "{...}" ' + 'notation\n' + '(see section Dictionary displays).\n' '\n' - ' The extension modules "dbm.ndbm" and "dbm.gnu" provide\n' - ' additional examples of mapping types, as does the ' - '"collections"\n' - ' module.\n' + 'The extension modules "dbm.ndbm" and "dbm.gnu" provide additional\n' + 'examples of mapping types, as does the "collections" module.\n' + '\n' + 'Changed in version 3.7: Dictionaries did not preserve insertion ' + 'order\n' + 'in versions of Python before 3.6. In CPython 3.6, insertion order ' + 'was\n' + 'preserved, but it was considered an implementation detail at that ' + 'time\n' + 'rather than a language guarantee.\n' '\n' - ' Changed in version 3.7: Dictionaries did not preserve ' - 'insertion\n' - ' order in versions of Python before 3.6. In CPython 3.6,\n' - ' insertion order was preserved, but it was considered an\n' - ' implementation detail at that time rather than a language\n' - ' guarantee.\n' '\n' 'Callable types\n' - ' These are the types to which the function call operation (see\n' - ' section Calls) can be applied:\n' + '==============\n' + '\n' + 'These are the types to which the function call operation (see ' + 'section\n' + 'Calls) can be applied:\n' + '\n' '\n' - ' User-defined functions\n' - ' A user-defined function object is created by a function\n' - ' definition (see section Function definitions). It should be\n' - ' called with an argument list containing the same number of ' - 'items\n' - ' as the function’s formal parameter list.\n' + 'User-defined functions\n' + '----------------------\n' '\n' - ' Special attributes:\n' + 'A user-defined function object is created by a function definition\n' + '(see section Function definitions). It should be called with an\n' + 'argument list containing the same number of items as the ' + 'function’s\n' + 'formal parameter list.\n' + '\n' + 'Special attributes:\n' '\n' - ' ' '+---------------------------+---------------------------------+-------------+\n' - ' | Attribute | Meaning ' + '| Attribute | Meaning ' '| |\n' - ' ' '|===========================|=================================|=============|\n' - ' | "__doc__" | The function’s documentation ' - '| Writable |\n' - ' | | string, or "None" if ' + '| "__doc__" | The function’s documentation | ' + 'Writable |\n' + '| | string, or "None" if ' '| |\n' - ' | | unavailable; not inherited by ' + '| | unavailable; not inherited by ' '| |\n' - ' | | subclasses. ' + '| | subclasses. ' '| |\n' - ' ' '+---------------------------+---------------------------------+-------------+\n' - ' | "__name__" | The function’s name. ' - '| Writable |\n' - ' ' + '| "__name__" | The function’s name. | ' + 'Writable |\n' '+---------------------------+---------------------------------+-------------+\n' - ' | "__qualname__" | The function’s *qualified ' - '| Writable |\n' - ' | | name*. New in version 3.3. ' + '| "__qualname__" | The function’s *qualified | ' + 'Writable |\n' + '| | name*. New in version 3.3. ' '| |\n' - ' ' '+---------------------------+---------------------------------+-------------+\n' - ' | "__module__" | The name of the module the ' - '| Writable |\n' - ' | | function was defined in, or ' + '| "__module__" | The name of the module the | ' + 'Writable |\n' + '| | function was defined in, or ' '| |\n' - ' | | "None" if unavailable. ' + '| | "None" if unavailable. ' '| |\n' - ' ' '+---------------------------+---------------------------------+-------------+\n' - ' | "__defaults__" | A tuple containing default ' - '| Writable |\n' - ' | | argument values for those ' + '| "__defaults__" | A tuple containing default | ' + 'Writable |\n' + '| | argument values for those ' '| |\n' - ' | | arguments that have defaults, ' + '| | arguments that have defaults, ' '| |\n' - ' | | or "None" if no arguments have ' + '| | or "None" if no arguments have ' '| |\n' - ' | | a default value. ' + '| | a default value. ' '| |\n' - ' ' '+---------------------------+---------------------------------+-------------+\n' - ' | "__code__" | The code object representing ' - '| Writable |\n' - ' | | the compiled function body. ' + '| "__code__" | The code object representing | ' + 'Writable |\n' + '| | the compiled function body. ' '| |\n' - ' ' '+---------------------------+---------------------------------+-------------+\n' - ' | "__globals__" | A reference to the dictionary ' - '| Read-only |\n' - ' | | that holds the function’s ' + '| "__globals__" | A reference to the dictionary | ' + 'Read-only |\n' + '| | that holds the function’s ' '| |\n' - ' | | global variables — the global ' + '| | global variables — the global ' '| |\n' - ' | | namespace of the module in ' + '| | namespace of the module in ' '| |\n' - ' | | which the function was defined. ' + '| | which the function was defined. ' '| |\n' - ' ' '+---------------------------+---------------------------------+-------------+\n' - ' | "__dict__" | The namespace supporting ' - '| Writable |\n' - ' | | arbitrary function attributes. ' + '| "__dict__" | The namespace supporting | ' + 'Writable |\n' + '| | arbitrary function attributes. ' '| |\n' - ' ' '+---------------------------+---------------------------------+-------------+\n' - ' | "__closure__" | "None" or a tuple of cells that ' - '| Read-only |\n' - ' | | contain bindings for the ' + '| "__closure__" | "None" or a tuple of cells that | ' + 'Read-only |\n' + '| | contain bindings for the ' '| |\n' - ' | | function’s free variables. See ' + '| | function’s free variables. See ' '| |\n' - ' | | below for information on the ' + '| | below for information on the ' '| |\n' - ' | | "cell_contents" attribute. ' + '| | "cell_contents" attribute. ' '| |\n' - ' ' '+---------------------------+---------------------------------+-------------+\n' - ' | "__annotations__" | A dict containing annotations ' - '| Writable |\n' - ' | | of parameters. The keys of the ' + '| "__annotations__" | A dict containing annotations | ' + 'Writable |\n' + '| | of parameters. The keys of the ' + '| |\n' + '| | dict are the parameter names, ' + '| |\n' + '| | and "\'return\'" for the return ' '| |\n' - ' | | dict are the parameter names, ' + '| | annotation, if provided. For ' '| |\n' - ' | | and "\'return\'" for the ' - 'return | |\n' - ' | | annotation, if provided. For ' + '| | more information on working ' '| |\n' - ' | | more information on working ' + '| | with this attribute, see ' '| |\n' - ' | | with this attribute, see ' + '| | Annotations Best Practices. ' '| |\n' - ' | | Annotations Best Practices. ' + '+---------------------------+---------------------------------+-------------+\n' + '| "__kwdefaults__" | A dict containing defaults for | ' + 'Writable |\n' + '| | keyword-only parameters. ' '| |\n' - ' ' '+---------------------------+---------------------------------+-------------+\n' - ' | "__kwdefaults__" | A dict containing defaults for ' - '| Writable |\n' - ' | | keyword-only parameters. ' + '| "__type_params__" | A tuple containing the type | ' + 'Writable |\n' + '| | parameters of a generic ' + '| |\n' + '| | function. ' '| |\n' - ' ' '+---------------------------+---------------------------------+-------------+\n' '\n' - ' Most of the attributes labelled “Writable” check the type of ' - 'the\n' - ' assigned value.\n' + 'Most of the attributes labelled “Writable” check the type of the\n' + 'assigned value.\n' '\n' - ' Function objects also support getting and setting arbitrary\n' - ' attributes, which can be used, for example, to attach ' - 'metadata\n' - ' to functions. Regular attribute dot-notation is used to get ' - 'and\n' - ' set such attributes. *Note that the current implementation ' - 'only\n' - ' supports function attributes on user-defined functions. ' - 'Function\n' - ' attributes on built-in functions may be supported in the\n' - ' future.*\n' - '\n' - ' A cell object has the attribute "cell_contents". This can be\n' - ' used to get the value of the cell, as well as set the value.\n' - '\n' - ' Additional information about a function’s definition can be\n' - ' retrieved from its code object; see the description of ' - 'internal\n' - ' types below. The "cell" type can be accessed in the "types"\n' - ' module.\n' - '\n' - ' Instance methods\n' - ' An instance method object combines a class, a class instance ' - 'and\n' - ' any callable object (normally a user-defined function).\n' - '\n' - ' Special read-only attributes: "__self__" is the class ' - 'instance\n' - ' object, "__func__" is the function object; "__doc__" is the\n' - ' method’s documentation (same as "__func__.__doc__"); ' - '"__name__"\n' - ' is the method name (same as "__func__.__name__"); ' - '"__module__"\n' - ' is the name of the module the method was defined in, or ' - '"None"\n' - ' if unavailable.\n' + 'Function objects also support getting and setting arbitrary\n' + 'attributes, which can be used, for example, to attach metadata to\n' + 'functions. Regular attribute dot-notation is used to get and set ' + 'such\n' + 'attributes. *Note that the current implementation only supports\n' + 'function attributes on user-defined functions. Function attributes ' + 'on\n' + 'built-in functions may be supported in the future.*\n' '\n' - ' Methods also support accessing (but not setting) the ' - 'arbitrary\n' - ' function attributes on the underlying function object.\n' + 'A cell object has the attribute "cell_contents". This can be used ' + 'to\n' + 'get the value of the cell, as well as set the value.\n' '\n' - ' User-defined method objects may be created when getting an\n' - ' attribute of a class (perhaps via an instance of that class), ' - 'if\n' - ' that attribute is a user-defined function object or a class\n' - ' method object.\n' - '\n' - ' When an instance method object is created by retrieving a ' - 'user-\n' - ' defined function object from a class via one of its ' - 'instances,\n' - ' its "__self__" attribute is the instance, and the method ' - 'object\n' - ' is said to be bound. The new method’s "__func__" attribute ' - 'is\n' - ' the original function object.\n' + 'Additional information about a function’s definition can be ' + 'retrieved\n' + 'from its code object; see the description of internal types below. ' + 'The\n' + '"cell" type can be accessed in the "types" module.\n' '\n' - ' When an instance method object is created by retrieving a ' - 'class\n' - ' method object from a class or instance, its "__self__" ' - 'attribute\n' - ' is the class itself, and its "__func__" attribute is the\n' - ' function object underlying the class method.\n' '\n' - ' When an instance method object is called, the underlying\n' - ' function ("__func__") is called, inserting the class ' - 'instance\n' - ' ("__self__") in front of the argument list. For instance, ' - 'when\n' - ' "C" is a class which contains a definition for a function ' - '"f()",\n' - ' and "x" is an instance of "C", calling "x.f(1)" is equivalent ' - 'to\n' - ' calling "C.f(x, 1)".\n' + 'Instance methods\n' + '----------------\n' '\n' - ' When an instance method object is derived from a class ' + 'An instance method object combines a class, a class instance and ' + 'any\n' + 'callable object (normally a user-defined function).\n' + '\n' + 'Special read-only attributes: "__self__" is the class instance ' + 'object,\n' + '"__func__" is the function object; "__doc__" is the method’s\n' + 'documentation (same as "__func__.__doc__"); "__name__" is the ' 'method\n' - ' object, the “class instance” stored in "__self__" will ' - 'actually\n' - ' be the class itself, so that calling either "x.f(1)" or ' - '"C.f(1)"\n' - ' is equivalent to calling "f(C,1)" where "f" is the ' - 'underlying\n' - ' function.\n' - '\n' - ' Note that the transformation from function object to ' - 'instance\n' - ' method object happens each time the attribute is retrieved ' - 'from\n' - ' the instance. In some cases, a fruitful optimization is to\n' - ' assign the attribute to a local variable and call that local\n' - ' variable. Also notice that this transformation only happens ' - 'for\n' - ' user-defined functions; other callable objects (and all non-\n' - ' callable objects) are retrieved without transformation. It ' - 'is\n' - ' also important to note that user-defined functions which are\n' - ' attributes of a class instance are not converted to bound\n' - ' methods; this *only* happens when the function is an ' + 'name (same as "__func__.__name__"); "__module__" is the name of ' + 'the\n' + 'module the method was defined in, or "None" if unavailable.\n' + '\n' + 'Methods also support accessing (but not setting) the arbitrary\n' + 'function attributes on the underlying function object.\n' + '\n' + 'User-defined method objects may be created when getting an ' + 'attribute\n' + 'of a class (perhaps via an instance of that class), if that ' 'attribute\n' - ' of the class.\n' + 'is a user-defined function object or a class method object.\n' '\n' - ' Generator functions\n' - ' A function or method which uses the "yield" statement (see\n' - ' section The yield statement) is called a *generator ' - 'function*.\n' - ' Such a function, when called, always returns an *iterator*\n' - ' object which can be used to execute the body of the ' - 'function:\n' - ' calling the iterator’s "iterator.__next__()" method will ' - 'cause\n' - ' the function to execute until it provides a value using the\n' - ' "yield" statement. When the function executes a "return"\n' - ' statement or falls off the end, a "StopIteration" exception ' - 'is\n' - ' raised and the iterator will have reached the end of the set ' + 'When an instance method object is created by retrieving a ' + 'user-defined\n' + 'function object from a class via one of its instances, its ' + '"__self__"\n' + 'attribute is the instance, and the method object is said to be ' + 'bound.\n' + 'The new method’s "__func__" attribute is the original function ' + 'object.\n' + '\n' + 'When an instance method object is created by retrieving a class ' + 'method\n' + 'object from a class or instance, its "__self__" attribute is the ' + 'class\n' + 'itself, and its "__func__" attribute is the function object ' + 'underlying\n' + 'the class method.\n' + '\n' + 'When an instance method object is called, the underlying function\n' + '("__func__") is called, inserting the class instance ("__self__") ' + 'in\n' + 'front of the argument list. For instance, when "C" is a class ' + 'which\n' + 'contains a definition for a function "f()", and "x" is an instance ' 'of\n' - ' values to be returned.\n' - '\n' - ' Coroutine functions\n' - ' A function or method which is defined using "async def" is\n' - ' called a *coroutine function*. Such a function, when ' - 'called,\n' - ' returns a *coroutine* object. It may contain "await"\n' - ' expressions, as well as "async with" and "async for" ' - 'statements.\n' - ' See also the Coroutine Objects section.\n' - '\n' - ' Asynchronous generator functions\n' - ' A function or method which is defined using "async def" and\n' - ' which uses the "yield" statement is called a *asynchronous\n' - ' generator function*. Such a function, when called, returns ' - 'an\n' - ' *asynchronous iterator* object which can be used in an ' - '"async\n' - ' for" statement to execute the body of the function.\n' + '"C", calling "x.f(1)" is equivalent to calling "C.f(x, 1)".\n' '\n' - ' Calling the asynchronous iterator’s "aiterator.__anext__" ' + 'When an instance method object is derived from a class method ' + 'object,\n' + 'the “class instance” stored in "__self__" will actually be the ' + 'class\n' + 'itself, so that calling either "x.f(1)" or "C.f(1)" is equivalent ' + 'to\n' + 'calling "f(C,1)" where "f" is the underlying function.\n' + '\n' + 'Note that the transformation from function object to instance ' 'method\n' - ' will return an *awaitable* which when awaited will execute ' + 'object happens each time the attribute is retrieved from the ' + 'instance.\n' + 'In some cases, a fruitful optimization is to assign the attribute ' + 'to a\n' + 'local variable and call that local variable. Also notice that this\n' + 'transformation only happens for user-defined functions; other ' + 'callable\n' + 'objects (and all non-callable objects) are retrieved without\n' + 'transformation. It is also important to note that user-defined\n' + 'functions which are attributes of a class instance are not ' + 'converted\n' + 'to bound methods; this *only* happens when the function is an\n' + 'attribute of the class.\n' + '\n' + '\n' + 'Generator functions\n' + '-------------------\n' + '\n' + 'A function or method which uses the "yield" statement (see section ' + 'The\n' + 'yield statement) is called a *generator function*. Such a ' + 'function,\n' + 'when called, always returns an *iterator* object which can be used ' + 'to\n' + 'execute the body of the function: calling the iterator’s\n' + '"iterator.__next__()" method will cause the function to execute ' 'until\n' - ' it provides a value using the "yield" expression. When the\n' - ' function executes an empty "return" statement or falls off ' + 'it provides a value using the "yield" statement. When the ' + 'function\n' + 'executes a "return" statement or falls off the end, a ' + '"StopIteration"\n' + 'exception is raised and the iterator will have reached the end of ' 'the\n' - ' end, a "StopAsyncIteration" exception is raised and the\n' - ' asynchronous iterator will have reached the end of the set ' - 'of\n' - ' values to be yielded.\n' + 'set of values to be returned.\n' '\n' - ' Built-in functions\n' - ' A built-in function object is a wrapper around a C function.\n' - ' Examples of built-in functions are "len()" and "math.sin()"\n' - ' ("math" is a standard built-in module). The number and type ' - 'of\n' - ' the arguments are determined by the C function. Special ' - 'read-\n' - ' only attributes: "__doc__" is the function’s documentation\n' - ' string, or "None" if unavailable; "__name__" is the ' - 'function’s\n' - ' name; "__self__" is set to "None" (but see the next item);\n' - ' "__module__" is the name of the module the function was ' - 'defined\n' - ' in or "None" if unavailable.\n' '\n' - ' Built-in methods\n' - ' This is really a different disguise of a built-in function, ' - 'this\n' - ' time containing an object passed to the C function as an\n' - ' implicit extra argument. An example of a built-in method is\n' - ' "alist.append()", assuming *alist* is a list object. In this\n' - ' case, the special read-only attribute "__self__" is set to ' + 'Coroutine functions\n' + '-------------------\n' + '\n' + 'A function or method which is defined using "async def" is called ' + 'a\n' + '*coroutine function*. Such a function, when called, returns a\n' + '*coroutine* object. It may contain "await" expressions, as well ' + 'as\n' + '"async with" and "async for" statements. See also the Coroutine\n' + 'Objects section.\n' + '\n' + '\n' + 'Asynchronous generator functions\n' + '--------------------------------\n' + '\n' + 'A function or method which is defined using "async def" and which ' + 'uses\n' + 'the "yield" statement is called a *asynchronous generator ' + 'function*.\n' + 'Such a function, when called, returns an *asynchronous iterator*\n' + 'object which can be used in an "async for" statement to execute ' 'the\n' - ' object denoted by *alist*.\n' + 'body of the function.\n' '\n' - ' Classes\n' - ' Classes are callable. These objects normally act as ' - 'factories\n' - ' for new instances of themselves, but variations are possible ' - 'for\n' - ' class types that override "__new__()". The arguments of the\n' - ' call are passed to "__new__()" and, in the typical case, to\n' - ' "__init__()" to initialize the new instance.\n' + 'Calling the asynchronous iterator’s "aiterator.__anext__" method ' + 'will\n' + 'return an *awaitable* which when awaited will execute until it\n' + 'provides a value using the "yield" expression. When the function\n' + 'executes an empty "return" statement or falls off the end, a\n' + '"StopAsyncIteration" exception is raised and the asynchronous ' + 'iterator\n' + 'will have reached the end of the set of values to be yielded.\n' + '\n' + '\n' + 'Built-in functions\n' + '------------------\n' + '\n' + 'A built-in function object is a wrapper around a C function. ' + 'Examples\n' + 'of built-in functions are "len()" and "math.sin()" ("math" is a\n' + 'standard built-in module). The number and type of the arguments ' + 'are\n' + 'determined by the C function. Special read-only attributes: ' + '"__doc__"\n' + 'is the function’s documentation string, or "None" if unavailable;\n' + '"__name__" is the function’s name; "__self__" is set to "None" ' + '(but\n' + 'see the next item); "__module__" is the name of the module the\n' + 'function was defined in or "None" if unavailable.\n' + '\n' + '\n' + 'Built-in methods\n' + '----------------\n' + '\n' + 'This is really a different disguise of a built-in function, this ' + 'time\n' + 'containing an object passed to the C function as an implicit extra\n' + 'argument. An example of a built-in method is "alist.append()",\n' + 'assuming *alist* is a list object. In this case, the special ' + 'read-only\n' + 'attribute "__self__" is set to the object denoted by *alist*.\n' + '\n' + '\n' + 'Classes\n' + '-------\n' + '\n' + 'Classes are callable. These objects normally act as factories for ' + 'new\n' + 'instances of themselves, but variations are possible for class ' + 'types\n' + 'that override "__new__()". The arguments of the call are passed ' + 'to\n' + '"__new__()" and, in the typical case, to "__init__()" to ' + 'initialize\n' + 'the new instance.\n' + '\n' + '\n' + 'Class Instances\n' + '---------------\n' + '\n' + 'Instances of arbitrary classes can be made callable by defining a\n' + '"__call__()" method in their class.\n' '\n' - ' Class Instances\n' - ' Instances of arbitrary classes can be made callable by ' - 'defining\n' - ' a "__call__()" method in their class.\n' '\n' 'Modules\n' - ' Modules are a basic organizational unit of Python code, and are\n' - ' created by the import system as invoked either by the "import"\n' - ' statement, or by calling functions such as\n' - ' "importlib.import_module()" and built-in "__import__()". A ' - 'module\n' - ' object has a namespace implemented by a dictionary object (this ' - 'is\n' - ' the dictionary referenced by the "__globals__" attribute of\n' - ' functions defined in the module). Attribute references are\n' - ' translated to lookups in this dictionary, e.g., "m.x" is ' - 'equivalent\n' - ' to "m.__dict__["x"]". A module object does not contain the code\n' - ' object used to initialize the module (since it isn’t needed ' - 'once\n' - ' the initialization is done).\n' + '=======\n' + '\n' + 'Modules are a basic organizational unit of Python code, and are\n' + 'created by the import system as invoked either by the "import"\n' + 'statement, or by calling functions such as ' + '"importlib.import_module()"\n' + 'and built-in "__import__()". A module object has a namespace\n' + 'implemented by a dictionary object (this is the dictionary ' + 'referenced\n' + 'by the "__globals__" attribute of functions defined in the ' + 'module).\n' + 'Attribute references are translated to lookups in this dictionary,\n' + 'e.g., "m.x" is equivalent to "m.__dict__["x"]". A module object ' + 'does\n' + 'not contain the code object used to initialize the module (since ' + 'it\n' + 'isn’t needed once the initialization is done).\n' + '\n' + 'Attribute assignment updates the module’s namespace dictionary, ' + 'e.g.,\n' + '"m.x = 1" is equivalent to "m.__dict__["x"] = 1".\n' '\n' - ' Attribute assignment updates the module’s namespace dictionary,\n' - ' e.g., "m.x = 1" is equivalent to "m.__dict__["x"] = 1".\n' + 'Predefined (writable) attributes:\n' '\n' - ' Predefined (writable) attributes:\n' + ' "__name__"\n' + ' The module’s name.\n' '\n' - ' "__name__"\n' - ' The module’s name.\n' + ' "__doc__"\n' + ' The module’s documentation string, or "None" if unavailable.\n' '\n' - ' "__doc__"\n' - ' The module’s documentation string, or "None" if ' - 'unavailable.\n' + ' "__file__"\n' + ' The pathname of the file from which the module was loaded, if ' + 'it\n' + ' was loaded from a file. The "__file__" attribute may be ' + 'missing\n' + ' for certain types of modules, such as C modules that are\n' + ' statically linked into the interpreter. For extension ' + 'modules\n' + ' loaded dynamically from a shared library, it’s the pathname ' + 'of\n' + ' the shared library file.\n' '\n' - ' "__file__"\n' - ' The pathname of the file from which the module was loaded, ' - 'if\n' - ' it was loaded from a file. The "__file__" attribute may ' - 'be\n' - ' missing for certain types of modules, such as C modules ' - 'that\n' - ' are statically linked into the interpreter. For ' - 'extension\n' - ' modules loaded dynamically from a shared library, it’s ' - 'the\n' - ' pathname of the shared library file.\n' - '\n' - ' "__annotations__"\n' - ' A dictionary containing *variable annotations* collected\n' - ' during module body execution. For best practices on ' - 'working\n' - ' with "__annotations__", please see Annotations Best\n' - ' Practices.\n' - '\n' - ' Special read-only attribute: "__dict__" is the module’s ' - 'namespace\n' - ' as a dictionary object.\n' - '\n' - ' **CPython implementation detail:** Because of the way CPython\n' - ' clears module dictionaries, the module dictionary will be ' - 'cleared\n' - ' when the module falls out of scope even if the dictionary still ' - 'has\n' - ' live references. To avoid this, copy the dictionary or keep ' + ' "__annotations__"\n' + ' A dictionary containing *variable annotations* collected ' + 'during\n' + ' module body execution. For best practices on working with\n' + ' "__annotations__", please see Annotations Best Practices.\n' + '\n' + 'Special read-only attribute: "__dict__" is the module’s namespace ' + 'as a\n' + 'dictionary object.\n' + '\n' + '**CPython implementation detail:** Because of the way CPython ' + 'clears\n' + 'module dictionaries, the module dictionary will be cleared when ' 'the\n' - ' module around while using its dictionary directly.\n' + 'module falls out of scope even if the dictionary still has live\n' + 'references. To avoid this, copy the dictionary or keep the module\n' + 'around while using its dictionary directly.\n' + '\n' '\n' 'Custom classes\n' - ' Custom class types are typically created by class definitions ' - '(see\n' - ' section Class definitions). A class has a namespace implemented ' - 'by\n' - ' a dictionary object. Class attribute references are translated ' - 'to\n' - ' lookups in this dictionary, e.g., "C.x" is translated to\n' - ' "C.__dict__["x"]" (although there are a number of hooks which ' + '==============\n' + '\n' + 'Custom class types are typically created by class definitions (see\n' + 'section Class definitions). A class has a namespace implemented by ' + 'a\n' + 'dictionary object. Class attribute references are translated to\n' + 'lookups in this dictionary, e.g., "C.x" is translated to\n' + '"C.__dict__["x"]" (although there are a number of hooks which ' 'allow\n' - ' for other means of locating attributes). When the attribute name ' + 'for other means of locating attributes). When the attribute name ' 'is\n' - ' not found there, the attribute search continues in the base\n' - ' classes. This search of the base classes uses the C3 method\n' - ' resolution order which behaves correctly even in the presence ' - 'of\n' - ' ‘diamond’ inheritance structures where there are multiple\n' - ' inheritance paths leading back to a common ancestor. Additional\n' - ' details on the C3 MRO used by Python can be found in the\n' - ' documentation accompanying the 2.3 release at\n' - ' https://www.python.org/download/releases/2.3/mro/.\n' - '\n' - ' When a class attribute reference (for class "C", say) would ' - 'yield a\n' - ' class method object, it is transformed into an instance method\n' - ' object whose "__self__" attribute is "C". When it would yield ' + 'not found there, the attribute search continues in the base ' + 'classes.\n' + 'This search of the base classes uses the C3 method resolution ' + 'order\n' + 'which behaves correctly even in the presence of ‘diamond’ ' + 'inheritance\n' + 'structures where there are multiple inheritance paths leading back ' + 'to\n' + 'a common ancestor. Additional details on the C3 MRO used by Python ' + 'can\n' + 'be found in the documentation accompanying the 2.3 release at\n' + 'https://www.python.org/download/releases/2.3/mro/.\n' + '\n' + 'When a class attribute reference (for class "C", say) would yield ' 'a\n' - ' static method object, it is transformed into the object wrapped ' - 'by\n' - ' the static method object. See section Implementing Descriptors ' - 'for\n' - ' another way in which attributes retrieved from a class may ' - 'differ\n' - ' from those actually contained in its "__dict__".\n' + 'class method object, it is transformed into an instance method ' + 'object\n' + 'whose "__self__" attribute is "C". When it would yield a static\n' + 'method object, it is transformed into the object wrapped by the ' + 'static\n' + 'method object. See section Implementing Descriptors for another way ' + 'in\n' + 'which attributes retrieved from a class may differ from those ' + 'actually\n' + 'contained in its "__dict__".\n' + '\n' + 'Class attribute assignments update the class’s dictionary, never ' + 'the\n' + 'dictionary of a base class.\n' + '\n' + 'A class object can be called (see above) to yield a class instance\n' + '(see below).\n' '\n' - ' Class attribute assignments update the class’s dictionary, ' - 'never\n' - ' the dictionary of a base class.\n' + 'Special attributes:\n' '\n' - ' A class object can be called (see above) to yield a class ' - 'instance\n' - ' (see below).\n' + ' "__name__"\n' + ' The class name.\n' '\n' - ' Special attributes:\n' + ' "__module__"\n' + ' The name of the module in which the class was defined.\n' '\n' - ' "__name__"\n' - ' The class name.\n' + ' "__dict__"\n' + ' The dictionary containing the class’s namespace.\n' '\n' - ' "__module__"\n' - ' The name of the module in which the class was defined.\n' + ' "__bases__"\n' + ' A tuple containing the base classes, in the order of their\n' + ' occurrence in the base class list.\n' '\n' - ' "__dict__"\n' - ' The dictionary containing the class’s namespace.\n' + ' "__doc__"\n' + ' The class’s documentation string, or "None" if undefined.\n' '\n' - ' "__bases__"\n' - ' A tuple containing the base classes, in the order of ' - 'their\n' - ' occurrence in the base class list.\n' + ' "__annotations__"\n' + ' A dictionary containing *variable annotations* collected ' + 'during\n' + ' class body execution. For best practices on working with\n' + ' "__annotations__", please see Annotations Best Practices.\n' '\n' - ' "__doc__"\n' - ' The class’s documentation string, or "None" if undefined.\n' + ' "__type_params__"\n' + ' A tuple containing the type parameters of a generic class.\n' '\n' - ' "__annotations__"\n' - ' A dictionary containing *variable annotations* collected\n' - ' during class body execution. For best practices on ' - 'working\n' - ' with "__annotations__", please see Annotations Best\n' - ' Practices.\n' '\n' 'Class instances\n' - ' A class instance is created by calling a class object (see ' - 'above).\n' - ' A class instance has a namespace implemented as a dictionary ' - 'which\n' - ' is the first place in which attribute references are searched.\n' - ' When an attribute is not found there, and the instance’s class ' - 'has\n' - ' an attribute by that name, the search continues with the class\n' - ' attributes. If a class attribute is found that is a ' - 'user-defined\n' - ' function object, it is transformed into an instance method ' - 'object\n' - ' whose "__self__" attribute is the instance. Static method and\n' - ' class method objects are also transformed; see above under\n' - ' “Classes”. See section Implementing Descriptors for another way ' - 'in\n' - ' which attributes of a class retrieved via its instances may ' - 'differ\n' - ' from the objects actually stored in the class’s "__dict__". If ' - 'no\n' - ' class attribute is found, and the object’s class has a\n' - ' "__getattr__()" method, that is called to satisfy the lookup.\n' + '===============\n' '\n' - ' Attribute assignments and deletions update the instance’s\n' - ' dictionary, never a class’s dictionary. If the class has a\n' - ' "__setattr__()" or "__delattr__()" method, this is called ' - 'instead\n' - ' of updating the instance dictionary directly.\n' + 'A class instance is created by calling a class object (see above). ' + 'A\n' + 'class instance has a namespace implemented as a dictionary which ' + 'is\n' + 'the first place in which attribute references are searched. When ' + 'an\n' + 'attribute is not found there, and the instance’s class has an\n' + 'attribute by that name, the search continues with the class\n' + 'attributes. If a class attribute is found that is a user-defined\n' + 'function object, it is transformed into an instance method object\n' + 'whose "__self__" attribute is the instance. Static method and ' + 'class\n' + 'method objects are also transformed; see above under “Classes”. ' + 'See\n' + 'section Implementing Descriptors for another way in which ' + 'attributes\n' + 'of a class retrieved via its instances may differ from the objects\n' + 'actually stored in the class’s "__dict__". If no class attribute ' + 'is\n' + 'found, and the object’s class has a "__getattr__()" method, that ' + 'is\n' + 'called to satisfy the lookup.\n' '\n' - ' Class instances can pretend to be numbers, sequences, or ' - 'mappings\n' - ' if they have methods with certain special names. See section\n' - ' Special method names.\n' + 'Attribute assignments and deletions update the instance’s ' + 'dictionary,\n' + 'never a class’s dictionary. If the class has a "__setattr__()" or\n' + '"__delattr__()" method, this is called instead of updating the\n' + 'instance dictionary directly.\n' + '\n' + 'Class instances can pretend to be numbers, sequences, or mappings ' + 'if\n' + 'they have methods with certain special names. See section Special\n' + 'method names.\n' + '\n' + 'Special attributes: "__dict__" is the attribute dictionary;\n' + '"__class__" is the instance’s class.\n' '\n' - ' Special attributes: "__dict__" is the attribute dictionary;\n' - ' "__class__" is the instance’s class.\n' '\n' 'I/O objects (also known as file objects)\n' - ' A *file object* represents an open file. Various shortcuts are\n' - ' available to create file objects: the "open()" built-in ' - 'function,\n' - ' and also "os.popen()", "os.fdopen()", and the "makefile()" ' - 'method\n' - ' of socket objects (and perhaps by other functions or methods\n' - ' provided by extension modules).\n' + '========================================\n' + '\n' + 'A *file object* represents an open file. Various shortcuts are\n' + 'available to create file objects: the "open()" built-in function, ' + 'and\n' + 'also "os.popen()", "os.fdopen()", and the "makefile()" method of\n' + 'socket objects (and perhaps by other functions or methods provided ' + 'by\n' + 'extension modules).\n' + '\n' + 'The objects "sys.stdin", "sys.stdout" and "sys.stderr" are ' + 'initialized\n' + 'to file objects corresponding to the interpreter’s standard input,\n' + 'output and error streams; they are all open in text mode and ' + 'therefore\n' + 'follow the interface defined by the "io.TextIOBase" abstract ' + 'class.\n' '\n' - ' The objects "sys.stdin", "sys.stdout" and "sys.stderr" are\n' - ' initialized to file objects corresponding to the interpreter’s\n' - ' standard input, output and error streams; they are all open in ' - 'text\n' - ' mode and therefore follow the interface defined by the\n' - ' "io.TextIOBase" abstract class.\n' '\n' 'Internal types\n' - ' A few types used internally by the interpreter are exposed to ' - 'the\n' - ' user. Their definitions may change with future versions of the\n' - ' interpreter, but they are mentioned here for completeness.\n' - '\n' - ' Code objects\n' - ' Code objects represent *byte-compiled* executable Python ' - 'code,\n' - ' or *bytecode*. The difference between a code object and a\n' - ' function object is that the function object contains an ' - 'explicit\n' - ' reference to the function’s globals (the module in which it ' - 'was\n' - ' defined), while a code object contains no context; also the\n' - ' default argument values are stored in the function object, ' - 'not\n' - ' in the code object (because they represent values calculated ' - 'at\n' - ' run-time). Unlike function objects, code objects are ' - 'immutable\n' - ' and contain no references (directly or indirectly) to ' - 'mutable\n' - ' objects.\n' - '\n' - ' Special read-only attributes: "co_name" gives the function ' - 'name;\n' - ' "co_qualname" gives the fully qualified function name;\n' - ' "co_argcount" is the total number of positional arguments\n' - ' (including positional-only arguments and arguments with ' - 'default\n' - ' values); "co_posonlyargcount" is the number of ' - 'positional-only\n' - ' arguments (including arguments with default values);\n' - ' "co_kwonlyargcount" is the number of keyword-only arguments\n' - ' (including arguments with default values); "co_nlocals" is ' - 'the\n' - ' number of local variables used by the function (including\n' - ' arguments); "co_varnames" is a tuple containing the names of ' - 'the\n' - ' local variables (starting with the argument names);\n' - ' "co_cellvars" is a tuple containing the names of local ' - 'variables\n' - ' that are referenced by nested functions; "co_freevars" is a\n' - ' tuple containing the names of free variables; "co_code" is a\n' - ' string representing the sequence of bytecode instructions;\n' - ' "co_consts" is a tuple containing the literals used by the\n' - ' bytecode; "co_names" is a tuple containing the names used by ' - 'the\n' - ' bytecode; "co_filename" is the filename from which the code ' - 'was\n' - ' compiled; "co_firstlineno" is the first line number of the\n' - ' function; "co_lnotab" is a string encoding the mapping from\n' - ' bytecode offsets to line numbers (for details see the source\n' - ' code of the interpreter, is deprecated since 3.12 and may be\n' - ' removed in 3.14); "co_stacksize" is the required stack size;\n' - ' "co_flags" is an integer encoding a number of flags for the\n' - ' interpreter.\n' - '\n' - ' The following flag bits are defined for "co_flags": bit ' - '"0x04"\n' - ' is set if the function uses the "*arguments" syntax to accept ' - 'an\n' - ' arbitrary number of positional arguments; bit "0x08" is set ' - 'if\n' - ' the function uses the "**keywords" syntax to accept ' - 'arbitrary\n' - ' keyword arguments; bit "0x20" is set if the function is a\n' - ' generator.\n' + '==============\n' + '\n' + 'A few types used internally by the interpreter are exposed to the\n' + 'user. Their definitions may change with future versions of the\n' + 'interpreter, but they are mentioned here for completeness.\n' '\n' - ' Future feature declarations ("from __future__ import ' - 'division")\n' - ' also use bits in "co_flags" to indicate whether a code ' + '\n' + 'Code objects\n' + '------------\n' + '\n' + 'Code objects represent *byte-compiled* executable Python code, or\n' + '*bytecode*. The difference between a code object and a function ' 'object\n' - ' was compiled with a particular feature enabled: bit "0x2000" ' + 'is that the function object contains an explicit reference to the\n' + 'function’s globals (the module in which it was defined), while a ' + 'code\n' + 'object contains no context; also the default argument values are\n' + 'stored in the function object, not in the code object (because ' + 'they\n' + 'represent values calculated at run-time). Unlike function ' + 'objects,\n' + 'code objects are immutable and contain no references (directly or\n' + 'indirectly) to mutable objects.\n' + '\n' + 'Special read-only attributes: "co_name" gives the function name;\n' + '"co_qualname" gives the fully qualified function name; ' + '"co_argcount"\n' + 'is the total number of positional arguments (including ' + 'positional-only\n' + 'arguments and arguments with default values); "co_posonlyargcount" ' 'is\n' - ' set if the function was compiled with future division ' - 'enabled;\n' - ' bits "0x10" and "0x1000" were used in earlier versions of\n' - ' Python.\n' + 'the number of positional-only arguments (including arguments with\n' + 'default values); "co_kwonlyargcount" is the number of keyword-only\n' + 'arguments (including arguments with default values); "co_nlocals" ' + 'is\n' + 'the number of local variables used by the function (including\n' + 'arguments); "co_varnames" is a tuple containing the names of the ' + 'local\n' + 'variables (starting with the argument names); "co_cellvars" is a ' + 'tuple\n' + 'containing the names of local variables that are referenced by ' + 'nested\n' + 'functions; "co_freevars" is a tuple containing the names of free\n' + 'variables; "co_code" is a string representing the sequence of ' + 'bytecode\n' + 'instructions; "co_consts" is a tuple containing the literals used ' + 'by\n' + 'the bytecode; "co_names" is a tuple containing the names used by ' + 'the\n' + 'bytecode; "co_filename" is the filename from which the code was\n' + 'compiled; "co_firstlineno" is the first line number of the ' + 'function;\n' + '"co_lnotab" is a string encoding the mapping from bytecode offsets ' + 'to\n' + 'line numbers (for details see the source code of the interpreter, ' + 'is\n' + 'deprecated since 3.12 and may be removed in 3.14); "co_stacksize" ' + 'is\n' + 'the required stack size; "co_flags" is an integer encoding a number ' + 'of\n' + 'flags for the interpreter.\n' '\n' - ' Other bits in "co_flags" are reserved for internal use.\n' + 'The following flag bits are defined for "co_flags": bit "0x04" is ' + 'set\n' + 'if the function uses the "*arguments" syntax to accept an ' + 'arbitrary\n' + 'number of positional arguments; bit "0x08" is set if the function ' + 'uses\n' + 'the "**keywords" syntax to accept arbitrary keyword arguments; bit\n' + '"0x20" is set if the function is a generator.\n' + '\n' + 'Future feature declarations ("from __future__ import division") ' + 'also\n' + 'use bits in "co_flags" to indicate whether a code object was ' + 'compiled\n' + 'with a particular feature enabled: bit "0x2000" is set if the ' + 'function\n' + 'was compiled with future division enabled; bits "0x10" and ' + '"0x1000"\n' + 'were used in earlier versions of Python.\n' '\n' - ' If a code object represents a function, the first item in\n' - ' "co_consts" is the documentation string of the function, or\n' - ' "None" if undefined.\n' + 'Other bits in "co_flags" are reserved for internal use.\n' '\n' - ' codeobject.co_positions()\n' + 'If a code object represents a function, the first item in ' + '"co_consts"\n' + 'is the documentation string of the function, or "None" if ' + 'undefined.\n' '\n' - ' Returns an iterable over the source code positions of ' - 'each\n' - ' bytecode instruction in the code object.\n' + 'codeobject.co_positions()\n' '\n' - ' The iterator returns tuples containing the "(start_line,\n' - ' end_line, start_column, end_column)". The *i-th* tuple\n' - ' corresponds to the position of the source code that ' - 'compiled\n' - ' to the *i-th* instruction. Column information is ' - '0-indexed\n' - ' utf-8 byte offsets on the given source line.\n' + ' Returns an iterable over the source code positions of each ' + 'bytecode\n' + ' instruction in the code object.\n' '\n' - ' This positional information can be missing. A ' - 'non-exhaustive\n' - ' lists of cases where this may happen:\n' + ' The iterator returns tuples containing the "(start_line, ' + 'end_line,\n' + ' start_column, end_column)". The *i-th* tuple corresponds to the\n' + ' position of the source code that compiled to the *i-th*\n' + ' instruction. Column information is 0-indexed utf-8 byte offsets ' + 'on\n' + ' the given source line.\n' '\n' - ' * Running the interpreter with "-X" "no_debug_ranges".\n' + ' This positional information can be missing. A non-exhaustive ' + 'lists\n' + ' of cases where this may happen:\n' '\n' - ' * Loading a pyc file compiled while using "-X"\n' - ' "no_debug_ranges".\n' + ' * Running the interpreter with "-X" "no_debug_ranges".\n' '\n' - ' * Position tuples corresponding to artificial ' - 'instructions.\n' + ' * Loading a pyc file compiled while using "-X" ' + '"no_debug_ranges".\n' '\n' - ' * Line and column numbers that can’t be represented due ' - 'to\n' - ' implementation specific limitations.\n' + ' * Position tuples corresponding to artificial instructions.\n' '\n' - ' When this occurs, some or all of the tuple elements can ' - 'be\n' - ' "None".\n' + ' * Line and column numbers that can’t be represented due to\n' + ' implementation specific limitations.\n' '\n' - ' New in version 3.11.\n' + ' When this occurs, some or all of the tuple elements can be ' + '"None".\n' '\n' - ' Note:\n' + ' New in version 3.11.\n' '\n' - ' This feature requires storing column positions in code\n' - ' objects which may result in a small increase of disk ' - 'usage\n' - ' of compiled Python files or interpreter memory usage. ' - 'To\n' - ' avoid storing the extra information and/or deactivate\n' - ' printing the extra traceback information, the "-X"\n' - ' "no_debug_ranges" command line flag or the\n' - ' "PYTHONNODEBUGRANGES" environment variable can be used.\n' + ' Note:\n' '\n' - ' Frame objects\n' - ' Frame objects represent execution frames. They may occur in\n' - ' traceback objects (see below), and are also passed to ' - 'registered\n' - ' trace functions.\n' + ' This feature requires storing column positions in code ' + 'objects\n' + ' which may result in a small increase of disk usage of ' + 'compiled\n' + ' Python files or interpreter memory usage. To avoid storing ' + 'the\n' + ' extra information and/or deactivate printing the extra ' + 'traceback\n' + ' information, the "-X" "no_debug_ranges" command line flag or ' + 'the\n' + ' "PYTHONNODEBUGRANGES" environment variable can be used.\n' + '\n' + '\n' + 'Frame objects\n' + '-------------\n' + '\n' + 'Frame objects represent execution frames. They may occur in ' + 'traceback\n' + 'objects (see below), and are also passed to registered trace\n' + 'functions.\n' + '\n' + 'Special read-only attributes: "f_back" is to the previous stack ' + 'frame\n' + '(towards the caller), or "None" if this is the bottom stack frame;\n' + '"f_code" is the code object being executed in this frame; ' + '"f_locals"\n' + 'is the dictionary used to look up local variables; "f_globals" is ' + 'used\n' + 'for global variables; "f_builtins" is used for built-in ' + '(intrinsic)\n' + 'names; "f_lasti" gives the precise instruction (this is an index ' + 'into\n' + 'the bytecode string of the code object).\n' + '\n' + 'Accessing "f_code" raises an auditing event "object.__getattr__" ' + 'with\n' + 'arguments "obj" and ""f_code"".\n' + '\n' + 'Special writable attributes: "f_trace", if not "None", is a ' + 'function\n' + 'called for various events during code execution (this is used by ' + 'the\n' + 'debugger). Normally an event is triggered for each new source line ' + '-\n' + 'this can be disabled by setting "f_trace_lines" to "False".\n' '\n' - ' Special read-only attributes: "f_back" is to the previous ' - 'stack\n' - ' frame (towards the caller), or "None" if this is the bottom\n' - ' stack frame; "f_code" is the code object being executed in ' + 'Implementations *may* allow per-opcode events to be requested by\n' + 'setting "f_trace_opcodes" to "True". Note that this may lead to\n' + 'undefined interpreter behaviour if exceptions raised by the trace\n' + 'function escape to the function being traced.\n' + '\n' + '"f_lineno" is the current line number of the frame — writing to ' 'this\n' - ' frame; "f_locals" is the dictionary used to look up local\n' - ' variables; "f_globals" is used for global variables;\n' - ' "f_builtins" is used for built-in (intrinsic) names; ' - '"f_lasti"\n' - ' gives the precise instruction (this is an index into the\n' - ' bytecode string of the code object).\n' - '\n' - ' Accessing "f_code" raises an auditing event ' - '"object.__getattr__"\n' - ' with arguments "obj" and ""f_code"".\n' - '\n' - ' Special writable attributes: "f_trace", if not "None", is a\n' - ' function called for various events during code execution ' - '(this\n' - ' is used by the debugger). Normally an event is triggered for\n' - ' each new source line - this can be disabled by setting\n' - ' "f_trace_lines" to "False".\n' - '\n' - ' Implementations *may* allow per-opcode events to be requested ' - 'by\n' - ' setting "f_trace_opcodes" to "True". Note that this may lead ' - 'to\n' - ' undefined interpreter behaviour if exceptions raised by the\n' - ' trace function escape to the function being traced.\n' + 'from within a trace function jumps to the given line (only for the\n' + 'bottom-most frame). A debugger can implement a Jump command (aka ' + 'Set\n' + 'Next Statement) by writing to f_lineno.\n' '\n' - ' "f_lineno" is the current line number of the frame — writing ' - 'to\n' - ' this from within a trace function jumps to the given line ' - '(only\n' - ' for the bottom-most frame). A debugger can implement a Jump\n' - ' command (aka Set Next Statement) by writing to f_lineno.\n' + 'Frame objects support one method:\n' + '\n' + 'frame.clear()\n' + '\n' + ' This method clears all references to local variables held by ' + 'the\n' + ' frame. Also, if the frame belonged to a generator, the ' + 'generator\n' + ' is finalized. This helps break reference cycles involving ' + 'frame\n' + ' objects (for example when catching an exception and storing its\n' + ' traceback for later use).\n' '\n' - ' Frame objects support one method:\n' + ' "RuntimeError" is raised if the frame is currently executing.\n' '\n' - ' frame.clear()\n' + ' New in version 3.4.\n' '\n' - ' This method clears all references to local variables held ' - 'by\n' - ' the frame. Also, if the frame belonged to a generator, ' + '\n' + 'Traceback objects\n' + '-----------------\n' + '\n' + 'Traceback objects represent a stack trace of an exception. A\n' + 'traceback object is implicitly created when an exception occurs, ' + 'and\n' + 'may also be explicitly created by calling "types.TracebackType".\n' + '\n' + 'For implicitly created tracebacks, when the search for an ' + 'exception\n' + 'handler unwinds the execution stack, at each unwound level a ' + 'traceback\n' + 'object is inserted in front of the current traceback. When an\n' + 'exception handler is entered, the stack trace is made available to ' 'the\n' - ' generator is finalized. This helps break reference ' - 'cycles\n' - ' involving frame objects (for example when catching an\n' - ' exception and storing its traceback for later use).\n' + 'program. (See section The try statement.) It is accessible as the\n' + 'third item of the tuple returned by "sys.exc_info()", and as the\n' + '"__traceback__" attribute of the caught exception.\n' '\n' - ' "RuntimeError" is raised if the frame is currently ' - 'executing.\n' + 'When the program contains no suitable handler, the stack trace is\n' + 'written (nicely formatted) to the standard error stream; if the\n' + 'interpreter is interactive, it is also made available to the user ' + 'as\n' + '"sys.last_traceback".\n' '\n' - ' New in version 3.4.\n' + 'For explicitly created tracebacks, it is up to the creator of the\n' + 'traceback to determine how the "tb_next" attributes should be ' + 'linked\n' + 'to form a full stack trace.\n' '\n' - ' Traceback objects\n' - ' Traceback objects represent a stack trace of an exception. ' - 'A\n' - ' traceback object is implicitly created when an exception ' - 'occurs,\n' - ' and may also be explicitly created by calling\n' - ' "types.TracebackType".\n' - '\n' - ' For implicitly created tracebacks, when the search for an\n' - ' exception handler unwinds the execution stack, at each ' - 'unwound\n' - ' level a traceback object is inserted in front of the current\n' - ' traceback. When an exception handler is entered, the stack\n' - ' trace is made available to the program. (See section The try\n' - ' statement.) It is accessible as the third item of the tuple\n' - ' returned by "sys.exc_info()", and as the "__traceback__"\n' - ' attribute of the caught exception.\n' - '\n' - ' When the program contains no suitable handler, the stack ' - 'trace\n' - ' is written (nicely formatted) to the standard error stream; ' - 'if\n' - ' the interpreter is interactive, it is also made available to ' + 'Special read-only attributes: "tb_frame" points to the execution ' + 'frame\n' + 'of the current level; "tb_lineno" gives the line number where the\n' + 'exception occurred; "tb_lasti" indicates the precise instruction. ' + 'The\n' + 'line number and last instruction in the traceback may differ from ' 'the\n' - ' user as "sys.last_traceback".\n' + 'line number of its frame object if the exception occurred in a ' + '"try"\n' + 'statement with no matching except clause or with a finally clause.\n' '\n' - ' For explicitly created tracebacks, it is up to the creator ' - 'of\n' - ' the traceback to determine how the "tb_next" attributes ' - 'should\n' - ' be linked to form a full stack trace.\n' - '\n' - ' Special read-only attributes: "tb_frame" points to the ' - 'execution\n' - ' frame of the current level; "tb_lineno" gives the line ' - 'number\n' - ' where the exception occurred; "tb_lasti" indicates the ' - 'precise\n' - ' instruction. The line number and last instruction in the\n' - ' traceback may differ from the line number of its frame object ' + 'Accessing "tb_frame" raises an auditing event "object.__getattr__"\n' + 'with arguments "obj" and ""tb_frame"".\n' + '\n' + 'Special writable attribute: "tb_next" is the next level in the ' + 'stack\n' + 'trace (towards the frame where the exception occurred), or "None" ' 'if\n' - ' the exception occurred in a "try" statement with no matching\n' - ' except clause or with a finally clause.\n' + 'there is no next level.\n' '\n' - ' Accessing "tb_frame" raises an auditing event\n' - ' "object.__getattr__" with arguments "obj" and ""tb_frame"".\n' + 'Changed in version 3.7: Traceback objects can now be explicitly\n' + 'instantiated from Python code, and the "tb_next" attribute of ' + 'existing\n' + 'instances can be updated.\n' '\n' - ' Special writable attribute: "tb_next" is the next level in ' - 'the\n' - ' stack trace (towards the frame where the exception occurred), ' - 'or\n' - ' "None" if there is no next level.\n' '\n' - ' Changed in version 3.7: Traceback objects can now be ' - 'explicitly\n' - ' instantiated from Python code, and the "tb_next" attribute ' - 'of\n' - ' existing instances can be updated.\n' + 'Slice objects\n' + '-------------\n' '\n' - ' Slice objects\n' - ' Slice objects are used to represent slices for ' - '"__getitem__()"\n' - ' methods. They are also created by the built-in "slice()"\n' - ' function.\n' + 'Slice objects are used to represent slices for "__getitem__()"\n' + 'methods. They are also created by the built-in "slice()" ' + 'function.\n' '\n' - ' Special read-only attributes: "start" is the lower bound; ' - '"stop"\n' - ' is the upper bound; "step" is the step value; each is "None" ' - 'if\n' - ' omitted. These attributes can have any type.\n' + 'Special read-only attributes: "start" is the lower bound; "stop" ' + 'is\n' + 'the upper bound; "step" is the step value; each is "None" if ' + 'omitted.\n' + 'These attributes can have any type.\n' '\n' - ' Slice objects support one method:\n' + 'Slice objects support one method:\n' '\n' - ' slice.indices(self, length)\n' + 'slice.indices(self, length)\n' '\n' - ' This method takes a single integer argument *length* and\n' - ' computes information about the slice that the slice ' - 'object\n' - ' would describe if applied to a sequence of *length* ' - 'items.\n' - ' It returns a tuple of three integers; respectively these ' - 'are\n' - ' the *start* and *stop* indices and the *step* or stride\n' - ' length of the slice. Missing or out-of-bounds indices are\n' - ' handled in a manner consistent with regular slices.\n' - '\n' - ' Static method objects\n' - ' Static method objects provide a way of defeating the\n' - ' transformation of function objects to method objects ' - 'described\n' - ' above. A static method object is a wrapper around any other\n' - ' object, usually a user-defined method object. When a static\n' - ' method object is retrieved from a class or a class instance, ' - 'the\n' - ' object actually returned is the wrapped object, which is not\n' - ' subject to any further transformation. Static method objects ' - 'are\n' - ' also callable. Static method objects are created by the ' - 'built-in\n' - ' "staticmethod()" constructor.\n' + ' This method takes a single integer argument *length* and ' + 'computes\n' + ' information about the slice that the slice object would describe ' + 'if\n' + ' applied to a sequence of *length* items. It returns a tuple of\n' + ' three integers; respectively these are the *start* and *stop*\n' + ' indices and the *step* or stride length of the slice. Missing ' + 'or\n' + ' out-of-bounds indices are handled in a manner consistent with\n' + ' regular slices.\n' '\n' - ' Class method objects\n' - ' A class method object, like a static method object, is a ' - 'wrapper\n' - ' around another object that alters the way in which that ' - 'object\n' - ' is retrieved from classes and class instances. The behaviour ' + '\n' + 'Static method objects\n' + '---------------------\n' + '\n' + 'Static method objects provide a way of defeating the transformation ' 'of\n' - ' class method objects upon such retrieval is described above,\n' - ' under “User-defined methods”. Class method objects are ' - 'created\n' - ' by the built-in "classmethod()" constructor.\n', + 'function objects to method objects described above. A static ' + 'method\n' + 'object is a wrapper around any other object, usually a ' + 'user-defined\n' + 'method object. When a static method object is retrieved from a ' + 'class\n' + 'or a class instance, the object actually returned is the wrapped\n' + 'object, which is not subject to any further transformation. Static\n' + 'method objects are also callable. Static method objects are created ' + 'by\n' + 'the built-in "staticmethod()" constructor.\n' + '\n' + '\n' + 'Class method objects\n' + '--------------------\n' + '\n' + 'A class method object, like a static method object, is a wrapper\n' + 'around another object that alters the way in which that object is\n' + 'retrieved from classes and class instances. The behaviour of class\n' + 'method objects upon such retrieval is described above, under ' + '“User-\n' + 'defined methods”. Class method objects are created by the built-in\n' + '"classmethod()" constructor.\n', 'typesfunctions': 'Functions\n' '*********\n' '\n' @@ -14611,10 +15263,12 @@ topics = {'assert': 'The "assert" statement\n' ' >>> # set operations\n' " >>> keys & {'eggs', 'bacon', 'salad'}\n" " {'bacon'}\n" - " >>> keys ^ {'sausage', 'juice'}\n" - " {'juice', 'sausage', 'bacon', 'spam'}\n" - " >>> keys | ['juice', 'juice', 'juice']\n" - " {'juice', 'sausage', 'bacon', 'spam', 'eggs'}\n" + " >>> keys ^ {'sausage', 'juice'} == {'juice', 'sausage', " + "'bacon', 'spam'}\n" + ' True\n' + " >>> keys | ['juice', 'juice', 'juice'] == {'bacon', " + "'spam', 'juice'}\n" + ' True\n' '\n' ' >>> # get back a read-only proxy for the original ' 'dictionary\n' |