summaryrefslogtreecommitdiffstats
path: root/Lib
diff options
context:
space:
mode:
Diffstat (limited to 'Lib')
-rw-r--r--Lib/decimal.py3548
-rw-r--r--Lib/test/decimaltestdata/abs.decTest16
-rw-r--r--Lib/test/decimaltestdata/add.decTest1624
-rw-r--r--Lib/test/decimaltestdata/and.decTest338
-rw-r--r--Lib/test/decimaltestdata/base.decTest363
-rw-r--r--Lib/test/decimaltestdata/clamp.decTest34
-rw-r--r--Lib/test/decimaltestdata/class.decTest131
-rw-r--r--Lib/test/decimaltestdata/compare.decTest59
-rw-r--r--Lib/test/decimaltestdata/comparetotal.decTest798
-rw-r--r--Lib/test/decimaltestdata/comparetotmag.decTest790
-rw-r--r--Lib/test/decimaltestdata/copy.decTest86
-rw-r--r--Lib/test/decimaltestdata/copyabs.decTest86
-rw-r--r--Lib/test/decimaltestdata/copynegate.decTest86
-rw-r--r--Lib/test/decimaltestdata/copysign.decTest177
-rw-r--r--Lib/test/decimaltestdata/ddAbs.decTest126
-rw-r--r--Lib/test/decimaltestdata/ddAdd.decTest1290
-rw-r--r--Lib/test/decimaltestdata/ddAnd.decTest347
-rw-r--r--Lib/test/decimaltestdata/ddBase.decTest1096
-rw-r--r--Lib/test/decimaltestdata/ddCanonical.decTest357
-rw-r--r--Lib/test/decimaltestdata/ddClass.decTest76
-rw-r--r--Lib/test/decimaltestdata/ddCompare.decTest744
-rw-r--r--Lib/test/decimaltestdata/ddCompareSig.decTest647
-rw-r--r--Lib/test/decimaltestdata/ddCompareTotal.decTest706
-rw-r--r--Lib/test/decimaltestdata/ddCompareTotalMag.decTest706
-rw-r--r--Lib/test/decimaltestdata/ddCopy.decTest88
-rw-r--r--Lib/test/decimaltestdata/ddCopyAbs.decTest88
-rw-r--r--Lib/test/decimaltestdata/ddCopyNegate.decTest88
-rw-r--r--Lib/test/decimaltestdata/ddCopySign.decTest175
-rw-r--r--Lib/test/decimaltestdata/ddDivide.decTest854
-rw-r--r--Lib/test/decimaltestdata/ddDivideInt.decTest449
-rw-r--r--Lib/test/decimaltestdata/ddEncode.decTest487
-rw-r--r--Lib/test/decimaltestdata/ddFMA.decTest1670
-rw-r--r--Lib/test/decimaltestdata/ddInvert.decTest202
-rw-r--r--Lib/test/decimaltestdata/ddLogB.decTest159
-rw-r--r--Lib/test/decimaltestdata/ddMax.decTest322
-rw-r--r--Lib/test/decimaltestdata/ddMaxMag.decTest304
-rw-r--r--Lib/test/decimaltestdata/ddMin.decTest309
-rw-r--r--Lib/test/decimaltestdata/ddMinMag.decTest293
-rw-r--r--Lib/test/decimaltestdata/ddMinus.decTest88
-rw-r--r--Lib/test/decimaltestdata/ddMultiply.decTest463
-rw-r--r--Lib/test/decimaltestdata/ddNextMinus.decTest126
-rw-r--r--Lib/test/decimaltestdata/ddNextPlus.decTest124
-rw-r--r--Lib/test/decimaltestdata/ddNextToward.decTest374
-rw-r--r--Lib/test/decimaltestdata/ddOr.decTest292
-rw-r--r--Lib/test/decimaltestdata/ddPlus.decTest88
-rw-r--r--Lib/test/decimaltestdata/ddQuantize.decTest825
-rw-r--r--Lib/test/decimaltestdata/ddReduce.decTest182
-rw-r--r--Lib/test/decimaltestdata/ddRemainder.decTest587
-rw-r--r--Lib/test/decimaltestdata/ddRemainderNear.decTest615
-rw-r--r--Lib/test/decimaltestdata/ddRotate.decTest262
-rw-r--r--Lib/test/decimaltestdata/ddSameQuantum.decTest389
-rw-r--r--Lib/test/decimaltestdata/ddScaleB.decTest243
-rw-r--r--Lib/test/decimaltestdata/ddShift.decTest262
-rw-r--r--Lib/test/decimaltestdata/ddSubtract.decTest629
-rw-r--r--Lib/test/decimaltestdata/ddToIntegral.decTest257
-rw-r--r--Lib/test/decimaltestdata/ddXor.decTest337
-rw-r--r--Lib/test/decimaltestdata/decDouble.decTest65
-rw-r--r--Lib/test/decimaltestdata/decQuad.decTest65
-rw-r--r--Lib/test/decimaltestdata/decSingle.decTest25
-rw-r--r--Lib/test/decimaltestdata/decimal128.decTest441
-rw-r--r--Lib/test/decimaltestdata/decimal32.decTest385
-rw-r--r--Lib/test/decimaltestdata/decimal64.decTest444
-rw-r--r--Lib/test/decimaltestdata/divide.decTest124
-rw-r--r--Lib/test/decimaltestdata/divideint.decTest20
-rw-r--r--Lib/test/decimaltestdata/dqAbs.decTest126
-rw-r--r--Lib/test/decimaltestdata/dqAdd.decTest1157
-rw-r--r--Lib/test/decimaltestdata/dqAnd.decTest420
-rw-r--r--Lib/test/decimaltestdata/dqBase.decTest1081
-rw-r--r--Lib/test/decimaltestdata/dqCanonical.decTest372
-rw-r--r--Lib/test/decimaltestdata/dqClass.decTest77
-rw-r--r--Lib/test/decimaltestdata/dqCompare.decTest753
-rw-r--r--Lib/test/decimaltestdata/dqCompareSig.decTest647
-rw-r--r--Lib/test/decimaltestdata/dqCompareTotal.decTest706
-rw-r--r--Lib/test/decimaltestdata/dqCompareTotalMag.decTest706
-rw-r--r--Lib/test/decimaltestdata/dqCopy.decTest88
-rw-r--r--Lib/test/decimaltestdata/dqCopyAbs.decTest88
-rw-r--r--Lib/test/decimaltestdata/dqCopyNegate.decTest88
-rw-r--r--Lib/test/decimaltestdata/dqCopySign.decTest175
-rw-r--r--Lib/test/decimaltestdata/dqDivide.decTest808
-rw-r--r--Lib/test/decimaltestdata/dqDivideInt.decTest453
-rw-r--r--Lib/test/decimaltestdata/dqEncode.decTest470
-rw-r--r--Lib/test/decimaltestdata/dqFMA.decTest1761
-rw-r--r--Lib/test/decimaltestdata/dqInvert.decTest245
-rw-r--r--Lib/test/decimaltestdata/dqLogB.decTest160
-rw-r--r--Lib/test/decimaltestdata/dqMax.decTest322
-rw-r--r--Lib/test/decimaltestdata/dqMaxMag.decTest304
-rw-r--r--Lib/test/decimaltestdata/dqMin.decTest309
-rw-r--r--Lib/test/decimaltestdata/dqMinMag.decTest293
-rw-r--r--Lib/test/decimaltestdata/dqMinus.decTest88
-rw-r--r--Lib/test/decimaltestdata/dqMultiply.decTest473
-rw-r--r--Lib/test/decimaltestdata/dqNextMinus.decTest126
-rw-r--r--Lib/test/decimaltestdata/dqNextPlus.decTest124
-rw-r--r--Lib/test/decimaltestdata/dqNextToward.decTest375
-rw-r--r--Lib/test/decimaltestdata/dqOr.decTest401
-rw-r--r--Lib/test/decimaltestdata/dqPlus.decTest88
-rw-r--r--Lib/test/decimaltestdata/dqQuantize.decTest823
-rw-r--r--Lib/test/decimaltestdata/dqReduce.decTest183
-rw-r--r--Lib/test/decimaltestdata/dqRemainder.decTest586
-rw-r--r--Lib/test/decimaltestdata/dqRemainderNear.decTest618
-rw-r--r--Lib/test/decimaltestdata/dqRotate.decTest298
-rw-r--r--Lib/test/decimaltestdata/dqSameQuantum.decTest389
-rw-r--r--Lib/test/decimaltestdata/dqScaleB.decTest260
-rw-r--r--Lib/test/decimaltestdata/dqShift.decTest298
-rw-r--r--Lib/test/decimaltestdata/dqSubtract.decTest635
-rw-r--r--Lib/test/decimaltestdata/dqToIntegral.decTest257
-rw-r--r--Lib/test/decimaltestdata/dqXor.decTest410
-rw-r--r--Lib/test/decimaltestdata/dsBase.decTest1061
-rw-r--r--Lib/test/decimaltestdata/dsEncode.decTest369
-rw-r--r--Lib/test/decimaltestdata/exp.decTest674
-rw-r--r--Lib/test/decimaltestdata/extra.decTest567
-rw-r--r--Lib/test/decimaltestdata/fma.decTest3426
-rw-r--r--Lib/test/decimaltestdata/inexact.decTest4
-rw-r--r--Lib/test/decimaltestdata/invert.decTest176
-rw-r--r--Lib/test/decimaltestdata/ln.decTest611
-rw-r--r--Lib/test/decimaltestdata/log10.decTest551
-rw-r--r--Lib/test/decimaltestdata/logb.decTest162
-rw-r--r--Lib/test/decimaltestdata/max.decTest60
-rw-r--r--Lib/test/decimaltestdata/maxmag.decTest404
-rw-r--r--Lib/test/decimaltestdata/min.decTest56
-rw-r--r--Lib/test/decimaltestdata/minmag.decTest390
-rw-r--r--Lib/test/decimaltestdata/minus.decTest16
-rw-r--r--Lib/test/decimaltestdata/multiply.decTest180
-rw-r--r--Lib/test/decimaltestdata/nextminus.decTest148
-rw-r--r--Lib/test/decimaltestdata/nextplus.decTest150
-rw-r--r--Lib/test/decimaltestdata/nexttoward.decTest426
-rw-r--r--Lib/test/decimaltestdata/normalize.decTest225
-rw-r--r--Lib/test/decimaltestdata/or.decTest334
-rw-r--r--Lib/test/decimaltestdata/plus.decTest30
-rw-r--r--Lib/test/decimaltestdata/power.decTest1785
-rw-r--r--Lib/test/decimaltestdata/powersqrt.decTest2970
-rw-r--r--Lib/test/decimaltestdata/quantize.decTest184
-rw-r--r--Lib/test/decimaltestdata/randomBound32.decTest8
-rw-r--r--Lib/test/decimaltestdata/randoms.decTest65
-rw-r--r--Lib/test/decimaltestdata/reduce.decTest234
-rw-r--r--Lib/test/decimaltestdata/remainder.decTest15
-rw-r--r--Lib/test/decimaltestdata/remainderNear.decTest4
-rw-r--r--Lib/test/decimaltestdata/rescale.decTest12
-rw-r--r--Lib/test/decimaltestdata/rotate.decTest247
-rw-r--r--Lib/test/decimaltestdata/rounding.decTest252
-rw-r--r--Lib/test/decimaltestdata/samequantum.decTest42
-rw-r--r--Lib/test/decimaltestdata/scaleb.decTest200
-rw-r--r--Lib/test/decimaltestdata/shift.decTest250
-rw-r--r--Lib/test/decimaltestdata/squareroot.decTest860
-rw-r--r--Lib/test/decimaltestdata/subtract.decTest36
-rw-r--r--Lib/test/decimaltestdata/testall.decTest45
-rw-r--r--Lib/test/decimaltestdata/tointegral.decTest69
-rw-r--r--Lib/test/decimaltestdata/tointegralx.decTest255
-rw-r--r--Lib/test/decimaltestdata/xor.decTest335
-rw-r--r--Lib/test/test_decimal.py218
149 files changed, 60541 insertions, 3037 deletions
diff --git a/Lib/decimal.py b/Lib/decimal.py
index 7c67895..8543e10 100644
--- a/Lib/decimal.py
+++ b/Lib/decimal.py
@@ -128,7 +128,7 @@ __all__ = [
# Constants for use in setting up contexts
'ROUND_DOWN', 'ROUND_HALF_UP', 'ROUND_HALF_EVEN', 'ROUND_CEILING',
- 'ROUND_FLOOR', 'ROUND_UP', 'ROUND_HALF_DOWN',
+ 'ROUND_FLOOR', 'ROUND_UP', 'ROUND_HALF_DOWN', 'ROUND_05UP',
# Functions for manipulating contexts
'setcontext', 'getcontext', 'localcontext'
@@ -144,6 +144,7 @@ ROUND_CEILING = 'ROUND_CEILING'
ROUND_FLOOR = 'ROUND_FLOOR'
ROUND_UP = 'ROUND_UP'
ROUND_HALF_DOWN = 'ROUND_HALF_DOWN'
+ROUND_05UP = 'ROUND_05UP'
# Rounding decision (not part of the public API)
NEVER_ROUND = 'NEVER_ROUND' # Round in division (non-divmod), sqrt ONLY
@@ -204,13 +205,22 @@ class InvalidOperation(DecimalException):
x ** (non-integer)
x ** (+-)INF
An operand is invalid
+
+ The result of the operation after these is a quiet positive NaN,
+ except when the cause is a signaling NaN, in which case the result is
+ also a quiet NaN, but with the original sign, and an optional
+ diagnostic information.
"""
def handle(self, context, *args):
if args:
if args[0] == 1: # sNaN, must drop 's' but keep diagnostics
- return Decimal( (args[1]._sign, args[1]._int, 'n') )
+ ans = Decimal((args[1]._sign, args[1]._int, 'n'))
+ return ans._fix_nan(context)
+ elif args[0] == 2:
+ return Decimal( (args[1], args[2], 'n') )
return NaN
+
class ConversionSyntax(InvalidOperation):
"""Trying to convert badly formed string.
@@ -218,9 +228,8 @@ class ConversionSyntax(InvalidOperation):
converted to a number and it does not conform to the numeric string
syntax. The result is [0,qNaN].
"""
-
def handle(self, context, *args):
- return (0, (0,), 'n') # Passed to something which uses a tuple.
+ return NaN
class DivisionByZero(DecimalException, ZeroDivisionError):
"""Division by 0.
@@ -340,7 +349,7 @@ class Overflow(Inexact, Rounded):
def handle(self, context, sign, *args):
if context.rounding in (ROUND_HALF_UP, ROUND_HALF_EVEN,
- ROUND_HALF_DOWN, ROUND_UP):
+ ROUND_HALF_DOWN, ROUND_UP):
return Infsign[sign]
if sign == 0:
if context.rounding == ROUND_CEILING:
@@ -562,7 +571,7 @@ class Decimal(object):
raise ValueError('Invalid sign')
for digit in value[1]:
if not isinstance(digit, (int,long)) or digit < 0:
- raise ValueError("The second value in the tuple must be"
+ raise ValueError("The second value in the tuple must be "
"composed of non negative integer elements.")
self._sign = value[0]
self._int = tuple(value[1])
@@ -596,10 +605,6 @@ class Decimal(object):
if _isnan(value):
sig, sign, diag = _isnan(value)
self._is_special = True
- if len(diag) > context.prec: # Diagnostic info too long
- self._sign, self._int, self._exp = \
- context._raise_error(ConversionSyntax)
- return self
if sig == 1:
self._exp = 'n' # qNaN
else: # sig == 2
@@ -611,9 +616,8 @@ class Decimal(object):
self._sign, self._int, self._exp = _string2exact(value)
except ValueError:
self._is_special = True
- self._sign, self._int, self._exp = \
- context._raise_error(ConversionSyntax,
- "Invalid literal for Decimal: %r" % value)
+ return context._raise_error(ConversionSyntax,
+ "Invalid literal for Decimal: %r" % value)
return self
raise TypeError("Cannot convert %r to Decimal" % value)
@@ -622,7 +626,7 @@ class Decimal(object):
"""Returns whether the number is not actually one.
0 if a number
- 1 if NaN
+ 1 if NaN (it could be a normal quiet NaN or a phantom one)
2 if sNaN
"""
if self._is_special:
@@ -646,7 +650,7 @@ class Decimal(object):
return 1
return 0
- def _check_nans(self, other = None, context=None):
+ def _check_nans(self, other=None, context=None):
"""Returns whether the number is not actually one.
if self, other are sNaN, signal
@@ -673,9 +677,9 @@ class Decimal(object):
return context._raise_error(InvalidOperation, 'sNaN',
1, other)
if self_is_nan:
- return self
+ return self._fix_nan(context)
- return other
+ return other._fix_nan(context)
return 0
def __nonzero__(self):
@@ -685,24 +689,31 @@ class Decimal(object):
1 if self != 0
"""
if self._is_special:
- return 1
+ return True
return sum(self._int) != 0
- def __cmp__(self, other, context=None):
+ def __cmp__(self, other):
other = _convert_other(other)
if other is NotImplemented:
- return other
+ # Never return NotImplemented
+ return 1
if self._is_special or other._is_special:
- ans = self._check_nans(other, context)
- if ans:
+ # check for nans, without raising on a signaling nan
+ if self._isnan() or other._isnan():
return 1 # Comparison involving NaN's always reports self > other
# INF = INF
return cmp(self._isinfinity(), other._isinfinity())
- if not self and not other:
- return 0 # If both 0, sign comparison isn't certain.
+ # check for zeros; note that cmp(0, -0) should return 0
+ if not self:
+ if not other:
+ return 0
+ else:
+ return -((-1)**other._sign)
+ if not other:
+ return (-1)**self._sign
# If different signs, neg one is less
if other._sign < self._sign:
@@ -712,35 +723,15 @@ class Decimal(object):
self_adjusted = self.adjusted()
other_adjusted = other.adjusted()
- if self_adjusted == other_adjusted and \
- self._int + (0,)*(self._exp - other._exp) == \
- other._int + (0,)*(other._exp - self._exp):
- return 0 # equal, except in precision. ([0]*(-x) = [])
- elif self_adjusted > other_adjusted and self._int[0] != 0:
+ if self_adjusted == other_adjusted:
+ self_padded = self._int + (0,)*(self._exp - other._exp)
+ other_padded = other._int + (0,)*(other._exp - self._exp)
+ return cmp(self_padded, other_padded) * (-1)**self._sign
+ elif self_adjusted > other_adjusted:
return (-1)**self._sign
- elif self_adjusted < other_adjusted and other._int[0] != 0:
+ else: # self_adjusted < other_adjusted
return -((-1)**self._sign)
- # Need to round, so make sure we have a valid context
- if context is None:
- context = getcontext()
-
- context = context._shallow_copy()
- rounding = context._set_rounding(ROUND_UP) # round away from 0
-
- flags = context._ignore_all_flags()
- res = self.__sub__(other, context=context)
-
- context._regard_flags(*flags)
-
- context.rounding = rounding
-
- if not res:
- return 0
- elif res._sign:
- return -1
- return 1
-
def __eq__(self, other):
if not isinstance(other, (Decimal, int, long)):
return NotImplemented
@@ -760,9 +751,7 @@ class Decimal(object):
NaN => one is NaN
Like __cmp__, but returns Decimal instances.
"""
- other = _convert_other(other)
- if other is NotImplemented:
- return other
+ other = _convert_other(other, raiseit=True)
# Compare(NaN, NaN) = NaN
if (self._is_special or other and other._is_special):
@@ -770,7 +759,7 @@ class Decimal(object):
if ans:
return ans
- return Decimal(self.__cmp__(other, context))
+ return Decimal(self.__cmp__(other))
def __hash__(self):
"""x.__hash__() <==> hash(x)"""
@@ -799,7 +788,7 @@ class Decimal(object):
# Invariant: eval(repr(d)) == d
return 'Decimal("%s")' % str(self)
- def __str__(self, eng = 0, context=None):
+ def __str__(self, eng=False, context=None):
"""Return string representation of the number in scientific notation.
Captures all of the information in the underlying representation.
@@ -889,7 +878,7 @@ class Decimal(object):
Same rules for when in exponential and when as a value as in __str__.
"""
- return self.__str__(eng=1, context=context)
+ return self.__str__(eng=True, context=context)
def __neg__(self, context=None):
"""Returns a copy with the sign switched.
@@ -903,17 +892,15 @@ class Decimal(object):
if not self:
# -Decimal('0') is Decimal('0'), not Decimal('-0')
- sign = 0
- elif self._sign:
- sign = 0
+ ans = self.copy_sign(Dec_0)
else:
- sign = 1
+ ans = self.copy_negate()
if context is None:
context = getcontext()
if context._rounding_decision == ALWAYS_ROUND:
- return Decimal((sign, self._int, self._exp))._fix(context)
- return Decimal( (sign, self._int, self._exp))
+ return ans._fix(context)
+ return ans
def __pos__(self, context=None):
"""Returns a copy, unless it is a sNaN.
@@ -925,19 +912,16 @@ class Decimal(object):
if ans:
return ans
- sign = self._sign
if not self:
# + (-0) = 0
- sign = 0
+ ans = self.copy_sign(Dec_0)
+ else:
+ ans = Decimal(self)
if context is None:
context = getcontext()
-
if context._rounding_decision == ALWAYS_ROUND:
- ans = self._fix(context)
- else:
- ans = Decimal(self)
- ans._sign = sign
+ return ans._fix(context)
return ans
def __abs__(self, round=1, context=None):
@@ -1000,16 +984,19 @@ class Decimal(object):
sign = min(self._sign, other._sign)
if negativezero:
sign = 1
- return Decimal( (sign, (0,), exp))
+ ans = Decimal( (sign, (0,), exp))
+ if shouldround:
+ ans = ans._fix(context)
+ return ans
if not self:
exp = max(exp, other._exp - context.prec-1)
- ans = other._rescale(exp, watchexp=0, context=context)
+ ans = other._rescale(exp, context.rounding)
if shouldround:
ans = ans._fix(context)
return ans
if not other:
exp = max(exp, self._exp - context.prec-1)
- ans = self._rescale(exp, watchexp=0, context=context)
+ ans = self._rescale(exp, context.rounding)
if shouldround:
ans = ans._fix(context)
return ans
@@ -1022,10 +1009,10 @@ class Decimal(object):
if op1.sign != op2.sign:
# Equal and opposite
if op1.int == op2.int:
- if exp < context.Etiny():
- exp = context.Etiny()
- context._raise_error(Clamped)
- return Decimal((negativezero, (0,), exp))
+ ans = Decimal((negativezero, (0,), exp))
+ if shouldround:
+ ans = ans._fix(context)
+ return ans
if op1.int < op2.int:
op1, op2 = op2, op1
# OK, now abs(op1) > abs(op2)
@@ -1056,7 +1043,7 @@ class Decimal(object):
__radd__ = __add__
def __sub__(self, other, context=None):
- """Return self + (-other)"""
+ """Return self - other"""
other = _convert_other(other)
if other is NotImplemented:
return other
@@ -1066,41 +1053,28 @@ class Decimal(object):
if ans:
return ans
- # -Decimal(0) = Decimal(0), which we don't want since
- # (-0 - 0 = -0 + (-0) = -0, but -0 + 0 = 0.)
- # so we change the sign directly to a copy
- tmp = Decimal(other)
- tmp._sign = 1-tmp._sign
-
- return self.__add__(tmp, context=context)
+ # self - other is computed as self + other.copy_negate()
+ return self.__add__(other.copy_negate(), context=context)
def __rsub__(self, other, context=None):
- """Return other + (-self)"""
+ """Return other - self"""
other = _convert_other(other)
if other is NotImplemented:
return other
- tmp = Decimal(self)
- tmp._sign = 1 - tmp._sign
- return other.__add__(tmp, context=context)
+ return other.__sub__(self, context=context)
- def _increment(self, round=1, context=None):
+ def _increment(self):
"""Special case of add, adding 1eExponent
Since it is common, (rounding, for example) this adds
(sign)*one E self._exp to the number more efficiently than add.
+ Assumes that self is nonspecial.
+
For example:
Decimal('5.624e10')._increment() == Decimal('5.625e10')
"""
- if self._is_special:
- ans = self._check_nans(context=context)
- if ans:
- return ans
-
- # Must be infinite, and incrementing makes no difference
- return Decimal(self)
-
L = list(self._int)
L[-1] += 1
spot = len(L)-1
@@ -1111,13 +1085,7 @@ class Decimal(object):
break
L[spot-1] += 1
spot -= 1
- ans = Decimal((self._sign, L, self._exp))
-
- if context is None:
- context = getcontext()
- if round and context._rounding_decision == ALWAYS_ROUND:
- ans = ans._fix(context)
- return ans
+ return Decimal((self._sign, L, self._exp))
def __mul__(self, other, context=None):
"""Return self * other.
@@ -1207,6 +1175,8 @@ class Decimal(object):
if context is None:
context = getcontext()
+ shouldround = context._rounding_decision == ALWAYS_ROUND
+
sign = self._sign ^ other._sign
if self._is_special or other._is_special:
@@ -1218,10 +1188,11 @@ class Decimal(object):
if self._isinfinity() and other._isinfinity():
if divmod:
- return (context._raise_error(InvalidOperation,
+ reloco = (context._raise_error(InvalidOperation,
'(+-)INF // (+-)INF'),
context._raise_error(InvalidOperation,
'(+-)INF % (+-)INF'))
+ return reloco
return context._raise_error(InvalidOperation, '(+-)INF/(+-)INF')
if self._isinfinity():
@@ -1237,7 +1208,10 @@ class Decimal(object):
if other._isinfinity():
if divmod:
- return (Decimal((sign, (0,), 0)), Decimal(self))
+ otherside = Decimal(self)
+ if shouldround and (divmod == 1 or divmod == 3):
+ otherside = otherside._fix(context)
+ return (Decimal((sign, (0,), 0)), otherside)
context._raise_error(Clamped, 'Division by infinity')
return Decimal((sign, (0,), context.Etiny()))
@@ -1249,17 +1223,14 @@ class Decimal(object):
if not self:
if divmod:
- otherside = Decimal(self)
- otherside._exp = min(self._exp, other._exp)
+ otherside = Decimal((self._sign, (0,), min(self._exp, other._exp)))
+ if shouldround and (divmod == 1 or divmod == 3):
+ otherside = otherside._fix(context)
return (Decimal((sign, (0,), 0)), otherside)
exp = self._exp - other._exp
- if exp < context.Etiny():
- exp = context.Etiny()
- context._raise_error(Clamped, '0e-x / y')
- if exp > context.Emax:
- exp = context.Emax
- context._raise_error(Clamped, '0e+x / y')
- return Decimal( (sign, (0,), exp) )
+ ans = Decimal((sign, (0,), exp))
+ ans = ans._fix(context)
+ return ans
if not other:
if divmod:
@@ -1268,7 +1239,6 @@ class Decimal(object):
return context._raise_error(DivisionByZero, 'x / 0', sign)
# OK, so neither = 0, INF or NaN
- shouldround = context._rounding_decision == ALWAYS_ROUND
# If we're dividing into ints, and self < other, stop.
# self.__abs__(0) does not round.
@@ -1276,7 +1246,7 @@ class Decimal(object):
if divmod == 1 or divmod == 3:
exp = min(self._exp, other._exp)
- ans2 = self._rescale(exp, context=context, watchexp=0)
+ ans2 = self._rescale(exp, context.rounding)
if shouldround:
ans2 = ans2._fix(context)
return (Decimal( (sign, (0,), 0) ),
@@ -1302,12 +1272,9 @@ class Decimal(object):
if res.int >= prec_limit and shouldround:
return context._raise_error(DivisionImpossible)
otherside = Decimal(op1)
- frozen = context._ignore_all_flags()
-
exp = min(self._exp, other._exp)
- otherside = otherside._rescale(exp, context=context, watchexp=0)
- context._regard_flags(*frozen)
- if shouldround:
+ otherside = otherside._rescale(exp, context.rounding)
+ if shouldround and (divmod == 1 or divmod == 3):
otherside = otherside._fix(context)
return (Decimal(res), otherside)
@@ -1331,21 +1298,6 @@ class Decimal(object):
op1.int *= 10
op1.exp -= 1
- if res.exp == 0 and divmod and op2.int > op1.int:
- # Solves an error in precision. Same as a previous block.
-
- if res.int >= prec_limit and shouldround:
- return context._raise_error(DivisionImpossible)
- otherside = Decimal(op1)
- frozen = context._ignore_all_flags()
-
- exp = min(self._exp, other._exp)
- otherside = otherside._rescale(exp, context=context)
-
- context._regard_flags(*frozen)
-
- return (Decimal(res), otherside)
-
ans = Decimal(res)
if shouldround:
ans = ans._fix(context)
@@ -1401,81 +1353,76 @@ class Decimal(object):
"""
Remainder nearest to 0- abs(remainder-near) <= other/2
"""
- other = _convert_other(other)
- if other is NotImplemented:
- return other
-
- if self._is_special or other._is_special:
- ans = self._check_nans(other, context)
- if ans:
- return ans
- if self and not other:
- return context._raise_error(InvalidOperation, 'x % 0')
-
if context is None:
context = getcontext()
- # If DivisionImpossible causes an error, do not leave Rounded/Inexact
- # ignored in the calling function.
- context = context._shallow_copy()
- flags = context._ignore_flags(Rounded, Inexact)
- # Keep DivisionImpossible flags
- (side, r) = self.__divmod__(other, context=context)
- if r._isnan():
- context._regard_flags(*flags)
- return r
+ other = _convert_other(other, raiseit=True)
- context = context._shallow_copy()
- rounding = context._set_rounding_decision(NEVER_ROUND)
-
- if other._sign:
- comparison = other.__div__(Decimal(-2), context=context)
- else:
- comparison = other.__div__(Decimal(2), context=context)
-
- context._set_rounding_decision(rounding)
- context._regard_flags(*flags)
+ ans = self._check_nans(other, context)
+ if ans:
+ return ans
- s1, s2 = r._sign, comparison._sign
- r._sign, comparison._sign = 0, 0
+ # self == +/-infinity -> InvalidOperation
+ if self._isinfinity():
+ return context._raise_error(InvalidOperation,
+ 'remainder_near(infinity, x)')
- if r < comparison:
- r._sign, comparison._sign = s1, s2
- # Get flags now
- self.__divmod__(other, context=context)
- return r._fix(context)
- r._sign, comparison._sign = s1, s2
+ # other == 0 -> either InvalidOperation or DivisionUndefined
+ if not other:
+ if self:
+ return context._raise_error(InvalidOperation,
+ 'remainder_near(x, 0)')
+ else:
+ return context._raise_error(DivisionUndefined,
+ 'remainder_near(0, 0)')
- rounding = context._set_rounding_decision(NEVER_ROUND)
+ # other = +/-infinity -> remainder = self
+ if other._isinfinity():
+ ans = Decimal(self)
+ return ans._fix(context)
- (side, r) = self.__divmod__(other, context=context)
- context._set_rounding_decision(rounding)
- if r._isnan():
- return r
+ # self = 0 -> remainder = self, with ideal exponent
+ ideal_exponent = min(self._exp, other._exp)
+ if not self:
+ ans = Decimal((self._sign, (0,), ideal_exponent))
+ return ans._fix(context)
- decrease = not side._iseven()
- rounding = context._set_rounding_decision(NEVER_ROUND)
- side = side.__abs__(context=context)
- context._set_rounding_decision(rounding)
+ # catch most cases of large or small quotient
+ expdiff = self.adjusted() - other.adjusted()
+ if expdiff >= context.prec + 1:
+ # expdiff >= prec+1 => abs(self/other) > 10**prec
+ return context._raise_error(DivisionImpossible)[0]
+ if expdiff <= -2:
+ # expdiff <= -2 => abs(self/other) < 0.1
+ ans = self._rescale(ideal_exponent, context.rounding)
+ return ans._fix(context)
- s1, s2 = r._sign, comparison._sign
- r._sign, comparison._sign = 0, 0
- if r > comparison or decrease and r == comparison:
- r._sign, comparison._sign = s1, s2
- context.prec += 1
- numbsquant = len(side.__add__(Decimal(1), context=context)._int)
- if numbsquant >= context.prec:
- context.prec -= 1
- return context._raise_error(DivisionImpossible)[1]
- context.prec -= 1
- if self._sign == other._sign:
- r = r.__sub__(other, context=context)
- else:
- r = r.__add__(other, context=context)
+ # adjust both arguments to have the same exponent, then divide
+ op1 = _WorkRep(self)
+ op2 = _WorkRep(other)
+ if op1.exp >= op2.exp:
+ op1.int *= 10**(op1.exp - op2.exp)
else:
- r._sign, comparison._sign = s1, s2
+ op2.int *= 10**(op2.exp - op1.exp)
+ q, r = divmod(op1.int, op2.int)
+ # remainder is r*10**ideal_exponent; other is +/-op2.int *
+ # 10**ideal_exponent. Apply correction to ensure that
+ # abs(remainder) <= abs(other)/2
+ if 2*r + (q&1) > op2.int:
+ r -= op2.int
+ q += 1
+
+ if q >= 10**context.prec:
+ return context._raise_error(DivisionImpossible)[0]
+
+ # result has same sign as self unless r is negative
+ sign = self._sign
+ if r < 0:
+ sign = 1-sign
+ r = -r
- return r._fix(context)
+ ans = Decimal((sign, map(int, str(r)), ideal_exponent))
+ return ans._fix(context)
def __floordiv__(self, other, context=None):
"""self // other"""
@@ -1500,14 +1447,11 @@ class Decimal(object):
return context._raise_error(InvalidContext)
elif self._isinfinity():
raise OverflowError("Cannot convert infinity to long")
+ s = (-1)**self._sign
if self._exp >= 0:
- s = ''.join(map(str, self._int)) + '0'*self._exp
+ return s*int(''.join(map(str, self._int)))*10**self._exp
else:
- s = ''.join(map(str, self._int))[:self._exp]
- if s == '':
- s = '0'
- sign = '-'*self._sign
- return int(sign + s)
+ return s*int(''.join(map(str, self._int))[:self._exp] or '0')
def __long__(self):
"""Converts to a long.
@@ -1516,6 +1460,21 @@ class Decimal(object):
"""
return long(self.__int__())
+ def _fix_nan(self, context):
+ """Decapitate the payload of a NaN to fit the context"""
+ payload = self._int
+
+ # maximum length of payload is precision if _clamp=0,
+ # precision-1 if _clamp=1.
+ max_payload_len = context.prec - context._clamp
+ if len(payload) > max_payload_len:
+ pos = len(payload)-max_payload_len
+ while pos < len(payload) and payload[pos] == 0:
+ pos += 1
+ payload = payload[pos:]
+ return Decimal((self._sign, payload, self._exp))
+ return self
+
def _fix(self, context):
"""Round if it is necessary to keep self within prec precision.
@@ -1525,303 +1484,649 @@ class Decimal(object):
self - Decimal instance
context - context used.
"""
- if self._is_special:
- return self
- if context is None:
- context = getcontext()
- prec = context.prec
- ans = self._fixexponents(context)
- if len(ans._int) > prec:
- ans = ans._round(prec, context=context)
- ans = ans._fixexponents(context)
- return ans
-
- def _fixexponents(self, context):
- """Fix the exponents and return a copy with the exponent in bounds.
- Only call if known to not be a special value.
- """
- folddown = context._clamp
- Emin = context.Emin
- ans = self
- ans_adjusted = ans.adjusted()
- if ans_adjusted < Emin:
- Etiny = context.Etiny()
- if ans._exp < Etiny:
- if not ans:
- ans = Decimal(self)
- ans._exp = Etiny
- context._raise_error(Clamped)
- return ans
- ans = ans._rescale(Etiny, context=context)
- # It isn't zero, and exp < Emin => subnormal
- context._raise_error(Subnormal)
- if context.flags[Inexact]:
- context._raise_error(Underflow)
- else:
- if ans:
- # Only raise subnormal if non-zero.
- context._raise_error(Subnormal)
- else:
- Etop = context.Etop()
- if folddown and ans._exp > Etop:
- context._raise_error(Clamped)
- ans = ans._rescale(Etop, context=context)
- else:
- Emax = context.Emax
- if ans_adjusted > Emax:
- if not ans:
- ans = Decimal(self)
- ans._exp = Emax
- context._raise_error(Clamped)
- return ans
- context._raise_error(Inexact)
- context._raise_error(Rounded)
- c = context._raise_error(Overflow, 'above Emax', ans._sign)
- return c
- return ans
-
- def _round(self, prec=None, rounding=None, context=None):
- """Returns a rounded version of self.
-
- You can specify the precision or rounding method. Otherwise, the
- context determines it.
- """
-
- if self._is_special:
- ans = self._check_nans(context=context)
- if ans:
- return ans
-
- if self._isinfinity():
- return Decimal(self)
if context is None:
context = getcontext()
- if rounding is None:
- rounding = context.rounding
- if prec is None:
- prec = context.prec
+ if self._is_special:
+ if self._isnan():
+ # decapitate payload if necessary
+ return self._fix_nan(context)
+ else:
+ # self is +/-Infinity; return unaltered
+ return self
+ # if self is zero then exponent should be between Etiny and
+ # Emax if _clamp==0, and between Etiny and Etop if _clamp==1.
+ Etiny = context.Etiny()
+ Etop = context.Etop()
if not self:
- if prec <= 0:
- dig = (0,)
- exp = len(self._int) - prec + self._exp
+ exp_max = [context.Emax, Etop][context._clamp]
+ new_exp = min(max(self._exp, Etiny), exp_max)
+ if new_exp != self._exp:
+ context._raise_error(Clamped)
+ return Decimal((self._sign, (0,), new_exp))
else:
- dig = (0,) * prec
- exp = len(self._int) + self._exp - prec
- ans = Decimal((self._sign, dig, exp))
- context._raise_error(Rounded)
- return ans
+ return self
- if prec == 0:
- temp = Decimal(self)
- temp._int = (0,)+temp._int
- prec = 1
- elif prec < 0:
- exp = self._exp + len(self._int) - prec - 1
- temp = Decimal( (self._sign, (0, 1), exp))
- prec = 1
- else:
- temp = Decimal(self)
-
- numdigits = len(temp._int)
- if prec == numdigits:
- return temp
-
- # See if we need to extend precision
- expdiff = prec - numdigits
- if expdiff > 0:
- tmp = list(temp._int)
- tmp.extend([0] * expdiff)
- ans = Decimal( (temp._sign, tmp, temp._exp - expdiff))
- return ans
+ # exp_min is the smallest allowable exponent of the result,
+ # equal to max(self.adjusted()-context.prec+1, Etiny)
+ exp_min = len(self._int) + self._exp - context.prec
+ if exp_min > Etop:
+ # overflow: exp_min > Etop iff self.adjusted() > Emax
+ context._raise_error(Inexact)
+ context._raise_error(Rounded)
+ return context._raise_error(Overflow, 'above Emax', self._sign)
+ self_is_subnormal = exp_min < Etiny
+ if self_is_subnormal:
+ context._raise_error(Subnormal)
+ exp_min = Etiny
- # OK, but maybe all the lost digits are 0.
- lostdigits = self._int[expdiff:]
- if lostdigits == (0,) * len(lostdigits):
- ans = Decimal( (temp._sign, temp._int[:prec], temp._exp - expdiff))
- # Rounded, but not Inexact
+ # round if self has too many digits
+ if self._exp < exp_min:
context._raise_error(Rounded)
+ ans = self._rescale(exp_min, context.rounding)
+ if ans != self:
+ context._raise_error(Inexact)
+ if self_is_subnormal:
+ context._raise_error(Underflow)
+ if not ans:
+ # raise Clamped on underflow to 0
+ context._raise_error(Clamped)
+ elif len(ans._int) == context.prec+1:
+ # we get here only if rescaling rounds the
+ # cofficient up to exactly 10**context.prec
+ if ans._exp < Etop:
+ ans = Decimal((ans._sign, ans._int[:-1], ans._exp+1))
+ else:
+ # Inexact and Rounded have already been raised
+ ans = context._raise_error(Overflow, 'above Emax',
+ self._sign)
return ans
- # Okay, let's round and lose data
-
- this_function = getattr(temp, self._pick_rounding_function[rounding])
- # Now we've got the rounding function
-
- if prec != context.prec:
- context = context._shallow_copy()
- context.prec = prec
- ans = this_function(prec, expdiff, context)
- context._raise_error(Rounded)
- context._raise_error(Inexact, 'Changed in rounding')
+ # fold down if _clamp == 1 and self has too few digits
+ if context._clamp == 1 and self._exp > Etop:
+ context._raise_error(Clamped)
+ self_padded = self._int + (0,)*(self._exp - Etop)
+ return Decimal((self._sign, self_padded, Etop))
- return ans
+ # here self was representable to begin with; return unchanged
+ return self
_pick_rounding_function = {}
- def _round_down(self, prec, expdiff, context):
- """Also known as round-towards-0, truncate."""
- return Decimal( (self._sign, self._int[:prec], self._exp - expdiff) )
+ # for each of the rounding functions below:
+ # self is a finite, nonzero Decimal
+ # prec is an integer satisfying 0 <= prec < len(self._int)
+ # the rounded result will have exponent self._exp + len(self._int) - prec;
- def _round_half_up(self, prec, expdiff, context, tmp = None):
- """Rounds 5 up (away from 0)"""
+ def _round_down(self, prec):
+ """Also known as round-towards-0, truncate."""
+ newexp = self._exp + len(self._int) - prec
+ return Decimal((self._sign, self._int[:prec] or (0,), newexp))
- if tmp is None:
- tmp = Decimal( (self._sign,self._int[:prec], self._exp - expdiff))
- if self._int[prec] >= 5:
- tmp = tmp._increment(round=0, context=context)
- if len(tmp._int) > prec:
- return Decimal( (tmp._sign, tmp._int[:-1], tmp._exp + 1))
+ def _round_up(self, prec):
+ """Rounds away from 0."""
+ newexp = self._exp + len(self._int) - prec
+ tmp = Decimal((self._sign, self._int[:prec] or (0,), newexp))
+ for digit in self._int[prec:]:
+ if digit != 0:
+ return tmp._increment()
return tmp
- def _round_half_even(self, prec, expdiff, context):
- """Round 5 to even, rest to nearest."""
-
- tmp = Decimal( (self._sign, self._int[:prec], self._exp - expdiff))
- half = (self._int[prec] == 5)
- if half:
- for digit in self._int[prec+1:]:
- if digit != 0:
- half = 0
- break
- if half:
- if self._int[prec-1] & 1 == 0:
- return tmp
- return self._round_half_up(prec, expdiff, context, tmp)
+ def _round_half_up(self, prec):
+ """Rounds 5 up (away from 0)"""
+ if self._int[prec] >= 5:
+ return self._round_up(prec)
+ else:
+ return self._round_down(prec)
- def _round_half_down(self, prec, expdiff, context):
+ def _round_half_down(self, prec):
"""Round 5 down"""
-
- tmp = Decimal( (self._sign, self._int[:prec], self._exp - expdiff))
- half = (self._int[prec] == 5)
- if half:
+ if self._int[prec] == 5:
for digit in self._int[prec+1:]:
if digit != 0:
- half = 0
break
- if half:
- return tmp
- return self._round_half_up(prec, expdiff, context, tmp)
+ else:
+ return self._round_down(prec)
+ return self._round_half_up(prec)
- def _round_up(self, prec, expdiff, context):
- """Rounds away from 0."""
- tmp = Decimal( (self._sign, self._int[:prec], self._exp - expdiff) )
- for digit in self._int[prec:]:
- if digit != 0:
- tmp = tmp._increment(round=1, context=context)
- if len(tmp._int) > prec:
- return Decimal( (tmp._sign, tmp._int[:-1], tmp._exp + 1))
- else:
- return tmp
- return tmp
+ def _round_half_even(self, prec):
+ """Round 5 to even, rest to nearest."""
+ if prec and self._int[prec-1] & 1:
+ return self._round_half_up(prec)
+ else:
+ return self._round_half_down(prec)
- def _round_ceiling(self, prec, expdiff, context):
+ def _round_ceiling(self, prec):
"""Rounds up (not away from 0 if negative.)"""
if self._sign:
- return self._round_down(prec, expdiff, context)
+ return self._round_down(prec)
else:
- return self._round_up(prec, expdiff, context)
+ return self._round_up(prec)
- def _round_floor(self, prec, expdiff, context):
+ def _round_floor(self, prec):
"""Rounds down (not towards 0 if negative)"""
if not self._sign:
- return self._round_down(prec, expdiff, context)
+ return self._round_down(prec)
+ else:
+ return self._round_up(prec)
+
+ def _round_05up(self, prec):
+ """Round down unless digit prec-1 is 0 or 5."""
+ if prec == 0 or self._int[prec-1] in (0, 5):
+ return self._round_up(prec)
else:
- return self._round_up(prec, expdiff, context)
+ return self._round_down(prec)
- def __pow__(self, n, modulo = None, context=None):
- """Return self ** n (mod modulo)
+ def fma(self, other, third, context=None):
+ """Fused multiply-add.
- If modulo is None (default), don't take it mod modulo.
+ Returns self*other+third with no rounding of the intermediate
+ product self*other.
+
+ self and other are multiplied together, with no rounding of
+ the result. The third operand is then added to the result,
+ and a single final rounding is performed.
"""
- n = _convert_other(n)
- if n is NotImplemented:
- return n
+
+ other = _convert_other(other, raiseit=True)
+ third = _convert_other(third, raiseit=True)
if context is None:
context = getcontext()
- if self._is_special or n._is_special or n.adjusted() > 8:
- # Because the spot << doesn't work with really big exponents
- if n._isinfinity() or n.adjusted() > 8:
- return context._raise_error(InvalidOperation, 'x ** INF')
+ # do self*other in fresh context with no traps and no rounding
+ mul_context = Context(traps=[], flags=[],
+ _rounding_decision=NEVER_ROUND)
+ product = self.__mul__(other, mul_context)
- ans = self._check_nans(n, context)
- if ans:
- return ans
+ if mul_context.flags[InvalidOperation]:
+ # reraise in current context
+ return context._raise_error(InvalidOperation,
+ 'invalid multiplication in fma',
+ 1, product)
+
+ ans = product.__add__(third, context)
+ return ans
+
+ def _power_modulo(self, other, modulo, context=None):
+ """Three argument version of __pow__"""
+
+ # if can't convert other and modulo to Decimal, raise
+ # TypeError; there's no point returning NotImplemented (no
+ # equivalent of __rpow__ for three argument pow)
+ other = _convert_other(other, raiseit=True)
+ modulo = _convert_other(modulo, raiseit=True)
+
+ if context is None:
+ context = getcontext()
+
+ # deal with NaNs: if there are any sNaNs then first one wins,
+ # (i.e. behaviour for NaNs is identical to that of fma)
+ self_is_nan = self._isnan()
+ other_is_nan = other._isnan()
+ modulo_is_nan = modulo._isnan()
+ if self_is_nan or other_is_nan or modulo_is_nan:
+ if self_is_nan == 2:
+ return context._raise_error(InvalidOperation, 'sNaN',
+ 1, self)
+ if other_is_nan == 2:
+ return context._raise_error(InvalidOperation, 'sNaN',
+ 1, other)
+ if modulo_is_nan == 2:
+ return context._raise_error(InvalidOperation, 'sNaN',
+ 1, modulo)
+ if self_is_nan:
+ return self
+ if other_is_nan:
+ return other
+ return modulo
+
+ # check inputs: we apply same restrictions as Python's pow()
+ if not (self._isinteger() and
+ other._isinteger() and
+ modulo._isinteger()):
+ return context._raise_error(InvalidOperation,
+ 'pow() 3rd argument not allowed '
+ 'unless all arguments are integers')
+ if other < 0:
+ return context._raise_error(InvalidOperation,
+ 'pow() 2nd argument cannot be '
+ 'negative when 3rd argument specified')
+ if not modulo:
+ return context._raise_error(InvalidOperation,
+ 'pow() 3rd argument cannot be 0')
+
+ # additional restriction for decimal: the modulus must be less
+ # than 10**prec in absolute value
+ if modulo.adjusted() >= context.prec:
+ return context._raise_error(InvalidOperation,
+ 'insufficient precision: pow() 3rd '
+ 'argument must not have more than '
+ 'precision digits')
+
+ # define 0**0 == NaN, for consistency with two-argument pow
+ # (even though it hurts!)
+ if not other and not self:
+ return context._raise_error(InvalidOperation,
+ 'at least one of pow() 1st argument '
+ 'and 2nd argument must be nonzero ;'
+ '0**0 is not defined')
+
+ # compute sign of result
+ if other._iseven():
+ sign = 0
+ else:
+ sign = self._sign
+
+ # convert modulo to a Python integer, and self and other to
+ # Decimal integers (i.e. force their exponents to be >= 0)
+ modulo = abs(int(modulo))
+ base = _WorkRep(self.to_integral_value())
+ exponent = _WorkRep(other.to_integral_value())
+
+ # compute result using integer pow()
+ base = (base.int % modulo * pow(10, base.exp, modulo)) % modulo
+ for i in xrange(exponent.exp):
+ base = pow(base, 10, modulo)
+ base = pow(base, exponent.int, modulo)
+
+ return Decimal((sign, map(int, str(base)), 0))
+
+ def _power_exact(self, other, p):
+ """Attempt to compute self**other exactly.
+
+ Given Decimals self and other and an integer p, attempt to
+ compute an exact result for the power self**other, with p
+ digits of precision. Return None if self**other is not
+ exactly representable in p digits.
+
+ Assumes that elimination of special cases has already been
+ performed: self and other must both be nonspecial; self must
+ be positive and not numerically equal to 1; other must be
+ nonzero. For efficiency, other._exp should not be too large,
+ so that 10**abs(other._exp) is a feasible calculation."""
+
+ # In the comments below, we write x for the value of self and
+ # y for the value of other. Write x = xc*10**xe and y =
+ # yc*10**ye.
+
+ # The main purpose of this method is to identify the *failure*
+ # of x**y to be exactly representable with as little effort as
+ # possible. So we look for cheap and easy tests that
+ # eliminate the possibility of x**y being exact. Only if all
+ # these tests are passed do we go on to actually compute x**y.
+
+ # Here's the main idea. First normalize both x and y. We
+ # express y as a rational m/n, with m and n relatively prime
+ # and n>0. Then for x**y to be exactly representable (at
+ # *any* precision), xc must be the nth power of a positive
+ # integer and xe must be divisible by n. If m is negative
+ # then additionally xc must be a power of either 2 or 5, hence
+ # a power of 2**n or 5**n.
+ #
+ # There's a limit to how small |y| can be: if y=m/n as above
+ # then:
+ #
+ # (1) if xc != 1 then for the result to be representable we
+ # need xc**(1/n) >= 2, and hence also xc**|y| >= 2. So
+ # if |y| <= 1/nbits(xc) then xc < 2**nbits(xc) <=
+ # 2**(1/|y|), hence xc**|y| < 2 and the result is not
+ # representable.
+ #
+ # (2) if xe != 0, |xe|*(1/n) >= 1, so |xe|*|y| >= 1. Hence if
+ # |y| < 1/|xe| then the result is not representable.
+ #
+ # Note that since x is not equal to 1, at least one of (1) and
+ # (2) must apply. Now |y| < 1/nbits(xc) iff |yc|*nbits(xc) <
+ # 10**-ye iff len(str(|yc|*nbits(xc)) <= -ye.
+ #
+ # There's also a limit to how large y can be, at least if it's
+ # positive: the normalized result will have coefficient xc**y,
+ # so if it's representable then xc**y < 10**p, and y <
+ # p/log10(xc). Hence if y*log10(xc) >= p then the result is
+ # not exactly representable.
+
+ # if len(str(abs(yc*xe)) <= -ye then abs(yc*xe) < 10**-ye,
+ # so |y| < 1/xe and the result is not representable.
+ # Similarly, len(str(abs(yc)*xc_bits)) <= -ye implies |y|
+ # < 1/nbits(xc).
+
+ x = _WorkRep(self)
+ xc, xe = x.int, x.exp
+ while xc % 10 == 0:
+ xc //= 10
+ xe += 1
+
+ y = _WorkRep(other)
+ yc, ye = y.int, y.exp
+ while yc % 10 == 0:
+ yc //= 10
+ ye += 1
+
+ # case where xc == 1: result is 10**(xe*y), with xe*y
+ # required to be an integer
+ if xc == 1:
+ if ye >= 0:
+ exponent = xe*yc*10**ye
+ else:
+ exponent, remainder = divmod(xe*yc, 10**-ye)
+ if remainder:
+ return None
+ if y.sign == 1:
+ exponent = -exponent
+ # if other is a nonnegative integer, use ideal exponent
+ if other._isinteger() and other._sign == 0:
+ ideal_exponent = self._exp*int(other)
+ zeros = min(exponent-ideal_exponent, p-1)
+ else:
+ zeros = 0
+ return Decimal((0, (1,) + (0,)*zeros, exponent-zeros))
+
+ # case where y is negative: xc must be either a power
+ # of 2 or a power of 5.
+ if y.sign == 1:
+ last_digit = xc % 10
+ if last_digit in (2,4,6,8):
+ # quick test for power of 2
+ if xc & -xc != xc:
+ return None
+ # now xc is a power of 2; e is its exponent
+ e = _nbits(xc)-1
+ # find e*y and xe*y; both must be integers
+ if ye >= 0:
+ y_as_int = yc*10**ye
+ e = e*y_as_int
+ xe = xe*y_as_int
+ else:
+ ten_pow = 10**-ye
+ e, remainder = divmod(e*yc, ten_pow)
+ if remainder:
+ return None
+ xe, remainder = divmod(xe*yc, ten_pow)
+ if remainder:
+ return None
+
+ if e*65 >= p*93: # 93/65 > log(10)/log(5)
+ return None
+ xc = 5**e
+
+ elif last_digit == 5:
+ # e >= log_5(xc) if xc is a power of 5; we have
+ # equality all the way up to xc=5**2658
+ e = _nbits(xc)*28//65
+ xc, remainder = divmod(5**e, xc)
+ if remainder:
+ return None
+ while xc % 5 == 0:
+ xc //= 5
+ e -= 1
+ if ye >= 0:
+ y_as_integer = yc*10**ye
+ e = e*y_as_integer
+ xe = xe*y_as_integer
+ else:
+ ten_pow = 10**-ye
+ e, remainder = divmod(e*yc, ten_pow)
+ if remainder:
+ return None
+ xe, remainder = divmod(xe*yc, ten_pow)
+ if remainder:
+ return None
+ if e*3 >= p*10: # 10/3 > log(10)/log(2)
+ return None
+ xc = 2**e
+ else:
+ return None
+
+ if xc >= 10**p:
+ return None
+ xe = -e-xe
+ return Decimal((0, map(int, str(xc)), xe))
+
+ # now y is positive; find m and n such that y = m/n
+ if ye >= 0:
+ m, n = yc*10**ye, 1
+ else:
+ if xe != 0 and len(str(abs(yc*xe))) <= -ye:
+ return None
+ xc_bits = _nbits(xc)
+ if xc != 1 and len(str(abs(yc)*xc_bits)) <= -ye:
+ return None
+ m, n = yc, 10**(-ye)
+ while m % 2 == n % 2 == 0:
+ m //= 2
+ n //= 2
+ while m % 5 == n % 5 == 0:
+ m //= 5
+ n //= 5
+
+ # compute nth root of xc*10**xe
+ if n > 1:
+ # if 1 < xc < 2**n then xc isn't an nth power
+ if xc != 1 and xc_bits <= n:
+ return None
+
+ xe, rem = divmod(xe, n)
+ if rem != 0:
+ return None
+
+ # compute nth root of xc using Newton's method
+ a = 1L << -(-_nbits(xc)//n) # initial estimate
+ while True:
+ q, r = divmod(xc, a**(n-1))
+ if a <= q:
+ break
+ else:
+ a = (a*(n-1) + q)//n
+ if not (a == q and r == 0):
+ return None
+ xc = a
+
+ # now xc*10**xe is the nth root of the original xc*10**xe
+ # compute mth power of xc*10**xe
+
+ # if m > p*100//_log10_lb(xc) then m > p/log10(xc), hence xc**m >
+ # 10**p and the result is not representable.
+ if xc > 1 and m > p*100//_log10_lb(xc):
+ return None
+ xc = xc**m
+ xe *= m
+ if xc > 10**p:
+ return None
+
+ # by this point the result *is* exactly representable
+ # adjust the exponent to get as close as possible to the ideal
+ # exponent, if necessary
+ str_xc = str(xc)
+ if other._isinteger() and other._sign == 0:
+ ideal_exponent = self._exp*int(other)
+ zeros = min(xe-ideal_exponent, p-len(str_xc))
+ else:
+ zeros = 0
+ return Decimal((0, map(int, str_xc)+[0,]*zeros, xe-zeros))
+
+ def __pow__(self, other, modulo=None, context=None):
+ """Return self ** other [ % modulo].
- if not n._isinteger():
- return context._raise_error(InvalidOperation, 'x ** (non-integer)')
+ With two arguments, compute self**other.
- if not self and not n:
- return context._raise_error(InvalidOperation, '0 ** 0')
+ With three arguments, compute (self**other) % modulo. For the
+ three argument form, the following restrictions on the
+ arguments hold:
- if not n:
- return Decimal(1)
+ - all three arguments must be integral
+ - other must be nonnegative
+ - either self or other (or both) must be nonzero
+ - modulo must be nonzero and must have at most p digits,
+ where p is the context precision.
- if self == Decimal(1):
- return Decimal(1)
+ If any of these restrictions is violated the InvalidOperation
+ flag is raised.
- sign = self._sign and not n._iseven()
- n = int(n)
+ The result of pow(self, other, modulo) is identical to the
+ result that would be obtained by computing (self**other) %
+ modulo with unbounded precision, but is computed more
+ efficiently. It is always exact.
+ """
+
+ if modulo is not None:
+ return self._power_modulo(other, modulo, context)
+
+ other = _convert_other(other)
+ if other is NotImplemented:
+ return other
+
+ if context is None:
+ context = getcontext()
+
+ # either argument is a NaN => result is NaN
+ ans = self._check_nans(other, context)
+ if ans:
+ return ans
+
+ # 0**0 = NaN (!), x**0 = 1 for nonzero x (including +/-Infinity)
+ if not other:
+ if not self:
+ return context._raise_error(InvalidOperation, '0 ** 0')
+ else:
+ return Dec_p1
+
+ # result has sign 1 iff self._sign is 1 and other is an odd integer
+ result_sign = 0
+ if self._sign == 1:
+ if other._isinteger():
+ if not other._iseven():
+ result_sign = 1
+ else:
+ # -ve**noninteger = NaN
+ # (-0)**noninteger = 0**noninteger
+ if self:
+ return context._raise_error(InvalidOperation,
+ 'x ** y with x negative and y not an integer')
+ # negate self, without doing any unwanted rounding
+ self = Decimal((0, self._int, self._exp))
+
+ # 0**(+ve or Inf)= 0; 0**(-ve or -Inf) = Infinity
+ if not self:
+ if other._sign == 0:
+ return Decimal((result_sign, (0,), 0))
+ else:
+ return Infsign[result_sign]
+ # Inf**(+ve or Inf) = Inf; Inf**(-ve or -Inf) = 0
if self._isinfinity():
- if modulo:
- return context._raise_error(InvalidOperation, 'INF % x')
- if n > 0:
- return Infsign[sign]
- return Decimal( (sign, (0,), 0) )
+ if other._sign == 0:
+ return Infsign[result_sign]
+ else:
+ return Decimal((result_sign, (0,), 0))
+
+ # 1**other = 1, but the choice of exponent and the flags
+ # depend on the exponent of self, and on whether other is a
+ # positive integer, a negative integer, or neither
+ if self == Dec_p1:
+ if other._isinteger():
+ # exp = max(self._exp*max(int(other), 0),
+ # 1-context.prec) but evaluating int(other) directly
+ # is dangerous until we know other is small (other
+ # could be 1e999999999)
+ if other._sign == 1:
+ multiplier = 0
+ elif other > context.prec:
+ multiplier = context.prec
+ else:
+ multiplier = int(other)
- # With ludicrously large exponent, just raise an overflow
- # and return inf.
- if not modulo and n > 0 and \
- (self._exp + len(self._int) - 1) * n > context.Emax and self:
+ exp = self._exp * multiplier
+ if exp < 1-context.prec:
+ exp = 1-context.prec
+ context._raise_error(Rounded)
+ else:
+ context._raise_error(Inexact)
+ context._raise_error(Rounded)
+ exp = 1-context.prec
- tmp = Decimal('inf')
- tmp._sign = sign
- context._raise_error(Rounded)
- context._raise_error(Inexact)
- context._raise_error(Overflow, 'Big power', sign)
- return tmp
+ return Decimal((result_sign, (1,)+(0,)*-exp, exp))
- elength = len(str(abs(n)))
- firstprec = context.prec
+ # compute adjusted exponent of self
+ self_adj = self.adjusted()
- if not modulo and firstprec + elength + 1 > DefaultContext.Emax:
- return context._raise_error(Overflow, 'Too much precision.', sign)
+ # self ** infinity is infinity if self > 1, 0 if self < 1
+ # self ** -infinity is infinity if self < 1, 0 if self > 1
+ if other._isinfinity():
+ if (other._sign == 0) == (self_adj < 0):
+ return Decimal((result_sign, (0,), 0))
+ else:
+ return Infsign[result_sign]
+
+ # from here on, the result always goes through the call
+ # to _fix at the end of this function.
+ ans = None
+
+ # crude test to catch cases of extreme overflow/underflow. If
+ # log10(self)*other >= 10**bound and bound >= len(str(Emax))
+ # then 10**bound >= 10**len(str(Emax)) >= Emax+1 and hence
+ # self**other >= 10**(Emax+1), so overflow occurs. The test
+ # for underflow is similar.
+ bound = self._log10_exp_bound() + other.adjusted()
+ if (self_adj >= 0) == (other._sign == 0):
+ # self > 1 and other +ve, or self < 1 and other -ve
+ # possibility of overflow
+ if bound >= len(str(context.Emax)):
+ ans = Decimal((result_sign, (1,), context.Emax+1))
+ else:
+ # self > 1 and other -ve, or self < 1 and other +ve
+ # possibility of underflow to 0
+ Etiny = context.Etiny()
+ if bound >= len(str(-Etiny)):
+ ans = Decimal((result_sign, (1,), Etiny-1))
+
+ # try for an exact result with precision +1
+ if ans is None:
+ ans = self._power_exact(other, context.prec + 1)
+ if ans is not None and result_sign == 1:
+ ans = Decimal((1, ans._int, ans._exp))
+
+ # usual case: inexact result, x**y computed directly as exp(y*log(x))
+ if ans is None:
+ p = context.prec
+ x = _WorkRep(self)
+ xc, xe = x.int, x.exp
+ y = _WorkRep(other)
+ yc, ye = y.int, y.exp
+ if y.sign == 1:
+ yc = -yc
+
+ # compute correctly rounded result: start with precision +3,
+ # then increase precision until result is unambiguously roundable
+ extra = 3
+ while True:
+ coeff, exp = _dpower(xc, xe, yc, ye, p+extra)
+ if coeff % (5*10**(len(str(coeff))-p-1)):
+ break
+ extra += 3
- mul = Decimal(self)
- val = Decimal(1)
- context = context._shallow_copy()
- context.prec = firstprec + elength + 1
- if n < 0:
- # n is a long now, not Decimal instance
- n = -n
- mul = Decimal(1).__div__(mul, context=context)
-
- spot = 1
- while spot <= n:
- spot <<= 1
-
- spot >>= 1
- # spot is the highest power of 2 less than n
- while spot:
- val = val.__mul__(val, context=context)
- if val._isinfinity():
- val = Infsign[sign]
- break
- if spot & n:
- val = val.__mul__(mul, context=context)
- if modulo is not None:
- val = val.__mod__(modulo, context=context)
- spot >>= 1
- context.prec = firstprec
+ ans = Decimal((result_sign, map(int, str(coeff)), exp))
- if context._rounding_decision == ALWAYS_ROUND:
- return val._fix(context)
- return val
+ # the specification says that for non-integer other we need to
+ # raise Inexact, even when the result is actually exact. In
+ # the same way, we need to raise Underflow here if the result
+ # is subnormal. (The call to _fix will take care of raising
+ # Rounded and Subnormal, as usual.)
+ if not other._isinteger():
+ context._raise_error(Inexact)
+ # pad with zeros up to length context.prec+1 if necessary
+ if len(ans._int) <= context.prec:
+ expdiff = context.prec+1 - len(ans._int)
+ ans = Decimal((ans._sign, ans._int+(0,)*expdiff, ans._exp-expdiff))
+ if ans.adjusted() < context.Emin:
+ context._raise_error(Underflow)
+
+ # unlike exp, ln and log10, the power function respects the
+ # rounding mode; no need to use ROUND_HALF_EVEN here
+ ans = ans._fix(context)
+ return ans
def __rpow__(self, other, context=None):
"""Swaps self/other and returns __pow__."""
@@ -1833,6 +2138,9 @@ class Decimal(object):
def normalize(self, context=None):
"""Normalize- strip trailing 0s, change anything equal to 0 to 0e0"""
+ if context is None:
+ context = getcontext()
+
if self._is_special:
ans = self._check_nans(context=context)
if ans:
@@ -1844,19 +2152,25 @@ class Decimal(object):
if not dup:
return Decimal( (dup._sign, (0,), 0) )
+ exp_max = [context.Emax, context.Etop()][context._clamp]
end = len(dup._int)
exp = dup._exp
- while dup._int[end-1] == 0:
+ while dup._int[end-1] == 0 and exp < exp_max:
exp += 1
end -= 1
return Decimal( (dup._sign, dup._int[:end], exp) )
- def quantize(self, exp, rounding=None, context=None, watchexp=1):
+ def quantize(self, exp, rounding=None, context=None):
"""Quantize self so its exponent is the same as that of exp.
Similar to self._rescale(exp._exp) but with error checking.
"""
+ if context is None:
+ context = getcontext()
+ if rounding is None:
+ rounding = context.rounding
+
if self._is_special or exp._is_special:
ans = self._check_nans(exp, context)
if ans:
@@ -1865,11 +2179,45 @@ class Decimal(object):
if exp._isinfinity() or self._isinfinity():
if exp._isinfinity() and self._isinfinity():
return self # if both are inf, it is OK
- if context is None:
- context = getcontext()
return context._raise_error(InvalidOperation,
'quantize with one INF')
- return self._rescale(exp._exp, rounding, context, watchexp)
+
+ # exp._exp should be between Etiny and Emax
+ if not (context.Etiny() <= exp._exp <= context.Emax):
+ return context._raise_error(InvalidOperation,
+ 'target exponent out of bounds in quantize')
+
+ if not self:
+ ans = Decimal((self._sign, (0,), exp._exp))
+ return ans._fix(context)
+
+ self_adjusted = self.adjusted()
+ if self_adjusted > context.Emax:
+ return context._raise_error(InvalidOperation,
+ 'exponent of quantize result too large for current context')
+ if self_adjusted - exp._exp + 1 > context.prec:
+ return context._raise_error(InvalidOperation,
+ 'quantize result has too many digits for current context')
+
+ ans = self._rescale(exp._exp, rounding)
+ if ans.adjusted() > context.Emax:
+ return context._raise_error(InvalidOperation,
+ 'exponent of quantize result too large for current context')
+ if len(ans._int) > context.prec:
+ return context._raise_error(InvalidOperation,
+ 'quantize result has too many digits for current context')
+
+ # raise appropriate flags
+ if ans._exp > self._exp:
+ context._raise_error(Rounded)
+ if ans != self:
+ context._raise_error(Inexact)
+ if ans and ans.adjusted() < context.Emin:
+ context._raise_error(Subnormal)
+
+ # call to fix takes care of any necessary folddown
+ ans = ans._fix(context)
+ return ans
def same_quantum(self, other):
"""Test whether self and other have the same exponent.
@@ -1883,82 +2231,85 @@ class Decimal(object):
return self._isinfinity() and other._isinfinity() and True
return self._exp == other._exp
- def _rescale(self, exp, rounding=None, context=None, watchexp=1):
- """Rescales so that the exponent is exp.
+ def _rescale(self, exp, rounding):
+ """Rescale self so that the exponent is exp, either by padding with zeros
+ or by truncating digits, using the given rounding mode.
+
+ Specials are returned without change. This operation is
+ quiet: it raises no flags, and uses no information from the
+ context.
exp = exp to scale to (an integer)
- rounding = rounding version
- watchexp: if set (default) an error is returned if exp is greater
- than Emax or less than Etiny.
+ rounding = rounding mode
"""
- if context is None:
- context = getcontext()
-
if self._is_special:
- if self._isinfinity():
- return context._raise_error(InvalidOperation, 'rescale with an INF')
-
- ans = self._check_nans(context=context)
- if ans:
- return ans
-
- if watchexp and (context.Emax < exp or context.Etiny() > exp):
- return context._raise_error(InvalidOperation, 'rescale(a, INF)')
-
+ return self
if not self:
- ans = Decimal(self)
- ans._int = (0,)
- ans._exp = exp
- return ans
-
- diff = self._exp - exp
- digits = len(self._int) + diff
-
- if watchexp and digits > context.prec:
- return context._raise_error(InvalidOperation, 'Rescale > prec')
+ return Decimal((self._sign, (0,), exp))
- tmp = Decimal(self)
- tmp._int = (0,) + tmp._int
- digits += 1
+ if self._exp >= exp:
+ # pad answer with zeros if necessary
+ return Decimal((self._sign, self._int + (0,)*(self._exp - exp), exp))
+ # too many digits; round and lose data. If self.adjusted() <
+ # exp-1, replace self by 10**(exp-1) before rounding
+ digits = len(self._int) + self._exp - exp
if digits < 0:
- tmp._exp = -digits + tmp._exp
- tmp._int = (0,1)
- digits = 1
- tmp = tmp._round(digits, rounding, context=context)
+ self = Decimal((self._sign, (1,), exp-1))
+ digits = 0
+ this_function = getattr(self, self._pick_rounding_function[rounding])
+ return this_function(digits)
- if tmp._int[0] == 0 and len(tmp._int) > 1:
- tmp._int = tmp._int[1:]
- tmp._exp = exp
+ def to_integral_exact(self, rounding=None, context=None):
+ """Rounds to a nearby integer.
- tmp_adjusted = tmp.adjusted()
- if tmp and tmp_adjusted < context.Emin:
- context._raise_error(Subnormal)
- elif tmp and tmp_adjusted > context.Emax:
- return context._raise_error(InvalidOperation, 'rescale(a, INF)')
- return tmp
+ If no rounding mode is specified, take the rounding mode from
+ the context. This method raises the Rounded and Inexact flags
+ when appropriate.
- def to_integral(self, rounding=None, context=None):
- """Rounds to the nearest integer, without raising inexact, rounded."""
+ See also: to_integral_value, which does exactly the same as
+ this method except that it doesn't raise Inexact or Rounded.
+ """
if self._is_special:
ans = self._check_nans(context=context)
if ans:
return ans
+ return self
if self._exp >= 0:
return self
+ if not self:
+ return Decimal((self._sign, (0,), 0))
if context is None:
context = getcontext()
- flags = context._ignore_flags(Rounded, Inexact)
- ans = self._rescale(0, rounding, context=context)
- context._regard_flags(flags)
+ if rounding is None:
+ rounding = context.rounding
+ context._raise_error(Rounded)
+ ans = self._rescale(0, rounding)
+ if ans != self:
+ context._raise_error(Inexact)
return ans
- def sqrt(self, context=None):
- """Return the square root of self.
+ def to_integral_value(self, rounding=None, context=None):
+ """Rounds to the nearest integer, without raising inexact, rounded."""
+ if context is None:
+ context = getcontext()
+ if rounding is None:
+ rounding = context.rounding
+ if self._is_special:
+ ans = self._check_nans(context=context)
+ if ans:
+ return ans
+ return self
+ if self._exp >= 0:
+ return self
+ else:
+ return self._rescale(0, rounding)
- Uses a converging algorithm (Xn+1 = 0.5*(Xn + self / Xn))
- Should quadratically approach the right answer.
- """
+ # the method name changed, but we provide also the old one, for compatibility
+ to_integral = to_integral_value
+
+ def sqrt(self, context=None):
+ """Return the square root of self."""
if self._is_special:
ans = self._check_nans(context=context)
if ans:
@@ -1968,16 +2319,9 @@ class Decimal(object):
return Decimal(self)
if not self:
- # exponent = self._exp / 2, using round_down.
- # if self._exp < 0:
- # exp = (self._exp+1) // 2
- # else:
- exp = (self._exp) // 2
- if self._sign == 1:
- # sqrt(-0) = -0
- return Decimal( (1, (0,), exp))
- else:
- return Decimal( (0, (0,), exp))
+ # exponent = self._exp // 2. sqrt(-0) = -0
+ ans = Decimal((self._sign, (0,), self._exp // 2))
+ return ans._fix(context)
if context is None:
context = getcontext()
@@ -1985,104 +2329,91 @@ class Decimal(object):
if self._sign == 1:
return context._raise_error(InvalidOperation, 'sqrt(-x), x > 0')
- tmp = Decimal(self)
-
- expadd = tmp._exp // 2
- if tmp._exp & 1:
- tmp._int += (0,)
- tmp._exp = 0
+ # At this point self represents a positive number. Let p be
+ # the desired precision and express self in the form c*100**e
+ # with c a positive real number and e an integer, c and e
+ # being chosen so that 100**(p-1) <= c < 100**p. Then the
+ # (exact) square root of self is sqrt(c)*10**e, and 10**(p-1)
+ # <= sqrt(c) < 10**p, so the closest representable Decimal at
+ # precision p is n*10**e where n = round_half_even(sqrt(c)),
+ # the closest integer to sqrt(c) with the even integer chosen
+ # in the case of a tie.
+ #
+ # To ensure correct rounding in all cases, we use the
+ # following trick: we compute the square root to an extra
+ # place (precision p+1 instead of precision p), rounding down.
+ # Then, if the result is inexact and its last digit is 0 or 5,
+ # we increase the last digit to 1 or 6 respectively; if it's
+ # exact we leave the last digit alone. Now the final round to
+ # p places (or fewer in the case of underflow) will round
+ # correctly and raise the appropriate flags.
+
+ # use an extra digit of precision
+ prec = context.prec+1
+
+ # write argument in the form c*100**e where e = self._exp//2
+ # is the 'ideal' exponent, to be used if the square root is
+ # exactly representable. l is the number of 'digits' of c in
+ # base 100, so that 100**(l-1) <= c < 100**l.
+ op = _WorkRep(self)
+ e = op.exp >> 1
+ if op.exp & 1:
+ c = op.int * 10
+ l = (len(self._int) >> 1) + 1
else:
- tmp._exp = 0
-
- context = context._shallow_copy()
- flags = context._ignore_all_flags()
- firstprec = context.prec
- context.prec = 3
- if tmp.adjusted() & 1 == 0:
- ans = Decimal( (0, (8,1,9), tmp.adjusted() - 2) )
- ans = ans.__add__(tmp.__mul__(Decimal((0, (2,5,9), -2)),
- context=context), context=context)
- ans._exp -= 1 + tmp.adjusted() // 2
+ c = op.int
+ l = len(self._int)+1 >> 1
+
+ # rescale so that c has exactly prec base 100 'digits'
+ shift = prec-l
+ if shift >= 0:
+ c *= 100**shift
+ exact = True
else:
- ans = Decimal( (0, (2,5,9), tmp._exp + len(tmp._int)- 3) )
- ans = ans.__add__(tmp.__mul__(Decimal((0, (8,1,9), -3)),
- context=context), context=context)
- ans._exp -= 1 + tmp.adjusted() // 2
-
- # ans is now a linear approximation.
- Emax, Emin = context.Emax, context.Emin
- context.Emax, context.Emin = DefaultContext.Emax, DefaultContext.Emin
-
- half = Decimal('0.5')
-
- maxp = firstprec + 2
- rounding = context._set_rounding(ROUND_HALF_EVEN)
- while 1:
- context.prec = min(2*context.prec - 2, maxp)
- ans = half.__mul__(ans.__add__(tmp.__div__(ans, context=context),
- context=context), context=context)
- if context.prec == maxp:
+ c, remainder = divmod(c, 100**-shift)
+ exact = not remainder
+ e -= shift
+
+ # find n = floor(sqrt(c)) using Newton's method
+ n = 10**prec
+ while True:
+ q = c//n
+ if n <= q:
break
-
- # Round to the answer's precision-- the only error can be 1 ulp.
- context.prec = firstprec
- prevexp = ans.adjusted()
- ans = ans._round(context=context)
-
- # Now, check if the other last digits are better.
- context.prec = firstprec + 1
- # In case we rounded up another digit and we should actually go lower.
- if prevexp != ans.adjusted():
- ans._int += (0,)
- ans._exp -= 1
-
-
- lower = ans.__sub__(Decimal((0, (5,), ans._exp-1)), context=context)
- context._set_rounding(ROUND_UP)
- if lower.__mul__(lower, context=context) > (tmp):
- ans = ans.__sub__(Decimal((0, (1,), ans._exp)), context=context)
-
+ else:
+ n = n + q >> 1
+ exact = exact and n*n == c
+
+ if exact:
+ # result is exact; rescale to use ideal exponent e
+ if shift >= 0:
+ # assert n % 10**shift == 0
+ n //= 10**shift
+ else:
+ n *= 10**-shift
+ e += shift
else:
- upper = ans.__add__(Decimal((0, (5,), ans._exp-1)),context=context)
- context._set_rounding(ROUND_DOWN)
- if upper.__mul__(upper, context=context) < tmp:
- ans = ans.__add__(Decimal((0, (1,), ans._exp)),context=context)
+ # result is not exact; fix last digit as described above
+ if n % 5 == 0:
+ n += 1
- ans._exp += expadd
+ ans = Decimal((0, map(int, str(n)), e))
- context.prec = firstprec
- context.rounding = rounding
+ # round, and fit to current context
+ context = context._shallow_copy()
+ rounding = context._set_rounding(ROUND_HALF_EVEN)
ans = ans._fix(context)
+ context.rounding = rounding
- rounding = context._set_rounding_decision(NEVER_ROUND)
- if not ans.__mul__(ans, context=context) == self:
- # Only rounded/inexact if here.
- context._regard_flags(flags)
- context._raise_error(Rounded)
- context._raise_error(Inexact)
- else:
- # Exact answer, so let's set the exponent right.
- # if self._exp < 0:
- # exp = (self._exp +1)// 2
- # else:
- exp = self._exp // 2
- context.prec += ans._exp - exp
- ans = ans._rescale(exp, context=context)
- context.prec = firstprec
- context._regard_flags(flags)
- context.Emax, context.Emin = Emax, Emin
-
- return ans._fix(context)
+ return ans
def max(self, other, context=None):
"""Returns the larger value.
- like max(self, other) except if one is not a number, returns
+ Like max(self, other) except if one is not a number, returns
NaN (and signals if one is sNaN). Also rounds.
"""
- other = _convert_other(other)
- if other is NotImplemented:
- return other
+ other = _convert_other(other, raiseit=True)
if self._is_special or other._is_special:
# If one operand is a quiet NaN and the other is number, then the
@@ -2096,7 +2427,6 @@ class Decimal(object):
return other
return self._check_nans(other, context)
- ans = self
c = self.__cmp__(other)
if c == 0:
# If both operands are finite and equal in numerical value
@@ -2106,16 +2436,13 @@ class Decimal(object):
# positive sign and min returns the operand with the negative sign
#
# If the signs are the same then the exponent is used to select
- # the result.
- if self._sign != other._sign:
- if self._sign:
- ans = other
- elif self._exp < other._exp and not self._sign:
- ans = other
- elif self._exp > other._exp and self._sign:
- ans = other
- elif c == -1:
+ # the result. This is exactly the ordering used in compare_total.
+ c = self.compare_total(other)
+
+ if c == -1:
ans = other
+ else:
+ ans = self
if context is None:
context = getcontext()
@@ -2129,9 +2456,7 @@ class Decimal(object):
Like min(self, other) except if one is not a number, returns
NaN (and signals if one is sNaN). Also rounds.
"""
- other = _convert_other(other)
- if other is NotImplemented:
- return other
+ other = _convert_other(other, raiseit=True)
if self._is_special or other._is_special:
# If one operand is a quiet NaN and the other is number, then the
@@ -2145,25 +2470,13 @@ class Decimal(object):
return other
return self._check_nans(other, context)
- ans = self
c = self.__cmp__(other)
if c == 0:
- # If both operands are finite and equal in numerical value
- # then an ordering is applied:
- #
- # If the signs differ then max returns the operand with the
- # positive sign and min returns the operand with the negative sign
- #
- # If the signs are the same then the exponent is used to select
- # the result.
- if self._sign != other._sign:
- if other._sign:
- ans = other
- elif self._exp > other._exp and not self._sign:
- ans = other
- elif self._exp < other._exp and self._sign:
- ans = other
- elif c == 1:
+ c = self.compare_total(other)
+
+ if c == -1:
+ ans = self
+ else:
ans = other
if context is None:
@@ -2174,15 +2487,17 @@ class Decimal(object):
def _isinteger(self):
"""Returns whether self is an integer"""
+ if self._is_special:
+ return False
if self._exp >= 0:
return True
rest = self._int[self._exp:]
return rest == (0,)*len(rest)
def _iseven(self):
- """Returns 1 if self is even. Assumes self is an integer."""
- if self._exp > 0:
- return 1
+ """Returns True if self is even. Assumes self is an integer."""
+ if not self or self._exp > 0:
+ return True
return self._int[-1+self._exp] & 1 == 0
def adjusted(self):
@@ -2193,6 +2508,872 @@ class Decimal(object):
except TypeError:
return 0
+ def canonical(self, context=None):
+ """Returns the same Decimal object.
+
+ As we do not have different encodings for the same number, the
+ received object already is in its canonical form.
+ """
+ return self
+
+ def compare_signal(self, other, context=None):
+ """Compares self to the other operand numerically.
+
+ It's pretty much like compare(), but all NaNs signal, with signaling
+ NaNs taking precedence over quiet NaNs.
+ """
+ if context is None:
+ context = getcontext()
+
+ self_is_nan = self._isnan()
+ other_is_nan = other._isnan()
+ if self_is_nan == 2:
+ return context._raise_error(InvalidOperation, 'sNaN',
+ 1, self)
+ if other_is_nan == 2:
+ return context._raise_error(InvalidOperation, 'sNaN',
+ 1, other)
+ if self_is_nan:
+ return context._raise_error(InvalidOperation, 'NaN in compare_signal',
+ 1, self)
+ if other_is_nan:
+ return context._raise_error(InvalidOperation, 'NaN in compare_signal',
+ 1, other)
+ return self.compare(other, context=context)
+
+ def compare_total(self, other):
+ """Compares self to other using the abstract representations.
+
+ This is not like the standard compare, which use their numerical
+ value. Note that a total ordering is defined for all possible abstract
+ representations.
+ """
+ # if one is negative and the other is positive, it's easy
+ if self._sign and not other._sign:
+ return Dec_n1
+ if not self._sign and other._sign:
+ return Dec_p1
+ sign = self._sign
+
+ # let's handle both NaN types
+ self_nan = self._isnan()
+ other_nan = other._isnan()
+ if self_nan or other_nan:
+ if self_nan == other_nan:
+ if self._int < other._int:
+ if sign:
+ return Dec_p1
+ else:
+ return Dec_n1
+ if self._int > other._int:
+ if sign:
+ return Dec_n1
+ else:
+ return Dec_p1
+ return Dec_0
+
+ if sign:
+ if self_nan == 1:
+ return Dec_n1
+ if other_nan == 1:
+ return Dec_p1
+ if self_nan == 2:
+ return Dec_n1
+ if other_nan == 2:
+ return Dec_p1
+ else:
+ if self_nan == 1:
+ return Dec_p1
+ if other_nan == 1:
+ return Dec_n1
+ if self_nan == 2:
+ return Dec_p1
+ if other_nan == 2:
+ return Dec_n1
+
+ if self < other:
+ return Dec_n1
+ if self > other:
+ return Dec_p1
+
+ if self._exp < other._exp:
+ if sign:
+ return Dec_p1
+ else:
+ return Dec_n1
+ if self._exp > other._exp:
+ if sign:
+ return Dec_n1
+ else:
+ return Dec_p1
+ return Dec_0
+
+
+ def compare_total_mag(self, other):
+ """Compares self to other using abstract repr., ignoring sign.
+
+ Like compare_total, but with operand's sign ignored and assumed to be 0.
+ """
+ s = self.copy_abs()
+ o = other.copy_abs()
+ return s.compare_total(o)
+
+ def copy_abs(self):
+ """Returns a copy with the sign set to 0. """
+ return Decimal((0, self._int, self._exp))
+
+ def copy_negate(self):
+ """Returns a copy with the sign inverted."""
+ if self._sign:
+ return Decimal((0, self._int, self._exp))
+ else:
+ return Decimal((1, self._int, self._exp))
+
+ def copy_sign(self, other):
+ """Returns self with the sign of other."""
+ return Decimal((other._sign, self._int, self._exp))
+
+ def exp(self, context=None):
+ """Returns e ** self."""
+
+ if context is None:
+ context = getcontext()
+
+ # exp(NaN) = NaN
+ ans = self._check_nans(context=context)
+ if ans:
+ return ans
+
+ # exp(-Infinity) = 0
+ if self._isinfinity() == -1:
+ return Dec_0
+
+ # exp(0) = 1
+ if not self:
+ return Dec_p1
+
+ # exp(Infinity) = Infinity
+ if self._isinfinity() == 1:
+ return Decimal(self)
+
+ # the result is now guaranteed to be inexact (the true
+ # mathematical result is transcendental). There's no need to
+ # raise Rounded and Inexact here---they'll always be raised as
+ # a result of the call to _fix.
+ p = context.prec
+ adj = self.adjusted()
+
+ # we only need to do any computation for quite a small range
+ # of adjusted exponents---for example, -29 <= adj <= 10 for
+ # the default context. For smaller exponent the result is
+ # indistinguishable from 1 at the given precision, while for
+ # larger exponent the result either overflows or underflows.
+ if self._sign == 0 and adj > len(str((context.Emax+1)*3)):
+ # overflow
+ ans = Decimal((0, (1,), context.Emax+1))
+ elif self._sign == 1 and adj > len(str((-context.Etiny()+1)*3)):
+ # underflow to 0
+ ans = Decimal((0, (1,), context.Etiny()-1))
+ elif self._sign == 0 and adj < -p:
+ # p+1 digits; final round will raise correct flags
+ ans = Decimal((0, (1,) + (0,)*(p-1) + (1,), -p))
+ elif self._sign == 1 and adj < -p-1:
+ # p+1 digits; final round will raise correct flags
+ ans = Decimal((0, (9,)*(p+1), -p-1))
+ # general case
+ else:
+ op = _WorkRep(self)
+ c, e = op.int, op.exp
+ if op.sign == 1:
+ c = -c
+
+ # compute correctly rounded result: increase precision by
+ # 3 digits at a time until we get an unambiguously
+ # roundable result
+ extra = 3
+ while True:
+ coeff, exp = _dexp(c, e, p+extra)
+ if coeff % (5*10**(len(str(coeff))-p-1)):
+ break
+ extra += 3
+
+ ans = Decimal((0, map(int, str(coeff)), exp))
+
+ # at this stage, ans should round correctly with *any*
+ # rounding mode, not just with ROUND_HALF_EVEN
+ context = context._shallow_copy()
+ rounding = context._set_rounding(ROUND_HALF_EVEN)
+ ans = ans._fix(context)
+ context.rounding = rounding
+
+ return ans
+
+ def is_canonical(self):
+ """Returns 1 if self is canonical; otherwise returns 0."""
+ return Dec_p1
+
+ def is_finite(self):
+ """Returns 1 if self is finite, otherwise returns 0.
+
+ For it to be finite, it must be neither infinite nor a NaN.
+ """
+ if self._is_special:
+ return Dec_0
+ else:
+ return Dec_p1
+
+ def is_infinite(self):
+ """Returns 1 if self is an Infinite, otherwise returns 0."""
+ if self._isinfinity():
+ return Dec_p1
+ else:
+ return Dec_0
+
+ def is_nan(self):
+ """Returns 1 if self is qNaN or sNaN, otherwise returns 0."""
+ if self._isnan():
+ return Dec_p1
+ else:
+ return Dec_0
+
+ def is_normal(self, context=None):
+ """Returns 1 if self is a normal number, otherwise returns 0."""
+ if self._is_special:
+ return Dec_0
+ if not self:
+ return Dec_0
+ if context is None:
+ context = getcontext()
+ if context.Emin <= self.adjusted() <= context.Emax:
+ return Dec_p1
+ else:
+ return Dec_0
+
+ def is_qnan(self):
+ """Returns 1 if self is a quiet NaN, otherwise returns 0."""
+ if self._isnan() == 1:
+ return Dec_p1
+ else:
+ return Dec_0
+
+ def is_signed(self):
+ """Returns 1 if self is negative, otherwise returns 0."""
+ return Decimal(self._sign)
+
+ def is_snan(self):
+ """Returns 1 if self is a signaling NaN, otherwise returns 0."""
+ if self._isnan() == 2:
+ return Dec_p1
+ else:
+ return Dec_0
+
+ def is_subnormal(self, context=None):
+ """Returns 1 if self is subnormal, otherwise returns 0."""
+ if self._is_special:
+ return Dec_0
+ if not self:
+ return Dec_0
+ if context is None:
+ context = getcontext()
+
+ r = self._exp + len(self._int)
+ if r <= context.Emin:
+ return Dec_p1
+ return Dec_0
+
+ def is_zero(self):
+ """Returns 1 if self is a zero, otherwise returns 0."""
+ if self:
+ return Dec_0
+ else:
+ return Dec_p1
+
+ def _ln_exp_bound(self):
+ """Compute a lower bound for the adjusted exponent of self.ln().
+ In other words, compute r such that self.ln() >= 10**r. Assumes
+ that self is finite and positive and that self != 1.
+ """
+
+ # for 0.1 <= x <= 10 we use the inequalities 1-1/x <= ln(x) <= x-1
+ adj = self._exp + len(self._int) - 1
+ if adj >= 1:
+ # argument >= 10; we use 23/10 = 2.3 as a lower bound for ln(10)
+ return len(str(adj*23//10)) - 1
+ if adj <= -2:
+ # argument <= 0.1
+ return len(str((-1-adj)*23//10)) - 1
+ op = _WorkRep(self)
+ c, e = op.int, op.exp
+ if adj == 0:
+ # 1 < self < 10
+ num = str(c-10**-e)
+ den = str(c)
+ return len(num) - len(den) - (num < den)
+ # adj == -1, 0.1 <= self < 1
+ return e + len(str(10**-e - c)) - 1
+
+
+ def ln(self, context=None):
+ """Returns the natural (base e) logarithm of self."""
+
+ if context is None:
+ context = getcontext()
+
+ # ln(NaN) = NaN
+ ans = self._check_nans(context=context)
+ if ans:
+ return ans
+
+ # ln(0.0) == -Infinity
+ if not self:
+ return negInf
+
+ # ln(Infinity) = Infinity
+ if self._isinfinity() == 1:
+ return Inf
+
+ # ln(1.0) == 0.0
+ if self == Dec_p1:
+ return Dec_0
+
+ # ln(negative) raises InvalidOperation
+ if self._sign == 1:
+ return context._raise_error(InvalidOperation,
+ 'ln of a negative value')
+
+ # result is irrational, so necessarily inexact
+ op = _WorkRep(self)
+ c, e = op.int, op.exp
+ p = context.prec
+
+ # correctly rounded result: repeatedly increase precision by 3
+ # until we get an unambiguously roundable result
+ places = p - self._ln_exp_bound() + 2 # at least p+3 places
+ while True:
+ coeff = _dlog(c, e, places)
+ # assert len(str(abs(coeff)))-p >= 1
+ if coeff % (5*10**(len(str(abs(coeff)))-p-1)):
+ break
+ places += 3
+ ans = Decimal((int(coeff<0), map(int, str(abs(coeff))), -places))
+
+ context = context._shallow_copy()
+ rounding = context._set_rounding(ROUND_HALF_EVEN)
+ ans = ans._fix(context)
+ context.rounding = rounding
+ return ans
+
+ def _log10_exp_bound(self):
+ """Compute a lower bound for the adjusted exponent of self.log10().
+ In other words, find r such that self.log10() >= 10**r.
+ Assumes that self is finite and positive and that self != 1.
+ """
+
+ # For x >= 10 or x < 0.1 we only need a bound on the integer
+ # part of log10(self), and this comes directly from the
+ # exponent of x. For 0.1 <= x <= 10 we use the inequalities
+ # 1-1/x <= log(x) <= x-1. If x > 1 we have |log10(x)| >
+ # (1-1/x)/2.31 > 0. If x < 1 then |log10(x)| > (1-x)/2.31 > 0
+
+ adj = self._exp + len(self._int) - 1
+ if adj >= 1:
+ # self >= 10
+ return len(str(adj))-1
+ if adj <= -2:
+ # self < 0.1
+ return len(str(-1-adj))-1
+ op = _WorkRep(self)
+ c, e = op.int, op.exp
+ if adj == 0:
+ # 1 < self < 10
+ num = str(c-10**-e)
+ den = str(231*c)
+ return len(num) - len(den) - (num < den) + 2
+ # adj == -1, 0.1 <= self < 1
+ num = str(10**-e-c)
+ return len(num) + e - (num < "231") - 1
+
+ def log10(self, context=None):
+ """Returns the base 10 logarithm of self."""
+
+ if context is None:
+ context = getcontext()
+
+ # log10(NaN) = NaN
+ ans = self._check_nans(context=context)
+ if ans:
+ return ans
+
+ # log10(0.0) == -Infinity
+ if not self:
+ return negInf
+
+ # log10(Infinity) = Infinity
+ if self._isinfinity() == 1:
+ return Inf
+
+ # log10(negative or -Infinity) raises InvalidOperation
+ if self._sign == 1:
+ return context._raise_error(InvalidOperation,
+ 'log10 of a negative value')
+
+ # log10(10**n) = n
+ if self._int[0] == 1 and self._int[1:] == (0,)*(len(self._int) - 1):
+ # answer may need rounding
+ ans = Decimal(self._exp + len(self._int) - 1)
+ else:
+ # result is irrational, so necessarily inexact
+ op = _WorkRep(self)
+ c, e = op.int, op.exp
+ p = context.prec
+
+ # correctly rounded result: repeatedly increase precision
+ # until result is unambiguously roundable
+ places = p-self._log10_exp_bound()+2
+ while True:
+ coeff = _dlog10(c, e, places)
+ # assert len(str(abs(coeff)))-p >= 1
+ if coeff % (5*10**(len(str(abs(coeff)))-p-1)):
+ break
+ places += 3
+ ans = Decimal((int(coeff<0), map(int, str(abs(coeff))), -places))
+
+ context = context._shallow_copy()
+ rounding = context._set_rounding(ROUND_HALF_EVEN)
+ ans = ans._fix(context)
+ context.rounding = rounding
+ return ans
+
+ def logb(self, context=None):
+ """ Returns the exponent of the magnitude of self's MSD.
+
+ The result is the integer which is the exponent of the magnitude
+ of the most significant digit of self (as though it were truncated
+ to a single digit while maintaining the value of that digit and
+ without limiting the resulting exponent).
+ """
+ # logb(NaN) = NaN
+ ans = self._check_nans(context=context)
+ if ans:
+ return ans
+
+ if context is None:
+ context = getcontext()
+
+ # logb(+/-Inf) = +Inf
+ if self._isinfinity():
+ return Inf
+
+ # logb(0) = -Inf, DivisionByZero
+ if not self:
+ return context._raise_error(DivisionByZero, 'logb(0)', -1)
+
+ # otherwise, simply return the adjusted exponent of self, as a
+ # Decimal. Note that no attempt is made to fit the result
+ # into the current context.
+ return Decimal(self.adjusted())
+
+ def _islogical(self):
+ """Return True if self is a logical operand.
+
+ For being logical, it must be a finite numbers with a sign of 0,
+ an exponent of 0, and a coefficient whose digits must all be
+ either 0 or 1.
+ """
+ if self._sign != 0 or self._exp != 0:
+ return False
+ for dig in self._int:
+ if dig not in (0, 1):
+ return False
+ return True
+
+ def _fill_logical(self, context, opa, opb):
+ dif = context.prec - len(opa)
+ if dif > 0:
+ opa = (0,)*dif + opa
+ elif dif < 0:
+ opa = opa[-context.prec:]
+ dif = context.prec - len(opb)
+ if dif > 0:
+ opb = (0,)*dif + opb
+ elif dif < 0:
+ opb = opb[-context.prec:]
+ return opa, opb
+
+ def logical_and(self, other, context=None):
+ """Applies an 'and' operation between self and other's digits."""
+ if context is None:
+ context = getcontext()
+ if not self._islogical() or not other._islogical():
+ return context._raise_error(InvalidOperation)
+
+ # fill to context.prec
+ (opa, opb) = self._fill_logical(context, self._int, other._int)
+
+ # make the operation, and clean starting zeroes
+ result = [a&b for a,b in zip(opa,opb)]
+ for i,d in enumerate(result):
+ if d == 1:
+ break
+ result = tuple(result[i:])
+
+ # if empty, we must have at least a zero
+ if not result:
+ result = (0,)
+ return Decimal((0, result, 0))
+
+ def logical_invert(self, context=None):
+ """Invert all its digits."""
+ if context is None:
+ context = getcontext()
+ return self.logical_xor(Decimal((0,(1,)*context.prec,0)), context)
+
+ def logical_or(self, other, context=None):
+ """Applies an 'or' operation between self and other's digits."""
+ if context is None:
+ context = getcontext()
+ if not self._islogical() or not other._islogical():
+ return context._raise_error(InvalidOperation)
+
+ # fill to context.prec
+ (opa, opb) = self._fill_logical(context, self._int, other._int)
+
+ # make the operation, and clean starting zeroes
+ result = [a|b for a,b in zip(opa,opb)]
+ for i,d in enumerate(result):
+ if d == 1:
+ break
+ result = tuple(result[i:])
+
+ # if empty, we must have at least a zero
+ if not result:
+ result = (0,)
+ return Decimal((0, result, 0))
+
+ def logical_xor(self, other, context=None):
+ """Applies an 'xor' operation between self and other's digits."""
+ if context is None:
+ context = getcontext()
+ if not self._islogical() or not other._islogical():
+ return context._raise_error(InvalidOperation)
+
+ # fill to context.prec
+ (opa, opb) = self._fill_logical(context, self._int, other._int)
+
+ # make the operation, and clean starting zeroes
+ result = [a^b for a,b in zip(opa,opb)]
+ for i,d in enumerate(result):
+ if d == 1:
+ break
+ result = tuple(result[i:])
+
+ # if empty, we must have at least a zero
+ if not result:
+ result = (0,)
+ return Decimal((0, result, 0))
+
+ def max_mag(self, other, context=None):
+ """Compares the values numerically with their sign ignored."""
+ other = _convert_other(other, raiseit=True)
+
+ if self._is_special or other._is_special:
+ # If one operand is a quiet NaN and the other is number, then the
+ # number is always returned
+ sn = self._isnan()
+ on = other._isnan()
+ if sn or on:
+ if on == 1 and sn != 2:
+ return self
+ if sn == 1 and on != 2:
+ return other
+ return self._check_nans(other, context)
+
+ c = self.copy_abs().__cmp__(other.copy_abs())
+ if c == 0:
+ c = self.compare_total(other)
+
+ if c == -1:
+ ans = other
+ else:
+ ans = self
+
+ if context is None:
+ context = getcontext()
+ if context._rounding_decision == ALWAYS_ROUND:
+ return ans._fix(context)
+ return ans
+
+ def min_mag(self, other, context=None):
+ """Compares the values numerically with their sign ignored."""
+ other = _convert_other(other, raiseit=True)
+
+ if self._is_special or other._is_special:
+ # If one operand is a quiet NaN and the other is number, then the
+ # number is always returned
+ sn = self._isnan()
+ on = other._isnan()
+ if sn or on:
+ if on == 1 and sn != 2:
+ return self
+ if sn == 1 and on != 2:
+ return other
+ return self._check_nans(other, context)
+
+ c = self.copy_abs().__cmp__(other.copy_abs())
+ if c == 0:
+ c = self.compare_total(other)
+
+ if c == -1:
+ ans = self
+ else:
+ ans = other
+
+ if context is None:
+ context = getcontext()
+ if context._rounding_decision == ALWAYS_ROUND:
+ return ans._fix(context)
+ return ans
+
+ def next_minus(self, context=None):
+ """Returns the largest representable number smaller than itself."""
+ if context is None:
+ context = getcontext()
+
+ ans = self._check_nans(context=context)
+ if ans:
+ return ans
+
+ if self._isinfinity() == -1:
+ return negInf
+ if self._isinfinity() == 1:
+ return Decimal((0, (9,)*context.prec, context.Etop()))
+
+ context = context.copy()
+ context._set_rounding(ROUND_FLOOR)
+ context._ignore_all_flags()
+ new_self = self._fix(context)
+ if new_self != self:
+ return new_self
+ return self.__sub__(Decimal((0, (1,), context.Etiny()-1)), context)
+
+ def next_plus(self, context=None):
+ """Returns the smallest representable number larger than itself."""
+ if context is None:
+ context = getcontext()
+
+ ans = self._check_nans(context=context)
+ if ans:
+ return ans
+
+ if self._isinfinity() == 1:
+ return Inf
+ if self._isinfinity() == -1:
+ return Decimal((1, (9,)*context.prec, context.Etop()))
+
+ context = context.copy()
+ context._set_rounding(ROUND_CEILING)
+ context._ignore_all_flags()
+ new_self = self._fix(context)
+ if new_self != self:
+ return new_self
+ return self.__add__(Decimal((0, (1,), context.Etiny()-1)), context)
+
+ def next_toward(self, other, context=None):
+ """Returns the number closest to self, in the direction towards other.
+
+ The result is the closest representable number to self
+ (excluding self) that is in the direction towards other,
+ unless both have the same value. If the two operands are
+ numerically equal, then the result is a copy of self with the
+ sign set to be the same as the sign of other.
+ """
+ other = _convert_other(other, raiseit=True)
+
+ if context is None:
+ context = getcontext()
+
+ ans = self._check_nans(other, context)
+ if ans:
+ return ans
+
+ comparison = self.__cmp__(other)
+ if comparison == 0:
+ return Decimal((other._sign, self._int, self._exp))
+
+ if comparison == -1:
+ ans = self.next_plus(context)
+ else: # comparison == 1
+ ans = self.next_minus(context)
+
+ # decide which flags to raise using value of ans
+ if ans._isinfinity():
+ context._raise_error(Overflow,
+ 'Infinite result from next_toward',
+ ans._sign)
+ context._raise_error(Rounded)
+ context._raise_error(Inexact)
+ elif ans.adjusted() < context.Emin:
+ context._raise_error(Underflow)
+ context._raise_error(Subnormal)
+ context._raise_error(Rounded)
+ context._raise_error(Inexact)
+ # if precision == 1 then we don't raise Clamped for a
+ # result 0E-Etiny.
+ if not ans:
+ context._raise_error(Clamped)
+
+ return ans
+
+ def number_class(self, context=None):
+ """Returns an indication of the class of self.
+
+ The class is one of the following strings:
+ -sNaN
+ -NaN
+ -Infinity
+ -Normal
+ -Subnormal
+ -Zero
+ +Zero
+ +Subnormal
+ +Normal
+ +Infinity
+ """
+ if self.is_snan():
+ return "sNaN"
+ if self.is_qnan():
+ return "NaN"
+ inf = self._isinfinity()
+ if inf == 1:
+ return "+Infinity"
+ if inf == -1:
+ return "-Infinity"
+ if self.is_zero():
+ if self._sign:
+ return "-Zero"
+ else:
+ return "+Zero"
+ if context is None:
+ context = getcontext()
+ if self.is_subnormal(context=context):
+ if self._sign:
+ return "-Subnormal"
+ else:
+ return "+Subnormal"
+ # just a normal, regular, boring number, :)
+ if self._sign:
+ return "-Normal"
+ else:
+ return "+Normal"
+
+ def radix(self):
+ """Just returns 10, as this is Decimal, :)"""
+ return Decimal(10)
+
+ def rotate(self, other, context=None):
+ """Returns a rotated copy of self, value-of-other times."""
+ if context is None:
+ context = getcontext()
+
+ ans = self._check_nans(other, context)
+ if ans:
+ return ans
+
+ if other._exp != 0:
+ return context._raise_error(InvalidOperation)
+ if not (-context.prec <= int(other) <= context.prec):
+ return context._raise_error(InvalidOperation)
+
+ if self._isinfinity():
+ return self
+
+ # get values, pad if necessary
+ torot = int(other)
+ rotdig = self._int
+ topad = context.prec - len(rotdig)
+ if topad:
+ rotdig = ((0,)*topad) + rotdig
+
+ # let's rotate!
+ rotated = rotdig[torot:] + rotdig[:torot]
+
+ # clean starting zeroes
+ for i,d in enumerate(rotated):
+ if d != 0:
+ break
+ rotated = rotated[i:]
+
+ return Decimal((self._sign, rotated, self._exp))
+
+
+ def scaleb (self, other, context=None):
+ """Returns self operand after adding the second value to its exp."""
+ if context is None:
+ context = getcontext()
+
+ ans = self._check_nans(other, context)
+ if ans:
+ return ans
+
+ if other._exp != 0:
+ return context._raise_error(InvalidOperation)
+ liminf = -2 * (context.Emax + context.prec)
+ limsup = 2 * (context.Emax + context.prec)
+ if not (liminf <= int(other) <= limsup):
+ return context._raise_error(InvalidOperation)
+
+ if self._isinfinity():
+ return self
+
+ d = Decimal((self._sign, self._int, self._exp + int(other)))
+ d = d._fix(context)
+ return d
+
+ def shift(self, other, context=None):
+ """Returns a shifted copy of self, value-of-other times."""
+ if context is None:
+ context = getcontext()
+
+ ans = self._check_nans(other, context)
+ if ans:
+ return ans
+
+ if other._exp != 0:
+ return context._raise_error(InvalidOperation)
+ if not (-context.prec <= int(other) <= context.prec):
+ return context._raise_error(InvalidOperation)
+
+ if self._isinfinity():
+ return self
+
+ # get values, pad if necessary
+ torot = int(other)
+ if not torot:
+ return self
+ rotdig = self._int
+ topad = context.prec - len(rotdig)
+ if topad:
+ rotdig = ((0,)*topad) + rotdig
+
+ # let's shift!
+ if torot < 0:
+ rotated = rotdig[:torot]
+ else:
+ rotated = (rotdig + ((0,) * torot))
+ rotated = rotated[-context.prec:]
+
+ # clean starting zeroes
+ if rotated:
+ for i,d in enumerate(rotated):
+ if d != 0:
+ break
+ rotated = rotated[i:]
+ else:
+ rotated = (0,)
+
+ return Decimal((self._sign, rotated, self._exp))
+
+
# Support for pickling, copy, and deepcopy
def __reduce__(self):
return (self.__class__, (str(self),))
@@ -2407,6 +3588,9 @@ class Context(object):
def create_decimal(self, num='0'):
"""Creates a new Decimal instance but using self as context."""
d = Decimal(num, context=self)
+ if d._isnan() and len(d._int) > self.prec - self._clamp:
+ return self._raise_error(ConversionSyntax,
+ "diagnostic info too long in NaN")
return d._fix(self)
# Methods
@@ -2441,6 +3625,17 @@ class Context(object):
def _apply(self, a):
return str(a._fix(self))
+ def canonical(self, a):
+ """Returns the same Decimal object.
+
+ As we do not have different encodings for the same number, the
+ received object already is in its canonical form.
+
+ >>> ExtendedContext.canonical(Decimal('2.50'))
+ Decimal("2.50")
+ """
+ return a.canonical(context=self)
+
def compare(self, a, b):
"""Compares values numerically.
@@ -2470,6 +3665,110 @@ class Context(object):
"""
return a.compare(b, context=self)
+ def compare_signal(self, a, b):
+ """Compares the values of the two operands numerically.
+
+ It's pretty much like compare(), but all NaNs signal, with signaling
+ NaNs taking precedence over quiet NaNs.
+
+ >>> c = ExtendedContext
+ >>> c.compare_signal(Decimal('2.1'), Decimal('3'))
+ Decimal("-1")
+ >>> c.compare_signal(Decimal('2.1'), Decimal('2.1'))
+ Decimal("0")
+ >>> c.flags[InvalidOperation] = 0
+ >>> print c.flags[InvalidOperation]
+ 0
+ >>> c.compare_signal(Decimal('NaN'), Decimal('2.1'))
+ Decimal("NaN")
+ >>> print c.flags[InvalidOperation]
+ 1
+ >>> c.flags[InvalidOperation] = 0
+ >>> print c.flags[InvalidOperation]
+ 0
+ >>> c.compare_signal(Decimal('sNaN'), Decimal('2.1'))
+ Decimal("NaN")
+ >>> print c.flags[InvalidOperation]
+ 1
+ """
+ return a.compare_signal(b, context=self)
+
+ def compare_total(self, a, b):
+ """Compares two operands using their abstract representation.
+
+ This is not like the standard compare, which use their numerical
+ value. Note that a total ordering is defined for all possible abstract
+ representations.
+
+ >>> ExtendedContext.compare_total(Decimal('12.73'), Decimal('127.9'))
+ Decimal("-1")
+ >>> ExtendedContext.compare_total(Decimal('-127'), Decimal('12'))
+ Decimal("-1")
+ >>> ExtendedContext.compare_total(Decimal('12.30'), Decimal('12.3'))
+ Decimal("-1")
+ >>> ExtendedContext.compare_total(Decimal('12.30'), Decimal('12.30'))
+ Decimal("0")
+ >>> ExtendedContext.compare_total(Decimal('12.3'), Decimal('12.300'))
+ Decimal("1")
+ >>> ExtendedContext.compare_total(Decimal('12.3'), Decimal('NaN'))
+ Decimal("-1")
+ """
+ return a.compare_total(b)
+
+ def compare_total_mag(self, a, b):
+ """Compares two operands using their abstract representation ignoring sign.
+
+ Like compare_total, but with operand's sign ignored and assumed to be 0.
+ """
+ return a.compare_total_mag(b)
+
+ def copy_abs(self, a):
+ """Returns a copy of the operand with the sign set to 0.
+
+ >>> ExtendedContext.copy_abs(Decimal('2.1'))
+ Decimal("2.1")
+ >>> ExtendedContext.copy_abs(Decimal('-100'))
+ Decimal("100")
+ """
+ return a.copy_abs()
+
+ def copy_decimal(self, a):
+ """Returns a copy of the decimal objet.
+
+ >>> ExtendedContext.copy_decimal(Decimal('2.1'))
+ Decimal("2.1")
+ >>> ExtendedContext.copy_decimal(Decimal('-1.00'))
+ Decimal("-1.00")
+ """
+ return a
+
+ def copy_negate(self, a):
+ """Returns a copy of the operand with the sign inverted.
+
+ >>> ExtendedContext.copy_negate(Decimal('101.5'))
+ Decimal("-101.5")
+ >>> ExtendedContext.copy_negate(Decimal('-101.5'))
+ Decimal("101.5")
+ """
+ return a.copy_negate()
+
+ def copy_sign(self, a, b):
+ """Copies the second operand's sign to the first one.
+
+ In detail, it returns a copy of the first operand with the sign
+ equal to the sign of the second operand.
+
+ >>> ExtendedContext.copy_sign(Decimal( '1.50'), Decimal('7.33'))
+ Decimal("1.50")
+ >>> ExtendedContext.copy_sign(Decimal('-1.50'), Decimal('7.33'))
+ Decimal("1.50")
+ >>> ExtendedContext.copy_sign(Decimal( '1.50'), Decimal('-7.33'))
+ Decimal("-1.50")
+ >>> ExtendedContext.copy_sign(Decimal('-1.50'), Decimal('-7.33'))
+ Decimal("-1.50")
+ """
+ return a.copy_sign(b)
+
def divide(self, a, b):
"""Decimal division in a specified context.
@@ -2511,6 +3810,316 @@ class Context(object):
def divmod(self, a, b):
return a.__divmod__(b, context=self)
+ def exp(self, a):
+ """Returns e ** a.
+
+ >>> c = ExtendedContext.copy()
+ >>> c.Emin = -999
+ >>> c.Emax = 999
+ >>> c.exp(Decimal('-Infinity'))
+ Decimal("0")
+ >>> c.exp(Decimal('-1'))
+ Decimal("0.367879441")
+ >>> c.exp(Decimal('0'))
+ Decimal("1")
+ >>> c.exp(Decimal('1'))
+ Decimal("2.71828183")
+ >>> c.exp(Decimal('0.693147181'))
+ Decimal("2.00000000")
+ >>> c.exp(Decimal('+Infinity'))
+ Decimal("Infinity")
+ """
+ return a.exp(context=self)
+
+ def fma(self, a, b, c):
+ """Returns a multiplied by b, plus c.
+
+ The first two operands are multiplied together, using multiply,
+ the third operand is then added to the result of that
+ multiplication, using add, all with only one final rounding.
+
+ >>> ExtendedContext.fma(Decimal('3'), Decimal('5'), Decimal('7'))
+ Decimal("22")
+ >>> ExtendedContext.fma(Decimal('3'), Decimal('-5'), Decimal('7'))
+ Decimal("-8")
+ >>> ExtendedContext.fma(Decimal('888565290'), Decimal('1557.96930'), Decimal('-86087.7578'))
+ Decimal("1.38435736E+12")
+ """
+ return a.fma(b, c, context=self)
+
+ def is_canonical(self, a):
+ """Returns 1 if the operand is canonical; otherwise returns 0.
+
+ >>> ExtendedContext.is_canonical(Decimal('2.50'))
+ Decimal("1")
+ """
+ return Dec_p1
+
+ def is_finite(self, a):
+ """Returns 1 if the operand is finite, otherwise returns 0.
+
+ For it to be finite, it must be neither infinite nor a NaN.
+
+ >>> ExtendedContext.is_finite(Decimal('2.50'))
+ Decimal("1")
+ >>> ExtendedContext.is_finite(Decimal('-0.3'))
+ Decimal("1")
+ >>> ExtendedContext.is_finite(Decimal('0'))
+ Decimal("1")
+ >>> ExtendedContext.is_finite(Decimal('Inf'))
+ Decimal("0")
+ >>> ExtendedContext.is_finite(Decimal('NaN'))
+ Decimal("0")
+ """
+ return a.is_finite()
+
+ def is_infinite(self, a):
+ """Returns 1 if the operand is an Infinite, otherwise returns 0.
+
+ >>> ExtendedContext.is_infinite(Decimal('2.50'))
+ Decimal("0")
+ >>> ExtendedContext.is_infinite(Decimal('-Inf'))
+ Decimal("1")
+ >>> ExtendedContext.is_infinite(Decimal('NaN'))
+ Decimal("0")
+ """
+ return a.is_infinite()
+
+ def is_nan(self, a):
+ """Returns 1 if the operand is qNaN or sNaN, otherwise returns 0.
+
+ >>> ExtendedContext.is_nan(Decimal('2.50'))
+ Decimal("0")
+ >>> ExtendedContext.is_nan(Decimal('NaN'))
+ Decimal("1")
+ >>> ExtendedContext.is_nan(Decimal('-sNaN'))
+ Decimal("1")
+ """
+ return a.is_nan()
+
+ def is_normal(self, a):
+ """Returns 1 if the operand is a normal number, otherwise returns 0.
+
+ >>> c = ExtendedContext.copy()
+ >>> c.Emin = -999
+ >>> c.Emax = 999
+ >>> c.is_normal(Decimal('2.50'))
+ Decimal("1")
+ >>> c.is_normal(Decimal('0.1E-999'))
+ Decimal("0")
+ >>> c.is_normal(Decimal('0.00'))
+ Decimal("0")
+ >>> c.is_normal(Decimal('-Inf'))
+ Decimal("0")
+ >>> c.is_normal(Decimal('NaN'))
+ Decimal("0")
+ """
+ return a.is_normal(context=self)
+
+ def is_qnan(self, a):
+ """Returns 1 if the operand is a quiet NaN, otherwise returns 0.
+
+ >>> ExtendedContext.is_qnan(Decimal('2.50'))
+ Decimal("0")
+ >>> ExtendedContext.is_qnan(Decimal('NaN'))
+ Decimal("1")
+ >>> ExtendedContext.is_qnan(Decimal('sNaN'))
+ Decimal("0")
+ """
+ return a.is_qnan()
+
+ def is_signed(self, a):
+ """Returns 1 if the operand is negative, otherwise returns 0.
+
+ >>> ExtendedContext.is_signed(Decimal('2.50'))
+ Decimal("0")
+ >>> ExtendedContext.is_signed(Decimal('-12'))
+ Decimal("1")
+ >>> ExtendedContext.is_signed(Decimal('-0'))
+ Decimal("1")
+ """
+ return a.is_signed()
+
+ def is_snan(self, a):
+ """Returns 1 if the operand is a signaling NaN, otherwise returns 0.
+
+ >>> ExtendedContext.is_snan(Decimal('2.50'))
+ Decimal("0")
+ >>> ExtendedContext.is_snan(Decimal('NaN'))
+ Decimal("0")
+ >>> ExtendedContext.is_snan(Decimal('sNaN'))
+ Decimal("1")
+ """
+ return a.is_snan()
+
+ def is_subnormal(self, a):
+ """Returns 1 if the operand is subnormal, otherwise returns 0.
+
+ >>> c = ExtendedContext.copy()
+ >>> c.Emin = -999
+ >>> c.Emax = 999
+ >>> c.is_subnormal(Decimal('2.50'))
+ Decimal("0")
+ >>> c.is_subnormal(Decimal('0.1E-999'))
+ Decimal("1")
+ >>> c.is_subnormal(Decimal('0.00'))
+ Decimal("0")
+ >>> c.is_subnormal(Decimal('-Inf'))
+ Decimal("0")
+ >>> c.is_subnormal(Decimal('NaN'))
+ Decimal("0")
+ """
+ return a.is_subnormal(context=self)
+
+ def is_zero(self, a):
+ """Returns 1 if the operand is a zero, otherwise returns 0.
+
+ >>> ExtendedContext.is_zero(Decimal('0'))
+ Decimal("1")
+ >>> ExtendedContext.is_zero(Decimal('2.50'))
+ Decimal("0")
+ >>> ExtendedContext.is_zero(Decimal('-0E+2'))
+ Decimal("1")
+ """
+ return a.is_zero()
+
+ def ln(self, a):
+ """Returns the natural (base e) logarithm of the operand.
+
+ >>> c = ExtendedContext.copy()
+ >>> c.Emin = -999
+ >>> c.Emax = 999
+ >>> c.ln(Decimal('0'))
+ Decimal("-Infinity")
+ >>> c.ln(Decimal('1.000'))
+ Decimal("0")
+ >>> c.ln(Decimal('2.71828183'))
+ Decimal("1.00000000")
+ >>> c.ln(Decimal('10'))
+ Decimal("2.30258509")
+ >>> c.ln(Decimal('+Infinity'))
+ Decimal("Infinity")
+ """
+ return a.ln(context=self)
+
+ def log10(self, a):
+ """Returns the base 10 logarithm of the operand.
+
+ >>> c = ExtendedContext.copy()
+ >>> c.Emin = -999
+ >>> c.Emax = 999
+ >>> c.log10(Decimal('0'))
+ Decimal("-Infinity")
+ >>> c.log10(Decimal('0.001'))
+ Decimal("-3")
+ >>> c.log10(Decimal('1.000'))
+ Decimal("0")
+ >>> c.log10(Decimal('2'))
+ Decimal("0.301029996")
+ >>> c.log10(Decimal('10'))
+ Decimal("1")
+ >>> c.log10(Decimal('70'))
+ Decimal("1.84509804")
+ >>> c.log10(Decimal('+Infinity'))
+ Decimal("Infinity")
+ """
+ return a.log10(context=self)
+
+ def logb(self, a):
+ """ Returns the exponent of the magnitude of the operand's MSD.
+
+ The result is the integer which is the exponent of the magnitude
+ of the most significant digit of the operand (as though the
+ operand were truncated to a single digit while maintaining the
+ value of that digit and without limiting the resulting exponent).
+
+ >>> ExtendedContext.logb(Decimal('250'))
+ Decimal("2")
+ >>> ExtendedContext.logb(Decimal('2.50'))
+ Decimal("0")
+ >>> ExtendedContext.logb(Decimal('0.03'))
+ Decimal("-2")
+ >>> ExtendedContext.logb(Decimal('0'))
+ Decimal("-Infinity")
+ """
+ return a.logb(context=self)
+
+ def logical_and(self, a, b):
+ """Applies the logical operation 'and' between each operand's digits.
+
+ The operands must be both logical numbers.
+
+ >>> ExtendedContext.logical_and(Decimal('0'), Decimal('0'))
+ Decimal("0")
+ >>> ExtendedContext.logical_and(Decimal('0'), Decimal('1'))
+ Decimal("0")
+ >>> ExtendedContext.logical_and(Decimal('1'), Decimal('0'))
+ Decimal("0")
+ >>> ExtendedContext.logical_and(Decimal('1'), Decimal('1'))
+ Decimal("1")
+ >>> ExtendedContext.logical_and(Decimal('1100'), Decimal('1010'))
+ Decimal("1000")
+ >>> ExtendedContext.logical_and(Decimal('1111'), Decimal('10'))
+ Decimal("10")
+ """
+ return a.logical_and(b, context=self)
+
+ def logical_invert(self, a):
+ """Invert all the digits in the operand.
+
+ The operand must be a logical number.
+
+ >>> ExtendedContext.logical_invert(Decimal('0'))
+ Decimal("111111111")
+ >>> ExtendedContext.logical_invert(Decimal('1'))
+ Decimal("111111110")
+ >>> ExtendedContext.logical_invert(Decimal('111111111'))
+ Decimal("0")
+ >>> ExtendedContext.logical_invert(Decimal('101010101'))
+ Decimal("10101010")
+ """
+ return a.logical_invert(context=self)
+
+ def logical_or(self, a, b):
+ """Applies the logical operation 'or' between each operand's digits.
+
+ The operands must be both logical numbers.
+
+ >>> ExtendedContext.logical_or(Decimal('0'), Decimal('0'))
+ Decimal("0")
+ >>> ExtendedContext.logical_or(Decimal('0'), Decimal('1'))
+ Decimal("1")
+ >>> ExtendedContext.logical_or(Decimal('1'), Decimal('0'))
+ Decimal("1")
+ >>> ExtendedContext.logical_or(Decimal('1'), Decimal('1'))
+ Decimal("1")
+ >>> ExtendedContext.logical_or(Decimal('1100'), Decimal('1010'))
+ Decimal("1110")
+ >>> ExtendedContext.logical_or(Decimal('1110'), Decimal('10'))
+ Decimal("1110")
+ """
+ return a.logical_or(b, context=self)
+
+ def logical_xor(self, a, b):
+ """Applies the logical operation 'xor' between each operand's digits.
+
+ The operands must be both logical numbers.
+
+ >>> ExtendedContext.logical_xor(Decimal('0'), Decimal('0'))
+ Decimal("0")
+ >>> ExtendedContext.logical_xor(Decimal('0'), Decimal('1'))
+ Decimal("1")
+ >>> ExtendedContext.logical_xor(Decimal('1'), Decimal('0'))
+ Decimal("1")
+ >>> ExtendedContext.logical_xor(Decimal('1'), Decimal('1'))
+ Decimal("0")
+ >>> ExtendedContext.logical_xor(Decimal('1100'), Decimal('1010'))
+ Decimal("110")
+ >>> ExtendedContext.logical_xor(Decimal('1111'), Decimal('10'))
+ Decimal("1101")
+ """
+ return a.logical_xor(b, context=self)
+
def max(self, a,b):
"""max compares two values numerically and returns the maximum.
@@ -2531,6 +4140,10 @@ class Context(object):
"""
return a.max(b, context=self)
+ def max_mag(self, a, b):
+ """Compares the values numerically with their sign ignored."""
+ return a.max_mag(b, context=self)
+
def min(self, a,b):
"""min compares two values numerically and returns the minimum.
@@ -2551,6 +4164,10 @@ class Context(object):
"""
return a.min(b, context=self)
+ def min_mag(self, a, b):
+ """Compares the values numerically with their sign ignored."""
+ return a.min_mag(b, context=self)
+
def minus(self, a):
"""Minus corresponds to unary prefix minus in Python.
@@ -2586,6 +4203,68 @@ class Context(object):
"""
return a.__mul__(b, context=self)
+ def next_minus(self, a):
+ """Returns the largest representable number smaller than a.
+
+ >>> c = ExtendedContext.copy()
+ >>> c.Emin = -999
+ >>> c.Emax = 999
+ >>> ExtendedContext.next_minus(Decimal('1'))
+ Decimal("0.999999999")
+ >>> c.next_minus(Decimal('1E-1007'))
+ Decimal("0E-1007")
+ >>> ExtendedContext.next_minus(Decimal('-1.00000003'))
+ Decimal("-1.00000004")
+ >>> c.next_minus(Decimal('Infinity'))
+ Decimal("9.99999999E+999")
+ """
+ return a.next_minus(context=self)
+
+ def next_plus(self, a):
+ """Returns the smallest representable number larger than a.
+
+ >>> c = ExtendedContext.copy()
+ >>> c.Emin = -999
+ >>> c.Emax = 999
+ >>> ExtendedContext.next_plus(Decimal('1'))
+ Decimal("1.00000001")
+ >>> c.next_plus(Decimal('-1E-1007'))
+ Decimal("-0E-1007")
+ >>> ExtendedContext.next_plus(Decimal('-1.00000003'))
+ Decimal("-1.00000002")
+ >>> c.next_plus(Decimal('-Infinity'))
+ Decimal("-9.99999999E+999")
+ """
+ return a.next_plus(context=self)
+
+ def next_toward(self, a, b):
+ """Returns the number closest to a, in direction towards b.
+
+ The result is the closest representable number from the first
+ operand (but not the first operand) that is in the direction
+ towards the second operand, unless the operands have the same
+ value.
+
+ >>> c = ExtendedContext.copy()
+ >>> c.Emin = -999
+ >>> c.Emax = 999
+ >>> c.next_toward(Decimal('1'), Decimal('2'))
+ Decimal("1.00000001")
+ >>> c.next_toward(Decimal('-1E-1007'), Decimal('1'))
+ Decimal("-0E-1007")
+ >>> c.next_toward(Decimal('-1.00000003'), Decimal('0'))
+ Decimal("-1.00000002")
+ >>> c.next_toward(Decimal('1'), Decimal('0'))
+ Decimal("0.999999999")
+ >>> c.next_toward(Decimal('1E-1007'), Decimal('-100'))
+ Decimal("0E-1007")
+ >>> c.next_toward(Decimal('-1.00000003'), Decimal('-10'))
+ Decimal("-1.00000004")
+ >>> c.next_toward(Decimal('0.00'), Decimal('-0.0000'))
+ Decimal("-0.00")
+ """
+ return a.next_toward(b, context=self)
+
def normalize(self, a):
"""normalize reduces an operand to its simplest form.
@@ -2607,6 +4286,53 @@ class Context(object):
"""
return a.normalize(context=self)
+ def number_class(self, a):
+ """Returns an indication of the class of the operand.
+
+ The class is one of the following strings:
+ -sNaN
+ -NaN
+ -Infinity
+ -Normal
+ -Subnormal
+ -Zero
+ +Zero
+ +Subnormal
+ +Normal
+ +Infinity
+
+ >>> c = Context(ExtendedContext)
+ >>> c.Emin = -999
+ >>> c.Emax = 999
+ >>> c.number_class(Decimal('Infinity'))
+ '+Infinity'
+ >>> c.number_class(Decimal('1E-10'))
+ '+Normal'
+ >>> c.number_class(Decimal('2.50'))
+ '+Normal'
+ >>> c.number_class(Decimal('0.1E-999'))
+ '+Subnormal'
+ >>> c.number_class(Decimal('0'))
+ '+Zero'
+ >>> c.number_class(Decimal('-0'))
+ '-Zero'
+ >>> c.number_class(Decimal('-0.1E-999'))
+ '-Subnormal'
+ >>> c.number_class(Decimal('-1E-10'))
+ '-Normal'
+ >>> c.number_class(Decimal('-2.50'))
+ '-Normal'
+ >>> c.number_class(Decimal('-Infinity'))
+ '-Infinity'
+ >>> c.number_class(Decimal('NaN'))
+ 'NaN'
+ >>> c.number_class(Decimal('-NaN'))
+ 'NaN'
+ >>> c.number_class(Decimal('sNaN'))
+ 'sNaN'
+ """
+ return a.number_class(context=self)
+
def plus(self, a):
"""Plus corresponds to unary prefix plus in Python.
@@ -2624,49 +4350,69 @@ class Context(object):
def power(self, a, b, modulo=None):
"""Raises a to the power of b, to modulo if given.
- The right-hand operand must be a whole number whose integer part (after
- any exponent has been applied) has no more than 9 digits and whose
- fractional part (if any) is all zeros before any rounding. The operand
- may be positive, negative, or zero; if negative, the absolute value of
- the power is used, and the left-hand operand is inverted (divided into
- 1) before use.
-
- If the increased precision needed for the intermediate calculations
- exceeds the capabilities of the implementation then an Invalid
- operation condition is raised.
-
- If, when raising to a negative power, an underflow occurs during the
- division into 1, the operation is not halted at that point but
- continues.
-
- >>> ExtendedContext.power(Decimal('2'), Decimal('3'))
+ With two arguments, compute a**b. If a is negative then b
+ must be integral. The result will be inexact unless b is
+ integral and the result is finite and can be expressed exactly
+ in 'precision' digits.
+
+ With three arguments, compute (a**b) % modulo. For the
+ three argument form, the following restrictions on the
+ arguments hold:
+
+ - all three arguments must be integral
+ - b must be nonnegative
+ - at least one of a or b must be nonzero
+ - modulo must be nonzero and have at most 'precision' digits
+
+ The result of pow(a, b, modulo) is identical to the result
+ that would be obtained by computing (a**b) % modulo with
+ unbounded precision, but is computed more efficiently. It is
+ always exact.
+
+ >>> c = ExtendedContext.copy()
+ >>> c.Emin = -999
+ >>> c.Emax = 999
+ >>> c.power(Decimal('2'), Decimal('3'))
Decimal("8")
- >>> ExtendedContext.power(Decimal('2'), Decimal('-3'))
+ >>> c.power(Decimal('-2'), Decimal('3'))
+ Decimal("-8")
+ >>> c.power(Decimal('2'), Decimal('-3'))
Decimal("0.125")
- >>> ExtendedContext.power(Decimal('1.7'), Decimal('8'))
+ >>> c.power(Decimal('1.7'), Decimal('8'))
Decimal("69.7575744")
- >>> ExtendedContext.power(Decimal('Infinity'), Decimal('-2'))
- Decimal("0")
- >>> ExtendedContext.power(Decimal('Infinity'), Decimal('-1'))
+ >>> c.power(Decimal('10'), Decimal('0.301029996'))
+ Decimal("2.00000000")
+ >>> c.power(Decimal('Infinity'), Decimal('-1'))
Decimal("0")
- >>> ExtendedContext.power(Decimal('Infinity'), Decimal('0'))
+ >>> c.power(Decimal('Infinity'), Decimal('0'))
Decimal("1")
- >>> ExtendedContext.power(Decimal('Infinity'), Decimal('1'))
+ >>> c.power(Decimal('Infinity'), Decimal('1'))
Decimal("Infinity")
- >>> ExtendedContext.power(Decimal('Infinity'), Decimal('2'))
- Decimal("Infinity")
- >>> ExtendedContext.power(Decimal('-Infinity'), Decimal('-2'))
- Decimal("0")
- >>> ExtendedContext.power(Decimal('-Infinity'), Decimal('-1'))
+ >>> c.power(Decimal('-Infinity'), Decimal('-1'))
Decimal("-0")
- >>> ExtendedContext.power(Decimal('-Infinity'), Decimal('0'))
+ >>> c.power(Decimal('-Infinity'), Decimal('0'))
Decimal("1")
- >>> ExtendedContext.power(Decimal('-Infinity'), Decimal('1'))
+ >>> c.power(Decimal('-Infinity'), Decimal('1'))
Decimal("-Infinity")
- >>> ExtendedContext.power(Decimal('-Infinity'), Decimal('2'))
+ >>> c.power(Decimal('-Infinity'), Decimal('2'))
Decimal("Infinity")
- >>> ExtendedContext.power(Decimal('0'), Decimal('0'))
+ >>> c.power(Decimal('0'), Decimal('0'))
Decimal("NaN")
+
+ >>> c.power(Decimal('3'), Decimal('7'), Decimal('16'))
+ Decimal("11")
+ >>> c.power(Decimal('-3'), Decimal('7'), Decimal('16'))
+ Decimal("-11")
+ >>> c.power(Decimal('-3'), Decimal('8'), Decimal('16'))
+ Decimal("1")
+ >>> c.power(Decimal('3'), Decimal('7'), Decimal('-16'))
+ Decimal("11")
+ >>> c.power(Decimal('23E12345'), Decimal('67E189'), Decimal('123456789'))
+ Decimal("11729830")
+ >>> c.power(Decimal('-0'), Decimal('17'), Decimal('1729'))
+ Decimal("-0")
+ >>> c.power(Decimal('-23'), Decimal('0'), Decimal('65537'))
+ Decimal("1")
"""
return a.__pow__(b, modulo, context=self)
@@ -2721,6 +4467,14 @@ class Context(object):
"""
return a.quantize(b, context=self)
+ def radix(self):
+ """Just returns 10, as this is Decimal, :)
+
+ >>> ExtendedContext.radix()
+ Decimal("10")
+ """
+ return Decimal(10)
+
def remainder(self, a, b):
"""Returns the remainder from integer division.
@@ -2775,6 +4529,28 @@ class Context(object):
"""
return a.remainder_near(b, context=self)
+ def rotate(self, a, b):
+ """Returns a rotated copy of a, b times.
+
+ The coefficient of the result is a rotated copy of the digits in
+ the coefficient of the first operand. The number of places of
+ rotation is taken from the absolute value of the second operand,
+ with the rotation being to the left if the second operand is
+ positive or to the right otherwise.
+
+ >>> ExtendedContext.rotate(Decimal('34'), Decimal('8'))
+ Decimal("400000003")
+ >>> ExtendedContext.rotate(Decimal('12'), Decimal('9'))
+ Decimal("12")
+ >>> ExtendedContext.rotate(Decimal('123456789'), Decimal('-2'))
+ Decimal("891234567")
+ >>> ExtendedContext.rotate(Decimal('123456789'), Decimal('0'))
+ Decimal("123456789")
+ >>> ExtendedContext.rotate(Decimal('123456789'), Decimal('+2'))
+ Decimal("345678912")
+ """
+ return a.rotate(b, context=self)
+
def same_quantum(self, a, b):
"""Returns True if the two operands have the same exponent.
@@ -2792,6 +4568,41 @@ class Context(object):
"""
return a.same_quantum(b)
+ def scaleb (self, a, b):
+ """Returns the first operand after adding the second value its exp.
+
+ >>> ExtendedContext.scaleb(Decimal('7.50'), Decimal('-2'))
+ Decimal("0.0750")
+ >>> ExtendedContext.scaleb(Decimal('7.50'), Decimal('0'))
+ Decimal("7.50")
+ >>> ExtendedContext.scaleb(Decimal('7.50'), Decimal('3'))
+ Decimal("7.50E+3")
+ """
+ return a.scaleb (b, context=self)
+
+ def shift(self, a, b):
+ """Returns a shifted copy of a, b times.
+
+ The coefficient of the result is a shifted copy of the digits
+ in the coefficient of the first operand. The number of places
+ to shift is taken from the absolute value of the second operand,
+ with the shift being to the left if the second operand is
+ positive or to the right otherwise. Digits shifted into the
+ coefficient are zeros.
+
+ >>> ExtendedContext.shift(Decimal('34'), Decimal('8'))
+ Decimal("400000000")
+ >>> ExtendedContext.shift(Decimal('12'), Decimal('9'))
+ Decimal("0")
+ >>> ExtendedContext.shift(Decimal('123456789'), Decimal('-2'))
+ Decimal("1234567")
+ >>> ExtendedContext.shift(Decimal('123456789'), Decimal('0'))
+ Decimal("123456789")
+ >>> ExtendedContext.shift(Decimal('123456789'), Decimal('+2'))
+ Decimal("345678900")
+ """
+ return a.shift(b, context=self)
+
def sqrt(self, a):
"""Square root of a non-negative number to context precision.
@@ -2847,7 +4658,36 @@ class Context(object):
"""
return a.__str__(context=self)
- def to_integral(self, a):
+ def to_integral_exact(self, a):
+ """Rounds to an integer.
+
+ When the operand has a negative exponent, the result is the same
+ as using the quantize() operation using the given operand as the
+ left-hand-operand, 1E+0 as the right-hand-operand, and the precision
+ of the operand as the precision setting; Inexact and Rounded flags
+ are allowed in this operation. The rounding mode is taken from the
+ context.
+
+ >>> ExtendedContext.to_integral_exact(Decimal('2.1'))
+ Decimal("2")
+ >>> ExtendedContext.to_integral_exact(Decimal('100'))
+ Decimal("100")
+ >>> ExtendedContext.to_integral_exact(Decimal('100.0'))
+ Decimal("100")
+ >>> ExtendedContext.to_integral_exact(Decimal('101.5'))
+ Decimal("102")
+ >>> ExtendedContext.to_integral_exact(Decimal('-101.5'))
+ Decimal("-102")
+ >>> ExtendedContext.to_integral_exact(Decimal('10E+5'))
+ Decimal("1.0E+6")
+ >>> ExtendedContext.to_integral_exact(Decimal('7.89E+77'))
+ Decimal("7.89E+77")
+ >>> ExtendedContext.to_integral_exact(Decimal('-Inf'))
+ Decimal("-Infinity")
+ """
+ return a.to_integral_exact(context=self)
+
+ def to_integral_value(self, a):
"""Rounds to an integer.
When the operand has a negative exponent, the result is the same
@@ -2856,24 +4696,27 @@ class Context(object):
of the operand as the precision setting, except that no flags will
be set. The rounding mode is taken from the context.
- >>> ExtendedContext.to_integral(Decimal('2.1'))
+ >>> ExtendedContext.to_integral_value(Decimal('2.1'))
Decimal("2")
- >>> ExtendedContext.to_integral(Decimal('100'))
+ >>> ExtendedContext.to_integral_value(Decimal('100'))
Decimal("100")
- >>> ExtendedContext.to_integral(Decimal('100.0'))
+ >>> ExtendedContext.to_integral_value(Decimal('100.0'))
Decimal("100")
- >>> ExtendedContext.to_integral(Decimal('101.5'))
+ >>> ExtendedContext.to_integral_value(Decimal('101.5'))
Decimal("102")
- >>> ExtendedContext.to_integral(Decimal('-101.5'))
+ >>> ExtendedContext.to_integral_value(Decimal('-101.5'))
Decimal("-102")
- >>> ExtendedContext.to_integral(Decimal('10E+5'))
+ >>> ExtendedContext.to_integral_value(Decimal('10E+5'))
Decimal("1.0E+6")
- >>> ExtendedContext.to_integral(Decimal('7.89E+77'))
+ >>> ExtendedContext.to_integral_value(Decimal('7.89E+77'))
Decimal("7.89E+77")
- >>> ExtendedContext.to_integral(Decimal('-Inf'))
+ >>> ExtendedContext.to_integral_value(Decimal('-Inf'))
Decimal("-Infinity")
"""
- return a.to_integral(context=self)
+ return a.to_integral_value(context=self)
+
+ # the method name changed, but we provide also the old one, for compatibility
+ to_integral = to_integral_value
class _WorkRep(object):
__slots__ = ('sign','int','exp')
@@ -2911,39 +4754,28 @@ def _normalize(op1, op2, shouldround = 0, prec = 0):
Done during addition.
"""
- # Yes, the exponent is a long, but the difference between exponents
- # must be an int-- otherwise you'd get a big memory problem.
- numdigits = int(op1.exp - op2.exp)
- if numdigits < 0:
- numdigits = -numdigits
+ if op1.exp < op2.exp:
tmp = op2
other = op1
else:
tmp = op1
other = op2
-
- if shouldround and numdigits > prec + 1:
- # Big difference in exponents - check the adjusted exponents
+ # Let exp = min(tmp.exp - 1, tmp.adjusted() - precision - 1).
+ # Then adding 10**exp to tmp has the same effect (after rounding)
+ # as adding any positive quantity smaller than 10**exp; similarly
+ # for subtraction. So if other is smaller than 10**exp we replace
+ # it with 10**exp. This avoids tmp.exp - other.exp getting too large.
+ if shouldround:
tmp_len = len(str(tmp.int))
other_len = len(str(other.int))
- if numdigits > (other_len + prec + 1 - tmp_len):
- # If the difference in adjusted exps is > prec+1, we know
- # other is insignificant, so might as well put a 1 after the
- # precision (since this is only for addition). Also stops
- # use of massive longs.
-
- extend = prec + 2 - tmp_len
- if extend <= 0:
- extend = 1
- tmp.int *= 10 ** extend
- tmp.exp -= extend
+ exp = tmp.exp + min(-1, tmp_len - prec - 2)
+ if other_len + other.exp - 1 < exp:
other.int = 1
- other.exp = tmp.exp
- return op1, op2
+ other.exp = exp
- tmp.int *= 10 ** numdigits
- tmp.exp -= numdigits
+ tmp.int *= 10 ** (tmp.exp - other.exp)
+ tmp.exp = other.exp
return op1, op2
def _adjust_coefficients(op1, op2):
@@ -2968,9 +4800,315 @@ def _adjust_coefficients(op1, op2):
return op1, op2, adjust
+
+##### Integer arithmetic functions used by ln, log10, exp and __pow__ #####
+
+# This function from Tim Peters was taken from here:
+# http://mail.python.org/pipermail/python-list/1999-July/007758.html
+# The correction being in the function definition is for speed, and
+# the whole function is not resolved with math.log because of avoiding
+# the use of floats.
+def _nbits(n, correction = {
+ '0': 4, '1': 3, '2': 2, '3': 2,
+ '4': 1, '5': 1, '6': 1, '7': 1,
+ '8': 0, '9': 0, 'a': 0, 'b': 0,
+ 'c': 0, 'd': 0, 'e': 0, 'f': 0}):
+ """Number of bits in binary representation of the positive integer n,
+ or 0 if n == 0.
+ """
+ if n < 0:
+ raise ValueError("The argument to _nbits should be nonnegative.")
+ hex_n = "%x" % n
+ return 4*len(hex_n) - correction[hex_n[0]]
+
+def _sqrt_nearest(n, a):
+ """Closest integer to the square root of the positive integer n. a is
+ an initial approximation to the square root. Any positive integer
+ will do for a, but the closer a is to the square root of n the
+ faster convergence will be.
+
+ """
+ if n <= 0 or a <= 0:
+ raise ValueError("Both arguments to _sqrt_nearest should be positive.")
+
+ b=0
+ while a != b:
+ b, a = a, a--n//a>>1
+ return a
+
+def _rshift_nearest(x, shift):
+ """Given an integer x and a nonnegative integer shift, return closest
+ integer to x / 2**shift; use round-to-even in case of a tie.
+
+ """
+ b, q = 1L << shift, x >> shift
+ return q + (2*(x & (b-1)) + (q&1) > b)
+
+def _div_nearest(a, b):
+ """Closest integer to a/b, a and b positive integers; rounds to even
+ in the case of a tie.
+
+ """
+ q, r = divmod(a, b)
+ return q + (2*r + (q&1) > b)
+
+def _ilog(x, M, L = 8):
+ """Integer approximation to M*log(x/M), with absolute error boundable
+ in terms only of x/M.
+
+ Given positive integers x and M, return an integer approximation to
+ M * log(x/M). For L = 8 and 0.1 <= x/M <= 10 the difference
+ between the approximation and the exact result is at most 22. For
+ L = 8 and 1.0 <= x/M <= 10.0 the difference is at most 15. In
+ both cases these are upper bounds on the error; it will usually be
+ much smaller."""
+
+ # The basic algorithm is the following: let log1p be the function
+ # log1p(x) = log(1+x). Then log(x/M) = log1p((x-M)/M). We use
+ # the reduction
+ #
+ # log1p(y) = 2*log1p(y/(1+sqrt(1+y)))
+ #
+ # repeatedly until the argument to log1p is small (< 2**-L in
+ # absolute value). For small y we can use the Taylor series
+ # expansion
+ #
+ # log1p(y) ~ y - y**2/2 + y**3/3 - ... - (-y)**T/T
+ #
+ # truncating at T such that y**T is small enough. The whole
+ # computation is carried out in a form of fixed-point arithmetic,
+ # with a real number z being represented by an integer
+ # approximation to z*M. To avoid loss of precision, the y below
+ # is actually an integer approximation to 2**R*y*M, where R is the
+ # number of reductions performed so far.
+
+ y = x-M
+ # argument reduction; R = number of reductions performed
+ R = 0
+ while (R <= L and long(abs(y)) << L-R >= M or
+ R > L and abs(y) >> R-L >= M):
+ y = _div_nearest(long(M*y) << 1,
+ M + _sqrt_nearest(M*(M+_rshift_nearest(y, R)), M))
+ R += 1
+
+ # Taylor series with T terms
+ T = -int(-10*len(str(M))//(3*L))
+ yshift = _rshift_nearest(y, R)
+ w = _div_nearest(M, T)
+ for k in xrange(T-1, 0, -1):
+ w = _div_nearest(M, k) - _div_nearest(yshift*w, M)
+
+ return _div_nearest(w*y, M)
+
+def _dlog10(c, e, p):
+ """Given integers c, e and p with c > 0, p >= 0, compute an integer
+ approximation to 10**p * log10(c*10**e), with an absolute error of
+ at most 1. Assumes that c*10**e is not exactly 1."""
+
+ # increase precision by 2; compensate for this by dividing
+ # final result by 100
+ p += 2
+
+ # write c*10**e as d*10**f with either:
+ # f >= 0 and 1 <= d <= 10, or
+ # f <= 0 and 0.1 <= d <= 1.
+ # Thus for c*10**e close to 1, f = 0
+ l = len(str(c))
+ f = e+l - (e+l >= 1)
+
+ if p > 0:
+ M = 10**p
+ k = e+p-f
+ if k >= 0:
+ c *= 10**k
+ else:
+ c = _div_nearest(c, 10**-k)
+
+ log_d = _ilog(c, M) # error < 5 + 22 = 27
+ log_10 = _ilog(10*M, M) # error < 15
+ log_d = _div_nearest(log_d*M, log_10)
+ log_tenpower = f*M # exact
+ else:
+ log_d = 0 # error < 2.31
+ log_tenpower = div_nearest(f, 10**-p) # error < 0.5
+
+ return _div_nearest(log_tenpower+log_d, 100)
+
+def _dlog(c, e, p):
+ """Given integers c, e and p with c > 0, compute an integer
+ approximation to 10**p * log(c*10**e), with an absolute error of
+ at most 1. Assumes that c*10**e is not exactly 1."""
+
+ # Increase precision by 2. The precision increase is compensated
+ # for at the end with a division by 100.
+ p += 2
+
+ # rewrite c*10**e as d*10**f with either f >= 0 and 1 <= d <= 10,
+ # or f <= 0 and 0.1 <= d <= 1. Then we can compute 10**p * log(c*10**e)
+ # as 10**p * log(d) + 10**p*f * log(10).
+ l = len(str(c))
+ f = e+l - (e+l >= 1)
+
+ # compute approximation to 10**p*log(d), with error < 27
+ if p > 0:
+ k = e+p-f
+ if k >= 0:
+ c *= 10**k
+ else:
+ c = _div_nearest(c, 10**-k) # error of <= 0.5 in c
+
+ # _ilog magnifies existing error in c by a factor of at most 10
+ log_d = _ilog(c, 10**p) # error < 5 + 22 = 27
+ else:
+ # p <= 0: just approximate the whole thing by 0; error < 2.31
+ log_d = 0
+
+ # compute approximation to 10**p*f*log(10), with error < 17
+ if f:
+ sign_f = [-1, 1][f > 0]
+ if p >= 0:
+ M = 10**p * abs(f)
+ else:
+ M = _div_nearest(abs(f), 10**-p) # M = 10**p*|f|, error <= 0.5
+
+ if M:
+ f_log_ten = sign_f*_ilog(10*M, M) # M*log(10), error <= 1.2 + 15 < 17
+ else:
+ f_log_ten = 0
+ else:
+ f_log_ten = 0
+
+ # error in sum < 17+27 = 44; error after division < 0.44 + 0.5 < 1
+ return _div_nearest(f_log_ten + log_d, 100)
+
+def _iexp(x, M, L=8):
+ """Given integers x and M, M > 0, such that x/M is small in absolute
+ value, compute an integer approximation to M*exp(x/M). For 0 <=
+ x/M <= 2.4, the absolute error in the result is bounded by 60 (and
+ is usually much smaller)."""
+
+ # Algorithm: to compute exp(z) for a real number z, first divide z
+ # by a suitable power R of 2 so that |z/2**R| < 2**-L. Then
+ # compute expm1(z/2**R) = exp(z/2**R) - 1 using the usual Taylor
+ # series
+ #
+ # expm1(x) = x + x**2/2! + x**3/3! + ...
+ #
+ # Now use the identity
+ #
+ # expm1(2x) = expm1(x)*(expm1(x)+2)
+ #
+ # R times to compute the sequence expm1(z/2**R),
+ # expm1(z/2**(R-1)), ... , exp(z/2), exp(z).
+
+ # Find R such that x/2**R/M <= 2**-L
+ R = _nbits((long(x)<<L)//M)
+
+ # Taylor series. (2**L)**T > M
+ T = -int(-10*len(str(M))//(3*L))
+ y = _div_nearest(x, T)
+ Mshift = long(M)<<R
+ for i in xrange(T-1, 0, -1):
+ y = _div_nearest(x*(Mshift + y), Mshift * i)
+
+ # Expansion
+ for k in xrange(R-1, -1, -1):
+ Mshift = long(M)<<(k+2)
+ y = _div_nearest(y*(y+Mshift), Mshift)
+
+ return M+y
+
+def _dexp(c, e, p):
+ """Compute an approximation to exp(c*10**e), with p decimal places of
+ precision.
+
+ Returns d, f such that:
+
+ 10**(p-1) <= d <= 10**p, and
+ (d-1)*10**f < exp(c*10**e) < (d+1)*10**f
+
+ In other words, d*10**f is an approximation to exp(c*10**e) with p
+ digits of precision, and with an error in d of at most 1. This is
+ almost, but not quite, the same as the error being < 1ulp: when d
+ = 10**(p-1) the error could be up to 10 ulp."""
+
+ # we'll call iexp with M = 10**(p+2), giving p+3 digits of precision
+ p += 2
+
+ # compute log10 with extra precision = adjusted exponent of c*10**e
+ extra = max(0, e + len(str(c)) - 1)
+ q = p + extra
+ log10 = _dlog(10, 0, q) # error <= 1
+
+ # compute quotient c*10**e/(log10/10**q) = c*10**(e+q)/log10,
+ # rounding down
+ shift = e+q
+ if shift >= 0:
+ cshift = c*10**shift
+ else:
+ cshift = c//10**-shift
+ quot, rem = divmod(cshift, log10)
+
+ # reduce remainder back to original precision
+ rem = _div_nearest(rem, 10**extra)
+
+ # error in result of _iexp < 120; error after division < 0.62
+ return _div_nearest(_iexp(rem, 10**p), 1000), quot - p + 3
+
+def _dpower(xc, xe, yc, ye, p):
+ """Given integers xc, xe, yc and ye representing Decimals x = xc*10**xe and
+ y = yc*10**ye, compute x**y. Returns a pair of integers (c, e) such that:
+
+ 10**(p-1) <= c <= 10**p, and
+ (c-1)*10**e < x**y < (c+1)*10**e
+
+ in other words, c*10**e is an approximation to x**y with p digits
+ of precision, and with an error in c of at most 1. (This is
+ almost, but not quite, the same as the error being < 1ulp: when c
+ == 10**(p-1) we can only guarantee error < 10ulp.)
+
+ We assume that: x is positive and not equal to 1, and y is nonzero.
+ """
+
+ # Find b such that 10**(b-1) <= |y| <= 10**b
+ b = len(str(abs(yc))) + ye
+
+ # log(x) = lxc*10**(-p-b-1), to p+b+1 places after the decimal point
+ lxc = _dlog(xc, xe, p+b+1)
+
+ # compute product y*log(x) = yc*lxc*10**(-p-b-1+ye) = pc*10**(-p-1)
+ shift = ye-b
+ if shift >= 0:
+ pc = lxc*yc*10**shift
+ else:
+ pc = _div_nearest(lxc*yc, 10**-shift)
+
+ if pc == 0:
+ # we prefer a result that isn't exactly 1; this makes it
+ # easier to compute a correctly rounded result in __pow__
+ if ((len(str(xc)) + xe >= 1) == (yc > 0)): # if x**y > 1:
+ coeff, exp = 10**(p-1)+1, 1-p
+ else:
+ coeff, exp = 10**p-1, -p
+ else:
+ coeff, exp = _dexp(pc, -(p+1), p+1)
+ coeff = _div_nearest(coeff, 10)
+ exp += 1
+
+ return coeff, exp
+
+def _log10_lb(c, correction = {
+ '1': 100, '2': 70, '3': 53, '4': 40, '5': 31,
+ '6': 23, '7': 16, '8': 10, '9': 5}):
+ """Compute a lower bound for 100*log10(c) for a positive integer c."""
+ if c <= 0:
+ raise ValueError("The argument to _log10_lb should be nonnegative.")
+ str_c = str(c)
+ return 100*len(str_c) - correction[str_c[0]]
+
##### Helper Functions ####################################################
-def _convert_other(other):
+def _convert_other(other, raiseit=False):
"""Convert other to Decimal.
Verifies that it's ok to use in an implicit construction.
@@ -2979,6 +5117,8 @@ def _convert_other(other):
return other
if isinstance(other, (int, long)):
return Decimal(other)
+ if raiseit:
+ raise TypeError("Unable to convert %s to Decimal" % other)
return NotImplemented
_infinity_map = {
@@ -3066,12 +5206,16 @@ ExtendedContext = Context(
# Reusable defaults
Inf = Decimal('Inf')
negInf = Decimal('-Inf')
+NaN = Decimal('NaN')
+Dec_0 = Decimal(0)
+Dec_p1 = Decimal(1)
+Dec_n1 = Decimal(-1)
+Dec_p2 = Decimal(2)
+Dec_n2 = Decimal(-2)
# Infsign[sign] is infinity w/ that sign
Infsign = (Inf, negInf)
-NaN = Decimal('NaN')
-
##### crud for parsing strings #############################################
import re
diff --git a/Lib/test/decimaltestdata/abs.decTest b/Lib/test/decimaltestdata/abs.decTest
index 3f0849a..ed4c46e 100644
--- a/Lib/test/decimaltestdata/abs.decTest
+++ b/Lib/test/decimaltestdata/abs.decTest
@@ -1,6 +1,6 @@
------------------------------------------------------------------------
-- abs.decTest -- decimal absolute value --
--- Copyright (c) IBM Corporation, 1981, 2004. All rights reserved. --
+-- Copyright (c) IBM Corporation, 1981, 2007. All rights reserved. --
------------------------------------------------------------------------
-- Please see the document "General Decimal Arithmetic Testcases" --
-- at http://www2.hursley.ibm.com/decimal for the description of --
@@ -17,7 +17,7 @@
-- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK --
-- mfc@uk.ibm.com --
------------------------------------------------------------------------
-version: 2.39
+version: 2.56
-- This set of tests primarily tests the existence of the operator.
-- Additon, subtraction, rounding, and more overflows are tested
@@ -106,9 +106,9 @@ absx214 abs 0.01E-999 -> 1E-1001 Subnormal
absx215 abs 0.999E-999 -> 1.00E-999 Inexact Rounded Subnormal Underflow
absx216 abs 0.099E-999 -> 1.0E-1000 Inexact Rounded Subnormal Underflow
absx217 abs 0.009E-999 -> 1E-1001 Inexact Rounded Subnormal Underflow
-absx218 abs 0.001E-999 -> 0E-1001 Inexact Rounded Subnormal Underflow
-absx219 abs 0.0009E-999 -> 0E-1001 Inexact Rounded Subnormal Underflow
-absx220 abs 0.0001E-999 -> 0E-1001 Inexact Rounded Subnormal Underflow
+absx218 abs 0.001E-999 -> 0E-1001 Inexact Rounded Subnormal Underflow Clamped
+absx219 abs 0.0009E-999 -> 0E-1001 Inexact Rounded Subnormal Underflow Clamped
+absx220 abs 0.0001E-999 -> 0E-1001 Inexact Rounded Subnormal Underflow Clamped
absx230 abs -1.00E-999 -> 1.00E-999
absx231 abs -0.1E-999 -> 1E-1000 Subnormal
@@ -119,9 +119,9 @@ absx234 abs -0.01E-999 -> 1E-1001 Subnormal
absx235 abs -0.999E-999 -> 1.00E-999 Inexact Rounded Subnormal Underflow
absx236 abs -0.099E-999 -> 1.0E-1000 Inexact Rounded Subnormal Underflow
absx237 abs -0.009E-999 -> 1E-1001 Inexact Rounded Subnormal Underflow
-absx238 abs -0.001E-999 -> 0E-1001 Inexact Rounded Subnormal Underflow
-absx239 abs -0.0009E-999 -> 0E-1001 Inexact Rounded Subnormal Underflow
-absx240 abs -0.0001E-999 -> 0E-1001 Inexact Rounded Subnormal Underflow
+absx238 abs -0.001E-999 -> 0E-1001 Inexact Rounded Subnormal Underflow Clamped
+absx239 abs -0.0009E-999 -> 0E-1001 Inexact Rounded Subnormal Underflow Clamped
+absx240 abs -0.0001E-999 -> 0E-1001 Inexact Rounded Subnormal Underflow Clamped
-- long operand tests
maxexponent: 999
diff --git a/Lib/test/decimaltestdata/add.decTest b/Lib/test/decimaltestdata/add.decTest
index 2d3efab..3460aa4 100644
--- a/Lib/test/decimaltestdata/add.decTest
+++ b/Lib/test/decimaltestdata/add.decTest
@@ -1,6 +1,6 @@
-------------------------------------------------------------------------
+------/cancell----------------------------------------------------------
-- add.decTest -- decimal addition --
--- Copyright (c) IBM Corporation, 1981, 2004. All rights reserved. --
+-- Copyright (c) IBM Corporation, 1981, 2007. All rights reserved. --
------------------------------------------------------------------------
-- Please see the document "General Decimal Arithmetic Testcases" --
-- at http://www2.hursley.ibm.com/decimal for the description of --
@@ -17,7 +17,7 @@
-- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK --
-- mfc@uk.ibm.com --
------------------------------------------------------------------------
-version: 2.39
+version: 2.56
precision: 9
rounding: half_up
@@ -86,6 +86,7 @@ addx048 add '10000e+9' '700' -> '10000000000700'
addx049 add '10000e+9' '7000' -> '10000000007000'
addx050 add '10000e+9' '70000' -> '10000000070000'
addx051 add '10000e+9' '700000' -> '10000000700000'
+addx052 add '10000e+9' '7000000' -> '10000007000000'
-- examples from decarith
addx053 add '12' '7.00' -> '19.00'
@@ -216,7 +217,7 @@ addx166 add '7E+12' '1.11' -> '7000000000001.11'
addx167 add '1.11' '7E+12' -> '7000000000001.11'
addx168 add '-1' '7E+12' -> '6999999999999'
--- 123456789012345 123456789012345 1 23456789012345
+-- 123456789012345 123456789012345 1 23456789012345
addx170 add '0.444444444444444' '0.555555555555563' -> '1.00000000000001' Inexact Rounded
addx171 add '0.444444444444444' '0.555555555555562' -> '1.00000000000001' Inexact Rounded
addx172 add '0.444444444444444' '0.555555555555561' -> '1.00000000000001' Inexact Rounded
@@ -396,6 +397,7 @@ minexponent: -92
addx361 add 0E+50 10000E+1 -> 1.0000E+5
addx362 add 10000E+1 0E-50 -> 100000.0 Rounded
addx363 add 10000E+1 10000E-50 -> 100000.0 Rounded Inexact
+addx364 add 9.999999E+92 -9.999999E+92 -> 0E+86
-- a curiosity from JSR 13 testing
rounding: half_down
@@ -568,7 +570,7 @@ minExponent: -393
rounding: down
addx561 add 1e-398 9.000000000000000E+384 -> 9.000000000000000E+384 Inexact Rounded
addx562 add 0 9.000000000000000E+384 -> 9.000000000000000E+384 Rounded
--- and using decimal64 bounds...
+-- and using decimal64 bounds (see also ddadd.decTest)
precision: 16
maxExponent: +384
minExponent: -383
@@ -576,6 +578,7 @@ rounding: down
addx563 add 1e-388 9.000000000000000E+374 -> 9.000000000000000E+374 Inexact Rounded
addx564 add 0 9.000000000000000E+374 -> 9.000000000000000E+374 Rounded
+
-- some more residue effects with extreme rounding
precision: 9
rounding: half_up
@@ -955,26 +958,26 @@ addx911 add 0.1E-999 0 -> 1E-1000 Subnormal
addx912 add 0.10E-999 0 -> 1.0E-1000 Subnormal
addx913 add 0.100E-999 0 -> 1.0E-1000 Subnormal Rounded
addx914 add 0.01E-999 0 -> 1E-1001 Subnormal
--- next is rounded to Emin
+-- next is rounded to Nmin
addx915 add 0.999E-999 0 -> 1.00E-999 Inexact Rounded Subnormal Underflow
addx916 add 0.099E-999 0 -> 1.0E-1000 Inexact Rounded Subnormal Underflow
addx917 add 0.009E-999 0 -> 1E-1001 Inexact Rounded Subnormal Underflow
-addx918 add 0.001E-999 0 -> 0E-1001 Inexact Rounded Subnormal Underflow
-addx919 add 0.0009E-999 0 -> 0E-1001 Inexact Rounded Subnormal Underflow
-addx920 add 0.0001E-999 0 -> 0E-1001 Inexact Rounded Subnormal Underflow
+addx918 add 0.001E-999 0 -> 0E-1001 Inexact Rounded Subnormal Underflow Clamped
+addx919 add 0.0009E-999 0 -> 0E-1001 Inexact Rounded Subnormal Underflow Clamped
+addx920 add 0.0001E-999 0 -> 0E-1001 Inexact Rounded Subnormal Underflow Clamped
addx930 add -1.00E-999 0 -> -1.00E-999
addx931 add -0.1E-999 0 -> -1E-1000 Subnormal
addx932 add -0.10E-999 0 -> -1.0E-1000 Subnormal
addx933 add -0.100E-999 0 -> -1.0E-1000 Subnormal Rounded
addx934 add -0.01E-999 0 -> -1E-1001 Subnormal
--- next is rounded to Emin
+-- next is rounded to Nmin
addx935 add -0.999E-999 0 -> -1.00E-999 Inexact Rounded Subnormal Underflow
addx936 add -0.099E-999 0 -> -1.0E-1000 Inexact Rounded Subnormal Underflow
addx937 add -0.009E-999 0 -> -1E-1001 Inexact Rounded Subnormal Underflow
-addx938 add -0.001E-999 0 -> -0E-1001 Inexact Rounded Subnormal Underflow
-addx939 add -0.0009E-999 0 -> -0E-1001 Inexact Rounded Subnormal Underflow
-addx940 add -0.0001E-999 0 -> -0E-1001 Inexact Rounded Subnormal Underflow
+addx938 add -0.001E-999 0 -> -0E-1001 Inexact Rounded Subnormal Underflow Clamped
+addx939 add -0.0009E-999 0 -> -0E-1001 Inexact Rounded Subnormal Underflow Clamped
+addx940 add -0.0001E-999 0 -> -0E-1001 Inexact Rounded Subnormal Underflow Clamped
-- some non-zero subnormal adds
addx950 add 1.00E-999 0.1E-999 -> 1.10E-999
@@ -995,12 +998,43 @@ addx963 add 0.10E-999 -0.1E-999 -> 0E-1001
addx964 add 0.100E-999 -0.1E-999 -> 0E-1001 Clamped
addx965 add 0.01E-999 -0.1E-999 -> -9E-1001 Subnormal
addx966 add 0.999E-999 -0.1E-999 -> 9.0E-1000 Inexact Rounded Subnormal Underflow
-addx967 add 0.099E-999 -0.1E-999 -> -0E-1001 Inexact Rounded Subnormal Underflow
+addx967 add 0.099E-999 -0.1E-999 -> -0E-1001 Inexact Rounded Subnormal Underflow Clamped
addx968 add 0.009E-999 -0.1E-999 -> -9E-1001 Inexact Rounded Subnormal Underflow
addx969 add 0.001E-999 -0.1E-999 -> -1.0E-1000 Inexact Rounded Subnormal Underflow
addx970 add 0.0009E-999 -0.1E-999 -> -1.0E-1000 Inexact Rounded Subnormal Underflow
addx971 add 0.0001E-999 -0.1E-999 -> -1.0E-1000 Inexact Rounded Subnormal Underflow
+-- some 'real' numbers
+maxExponent: 384
+minExponent: -383
+precision: 8
+addx566 add 99999061735E-394 0E-394 -> 9.999906E-384 Inexact Rounded Underflow Subnormal
+precision: 7
+addx567 add 99999061735E-394 0E-394 -> 9.99991E-384 Inexact Rounded Underflow Subnormal
+precision: 6
+addx568 add 99999061735E-394 0E-394 -> 9.9999E-384 Inexact Rounded Underflow Subnormal
+
+-- now the case where we can get underflow but the result is normal
+-- [note this can't happen if the operands are also bounded, as we
+-- cannot represent 1E-399, for example]
+precision: 16
+rounding: half_up
+maxExponent: 384
+minExponent: -383
+
+addx571 add 1E-383 0 -> 1E-383
+addx572 add 1E-384 0 -> 1E-384 Subnormal
+addx573 add 1E-383 1E-384 -> 1.1E-383
+addx574 subtract 1E-383 1E-384 -> 9E-384 Subnormal
+
+-- Here we explore the boundary of rounding a subnormal to Nmin
+addx575 subtract 1E-383 1E-398 -> 9.99999999999999E-384 Subnormal
+addx576 subtract 1E-383 1E-398 -> 9.99999999999999E-384 Subnormal
+addx577 subtract 1E-383 1E-399 -> 1.000000000000000E-383 Underflow Inexact Subnormal Rounded
+addx578 subtract 1E-383 1E-400 -> 1.000000000000000E-383 Underflow Inexact Subnormal Rounded
+addx579 subtract 1E-383 1E-401 -> 1.000000000000000E-383 Underflow Inexact Subnormal Rounded
+addx580 subtract 1E-383 1E-402 -> 1.000000000000000E-383 Underflow Inexact Subnormal Rounded
+
-- check overflow edge case
precision: 7
rounding: half_up
@@ -1106,22 +1140,1566 @@ addx1138 add 10000E-101 -1e-200 -> 9.999E-98 Subnormal Inexact Rounded U
addx1139 add 1000E-101 -1e-200 -> 9.99E-99 Subnormal Inexact Rounded Underflow
addx1140 add 100E-101 -1e-200 -> 9.9E-100 Subnormal Inexact Rounded Underflow
addx1141 add 10E-101 -1e-200 -> 9E-101 Subnormal Inexact Rounded Underflow
-addx1142 add 1E-101 -1e-200 -> 0E-101 Subnormal Inexact Rounded Underflow
-addx1143 add 0E-101 -1e-200 -> -0E-101 Subnormal Inexact Rounded Underflow
-addx1144 add 1E-102 -1e-200 -> 0E-101 Subnormal Inexact Rounded Underflow
+addx1142 add 1E-101 -1e-200 -> 0E-101 Subnormal Inexact Rounded Underflow Clamped
+addx1143 add 0E-101 -1e-200 -> -0E-101 Subnormal Inexact Rounded Underflow Clamped
+addx1144 add 1E-102 -1e-200 -> 0E-101 Subnormal Inexact Rounded Underflow Clamped
addx1151 add 10000E-102 -1e-200 -> 9.99E-99 Subnormal Inexact Rounded Underflow
addx1152 add 1000E-102 -1e-200 -> 9.9E-100 Subnormal Inexact Rounded Underflow
addx1153 add 100E-102 -1e-200 -> 9E-101 Subnormal Inexact Rounded Underflow
-addx1154 add 10E-102 -1e-200 -> 0E-101 Subnormal Inexact Rounded Underflow
-addx1155 add 1E-102 -1e-200 -> 0E-101 Subnormal Inexact Rounded Underflow
-addx1156 add 0E-102 -1e-200 -> -0E-101 Subnormal Inexact Rounded Underflow
-addx1157 add 1E-103 -1e-200 -> 0E-101 Subnormal Inexact Rounded Underflow
+addx1154 add 10E-102 -1e-200 -> 0E-101 Subnormal Inexact Rounded Underflow Clamped
+addx1155 add 1E-102 -1e-200 -> 0E-101 Subnormal Inexact Rounded Underflow Clamped
+addx1156 add 0E-102 -1e-200 -> -0E-101 Subnormal Inexact Rounded Underflow Clamped
+addx1157 add 1E-103 -1e-200 -> 0E-101 Subnormal Inexact Rounded Underflow Clamped
+
+addx1160 add 100E-105 -1e-101 -> -0E-101 Subnormal Inexact Rounded Underflow Clamped
+addx1161 add 100E-105 -1e-201 -> 0E-101 Subnormal Inexact Rounded Underflow Clamped
+
+-- tests based on Gunnar Degnbol's edge case
+precision: 15
+rounding: half_up
+maxExponent: 384
+minexponent: -383
+
+addx1200 add 1E15 -0.5 -> 1.00000000000000E+15 Inexact Rounded
+addx1201 add 1E15 -0.50 -> 1.00000000000000E+15 Inexact Rounded
+addx1210 add 1E15 -0.51 -> 999999999999999 Inexact Rounded
+addx1211 add 1E15 -0.501 -> 999999999999999 Inexact Rounded
+addx1212 add 1E15 -0.5001 -> 999999999999999 Inexact Rounded
+addx1213 add 1E15 -0.50001 -> 999999999999999 Inexact Rounded
+addx1214 add 1E15 -0.500001 -> 999999999999999 Inexact Rounded
+addx1215 add 1E15 -0.5000001 -> 999999999999999 Inexact Rounded
+addx1216 add 1E15 -0.50000001 -> 999999999999999 Inexact Rounded
+addx1217 add 1E15 -0.500000001 -> 999999999999999 Inexact Rounded
+addx1218 add 1E15 -0.5000000001 -> 999999999999999 Inexact Rounded
+addx1219 add 1E15 -0.50000000001 -> 999999999999999 Inexact Rounded
+addx1220 add 1E15 -0.500000000001 -> 999999999999999 Inexact Rounded
+addx1221 add 1E15 -0.5000000000001 -> 999999999999999 Inexact Rounded
+addx1222 add 1E15 -0.50000000000001 -> 999999999999999 Inexact Rounded
+addx1223 add 1E15 -0.500000000000001 -> 999999999999999 Inexact Rounded
+addx1224 add 1E15 -0.5000000000000001 -> 999999999999999 Inexact Rounded
+addx1225 add 1E15 -0.5000000000000000 -> 1.00000000000000E+15 Inexact Rounded
+addx1230 add 1E15 -5000000.000000001 -> 999999995000000 Inexact Rounded
+
+precision: 16
+
+addx1300 add 1E16 -0.5 -> 1.000000000000000E+16 Inexact Rounded
+addx1310 add 1E16 -0.51 -> 9999999999999999 Inexact Rounded
+addx1311 add 1E16 -0.501 -> 9999999999999999 Inexact Rounded
+addx1312 add 1E16 -0.5001 -> 9999999999999999 Inexact Rounded
+addx1313 add 1E16 -0.50001 -> 9999999999999999 Inexact Rounded
+addx1314 add 1E16 -0.500001 -> 9999999999999999 Inexact Rounded
+addx1315 add 1E16 -0.5000001 -> 9999999999999999 Inexact Rounded
+addx1316 add 1E16 -0.50000001 -> 9999999999999999 Inexact Rounded
+addx1317 add 1E16 -0.500000001 -> 9999999999999999 Inexact Rounded
+addx1318 add 1E16 -0.5000000001 -> 9999999999999999 Inexact Rounded
+addx1319 add 1E16 -0.50000000001 -> 9999999999999999 Inexact Rounded
+addx1320 add 1E16 -0.500000000001 -> 9999999999999999 Inexact Rounded
+addx1321 add 1E16 -0.5000000000001 -> 9999999999999999 Inexact Rounded
+addx1322 add 1E16 -0.50000000000001 -> 9999999999999999 Inexact Rounded
+addx1323 add 1E16 -0.500000000000001 -> 9999999999999999 Inexact Rounded
+addx1324 add 1E16 -0.5000000000000001 -> 9999999999999999 Inexact Rounded
+addx1325 add 1E16 -0.5000000000000000 -> 1.000000000000000E+16 Inexact Rounded
+addx1326 add 1E16 -0.500000000000000 -> 1.000000000000000E+16 Inexact Rounded
+addx1327 add 1E16 -0.50000000000000 -> 1.000000000000000E+16 Inexact Rounded
+addx1328 add 1E16 -0.5000000000000 -> 1.000000000000000E+16 Inexact Rounded
+addx1329 add 1E16 -0.500000000000 -> 1.000000000000000E+16 Inexact Rounded
+addx1330 add 1E16 -0.50000000000 -> 1.000000000000000E+16 Inexact Rounded
+addx1331 add 1E16 -0.5000000000 -> 1.000000000000000E+16 Inexact Rounded
+addx1332 add 1E16 -0.500000000 -> 1.000000000000000E+16 Inexact Rounded
+addx1333 add 1E16 -0.50000000 -> 1.000000000000000E+16 Inexact Rounded
+addx1334 add 1E16 -0.5000000 -> 1.000000000000000E+16 Inexact Rounded
+addx1335 add 1E16 -0.500000 -> 1.000000000000000E+16 Inexact Rounded
+addx1336 add 1E16 -0.50000 -> 1.000000000000000E+16 Inexact Rounded
+addx1337 add 1E16 -0.5000 -> 1.000000000000000E+16 Inexact Rounded
+addx1338 add 1E16 -0.500 -> 1.000000000000000E+16 Inexact Rounded
+addx1339 add 1E16 -0.50 -> 1.000000000000000E+16 Inexact Rounded
+
+addx1340 add 1E16 -5000000.000010001 -> 9999999995000000 Inexact Rounded
+addx1341 add 1E16 -5000000.000000001 -> 9999999995000000 Inexact Rounded
+
+addx1349 add 9999999999999999 0.4 -> 9999999999999999 Inexact Rounded
+addx1350 add 9999999999999999 0.49 -> 9999999999999999 Inexact Rounded
+addx1351 add 9999999999999999 0.499 -> 9999999999999999 Inexact Rounded
+addx1352 add 9999999999999999 0.4999 -> 9999999999999999 Inexact Rounded
+addx1353 add 9999999999999999 0.49999 -> 9999999999999999 Inexact Rounded
+addx1354 add 9999999999999999 0.499999 -> 9999999999999999 Inexact Rounded
+addx1355 add 9999999999999999 0.4999999 -> 9999999999999999 Inexact Rounded
+addx1356 add 9999999999999999 0.49999999 -> 9999999999999999 Inexact Rounded
+addx1357 add 9999999999999999 0.499999999 -> 9999999999999999 Inexact Rounded
+addx1358 add 9999999999999999 0.4999999999 -> 9999999999999999 Inexact Rounded
+addx1359 add 9999999999999999 0.49999999999 -> 9999999999999999 Inexact Rounded
+addx1360 add 9999999999999999 0.499999999999 -> 9999999999999999 Inexact Rounded
+addx1361 add 9999999999999999 0.4999999999999 -> 9999999999999999 Inexact Rounded
+addx1362 add 9999999999999999 0.49999999999999 -> 9999999999999999 Inexact Rounded
+addx1363 add 9999999999999999 0.499999999999999 -> 9999999999999999 Inexact Rounded
+addx1364 add 9999999999999999 0.4999999999999999 -> 9999999999999999 Inexact Rounded
+addx1365 add 9999999999999999 0.5000000000000000 -> 1.000000000000000E+16 Inexact Rounded
+addx1367 add 9999999999999999 0.500000000000000 -> 1.000000000000000E+16 Inexact Rounded
+addx1368 add 9999999999999999 0.50000000000000 -> 1.000000000000000E+16 Inexact Rounded
+addx1369 add 9999999999999999 0.5000000000000 -> 1.000000000000000E+16 Inexact Rounded
+addx1370 add 9999999999999999 0.500000000000 -> 1.000000000000000E+16 Inexact Rounded
+addx1371 add 9999999999999999 0.50000000000 -> 1.000000000000000E+16 Inexact Rounded
+addx1372 add 9999999999999999 0.5000000000 -> 1.000000000000000E+16 Inexact Rounded
+addx1373 add 9999999999999999 0.500000000 -> 1.000000000000000E+16 Inexact Rounded
+addx1374 add 9999999999999999 0.50000000 -> 1.000000000000000E+16 Inexact Rounded
+addx1375 add 9999999999999999 0.5000000 -> 1.000000000000000E+16 Inexact Rounded
+addx1376 add 9999999999999999 0.500000 -> 1.000000000000000E+16 Inexact Rounded
+addx1377 add 9999999999999999 0.50000 -> 1.000000000000000E+16 Inexact Rounded
+addx1378 add 9999999999999999 0.5000 -> 1.000000000000000E+16 Inexact Rounded
+addx1379 add 9999999999999999 0.500 -> 1.000000000000000E+16 Inexact Rounded
+addx1380 add 9999999999999999 0.50 -> 1.000000000000000E+16 Inexact Rounded
+addx1381 add 9999999999999999 0.5 -> 1.000000000000000E+16 Inexact Rounded
+addx1382 add 9999999999999999 0.5000000000000001 -> 1.000000000000000E+16 Inexact Rounded
+addx1383 add 9999999999999999 0.500000000000001 -> 1.000000000000000E+16 Inexact Rounded
+addx1384 add 9999999999999999 0.50000000000001 -> 1.000000000000000E+16 Inexact Rounded
+addx1385 add 9999999999999999 0.5000000000001 -> 1.000000000000000E+16 Inexact Rounded
+addx1386 add 9999999999999999 0.500000000001 -> 1.000000000000000E+16 Inexact Rounded
+addx1387 add 9999999999999999 0.50000000001 -> 1.000000000000000E+16 Inexact Rounded
+addx1388 add 9999999999999999 0.5000000001 -> 1.000000000000000E+16 Inexact Rounded
+addx1389 add 9999999999999999 0.500000001 -> 1.000000000000000E+16 Inexact Rounded
+addx1390 add 9999999999999999 0.50000001 -> 1.000000000000000E+16 Inexact Rounded
+addx1391 add 9999999999999999 0.5000001 -> 1.000000000000000E+16 Inexact Rounded
+addx1392 add 9999999999999999 0.500001 -> 1.000000000000000E+16 Inexact Rounded
+addx1393 add 9999999999999999 0.50001 -> 1.000000000000000E+16 Inexact Rounded
+addx1394 add 9999999999999999 0.5001 -> 1.000000000000000E+16 Inexact Rounded
+addx1395 add 9999999999999999 0.501 -> 1.000000000000000E+16 Inexact Rounded
+addx1396 add 9999999999999999 0.51 -> 1.000000000000000E+16 Inexact Rounded
+
+-- More GD edge cases, where difference between the unadjusted
+-- exponents is larger than the maximum precision and one side is 0
+precision: 15
+rounding: half_up
+maxExponent: 384
+minexponent: -383
+
+addx1400 add 0 1.23456789012345 -> 1.23456789012345
+addx1401 add 0 1.23456789012345E-1 -> 0.123456789012345
+addx1402 add 0 1.23456789012345E-2 -> 0.0123456789012345
+addx1403 add 0 1.23456789012345E-3 -> 0.00123456789012345
+addx1404 add 0 1.23456789012345E-4 -> 0.000123456789012345
+addx1405 add 0 1.23456789012345E-5 -> 0.0000123456789012345
+addx1406 add 0 1.23456789012345E-6 -> 0.00000123456789012345
+addx1407 add 0 1.23456789012345E-7 -> 1.23456789012345E-7
+addx1408 add 0 1.23456789012345E-8 -> 1.23456789012345E-8
+addx1409 add 0 1.23456789012345E-9 -> 1.23456789012345E-9
+addx1410 add 0 1.23456789012345E-10 -> 1.23456789012345E-10
+addx1411 add 0 1.23456789012345E-11 -> 1.23456789012345E-11
+addx1412 add 0 1.23456789012345E-12 -> 1.23456789012345E-12
+addx1413 add 0 1.23456789012345E-13 -> 1.23456789012345E-13
+addx1414 add 0 1.23456789012345E-14 -> 1.23456789012345E-14
+addx1415 add 0 1.23456789012345E-15 -> 1.23456789012345E-15
+addx1416 add 0 1.23456789012345E-16 -> 1.23456789012345E-16
+addx1417 add 0 1.23456789012345E-17 -> 1.23456789012345E-17
+addx1418 add 0 1.23456789012345E-18 -> 1.23456789012345E-18
+addx1419 add 0 1.23456789012345E-19 -> 1.23456789012345E-19
+
+-- same, precision 16..
+precision: 16
+addx1420 add 0 1.123456789012345 -> 1.123456789012345
+addx1421 add 0 1.123456789012345E-1 -> 0.1123456789012345
+addx1422 add 0 1.123456789012345E-2 -> 0.01123456789012345
+addx1423 add 0 1.123456789012345E-3 -> 0.001123456789012345
+addx1424 add 0 1.123456789012345E-4 -> 0.0001123456789012345
+addx1425 add 0 1.123456789012345E-5 -> 0.00001123456789012345
+addx1426 add 0 1.123456789012345E-6 -> 0.000001123456789012345
+addx1427 add 0 1.123456789012345E-7 -> 1.123456789012345E-7
+addx1428 add 0 1.123456789012345E-8 -> 1.123456789012345E-8
+addx1429 add 0 1.123456789012345E-9 -> 1.123456789012345E-9
+addx1430 add 0 1.123456789012345E-10 -> 1.123456789012345E-10
+addx1431 add 0 1.123456789012345E-11 -> 1.123456789012345E-11
+addx1432 add 0 1.123456789012345E-12 -> 1.123456789012345E-12
+addx1433 add 0 1.123456789012345E-13 -> 1.123456789012345E-13
+addx1434 add 0 1.123456789012345E-14 -> 1.123456789012345E-14
+addx1435 add 0 1.123456789012345E-15 -> 1.123456789012345E-15
+addx1436 add 0 1.123456789012345E-16 -> 1.123456789012345E-16
+addx1437 add 0 1.123456789012345E-17 -> 1.123456789012345E-17
+addx1438 add 0 1.123456789012345E-18 -> 1.123456789012345E-18
+addx1439 add 0 1.123456789012345E-19 -> 1.123456789012345E-19
+
+-- same, reversed 0
+addx1440 add 1.123456789012345 0 -> 1.123456789012345
+addx1441 add 1.123456789012345E-1 0 -> 0.1123456789012345
+addx1442 add 1.123456789012345E-2 0 -> 0.01123456789012345
+addx1443 add 1.123456789012345E-3 0 -> 0.001123456789012345
+addx1444 add 1.123456789012345E-4 0 -> 0.0001123456789012345
+addx1445 add 1.123456789012345E-5 0 -> 0.00001123456789012345
+addx1446 add 1.123456789012345E-6 0 -> 0.000001123456789012345
+addx1447 add 1.123456789012345E-7 0 -> 1.123456789012345E-7
+addx1448 add 1.123456789012345E-8 0 -> 1.123456789012345E-8
+addx1449 add 1.123456789012345E-9 0 -> 1.123456789012345E-9
+addx1450 add 1.123456789012345E-10 0 -> 1.123456789012345E-10
+addx1451 add 1.123456789012345E-11 0 -> 1.123456789012345E-11
+addx1452 add 1.123456789012345E-12 0 -> 1.123456789012345E-12
+addx1453 add 1.123456789012345E-13 0 -> 1.123456789012345E-13
+addx1454 add 1.123456789012345E-14 0 -> 1.123456789012345E-14
+addx1455 add 1.123456789012345E-15 0 -> 1.123456789012345E-15
+addx1456 add 1.123456789012345E-16 0 -> 1.123456789012345E-16
+addx1457 add 1.123456789012345E-17 0 -> 1.123456789012345E-17
+addx1458 add 1.123456789012345E-18 0 -> 1.123456789012345E-18
+addx1459 add 1.123456789012345E-19 0 -> 1.123456789012345E-19
+
+-- same, Es on the 0
+addx1460 add 1.123456789012345 0E-0 -> 1.123456789012345
+addx1461 add 1.123456789012345 0E-1 -> 1.123456789012345
+addx1462 add 1.123456789012345 0E-2 -> 1.123456789012345
+addx1463 add 1.123456789012345 0E-3 -> 1.123456789012345
+addx1464 add 1.123456789012345 0E-4 -> 1.123456789012345
+addx1465 add 1.123456789012345 0E-5 -> 1.123456789012345
+addx1466 add 1.123456789012345 0E-6 -> 1.123456789012345
+addx1467 add 1.123456789012345 0E-7 -> 1.123456789012345
+addx1468 add 1.123456789012345 0E-8 -> 1.123456789012345
+addx1469 add 1.123456789012345 0E-9 -> 1.123456789012345
+addx1470 add 1.123456789012345 0E-10 -> 1.123456789012345
+addx1471 add 1.123456789012345 0E-11 -> 1.123456789012345
+addx1472 add 1.123456789012345 0E-12 -> 1.123456789012345
+addx1473 add 1.123456789012345 0E-13 -> 1.123456789012345
+addx1474 add 1.123456789012345 0E-14 -> 1.123456789012345
+addx1475 add 1.123456789012345 0E-15 -> 1.123456789012345
+-- next four flag Rounded because the 0 extends the result
+addx1476 add 1.123456789012345 0E-16 -> 1.123456789012345 Rounded
+addx1477 add 1.123456789012345 0E-17 -> 1.123456789012345 Rounded
+addx1478 add 1.123456789012345 0E-18 -> 1.123456789012345 Rounded
+addx1479 add 1.123456789012345 0E-19 -> 1.123456789012345 Rounded
+
+-- sum of two opposite-sign operands is exactly 0 and floor => -0
+precision: 16
+maxExponent: 384
+minexponent: -383
+
+rounding: half_up
+-- exact zeros from zeros
+addx1500 add 0 0E-19 -> 0E-19
+addx1501 add -0 0E-19 -> 0E-19
+addx1502 add 0 -0E-19 -> 0E-19
+addx1503 add -0 -0E-19 -> -0E-19
+addx1504 add 0E-400 0E-19 -> 0E-398 Clamped
+addx1505 add -0E-400 0E-19 -> 0E-398 Clamped
+addx1506 add 0E-400 -0E-19 -> 0E-398 Clamped
+addx1507 add -0E-400 -0E-19 -> -0E-398 Clamped
+-- inexact zeros
+addx1511 add 1E-401 1E-400 -> 0E-398 Subnormal Inexact Rounded Underflow Clamped
+addx1512 add -1E-401 1E-400 -> 0E-398 Subnormal Inexact Rounded Underflow Clamped
+addx1513 add 1E-401 -1E-400 -> -0E-398 Subnormal Inexact Rounded Underflow Clamped
+addx1514 add -1E-401 -1E-400 -> -0E-398 Subnormal Inexact Rounded Underflow Clamped
+-- some exact zeros from non-zeros
+addx1515 add 1E-401 1E-401 -> 0E-398 Subnormal Inexact Rounded Underflow Clamped
+addx1516 add -1E-401 1E-401 -> 0E-398 Clamped
+addx1517 add 1E-401 -1E-401 -> 0E-398 Clamped
+addx1518 add -1E-401 -1E-401 -> -0E-398 Subnormal Inexact Rounded Underflow Clamped
+
+rounding: half_down
+-- exact zeros from zeros
+addx1520 add 0 0E-19 -> 0E-19
+addx1521 add -0 0E-19 -> 0E-19
+addx1522 add 0 -0E-19 -> 0E-19
+addx1523 add -0 -0E-19 -> -0E-19
+addx1524 add 0E-400 0E-19 -> 0E-398 Clamped
+addx1525 add -0E-400 0E-19 -> 0E-398 Clamped
+addx1526 add 0E-400 -0E-19 -> 0E-398 Clamped
+addx1527 add -0E-400 -0E-19 -> -0E-398 Clamped
+-- inexact zeros
+addx1531 add 1E-401 1E-400 -> 0E-398 Subnormal Inexact Rounded Underflow Clamped
+addx1532 add -1E-401 1E-400 -> 0E-398 Subnormal Inexact Rounded Underflow Clamped
+addx1533 add 1E-401 -1E-400 -> -0E-398 Subnormal Inexact Rounded Underflow Clamped
+addx1534 add -1E-401 -1E-400 -> -0E-398 Subnormal Inexact Rounded Underflow Clamped
+-- some exact zeros from non-zeros
+addx1535 add 1E-401 1E-401 -> 0E-398 Subnormal Inexact Rounded Underflow Clamped
+addx1536 add -1E-401 1E-401 -> 0E-398 Clamped
+addx1537 add 1E-401 -1E-401 -> 0E-398 Clamped
+addx1538 add -1E-401 -1E-401 -> -0E-398 Subnormal Inexact Rounded Underflow Clamped
+
+rounding: half_even
+-- exact zeros from zeros
+addx1540 add 0 0E-19 -> 0E-19
+addx1541 add -0 0E-19 -> 0E-19
+addx1542 add 0 -0E-19 -> 0E-19
+addx1543 add -0 -0E-19 -> -0E-19
+addx1544 add 0E-400 0E-19 -> 0E-398 Clamped
+addx1545 add -0E-400 0E-19 -> 0E-398 Clamped
+addx1546 add 0E-400 -0E-19 -> 0E-398 Clamped
+addx1547 add -0E-400 -0E-19 -> -0E-398 Clamped
+-- inexact zeros
+addx1551 add 1E-401 1E-400 -> 0E-398 Subnormal Inexact Rounded Underflow Clamped
+addx1552 add -1E-401 1E-400 -> 0E-398 Subnormal Inexact Rounded Underflow Clamped
+addx1553 add 1E-401 -1E-400 -> -0E-398 Subnormal Inexact Rounded Underflow Clamped
+addx1554 add -1E-401 -1E-400 -> -0E-398 Subnormal Inexact Rounded Underflow Clamped
+-- some exact zeros from non-zeros
+addx1555 add 1E-401 1E-401 -> 0E-398 Subnormal Inexact Rounded Underflow Clamped
+addx1556 add -1E-401 1E-401 -> 0E-398 Clamped
+addx1557 add 1E-401 -1E-401 -> 0E-398 Clamped
+addx1558 add -1E-401 -1E-401 -> -0E-398 Subnormal Inexact Rounded Underflow Clamped
+
+rounding: up
+-- exact zeros from zeros
+addx1560 add 0 0E-19 -> 0E-19
+addx1561 add -0 0E-19 -> 0E-19
+addx1562 add 0 -0E-19 -> 0E-19
+addx1563 add -0 -0E-19 -> -0E-19
+addx1564 add 0E-400 0E-19 -> 0E-398 Clamped
+addx1565 add -0E-400 0E-19 -> 0E-398 Clamped
+addx1566 add 0E-400 -0E-19 -> 0E-398 Clamped
+addx1567 add -0E-400 -0E-19 -> -0E-398 Clamped
+-- inexact zeros
+addx1571 add 1E-401 1E-400 -> 1E-398 Subnormal Inexact Rounded Underflow
+addx1572 add -1E-401 1E-400 -> 1E-398 Subnormal Inexact Rounded Underflow
+addx1573 add 1E-401 -1E-400 -> -1E-398 Subnormal Inexact Rounded Underflow
+addx1574 add -1E-401 -1E-400 -> -1E-398 Subnormal Inexact Rounded Underflow
+-- some exact zeros from non-zeros
+addx1575 add 1E-401 1E-401 -> 1E-398 Subnormal Inexact Rounded Underflow
+addx1576 add -1E-401 1E-401 -> 0E-398 Clamped
+addx1577 add 1E-401 -1E-401 -> 0E-398 Clamped
+addx1578 add -1E-401 -1E-401 -> -1E-398 Subnormal Inexact Rounded Underflow
+
+rounding: down
+-- exact zeros from zeros
+addx1580 add 0 0E-19 -> 0E-19
+addx1581 add -0 0E-19 -> 0E-19
+addx1582 add 0 -0E-19 -> 0E-19
+addx1583 add -0 -0E-19 -> -0E-19
+addx1584 add 0E-400 0E-19 -> 0E-398 Clamped
+addx1585 add -0E-400 0E-19 -> 0E-398 Clamped
+addx1586 add 0E-400 -0E-19 -> 0E-398 Clamped
+addx1587 add -0E-400 -0E-19 -> -0E-398 Clamped
+-- inexact zeros
+addx1591 add 1E-401 1E-400 -> 0E-398 Subnormal Inexact Rounded Underflow Clamped
+addx1592 add -1E-401 1E-400 -> 0E-398 Subnormal Inexact Rounded Underflow Clamped
+addx1593 add 1E-401 -1E-400 -> -0E-398 Subnormal Inexact Rounded Underflow Clamped
+addx1594 add -1E-401 -1E-400 -> -0E-398 Subnormal Inexact Rounded Underflow Clamped
+-- some exact zeros from non-zeros
+addx1595 add 1E-401 1E-401 -> 0E-398 Subnormal Inexact Rounded Underflow Clamped
+addx1596 add -1E-401 1E-401 -> 0E-398 Clamped
+addx1597 add 1E-401 -1E-401 -> 0E-398 Clamped
+addx1598 add -1E-401 -1E-401 -> -0E-398 Subnormal Inexact Rounded Underflow Clamped
+
+rounding: ceiling
+-- exact zeros from zeros
+addx1600 add 0 0E-19 -> 0E-19
+addx1601 add -0 0E-19 -> 0E-19
+addx1602 add 0 -0E-19 -> 0E-19
+addx1603 add -0 -0E-19 -> -0E-19
+addx1604 add 0E-400 0E-19 -> 0E-398 Clamped
+addx1605 add -0E-400 0E-19 -> 0E-398 Clamped
+addx1606 add 0E-400 -0E-19 -> 0E-398 Clamped
+addx1607 add -0E-400 -0E-19 -> -0E-398 Clamped
+-- inexact zeros
+addx1611 add 1E-401 1E-400 -> 1E-398 Subnormal Inexact Rounded Underflow
+addx1612 add -1E-401 1E-400 -> 1E-398 Subnormal Inexact Rounded Underflow
+addx1613 add 1E-401 -1E-400 -> -0E-398 Subnormal Inexact Rounded Underflow Clamped
+addx1614 add -1E-401 -1E-400 -> -0E-398 Subnormal Inexact Rounded Underflow Clamped
+-- some exact zeros from non-zeros
+addx1615 add 1E-401 1E-401 -> 1E-398 Subnormal Inexact Rounded Underflow
+addx1616 add -1E-401 1E-401 -> 0E-398 Clamped
+addx1617 add 1E-401 -1E-401 -> 0E-398 Clamped
+addx1618 add -1E-401 -1E-401 -> -0E-398 Subnormal Inexact Rounded Underflow Clamped
+
+-- and the extra-special ugly case; unusual minuses marked by -- *
+rounding: floor
+-- exact zeros from zeros
+addx1620 add 0 0E-19 -> 0E-19
+addx1621 add -0 0E-19 -> -0E-19 -- *
+addx1622 add 0 -0E-19 -> -0E-19 -- *
+addx1623 add -0 -0E-19 -> -0E-19
+addx1624 add 0E-400 0E-19 -> 0E-398 Clamped
+addx1625 add -0E-400 0E-19 -> -0E-398 Clamped -- *
+addx1626 add 0E-400 -0E-19 -> -0E-398 Clamped -- *
+addx1627 add -0E-400 -0E-19 -> -0E-398 Clamped
+-- inexact zeros
+addx1631 add 1E-401 1E-400 -> 0E-398 Subnormal Inexact Rounded Underflow Clamped
+addx1632 add -1E-401 1E-400 -> 0E-398 Subnormal Inexact Rounded Underflow Clamped
+addx1633 add 1E-401 -1E-400 -> -1E-398 Subnormal Inexact Rounded Underflow
+addx1634 add -1E-401 -1E-400 -> -1E-398 Subnormal Inexact Rounded Underflow
+-- some exact zeros from non-zeros
+addx1635 add 1E-401 1E-401 -> 0E-398 Subnormal Inexact Rounded Underflow Clamped
+addx1636 add -1E-401 1E-401 -> -0E-398 Clamped -- *
+addx1637 add 1E-401 -1E-401 -> -0E-398 Clamped -- *
+addx1638 add -1E-401 -1E-401 -> -1E-398 Subnormal Inexact Rounded Underflow
+
+-- BigDecimal problem testcases 2006.01.23
+precision: 16
+maxExponent: 384
+minexponent: -383
+
+rounding: down
+precision: 7
+addx1651 add 10001E+2 -2E+1 -> 1.00008E+6
+precision: 6
+addx1652 add 10001E+2 -2E+1 -> 1.00008E+6
+precision: 5
+addx1653 add 10001E+2 -2E+1 -> 1.0000E+6 Inexact Rounded
+precision: 4
+addx1654 add 10001E+2 -2E+1 -> 1.000E+6 Inexact Rounded
+precision: 3
+addx1655 add 10001E+2 -2E+1 -> 1.00E+6 Inexact Rounded
+precision: 2
+addx1656 add 10001E+2 -2E+1 -> 1.0E+6 Inexact Rounded
+precision: 1
+addx1657 add 10001E+2 -2E+1 -> 1E+6 Inexact Rounded
+
+rounding: half_even
+precision: 7
+addx1661 add 10001E+2 -2E+1 -> 1.00008E+6
+precision: 6
+addx1662 add 10001E+2 -2E+1 -> 1.00008E+6
+precision: 5
+addx1663 add 10001E+2 -2E+1 -> 1.0001E+6 Inexact Rounded
+precision: 4
+addx1664 add 10001E+2 -2E+1 -> 1.000E+6 Inexact Rounded
+precision: 3
+addx1665 add 10001E+2 -2E+1 -> 1.00E+6 Inexact Rounded
+precision: 2
+addx1666 add 10001E+2 -2E+1 -> 1.0E+6 Inexact Rounded
+precision: 1
+addx1667 add 10001E+2 -2E+1 -> 1E+6 Inexact Rounded
+
+rounding: up
+precision: 7
+addx1671 add 10001E+2 -2E+1 -> 1.00008E+6
+precision: 6
+addx1672 add 10001E+2 -2E+1 -> 1.00008E+6
+precision: 5
+addx1673 add 10001E+2 -2E+1 -> 1.0001E+6 Inexact Rounded
+precision: 4
+addx1674 add 10001E+2 -2E+1 -> 1.001E+6 Inexact Rounded
+precision: 3
+addx1675 add 10001E+2 -2E+1 -> 1.01E+6 Inexact Rounded
+precision: 2
+addx1676 add 10001E+2 -2E+1 -> 1.1E+6 Inexact Rounded
+precision: 1
+addx1677 add 10001E+2 -2E+1 -> 2E+6 Inexact Rounded
+
+precision: 34
+rounding: half_up
+maxExponent: 6144
+minExponent: -6143
+-- Examples from SQL proposal (Krishna Kulkarni)
+addx1701 add 130E-2 120E-2 -> 2.50
+addx1702 add 130E-2 12E-1 -> 2.50
+addx1703 add 130E-2 1E0 -> 2.30
+addx1704 add 1E2 1E4 -> 1.01E+4
+addx1705 subtract 130E-2 120E-2 -> 0.10
+addx1706 subtract 130E-2 12E-1 -> 0.10
+addx1707 subtract 130E-2 1E0 -> 0.30
+addx1708 subtract 1E2 1E4 -> -9.9E+3
+
+------------------------------------------------------------------------
+-- Same as above, using decimal64 default parameters --
+------------------------------------------------------------------------
+precision: 16
+rounding: half_even
+maxExponent: 384
+minexponent: -383
+
+-- [first group are 'quick confidence check']
+addx6001 add 1 1 -> 2
+addx6002 add 2 3 -> 5
+addx6003 add '5.75' '3.3' -> 9.05
+addx6004 add '5' '-3' -> 2
+addx6005 add '-5' '-3' -> -8
+addx6006 add '-7' '2.5' -> -4.5
+addx6007 add '0.7' '0.3' -> 1.0
+addx6008 add '1.25' '1.25' -> 2.50
+addx6009 add '1.23456789' '1.00000000' -> '2.23456789'
+addx6010 add '1.23456789' '1.00000011' -> '2.23456800'
+
+addx6011 add '0.44444444444444444' '0.55555555555555555' -> '1.000000000000000' Inexact Rounded
+addx6012 add '0.44444444444444440' '0.55555555555555555' -> '1.000000000000000' Inexact Rounded
+addx6013 add '0.44444444444444444' '0.55555555555555550' -> '0.9999999999999999' Inexact Rounded
+addx6014 add '0.444444444444444449' '0' -> '0.4444444444444444' Inexact Rounded
+addx6015 add '0.4444444444444444499' '0' -> '0.4444444444444444' Inexact Rounded
+addx6016 add '0.44444444444444444999' '0' -> '0.4444444444444444' Inexact Rounded
+addx6017 add '0.44444444444444445000' '0' -> '0.4444444444444444' Inexact Rounded
+addx6018 add '0.44444444444444445001' '0' -> '0.4444444444444445' Inexact Rounded
+addx6019 add '0.4444444444444444501' '0' -> '0.4444444444444445' Inexact Rounded
+addx6020 add '0.444444444444444451' '0' -> '0.4444444444444445' Inexact Rounded
+
+addx6021 add 0 1 -> 1
+addx6022 add 1 1 -> 2
+addx6023 add 2 1 -> 3
+addx6024 add 3 1 -> 4
+addx6025 add 4 1 -> 5
+addx6026 add 5 1 -> 6
+addx6027 add 6 1 -> 7
+addx6028 add 7 1 -> 8
+addx6029 add 8 1 -> 9
+addx6030 add 9 1 -> 10
+
+-- some carrying effects
+addx6031 add '0.9998' '0.0000' -> '0.9998'
+addx6032 add '0.9998' '0.0001' -> '0.9999'
+addx6033 add '0.9998' '0.0002' -> '1.0000'
+addx6034 add '0.9998' '0.0003' -> '1.0001'
+
+addx6035 add '70' '10000e+16' -> '1.000000000000000E+20' Inexact Rounded
+addx6036 add '700' '10000e+16' -> '1.000000000000000E+20' Inexact Rounded
+addx6037 add '7000' '10000e+16' -> '1.000000000000000E+20' Inexact Rounded
+addx6038 add '70000' '10000e+16' -> '1.000000000000001E+20' Inexact Rounded
+addx6039 add '700000' '10000e+16' -> '1.000000000000007E+20' Rounded
+
+-- symmetry:
+addx6040 add '10000e+16' '70' -> '1.000000000000000E+20' Inexact Rounded
+addx6041 add '10000e+16' '700' -> '1.000000000000000E+20' Inexact Rounded
+addx6042 add '10000e+16' '7000' -> '1.000000000000000E+20' Inexact Rounded
+addx6044 add '10000e+16' '70000' -> '1.000000000000001E+20' Inexact Rounded
+addx6045 add '10000e+16' '700000' -> '1.000000000000007E+20' Rounded
+
+addx6046 add '10000e+9' '7' -> '10000000000007'
+addx6047 add '10000e+9' '70' -> '10000000000070'
+addx6048 add '10000e+9' '700' -> '10000000000700'
+addx6049 add '10000e+9' '7000' -> '10000000007000'
+addx6050 add '10000e+9' '70000' -> '10000000070000'
+addx6051 add '10000e+9' '700000' -> '10000000700000'
+
+-- examples from decarith
+addx6053 add '12' '7.00' -> '19.00'
+addx6054 add '1.3' '-1.07' -> '0.23'
+addx6055 add '1.3' '-1.30' -> '0.00'
+addx6056 add '1.3' '-2.07' -> '-0.77'
+addx6057 add '1E+2' '1E+4' -> '1.01E+4'
+
+-- from above
+addx6061 add 1 '0.1' -> '1.1'
+addx6062 add 1 '0.01' -> '1.01'
+addx6063 add 1 '0.001' -> '1.001'
+addx6064 add 1 '0.0001' -> '1.0001'
+addx6065 add 1 '0.00001' -> '1.00001'
+addx6066 add 1 '0.000001' -> '1.000001'
+addx6067 add 1 '0.0000001' -> '1.0000001'
+addx6068 add 1 '0.00000001' -> '1.00000001'
+
+-- cancellation to integer
+addx6069 add 99999999999999123456789 -99999999999999E+9 -> 123456789
+
+-- some funny zeros [in case of bad signum]
+addx6070 add 1 0 -> 1
+addx6071 add 1 0. -> 1
+addx6072 add 1 .0 -> 1.0
+addx6073 add 1 0.0 -> 1.0
+addx6074 add 1 0.00 -> 1.00
+addx6075 add 0 1 -> 1
+addx6076 add 0. 1 -> 1
+addx6077 add .0 1 -> 1.0
+addx6078 add 0.0 1 -> 1.0
+addx6079 add 0.00 1 -> 1.00
+
+-- some carries
+addx6080 add 9999999999999998 1 -> 9999999999999999
+addx6081 add 9999999999999999 1 -> 1.000000000000000E+16 Rounded
+addx6082 add 999999999999999 1 -> 1000000000000000
+addx6083 add 9999999999999 1 -> 10000000000000
+addx6084 add 99999999999 1 -> 100000000000
+addx6085 add 999999999 1 -> 1000000000
+addx6086 add 9999999 1 -> 10000000
+addx6087 add 99999 1 -> 100000
+addx6088 add 999 1 -> 1000
+addx6089 add 9 1 -> 10
+
-addx1160 add 100E-105 -1e-101 -> -0E-101 Subnormal Inexact Rounded Underflow
-addx1161 add 100E-105 -1e-201 -> 0E-101 Subnormal Inexact Rounded Underflow
+-- more LHS swaps
+addx6090 add '-56267E-10' 0 -> '-0.0000056267'
+addx6091 add '-56267E-6' 0 -> '-0.056267'
+addx6092 add '-56267E-5' 0 -> '-0.56267'
+addx6093 add '-56267E-4' 0 -> '-5.6267'
+addx6094 add '-56267E-3' 0 -> '-56.267'
+addx6095 add '-56267E-2' 0 -> '-562.67'
+addx6096 add '-56267E-1' 0 -> '-5626.7'
+addx6097 add '-56267E-0' 0 -> '-56267'
+addx6098 add '-5E-10' 0 -> '-5E-10'
+addx6099 add '-5E-7' 0 -> '-5E-7'
+addx6100 add '-5E-6' 0 -> '-0.000005'
+addx6101 add '-5E-5' 0 -> '-0.00005'
+addx6102 add '-5E-4' 0 -> '-0.0005'
+addx6103 add '-5E-1' 0 -> '-0.5'
+addx6104 add '-5E0' 0 -> '-5'
+addx6105 add '-5E1' 0 -> '-50'
+addx6106 add '-5E5' 0 -> '-500000'
+addx6107 add '-5E15' 0 -> '-5000000000000000'
+addx6108 add '-5E16' 0 -> '-5.000000000000000E+16' Rounded
+addx6109 add '-5E17' 0 -> '-5.000000000000000E+17' Rounded
+addx6110 add '-5E18' 0 -> '-5.000000000000000E+18' Rounded
+addx6111 add '-5E100' 0 -> '-5.000000000000000E+100' Rounded
+
+-- more RHS swaps
+addx6113 add 0 '-56267E-10' -> '-0.0000056267'
+addx6114 add 0 '-56267E-6' -> '-0.056267'
+addx6116 add 0 '-56267E-5' -> '-0.56267'
+addx6117 add 0 '-56267E-4' -> '-5.6267'
+addx6119 add 0 '-56267E-3' -> '-56.267'
+addx6120 add 0 '-56267E-2' -> '-562.67'
+addx6121 add 0 '-56267E-1' -> '-5626.7'
+addx6122 add 0 '-56267E-0' -> '-56267'
+addx6123 add 0 '-5E-10' -> '-5E-10'
+addx6124 add 0 '-5E-7' -> '-5E-7'
+addx6125 add 0 '-5E-6' -> '-0.000005'
+addx6126 add 0 '-5E-5' -> '-0.00005'
+addx6127 add 0 '-5E-4' -> '-0.0005'
+addx6128 add 0 '-5E-1' -> '-0.5'
+addx6129 add 0 '-5E0' -> '-5'
+addx6130 add 0 '-5E1' -> '-50'
+addx6131 add 0 '-5E5' -> '-500000'
+addx6132 add 0 '-5E15' -> '-5000000000000000'
+addx6133 add 0 '-5E16' -> '-5.000000000000000E+16' Rounded
+addx6134 add 0 '-5E17' -> '-5.000000000000000E+17' Rounded
+addx6135 add 0 '-5E18' -> '-5.000000000000000E+18' Rounded
+addx6136 add 0 '-5E100' -> '-5.000000000000000E+100' Rounded
+
+-- related
+addx6137 add 1 '0E-19' -> '1.000000000000000' Rounded
+addx6138 add -1 '0E-19' -> '-1.000000000000000' Rounded
+addx6139 add '0E-19' 1 -> '1.000000000000000' Rounded
+addx6140 add '0E-19' -1 -> '-1.000000000000000' Rounded
+addx6141 add 1E+11 0.0000 -> '100000000000.0000'
+addx6142 add 1E+11 0.00000 -> '100000000000.0000' Rounded
+addx6143 add 0.000 1E+12 -> '1000000000000.000'
+addx6144 add 0.0000 1E+12 -> '1000000000000.000' Rounded
+
+-- [some of the next group are really constructor tests]
+addx6146 add '00.0' 0 -> '0.0'
+addx6147 add '0.00' 0 -> '0.00'
+addx6148 add 0 '0.00' -> '0.00'
+addx6149 add 0 '00.0' -> '0.0'
+addx6150 add '00.0' '0.00' -> '0.00'
+addx6151 add '0.00' '00.0' -> '0.00'
+addx6152 add '3' '.3' -> '3.3'
+addx6153 add '3.' '.3' -> '3.3'
+addx6154 add '3.0' '.3' -> '3.3'
+addx6155 add '3.00' '.3' -> '3.30'
+addx6156 add '3' '3' -> '6'
+addx6157 add '3' '+3' -> '6'
+addx6158 add '3' '-3' -> '0'
+addx6159 add '0.3' '-0.3' -> '0.0'
+addx6160 add '0.03' '-0.03' -> '0.00'
+
+-- try borderline precision, with carries, etc.
+addx6161 add '1E+13' '-1' -> '9999999999999'
+addx6162 add '1E+13' '1.11' -> '10000000000001.11'
+addx6163 add '1.11' '1E+13' -> '10000000000001.11'
+addx6164 add '-1' '1E+13' -> '9999999999999'
+addx6165 add '7E+13' '-1' -> '69999999999999'
+addx6166 add '7E+13' '1.11' -> '70000000000001.11'
+addx6167 add '1.11' '7E+13' -> '70000000000001.11'
+addx6168 add '-1' '7E+13' -> '69999999999999'
+
+-- 1234567890123456 1234567890123456 1 234567890123456
+addx6170 add '0.4444444444444444' '0.5555555555555563' -> '1.000000000000001' Inexact Rounded
+addx6171 add '0.4444444444444444' '0.5555555555555562' -> '1.000000000000001' Inexact Rounded
+addx6172 add '0.4444444444444444' '0.5555555555555561' -> '1.000000000000000' Inexact Rounded
+addx6173 add '0.4444444444444444' '0.5555555555555560' -> '1.000000000000000' Inexact Rounded
+addx6174 add '0.4444444444444444' '0.5555555555555559' -> '1.000000000000000' Inexact Rounded
+addx6175 add '0.4444444444444444' '0.5555555555555558' -> '1.000000000000000' Inexact Rounded
+addx6176 add '0.4444444444444444' '0.5555555555555557' -> '1.000000000000000' Inexact Rounded
+addx6177 add '0.4444444444444444' '0.5555555555555556' -> '1.000000000000000' Rounded
+addx6178 add '0.4444444444444444' '0.5555555555555555' -> '0.9999999999999999'
+addx6179 add '0.4444444444444444' '0.5555555555555554' -> '0.9999999999999998'
+addx6180 add '0.4444444444444444' '0.5555555555555553' -> '0.9999999999999997'
+addx6181 add '0.4444444444444444' '0.5555555555555552' -> '0.9999999999999996'
+addx6182 add '0.4444444444444444' '0.5555555555555551' -> '0.9999999999999995'
+addx6183 add '0.4444444444444444' '0.5555555555555550' -> '0.9999999999999994'
+
+-- and some more, including residue effects and different roundings
+rounding: half_up
+addx6200 add '6543210123456789' 0 -> '6543210123456789'
+addx6201 add '6543210123456789' 0.000000001 -> '6543210123456789' Inexact Rounded
+addx6202 add '6543210123456789' 0.000001 -> '6543210123456789' Inexact Rounded
+addx6203 add '6543210123456789' 0.1 -> '6543210123456789' Inexact Rounded
+addx6204 add '6543210123456789' 0.4 -> '6543210123456789' Inexact Rounded
+addx6205 add '6543210123456789' 0.49 -> '6543210123456789' Inexact Rounded
+addx6206 add '6543210123456789' 0.499999 -> '6543210123456789' Inexact Rounded
+addx6207 add '6543210123456789' 0.499999999 -> '6543210123456789' Inexact Rounded
+addx6208 add '6543210123456789' 0.5 -> '6543210123456790' Inexact Rounded
+addx6209 add '6543210123456789' 0.500000001 -> '6543210123456790' Inexact Rounded
+addx6210 add '6543210123456789' 0.500001 -> '6543210123456790' Inexact Rounded
+addx6211 add '6543210123456789' 0.51 -> '6543210123456790' Inexact Rounded
+addx6212 add '6543210123456789' 0.6 -> '6543210123456790' Inexact Rounded
+addx6213 add '6543210123456789' 0.9 -> '6543210123456790' Inexact Rounded
+addx6214 add '6543210123456789' 0.99999 -> '6543210123456790' Inexact Rounded
+addx6215 add '6543210123456789' 0.999999999 -> '6543210123456790' Inexact Rounded
+addx6216 add '6543210123456789' 1 -> '6543210123456790'
+addx6217 add '6543210123456789' 1.000000001 -> '6543210123456790' Inexact Rounded
+addx6218 add '6543210123456789' 1.00001 -> '6543210123456790' Inexact Rounded
+addx6219 add '6543210123456789' 1.1 -> '6543210123456790' Inexact Rounded
+
+rounding: half_even
+addx6220 add '6543210123456789' 0 -> '6543210123456789'
+addx6221 add '6543210123456789' 0.000000001 -> '6543210123456789' Inexact Rounded
+addx6222 add '6543210123456789' 0.000001 -> '6543210123456789' Inexact Rounded
+addx6223 add '6543210123456789' 0.1 -> '6543210123456789' Inexact Rounded
+addx6224 add '6543210123456789' 0.4 -> '6543210123456789' Inexact Rounded
+addx6225 add '6543210123456789' 0.49 -> '6543210123456789' Inexact Rounded
+addx6226 add '6543210123456789' 0.499999 -> '6543210123456789' Inexact Rounded
+addx6227 add '6543210123456789' 0.499999999 -> '6543210123456789' Inexact Rounded
+addx6228 add '6543210123456789' 0.5 -> '6543210123456790' Inexact Rounded
+addx6229 add '6543210123456789' 0.500000001 -> '6543210123456790' Inexact Rounded
+addx6230 add '6543210123456789' 0.500001 -> '6543210123456790' Inexact Rounded
+addx6231 add '6543210123456789' 0.51 -> '6543210123456790' Inexact Rounded
+addx6232 add '6543210123456789' 0.6 -> '6543210123456790' Inexact Rounded
+addx6233 add '6543210123456789' 0.9 -> '6543210123456790' Inexact Rounded
+addx6234 add '6543210123456789' 0.99999 -> '6543210123456790' Inexact Rounded
+addx6235 add '6543210123456789' 0.999999999 -> '6543210123456790' Inexact Rounded
+addx6236 add '6543210123456789' 1 -> '6543210123456790'
+addx6237 add '6543210123456789' 1.00000001 -> '6543210123456790' Inexact Rounded
+addx6238 add '6543210123456789' 1.00001 -> '6543210123456790' Inexact Rounded
+addx6239 add '6543210123456789' 1.1 -> '6543210123456790' Inexact Rounded
+-- critical few with even bottom digit...
+addx6240 add '6543210123456788' 0.499999999 -> '6543210123456788' Inexact Rounded
+addx6241 add '6543210123456788' 0.5 -> '6543210123456788' Inexact Rounded
+addx6242 add '6543210123456788' 0.500000001 -> '6543210123456789' Inexact Rounded
+
+rounding: down
+addx6250 add '6543210123456789' 0 -> '6543210123456789'
+addx6251 add '6543210123456789' 0.000000001 -> '6543210123456789' Inexact Rounded
+addx6252 add '6543210123456789' 0.000001 -> '6543210123456789' Inexact Rounded
+addx6253 add '6543210123456789' 0.1 -> '6543210123456789' Inexact Rounded
+addx6254 add '6543210123456789' 0.4 -> '6543210123456789' Inexact Rounded
+addx6255 add '6543210123456789' 0.49 -> '6543210123456789' Inexact Rounded
+addx6256 add '6543210123456789' 0.499999 -> '6543210123456789' Inexact Rounded
+addx6257 add '6543210123456789' 0.499999999 -> '6543210123456789' Inexact Rounded
+addx6258 add '6543210123456789' 0.5 -> '6543210123456789' Inexact Rounded
+addx6259 add '6543210123456789' 0.500000001 -> '6543210123456789' Inexact Rounded
+addx6260 add '6543210123456789' 0.500001 -> '6543210123456789' Inexact Rounded
+addx6261 add '6543210123456789' 0.51 -> '6543210123456789' Inexact Rounded
+addx6262 add '6543210123456789' 0.6 -> '6543210123456789' Inexact Rounded
+addx6263 add '6543210123456789' 0.9 -> '6543210123456789' Inexact Rounded
+addx6264 add '6543210123456789' 0.99999 -> '6543210123456789' Inexact Rounded
+addx6265 add '6543210123456789' 0.999999999 -> '6543210123456789' Inexact Rounded
+addx6266 add '6543210123456789' 1 -> '6543210123456790'
+addx6267 add '6543210123456789' 1.00000001 -> '6543210123456790' Inexact Rounded
+addx6268 add '6543210123456789' 1.00001 -> '6543210123456790' Inexact Rounded
+addx6269 add '6543210123456789' 1.1 -> '6543210123456790' Inexact Rounded
+
+-- 1 in last place tests
+rounding: half_even
+addx6301 add -1 1 -> 0
+addx6302 add 0 1 -> 1
+addx6303 add 1 1 -> 2
+addx6304 add 12 1 -> 13
+addx6305 add 98 1 -> 99
+addx6306 add 99 1 -> 100
+addx6307 add 100 1 -> 101
+addx6308 add 101 1 -> 102
+addx6309 add -1 -1 -> -2
+addx6310 add 0 -1 -> -1
+addx6311 add 1 -1 -> 0
+addx6312 add 12 -1 -> 11
+addx6313 add 98 -1 -> 97
+addx6314 add 99 -1 -> 98
+addx6315 add 100 -1 -> 99
+addx6316 add 101 -1 -> 100
+
+addx6321 add -0.01 0.01 -> 0.00
+addx6322 add 0.00 0.01 -> 0.01
+addx6323 add 0.01 0.01 -> 0.02
+addx6324 add 0.12 0.01 -> 0.13
+addx6325 add 0.98 0.01 -> 0.99
+addx6326 add 0.99 0.01 -> 1.00
+addx6327 add 1.00 0.01 -> 1.01
+addx6328 add 1.01 0.01 -> 1.02
+addx6329 add -0.01 -0.01 -> -0.02
+addx6330 add 0.00 -0.01 -> -0.01
+addx6331 add 0.01 -0.01 -> 0.00
+addx6332 add 0.12 -0.01 -> 0.11
+addx6333 add 0.98 -0.01 -> 0.97
+addx6334 add 0.99 -0.01 -> 0.98
+addx6335 add 1.00 -0.01 -> 0.99
+addx6336 add 1.01 -0.01 -> 1.00
+
+-- some more cases where adding 0 affects the coefficient
+addx6340 add 1E+3 0 -> 1000
+addx6341 add 1E+15 0 -> 1000000000000000
+addx6342 add 1E+16 0 -> 1.000000000000000E+16 Rounded
+addx6343 add 1E+17 0 -> 1.000000000000000E+17 Rounded
+-- which simply follow from these cases ...
+addx6344 add 1E+3 1 -> 1001
+addx6345 add 1E+15 1 -> 1000000000000001
+addx6346 add 1E+16 1 -> 1.000000000000000E+16 Inexact Rounded
+addx6347 add 1E+17 1 -> 1.000000000000000E+17 Inexact Rounded
+addx6348 add 1E+3 7 -> 1007
+addx6349 add 1E+15 7 -> 1000000000000007
+addx6350 add 1E+16 7 -> 1.000000000000001E+16 Inexact Rounded
+addx6351 add 1E+17 7 -> 1.000000000000000E+17 Inexact Rounded
+
+-- tryzeros cases
+addx6361 add 0E+50 10000E+1 -> 1.0000E+5
+addx6362 add 10000E+1 0E-50 -> 100000.0000000000 Rounded
+addx6363 add 10000E+1 10000E-50 -> 100000.0000000000 Rounded Inexact
+addx6364 add 12.34 0e-398 -> 12.34000000000000 Rounded
+
+-- ulp replacement tests
+addx6400 add 1 77e-14 -> 1.00000000000077
+addx6401 add 1 77e-15 -> 1.000000000000077
+addx6402 add 1 77e-16 -> 1.000000000000008 Inexact Rounded
+addx6403 add 1 77e-17 -> 1.000000000000001 Inexact Rounded
+addx6404 add 1 77e-18 -> 1.000000000000000 Inexact Rounded
+addx6405 add 1 77e-19 -> 1.000000000000000 Inexact Rounded
+addx6406 add 1 77e-99 -> 1.000000000000000 Inexact Rounded
+
+addx6410 add 10 77e-14 -> 10.00000000000077
+addx6411 add 10 77e-15 -> 10.00000000000008 Inexact Rounded
+addx6412 add 10 77e-16 -> 10.00000000000001 Inexact Rounded
+addx6413 add 10 77e-17 -> 10.00000000000000 Inexact Rounded
+addx6414 add 10 77e-18 -> 10.00000000000000 Inexact Rounded
+addx6415 add 10 77e-19 -> 10.00000000000000 Inexact Rounded
+addx6416 add 10 77e-99 -> 10.00000000000000 Inexact Rounded
+
+addx6420 add 77e-14 1 -> 1.00000000000077
+addx6421 add 77e-15 1 -> 1.000000000000077
+addx6422 add 77e-16 1 -> 1.000000000000008 Inexact Rounded
+addx6423 add 77e-17 1 -> 1.000000000000001 Inexact Rounded
+addx6424 add 77e-18 1 -> 1.000000000000000 Inexact Rounded
+addx6425 add 77e-19 1 -> 1.000000000000000 Inexact Rounded
+addx6426 add 77e-99 1 -> 1.000000000000000 Inexact Rounded
+
+addx6430 add 77e-14 10 -> 10.00000000000077
+addx6431 add 77e-15 10 -> 10.00000000000008 Inexact Rounded
+addx6432 add 77e-16 10 -> 10.00000000000001 Inexact Rounded
+addx6433 add 77e-17 10 -> 10.00000000000000 Inexact Rounded
+addx6434 add 77e-18 10 -> 10.00000000000000 Inexact Rounded
+addx6435 add 77e-19 10 -> 10.00000000000000 Inexact Rounded
+addx6436 add 77e-99 10 -> 10.00000000000000 Inexact Rounded
+
+-- negative ulps
+addx6440 add 1 -77e-14 -> 0.99999999999923
+addx6441 add 1 -77e-15 -> 0.999999999999923
+addx6442 add 1 -77e-16 -> 0.9999999999999923
+addx6443 add 1 -77e-17 -> 0.9999999999999992 Inexact Rounded
+addx6444 add 1 -77e-18 -> 0.9999999999999999 Inexact Rounded
+addx6445 add 1 -77e-19 -> 1.000000000000000 Inexact Rounded
+addx6446 add 1 -77e-99 -> 1.000000000000000 Inexact Rounded
+
+addx6450 add 10 -77e-14 -> 9.99999999999923
+addx6451 add 10 -77e-15 -> 9.999999999999923
+addx6452 add 10 -77e-16 -> 9.999999999999992 Inexact Rounded
+addx6453 add 10 -77e-17 -> 9.999999999999999 Inexact Rounded
+addx6454 add 10 -77e-18 -> 10.00000000000000 Inexact Rounded
+addx6455 add 10 -77e-19 -> 10.00000000000000 Inexact Rounded
+addx6456 add 10 -77e-99 -> 10.00000000000000 Inexact Rounded
+
+addx6460 add -77e-14 1 -> 0.99999999999923
+addx6461 add -77e-15 1 -> 0.999999999999923
+addx6462 add -77e-16 1 -> 0.9999999999999923
+addx6463 add -77e-17 1 -> 0.9999999999999992 Inexact Rounded
+addx6464 add -77e-18 1 -> 0.9999999999999999 Inexact Rounded
+addx6465 add -77e-19 1 -> 1.000000000000000 Inexact Rounded
+addx6466 add -77e-99 1 -> 1.000000000000000 Inexact Rounded
+
+addx6470 add -77e-14 10 -> 9.99999999999923
+addx6471 add -77e-15 10 -> 9.999999999999923
+addx6472 add -77e-16 10 -> 9.999999999999992 Inexact Rounded
+addx6473 add -77e-17 10 -> 9.999999999999999 Inexact Rounded
+addx6474 add -77e-18 10 -> 10.00000000000000 Inexact Rounded
+addx6475 add -77e-19 10 -> 10.00000000000000 Inexact Rounded
+addx6476 add -77e-99 10 -> 10.00000000000000 Inexact Rounded
+
+-- negative ulps
+addx6480 add -1 77e-14 -> -0.99999999999923
+addx6481 add -1 77e-15 -> -0.999999999999923
+addx6482 add -1 77e-16 -> -0.9999999999999923
+addx6483 add -1 77e-17 -> -0.9999999999999992 Inexact Rounded
+addx6484 add -1 77e-18 -> -0.9999999999999999 Inexact Rounded
+addx6485 add -1 77e-19 -> -1.000000000000000 Inexact Rounded
+addx6486 add -1 77e-99 -> -1.000000000000000 Inexact Rounded
+
+addx6490 add -10 77e-14 -> -9.99999999999923
+addx6491 add -10 77e-15 -> -9.999999999999923
+addx6492 add -10 77e-16 -> -9.999999999999992 Inexact Rounded
+addx6493 add -10 77e-17 -> -9.999999999999999 Inexact Rounded
+addx6494 add -10 77e-18 -> -10.00000000000000 Inexact Rounded
+addx6495 add -10 77e-19 -> -10.00000000000000 Inexact Rounded
+addx6496 add -10 77e-99 -> -10.00000000000000 Inexact Rounded
+
+addx6500 add 77e-14 -1 -> -0.99999999999923
+addx6501 add 77e-15 -1 -> -0.999999999999923
+addx6502 add 77e-16 -1 -> -0.9999999999999923
+addx6503 add 77e-17 -1 -> -0.9999999999999992 Inexact Rounded
+addx6504 add 77e-18 -1 -> -0.9999999999999999 Inexact Rounded
+addx6505 add 77e-19 -1 -> -1.000000000000000 Inexact Rounded
+addx6506 add 77e-99 -1 -> -1.000000000000000 Inexact Rounded
+
+addx6510 add 77e-14 -10 -> -9.99999999999923
+addx6511 add 77e-15 -10 -> -9.999999999999923
+addx6512 add 77e-16 -10 -> -9.999999999999992 Inexact Rounded
+addx6513 add 77e-17 -10 -> -9.999999999999999 Inexact Rounded
+addx6514 add 77e-18 -10 -> -10.00000000000000 Inexact Rounded
+addx6515 add 77e-19 -10 -> -10.00000000000000 Inexact Rounded
+addx6516 add 77e-99 -10 -> -10.00000000000000 Inexact Rounded
+-- long operands
+addx6521 add 101234562345678000 0 -> 1.012345623456780E+17 Rounded
+addx6522 add 0 101234562345678000 -> 1.012345623456780E+17 Rounded
+addx6523 add 10123456234567800 0 -> 1.012345623456780E+16 Rounded
+addx6524 add 0 10123456234567800 -> 1.012345623456780E+16 Rounded
+addx6525 add 10123456234567890 0 -> 1.012345623456789E+16 Rounded
+addx6526 add 0 10123456234567890 -> 1.012345623456789E+16 Rounded
+addx6527 add 10123456234567891 0 -> 1.012345623456789E+16 Inexact Rounded
+addx6528 add 0 10123456234567891 -> 1.012345623456789E+16 Inexact Rounded
+addx6529 add 101234562345678901 0 -> 1.012345623456789E+17 Inexact Rounded
+addx6530 add 0 101234562345678901 -> 1.012345623456789E+17 Inexact Rounded
+addx6531 add 10123456234567896 0 -> 1.012345623456790E+16 Inexact Rounded
+addx6532 add 0 10123456234567896 -> 1.012345623456790E+16 Inexact Rounded
+
+-- verify a query
+rounding: down
+addx6561 add 1e-398 9.000000000000000E+384 -> 9.000000000000000E+384 Inexact Rounded
+addx6562 add 0 9.000000000000000E+384 -> 9.000000000000000E+384 Rounded
+-- and using decimal64 bounds...
+rounding: down
+addx6563 add 1e-388 9.000000000000000E+374 -> 9.000000000000000E+374 Inexact Rounded
+addx6564 add 0 9.000000000000000E+374 -> 9.000000000000000E+374 Rounded
+
+-- more zeros, etc.
+rounding: half_even
+
+addx6701 add 5.00 1.00E-3 -> 5.00100
+addx6702 add 00.00 0.000 -> 0.000
+addx6703 add 00.00 0E-3 -> 0.000
+addx6704 add 0E-3 00.00 -> 0.000
+
+addx6710 add 0E+3 00.00 -> 0.00
+addx6711 add 0E+3 00.0 -> 0.0
+addx6712 add 0E+3 00. -> 0
+addx6713 add 0E+3 00.E+1 -> 0E+1
+addx6714 add 0E+3 00.E+2 -> 0E+2
+addx6715 add 0E+3 00.E+3 -> 0E+3
+addx6716 add 0E+3 00.E+4 -> 0E+3
+addx6717 add 0E+3 00.E+5 -> 0E+3
+addx6718 add 0E+3 -00.0 -> 0.0
+addx6719 add 0E+3 -00. -> 0
+addx6731 add 0E+3 -00.E+1 -> 0E+1
+
+addx6720 add 00.00 0E+3 -> 0.00
+addx6721 add 00.0 0E+3 -> 0.0
+addx6722 add 00. 0E+3 -> 0
+addx6723 add 00.E+1 0E+3 -> 0E+1
+addx6724 add 00.E+2 0E+3 -> 0E+2
+addx6725 add 00.E+3 0E+3 -> 0E+3
+addx6726 add 00.E+4 0E+3 -> 0E+3
+addx6727 add 00.E+5 0E+3 -> 0E+3
+addx6728 add -00.00 0E+3 -> 0.00
+addx6729 add -00.0 0E+3 -> 0.0
+addx6730 add -00. 0E+3 -> 0
+
+addx6732 add 0 0 -> 0
+addx6733 add 0 -0 -> 0
+addx6734 add -0 0 -> 0
+addx6735 add -0 -0 -> -0 -- IEEE 854 special case
+
+addx6736 add 1 -1 -> 0
+addx6737 add -1 -1 -> -2
+addx6738 add 1 1 -> 2
+addx6739 add -1 1 -> 0
+
+addx6741 add 0 -1 -> -1
+addx6742 add -0 -1 -> -1
+addx6743 add 0 1 -> 1
+addx6744 add -0 1 -> 1
+addx6745 add -1 0 -> -1
+addx6746 add -1 -0 -> -1
+addx6747 add 1 0 -> 1
+addx6748 add 1 -0 -> 1
+
+addx6751 add 0.0 -1 -> -1.0
+addx6752 add -0.0 -1 -> -1.0
+addx6753 add 0.0 1 -> 1.0
+addx6754 add -0.0 1 -> 1.0
+addx6755 add -1.0 0 -> -1.0
+addx6756 add -1.0 -0 -> -1.0
+addx6757 add 1.0 0 -> 1.0
+addx6758 add 1.0 -0 -> 1.0
+
+addx6761 add 0 -1.0 -> -1.0
+addx6762 add -0 -1.0 -> -1.0
+addx6763 add 0 1.0 -> 1.0
+addx6764 add -0 1.0 -> 1.0
+addx6765 add -1 0.0 -> -1.0
+addx6766 add -1 -0.0 -> -1.0
+addx6767 add 1 0.0 -> 1.0
+addx6768 add 1 -0.0 -> 1.0
+
+addx6771 add 0.0 -1.0 -> -1.0
+addx6772 add -0.0 -1.0 -> -1.0
+addx6773 add 0.0 1.0 -> 1.0
+addx6774 add -0.0 1.0 -> 1.0
+addx6775 add -1.0 0.0 -> -1.0
+addx6776 add -1.0 -0.0 -> -1.0
+addx6777 add 1.0 0.0 -> 1.0
+addx6778 add 1.0 -0.0 -> 1.0
+
+-- Specials
+addx6780 add -Inf -Inf -> -Infinity
+addx6781 add -Inf -1000 -> -Infinity
+addx6782 add -Inf -1 -> -Infinity
+addx6783 add -Inf -0 -> -Infinity
+addx6784 add -Inf 0 -> -Infinity
+addx6785 add -Inf 1 -> -Infinity
+addx6786 add -Inf 1000 -> -Infinity
+addx6787 add -1000 -Inf -> -Infinity
+addx6788 add -Inf -Inf -> -Infinity
+addx6789 add -1 -Inf -> -Infinity
+addx6790 add -0 -Inf -> -Infinity
+addx6791 add 0 -Inf -> -Infinity
+addx6792 add 1 -Inf -> -Infinity
+addx6793 add 1000 -Inf -> -Infinity
+addx6794 add Inf -Inf -> NaN Invalid_operation
+
+addx6800 add Inf -Inf -> NaN Invalid_operation
+addx6801 add Inf -1000 -> Infinity
+addx6802 add Inf -1 -> Infinity
+addx6803 add Inf -0 -> Infinity
+addx6804 add Inf 0 -> Infinity
+addx6805 add Inf 1 -> Infinity
+addx6806 add Inf 1000 -> Infinity
+addx6807 add Inf Inf -> Infinity
+addx6808 add -1000 Inf -> Infinity
+addx6809 add -Inf Inf -> NaN Invalid_operation
+addx6810 add -1 Inf -> Infinity
+addx6811 add -0 Inf -> Infinity
+addx6812 add 0 Inf -> Infinity
+addx6813 add 1 Inf -> Infinity
+addx6814 add 1000 Inf -> Infinity
+addx6815 add Inf Inf -> Infinity
+
+addx6821 add NaN -Inf -> NaN
+addx6822 add NaN -1000 -> NaN
+addx6823 add NaN -1 -> NaN
+addx6824 add NaN -0 -> NaN
+addx6825 add NaN 0 -> NaN
+addx6826 add NaN 1 -> NaN
+addx6827 add NaN 1000 -> NaN
+addx6828 add NaN Inf -> NaN
+addx6829 add NaN NaN -> NaN
+addx6830 add -Inf NaN -> NaN
+addx6831 add -1000 NaN -> NaN
+addx6832 add -1 NaN -> NaN
+addx6833 add -0 NaN -> NaN
+addx6834 add 0 NaN -> NaN
+addx6835 add 1 NaN -> NaN
+addx6836 add 1000 NaN -> NaN
+addx6837 add Inf NaN -> NaN
+
+addx6841 add sNaN -Inf -> NaN Invalid_operation
+addx6842 add sNaN -1000 -> NaN Invalid_operation
+addx6843 add sNaN -1 -> NaN Invalid_operation
+addx6844 add sNaN -0 -> NaN Invalid_operation
+addx6845 add sNaN 0 -> NaN Invalid_operation
+addx6846 add sNaN 1 -> NaN Invalid_operation
+addx6847 add sNaN 1000 -> NaN Invalid_operation
+addx6848 add sNaN NaN -> NaN Invalid_operation
+addx6849 add sNaN sNaN -> NaN Invalid_operation
+addx6850 add NaN sNaN -> NaN Invalid_operation
+addx6851 add -Inf sNaN -> NaN Invalid_operation
+addx6852 add -1000 sNaN -> NaN Invalid_operation
+addx6853 add -1 sNaN -> NaN Invalid_operation
+addx6854 add -0 sNaN -> NaN Invalid_operation
+addx6855 add 0 sNaN -> NaN Invalid_operation
+addx6856 add 1 sNaN -> NaN Invalid_operation
+addx6857 add 1000 sNaN -> NaN Invalid_operation
+addx6858 add Inf sNaN -> NaN Invalid_operation
+addx6859 add NaN sNaN -> NaN Invalid_operation
+
+-- propagating NaNs
+addx6861 add NaN1 -Inf -> NaN1
+addx6862 add +NaN2 -1000 -> NaN2
+addx6863 add NaN3 1000 -> NaN3
+addx6864 add NaN4 Inf -> NaN4
+addx6865 add NaN5 +NaN6 -> NaN5
+addx6866 add -Inf NaN7 -> NaN7
+addx6867 add -1000 NaN8 -> NaN8
+addx6868 add 1000 NaN9 -> NaN9
+addx6869 add Inf +NaN10 -> NaN10
+addx6871 add sNaN11 -Inf -> NaN11 Invalid_operation
+addx6872 add sNaN12 -1000 -> NaN12 Invalid_operation
+addx6873 add sNaN13 1000 -> NaN13 Invalid_operation
+addx6874 add sNaN14 NaN17 -> NaN14 Invalid_operation
+addx6875 add sNaN15 sNaN18 -> NaN15 Invalid_operation
+addx6876 add NaN16 sNaN19 -> NaN19 Invalid_operation
+addx6877 add -Inf +sNaN20 -> NaN20 Invalid_operation
+addx6878 add -1000 sNaN21 -> NaN21 Invalid_operation
+addx6879 add 1000 sNaN22 -> NaN22 Invalid_operation
+addx6880 add Inf sNaN23 -> NaN23 Invalid_operation
+addx6881 add +NaN25 +sNaN24 -> NaN24 Invalid_operation
+addx6882 add -NaN26 NaN28 -> -NaN26
+addx6883 add -sNaN27 sNaN29 -> -NaN27 Invalid_operation
+addx6884 add 1000 -NaN30 -> -NaN30
+addx6885 add 1000 -sNaN31 -> -NaN31 Invalid_operation
+
+-- now the case where we can get underflow but the result is normal
+-- [note this can't happen if the operands are also bounded, as we
+-- cannot represent 1E-399, for example]
+
+addx6571 add 1E-383 0 -> 1E-383
+addx6572 add 1E-384 0 -> 1E-384 Subnormal
+addx6573 add 1E-383 1E-384 -> 1.1E-383
+addx6574 subtract 1E-383 1E-384 -> 9E-384 Subnormal
+
+-- Here we explore the boundary of rounding a subnormal to Nmin
+addx6575 subtract 1E-383 1E-398 -> 9.99999999999999E-384 Subnormal
+addx6576 subtract 1E-383 1E-398 -> 9.99999999999999E-384 Subnormal
+addx6577 subtract 1E-383 1E-399 -> 1.000000000000000E-383 Underflow Inexact Subnormal Rounded
+addx6578 subtract 1E-383 1E-400 -> 1.000000000000000E-383 Underflow Inexact Subnormal Rounded
+addx6579 subtract 1E-383 1E-401 -> 1.000000000000000E-383 Underflow Inexact Subnormal Rounded
+addx6580 subtract 1E-383 1E-402 -> 1.000000000000000E-383 Underflow Inexact Subnormal Rounded
+
+-- check overflow edge case
+-- 1234567890123456
+addx6972 apply 9.999999999999999E+384 -> 9.999999999999999E+384
+addx6973 add 9.999999999999999E+384 1 -> 9.999999999999999E+384 Inexact Rounded
+addx6974 add 9999999999999999E+369 1 -> 9.999999999999999E+384 Inexact Rounded
+addx6975 add 9999999999999999E+369 1E+369 -> Infinity Overflow Inexact Rounded
+addx6976 add 9999999999999999E+369 9E+368 -> Infinity Overflow Inexact Rounded
+addx6977 add 9999999999999999E+369 8E+368 -> Infinity Overflow Inexact Rounded
+addx6978 add 9999999999999999E+369 7E+368 -> Infinity Overflow Inexact Rounded
+addx6979 add 9999999999999999E+369 6E+368 -> Infinity Overflow Inexact Rounded
+addx6980 add 9999999999999999E+369 5E+368 -> Infinity Overflow Inexact Rounded
+addx6981 add 9999999999999999E+369 4E+368 -> 9.999999999999999E+384 Inexact Rounded
+addx6982 add 9999999999999999E+369 3E+368 -> 9.999999999999999E+384 Inexact Rounded
+addx6983 add 9999999999999999E+369 2E+368 -> 9.999999999999999E+384 Inexact Rounded
+addx6984 add 9999999999999999E+369 1E+368 -> 9.999999999999999E+384 Inexact Rounded
+
+addx6985 apply -9.999999999999999E+384 -> -9.999999999999999E+384
+addx6986 add -9.999999999999999E+384 -1 -> -9.999999999999999E+384 Inexact Rounded
+addx6987 add -9999999999999999E+369 -1 -> -9.999999999999999E+384 Inexact Rounded
+addx6988 add -9999999999999999E+369 -1E+369 -> -Infinity Overflow Inexact Rounded
+addx6989 add -9999999999999999E+369 -9E+368 -> -Infinity Overflow Inexact Rounded
+addx6990 add -9999999999999999E+369 -8E+368 -> -Infinity Overflow Inexact Rounded
+addx6991 add -9999999999999999E+369 -7E+368 -> -Infinity Overflow Inexact Rounded
+addx6992 add -9999999999999999E+369 -6E+368 -> -Infinity Overflow Inexact Rounded
+addx6993 add -9999999999999999E+369 -5E+368 -> -Infinity Overflow Inexact Rounded
+addx6994 add -9999999999999999E+369 -4E+368 -> -9.999999999999999E+384 Inexact Rounded
+addx6995 add -9999999999999999E+369 -3E+368 -> -9.999999999999999E+384 Inexact Rounded
+addx6996 add -9999999999999999E+369 -2E+368 -> -9.999999999999999E+384 Inexact Rounded
+addx6997 add -9999999999999999E+369 -1E+368 -> -9.999999999999999E+384 Inexact Rounded
+
+-- And for round down full and subnormal results
+rounding: down
+addx61100 add 1e+2 -1e-383 -> 99.99999999999999 Rounded Inexact
+addx61101 add 1e+1 -1e-383 -> 9.999999999999999 Rounded Inexact
+addx61103 add +1 -1e-383 -> 0.9999999999999999 Rounded Inexact
+addx61104 add 1e-1 -1e-383 -> 0.09999999999999999 Rounded Inexact
+addx61105 add 1e-2 -1e-383 -> 0.009999999999999999 Rounded Inexact
+addx61106 add 1e-3 -1e-383 -> 0.0009999999999999999 Rounded Inexact
+addx61107 add 1e-4 -1e-383 -> 0.00009999999999999999 Rounded Inexact
+addx61108 add 1e-5 -1e-383 -> 0.000009999999999999999 Rounded Inexact
+addx61109 add 1e-6 -1e-383 -> 9.999999999999999E-7 Rounded Inexact
+
+rounding: ceiling
+addx61110 add -1e+2 +1e-383 -> -99.99999999999999 Rounded Inexact
+addx61111 add -1e+1 +1e-383 -> -9.999999999999999 Rounded Inexact
+addx61113 add -1 +1e-383 -> -0.9999999999999999 Rounded Inexact
+addx61114 add -1e-1 +1e-383 -> -0.09999999999999999 Rounded Inexact
+addx61115 add -1e-2 +1e-383 -> -0.009999999999999999 Rounded Inexact
+addx61116 add -1e-3 +1e-383 -> -0.0009999999999999999 Rounded Inexact
+addx61117 add -1e-4 +1e-383 -> -0.00009999999999999999 Rounded Inexact
+addx61118 add -1e-5 +1e-383 -> -0.000009999999999999999 Rounded Inexact
+addx61119 add -1e-6 +1e-383 -> -9.999999999999999E-7 Rounded Inexact
+
+-- tests based on Gunnar Degnbol's edge case
+rounding: half_even
+
+addx61300 add 1E16 -0.5 -> 1.000000000000000E+16 Inexact Rounded
+addx61310 add 1E16 -0.51 -> 9999999999999999 Inexact Rounded
+addx61311 add 1E16 -0.501 -> 9999999999999999 Inexact Rounded
+addx61312 add 1E16 -0.5001 -> 9999999999999999 Inexact Rounded
+addx61313 add 1E16 -0.50001 -> 9999999999999999 Inexact Rounded
+addx61314 add 1E16 -0.500001 -> 9999999999999999 Inexact Rounded
+addx61315 add 1E16 -0.5000001 -> 9999999999999999 Inexact Rounded
+addx61316 add 1E16 -0.50000001 -> 9999999999999999 Inexact Rounded
+addx61317 add 1E16 -0.500000001 -> 9999999999999999 Inexact Rounded
+addx61318 add 1E16 -0.5000000001 -> 9999999999999999 Inexact Rounded
+addx61319 add 1E16 -0.50000000001 -> 9999999999999999 Inexact Rounded
+addx61320 add 1E16 -0.500000000001 -> 9999999999999999 Inexact Rounded
+addx61321 add 1E16 -0.5000000000001 -> 9999999999999999 Inexact Rounded
+addx61322 add 1E16 -0.50000000000001 -> 9999999999999999 Inexact Rounded
+addx61323 add 1E16 -0.500000000000001 -> 9999999999999999 Inexact Rounded
+addx61324 add 1E16 -0.5000000000000001 -> 9999999999999999 Inexact Rounded
+addx61325 add 1E16 -0.5000000000000000 -> 1.000000000000000E+16 Inexact Rounded
+addx61326 add 1E16 -0.500000000000000 -> 1.000000000000000E+16 Inexact Rounded
+addx61327 add 1E16 -0.50000000000000 -> 1.000000000000000E+16 Inexact Rounded
+addx61328 add 1E16 -0.5000000000000 -> 1.000000000000000E+16 Inexact Rounded
+addx61329 add 1E16 -0.500000000000 -> 1.000000000000000E+16 Inexact Rounded
+addx61330 add 1E16 -0.50000000000 -> 1.000000000000000E+16 Inexact Rounded
+addx61331 add 1E16 -0.5000000000 -> 1.000000000000000E+16 Inexact Rounded
+addx61332 add 1E16 -0.500000000 -> 1.000000000000000E+16 Inexact Rounded
+addx61333 add 1E16 -0.50000000 -> 1.000000000000000E+16 Inexact Rounded
+addx61334 add 1E16 -0.5000000 -> 1.000000000000000E+16 Inexact Rounded
+addx61335 add 1E16 -0.500000 -> 1.000000000000000E+16 Inexact Rounded
+addx61336 add 1E16 -0.50000 -> 1.000000000000000E+16 Inexact Rounded
+addx61337 add 1E16 -0.5000 -> 1.000000000000000E+16 Inexact Rounded
+addx61338 add 1E16 -0.500 -> 1.000000000000000E+16 Inexact Rounded
+addx61339 add 1E16 -0.50 -> 1.000000000000000E+16 Inexact Rounded
+
+addx61340 add 1E16 -5000000.000010001 -> 9999999995000000 Inexact Rounded
+addx61341 add 1E16 -5000000.000000001 -> 9999999995000000 Inexact Rounded
+
+addx61349 add 9999999999999999 0.4 -> 9999999999999999 Inexact Rounded
+addx61350 add 9999999999999999 0.49 -> 9999999999999999 Inexact Rounded
+addx61351 add 9999999999999999 0.499 -> 9999999999999999 Inexact Rounded
+addx61352 add 9999999999999999 0.4999 -> 9999999999999999 Inexact Rounded
+addx61353 add 9999999999999999 0.49999 -> 9999999999999999 Inexact Rounded
+addx61354 add 9999999999999999 0.499999 -> 9999999999999999 Inexact Rounded
+addx61355 add 9999999999999999 0.4999999 -> 9999999999999999 Inexact Rounded
+addx61356 add 9999999999999999 0.49999999 -> 9999999999999999 Inexact Rounded
+addx61357 add 9999999999999999 0.499999999 -> 9999999999999999 Inexact Rounded
+addx61358 add 9999999999999999 0.4999999999 -> 9999999999999999 Inexact Rounded
+addx61359 add 9999999999999999 0.49999999999 -> 9999999999999999 Inexact Rounded
+addx61360 add 9999999999999999 0.499999999999 -> 9999999999999999 Inexact Rounded
+addx61361 add 9999999999999999 0.4999999999999 -> 9999999999999999 Inexact Rounded
+addx61362 add 9999999999999999 0.49999999999999 -> 9999999999999999 Inexact Rounded
+addx61363 add 9999999999999999 0.499999999999999 -> 9999999999999999 Inexact Rounded
+addx61364 add 9999999999999999 0.4999999999999999 -> 9999999999999999 Inexact Rounded
+addx61365 add 9999999999999999 0.5000000000000000 -> 1.000000000000000E+16 Inexact Rounded
+addx61367 add 9999999999999999 0.500000000000000 -> 1.000000000000000E+16 Inexact Rounded
+addx61368 add 9999999999999999 0.50000000000000 -> 1.000000000000000E+16 Inexact Rounded
+addx61369 add 9999999999999999 0.5000000000000 -> 1.000000000000000E+16 Inexact Rounded
+addx61370 add 9999999999999999 0.500000000000 -> 1.000000000000000E+16 Inexact Rounded
+addx61371 add 9999999999999999 0.50000000000 -> 1.000000000000000E+16 Inexact Rounded
+addx61372 add 9999999999999999 0.5000000000 -> 1.000000000000000E+16 Inexact Rounded
+addx61373 add 9999999999999999 0.500000000 -> 1.000000000000000E+16 Inexact Rounded
+addx61374 add 9999999999999999 0.50000000 -> 1.000000000000000E+16 Inexact Rounded
+addx61375 add 9999999999999999 0.5000000 -> 1.000000000000000E+16 Inexact Rounded
+addx61376 add 9999999999999999 0.500000 -> 1.000000000000000E+16 Inexact Rounded
+addx61377 add 9999999999999999 0.50000 -> 1.000000000000000E+16 Inexact Rounded
+addx61378 add 9999999999999999 0.5000 -> 1.000000000000000E+16 Inexact Rounded
+addx61379 add 9999999999999999 0.500 -> 1.000000000000000E+16 Inexact Rounded
+addx61380 add 9999999999999999 0.50 -> 1.000000000000000E+16 Inexact Rounded
+addx61381 add 9999999999999999 0.5 -> 1.000000000000000E+16 Inexact Rounded
+addx61382 add 9999999999999999 0.5000000000000001 -> 1.000000000000000E+16 Inexact Rounded
+addx61383 add 9999999999999999 0.500000000000001 -> 1.000000000000000E+16 Inexact Rounded
+addx61384 add 9999999999999999 0.50000000000001 -> 1.000000000000000E+16 Inexact Rounded
+addx61385 add 9999999999999999 0.5000000000001 -> 1.000000000000000E+16 Inexact Rounded
+addx61386 add 9999999999999999 0.500000000001 -> 1.000000000000000E+16 Inexact Rounded
+addx61387 add 9999999999999999 0.50000000001 -> 1.000000000000000E+16 Inexact Rounded
+addx61388 add 9999999999999999 0.5000000001 -> 1.000000000000000E+16 Inexact Rounded
+addx61389 add 9999999999999999 0.500000001 -> 1.000000000000000E+16 Inexact Rounded
+addx61390 add 9999999999999999 0.50000001 -> 1.000000000000000E+16 Inexact Rounded
+addx61391 add 9999999999999999 0.5000001 -> 1.000000000000000E+16 Inexact Rounded
+addx61392 add 9999999999999999 0.500001 -> 1.000000000000000E+16 Inexact Rounded
+addx61393 add 9999999999999999 0.50001 -> 1.000000000000000E+16 Inexact Rounded
+addx61394 add 9999999999999999 0.5001 -> 1.000000000000000E+16 Inexact Rounded
+addx61395 add 9999999999999999 0.501 -> 1.000000000000000E+16 Inexact Rounded
+addx61396 add 9999999999999999 0.51 -> 1.000000000000000E+16 Inexact Rounded
+
+-- More GD edge cases, where difference between the unadjusted
+-- exponents is larger than the maximum precision and one side is 0
+addx61420 add 0 1.123456789012345 -> 1.123456789012345
+addx61421 add 0 1.123456789012345E-1 -> 0.1123456789012345
+addx61422 add 0 1.123456789012345E-2 -> 0.01123456789012345
+addx61423 add 0 1.123456789012345E-3 -> 0.001123456789012345
+addx61424 add 0 1.123456789012345E-4 -> 0.0001123456789012345
+addx61425 add 0 1.123456789012345E-5 -> 0.00001123456789012345
+addx61426 add 0 1.123456789012345E-6 -> 0.000001123456789012345
+addx61427 add 0 1.123456789012345E-7 -> 1.123456789012345E-7
+addx61428 add 0 1.123456789012345E-8 -> 1.123456789012345E-8
+addx61429 add 0 1.123456789012345E-9 -> 1.123456789012345E-9
+addx61430 add 0 1.123456789012345E-10 -> 1.123456789012345E-10
+addx61431 add 0 1.123456789012345E-11 -> 1.123456789012345E-11
+addx61432 add 0 1.123456789012345E-12 -> 1.123456789012345E-12
+addx61433 add 0 1.123456789012345E-13 -> 1.123456789012345E-13
+addx61434 add 0 1.123456789012345E-14 -> 1.123456789012345E-14
+addx61435 add 0 1.123456789012345E-15 -> 1.123456789012345E-15
+addx61436 add 0 1.123456789012345E-16 -> 1.123456789012345E-16
+addx61437 add 0 1.123456789012345E-17 -> 1.123456789012345E-17
+addx61438 add 0 1.123456789012345E-18 -> 1.123456789012345E-18
+addx61439 add 0 1.123456789012345E-19 -> 1.123456789012345E-19
+
+-- same, reversed 0
+addx61440 add 1.123456789012345 0 -> 1.123456789012345
+addx61441 add 1.123456789012345E-1 0 -> 0.1123456789012345
+addx61442 add 1.123456789012345E-2 0 -> 0.01123456789012345
+addx61443 add 1.123456789012345E-3 0 -> 0.001123456789012345
+addx61444 add 1.123456789012345E-4 0 -> 0.0001123456789012345
+addx61445 add 1.123456789012345E-5 0 -> 0.00001123456789012345
+addx61446 add 1.123456789012345E-6 0 -> 0.000001123456789012345
+addx61447 add 1.123456789012345E-7 0 -> 1.123456789012345E-7
+addx61448 add 1.123456789012345E-8 0 -> 1.123456789012345E-8
+addx61449 add 1.123456789012345E-9 0 -> 1.123456789012345E-9
+addx61450 add 1.123456789012345E-10 0 -> 1.123456789012345E-10
+addx61451 add 1.123456789012345E-11 0 -> 1.123456789012345E-11
+addx61452 add 1.123456789012345E-12 0 -> 1.123456789012345E-12
+addx61453 add 1.123456789012345E-13 0 -> 1.123456789012345E-13
+addx61454 add 1.123456789012345E-14 0 -> 1.123456789012345E-14
+addx61455 add 1.123456789012345E-15 0 -> 1.123456789012345E-15
+addx61456 add 1.123456789012345E-16 0 -> 1.123456789012345E-16
+addx61457 add 1.123456789012345E-17 0 -> 1.123456789012345E-17
+addx61458 add 1.123456789012345E-18 0 -> 1.123456789012345E-18
+addx61459 add 1.123456789012345E-19 0 -> 1.123456789012345E-19
+
+-- same, Es on the 0
+addx61460 add 1.123456789012345 0E-0 -> 1.123456789012345
+addx61461 add 1.123456789012345 0E-1 -> 1.123456789012345
+addx61462 add 1.123456789012345 0E-2 -> 1.123456789012345
+addx61463 add 1.123456789012345 0E-3 -> 1.123456789012345
+addx61464 add 1.123456789012345 0E-4 -> 1.123456789012345
+addx61465 add 1.123456789012345 0E-5 -> 1.123456789012345
+addx61466 add 1.123456789012345 0E-6 -> 1.123456789012345
+addx61467 add 1.123456789012345 0E-7 -> 1.123456789012345
+addx61468 add 1.123456789012345 0E-8 -> 1.123456789012345
+addx61469 add 1.123456789012345 0E-9 -> 1.123456789012345
+addx61470 add 1.123456789012345 0E-10 -> 1.123456789012345
+addx61471 add 1.123456789012345 0E-11 -> 1.123456789012345
+addx61472 add 1.123456789012345 0E-12 -> 1.123456789012345
+addx61473 add 1.123456789012345 0E-13 -> 1.123456789012345
+addx61474 add 1.123456789012345 0E-14 -> 1.123456789012345
+addx61475 add 1.123456789012345 0E-15 -> 1.123456789012345
+-- next four flag Rounded because the 0 extends the result
+addx61476 add 1.123456789012345 0E-16 -> 1.123456789012345 Rounded
+addx61477 add 1.123456789012345 0E-17 -> 1.123456789012345 Rounded
+addx61478 add 1.123456789012345 0E-18 -> 1.123456789012345 Rounded
+addx61479 add 1.123456789012345 0E-19 -> 1.123456789012345 Rounded
+
+-- sum of two opposite-sign operands is exactly 0 and floor => -0
+rounding: half_up
+-- exact zeros from zeros
+addx61500 add 0 0E-19 -> 0E-19
+addx61501 add -0 0E-19 -> 0E-19
+addx61502 add 0 -0E-19 -> 0E-19
+addx61503 add -0 -0E-19 -> -0E-19
+addx61504 add 0E-400 0E-19 -> 0E-398 Clamped
+addx61505 add -0E-400 0E-19 -> 0E-398 Clamped
+addx61506 add 0E-400 -0E-19 -> 0E-398 Clamped
+addx61507 add -0E-400 -0E-19 -> -0E-398 Clamped
+-- inexact zeros
+addx61511 add 1E-401 1E-400 -> 0E-398 Subnormal Inexact Rounded Underflow Clamped
+addx61512 add -1E-401 1E-400 -> 0E-398 Subnormal Inexact Rounded Underflow Clamped
+addx61513 add 1E-401 -1E-400 -> -0E-398 Subnormal Inexact Rounded Underflow Clamped
+addx61514 add -1E-401 -1E-400 -> -0E-398 Subnormal Inexact Rounded Underflow Clamped
+-- some exact zeros from non-zeros
+addx61515 add 1E-401 1E-401 -> 0E-398 Subnormal Inexact Rounded Underflow Clamped
+addx61516 add -1E-401 1E-401 -> 0E-398 Clamped
+addx61517 add 1E-401 -1E-401 -> 0E-398 Clamped
+addx61518 add -1E-401 -1E-401 -> -0E-398 Subnormal Inexact Rounded Underflow Clamped
+
+rounding: half_down
+-- exact zeros from zeros
+addx61520 add 0 0E-19 -> 0E-19
+addx61521 add -0 0E-19 -> 0E-19
+addx61522 add 0 -0E-19 -> 0E-19
+addx61523 add -0 -0E-19 -> -0E-19
+addx61524 add 0E-400 0E-19 -> 0E-398 Clamped
+addx61525 add -0E-400 0E-19 -> 0E-398 Clamped
+addx61526 add 0E-400 -0E-19 -> 0E-398 Clamped
+addx61527 add -0E-400 -0E-19 -> -0E-398 Clamped
+-- inexact zeros
+addx61531 add 1E-401 1E-400 -> 0E-398 Subnormal Inexact Rounded Underflow Clamped
+addx61532 add -1E-401 1E-400 -> 0E-398 Subnormal Inexact Rounded Underflow Clamped
+addx61533 add 1E-401 -1E-400 -> -0E-398 Subnormal Inexact Rounded Underflow Clamped
+addx61534 add -1E-401 -1E-400 -> -0E-398 Subnormal Inexact Rounded Underflow Clamped
+-- some exact zeros from non-zeros
+addx61535 add 1E-401 1E-401 -> 0E-398 Subnormal Inexact Rounded Underflow Clamped
+addx61536 add -1E-401 1E-401 -> 0E-398 Clamped
+addx61537 add 1E-401 -1E-401 -> 0E-398 Clamped
+addx61538 add -1E-401 -1E-401 -> -0E-398 Subnormal Inexact Rounded Underflow Clamped
+
+rounding: half_even
+-- exact zeros from zeros
+addx61540 add 0 0E-19 -> 0E-19
+addx61541 add -0 0E-19 -> 0E-19
+addx61542 add 0 -0E-19 -> 0E-19
+addx61543 add -0 -0E-19 -> -0E-19
+addx61544 add 0E-400 0E-19 -> 0E-398 Clamped
+addx61545 add -0E-400 0E-19 -> 0E-398 Clamped
+addx61546 add 0E-400 -0E-19 -> 0E-398 Clamped
+addx61547 add -0E-400 -0E-19 -> -0E-398 Clamped
+-- inexact zeros
+addx61551 add 1E-401 1E-400 -> 0E-398 Subnormal Inexact Rounded Underflow Clamped
+addx61552 add -1E-401 1E-400 -> 0E-398 Subnormal Inexact Rounded Underflow Clamped
+addx61553 add 1E-401 -1E-400 -> -0E-398 Subnormal Inexact Rounded Underflow Clamped
+addx61554 add -1E-401 -1E-400 -> -0E-398 Subnormal Inexact Rounded Underflow Clamped
+-- some exact zeros from non-zeros
+addx61555 add 1E-401 1E-401 -> 0E-398 Subnormal Inexact Rounded Underflow Clamped
+addx61556 add -1E-401 1E-401 -> 0E-398 Clamped
+addx61557 add 1E-401 -1E-401 -> 0E-398 Clamped
+addx61558 add -1E-401 -1E-401 -> -0E-398 Subnormal Inexact Rounded Underflow Clamped
+
+rounding: up
+-- exact zeros from zeros
+addx61560 add 0 0E-19 -> 0E-19
+addx61561 add -0 0E-19 -> 0E-19
+addx61562 add 0 -0E-19 -> 0E-19
+addx61563 add -0 -0E-19 -> -0E-19
+addx61564 add 0E-400 0E-19 -> 0E-398 Clamped
+addx61565 add -0E-400 0E-19 -> 0E-398 Clamped
+addx61566 add 0E-400 -0E-19 -> 0E-398 Clamped
+addx61567 add -0E-400 -0E-19 -> -0E-398 Clamped
+-- inexact zeros
+addx61571 add 1E-401 1E-400 -> 1E-398 Subnormal Inexact Rounded Underflow
+addx61572 add -1E-401 1E-400 -> 1E-398 Subnormal Inexact Rounded Underflow
+addx61573 add 1E-401 -1E-400 -> -1E-398 Subnormal Inexact Rounded Underflow
+addx61574 add -1E-401 -1E-400 -> -1E-398 Subnormal Inexact Rounded Underflow
+-- some exact zeros from non-zeros
+addx61575 add 1E-401 1E-401 -> 1E-398 Subnormal Inexact Rounded Underflow
+addx61576 add -1E-401 1E-401 -> 0E-398 Clamped
+addx61577 add 1E-401 -1E-401 -> 0E-398 Clamped
+addx61578 add -1E-401 -1E-401 -> -1E-398 Subnormal Inexact Rounded Underflow
+
+rounding: down
+-- exact zeros from zeros
+addx61580 add 0 0E-19 -> 0E-19
+addx61581 add -0 0E-19 -> 0E-19
+addx61582 add 0 -0E-19 -> 0E-19
+addx61583 add -0 -0E-19 -> -0E-19
+addx61584 add 0E-400 0E-19 -> 0E-398 Clamped
+addx61585 add -0E-400 0E-19 -> 0E-398 Clamped
+addx61586 add 0E-400 -0E-19 -> 0E-398 Clamped
+addx61587 add -0E-400 -0E-19 -> -0E-398 Clamped
+-- inexact zeros
+addx61591 add 1E-401 1E-400 -> 0E-398 Subnormal Inexact Rounded Underflow Clamped
+addx61592 add -1E-401 1E-400 -> 0E-398 Subnormal Inexact Rounded Underflow Clamped
+addx61593 add 1E-401 -1E-400 -> -0E-398 Subnormal Inexact Rounded Underflow Clamped
+addx61594 add -1E-401 -1E-400 -> -0E-398 Subnormal Inexact Rounded Underflow Clamped
+-- some exact zeros from non-zeros
+addx61595 add 1E-401 1E-401 -> 0E-398 Subnormal Inexact Rounded Underflow Clamped
+addx61596 add -1E-401 1E-401 -> 0E-398 Clamped
+addx61597 add 1E-401 -1E-401 -> 0E-398 Clamped
+addx61598 add -1E-401 -1E-401 -> -0E-398 Subnormal Inexact Rounded Underflow Clamped
+
+rounding: ceiling
+-- exact zeros from zeros
+addx61600 add 0 0E-19 -> 0E-19
+addx61601 add -0 0E-19 -> 0E-19
+addx61602 add 0 -0E-19 -> 0E-19
+addx61603 add -0 -0E-19 -> -0E-19
+addx61604 add 0E-400 0E-19 -> 0E-398 Clamped
+addx61605 add -0E-400 0E-19 -> 0E-398 Clamped
+addx61606 add 0E-400 -0E-19 -> 0E-398 Clamped
+addx61607 add -0E-400 -0E-19 -> -0E-398 Clamped
+-- inexact zeros
+addx61611 add 1E-401 1E-400 -> 1E-398 Subnormal Inexact Rounded Underflow
+addx61612 add -1E-401 1E-400 -> 1E-398 Subnormal Inexact Rounded Underflow
+addx61613 add 1E-401 -1E-400 -> -0E-398 Subnormal Inexact Rounded Underflow Clamped
+addx61614 add -1E-401 -1E-400 -> -0E-398 Subnormal Inexact Rounded Underflow Clamped
+-- some exact zeros from non-zeros
+addx61615 add 1E-401 1E-401 -> 1E-398 Subnormal Inexact Rounded Underflow
+addx61616 add -1E-401 1E-401 -> 0E-398 Clamped
+addx61617 add 1E-401 -1E-401 -> 0E-398 Clamped
+addx61618 add -1E-401 -1E-401 -> -0E-398 Subnormal Inexact Rounded Underflow Clamped
+
+-- and the extra-special ugly case; unusual minuses marked by -- *
+rounding: floor
+-- exact zeros from zeros
+addx61620 add 0 0E-19 -> 0E-19
+addx61621 add -0 0E-19 -> -0E-19 -- *
+addx61622 add 0 -0E-19 -> -0E-19 -- *
+addx61623 add -0 -0E-19 -> -0E-19
+addx61624 add 0E-400 0E-19 -> 0E-398 Clamped
+addx61625 add -0E-400 0E-19 -> -0E-398 Clamped -- *
+addx61626 add 0E-400 -0E-19 -> -0E-398 Clamped -- *
+addx61627 add -0E-400 -0E-19 -> -0E-398 Clamped
+-- inexact zeros
+addx61631 add 1E-401 1E-400 -> 0E-398 Subnormal Inexact Rounded Underflow Clamped
+addx61632 add -1E-401 1E-400 -> 0E-398 Subnormal Inexact Rounded Underflow Clamped
+addx61633 add 1E-401 -1E-400 -> -1E-398 Subnormal Inexact Rounded Underflow
+addx61634 add -1E-401 -1E-400 -> -1E-398 Subnormal Inexact Rounded Underflow
+-- some exact zeros from non-zeros
+addx61635 add 1E-401 1E-401 -> 0E-398 Subnormal Inexact Rounded Underflow Clamped
+addx61636 add -1E-401 1E-401 -> -0E-398 Clamped -- *
+addx61637 add 1E-401 -1E-401 -> -0E-398 Clamped -- *
+addx61638 add -1E-401 -1E-401 -> -1E-398 Subnormal Inexact Rounded Underflow
+
+-- Examples from SQL proposal (Krishna Kulkarni)
+addx61701 add 130E-2 120E-2 -> 2.50
+addx61702 add 130E-2 12E-1 -> 2.50
+addx61703 add 130E-2 1E0 -> 2.30
+addx61704 add 1E2 1E4 -> 1.01E+4
+addx61705 subtract 130E-2 120E-2 -> 0.10
+addx61706 subtract 130E-2 12E-1 -> 0.10
+addx61707 subtract 130E-2 1E0 -> 0.30
+addx61708 subtract 1E2 1E4 -> -9.9E+3
+
+-- Gappy coefficients; check residue handling even with full coefficient gap
+rounding: half_even
+
+addx62001 add 1234567890123456 1 -> 1234567890123457
+addx62002 add 1234567890123456 0.6 -> 1234567890123457 Inexact Rounded
+addx62003 add 1234567890123456 0.06 -> 1234567890123456 Inexact Rounded
+addx62004 add 1234567890123456 6E-3 -> 1234567890123456 Inexact Rounded
+addx62005 add 1234567890123456 6E-4 -> 1234567890123456 Inexact Rounded
+addx62006 add 1234567890123456 6E-5 -> 1234567890123456 Inexact Rounded
+addx62007 add 1234567890123456 6E-6 -> 1234567890123456 Inexact Rounded
+addx62008 add 1234567890123456 6E-7 -> 1234567890123456 Inexact Rounded
+addx62009 add 1234567890123456 6E-8 -> 1234567890123456 Inexact Rounded
+addx62010 add 1234567890123456 6E-9 -> 1234567890123456 Inexact Rounded
+addx62011 add 1234567890123456 6E-10 -> 1234567890123456 Inexact Rounded
+addx62012 add 1234567890123456 6E-11 -> 1234567890123456 Inexact Rounded
+addx62013 add 1234567890123456 6E-12 -> 1234567890123456 Inexact Rounded
+addx62014 add 1234567890123456 6E-13 -> 1234567890123456 Inexact Rounded
+addx62015 add 1234567890123456 6E-14 -> 1234567890123456 Inexact Rounded
+addx62016 add 1234567890123456 6E-15 -> 1234567890123456 Inexact Rounded
+addx62017 add 1234567890123456 6E-16 -> 1234567890123456 Inexact Rounded
+addx62018 add 1234567890123456 6E-17 -> 1234567890123456 Inexact Rounded
+addx62019 add 1234567890123456 6E-18 -> 1234567890123456 Inexact Rounded
+addx62020 add 1234567890123456 6E-19 -> 1234567890123456 Inexact Rounded
+addx62021 add 1234567890123456 6E-20 -> 1234567890123456 Inexact Rounded
+
+-- widening second argument at gap
+addx62030 add 12345678 1 -> 12345679
+addx62031 add 12345678 0.1 -> 12345678.1
+addx62032 add 12345678 0.12 -> 12345678.12
+addx62033 add 12345678 0.123 -> 12345678.123
+addx62034 add 12345678 0.1234 -> 12345678.1234
+addx62035 add 12345678 0.12345 -> 12345678.12345
+addx62036 add 12345678 0.123456 -> 12345678.123456
+addx62037 add 12345678 0.1234567 -> 12345678.1234567
+addx62038 add 12345678 0.12345678 -> 12345678.12345678
+addx62039 add 12345678 0.123456789 -> 12345678.12345679 Inexact Rounded
+addx62040 add 12345678 0.123456785 -> 12345678.12345678 Inexact Rounded
+addx62041 add 12345678 0.1234567850 -> 12345678.12345678 Inexact Rounded
+addx62042 add 12345678 0.1234567851 -> 12345678.12345679 Inexact Rounded
+addx62043 add 12345678 0.12345678501 -> 12345678.12345679 Inexact Rounded
+addx62044 add 12345678 0.123456785001 -> 12345678.12345679 Inexact Rounded
+addx62045 add 12345678 0.1234567850001 -> 12345678.12345679 Inexact Rounded
+addx62046 add 12345678 0.12345678500001 -> 12345678.12345679 Inexact Rounded
+addx62047 add 12345678 0.123456785000001 -> 12345678.12345679 Inexact Rounded
+addx62048 add 12345678 0.1234567850000001 -> 12345678.12345679 Inexact Rounded
+addx62049 add 12345678 0.1234567850000000 -> 12345678.12345678 Inexact Rounded
+-- 90123456
+rounding: half_even
+addx62050 add 12345678 0.0234567750000000 -> 12345678.02345678 Inexact Rounded
+addx62051 add 12345678 0.0034567750000000 -> 12345678.00345678 Inexact Rounded
+addx62052 add 12345678 0.0004567750000000 -> 12345678.00045678 Inexact Rounded
+addx62053 add 12345678 0.0000567750000000 -> 12345678.00005678 Inexact Rounded
+addx62054 add 12345678 0.0000067750000000 -> 12345678.00000678 Inexact Rounded
+addx62055 add 12345678 0.0000007750000000 -> 12345678.00000078 Inexact Rounded
+addx62056 add 12345678 0.0000000750000000 -> 12345678.00000008 Inexact Rounded
+addx62057 add 12345678 0.0000000050000000 -> 12345678.00000000 Inexact Rounded
+addx62060 add 12345678 0.0234567750000001 -> 12345678.02345678 Inexact Rounded
+addx62061 add 12345678 0.0034567750000001 -> 12345678.00345678 Inexact Rounded
+addx62062 add 12345678 0.0004567750000001 -> 12345678.00045678 Inexact Rounded
+addx62063 add 12345678 0.0000567750000001 -> 12345678.00005678 Inexact Rounded
+addx62064 add 12345678 0.0000067750000001 -> 12345678.00000678 Inexact Rounded
+addx62065 add 12345678 0.0000007750000001 -> 12345678.00000078 Inexact Rounded
+addx62066 add 12345678 0.0000000750000001 -> 12345678.00000008 Inexact Rounded
+addx62067 add 12345678 0.0000000050000001 -> 12345678.00000001 Inexact Rounded
+-- far-out residues (full coefficient gap is 16+15 digits)
+rounding: up
+addx62070 add 12345678 1E-8 -> 12345678.00000001
+addx62071 add 12345678 1E-9 -> 12345678.00000001 Inexact Rounded
+addx62072 add 12345678 1E-10 -> 12345678.00000001 Inexact Rounded
+addx62073 add 12345678 1E-11 -> 12345678.00000001 Inexact Rounded
+addx62074 add 12345678 1E-12 -> 12345678.00000001 Inexact Rounded
+addx62075 add 12345678 1E-13 -> 12345678.00000001 Inexact Rounded
+addx62076 add 12345678 1E-14 -> 12345678.00000001 Inexact Rounded
+addx62077 add 12345678 1E-15 -> 12345678.00000001 Inexact Rounded
+addx62078 add 12345678 1E-16 -> 12345678.00000001 Inexact Rounded
+addx62079 add 12345678 1E-17 -> 12345678.00000001 Inexact Rounded
+addx62080 add 12345678 1E-18 -> 12345678.00000001 Inexact Rounded
+addx62081 add 12345678 1E-19 -> 12345678.00000001 Inexact Rounded
+addx62082 add 12345678 1E-20 -> 12345678.00000001 Inexact Rounded
+addx62083 add 12345678 1E-25 -> 12345678.00000001 Inexact Rounded
+addx62084 add 12345678 1E-30 -> 12345678.00000001 Inexact Rounded
+addx62085 add 12345678 1E-31 -> 12345678.00000001 Inexact Rounded
+addx62086 add 12345678 1E-32 -> 12345678.00000001 Inexact Rounded
+addx62087 add 12345678 1E-33 -> 12345678.00000001 Inexact Rounded
+addx62088 add 12345678 1E-34 -> 12345678.00000001 Inexact Rounded
+addx62089 add 12345678 1E-35 -> 12345678.00000001 Inexact Rounded
+
+-- payload decapitate
+precision: 5
+addx62100 add 11 sNaN123456789 -> NaN56789 Invalid_operation
+addx62101 add -11 -sNaN123456789 -> -NaN56789 Invalid_operation
+addx62102 add 11 NaN123456789 -> NaN56789
+addx62103 add -11 -NaN123456789 -> -NaN56789
+
-- Null tests
addx9990 add 10 # -> NaN Invalid_operation
addx9991 add # 10 -> NaN Invalid_operation
diff --git a/Lib/test/decimaltestdata/and.decTest b/Lib/test/decimaltestdata/and.decTest
new file mode 100644
index 0000000..18ba881
--- /dev/null
+++ b/Lib/test/decimaltestdata/and.decTest
@@ -0,0 +1,338 @@
+------------------------------------------------------------------------
+-- and.decTest -- digitwise logical AND --
+-- Copyright (c) IBM Corporation, 1981, 2007. All rights reserved. --
+------------------------------------------------------------------------
+-- Please see the document "General Decimal Arithmetic Testcases" --
+-- at http://www2.hursley.ibm.com/decimal for the description of --
+-- these testcases. --
+-- --
+-- These testcases are experimental ('beta' versions), and they --
+-- may contain errors. They are offered on an as-is basis. In --
+-- particular, achieving the same results as the tests here is not --
+-- a guarantee that an implementation complies with any Standard --
+-- or specification. The tests are not exhaustive. --
+-- --
+-- Please send comments, suggestions, and corrections to the author: --
+-- Mike Cowlishaw, IBM Fellow --
+-- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK --
+-- mfc@uk.ibm.com --
+------------------------------------------------------------------------
+version: 2.56
+
+extended: 1
+precision: 9
+rounding: half_up
+maxExponent: 999
+minExponent: -999
+
+-- Sanity check (truth table)
+andx001 and 0 0 -> 0
+andx002 and 0 1 -> 0
+andx003 and 1 0 -> 0
+andx004 and 1 1 -> 1
+andx005 and 1100 1010 -> 1000
+andx006 and 1111 10 -> 10
+andx007 and 1111 1010 -> 1010
+
+-- and at msd and msd-1
+andx010 and 000000000 000000000 -> 0
+andx011 and 000000000 100000000 -> 0
+andx012 and 100000000 000000000 -> 0
+andx013 and 100000000 100000000 -> 100000000
+andx014 and 000000000 000000000 -> 0
+andx015 and 000000000 010000000 -> 0
+andx016 and 010000000 000000000 -> 0
+andx017 and 010000000 010000000 -> 10000000
+
+-- Various lengths
+-- 123456789 123456789 123456789
+andx021 and 111111111 111111111 -> 111111111
+andx022 and 111111111111 111111111 -> 111111111
+andx023 and 111111111111 11111111 -> 11111111
+andx024 and 111111111 11111111 -> 11111111
+andx025 and 111111111 1111111 -> 1111111
+andx026 and 111111111111 111111 -> 111111
+andx027 and 111111111111 11111 -> 11111
+andx028 and 111111111111 1111 -> 1111
+andx029 and 111111111111 111 -> 111
+andx031 and 111111111111 11 -> 11
+andx032 and 111111111111 1 -> 1
+andx033 and 111111111111 1111111111 -> 111111111
+andx034 and 11111111111 11111111111 -> 111111111
+andx035 and 1111111111 111111111111 -> 111111111
+andx036 and 111111111 1111111111111 -> 111111111
+
+andx040 and 111111111 111111111111 -> 111111111
+andx041 and 11111111 111111111111 -> 11111111
+andx042 and 11111111 111111111 -> 11111111
+andx043 and 1111111 111111111 -> 1111111
+andx044 and 111111 111111111 -> 111111
+andx045 and 11111 111111111 -> 11111
+andx046 and 1111 111111111 -> 1111
+andx047 and 111 111111111 -> 111
+andx048 and 11 111111111 -> 11
+andx049 and 1 111111111 -> 1
+
+andx050 and 1111111111 1 -> 1
+andx051 and 111111111 1 -> 1
+andx052 and 11111111 1 -> 1
+andx053 and 1111111 1 -> 1
+andx054 and 111111 1 -> 1
+andx055 and 11111 1 -> 1
+andx056 and 1111 1 -> 1
+andx057 and 111 1 -> 1
+andx058 and 11 1 -> 1
+andx059 and 1 1 -> 1
+
+andx060 and 1111111111 0 -> 0
+andx061 and 111111111 0 -> 0
+andx062 and 11111111 0 -> 0
+andx063 and 1111111 0 -> 0
+andx064 and 111111 0 -> 0
+andx065 and 11111 0 -> 0
+andx066 and 1111 0 -> 0
+andx067 and 111 0 -> 0
+andx068 and 11 0 -> 0
+andx069 and 1 0 -> 0
+
+andx070 and 1 1111111111 -> 1
+andx071 and 1 111111111 -> 1
+andx072 and 1 11111111 -> 1
+andx073 and 1 1111111 -> 1
+andx074 and 1 111111 -> 1
+andx075 and 1 11111 -> 1
+andx076 and 1 1111 -> 1
+andx077 and 1 111 -> 1
+andx078 and 1 11 -> 1
+andx079 and 1 1 -> 1
+
+andx080 and 0 1111111111 -> 0
+andx081 and 0 111111111 -> 0
+andx082 and 0 11111111 -> 0
+andx083 and 0 1111111 -> 0
+andx084 and 0 111111 -> 0
+andx085 and 0 11111 -> 0
+andx086 and 0 1111 -> 0
+andx087 and 0 111 -> 0
+andx088 and 0 11 -> 0
+andx089 and 0 1 -> 0
+
+andx090 and 011111111 111111111 -> 11111111
+andx091 and 101111111 111111111 -> 101111111
+andx092 and 110111111 111111111 -> 110111111
+andx093 and 111011111 111111111 -> 111011111
+andx094 and 111101111 111111111 -> 111101111
+andx095 and 111110111 111111111 -> 111110111
+andx096 and 111111011 111111111 -> 111111011
+andx097 and 111111101 111111111 -> 111111101
+andx098 and 111111110 111111111 -> 111111110
+
+andx100 and 111111111 011111111 -> 11111111
+andx101 and 111111111 101111111 -> 101111111
+andx102 and 111111111 110111111 -> 110111111
+andx103 and 111111111 111011111 -> 111011111
+andx104 and 111111111 111101111 -> 111101111
+andx105 and 111111111 111110111 -> 111110111
+andx106 and 111111111 111111011 -> 111111011
+andx107 and 111111111 111111101 -> 111111101
+andx108 and 111111111 111111110 -> 111111110
+
+-- non-0/1 should not be accepted, nor should signs
+andx220 and 111111112 111111111 -> NaN Invalid_operation
+andx221 and 333333333 333333333 -> NaN Invalid_operation
+andx222 and 555555555 555555555 -> NaN Invalid_operation
+andx223 and 777777777 777777777 -> NaN Invalid_operation
+andx224 and 999999999 999999999 -> NaN Invalid_operation
+andx225 and 222222222 999999999 -> NaN Invalid_operation
+andx226 and 444444444 999999999 -> NaN Invalid_operation
+andx227 and 666666666 999999999 -> NaN Invalid_operation
+andx228 and 888888888 999999999 -> NaN Invalid_operation
+andx229 and 999999999 222222222 -> NaN Invalid_operation
+andx230 and 999999999 444444444 -> NaN Invalid_operation
+andx231 and 999999999 666666666 -> NaN Invalid_operation
+andx232 and 999999999 888888888 -> NaN Invalid_operation
+-- a few randoms
+andx240 and 567468689 -934981942 -> NaN Invalid_operation
+andx241 and 567367689 934981942 -> NaN Invalid_operation
+andx242 and -631917772 -706014634 -> NaN Invalid_operation
+andx243 and -756253257 138579234 -> NaN Invalid_operation
+andx244 and 835590149 567435400 -> NaN Invalid_operation
+-- test MSD
+andx250 and 200000000 100000000 -> NaN Invalid_operation
+andx251 and 700000000 100000000 -> NaN Invalid_operation
+andx252 and 800000000 100000000 -> NaN Invalid_operation
+andx253 and 900000000 100000000 -> NaN Invalid_operation
+andx254 and 200000000 000000000 -> NaN Invalid_operation
+andx255 and 700000000 000000000 -> NaN Invalid_operation
+andx256 and 800000000 000000000 -> NaN Invalid_operation
+andx257 and 900000000 000000000 -> NaN Invalid_operation
+andx258 and 100000000 200000000 -> NaN Invalid_operation
+andx259 and 100000000 700000000 -> NaN Invalid_operation
+andx260 and 100000000 800000000 -> NaN Invalid_operation
+andx261 and 100000000 900000000 -> NaN Invalid_operation
+andx262 and 000000000 200000000 -> NaN Invalid_operation
+andx263 and 000000000 700000000 -> NaN Invalid_operation
+andx264 and 000000000 800000000 -> NaN Invalid_operation
+andx265 and 000000000 900000000 -> NaN Invalid_operation
+-- test MSD-1
+andx270 and 020000000 100000000 -> NaN Invalid_operation
+andx271 and 070100000 100000000 -> NaN Invalid_operation
+andx272 and 080010000 100000001 -> NaN Invalid_operation
+andx273 and 090001000 100000010 -> NaN Invalid_operation
+andx274 and 100000100 020010100 -> NaN Invalid_operation
+andx275 and 100000000 070001000 -> NaN Invalid_operation
+andx276 and 100000010 080010100 -> NaN Invalid_operation
+andx277 and 100000000 090000010 -> NaN Invalid_operation
+-- test LSD
+andx280 and 001000002 100000000 -> NaN Invalid_operation
+andx281 and 000000007 100000000 -> NaN Invalid_operation
+andx282 and 000000008 100000000 -> NaN Invalid_operation
+andx283 and 000000009 100000000 -> NaN Invalid_operation
+andx284 and 100000000 000100002 -> NaN Invalid_operation
+andx285 and 100100000 001000007 -> NaN Invalid_operation
+andx286 and 100010000 010000008 -> NaN Invalid_operation
+andx287 and 100001000 100000009 -> NaN Invalid_operation
+-- test Middie
+andx288 and 001020000 100000000 -> NaN Invalid_operation
+andx289 and 000070001 100000000 -> NaN Invalid_operation
+andx290 and 000080000 100010000 -> NaN Invalid_operation
+andx291 and 000090000 100001000 -> NaN Invalid_operation
+andx292 and 100000010 000020100 -> NaN Invalid_operation
+andx293 and 100100000 000070010 -> NaN Invalid_operation
+andx294 and 100010100 000080001 -> NaN Invalid_operation
+andx295 and 100001000 000090000 -> NaN Invalid_operation
+-- signs
+andx296 and -100001000 -000000000 -> NaN Invalid_operation
+andx297 and -100001000 000010000 -> NaN Invalid_operation
+andx298 and 100001000 -000000000 -> NaN Invalid_operation
+andx299 and 100001000 000011000 -> 1000
+
+-- Nmax, Nmin, Ntiny
+andx331 and 2 9.99999999E+999 -> NaN Invalid_operation
+andx332 and 3 1E-999 -> NaN Invalid_operation
+andx333 and 4 1.00000000E-999 -> NaN Invalid_operation
+andx334 and 5 1E-1007 -> NaN Invalid_operation
+andx335 and 6 -1E-1007 -> NaN Invalid_operation
+andx336 and 7 -1.00000000E-999 -> NaN Invalid_operation
+andx337 and 8 -1E-999 -> NaN Invalid_operation
+andx338 and 9 -9.99999999E+999 -> NaN Invalid_operation
+andx341 and 9.99999999E+999 -18 -> NaN Invalid_operation
+andx342 and 1E-999 01 -> NaN Invalid_operation
+andx343 and 1.00000000E-999 -18 -> NaN Invalid_operation
+andx344 and 1E-1007 18 -> NaN Invalid_operation
+andx345 and -1E-1007 -10 -> NaN Invalid_operation
+andx346 and -1.00000000E-999 18 -> NaN Invalid_operation
+andx347 and -1E-999 10 -> NaN Invalid_operation
+andx348 and -9.99999999E+999 -18 -> NaN Invalid_operation
+
+-- A few other non-integers
+andx361 and 1.0 1 -> NaN Invalid_operation
+andx362 and 1E+1 1 -> NaN Invalid_operation
+andx363 and 0.0 1 -> NaN Invalid_operation
+andx364 and 0E+1 1 -> NaN Invalid_operation
+andx365 and 9.9 1 -> NaN Invalid_operation
+andx366 and 9E+1 1 -> NaN Invalid_operation
+andx371 and 0 1.0 -> NaN Invalid_operation
+andx372 and 0 1E+1 -> NaN Invalid_operation
+andx373 and 0 0.0 -> NaN Invalid_operation
+andx374 and 0 0E+1 -> NaN Invalid_operation
+andx375 and 0 9.9 -> NaN Invalid_operation
+andx376 and 0 9E+1 -> NaN Invalid_operation
+
+-- All Specials are in error
+andx780 and -Inf -Inf -> NaN Invalid_operation
+andx781 and -Inf -1000 -> NaN Invalid_operation
+andx782 and -Inf -1 -> NaN Invalid_operation
+andx783 and -Inf -0 -> NaN Invalid_operation
+andx784 and -Inf 0 -> NaN Invalid_operation
+andx785 and -Inf 1 -> NaN Invalid_operation
+andx786 and -Inf 1000 -> NaN Invalid_operation
+andx787 and -1000 -Inf -> NaN Invalid_operation
+andx788 and -Inf -Inf -> NaN Invalid_operation
+andx789 and -1 -Inf -> NaN Invalid_operation
+andx790 and -0 -Inf -> NaN Invalid_operation
+andx791 and 0 -Inf -> NaN Invalid_operation
+andx792 and 1 -Inf -> NaN Invalid_operation
+andx793 and 1000 -Inf -> NaN Invalid_operation
+andx794 and Inf -Inf -> NaN Invalid_operation
+
+andx800 and Inf -Inf -> NaN Invalid_operation
+andx801 and Inf -1000 -> NaN Invalid_operation
+andx802 and Inf -1 -> NaN Invalid_operation
+andx803 and Inf -0 -> NaN Invalid_operation
+andx804 and Inf 0 -> NaN Invalid_operation
+andx805 and Inf 1 -> NaN Invalid_operation
+andx806 and Inf 1000 -> NaN Invalid_operation
+andx807 and Inf Inf -> NaN Invalid_operation
+andx808 and -1000 Inf -> NaN Invalid_operation
+andx809 and -Inf Inf -> NaN Invalid_operation
+andx810 and -1 Inf -> NaN Invalid_operation
+andx811 and -0 Inf -> NaN Invalid_operation
+andx812 and 0 Inf -> NaN Invalid_operation
+andx813 and 1 Inf -> NaN Invalid_operation
+andx814 and 1000 Inf -> NaN Invalid_operation
+andx815 and Inf Inf -> NaN Invalid_operation
+
+andx821 and NaN -Inf -> NaN Invalid_operation
+andx822 and NaN -1000 -> NaN Invalid_operation
+andx823 and NaN -1 -> NaN Invalid_operation
+andx824 and NaN -0 -> NaN Invalid_operation
+andx825 and NaN 0 -> NaN Invalid_operation
+andx826 and NaN 1 -> NaN Invalid_operation
+andx827 and NaN 1000 -> NaN Invalid_operation
+andx828 and NaN Inf -> NaN Invalid_operation
+andx829 and NaN NaN -> NaN Invalid_operation
+andx830 and -Inf NaN -> NaN Invalid_operation
+andx831 and -1000 NaN -> NaN Invalid_operation
+andx832 and -1 NaN -> NaN Invalid_operation
+andx833 and -0 NaN -> NaN Invalid_operation
+andx834 and 0 NaN -> NaN Invalid_operation
+andx835 and 1 NaN -> NaN Invalid_operation
+andx836 and 1000 NaN -> NaN Invalid_operation
+andx837 and Inf NaN -> NaN Invalid_operation
+
+andx841 and sNaN -Inf -> NaN Invalid_operation
+andx842 and sNaN -1000 -> NaN Invalid_operation
+andx843 and sNaN -1 -> NaN Invalid_operation
+andx844 and sNaN -0 -> NaN Invalid_operation
+andx845 and sNaN 0 -> NaN Invalid_operation
+andx846 and sNaN 1 -> NaN Invalid_operation
+andx847 and sNaN 1000 -> NaN Invalid_operation
+andx848 and sNaN NaN -> NaN Invalid_operation
+andx849 and sNaN sNaN -> NaN Invalid_operation
+andx850 and NaN sNaN -> NaN Invalid_operation
+andx851 and -Inf sNaN -> NaN Invalid_operation
+andx852 and -1000 sNaN -> NaN Invalid_operation
+andx853 and -1 sNaN -> NaN Invalid_operation
+andx854 and -0 sNaN -> NaN Invalid_operation
+andx855 and 0 sNaN -> NaN Invalid_operation
+andx856 and 1 sNaN -> NaN Invalid_operation
+andx857 and 1000 sNaN -> NaN Invalid_operation
+andx858 and Inf sNaN -> NaN Invalid_operation
+andx859 and NaN sNaN -> NaN Invalid_operation
+
+-- propagating NaNs
+andx861 and NaN1 -Inf -> NaN Invalid_operation
+andx862 and +NaN2 -1000 -> NaN Invalid_operation
+andx863 and NaN3 1000 -> NaN Invalid_operation
+andx864 and NaN4 Inf -> NaN Invalid_operation
+andx865 and NaN5 +NaN6 -> NaN Invalid_operation
+andx866 and -Inf NaN7 -> NaN Invalid_operation
+andx867 and -1000 NaN8 -> NaN Invalid_operation
+andx868 and 1000 NaN9 -> NaN Invalid_operation
+andx869 and Inf +NaN10 -> NaN Invalid_operation
+andx871 and sNaN11 -Inf -> NaN Invalid_operation
+andx872 and sNaN12 -1000 -> NaN Invalid_operation
+andx873 and sNaN13 1000 -> NaN Invalid_operation
+andx874 and sNaN14 NaN17 -> NaN Invalid_operation
+andx875 and sNaN15 sNaN18 -> NaN Invalid_operation
+andx876 and NaN16 sNaN19 -> NaN Invalid_operation
+andx877 and -Inf +sNaN20 -> NaN Invalid_operation
+andx878 and -1000 sNaN21 -> NaN Invalid_operation
+andx879 and 1000 sNaN22 -> NaN Invalid_operation
+andx880 and Inf sNaN23 -> NaN Invalid_operation
+andx881 and +NaN25 +sNaN24 -> NaN Invalid_operation
+andx882 and -NaN26 NaN28 -> NaN Invalid_operation
+andx883 and -sNaN27 sNaN29 -> NaN Invalid_operation
+andx884 and 1000 -NaN30 -> NaN Invalid_operation
+andx885 and 1000 -sNaN31 -> NaN Invalid_operation
diff --git a/Lib/test/decimaltestdata/base.decTest b/Lib/test/decimaltestdata/base.decTest
index 96a4b9d..de0b813 100644
--- a/Lib/test/decimaltestdata/base.decTest
+++ b/Lib/test/decimaltestdata/base.decTest
@@ -1,6 +1,6 @@
------------------------------------------------------------------------
-- base.decTest -- base decimal <--> string conversions --
--- Copyright (c) IBM Corporation, 1981, 2003. All rights reserved. --
+-- Copyright (c) IBM Corporation, 1981, 2007. All rights reserved. --
------------------------------------------------------------------------
-- Please see the document "General Decimal Arithmetic Testcases" --
-- at http://www2.hursley.ibm.com/decimal for the description of --
@@ -17,7 +17,8 @@
-- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK --
-- mfc@uk.ibm.com --
------------------------------------------------------------------------
-version: 2.39
+version: 2.56
+extended: 1
-- This file tests base conversions from string to a decimal number
-- and back to a string (in either Scientific or Engineering form)
@@ -26,11 +27,10 @@ version: 2.39
-- to conform to emax and precision settings (that is, numbers will
-- conform to rules and exponent will be in permitted range).
-precision: 15
+precision: 16
rounding: half_up
-maxExponent: 999999999
-minExponent: -999999999
-extended: 1
+maxExponent: 384
+minExponent: -383
basx001 toSci 0 -> 0
basx002 toSci 1 -> 1
@@ -73,41 +73,62 @@ basx038 toSci '0.123456789012345' -> '0.123456789012345'
-- String [many more examples are implicitly tested elsewhere]
-- strings without E cannot generate E in result
-basx100 toSci "12" -> '12'
-basx101 toSci "-76" -> '-76'
-basx102 toSci "12.76" -> '12.76'
-basx103 toSci "+12.76" -> '12.76'
-basx104 toSci "012.76" -> '12.76'
-basx105 toSci "+0.003" -> '0.003'
-basx106 toSci "17." -> '17'
-basx107 toSci ".5" -> '0.5'
-basx108 toSci "044" -> '44'
-basx109 toSci "0044" -> '44'
-basx110 toSci "0.0005" -> '0.0005'
-basx111 toSci "00.00005" -> '0.00005'
-basx112 toSci "0.000005" -> '0.000005'
-basx113 toSci "0.0000050" -> '0.0000050'
-basx114 toSci "0.0000005" -> '5E-7'
-basx115 toSci "0.00000005" -> '5E-8'
-basx116 toSci "12345678.543210" -> '12345678.543210'
-basx117 toSci "2345678.543210" -> '2345678.543210'
-basx118 toSci "345678.543210" -> '345678.543210'
-basx119 toSci "0345678.54321" -> '345678.54321'
-basx120 toSci "345678.5432" -> '345678.5432'
-basx121 toSci "+345678.5432" -> '345678.5432'
-basx122 toSci "+0345678.5432" -> '345678.5432'
-basx123 toSci "+00345678.5432" -> '345678.5432'
-basx124 toSci "-345678.5432" -> '-345678.5432'
-basx125 toSci "-0345678.5432" -> '-345678.5432'
-basx126 toSci "-00345678.5432" -> '-345678.5432'
+basx040 toSci "12" -> '12'
+basx041 toSci "-76" -> '-76'
+basx042 toSci "12.76" -> '12.76'
+basx043 toSci "+12.76" -> '12.76'
+basx044 toSci "012.76" -> '12.76'
+basx045 toSci "+0.003" -> '0.003'
+basx046 toSci "17." -> '17'
+basx047 toSci ".5" -> '0.5'
+basx048 toSci "044" -> '44'
+basx049 toSci "0044" -> '44'
+basx050 toSci "0.0005" -> '0.0005'
+basx051 toSci "00.00005" -> '0.00005'
+basx052 toSci "0.000005" -> '0.000005'
+basx053 toSci "0.0000050" -> '0.0000050'
+basx054 toSci "0.0000005" -> '5E-7'
+basx055 toSci "0.00000005" -> '5E-8'
+basx056 toSci "12345678.543210" -> '12345678.543210'
+basx057 toSci "2345678.543210" -> '2345678.543210'
+basx058 toSci "345678.543210" -> '345678.543210'
+basx059 toSci "0345678.54321" -> '345678.54321'
+basx060 toSci "345678.5432" -> '345678.5432'
+basx061 toSci "+345678.5432" -> '345678.5432'
+basx062 toSci "+0345678.5432" -> '345678.5432'
+basx063 toSci "+00345678.5432" -> '345678.5432'
+basx064 toSci "-345678.5432" -> '-345678.5432'
+basx065 toSci "-0345678.5432" -> '-345678.5432'
+basx066 toSci "-00345678.5432" -> '-345678.5432'
-- examples
-basx127 toSci "5E-6" -> '0.000005'
-basx128 toSci "50E-7" -> '0.0000050'
-basx129 toSci "5E-7" -> '5E-7'
-
+basx067 toSci "5E-6" -> '0.000005'
+basx068 toSci "50E-7" -> '0.0000050'
+basx069 toSci "5E-7" -> '5E-7'
-- [No exotics as no Unicode]
+-- rounded with dots in all (including edge) places
+basx071 toSci .1234567890123456123 -> 0.1234567890123456 Inexact Rounded
+basx072 toSci 1.234567890123456123 -> 1.234567890123456 Inexact Rounded
+basx073 toSci 12.34567890123456123 -> 12.34567890123456 Inexact Rounded
+basx074 toSci 123.4567890123456123 -> 123.4567890123456 Inexact Rounded
+basx075 toSci 1234.567890123456123 -> 1234.567890123456 Inexact Rounded
+basx076 toSci 12345.67890123456123 -> 12345.67890123456 Inexact Rounded
+basx077 toSci 123456.7890123456123 -> 123456.7890123456 Inexact Rounded
+basx078 toSci 1234567.890123456123 -> 1234567.890123456 Inexact Rounded
+basx079 toSci 12345678.90123456123 -> 12345678.90123456 Inexact Rounded
+basx080 toSci 123456789.0123456123 -> 123456789.0123456 Inexact Rounded
+basx081 toSci 1234567890.123456123 -> 1234567890.123456 Inexact Rounded
+basx082 toSci 12345678901.23456123 -> 12345678901.23456 Inexact Rounded
+basx083 toSci 123456789012.3456123 -> 123456789012.3456 Inexact Rounded
+basx084 toSci 1234567890123.456123 -> 1234567890123.456 Inexact Rounded
+basx085 toSci 12345678901234.56123 -> 12345678901234.56 Inexact Rounded
+basx086 toSci 123456789012345.6123 -> 123456789012345.6 Inexact Rounded
+basx087 toSci 1234567890123456.123 -> 1234567890123456 Inexact Rounded
+basx088 toSci 12345678901234561.23 -> 1.234567890123456E+16 Inexact Rounded
+basx089 toSci 123456789012345612.3 -> 1.234567890123456E+17 Inexact Rounded
+basx090 toSci 1234567890123456123. -> 1.234567890123456E+18 Inexact Rounded
+
-- Numbers with E
basx130 toSci "0.000E-1" -> '0.0000'
basx131 toSci "0.000E-2" -> '0.00000'
@@ -225,21 +246,6 @@ basx261 toSci "0.1265E+4" -> '1265'
basx262 toSci "0.1265E+8" -> '1.265E+7'
basx263 toSci "0.1265E+20" -> '1.265E+19'
-basx270 toSci "0.09e999" -> '9E+997'
-basx271 toSci "0.9e999" -> '9E+998'
-basx272 toSci "9e999" -> '9E+999'
-basx273 toSci "9.9e999" -> '9.9E+999'
-basx274 toSci "9.99e999" -> '9.99E+999'
-basx275 toSci "9.99e-999" -> '9.99E-999'
-basx276 toSci "9.9e-999" -> '9.9E-999'
-basx277 toSci "9e-999" -> '9E-999'
-basx279 toSci "99e-999" -> '9.9E-998'
-basx280 toSci "999e-999" -> '9.99E-997'
-basx281 toSci '0.9e-998' -> '9E-999'
-basx282 toSci '0.09e-997' -> '9E-999'
-basx283 toSci '0.1e1000' -> '1E+999'
-basx284 toSci '10e-1000' -> '1.0E-999'
-
-- some more negative zeros [systematic tests below]
basx290 toSci "-0.000E-1" -> '-0.0000'
basx291 toSci "-0.000E-2" -> '-0.00000'
@@ -418,6 +424,22 @@ basx473 toEng 1000000005000 -> 1.00000001E+12 Rounded Inexact
basx474 toSci 1000000009000 -> 1.00000001E+12 Rounded Inexact
basx475 toEng 1000000009000 -> 1.00000001E+12 Rounded Inexact
+-- all-nines rounding
+precision: 9
+rounding: half_up
+basx270 toSci 999999999 -> 999999999
+basx271 toSci 9999999990 -> 9.99999999E+9 Rounded
+basx272 toSci 9999999991 -> 9.99999999E+9 Rounded Inexact
+basx273 toSci 9999999992 -> 9.99999999E+9 Rounded Inexact
+basx274 toSci 9999999993 -> 9.99999999E+9 Rounded Inexact
+basx275 toSci 9999999994 -> 9.99999999E+9 Rounded Inexact
+basx276 toSci 9999999995 -> 1.00000000E+10 Rounded Inexact
+basx277 toSci 9999999996 -> 1.00000000E+10 Rounded Inexact
+basx278 toSci 9999999997 -> 1.00000000E+10 Rounded Inexact
+basx279 toSci 9999999998 -> 1.00000000E+10 Rounded Inexact
+basx280 toSci 9999999999 -> 1.00000000E+10 Rounded Inexact
+basx281 toSci 9999999999999999 -> 1.00000000E+16 Rounded Inexact
+
-- check rounding modes heeded
precision: 5
rounding: ceiling
@@ -425,11 +447,11 @@ bsrx401 toSci 1.23450 -> 1.2345 Rounded
bsrx402 toSci 1.234549 -> 1.2346 Rounded Inexact
bsrx403 toSci 1.234550 -> 1.2346 Rounded Inexact
bsrx404 toSci 1.234551 -> 1.2346 Rounded Inexact
-rounding: down
+rounding: up
bsrx405 toSci 1.23450 -> 1.2345 Rounded
-bsrx406 toSci 1.234549 -> 1.2345 Rounded Inexact
-bsrx407 toSci 1.234550 -> 1.2345 Rounded Inexact
-bsrx408 toSci 1.234551 -> 1.2345 Rounded Inexact
+bsrx406 toSci 1.234549 -> 1.2346 Rounded Inexact
+bsrx407 toSci 1.234550 -> 1.2346 Rounded Inexact
+bsrx408 toSci 1.234551 -> 1.2346 Rounded Inexact
rounding: floor
bsrx410 toSci 1.23450 -> 1.2345 Rounded
bsrx411 toSci 1.234549 -> 1.2345 Rounded Inexact
@@ -464,11 +486,11 @@ bsrx501 toSci -1.23450 -> -1.2345 Rounded
bsrx502 toSci -1.234549 -> -1.2345 Rounded Inexact
bsrx503 toSci -1.234550 -> -1.2345 Rounded Inexact
bsrx504 toSci -1.234551 -> -1.2345 Rounded Inexact
-rounding: down
+rounding: up
bsrx505 toSci -1.23450 -> -1.2345 Rounded
-bsrx506 toSci -1.234549 -> -1.2345 Rounded Inexact
-bsrx507 toSci -1.234550 -> -1.2345 Rounded Inexact
-bsrx508 toSci -1.234551 -> -1.2345 Rounded Inexact
+bsrx506 toSci -1.234549 -> -1.2346 Rounded Inexact
+bsrx507 toSci -1.234550 -> -1.2346 Rounded Inexact
+bsrx508 toSci -1.234551 -> -1.2346 Rounded Inexact
rounding: floor
bsrx510 toSci -1.23450 -> -1.2345 Rounded
bsrx511 toSci -1.234549 -> -1.2346 Rounded Inexact
@@ -498,6 +520,24 @@ bsrx533 toSci -1.234550 -> -1.2346 Rounded Inexact
bsrx534 toSci -1.234650 -> -1.2347 Rounded Inexact
bsrx535 toSci -1.234551 -> -1.2346 Rounded Inexact
+-- a few larger exponents
+maxExponent: 999999999
+minExponent: -999999999
+basx480 toSci "0.09e999" -> '9E+997'
+basx481 toSci "0.9e999" -> '9E+998'
+basx482 toSci "9e999" -> '9E+999'
+basx483 toSci "9.9e999" -> '9.9E+999'
+basx484 toSci "9.99e999" -> '9.99E+999'
+basx485 toSci "9.99e-999" -> '9.99E-999'
+basx486 toSci "9.9e-999" -> '9.9E-999'
+basx487 toSci "9e-999" -> '9E-999'
+basx489 toSci "99e-999" -> '9.9E-998'
+basx490 toSci "999e-999" -> '9.99E-997'
+basx491 toSci '0.9e-998' -> '9E-999'
+basx492 toSci '0.09e-997' -> '9E-999'
+basx493 toSci '0.1e1000' -> '1E+999'
+basx494 toSci '10e-1000' -> '1.0E-999'
+
rounding: half_up
precision: 9
@@ -580,32 +620,23 @@ basx573 toSci "-sNa" -> NaN Conversion_syntax
basx574 toSci "xNaN" -> NaN Conversion_syntax
basx575 toSci "0sNaN" -> NaN Conversion_syntax
--- subnormals and overflows
-basx576 toSci '99e999999999' -> Infinity Overflow Inexact Rounded
-basx577 toSci '999e999999999' -> Infinity Overflow Inexact Rounded
-basx578 toSci '0.9e-999999999' -> 9E-1000000000 Subnormal
-basx579 toSci '0.09e-999999999' -> 9E-1000000001 Subnormal
-basx580 toSci '0.1e1000000000' -> 1E+999999999
-basx581 toSci '10e-1000000000' -> 1.0E-999999999
-basx582 toSci '0.9e9999999999' -> Infinity Overflow Inexact Rounded
-basx583 toSci '99e-9999999999' -> 0E-1000000007 Underflow Subnormal Inexact Rounded
-basx584 toSci '111e9999999999' -> Infinity Overflow Inexact Rounded
-basx585 toSci '1111e-9999999999' -> 0E-1000000007 Underflow Subnormal Inexact Rounded
-basx586 toSci '1111e-99999999999' -> 0E-1000000007 Underflow Subnormal Inexact Rounded
-basx587 toSci '7e1000000000' -> Infinity Overflow Inexact Rounded
--- negatives the same
-basx588 toSci '-99e999999999' -> -Infinity Overflow Inexact Rounded
-basx589 toSci '-999e999999999' -> -Infinity Overflow Inexact Rounded
-basx590 toSci '-0.9e-999999999' -> -9E-1000000000 Subnormal
-basx591 toSci '-0.09e-999999999' -> -9E-1000000001 Subnormal
-basx592 toSci '-0.1e1000000000' -> -1E+999999999
-basx593 toSci '-10e-1000000000' -> -1.0E-999999999
-basx594 toSci '-0.9e9999999999' -> -Infinity Overflow Inexact Rounded
-basx595 toSci '-99e-9999999999' -> -0E-1000000007 Underflow Subnormal Inexact Rounded
-basx596 toSci '-111e9999999999' -> -Infinity Overflow Inexact Rounded
-basx597 toSci '-1111e-9999999999' -> -0E-1000000007 Underflow Subnormal Inexact Rounded
-basx598 toSci '-1111e-99999999999' -> -0E-1000000007 Underflow Subnormal Inexact Rounded
-basx599 toSci '-7e1000000000' -> -Infinity Overflow Inexact Rounded
+-- some baddies with dots and Es and dots and specials
+basx576 toSci 'e+1' -> NaN Conversion_syntax
+basx577 toSci '.e+1' -> NaN Conversion_syntax
+basx578 toSci '+.e+1' -> NaN Conversion_syntax
+basx579 toSci '-.e+' -> NaN Conversion_syntax
+basx580 toSci '-.e' -> NaN Conversion_syntax
+basx581 toSci 'E+1' -> NaN Conversion_syntax
+basx582 toSci '.E+1' -> NaN Conversion_syntax
+basx583 toSci '+.E+1' -> NaN Conversion_syntax
+basx584 toSci '-.E+' -> NaN Conversion_syntax
+basx585 toSci '-.E' -> NaN Conversion_syntax
+
+basx586 toSci '.NaN' -> NaN Conversion_syntax
+basx587 toSci '-.NaN' -> NaN Conversion_syntax
+basx588 toSci '+.sNaN' -> NaN Conversion_syntax
+basx589 toSci '+.Inf' -> NaN Conversion_syntax
+basx590 toSci '.Infinity' -> NaN Conversion_syntax
-- Zeros
basx601 toSci 0.000000000 -> 0E-9
@@ -686,6 +717,17 @@ basx677 toSci 0.00E-7 -> 0E-9
basx678 toSci 0.00E-8 -> 0E-10
basx679 toSci 0.00E-9 -> 0E-11
+basx680 toSci 000000. -> 0
+basx681 toSci 00000. -> 0
+basx682 toSci 0000. -> 0
+basx683 toSci 000. -> 0
+basx684 toSci 00. -> 0
+basx685 toSci 0. -> 0
+basx686 toSci +00000. -> 0
+basx687 toSci -00000. -> -0
+basx688 toSci +0. -> 0
+basx689 toSci -0. -> -0
+
-- Specials
precision: 4
basx700 toSci "NaN" -> NaN
@@ -868,6 +910,62 @@ basx877 toEng 0.00E-7 -> 0E-9
basx878 toEng 0.00E-8 -> 0.0E-9
basx879 toEng 0.00E-9 -> 0.00E-9
+
+rounding: half_up
+precision: 9
+-- subnormals and overflows
+basx906 toSci '99e999999999' -> Infinity Overflow Inexact Rounded
+basx907 toSci '999e999999999' -> Infinity Overflow Inexact Rounded
+basx908 toSci '0.9e-999999999' -> 9E-1000000000 Subnormal
+basx909 toSci '0.09e-999999999' -> 9E-1000000001 Subnormal
+basx910 toSci '0.1e1000000000' -> 1E+999999999
+basx911 toSci '10e-1000000000' -> 1.0E-999999999
+basx912 toSci '0.9e9999999999' -> Infinity Overflow Inexact Rounded
+basx913 toSci '99e-9999999999' -> 0E-1000000007 Underflow Subnormal Inexact Rounded Clamped
+basx914 toSci '111e9999999999' -> Infinity Overflow Inexact Rounded
+basx915 toSci '1111e-9999999999' -> 0E-1000000007 Underflow Subnormal Inexact Rounded Clamped
+basx916 toSci '1111e-99999999999' -> 0E-1000000007 Underflow Subnormal Inexact Rounded Clamped
+basx917 toSci '7e1000000000' -> Infinity Overflow Inexact Rounded
+-- negatives the same
+basx918 toSci '-99e999999999' -> -Infinity Overflow Inexact Rounded
+basx919 toSci '-999e999999999' -> -Infinity Overflow Inexact Rounded
+basx920 toSci '-0.9e-999999999' -> -9E-1000000000 Subnormal
+basx921 toSci '-0.09e-999999999' -> -9E-1000000001 Subnormal
+basx922 toSci '-0.1e1000000000' -> -1E+999999999
+basx923 toSci '-10e-1000000000' -> -1.0E-999999999
+basx924 toSci '-0.9e9999999999' -> -Infinity Overflow Inexact Rounded
+basx925 toSci '-99e-9999999999' -> -0E-1000000007 Underflow Subnormal Inexact Rounded Clamped
+basx926 toSci '-111e9999999999' -> -Infinity Overflow Inexact Rounded
+basx927 toSci '-1111e-9999999999' -> -0E-1000000007 Underflow Subnormal Inexact Rounded Clamped
+basx928 toSci '-1111e-99999999999' -> -0E-1000000007 Underflow Subnormal Inexact Rounded Clamped
+basx929 toSci '-7e1000000000' -> -Infinity Overflow Inexact Rounded
+
+rounding: ceiling
+basx930 toSci '7e1000000000' -> Infinity Overflow Inexact Rounded
+basx931 toSci '-7e1000000000' -> -9.99999999E+999999999 Overflow Inexact Rounded
+rounding: up
+basx932 toSci '7e1000000000' -> Infinity Overflow Inexact Rounded
+basx933 toSci '-7e1000000000' -> -Infinity Overflow Inexact Rounded
+rounding: down
+basx934 toSci '7e1000000000' -> 9.99999999E+999999999 Overflow Inexact Rounded
+basx935 toSci '-7e1000000000' -> -9.99999999E+999999999 Overflow Inexact Rounded
+rounding: floor
+basx936 toSci '7e1000000000' -> 9.99999999E+999999999 Overflow Inexact Rounded
+basx937 toSci '-7e1000000000' -> -Infinity Overflow Inexact Rounded
+
+rounding: half_up
+basx938 toSci '7e1000000000' -> Infinity Overflow Inexact Rounded
+basx939 toSci '-7e1000000000' -> -Infinity Overflow Inexact Rounded
+rounding: half_even
+basx940 toSci '7e1000000000' -> Infinity Overflow Inexact Rounded
+basx941 toSci '-7e1000000000' -> -Infinity Overflow Inexact Rounded
+rounding: half_down
+basx942 toSci '7e1000000000' -> Infinity Overflow Inexact Rounded
+basx943 toSci '-7e1000000000' -> -Infinity Overflow Inexact Rounded
+
+rounding: half_even
+
+
-- Giga exponent initial tests
maxExponent: 999999999
minExponent: -999999999
@@ -987,8 +1085,8 @@ emax225 toSci 1E-7 -> 1E-7 Subnormal
emax226 toSci 1E-8 -> 1E-8 Subnormal
emax227 toSci 1E-9 -> 1E-9 Subnormal
emax228 toSci 1E-10 -> 1E-10 Subnormal
-emax229 toSci 1E-11 -> 0E-10 Underflow Subnormal Inexact Rounded
-emax230 toSci 1E-12 -> 0E-10 Underflow Subnormal Inexact Rounded
+emax229 toSci 1E-11 -> 0E-10 Underflow Subnormal Inexact Rounded Clamped
+emax230 toSci 1E-12 -> 0E-10 Underflow Subnormal Inexact Rounded Clamped
maxexponent: 7
minexponent: -7
@@ -1003,7 +1101,7 @@ emax238 toSci 1E+8 -> Infinity Overflow Inexact Rounded
maxexponent: 9
minexponent: -9
-emax240 toSci 1E-21 -> 0E-17 Subnormal Underflow Inexact Rounded
+emax240 toSci 1E-21 -> 0E-17 Subnormal Underflow Inexact Rounded Clamped
emax241 toSci 1E-10 -> 1E-10 Subnormal
emax242 toSci 1E-9 -> 1E-9
emax243 toSci 1E-8 -> 1E-8
@@ -1015,7 +1113,7 @@ emax248 toSci 1E+10 -> Infinity Overflow Inexact Rounded
maxexponent: 10 -- boundary
minexponent: -10
-emax250 toSci 1E-21 -> 0E-18 Underflow Subnormal Inexact Rounded
+emax250 toSci 1E-21 -> 0E-18 Underflow Subnormal Inexact Rounded Clamped
emax251 toSci 1E-11 -> 1E-11 Subnormal
emax252 toSci 1E-10 -> 1E-10
emax253 toSci 1E-9 -> 1E-9
@@ -1025,7 +1123,7 @@ emax256 toSci 1E+9 -> 1E+9
emax257 toSci 1E+10 -> 1E+10
emax258 toSci 1E+11 -> Infinity Overflow Inexact Rounded
-emax260 toSci 1.00E-21 -> 0E-18 Underflow Subnormal Inexact Rounded
+emax260 toSci 1.00E-21 -> 0E-18 Underflow Subnormal Inexact Rounded Clamped
emax261 toSci 1.00E-11 -> 1.00E-11 Subnormal
emax262 toSci 1.00E-10 -> 1.00E-10
emax263 toSci 1.00E-9 -> 1.00E-9
@@ -1034,7 +1132,7 @@ emax265 toSci 1.00E+8 -> 1.00E+8
emax266 toSci 1.00E+9 -> 1.00E+9
emax267 toSci 1.00E+10 -> 1.00E+10
emax268 toSci 1.00E+11 -> Infinity Overflow Inexact Rounded
-emax270 toSci 9.99E-21 -> 0E-18 Underflow Subnormal Inexact Rounded
+emax270 toSci 9.99E-21 -> 0E-18 Underflow Subnormal Inexact Rounded Clamped
emax271 toSci 9.99E-11 -> 9.99E-11 Subnormal
emax272 toSci 9.99E-10 -> 9.99E-10
emax273 toSci 9.99E-9 -> 9.99E-9
@@ -1046,7 +1144,7 @@ emax278 toSci 9.99E+11 -> Infinity Overflow Inexact Rounded
maxexponent: 99
minexponent: -99
-emax280 toSci 1E-120 -> 0E-107 Underflow Subnormal Inexact Rounded
+emax280 toSci 1E-120 -> 0E-107 Underflow Subnormal Inexact Rounded Clamped
emax281 toSci 1E-100 -> 1E-100 Subnormal
emax282 toSci 1E-99 -> 1E-99
emax283 toSci 1E-98 -> 1E-98
@@ -1093,7 +1191,7 @@ emax344 toSci 1E+100000000 -> Infinity Overflow Inexact Rounded
maxexponent: 999999999
minexponent: -999999999
-emax347 toSci 1E-1000000008 -> 0E-1000000007 Underflow Subnormal Inexact Rounded
+emax347 toSci 1E-1000000008 -> 0E-1000000007 Underflow Subnormal Inexact Rounded Clamped
emax348 toSci 1E-1000000007 -> 1E-1000000007 Subnormal
emax349 toSci 1E-1000000000 -> 1E-1000000000 Subnormal
emax350 toSci 1E-999999999 -> 1E-999999999
@@ -1103,7 +1201,7 @@ emax353 toSci 1.000E-1000000000 -> 1.000E-1000000000 Subnormal
emax354 toSci 1.000E-999999999 -> 1.000E-999999999
emax355 toSci 1.000E+999999999 -> 1.000E+999999999
emax356 toSci 1.000E+1000000000 -> Infinity Overflow Inexact Rounded
-emax357 toSci 1.001E-1000000008 -> 0E-1000000007 Underflow Subnormal Inexact Rounded
+emax357 toSci 1.001E-1000000008 -> 0E-1000000007 Underflow Subnormal Inexact Rounded Clamped
emax358 toSci 1.001E-1000000007 -> 1E-1000000007 Subnormal Inexact Rounded Underflow
emax359 toSci 1.001E-1000000000 -> 1.001E-1000000000 Subnormal
emax360 toSci 1.001E-999999999 -> 1.001E-999999999
@@ -1113,7 +1211,7 @@ emax363 toSci 9.000E-1000000000 -> 9.000E-1000000000 Subnormal
emax364 toSci 9.000E-999999999 -> 9.000E-999999999
emax365 toSci 9.000E+999999999 -> 9.000E+999999999
emax366 toSci 9.000E+1000000000 -> Infinity Overflow Inexact Rounded
-emax367 toSci 9.999E-1000000009 -> 0E-1000000007 Underflow Subnormal Inexact Rounded
+emax367 toSci 9.999E-1000000009 -> 0E-1000000007 Underflow Subnormal Inexact Rounded Clamped
emax368 toSci 9.999E-1000000008 -> 1E-1000000007 Underflow Subnormal Inexact Rounded
emax369 toSci 9.999E-1000000007 -> 1.0E-1000000006 Underflow Subnormal Inexact Rounded
emax370 toSci 9.999E-1000000000 -> 9.999E-1000000000 Subnormal
@@ -1129,11 +1227,11 @@ emax378 toSci -1.000E-1000000000 -> -1.000E-1000000000 Subnormal
emax379 toSci -1.000E-999999999 -> -1.000E-999999999
emax380 toSci -1.000E+999999999 -> -1.000E+999999999
emax381 toSci -1.000E+1000000000 -> -Infinity Overflow Inexact Rounded
-emax382 toSci -1.001E-1000000008 -> -0E-1000000007 Underflow Subnormal Inexact Rounded
+emax382 toSci -1.001E-1000000008 -> -0E-1000000007 Underflow Subnormal Inexact Rounded Clamped
emax383 toSci -1.001E-999999999 -> -1.001E-999999999
emax384 toSci -1.001E+999999999 -> -1.001E+999999999
emax385 toSci -1.001E+1000000000 -> -Infinity Overflow Inexact Rounded
-emax386 toSci -9.000E-1000000123 -> -0E-1000000007 Underflow Subnormal Inexact Rounded
+emax386 toSci -9.000E-1000000123 -> -0E-1000000007 Underflow Subnormal Inexact Rounded Clamped
emax387 toSci -9.000E-999999999 -> -9.000E-999999999
emax388 toSci -9.000E+999999999 -> -9.000E+999999999
emax389 toSci -9.000E+1000000000 -> -Infinity Overflow Inexact Rounded
@@ -1168,11 +1266,11 @@ emax416 toSci 0.000249E-999 -> 2E-1003 Underflow Subnormal Inexact Rounde
emax417 toSci 0.000250E-999 -> 2E-1003 Underflow Subnormal Inexact Rounded
emax418 toSci 0.000251E-999 -> 3E-1003 Underflow Subnormal Inexact Rounded
emax419 toSci 0.00009E-999 -> 1E-1003 Underflow Subnormal Inexact Rounded
-emax420 toSci 0.00005E-999 -> 0E-1003 Underflow Subnormal Inexact Rounded
-emax421 toSci 0.00003E-999 -> 0E-1003 Underflow Subnormal Inexact Rounded
-emax422 toSci 0.000009E-999 -> 0E-1003 Underflow Subnormal Inexact Rounded
-emax423 toSci 0.000005E-999 -> 0E-1003 Underflow Subnormal Inexact Rounded
-emax424 toSci 0.000003E-999 -> 0E-1003 Underflow Subnormal Inexact Rounded
+emax420 toSci 0.00005E-999 -> 0E-1003 Underflow Subnormal Inexact Rounded Clamped
+emax421 toSci 0.00003E-999 -> 0E-1003 Underflow Subnormal Inexact Rounded Clamped
+emax422 toSci 0.000009E-999 -> 0E-1003 Underflow Subnormal Inexact Rounded Clamped
+emax423 toSci 0.000005E-999 -> 0E-1003 Underflow Subnormal Inexact Rounded Clamped
+emax424 toSci 0.000003E-999 -> 0E-1003 Underflow Subnormal Inexact Rounded Clamped
emax425 toSci 0.001049E-999 -> 1.0E-1002 Underflow Subnormal Inexact Rounded
emax426 toSci 0.001050E-999 -> 1.0E-1002 Underflow Subnormal Inexact Rounded
@@ -1223,9 +1321,9 @@ emax472 toSci 0.099999E-999 -> 1.000E-1000 Underflow Subnormal Inexact Ro
emax473 toSci 0.0099999E-999 -> 1.00E-1001 Underflow Subnormal Inexact Rounded
emax474 toSci 0.00099999E-999 -> 1.0E-1002 Underflow Subnormal Inexact Rounded
emax475 toSci 0.000099999E-999 -> 1E-1003 Underflow Subnormal Inexact Rounded
-emax476 toSci 0.0000099999E-999 -> 0E-1003 Underflow Subnormal Inexact Rounded
-emax477 toSci 0.00000099999E-999 -> 0E-1003 Underflow Subnormal Inexact Rounded
-emax478 toSci 0.000000099999E-999 -> 0E-1003 Underflow Subnormal Inexact Rounded
+emax476 toSci 0.0000099999E-999 -> 0E-1003 Underflow Subnormal Inexact Rounded Clamped
+emax477 toSci 0.00000099999E-999 -> 0E-1003 Underflow Subnormal Inexact Rounded Clamped
+emax478 toSci 0.000000099999E-999 -> 0E-1003 Underflow Subnormal Inexact Rounded Clamped
-- Exponents with insignificant leading zeros
precision: 16
@@ -1248,9 +1346,9 @@ basx1012 toSci 1e-000000000001000000007 -> 1E-1000000007 Subnormal
basx1021 tosci 1e+2147483649 -> Infinity Overflow Inexact Rounded
basx1022 tosci 1e+2147483648 -> Infinity Overflow Inexact Rounded
basx1023 tosci 1e+2147483647 -> Infinity Overflow Inexact Rounded
-basx1024 tosci 1e-2147483647 -> 0E-1000000014 Underflow Subnormal Inexact Rounded
-basx1025 tosci 1e-2147483648 -> 0E-1000000014 Underflow Subnormal Inexact Rounded
-basx1026 tosci 1e-2147483649 -> 0E-1000000014 Underflow Subnormal Inexact Rounded
+basx1024 tosci 1e-2147483647 -> 0E-1000000014 Underflow Subnormal Inexact Rounded Clamped
+basx1025 tosci 1e-2147483648 -> 0E-1000000014 Underflow Subnormal Inexact Rounded Clamped
+basx1026 tosci 1e-2147483649 -> 0E-1000000014 Underflow Subnormal Inexact Rounded Clamped
-- same unbalanced
precision: 7
maxExponent: 96
@@ -1258,9 +1356,9 @@ minexponent: -95
basx1031 tosci 1e+2147483649 -> Infinity Overflow Inexact Rounded
basx1032 tosci 1e+2147483648 -> Infinity Overflow Inexact Rounded
basx1033 tosci 1e+2147483647 -> Infinity Overflow Inexact Rounded
-basx1034 tosci 1e-2147483647 -> 0E-101 Underflow Subnormal Inexact Rounded
-basx1035 tosci 1e-2147483648 -> 0E-101 Underflow Subnormal Inexact Rounded
-basx1036 tosci 1e-2147483649 -> 0E-101 Underflow Subnormal Inexact Rounded
+basx1034 tosci 1e-2147483647 -> 0E-101 Underflow Subnormal Inexact Rounded Clamped
+basx1035 tosci 1e-2147483648 -> 0E-101 Underflow Subnormal Inexact Rounded Clamped
+basx1036 tosci 1e-2147483649 -> 0E-101 Underflow Subnormal Inexact Rounded Clamped
-- check for double-rounded subnormals
precision: 5
@@ -1270,3 +1368,44 @@ basx1041 toSci 1.52444E-80 -> 1.524E-80 Inexact Rounded Subnormal Underflo
basx1042 toSci 1.52445E-80 -> 1.524E-80 Inexact Rounded Subnormal Underflow
basx1043 toSci 1.52446E-80 -> 1.524E-80 Inexact Rounded Subnormal Underflow
+-- clamped zeros [see also clamp.decTest]
+precision: 34
+maxExponent: 6144
+minExponent: -6143
+
+basx1061 apply 0e+10000 -> 0E+6144 Clamped
+basx1062 apply 0e-10000 -> 0E-6176 Clamped
+basx1063 apply -0e+10000 -> -0E+6144 Clamped
+basx1064 apply -0e-10000 -> -0E-6176 Clamped
+
+precision: 16
+maxExponent: 384
+minExponent: -383
+
+basx1065 apply 0e+10000 -> 0E+384 Clamped
+basx1066 apply 0e-10000 -> 0E-398 Clamped
+basx1067 apply -0e+10000 -> -0E+384 Clamped
+basx1068 apply -0e-10000 -> -0E-398 Clamped
+
+-- same with IEEE clamping
+clamp: 1
+
+precision: 34
+maxExponent: 6144
+minExponent: -6143
+
+basx1071 apply 0e+10000 -> 0E+6111 Clamped
+basx1072 apply 0e-10000 -> 0E-6176 Clamped
+basx1073 apply -0e+10000 -> -0E+6111 Clamped
+basx1074 apply -0e-10000 -> -0E-6176 Clamped
+
+precision: 16
+maxExponent: 384
+minExponent: -383
+
+basx1075 apply 0e+10000 -> 0E+369 Clamped
+basx1076 apply 0e-10000 -> 0E-398 Clamped
+basx1077 apply -0e+10000 -> -0E+369 Clamped
+basx1078 apply -0e-10000 -> -0E-398 Clamped
+
+
diff --git a/Lib/test/decimaltestdata/clamp.decTest b/Lib/test/decimaltestdata/clamp.decTest
index 722971a..eca0cfb 100644
--- a/Lib/test/decimaltestdata/clamp.decTest
+++ b/Lib/test/decimaltestdata/clamp.decTest
@@ -1,6 +1,6 @@
------------------------------------------------------------------------
-- clamp.decTest -- clamped exponent tests (format-independent) --
--- Copyright (c) IBM Corporation, 2000, 2003. All rights reserved. --
+-- Copyright (c) IBM Corporation, 2000, 2007. All rights reserved. --
------------------------------------------------------------------------
-- Please see the document "General Decimal Arithmetic Testcases" --
-- at http://www2.hursley.ibm.com/decimal for the description of --
@@ -17,7 +17,7 @@
-- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK --
-- mfc@uk.ibm.com --
------------------------------------------------------------------------
-version: 2.39
+version: 2.56
-- This set of tests uses the same limits as the 8-byte concrete
-- representation, but applies clamping without using format-specific
@@ -73,10 +73,10 @@ clam092 apply 1.1e-398 -> #0000000000000001 Subnormal Underflo
clam093 apply 1.00000000001e-398 -> #0000000000000001 Subnormal Underflow Inexact Rounded
clam094 apply 1.00000000000001e-398 -> #0000000000000001 Subnormal Underflow Inexact Rounded
clam095 apply 1.000000000000001e-398 -> #0000000000000001 Subnormal Underflow Inexact Rounded
-clam096 apply 0.1e-398 -> #0000000000000000 Subnormal Underflow Inexact Rounded
-clam097 apply 0.00000000001e-398 -> #0000000000000000 Subnormal Underflow Inexact Rounded
-clam098 apply 0.00000000000001e-398 -> #0000000000000000 Subnormal Underflow Inexact Rounded
-clam099 apply 0.000000000000001e-398 -> #0000000000000000 Subnormal Underflow Inexact Rounded
+clam096 apply 0.1e-398 -> #0000000000000000 Subnormal Underflow Inexact Rounded Clamped
+clam097 apply 0.00000000001e-398 -> #0000000000000000 Subnormal Underflow Inexact Rounded Clamped
+clam098 apply 0.00000000000001e-398 -> #0000000000000000 Subnormal Underflow Inexact Rounded Clamped
+clam099 apply 0.000000000000001e-398 -> #0000000000000000 Subnormal Underflow Inexact Rounded Clamped
-- Same again, negatives
-- Nmax and similar
@@ -112,10 +112,10 @@ clam192 apply -1.1e-398 -> #8000000000000001 Subnormal Underflo
clam193 apply -1.00000000001e-398 -> #8000000000000001 Subnormal Underflow Inexact Rounded
clam194 apply -1.00000000000001e-398 -> #8000000000000001 Subnormal Underflow Inexact Rounded
clam195 apply -1.000000000000001e-398 -> #8000000000000001 Subnormal Underflow Inexact Rounded
-clam196 apply -0.1e-398 -> #8000000000000000 Subnormal Underflow Inexact Rounded
-clam197 apply -0.00000000001e-398 -> #8000000000000000 Subnormal Underflow Inexact Rounded
-clam198 apply -0.00000000000001e-398 -> #8000000000000000 Subnormal Underflow Inexact Rounded
-clam199 apply -0.000000000000001e-398 -> #8000000000000000 Subnormal Underflow Inexact Rounded
+clam196 apply -0.1e-398 -> #8000000000000000 Subnormal Underflow Inexact Rounded Clamped
+clam197 apply -0.00000000001e-398 -> #8000000000000000 Subnormal Underflow Inexact Rounded Clamped
+clam198 apply -0.00000000000001e-398 -> #8000000000000000 Subnormal Underflow Inexact Rounded Clamped
+clam199 apply -0.000000000000001e-398 -> #8000000000000000 Subnormal Underflow Inexact Rounded Clamped
-- zeros
clam401 apply 0E-500 -> 0E-398 Clamped
@@ -184,6 +184,20 @@ clam669 apply 9E+370 -> 9.0E+370 Clamped
clam671 apply 9E+369 -> 9E+369
clam673 apply 9E+368 -> 9E+368
+-- subnormals clamped to 0-Etiny
+precision: 16
+maxExponent: 384
+minExponent: -383
+clam681 apply 7E-398 -> 7E-398 Subnormal
+clam682 apply 0E-398 -> 0E-398
+clam683 apply 7E-399 -> 1E-398 Subnormal Underflow Inexact Rounded
+clam684 apply 4E-399 -> 0E-398 Clamped Subnormal Underflow Inexact Rounded
+clam685 apply 7E-400 -> 0E-398 Clamped Subnormal Underflow Inexact Rounded
+clam686 apply 7E-401 -> 0E-398 Clamped Subnormal Underflow Inexact Rounded
+clam687 apply 0E-399 -> 0E-398 Clamped
+clam688 apply 0E-400 -> 0E-398 Clamped
+clam689 apply 0E-401 -> 0E-398 Clamped
+
-- example from documentation
precision: 7
rounding: half_even
diff --git a/Lib/test/decimaltestdata/class.decTest b/Lib/test/decimaltestdata/class.decTest
new file mode 100644
index 0000000..77a22e3
--- /dev/null
+++ b/Lib/test/decimaltestdata/class.decTest
@@ -0,0 +1,131 @@
+------------------------------------------------------------------------
+-- class.decTest -- Class operations --
+-- Copyright (c) IBM Corporation, 1981, 2007. All rights reserved. --
+------------------------------------------------------------------------
+-- Please see the document "General Decimal Arithmetic Testcases" --
+-- at http://www2.hursley.ibm.com/decimal for the description of --
+-- these testcases. --
+-- --
+-- These testcases are experimental ('beta' versions), and they --
+-- may contain errors. They are offered on an as-is basis. In --
+-- particular, achieving the same results as the tests here is not --
+-- a guarantee that an implementation complies with any Standard --
+-- or specification. The tests are not exhaustive. --
+-- --
+-- Please send comments, suggestions, and corrections to the author: --
+-- Mike Cowlishaw, IBM Fellow --
+-- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK --
+-- mfc@uk.ibm.com --
+------------------------------------------------------------------------
+version: 2.56
+
+-- [New 2006.11.27]
+
+precision: 9
+maxExponent: 999
+minExponent: -999
+extended: 1
+clamp: 1
+rounding: half_even
+
+clasx001 class 0 -> +Zero
+clasx002 class 0.00 -> +Zero
+clasx003 class 0E+5 -> +Zero
+clasx004 class 1E-1007 -> +Subnormal
+clasx005 class 0.1E-999 -> +Subnormal
+clasx006 class 0.99999999E-999 -> +Subnormal
+clasx007 class 1.00000000E-999 -> +Normal
+clasx008 class 1E-999 -> +Normal
+clasx009 class 1E-100 -> +Normal
+clasx010 class 1E-10 -> +Normal
+clasx012 class 1E-1 -> +Normal
+clasx013 class 1 -> +Normal
+clasx014 class 2.50 -> +Normal
+clasx015 class 100.100 -> +Normal
+clasx016 class 1E+30 -> +Normal
+clasx017 class 1E+999 -> +Normal
+clasx018 class 9.99999999E+999 -> +Normal
+clasx019 class Inf -> +Infinity
+
+clasx021 class -0 -> -Zero
+clasx022 class -0.00 -> -Zero
+clasx023 class -0E+5 -> -Zero
+clasx024 class -1E-1007 -> -Subnormal
+clasx025 class -0.1E-999 -> -Subnormal
+clasx026 class -0.99999999E-999 -> -Subnormal
+clasx027 class -1.00000000E-999 -> -Normal
+clasx028 class -1E-999 -> -Normal
+clasx029 class -1E-100 -> -Normal
+clasx030 class -1E-10 -> -Normal
+clasx032 class -1E-1 -> -Normal
+clasx033 class -1 -> -Normal
+clasx034 class -2.50 -> -Normal
+clasx035 class -100.100 -> -Normal
+clasx036 class -1E+30 -> -Normal
+clasx037 class -1E+999 -> -Normal
+clasx038 class -9.99999999E+999 -> -Normal
+clasx039 class -Inf -> -Infinity
+
+clasx041 class NaN -> NaN
+clasx042 class -NaN -> NaN
+clasx043 class +NaN12345 -> NaN
+clasx044 class sNaN -> sNaN
+clasx045 class -sNaN -> sNaN
+clasx046 class +sNaN12345 -> sNaN
+
+
+-- decimal64 bounds
+
+precision: 16
+maxExponent: 384
+minExponent: -383
+clamp: 1
+rounding: half_even
+
+clasx201 class 0 -> +Zero
+clasx202 class 0.00 -> +Zero
+clasx203 class 0E+5 -> +Zero
+clasx204 class 1E-396 -> +Subnormal
+clasx205 class 0.1E-383 -> +Subnormal
+clasx206 class 0.999999999999999E-383 -> +Subnormal
+clasx207 class 1.000000000000000E-383 -> +Normal
+clasx208 class 1E-383 -> +Normal
+clasx209 class 1E-100 -> +Normal
+clasx210 class 1E-10 -> +Normal
+clasx212 class 1E-1 -> +Normal
+clasx213 class 1 -> +Normal
+clasx214 class 2.50 -> +Normal
+clasx215 class 100.100 -> +Normal
+clasx216 class 1E+30 -> +Normal
+clasx217 class 1E+384 -> +Normal
+clasx218 class 9.999999999999999E+384 -> +Normal
+clasx219 class Inf -> +Infinity
+
+clasx221 class -0 -> -Zero
+clasx222 class -0.00 -> -Zero
+clasx223 class -0E+5 -> -Zero
+clasx224 class -1E-396 -> -Subnormal
+clasx225 class -0.1E-383 -> -Subnormal
+clasx226 class -0.999999999999999E-383 -> -Subnormal
+clasx227 class -1.000000000000000E-383 -> -Normal
+clasx228 class -1E-383 -> -Normal
+clasx229 class -1E-100 -> -Normal
+clasx230 class -1E-10 -> -Normal
+clasx232 class -1E-1 -> -Normal
+clasx233 class -1 -> -Normal
+clasx234 class -2.50 -> -Normal
+clasx235 class -100.100 -> -Normal
+clasx236 class -1E+30 -> -Normal
+clasx237 class -1E+384 -> -Normal
+clasx238 class -9.999999999999999E+384 -> -Normal
+clasx239 class -Inf -> -Infinity
+
+clasx241 class NaN -> NaN
+clasx242 class -NaN -> NaN
+clasx243 class +NaN12345 -> NaN
+clasx244 class sNaN -> sNaN
+clasx245 class -sNaN -> sNaN
+clasx246 class +sNaN12345 -> sNaN
+
+
+
diff --git a/Lib/test/decimaltestdata/compare.decTest b/Lib/test/decimaltestdata/compare.decTest
index 21651ad..2d5e664 100644
--- a/Lib/test/decimaltestdata/compare.decTest
+++ b/Lib/test/decimaltestdata/compare.decTest
@@ -1,6 +1,6 @@
------------------------------------------------------------------------
--- compare.decTest -- decimal comparison --
--- Copyright (c) IBM Corporation, 1981, 2003. All rights reserved. --
+-- compare.decTest -- decimal comparison that allows quiet NaNs --
+-- Copyright (c) IBM Corporation, 1981, 2007. All rights reserved. --
------------------------------------------------------------------------
-- Please see the document "General Decimal Arithmetic Testcases" --
-- at http://www2.hursley.ibm.com/decimal for the description of --
@@ -17,11 +17,11 @@
-- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK --
-- mfc@uk.ibm.com --
------------------------------------------------------------------------
-version: 2.39
+version: 2.56
-- Note that we cannot assume add/subtract tests cover paths adequately,
-- here, because the code might be quite different (comparison cannot
--- overflow or underflow, so actual subtractions are not necesary).
+-- overflow or underflow, so actual subtractions are not necessary).
extended: 1
@@ -112,10 +112,10 @@ comx086 compare 2.0 2.0 -> 0
-- now some cases which might overflow if subtract were used
maxexponent: 999999999
minexponent: -999999999
-comx090 compare 9.99999999E+999999999 9.99999999E+999999999 -> 0
-comx091 compare -9.99999999E+999999999 9.99999999E+999999999 -> -1
-comx092 compare 9.99999999E+999999999 -9.99999999E+999999999 -> 1
-comx093 compare -9.99999999E+999999999 -9.99999999E+999999999 -> 0
+comx095 compare 9.99999999E+999999999 9.99999999E+999999999 -> 0
+comx096 compare -9.99999999E+999999999 9.99999999E+999999999 -> -1
+comx097 compare 9.99999999E+999999999 -9.99999999E+999999999 -> 1
+comx098 compare -9.99999999E+999999999 -9.99999999E+999999999 -> 0
-- some differing length/exponent cases
comx100 compare 7.0 7.0 -> 0
@@ -265,6 +265,21 @@ comx448 compare -8.0 -90E-1 -> 1
comx449 compare -8 -.9E+1 -> 1
comx450 compare -8 -90E-1 -> 1
+-- misalignment traps for little-endian
+comx451 compare 1.0 0.1 -> 1
+comx452 compare 0.1 1.0 -> -1
+comx453 compare 10.0 0.1 -> 1
+comx454 compare 0.1 10.0 -> -1
+comx455 compare 100 1.0 -> 1
+comx456 compare 1.0 100 -> -1
+comx457 compare 1000 10.0 -> 1
+comx458 compare 10.0 1000 -> -1
+comx459 compare 10000 100.0 -> 1
+comx460 compare 100.0 10000 -> -1
+comx461 compare 100000 1000.0 -> 1
+comx462 compare 1000.0 100000 -> -1
+comx463 compare 1000000 10000.0 -> 1
+comx464 compare 10000.0 1000000 -> -1
-- testcases that subtract to lots of zeros at boundaries [pgr]
precision: 40
@@ -362,7 +377,7 @@ comx568 compare 1E+12 1 -> 1
comx569 compare 1E+13 1 -> 1
comx570 compare 1E+14 1 -> 1
comx571 compare 1E+15 1 -> 1
--- similar with an useful coefficient, one side only
+-- similar with a useful coefficient, one side only
comx580 compare 0.000000987654321 1E-15 -> 1
comx581 compare 0.000000987654321 1E-14 -> 1
comx582 compare 0.000000987654321 1E-13 -> 1
@@ -712,6 +727,32 @@ comx906 compare 1e-777777777 -1e-411111111 -> 1
comx907 compare -1e-777777777 1e-411111111 -> -1
comx908 compare -1e-777777777 -1e-411111111 -> 1
+-- spread zeros
+comx910 compare 0E-383 0 -> 0
+comx911 compare 0E-383 -0 -> 0
+comx912 compare -0E-383 0 -> 0
+comx913 compare -0E-383 -0 -> 0
+comx914 compare 0E-383 0E+384 -> 0
+comx915 compare 0E-383 -0E+384 -> 0
+comx916 compare -0E-383 0E+384 -> 0
+comx917 compare -0E-383 -0E+384 -> 0
+comx918 compare 0 0E+384 -> 0
+comx919 compare 0 -0E+384 -> 0
+comx920 compare -0 0E+384 -> 0
+comx921 compare -0 -0E+384 -> 0
+comx930 compare 0E+384 0 -> 0
+comx931 compare 0E+384 -0 -> 0
+comx932 compare -0E+384 0 -> 0
+comx933 compare -0E+384 -0 -> 0
+comx934 compare 0E+384 0E-383 -> 0
+comx935 compare 0E+384 -0E-383 -> 0
+comx936 compare -0E+384 0E-383 -> 0
+comx937 compare -0E+384 -0E-383 -> 0
+comx938 compare 0 0E-383 -> 0
+comx939 compare 0 -0E-383 -> 0
+comx940 compare -0 0E-383 -> 0
+comx941 compare -0 -0E-383 -> 0
+
-- Null tests
comx990 compare 10 # -> NaN Invalid_operation
comx991 compare # 10 -> NaN Invalid_operation
diff --git a/Lib/test/decimaltestdata/comparetotal.decTest b/Lib/test/decimaltestdata/comparetotal.decTest
new file mode 100644
index 0000000..737293f
--- /dev/null
+++ b/Lib/test/decimaltestdata/comparetotal.decTest
@@ -0,0 +1,798 @@
+------------------------------------------------------------------------
+-- comparetotal.decTest -- decimal comparison using total ordering --
+-- Copyright (c) IBM Corporation, 1981, 2007. All rights reserved. --
+------------------------------------------------------------------------
+-- Please see the document "General Decimal Arithmetic Testcases" --
+-- at http://www2.hursley.ibm.com/decimal for the description of --
+-- these testcases. --
+-- --
+-- These testcases are experimental ('beta' versions), and they --
+-- may contain errors. They are offered on an as-is basis. In --
+-- particular, achieving the same results as the tests here is not --
+-- a guarantee that an implementation complies with any Standard --
+-- or specification. The tests are not exhaustive. --
+-- --
+-- Please send comments, suggestions, and corrections to the author: --
+-- Mike Cowlishaw, IBM Fellow --
+-- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK --
+-- mfc@uk.ibm.com --
+------------------------------------------------------------------------
+version: 2.56
+
+-- Note that we cannot assume add/subtract tests cover paths adequately,
+-- here, because the code might be quite different (comparison cannot
+-- overflow or underflow, so actual subtractions are not necessary).
+-- Similarly, comparetotal will have some radically different paths
+-- than compare.
+
+extended: 1
+precision: 16
+rounding: half_up
+maxExponent: 384
+minExponent: -383
+
+-- sanity checks
+cotx001 comparetotal -2 -2 -> 0
+cotx002 comparetotal -2 -1 -> -1
+cotx003 comparetotal -2 0 -> -1
+cotx004 comparetotal -2 1 -> -1
+cotx005 comparetotal -2 2 -> -1
+cotx006 comparetotal -1 -2 -> 1
+cotx007 comparetotal -1 -1 -> 0
+cotx008 comparetotal -1 0 -> -1
+cotx009 comparetotal -1 1 -> -1
+cotx010 comparetotal -1 2 -> -1
+cotx011 comparetotal 0 -2 -> 1
+cotx012 comparetotal 0 -1 -> 1
+cotx013 comparetotal 0 0 -> 0
+cotx014 comparetotal 0 1 -> -1
+cotx015 comparetotal 0 2 -> -1
+cotx016 comparetotal 1 -2 -> 1
+cotx017 comparetotal 1 -1 -> 1
+cotx018 comparetotal 1 0 -> 1
+cotx019 comparetotal 1 1 -> 0
+cotx020 comparetotal 1 2 -> -1
+cotx021 comparetotal 2 -2 -> 1
+cotx022 comparetotal 2 -1 -> 1
+cotx023 comparetotal 2 0 -> 1
+cotx025 comparetotal 2 1 -> 1
+cotx026 comparetotal 2 2 -> 0
+
+cotx031 comparetotal -20 -20 -> 0
+cotx032 comparetotal -20 -10 -> -1
+cotx033 comparetotal -20 00 -> -1
+cotx034 comparetotal -20 10 -> -1
+cotx035 comparetotal -20 20 -> -1
+cotx036 comparetotal -10 -20 -> 1
+cotx037 comparetotal -10 -10 -> 0
+cotx038 comparetotal -10 00 -> -1
+cotx039 comparetotal -10 10 -> -1
+cotx040 comparetotal -10 20 -> -1
+cotx041 comparetotal 00 -20 -> 1
+cotx042 comparetotal 00 -10 -> 1
+cotx043 comparetotal 00 00 -> 0
+cotx044 comparetotal 00 10 -> -1
+cotx045 comparetotal 00 20 -> -1
+cotx046 comparetotal 10 -20 -> 1
+cotx047 comparetotal 10 -10 -> 1
+cotx048 comparetotal 10 00 -> 1
+cotx049 comparetotal 10 10 -> 0
+cotx050 comparetotal 10 20 -> -1
+cotx051 comparetotal 20 -20 -> 1
+cotx052 comparetotal 20 -10 -> 1
+cotx053 comparetotal 20 00 -> 1
+cotx055 comparetotal 20 10 -> 1
+cotx056 comparetotal 20 20 -> 0
+
+cotx061 comparetotal -2.0 -2.0 -> 0
+cotx062 comparetotal -2.0 -1.0 -> -1
+cotx063 comparetotal -2.0 0.0 -> -1
+cotx064 comparetotal -2.0 1.0 -> -1
+cotx065 comparetotal -2.0 2.0 -> -1
+cotx066 comparetotal -1.0 -2.0 -> 1
+cotx067 comparetotal -1.0 -1.0 -> 0
+cotx068 comparetotal -1.0 0.0 -> -1
+cotx069 comparetotal -1.0 1.0 -> -1
+cotx070 comparetotal -1.0 2.0 -> -1
+cotx071 comparetotal 0.0 -2.0 -> 1
+cotx072 comparetotal 0.0 -1.0 -> 1
+cotx073 comparetotal 0.0 0.0 -> 0
+cotx074 comparetotal 0.0 1.0 -> -1
+cotx075 comparetotal 0.0 2.0 -> -1
+cotx076 comparetotal 1.0 -2.0 -> 1
+cotx077 comparetotal 1.0 -1.0 -> 1
+cotx078 comparetotal 1.0 0.0 -> 1
+cotx079 comparetotal 1.0 1.0 -> 0
+cotx080 comparetotal 1.0 2.0 -> -1
+cotx081 comparetotal 2.0 -2.0 -> 1
+cotx082 comparetotal 2.0 -1.0 -> 1
+cotx083 comparetotal 2.0 0.0 -> 1
+cotx085 comparetotal 2.0 1.0 -> 1
+cotx086 comparetotal 2.0 2.0 -> 0
+
+-- now some cases which might overflow if subtract were used
+maxexponent: 999999999
+minexponent: -999999999
+cotx090 comparetotal 9.99999999E+999999999 9.99999999E+999999999 -> 0
+cotx091 comparetotal -9.99999999E+999999999 9.99999999E+999999999 -> -1
+cotx092 comparetotal 9.99999999E+999999999 -9.99999999E+999999999 -> 1
+cotx093 comparetotal -9.99999999E+999999999 -9.99999999E+999999999 -> 0
+
+-- Examples
+cotx094 comparetotal 12.73 127.9 -> -1
+cotx095 comparetotal -127 12 -> -1
+cotx096 comparetotal 12.30 12.3 -> -1
+cotx097 comparetotal 12.30 12.30 -> 0
+cotx098 comparetotal 12.3 12.300 -> 1
+cotx099 comparetotal 12.3 NaN -> -1
+
+-- some differing length/exponent cases
+-- in this first group, compare would compare all equal
+cotx100 comparetotal 7.0 7.0 -> 0
+cotx101 comparetotal 7.0 7 -> -1
+cotx102 comparetotal 7 7.0 -> 1
+cotx103 comparetotal 7E+0 7.0 -> 1
+cotx104 comparetotal 70E-1 7.0 -> 0
+cotx105 comparetotal 0.7E+1 7 -> 0
+cotx106 comparetotal 70E-1 7 -> -1
+cotx107 comparetotal 7.0 7E+0 -> -1
+cotx108 comparetotal 7.0 70E-1 -> 0
+cotx109 comparetotal 7 0.7E+1 -> 0
+cotx110 comparetotal 7 70E-1 -> 1
+
+cotx120 comparetotal 8.0 7.0 -> 1
+cotx121 comparetotal 8.0 7 -> 1
+cotx122 comparetotal 8 7.0 -> 1
+cotx123 comparetotal 8E+0 7.0 -> 1
+cotx124 comparetotal 80E-1 7.0 -> 1
+cotx125 comparetotal 0.8E+1 7 -> 1
+cotx126 comparetotal 80E-1 7 -> 1
+cotx127 comparetotal 8.0 7E+0 -> 1
+cotx128 comparetotal 8.0 70E-1 -> 1
+cotx129 comparetotal 8 0.7E+1 -> 1
+cotx130 comparetotal 8 70E-1 -> 1
+
+cotx140 comparetotal 8.0 9.0 -> -1
+cotx141 comparetotal 8.0 9 -> -1
+cotx142 comparetotal 8 9.0 -> -1
+cotx143 comparetotal 8E+0 9.0 -> -1
+cotx144 comparetotal 80E-1 9.0 -> -1
+cotx145 comparetotal 0.8E+1 9 -> -1
+cotx146 comparetotal 80E-1 9 -> -1
+cotx147 comparetotal 8.0 9E+0 -> -1
+cotx148 comparetotal 8.0 90E-1 -> -1
+cotx149 comparetotal 8 0.9E+1 -> -1
+cotx150 comparetotal 8 90E-1 -> -1
+
+-- and again, with sign changes -+ ..
+cotx200 comparetotal -7.0 7.0 -> -1
+cotx201 comparetotal -7.0 7 -> -1
+cotx202 comparetotal -7 7.0 -> -1
+cotx203 comparetotal -7E+0 7.0 -> -1
+cotx204 comparetotal -70E-1 7.0 -> -1
+cotx205 comparetotal -0.7E+1 7 -> -1
+cotx206 comparetotal -70E-1 7 -> -1
+cotx207 comparetotal -7.0 7E+0 -> -1
+cotx208 comparetotal -7.0 70E-1 -> -1
+cotx209 comparetotal -7 0.7E+1 -> -1
+cotx210 comparetotal -7 70E-1 -> -1
+
+cotx220 comparetotal -8.0 7.0 -> -1
+cotx221 comparetotal -8.0 7 -> -1
+cotx222 comparetotal -8 7.0 -> -1
+cotx223 comparetotal -8E+0 7.0 -> -1
+cotx224 comparetotal -80E-1 7.0 -> -1
+cotx225 comparetotal -0.8E+1 7 -> -1
+cotx226 comparetotal -80E-1 7 -> -1
+cotx227 comparetotal -8.0 7E+0 -> -1
+cotx228 comparetotal -8.0 70E-1 -> -1
+cotx229 comparetotal -8 0.7E+1 -> -1
+cotx230 comparetotal -8 70E-1 -> -1
+
+cotx240 comparetotal -8.0 9.0 -> -1
+cotx241 comparetotal -8.0 9 -> -1
+cotx242 comparetotal -8 9.0 -> -1
+cotx243 comparetotal -8E+0 9.0 -> -1
+cotx244 comparetotal -80E-1 9.0 -> -1
+cotx245 comparetotal -0.8E+1 9 -> -1
+cotx246 comparetotal -80E-1 9 -> -1
+cotx247 comparetotal -8.0 9E+0 -> -1
+cotx248 comparetotal -8.0 90E-1 -> -1
+cotx249 comparetotal -8 0.9E+1 -> -1
+cotx250 comparetotal -8 90E-1 -> -1
+
+-- and again, with sign changes +- ..
+cotx300 comparetotal 7.0 -7.0 -> 1
+cotx301 comparetotal 7.0 -7 -> 1
+cotx302 comparetotal 7 -7.0 -> 1
+cotx303 comparetotal 7E+0 -7.0 -> 1
+cotx304 comparetotal 70E-1 -7.0 -> 1
+cotx305 comparetotal .7E+1 -7 -> 1
+cotx306 comparetotal 70E-1 -7 -> 1
+cotx307 comparetotal 7.0 -7E+0 -> 1
+cotx308 comparetotal 7.0 -70E-1 -> 1
+cotx309 comparetotal 7 -.7E+1 -> 1
+cotx310 comparetotal 7 -70E-1 -> 1
+
+cotx320 comparetotal 8.0 -7.0 -> 1
+cotx321 comparetotal 8.0 -7 -> 1
+cotx322 comparetotal 8 -7.0 -> 1
+cotx323 comparetotal 8E+0 -7.0 -> 1
+cotx324 comparetotal 80E-1 -7.0 -> 1
+cotx325 comparetotal .8E+1 -7 -> 1
+cotx326 comparetotal 80E-1 -7 -> 1
+cotx327 comparetotal 8.0 -7E+0 -> 1
+cotx328 comparetotal 8.0 -70E-1 -> 1
+cotx329 comparetotal 8 -.7E+1 -> 1
+cotx330 comparetotal 8 -70E-1 -> 1
+
+cotx340 comparetotal 8.0 -9.0 -> 1
+cotx341 comparetotal 8.0 -9 -> 1
+cotx342 comparetotal 8 -9.0 -> 1
+cotx343 comparetotal 8E+0 -9.0 -> 1
+cotx344 comparetotal 80E-1 -9.0 -> 1
+cotx345 comparetotal .8E+1 -9 -> 1
+cotx346 comparetotal 80E-1 -9 -> 1
+cotx347 comparetotal 8.0 -9E+0 -> 1
+cotx348 comparetotal 8.0 -90E-1 -> 1
+cotx349 comparetotal 8 -.9E+1 -> 1
+cotx350 comparetotal 8 -90E-1 -> 1
+
+-- and again, with sign changes -- ..
+cotx400 comparetotal -7.0 -7.0 -> 0
+cotx401 comparetotal -7.0 -7 -> 1
+cotx402 comparetotal -7 -7.0 -> -1
+cotx403 comparetotal -7E+0 -7.0 -> -1
+cotx404 comparetotal -70E-1 -7.0 -> 0
+cotx405 comparetotal -.7E+1 -7 -> 0
+cotx406 comparetotal -70E-1 -7 -> 1
+cotx407 comparetotal -7.0 -7E+0 -> 1
+cotx408 comparetotal -7.0 -70E-1 -> 0
+cotx409 comparetotal -7 -.7E+1 -> 0
+cotx410 comparetotal -7 -70E-1 -> -1
+
+cotx420 comparetotal -8.0 -7.0 -> -1
+cotx421 comparetotal -8.0 -7 -> -1
+cotx422 comparetotal -8 -7.0 -> -1
+cotx423 comparetotal -8E+0 -7.0 -> -1
+cotx424 comparetotal -80E-1 -7.0 -> -1
+cotx425 comparetotal -.8E+1 -7 -> -1
+cotx426 comparetotal -80E-1 -7 -> -1
+cotx427 comparetotal -8.0 -7E+0 -> -1
+cotx428 comparetotal -8.0 -70E-1 -> -1
+cotx429 comparetotal -8 -.7E+1 -> -1
+cotx430 comparetotal -8 -70E-1 -> -1
+
+cotx440 comparetotal -8.0 -9.0 -> 1
+cotx441 comparetotal -8.0 -9 -> 1
+cotx442 comparetotal -8 -9.0 -> 1
+cotx443 comparetotal -8E+0 -9.0 -> 1
+cotx444 comparetotal -80E-1 -9.0 -> 1
+cotx445 comparetotal -.8E+1 -9 -> 1
+cotx446 comparetotal -80E-1 -9 -> 1
+cotx447 comparetotal -8.0 -9E+0 -> 1
+cotx448 comparetotal -8.0 -90E-1 -> 1
+cotx449 comparetotal -8 -.9E+1 -> 1
+cotx450 comparetotal -8 -90E-1 -> 1
+
+
+-- testcases that subtract to lots of zeros at boundaries [pgr]
+precision: 40
+cotx470 comparetotal 123.4560000000000000E789 123.456E789 -> -1
+cotx471 comparetotal 123.456000000000000E-89 123.456E-89 -> -1
+cotx472 comparetotal 123.45600000000000E789 123.456E789 -> -1
+cotx473 comparetotal 123.4560000000000E-89 123.456E-89 -> -1
+cotx474 comparetotal 123.456000000000E789 123.456E789 -> -1
+cotx475 comparetotal 123.45600000000E-89 123.456E-89 -> -1
+cotx476 comparetotal 123.4560000000E789 123.456E789 -> -1
+cotx477 comparetotal 123.456000000E-89 123.456E-89 -> -1
+cotx478 comparetotal 123.45600000E789 123.456E789 -> -1
+cotx479 comparetotal 123.4560000E-89 123.456E-89 -> -1
+cotx480 comparetotal 123.456000E789 123.456E789 -> -1
+cotx481 comparetotal 123.45600E-89 123.456E-89 -> -1
+cotx482 comparetotal 123.4560E789 123.456E789 -> -1
+cotx483 comparetotal 123.456E-89 123.456E-89 -> 0
+cotx484 comparetotal 123.456E-89 123.4560000000000000E-89 -> 1
+cotx485 comparetotal 123.456E789 123.456000000000000E789 -> 1
+cotx486 comparetotal 123.456E-89 123.45600000000000E-89 -> 1
+cotx487 comparetotal 123.456E789 123.4560000000000E789 -> 1
+cotx488 comparetotal 123.456E-89 123.456000000000E-89 -> 1
+cotx489 comparetotal 123.456E789 123.45600000000E789 -> 1
+cotx490 comparetotal 123.456E-89 123.4560000000E-89 -> 1
+cotx491 comparetotal 123.456E789 123.456000000E789 -> 1
+cotx492 comparetotal 123.456E-89 123.45600000E-89 -> 1
+cotx493 comparetotal 123.456E789 123.4560000E789 -> 1
+cotx494 comparetotal 123.456E-89 123.456000E-89 -> 1
+cotx495 comparetotal 123.456E789 123.45600E789 -> 1
+cotx496 comparetotal 123.456E-89 123.4560E-89 -> 1
+cotx497 comparetotal 123.456E789 123.456E789 -> 0
+
+-- wide-ranging, around precision; signs equal
+precision: 9
+cotx500 comparetotal 1 1E-15 -> 1
+cotx501 comparetotal 1 1E-14 -> 1
+cotx502 comparetotal 1 1E-13 -> 1
+cotx503 comparetotal 1 1E-12 -> 1
+cotx504 comparetotal 1 1E-11 -> 1
+cotx505 comparetotal 1 1E-10 -> 1
+cotx506 comparetotal 1 1E-9 -> 1
+cotx507 comparetotal 1 1E-8 -> 1
+cotx508 comparetotal 1 1E-7 -> 1
+cotx509 comparetotal 1 1E-6 -> 1
+cotx510 comparetotal 1 1E-5 -> 1
+cotx511 comparetotal 1 1E-4 -> 1
+cotx512 comparetotal 1 1E-3 -> 1
+cotx513 comparetotal 1 1E-2 -> 1
+cotx514 comparetotal 1 1E-1 -> 1
+cotx515 comparetotal 1 1E-0 -> 0
+cotx516 comparetotal 1 1E+1 -> -1
+cotx517 comparetotal 1 1E+2 -> -1
+cotx518 comparetotal 1 1E+3 -> -1
+cotx519 comparetotal 1 1E+4 -> -1
+cotx521 comparetotal 1 1E+5 -> -1
+cotx522 comparetotal 1 1E+6 -> -1
+cotx523 comparetotal 1 1E+7 -> -1
+cotx524 comparetotal 1 1E+8 -> -1
+cotx525 comparetotal 1 1E+9 -> -1
+cotx526 comparetotal 1 1E+10 -> -1
+cotx527 comparetotal 1 1E+11 -> -1
+cotx528 comparetotal 1 1E+12 -> -1
+cotx529 comparetotal 1 1E+13 -> -1
+cotx530 comparetotal 1 1E+14 -> -1
+cotx531 comparetotal 1 1E+15 -> -1
+-- LR swap
+cotx540 comparetotal 1E-15 1 -> -1
+cotx541 comparetotal 1E-14 1 -> -1
+cotx542 comparetotal 1E-13 1 -> -1
+cotx543 comparetotal 1E-12 1 -> -1
+cotx544 comparetotal 1E-11 1 -> -1
+cotx545 comparetotal 1E-10 1 -> -1
+cotx546 comparetotal 1E-9 1 -> -1
+cotx547 comparetotal 1E-8 1 -> -1
+cotx548 comparetotal 1E-7 1 -> -1
+cotx549 comparetotal 1E-6 1 -> -1
+cotx550 comparetotal 1E-5 1 -> -1
+cotx551 comparetotal 1E-4 1 -> -1
+cotx552 comparetotal 1E-3 1 -> -1
+cotx553 comparetotal 1E-2 1 -> -1
+cotx554 comparetotal 1E-1 1 -> -1
+cotx555 comparetotal 1E-0 1 -> 0
+cotx556 comparetotal 1E+1 1 -> 1
+cotx557 comparetotal 1E+2 1 -> 1
+cotx558 comparetotal 1E+3 1 -> 1
+cotx559 comparetotal 1E+4 1 -> 1
+cotx561 comparetotal 1E+5 1 -> 1
+cotx562 comparetotal 1E+6 1 -> 1
+cotx563 comparetotal 1E+7 1 -> 1
+cotx564 comparetotal 1E+8 1 -> 1
+cotx565 comparetotal 1E+9 1 -> 1
+cotx566 comparetotal 1E+10 1 -> 1
+cotx567 comparetotal 1E+11 1 -> 1
+cotx568 comparetotal 1E+12 1 -> 1
+cotx569 comparetotal 1E+13 1 -> 1
+cotx570 comparetotal 1E+14 1 -> 1
+cotx571 comparetotal 1E+15 1 -> 1
+-- similar with an useful coefficient, one side only
+cotx580 comparetotal 0.000000987654321 1E-15 -> 1
+cotx581 comparetotal 0.000000987654321 1E-14 -> 1
+cotx582 comparetotal 0.000000987654321 1E-13 -> 1
+cotx583 comparetotal 0.000000987654321 1E-12 -> 1
+cotx584 comparetotal 0.000000987654321 1E-11 -> 1
+cotx585 comparetotal 0.000000987654321 1E-10 -> 1
+cotx586 comparetotal 0.000000987654321 1E-9 -> 1
+cotx587 comparetotal 0.000000987654321 1E-8 -> 1
+cotx588 comparetotal 0.000000987654321 1E-7 -> 1
+cotx589 comparetotal 0.000000987654321 1E-6 -> -1
+cotx590 comparetotal 0.000000987654321 1E-5 -> -1
+cotx591 comparetotal 0.000000987654321 1E-4 -> -1
+cotx592 comparetotal 0.000000987654321 1E-3 -> -1
+cotx593 comparetotal 0.000000987654321 1E-2 -> -1
+cotx594 comparetotal 0.000000987654321 1E-1 -> -1
+cotx595 comparetotal 0.000000987654321 1E-0 -> -1
+cotx596 comparetotal 0.000000987654321 1E+1 -> -1
+cotx597 comparetotal 0.000000987654321 1E+2 -> -1
+cotx598 comparetotal 0.000000987654321 1E+3 -> -1
+cotx599 comparetotal 0.000000987654321 1E+4 -> -1
+
+-- check some unit-y traps
+precision: 20
+cotx600 comparetotal 12 12.2345 -> -1
+cotx601 comparetotal 12.0 12.2345 -> -1
+cotx602 comparetotal 12.00 12.2345 -> -1
+cotx603 comparetotal 12.000 12.2345 -> -1
+cotx604 comparetotal 12.0000 12.2345 -> -1
+cotx605 comparetotal 12.00000 12.2345 -> -1
+cotx606 comparetotal 12.000000 12.2345 -> -1
+cotx607 comparetotal 12.0000000 12.2345 -> -1
+cotx608 comparetotal 12.00000000 12.2345 -> -1
+cotx609 comparetotal 12.000000000 12.2345 -> -1
+cotx610 comparetotal 12.1234 12 -> 1
+cotx611 comparetotal 12.1234 12.0 -> 1
+cotx612 comparetotal 12.1234 12.00 -> 1
+cotx613 comparetotal 12.1234 12.000 -> 1
+cotx614 comparetotal 12.1234 12.0000 -> 1
+cotx615 comparetotal 12.1234 12.00000 -> 1
+cotx616 comparetotal 12.1234 12.000000 -> 1
+cotx617 comparetotal 12.1234 12.0000000 -> 1
+cotx618 comparetotal 12.1234 12.00000000 -> 1
+cotx619 comparetotal 12.1234 12.000000000 -> 1
+cotx620 comparetotal -12 -12.2345 -> 1
+cotx621 comparetotal -12.0 -12.2345 -> 1
+cotx622 comparetotal -12.00 -12.2345 -> 1
+cotx623 comparetotal -12.000 -12.2345 -> 1
+cotx624 comparetotal -12.0000 -12.2345 -> 1
+cotx625 comparetotal -12.00000 -12.2345 -> 1
+cotx626 comparetotal -12.000000 -12.2345 -> 1
+cotx627 comparetotal -12.0000000 -12.2345 -> 1
+cotx628 comparetotal -12.00000000 -12.2345 -> 1
+cotx629 comparetotal -12.000000000 -12.2345 -> 1
+cotx630 comparetotal -12.1234 -12 -> -1
+cotx631 comparetotal -12.1234 -12.0 -> -1
+cotx632 comparetotal -12.1234 -12.00 -> -1
+cotx633 comparetotal -12.1234 -12.000 -> -1
+cotx634 comparetotal -12.1234 -12.0000 -> -1
+cotx635 comparetotal -12.1234 -12.00000 -> -1
+cotx636 comparetotal -12.1234 -12.000000 -> -1
+cotx637 comparetotal -12.1234 -12.0000000 -> -1
+cotx638 comparetotal -12.1234 -12.00000000 -> -1
+cotx639 comparetotal -12.1234 -12.000000000 -> -1
+precision: 9
+
+-- extended zeros
+cotx640 comparetotal 0 0 -> 0
+cotx641 comparetotal 0 -0 -> 1
+cotx642 comparetotal 0 -0.0 -> 1
+cotx643 comparetotal 0 0.0 -> 1
+cotx644 comparetotal -0 0 -> -1
+cotx645 comparetotal -0 -0 -> 0
+cotx646 comparetotal -0 -0.0 -> -1
+cotx647 comparetotal -0 0.0 -> -1
+cotx648 comparetotal 0.0 0 -> -1
+cotx649 comparetotal 0.0 -0 -> 1
+cotx650 comparetotal 0.0 -0.0 -> 1
+cotx651 comparetotal 0.0 0.0 -> 0
+cotx652 comparetotal -0.0 0 -> -1
+cotx653 comparetotal -0.0 -0 -> 1
+cotx654 comparetotal -0.0 -0.0 -> 0
+cotx655 comparetotal -0.0 0.0 -> -1
+
+cotx656 comparetotal -0E1 0.0 -> -1
+cotx657 comparetotal -0E2 0.0 -> -1
+cotx658 comparetotal 0E1 0.0 -> 1
+cotx659 comparetotal 0E2 0.0 -> 1
+cotx660 comparetotal -0E1 0 -> -1
+cotx661 comparetotal -0E2 0 -> -1
+cotx662 comparetotal 0E1 0 -> 1
+cotx663 comparetotal 0E2 0 -> 1
+cotx664 comparetotal -0E1 -0E1 -> 0
+cotx665 comparetotal -0E2 -0E1 -> -1
+cotx666 comparetotal 0E1 -0E1 -> 1
+cotx667 comparetotal 0E2 -0E1 -> 1
+cotx668 comparetotal -0E1 -0E2 -> 1
+cotx669 comparetotal -0E2 -0E2 -> 0
+cotx670 comparetotal 0E1 -0E2 -> 1
+cotx671 comparetotal 0E2 -0E2 -> 1
+cotx672 comparetotal -0E1 0E1 -> -1
+cotx673 comparetotal -0E2 0E1 -> -1
+cotx674 comparetotal 0E1 0E1 -> 0
+cotx675 comparetotal 0E2 0E1 -> 1
+cotx676 comparetotal -0E1 0E2 -> -1
+cotx677 comparetotal -0E2 0E2 -> -1
+cotx678 comparetotal 0E1 0E2 -> -1
+cotx679 comparetotal 0E2 0E2 -> 0
+
+-- trailing zeros; unit-y
+precision: 20
+cotx680 comparetotal 12 12 -> 0
+cotx681 comparetotal 12 12.0 -> 1
+cotx682 comparetotal 12 12.00 -> 1
+cotx683 comparetotal 12 12.000 -> 1
+cotx684 comparetotal 12 12.0000 -> 1
+cotx685 comparetotal 12 12.00000 -> 1
+cotx686 comparetotal 12 12.000000 -> 1
+cotx687 comparetotal 12 12.0000000 -> 1
+cotx688 comparetotal 12 12.00000000 -> 1
+cotx689 comparetotal 12 12.000000000 -> 1
+cotx690 comparetotal 12 12 -> 0
+cotx691 comparetotal 12.0 12 -> -1
+cotx692 comparetotal 12.00 12 -> -1
+cotx693 comparetotal 12.000 12 -> -1
+cotx694 comparetotal 12.0000 12 -> -1
+cotx695 comparetotal 12.00000 12 -> -1
+cotx696 comparetotal 12.000000 12 -> -1
+cotx697 comparetotal 12.0000000 12 -> -1
+cotx698 comparetotal 12.00000000 12 -> -1
+cotx699 comparetotal 12.000000000 12 -> -1
+
+-- long operand checks
+maxexponent: 999
+minexponent: -999
+precision: 9
+cotx701 comparetotal 12345678000 1 -> 1
+cotx702 comparetotal 1 12345678000 -> -1
+cotx703 comparetotal 1234567800 1 -> 1
+cotx704 comparetotal 1 1234567800 -> -1
+cotx705 comparetotal 1234567890 1 -> 1
+cotx706 comparetotal 1 1234567890 -> -1
+cotx707 comparetotal 1234567891 1 -> 1
+cotx708 comparetotal 1 1234567891 -> -1
+cotx709 comparetotal 12345678901 1 -> 1
+cotx710 comparetotal 1 12345678901 -> -1
+cotx711 comparetotal 1234567896 1 -> 1
+cotx712 comparetotal 1 1234567896 -> -1
+cotx713 comparetotal -1234567891 1 -> -1
+cotx714 comparetotal 1 -1234567891 -> 1
+cotx715 comparetotal -12345678901 1 -> -1
+cotx716 comparetotal 1 -12345678901 -> 1
+cotx717 comparetotal -1234567896 1 -> -1
+cotx718 comparetotal 1 -1234567896 -> 1
+
+precision: 15
+-- same with plenty of precision
+cotx721 comparetotal 12345678000 1 -> 1
+cotx722 comparetotal 1 12345678000 -> -1
+cotx723 comparetotal 1234567800 1 -> 1
+cotx724 comparetotal 1 1234567800 -> -1
+cotx725 comparetotal 1234567890 1 -> 1
+cotx726 comparetotal 1 1234567890 -> -1
+cotx727 comparetotal 1234567891 1 -> 1
+cotx728 comparetotal 1 1234567891 -> -1
+cotx729 comparetotal 12345678901 1 -> 1
+cotx730 comparetotal 1 12345678901 -> -1
+cotx731 comparetotal 1234567896 1 -> 1
+cotx732 comparetotal 1 1234567896 -> -1
+
+-- residue cases
+precision: 5
+cotx740 comparetotal 1 0.9999999 -> 1
+cotx741 comparetotal 1 0.999999 -> 1
+cotx742 comparetotal 1 0.99999 -> 1
+cotx743 comparetotal 1 1.0000 -> 1
+cotx744 comparetotal 1 1.00001 -> -1
+cotx745 comparetotal 1 1.000001 -> -1
+cotx746 comparetotal 1 1.0000001 -> -1
+cotx750 comparetotal 0.9999999 1 -> -1
+cotx751 comparetotal 0.999999 1 -> -1
+cotx752 comparetotal 0.99999 1 -> -1
+cotx753 comparetotal 1.0000 1 -> -1
+cotx754 comparetotal 1.00001 1 -> 1
+cotx755 comparetotal 1.000001 1 -> 1
+cotx756 comparetotal 1.0000001 1 -> 1
+
+-- a selection of longies
+cotx760 comparetotal -36852134.84194296250843579428931 -5830629.8347085025808756560357940 -> -1
+cotx761 comparetotal -36852134.84194296250843579428931 -36852134.84194296250843579428931 -> 0
+cotx762 comparetotal -36852134.94194296250843579428931 -36852134.84194296250843579428931 -> -1
+cotx763 comparetotal -36852134.84194296250843579428931 -36852134.94194296250843579428931 -> 1
+-- precisions above or below the difference should have no effect
+precision: 11
+cotx764 comparetotal -36852134.84194296250843579428931 -36852134.94194296250843579428931 -> 1
+precision: 10
+cotx765 comparetotal -36852134.84194296250843579428931 -36852134.94194296250843579428931 -> 1
+precision: 9
+cotx766 comparetotal -36852134.84194296250843579428931 -36852134.94194296250843579428931 -> 1
+precision: 8
+cotx767 comparetotal -36852134.84194296250843579428931 -36852134.94194296250843579428931 -> 1
+precision: 7
+cotx768 comparetotal -36852134.84194296250843579428931 -36852134.94194296250843579428931 -> 1
+precision: 6
+cotx769 comparetotal -36852134.84194296250843579428931 -36852134.94194296250843579428931 -> 1
+precision: 5
+cotx770 comparetotal -36852134.84194296250843579428931 -36852134.94194296250843579428931 -> 1
+precision: 4
+cotx771 comparetotal -36852134.84194296250843579428931 -36852134.94194296250843579428931 -> 1
+precision: 3
+cotx772 comparetotal -36852134.84194296250843579428931 -36852134.94194296250843579428931 -> 1
+precision: 2
+cotx773 comparetotal -36852134.84194296250843579428931 -36852134.94194296250843579428931 -> 1
+precision: 1
+cotx774 comparetotal -36852134.84194296250843579428931 -36852134.94194296250843579428931 -> 1
+
+-- Specials
+precision: 9
+cotx780 comparetotal Inf -Inf -> 1
+cotx781 comparetotal Inf -1000 -> 1
+cotx782 comparetotal Inf -1 -> 1
+cotx783 comparetotal Inf -0 -> 1
+cotx784 comparetotal Inf 0 -> 1
+cotx785 comparetotal Inf 1 -> 1
+cotx786 comparetotal Inf 1000 -> 1
+cotx787 comparetotal Inf Inf -> 0
+cotx788 comparetotal -1000 Inf -> -1
+cotx789 comparetotal -Inf Inf -> -1
+cotx790 comparetotal -1 Inf -> -1
+cotx791 comparetotal -0 Inf -> -1
+cotx792 comparetotal 0 Inf -> -1
+cotx793 comparetotal 1 Inf -> -1
+cotx794 comparetotal 1000 Inf -> -1
+cotx795 comparetotal Inf Inf -> 0
+
+cotx800 comparetotal -Inf -Inf -> 0
+cotx801 comparetotal -Inf -1000 -> -1
+cotx802 comparetotal -Inf -1 -> -1
+cotx803 comparetotal -Inf -0 -> -1
+cotx804 comparetotal -Inf 0 -> -1
+cotx805 comparetotal -Inf 1 -> -1
+cotx806 comparetotal -Inf 1000 -> -1
+cotx807 comparetotal -Inf Inf -> -1
+cotx808 comparetotal -Inf -Inf -> 0
+cotx809 comparetotal -1000 -Inf -> 1
+cotx810 comparetotal -1 -Inf -> 1
+cotx811 comparetotal -0 -Inf -> 1
+cotx812 comparetotal 0 -Inf -> 1
+cotx813 comparetotal 1 -Inf -> 1
+cotx814 comparetotal 1000 -Inf -> 1
+cotx815 comparetotal Inf -Inf -> 1
+
+cotx821 comparetotal NaN -Inf -> 1
+cotx822 comparetotal NaN -1000 -> 1
+cotx823 comparetotal NaN -1 -> 1
+cotx824 comparetotal NaN -0 -> 1
+cotx825 comparetotal NaN 0 -> 1
+cotx826 comparetotal NaN 1 -> 1
+cotx827 comparetotal NaN 1000 -> 1
+cotx828 comparetotal NaN Inf -> 1
+cotx829 comparetotal NaN NaN -> 0
+cotx830 comparetotal -Inf NaN -> -1
+cotx831 comparetotal -1000 NaN -> -1
+cotx832 comparetotal -1 NaN -> -1
+cotx833 comparetotal -0 NaN -> -1
+cotx834 comparetotal 0 NaN -> -1
+cotx835 comparetotal 1 NaN -> -1
+cotx836 comparetotal 1000 NaN -> -1
+cotx837 comparetotal Inf NaN -> -1
+cotx838 comparetotal -NaN -NaN -> 0
+cotx839 comparetotal +NaN -NaN -> 1
+cotx840 comparetotal -NaN +NaN -> -1
+
+cotx841 comparetotal sNaN -sNaN -> 1
+cotx842 comparetotal sNaN -NaN -> 1
+cotx843 comparetotal sNaN -Inf -> 1
+cotx844 comparetotal sNaN -1000 -> 1
+cotx845 comparetotal sNaN -1 -> 1
+cotx846 comparetotal sNaN -0 -> 1
+cotx847 comparetotal sNaN 0 -> 1
+cotx848 comparetotal sNaN 1 -> 1
+cotx849 comparetotal sNaN 1000 -> 1
+cotx850 comparetotal sNaN NaN -> -1
+cotx851 comparetotal sNaN sNaN -> 0
+
+cotx852 comparetotal -sNaN sNaN -> -1
+cotx853 comparetotal -NaN sNaN -> -1
+cotx854 comparetotal -Inf sNaN -> -1
+cotx855 comparetotal -1000 sNaN -> -1
+cotx856 comparetotal -1 sNaN -> -1
+cotx857 comparetotal -0 sNaN -> -1
+cotx858 comparetotal 0 sNaN -> -1
+cotx859 comparetotal 1 sNaN -> -1
+cotx860 comparetotal 1000 sNaN -> -1
+cotx861 comparetotal Inf sNaN -> -1
+cotx862 comparetotal NaN sNaN -> 1
+cotx863 comparetotal sNaN sNaN -> 0
+
+cotx871 comparetotal -sNaN -sNaN -> 0
+cotx872 comparetotal -sNaN -NaN -> 1
+cotx873 comparetotal -sNaN -Inf -> -1
+cotx874 comparetotal -sNaN -1000 -> -1
+cotx875 comparetotal -sNaN -1 -> -1
+cotx876 comparetotal -sNaN -0 -> -1
+cotx877 comparetotal -sNaN 0 -> -1
+cotx878 comparetotal -sNaN 1 -> -1
+cotx879 comparetotal -sNaN 1000 -> -1
+cotx880 comparetotal -sNaN NaN -> -1
+cotx881 comparetotal -sNaN sNaN -> -1
+
+cotx882 comparetotal -sNaN -sNaN -> 0
+cotx883 comparetotal -NaN -sNaN -> -1
+cotx884 comparetotal -Inf -sNaN -> 1
+cotx885 comparetotal -1000 -sNaN -> 1
+cotx886 comparetotal -1 -sNaN -> 1
+cotx887 comparetotal -0 -sNaN -> 1
+cotx888 comparetotal 0 -sNaN -> 1
+cotx889 comparetotal 1 -sNaN -> 1
+cotx890 comparetotal 1000 -sNaN -> 1
+cotx891 comparetotal Inf -sNaN -> 1
+cotx892 comparetotal NaN -sNaN -> 1
+cotx893 comparetotal sNaN -sNaN -> 1
+
+-- NaNs with payload
+cotx960 comparetotal NaN9 -Inf -> 1
+cotx961 comparetotal NaN8 999 -> 1
+cotx962 comparetotal NaN77 Inf -> 1
+cotx963 comparetotal -NaN67 NaN5 -> -1
+cotx964 comparetotal -Inf -NaN4 -> 1
+cotx965 comparetotal -999 -NaN33 -> 1
+cotx966 comparetotal Inf NaN2 -> -1
+
+cotx970 comparetotal -NaN41 -NaN42 -> 1
+cotx971 comparetotal +NaN41 -NaN42 -> 1
+cotx972 comparetotal -NaN41 +NaN42 -> -1
+cotx973 comparetotal +NaN41 +NaN42 -> -1
+cotx974 comparetotal -NaN42 -NaN01 -> -1
+cotx975 comparetotal +NaN42 -NaN01 -> 1
+cotx976 comparetotal -NaN42 +NaN01 -> -1
+cotx977 comparetotal +NaN42 +NaN01 -> 1
+
+cotx980 comparetotal -sNaN771 -sNaN772 -> 1
+cotx981 comparetotal +sNaN771 -sNaN772 -> 1
+cotx982 comparetotal -sNaN771 +sNaN772 -> -1
+cotx983 comparetotal +sNaN771 +sNaN772 -> -1
+cotx984 comparetotal -sNaN772 -sNaN771 -> -1
+cotx985 comparetotal +sNaN772 -sNaN771 -> 1
+cotx986 comparetotal -sNaN772 +sNaN771 -> -1
+cotx987 comparetotal +sNaN772 +sNaN771 -> 1
+
+cotx991 comparetotal -sNaN99 -Inf -> -1
+cotx992 comparetotal sNaN98 -11 -> 1
+cotx993 comparetotal sNaN97 NaN -> -1
+cotx994 comparetotal sNaN16 sNaN94 -> -1
+cotx995 comparetotal NaN85 sNaN83 -> 1
+cotx996 comparetotal -Inf sNaN92 -> -1
+cotx997 comparetotal 088 sNaN81 -> -1
+cotx998 comparetotal Inf sNaN90 -> -1
+cotx999 comparetotal NaN -sNaN89 -> 1
+
+-- overflow and underflow tests .. subnormal results now allowed
+maxExponent: 999999999
+minexponent: -999999999
+cotx1080 comparetotal +1.23456789012345E-0 9E+999999999 -> -1
+cotx1081 comparetotal 9E+999999999 +1.23456789012345E-0 -> 1
+cotx1082 comparetotal +0.100 9E-999999999 -> 1
+cotx1083 comparetotal 9E-999999999 +0.100 -> -1
+cotx1085 comparetotal -1.23456789012345E-0 9E+999999999 -> -1
+cotx1086 comparetotal 9E+999999999 -1.23456789012345E-0 -> 1
+cotx1087 comparetotal -0.100 9E-999999999 -> -1
+cotx1088 comparetotal 9E-999999999 -0.100 -> 1
+
+cotx1089 comparetotal 1e-599999999 1e-400000001 -> -1
+cotx1090 comparetotal 1e-599999999 1e-400000000 -> -1
+cotx1091 comparetotal 1e-600000000 1e-400000000 -> -1
+cotx1092 comparetotal 9e-999999998 0.01 -> -1
+cotx1093 comparetotal 9e-999999998 0.1 -> -1
+cotx1094 comparetotal 0.01 9e-999999998 -> 1
+cotx1095 comparetotal 1e599999999 1e400000001 -> 1
+cotx1096 comparetotal 1e599999999 1e400000000 -> 1
+cotx1097 comparetotal 1e600000000 1e400000000 -> 1
+cotx1098 comparetotal 9e999999998 100 -> 1
+cotx1099 comparetotal 9e999999998 10 -> 1
+cotx1100 comparetotal 100 9e999999998 -> -1
+-- signs
+cotx1101 comparetotal 1e+777777777 1e+411111111 -> 1
+cotx1102 comparetotal 1e+777777777 -1e+411111111 -> 1
+cotx1103 comparetotal -1e+777777777 1e+411111111 -> -1
+cotx1104 comparetotal -1e+777777777 -1e+411111111 -> -1
+cotx1105 comparetotal 1e-777777777 1e-411111111 -> -1
+cotx1106 comparetotal 1e-777777777 -1e-411111111 -> 1
+cotx1107 comparetotal -1e-777777777 1e-411111111 -> -1
+cotx1108 comparetotal -1e-777777777 -1e-411111111 -> 1
+
+-- spread zeros
+cotx1110 comparetotal 0E-383 0 -> -1
+cotx1111 comparetotal 0E-383 -0 -> 1
+cotx1112 comparetotal -0E-383 0 -> -1
+cotx1113 comparetotal -0E-383 -0 -> 1
+cotx1114 comparetotal 0E-383 0E+384 -> -1
+cotx1115 comparetotal 0E-383 -0E+384 -> 1
+cotx1116 comparetotal -0E-383 0E+384 -> -1
+cotx1117 comparetotal -0E-383 -0E+384 -> 1
+cotx1118 comparetotal 0 0E+384 -> -1
+cotx1119 comparetotal 0 -0E+384 -> 1
+cotx1120 comparetotal -0 0E+384 -> -1
+cotx1121 comparetotal -0 -0E+384 -> 1
+
+cotx1130 comparetotal 0E+384 0 -> 1
+cotx1131 comparetotal 0E+384 -0 -> 1
+cotx1132 comparetotal -0E+384 0 -> -1
+cotx1133 comparetotal -0E+384 -0 -> -1
+cotx1134 comparetotal 0E+384 0E-383 -> 1
+cotx1135 comparetotal 0E+384 -0E-383 -> 1
+cotx1136 comparetotal -0E+384 0E-383 -> -1
+cotx1137 comparetotal -0E+384 -0E-383 -> -1
+cotx1138 comparetotal 0 0E-383 -> 1
+cotx1139 comparetotal 0 -0E-383 -> 1
+cotx1140 comparetotal -0 0E-383 -> -1
+cotx1141 comparetotal -0 -0E-383 -> -1
+
+-- Null tests
+cotx9990 comparetotal 10 # -> NaN Invalid_operation
+cotx9991 comparetotal # 10 -> NaN Invalid_operation
diff --git a/Lib/test/decimaltestdata/comparetotmag.decTest b/Lib/test/decimaltestdata/comparetotmag.decTest
new file mode 100644
index 0000000..a12e614
--- /dev/null
+++ b/Lib/test/decimaltestdata/comparetotmag.decTest
@@ -0,0 +1,790 @@
+------------------------------------------------------------------------
+-- comparetotmag.decTest -- decimal comparison, abs. total ordering --
+-- Copyright (c) IBM Corporation, 1981, 2007. All rights reserved. --
+------------------------------------------------------------------------
+-- Please see the document "General Decimal Arithmetic Testcases" --
+-- at http://www2.hursley.ibm.com/decimal for the description of --
+-- these testcases. --
+-- --
+-- These testcases are experimental ('beta' versions), and they --
+-- may contain errors. They are offered on an as-is basis. In --
+-- particular, achieving the same results as the tests here is not --
+-- a guarantee that an implementation complies with any Standard --
+-- or specification. The tests are not exhaustive. --
+-- --
+-- Please send comments, suggestions, and corrections to the author: --
+-- Mike Cowlishaw, IBM Fellow --
+-- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK --
+-- mfc@uk.ibm.com --
+------------------------------------------------------------------------
+version: 2.56
+
+-- Note that it cannot be assumed that add/subtract tests cover paths
+-- for this operation adequately, here, because the code might be
+-- quite different (comparison cannot overflow or underflow, so
+-- actual subtractions are not necessary). Similarly, comparetotal
+-- will have some radically different paths than compare.
+
+extended: 1
+precision: 16
+rounding: half_up
+maxExponent: 384
+minExponent: -383
+
+-- sanity checks
+ctmx001 comparetotmag -2 -2 -> 0
+ctmx002 comparetotmag -2 -1 -> 1
+ctmx003 comparetotmag -2 0 -> 1
+ctmx004 comparetotmag -2 1 -> 1
+ctmx005 comparetotmag -2 2 -> 0
+ctmx006 comparetotmag -1 -2 -> -1
+ctmx007 comparetotmag -1 -1 -> 0
+ctmx008 comparetotmag -1 0 -> 1
+ctmx009 comparetotmag -1 1 -> 0
+ctmx010 comparetotmag -1 2 -> -1
+ctmx011 comparetotmag 0 -2 -> -1
+ctmx012 comparetotmag 0 -1 -> -1
+ctmx013 comparetotmag 0 0 -> 0
+ctmx014 comparetotmag 0 1 -> -1
+ctmx015 comparetotmag 0 2 -> -1
+ctmx016 comparetotmag 1 -2 -> -1
+ctmx017 comparetotmag 1 -1 -> 0
+ctmx018 comparetotmag 1 0 -> 1
+ctmx019 comparetotmag 1 1 -> 0
+ctmx020 comparetotmag 1 2 -> -1
+ctmx021 comparetotmag 2 -2 -> 0
+ctmx022 comparetotmag 2 -1 -> 1
+ctmx023 comparetotmag 2 0 -> 1
+ctmx025 comparetotmag 2 1 -> 1
+ctmx026 comparetotmag 2 2 -> 0
+
+ctmx031 comparetotmag -20 -20 -> 0
+ctmx032 comparetotmag -20 -10 -> 1
+ctmx033 comparetotmag -20 00 -> 1
+ctmx034 comparetotmag -20 10 -> 1
+ctmx035 comparetotmag -20 20 -> 0
+ctmx036 comparetotmag -10 -20 -> -1
+ctmx037 comparetotmag -10 -10 -> 0
+ctmx038 comparetotmag -10 00 -> 1
+ctmx039 comparetotmag -10 10 -> 0
+ctmx040 comparetotmag -10 20 -> -1
+ctmx041 comparetotmag 00 -20 -> -1
+ctmx042 comparetotmag 00 -10 -> -1
+ctmx043 comparetotmag 00 00 -> 0
+ctmx044 comparetotmag 00 10 -> -1
+ctmx045 comparetotmag 00 20 -> -1
+ctmx046 comparetotmag 10 -20 -> -1
+ctmx047 comparetotmag 10 -10 -> 0
+ctmx048 comparetotmag 10 00 -> 1
+ctmx049 comparetotmag 10 10 -> 0
+ctmx050 comparetotmag 10 20 -> -1
+ctmx051 comparetotmag 20 -20 -> 0
+ctmx052 comparetotmag 20 -10 -> 1
+ctmx053 comparetotmag 20 00 -> 1
+ctmx055 comparetotmag 20 10 -> 1
+ctmx056 comparetotmag 20 20 -> 0
+
+ctmx061 comparetotmag -2.0 -2.0 -> 0
+ctmx062 comparetotmag -2.0 -1.0 -> 1
+ctmx063 comparetotmag -2.0 0.0 -> 1
+ctmx064 comparetotmag -2.0 1.0 -> 1
+ctmx065 comparetotmag -2.0 2.0 -> 0
+ctmx066 comparetotmag -1.0 -2.0 -> -1
+ctmx067 comparetotmag -1.0 -1.0 -> 0
+ctmx068 comparetotmag -1.0 0.0 -> 1
+ctmx069 comparetotmag -1.0 1.0 -> 0
+ctmx070 comparetotmag -1.0 2.0 -> -1
+ctmx071 comparetotmag 0.0 -2.0 -> -1
+ctmx072 comparetotmag 0.0 -1.0 -> -1
+ctmx073 comparetotmag 0.0 0.0 -> 0
+ctmx074 comparetotmag 0.0 1.0 -> -1
+ctmx075 comparetotmag 0.0 2.0 -> -1
+ctmx076 comparetotmag 1.0 -2.0 -> -1
+ctmx077 comparetotmag 1.0 -1.0 -> 0
+ctmx078 comparetotmag 1.0 0.0 -> 1
+ctmx079 comparetotmag 1.0 1.0 -> 0
+ctmx080 comparetotmag 1.0 2.0 -> -1
+ctmx081 comparetotmag 2.0 -2.0 -> 0
+ctmx082 comparetotmag 2.0 -1.0 -> 1
+ctmx083 comparetotmag 2.0 0.0 -> 1
+ctmx085 comparetotmag 2.0 1.0 -> 1
+ctmx086 comparetotmag 2.0 2.0 -> 0
+
+-- now some cases which might overflow if subtract were used
+maxexponent: 999999999
+minexponent: -999999999
+ctmx090 comparetotmag 9.99999999E+999999999 9.99999999E+999999999 -> 0
+ctmx091 comparetotmag -9.99999999E+999999999 9.99999999E+999999999 -> 0
+ctmx092 comparetotmag 9.99999999E+999999999 -9.99999999E+999999999 -> 0
+ctmx093 comparetotmag -9.99999999E+999999999 -9.99999999E+999999999 -> 0
+
+-- some differing length/exponent cases
+-- in this first group, compare would compare all equal
+ctmx100 comparetotmag 7.0 7.0 -> 0
+ctmx101 comparetotmag 7.0 7 -> -1
+ctmx102 comparetotmag 7 7.0 -> 1
+ctmx103 comparetotmag 7E+0 7.0 -> 1
+ctmx104 comparetotmag 70E-1 7.0 -> 0
+ctmx105 comparetotmag 0.7E+1 7 -> 0
+ctmx106 comparetotmag 70E-1 7 -> -1
+ctmx107 comparetotmag 7.0 7E+0 -> -1
+ctmx108 comparetotmag 7.0 70E-1 -> 0
+ctmx109 comparetotmag 7 0.7E+1 -> 0
+ctmx110 comparetotmag 7 70E-1 -> 1
+
+ctmx120 comparetotmag 8.0 7.0 -> 1
+ctmx121 comparetotmag 8.0 7 -> 1
+ctmx122 comparetotmag 8 7.0 -> 1
+ctmx123 comparetotmag 8E+0 7.0 -> 1
+ctmx124 comparetotmag 80E-1 7.0 -> 1
+ctmx125 comparetotmag 0.8E+1 7 -> 1
+ctmx126 comparetotmag 80E-1 7 -> 1
+ctmx127 comparetotmag 8.0 7E+0 -> 1
+ctmx128 comparetotmag 8.0 70E-1 -> 1
+ctmx129 comparetotmag 8 0.7E+1 -> 1
+ctmx130 comparetotmag 8 70E-1 -> 1
+
+ctmx140 comparetotmag 8.0 9.0 -> -1
+ctmx141 comparetotmag 8.0 9 -> -1
+ctmx142 comparetotmag 8 9.0 -> -1
+ctmx143 comparetotmag 8E+0 9.0 -> -1
+ctmx144 comparetotmag 80E-1 9.0 -> -1
+ctmx145 comparetotmag 0.8E+1 9 -> -1
+ctmx146 comparetotmag 80E-1 9 -> -1
+ctmx147 comparetotmag 8.0 9E+0 -> -1
+ctmx148 comparetotmag 8.0 90E-1 -> -1
+ctmx149 comparetotmag 8 0.9E+1 -> -1
+ctmx150 comparetotmag 8 90E-1 -> -1
+
+-- and again, with sign changes -+ ..
+ctmx200 comparetotmag -7.0 7.0 -> 0
+ctmx201 comparetotmag -7.0 7 -> -1
+ctmx202 comparetotmag -7 7.0 -> 1
+ctmx203 comparetotmag -7E+0 7.0 -> 1
+ctmx204 comparetotmag -70E-1 7.0 -> 0
+ctmx205 comparetotmag -0.7E+1 7 -> 0
+ctmx206 comparetotmag -70E-1 7 -> -1
+ctmx207 comparetotmag -7.0 7E+0 -> -1
+ctmx208 comparetotmag -7.0 70E-1 -> 0
+ctmx209 comparetotmag -7 0.7E+1 -> 0
+ctmx210 comparetotmag -7 70E-1 -> 1
+
+ctmx220 comparetotmag -8.0 7.0 -> 1
+ctmx221 comparetotmag -8.0 7 -> 1
+ctmx222 comparetotmag -8 7.0 -> 1
+ctmx223 comparetotmag -8E+0 7.0 -> 1
+ctmx224 comparetotmag -80E-1 7.0 -> 1
+ctmx225 comparetotmag -0.8E+1 7 -> 1
+ctmx226 comparetotmag -80E-1 7 -> 1
+ctmx227 comparetotmag -8.0 7E+0 -> 1
+ctmx228 comparetotmag -8.0 70E-1 -> 1
+ctmx229 comparetotmag -8 0.7E+1 -> 1
+ctmx230 comparetotmag -8 70E-1 -> 1
+
+ctmx240 comparetotmag -8.0 9.0 -> -1
+ctmx241 comparetotmag -8.0 9 -> -1
+ctmx242 comparetotmag -8 9.0 -> -1
+ctmx243 comparetotmag -8E+0 9.0 -> -1
+ctmx244 comparetotmag -80E-1 9.0 -> -1
+ctmx245 comparetotmag -0.8E+1 9 -> -1
+ctmx246 comparetotmag -80E-1 9 -> -1
+ctmx247 comparetotmag -8.0 9E+0 -> -1
+ctmx248 comparetotmag -8.0 90E-1 -> -1
+ctmx249 comparetotmag -8 0.9E+1 -> -1
+ctmx250 comparetotmag -8 90E-1 -> -1
+
+-- and again, with sign changes +- ..
+ctmx300 comparetotmag 7.0 -7.0 -> 0
+ctmx301 comparetotmag 7.0 -7 -> -1
+ctmx302 comparetotmag 7 -7.0 -> 1
+ctmx303 comparetotmag 7E+0 -7.0 -> 1
+ctmx304 comparetotmag 70E-1 -7.0 -> 0
+ctmx305 comparetotmag .7E+1 -7 -> 0
+ctmx306 comparetotmag 70E-1 -7 -> -1
+ctmx307 comparetotmag 7.0 -7E+0 -> -1
+ctmx308 comparetotmag 7.0 -70E-1 -> 0
+ctmx309 comparetotmag 7 -.7E+1 -> 0
+ctmx310 comparetotmag 7 -70E-1 -> 1
+
+ctmx320 comparetotmag 8.0 -7.0 -> 1
+ctmx321 comparetotmag 8.0 -7 -> 1
+ctmx322 comparetotmag 8 -7.0 -> 1
+ctmx323 comparetotmag 8E+0 -7.0 -> 1
+ctmx324 comparetotmag 80E-1 -7.0 -> 1
+ctmx325 comparetotmag .8E+1 -7 -> 1
+ctmx326 comparetotmag 80E-1 -7 -> 1
+ctmx327 comparetotmag 8.0 -7E+0 -> 1
+ctmx328 comparetotmag 8.0 -70E-1 -> 1
+ctmx329 comparetotmag 8 -.7E+1 -> 1
+ctmx330 comparetotmag 8 -70E-1 -> 1
+
+ctmx340 comparetotmag 8.0 -9.0 -> -1
+ctmx341 comparetotmag 8.0 -9 -> -1
+ctmx342 comparetotmag 8 -9.0 -> -1
+ctmx343 comparetotmag 8E+0 -9.0 -> -1
+ctmx344 comparetotmag 80E-1 -9.0 -> -1
+ctmx345 comparetotmag .8E+1 -9 -> -1
+ctmx346 comparetotmag 80E-1 -9 -> -1
+ctmx347 comparetotmag 8.0 -9E+0 -> -1
+ctmx348 comparetotmag 8.0 -90E-1 -> -1
+ctmx349 comparetotmag 8 -.9E+1 -> -1
+ctmx350 comparetotmag 8 -90E-1 -> -1
+
+-- and again, with sign changes -- ..
+ctmx400 comparetotmag -7.0 -7.0 -> 0
+ctmx401 comparetotmag -7.0 -7 -> -1
+ctmx402 comparetotmag -7 -7.0 -> 1
+ctmx403 comparetotmag -7E+0 -7.0 -> 1
+ctmx404 comparetotmag -70E-1 -7.0 -> 0
+ctmx405 comparetotmag -.7E+1 -7 -> 0
+ctmx406 comparetotmag -70E-1 -7 -> -1
+ctmx407 comparetotmag -7.0 -7E+0 -> -1
+ctmx408 comparetotmag -7.0 -70E-1 -> 0
+ctmx409 comparetotmag -7 -.7E+1 -> 0
+ctmx410 comparetotmag -7 -70E-1 -> 1
+
+ctmx420 comparetotmag -8.0 -7.0 -> 1
+ctmx421 comparetotmag -8.0 -7 -> 1
+ctmx422 comparetotmag -8 -7.0 -> 1
+ctmx423 comparetotmag -8E+0 -7.0 -> 1
+ctmx424 comparetotmag -80E-1 -7.0 -> 1
+ctmx425 comparetotmag -.8E+1 -7 -> 1
+ctmx426 comparetotmag -80E-1 -7 -> 1
+ctmx427 comparetotmag -8.0 -7E+0 -> 1
+ctmx428 comparetotmag -8.0 -70E-1 -> 1
+ctmx429 comparetotmag -8 -.7E+1 -> 1
+ctmx430 comparetotmag -8 -70E-1 -> 1
+
+ctmx440 comparetotmag -8.0 -9.0 -> -1
+ctmx441 comparetotmag -8.0 -9 -> -1
+ctmx442 comparetotmag -8 -9.0 -> -1
+ctmx443 comparetotmag -8E+0 -9.0 -> -1
+ctmx444 comparetotmag -80E-1 -9.0 -> -1
+ctmx445 comparetotmag -.8E+1 -9 -> -1
+ctmx446 comparetotmag -80E-1 -9 -> -1
+ctmx447 comparetotmag -8.0 -9E+0 -> -1
+ctmx448 comparetotmag -8.0 -90E-1 -> -1
+ctmx449 comparetotmag -8 -.9E+1 -> -1
+ctmx450 comparetotmag -8 -90E-1 -> -1
+
+
+-- testcases that subtract to lots of zeros at boundaries [pgr]
+precision: 40
+ctmx470 comparetotmag 123.4560000000000000E789 123.456E789 -> -1
+ctmx471 comparetotmag 123.456000000000000E-89 123.456E-89 -> -1
+ctmx472 comparetotmag 123.45600000000000E789 123.456E789 -> -1
+ctmx473 comparetotmag 123.4560000000000E-89 123.456E-89 -> -1
+ctmx474 comparetotmag 123.456000000000E789 123.456E789 -> -1
+ctmx475 comparetotmag 123.45600000000E-89 123.456E-89 -> -1
+ctmx476 comparetotmag 123.4560000000E789 123.456E789 -> -1
+ctmx477 comparetotmag 123.456000000E-89 123.456E-89 -> -1
+ctmx478 comparetotmag 123.45600000E789 123.456E789 -> -1
+ctmx479 comparetotmag 123.4560000E-89 123.456E-89 -> -1
+ctmx480 comparetotmag 123.456000E789 123.456E789 -> -1
+ctmx481 comparetotmag 123.45600E-89 123.456E-89 -> -1
+ctmx482 comparetotmag 123.4560E789 123.456E789 -> -1
+ctmx483 comparetotmag 123.456E-89 123.456E-89 -> 0
+ctmx484 comparetotmag 123.456E-89 123.4560000000000000E-89 -> 1
+ctmx485 comparetotmag 123.456E789 123.456000000000000E789 -> 1
+ctmx486 comparetotmag 123.456E-89 123.45600000000000E-89 -> 1
+ctmx487 comparetotmag 123.456E789 123.4560000000000E789 -> 1
+ctmx488 comparetotmag 123.456E-89 123.456000000000E-89 -> 1
+ctmx489 comparetotmag 123.456E789 123.45600000000E789 -> 1
+ctmx490 comparetotmag 123.456E-89 123.4560000000E-89 -> 1
+ctmx491 comparetotmag 123.456E789 123.456000000E789 -> 1
+ctmx492 comparetotmag 123.456E-89 123.45600000E-89 -> 1
+ctmx493 comparetotmag 123.456E789 123.4560000E789 -> 1
+ctmx494 comparetotmag 123.456E-89 123.456000E-89 -> 1
+ctmx495 comparetotmag 123.456E789 123.45600E789 -> 1
+ctmx496 comparetotmag 123.456E-89 123.4560E-89 -> 1
+ctmx497 comparetotmag 123.456E789 123.456E789 -> 0
+
+-- wide-ranging, around precision; signs equal
+precision: 9
+ctmx500 comparetotmag 1 1E-15 -> 1
+ctmx501 comparetotmag 1 1E-14 -> 1
+ctmx502 comparetotmag 1 1E-13 -> 1
+ctmx503 comparetotmag 1 1E-12 -> 1
+ctmx504 comparetotmag 1 1E-11 -> 1
+ctmx505 comparetotmag 1 1E-10 -> 1
+ctmx506 comparetotmag 1 1E-9 -> 1
+ctmx507 comparetotmag 1 1E-8 -> 1
+ctmx508 comparetotmag 1 1E-7 -> 1
+ctmx509 comparetotmag 1 1E-6 -> 1
+ctmx510 comparetotmag 1 1E-5 -> 1
+ctmx511 comparetotmag 1 1E-4 -> 1
+ctmx512 comparetotmag 1 1E-3 -> 1
+ctmx513 comparetotmag 1 1E-2 -> 1
+ctmx514 comparetotmag 1 1E-1 -> 1
+ctmx515 comparetotmag 1 1E-0 -> 0
+ctmx516 comparetotmag 1 1E+1 -> -1
+ctmx517 comparetotmag 1 1E+2 -> -1
+ctmx518 comparetotmag 1 1E+3 -> -1
+ctmx519 comparetotmag 1 1E+4 -> -1
+ctmx521 comparetotmag 1 1E+5 -> -1
+ctmx522 comparetotmag 1 1E+6 -> -1
+ctmx523 comparetotmag 1 1E+7 -> -1
+ctmx524 comparetotmag 1 1E+8 -> -1
+ctmx525 comparetotmag 1 1E+9 -> -1
+ctmx526 comparetotmag 1 1E+10 -> -1
+ctmx527 comparetotmag 1 1E+11 -> -1
+ctmx528 comparetotmag 1 1E+12 -> -1
+ctmx529 comparetotmag 1 1E+13 -> -1
+ctmx530 comparetotmag 1 1E+14 -> -1
+ctmx531 comparetotmag 1 1E+15 -> -1
+-- LR swap
+ctmx540 comparetotmag 1E-15 1 -> -1
+ctmx541 comparetotmag 1E-14 1 -> -1
+ctmx542 comparetotmag 1E-13 1 -> -1
+ctmx543 comparetotmag 1E-12 1 -> -1
+ctmx544 comparetotmag 1E-11 1 -> -1
+ctmx545 comparetotmag 1E-10 1 -> -1
+ctmx546 comparetotmag 1E-9 1 -> -1
+ctmx547 comparetotmag 1E-8 1 -> -1
+ctmx548 comparetotmag 1E-7 1 -> -1
+ctmx549 comparetotmag 1E-6 1 -> -1
+ctmx550 comparetotmag 1E-5 1 -> -1
+ctmx551 comparetotmag 1E-4 1 -> -1
+ctmx552 comparetotmag 1E-3 1 -> -1
+ctmx553 comparetotmag 1E-2 1 -> -1
+ctmx554 comparetotmag 1E-1 1 -> -1
+ctmx555 comparetotmag 1E-0 1 -> 0
+ctmx556 comparetotmag 1E+1 1 -> 1
+ctmx557 comparetotmag 1E+2 1 -> 1
+ctmx558 comparetotmag 1E+3 1 -> 1
+ctmx559 comparetotmag 1E+4 1 -> 1
+ctmx561 comparetotmag 1E+5 1 -> 1
+ctmx562 comparetotmag 1E+6 1 -> 1
+ctmx563 comparetotmag 1E+7 1 -> 1
+ctmx564 comparetotmag 1E+8 1 -> 1
+ctmx565 comparetotmag 1E+9 1 -> 1
+ctmx566 comparetotmag 1E+10 1 -> 1
+ctmx567 comparetotmag 1E+11 1 -> 1
+ctmx568 comparetotmag 1E+12 1 -> 1
+ctmx569 comparetotmag 1E+13 1 -> 1
+ctmx570 comparetotmag 1E+14 1 -> 1
+ctmx571 comparetotmag 1E+15 1 -> 1
+-- similar with an useful coefficient, one side only
+ctmx580 comparetotmag 0.000000987654321 1E-15 -> 1
+ctmx581 comparetotmag 0.000000987654321 1E-14 -> 1
+ctmx582 comparetotmag 0.000000987654321 1E-13 -> 1
+ctmx583 comparetotmag 0.000000987654321 1E-12 -> 1
+ctmx584 comparetotmag 0.000000987654321 1E-11 -> 1
+ctmx585 comparetotmag 0.000000987654321 1E-10 -> 1
+ctmx586 comparetotmag 0.000000987654321 1E-9 -> 1
+ctmx587 comparetotmag 0.000000987654321 1E-8 -> 1
+ctmx588 comparetotmag 0.000000987654321 1E-7 -> 1
+ctmx589 comparetotmag 0.000000987654321 1E-6 -> -1
+ctmx590 comparetotmag 0.000000987654321 1E-5 -> -1
+ctmx591 comparetotmag 0.000000987654321 1E-4 -> -1
+ctmx592 comparetotmag 0.000000987654321 1E-3 -> -1
+ctmx593 comparetotmag 0.000000987654321 1E-2 -> -1
+ctmx594 comparetotmag 0.000000987654321 1E-1 -> -1
+ctmx595 comparetotmag 0.000000987654321 1E-0 -> -1
+ctmx596 comparetotmag 0.000000987654321 1E+1 -> -1
+ctmx597 comparetotmag 0.000000987654321 1E+2 -> -1
+ctmx598 comparetotmag 0.000000987654321 1E+3 -> -1
+ctmx599 comparetotmag 0.000000987654321 1E+4 -> -1
+
+-- check some unit-y traps
+precision: 20
+ctmx600 comparetotmag 12 12.2345 -> -1
+ctmx601 comparetotmag 12.0 12.2345 -> -1
+ctmx602 comparetotmag 12.00 12.2345 -> -1
+ctmx603 comparetotmag 12.000 12.2345 -> -1
+ctmx604 comparetotmag 12.0000 12.2345 -> -1
+ctmx605 comparetotmag 12.00000 12.2345 -> -1
+ctmx606 comparetotmag 12.000000 12.2345 -> -1
+ctmx607 comparetotmag 12.0000000 12.2345 -> -1
+ctmx608 comparetotmag 12.00000000 12.2345 -> -1
+ctmx609 comparetotmag 12.000000000 12.2345 -> -1
+ctmx610 comparetotmag 12.1234 12 -> 1
+ctmx611 comparetotmag 12.1234 12.0 -> 1
+ctmx612 comparetotmag 12.1234 12.00 -> 1
+ctmx613 comparetotmag 12.1234 12.000 -> 1
+ctmx614 comparetotmag 12.1234 12.0000 -> 1
+ctmx615 comparetotmag 12.1234 12.00000 -> 1
+ctmx616 comparetotmag 12.1234 12.000000 -> 1
+ctmx617 comparetotmag 12.1234 12.0000000 -> 1
+ctmx618 comparetotmag 12.1234 12.00000000 -> 1
+ctmx619 comparetotmag 12.1234 12.000000000 -> 1
+ctmx620 comparetotmag -12 -12.2345 -> -1
+ctmx621 comparetotmag -12.0 -12.2345 -> -1
+ctmx622 comparetotmag -12.00 -12.2345 -> -1
+ctmx623 comparetotmag -12.000 -12.2345 -> -1
+ctmx624 comparetotmag -12.0000 -12.2345 -> -1
+ctmx625 comparetotmag -12.00000 -12.2345 -> -1
+ctmx626 comparetotmag -12.000000 -12.2345 -> -1
+ctmx627 comparetotmag -12.0000000 -12.2345 -> -1
+ctmx628 comparetotmag -12.00000000 -12.2345 -> -1
+ctmx629 comparetotmag -12.000000000 -12.2345 -> -1
+ctmx630 comparetotmag -12.1234 -12 -> 1
+ctmx631 comparetotmag -12.1234 -12.0 -> 1
+ctmx632 comparetotmag -12.1234 -12.00 -> 1
+ctmx633 comparetotmag -12.1234 -12.000 -> 1
+ctmx634 comparetotmag -12.1234 -12.0000 -> 1
+ctmx635 comparetotmag -12.1234 -12.00000 -> 1
+ctmx636 comparetotmag -12.1234 -12.000000 -> 1
+ctmx637 comparetotmag -12.1234 -12.0000000 -> 1
+ctmx638 comparetotmag -12.1234 -12.00000000 -> 1
+ctmx639 comparetotmag -12.1234 -12.000000000 -> 1
+precision: 9
+
+-- extended zeros
+ctmx640 comparetotmag 0 0 -> 0
+ctmx641 comparetotmag 0 -0 -> 0
+ctmx642 comparetotmag 0 -0.0 -> 1
+ctmx643 comparetotmag 0 0.0 -> 1
+ctmx644 comparetotmag -0 0 -> 0
+ctmx645 comparetotmag -0 -0 -> 0
+ctmx646 comparetotmag -0 -0.0 -> 1
+ctmx647 comparetotmag -0 0.0 -> 1
+ctmx648 comparetotmag 0.0 0 -> -1
+ctmx649 comparetotmag 0.0 -0 -> -1
+ctmx650 comparetotmag 0.0 -0.0 -> 0
+ctmx651 comparetotmag 0.0 0.0 -> 0
+ctmx652 comparetotmag -0.0 0 -> -1
+ctmx653 comparetotmag -0.0 -0 -> -1
+ctmx654 comparetotmag -0.0 -0.0 -> 0
+ctmx655 comparetotmag -0.0 0.0 -> 0
+
+ctmx656 comparetotmag -0E1 0.0 -> 1
+ctmx657 comparetotmag -0E2 0.0 -> 1
+ctmx658 comparetotmag 0E1 0.0 -> 1
+ctmx659 comparetotmag 0E2 0.0 -> 1
+ctmx660 comparetotmag -0E1 0 -> 1
+ctmx661 comparetotmag -0E2 0 -> 1
+ctmx662 comparetotmag 0E1 0 -> 1
+ctmx663 comparetotmag 0E2 0 -> 1
+ctmx664 comparetotmag -0E1 -0E1 -> 0
+ctmx665 comparetotmag -0E2 -0E1 -> 1
+ctmx666 comparetotmag 0E1 -0E1 -> 0
+ctmx667 comparetotmag 0E2 -0E1 -> 1
+ctmx668 comparetotmag -0E1 -0E2 -> -1
+ctmx669 comparetotmag -0E2 -0E2 -> 0
+ctmx670 comparetotmag 0E1 -0E2 -> -1
+ctmx671 comparetotmag 0E2 -0E2 -> 0
+ctmx672 comparetotmag -0E1 0E1 -> 0
+ctmx673 comparetotmag -0E2 0E1 -> 1
+ctmx674 comparetotmag 0E1 0E1 -> 0
+ctmx675 comparetotmag 0E2 0E1 -> 1
+ctmx676 comparetotmag -0E1 0E2 -> -1
+ctmx677 comparetotmag -0E2 0E2 -> 0
+ctmx678 comparetotmag 0E1 0E2 -> -1
+ctmx679 comparetotmag 0E2 0E2 -> 0
+
+-- trailing zeros; unit-y
+precision: 20
+ctmx680 comparetotmag 12 12 -> 0
+ctmx681 comparetotmag 12 12.0 -> 1
+ctmx682 comparetotmag 12 12.00 -> 1
+ctmx683 comparetotmag 12 12.000 -> 1
+ctmx684 comparetotmag 12 12.0000 -> 1
+ctmx685 comparetotmag 12 12.00000 -> 1
+ctmx686 comparetotmag 12 12.000000 -> 1
+ctmx687 comparetotmag 12 12.0000000 -> 1
+ctmx688 comparetotmag 12 12.00000000 -> 1
+ctmx689 comparetotmag 12 12.000000000 -> 1
+ctmx690 comparetotmag 12 12 -> 0
+ctmx691 comparetotmag 12.0 12 -> -1
+ctmx692 comparetotmag 12.00 12 -> -1
+ctmx693 comparetotmag 12.000 12 -> -1
+ctmx694 comparetotmag 12.0000 12 -> -1
+ctmx695 comparetotmag 12.00000 12 -> -1
+ctmx696 comparetotmag 12.000000 12 -> -1
+ctmx697 comparetotmag 12.0000000 12 -> -1
+ctmx698 comparetotmag 12.00000000 12 -> -1
+ctmx699 comparetotmag 12.000000000 12 -> -1
+
+-- long operand checks
+maxexponent: 999
+minexponent: -999
+precision: 9
+ctmx701 comparetotmag 12345678000 1 -> 1
+ctmx702 comparetotmag 1 12345678000 -> -1
+ctmx703 comparetotmag 1234567800 1 -> 1
+ctmx704 comparetotmag 1 1234567800 -> -1
+ctmx705 comparetotmag 1234567890 1 -> 1
+ctmx706 comparetotmag 1 1234567890 -> -1
+ctmx707 comparetotmag 1234567891 1 -> 1
+ctmx708 comparetotmag 1 1234567891 -> -1
+ctmx709 comparetotmag 12345678901 1 -> 1
+ctmx710 comparetotmag 1 12345678901 -> -1
+ctmx711 comparetotmag 1234567896 1 -> 1
+ctmx712 comparetotmag 1 1234567896 -> -1
+ctmx713 comparetotmag -1234567891 1 -> 1
+ctmx714 comparetotmag 1 -1234567891 -> -1
+ctmx715 comparetotmag -12345678901 1 -> 1
+ctmx716 comparetotmag 1 -12345678901 -> -1
+ctmx717 comparetotmag -1234567896 1 -> 1
+ctmx718 comparetotmag 1 -1234567896 -> -1
+
+precision: 15
+-- same with plenty of precision
+ctmx721 comparetotmag 12345678000 1 -> 1
+ctmx722 comparetotmag 1 12345678000 -> -1
+ctmx723 comparetotmag 1234567800 1 -> 1
+ctmx724 comparetotmag 1 1234567800 -> -1
+ctmx725 comparetotmag 1234567890 1 -> 1
+ctmx726 comparetotmag 1 1234567890 -> -1
+ctmx727 comparetotmag 1234567891 1 -> 1
+ctmx728 comparetotmag 1 1234567891 -> -1
+ctmx729 comparetotmag 12345678901 1 -> 1
+ctmx730 comparetotmag 1 12345678901 -> -1
+ctmx731 comparetotmag 1234567896 1 -> 1
+ctmx732 comparetotmag 1 1234567896 -> -1
+
+-- residue cases
+precision: 5
+ctmx740 comparetotmag 1 0.9999999 -> 1
+ctmx741 comparetotmag 1 0.999999 -> 1
+ctmx742 comparetotmag 1 0.99999 -> 1
+ctmx743 comparetotmag 1 1.0000 -> 1
+ctmx744 comparetotmag 1 1.00001 -> -1
+ctmx745 comparetotmag 1 1.000001 -> -1
+ctmx746 comparetotmag 1 1.0000001 -> -1
+ctmx750 comparetotmag 0.9999999 1 -> -1
+ctmx751 comparetotmag 0.999999 1 -> -1
+ctmx752 comparetotmag 0.99999 1 -> -1
+ctmx753 comparetotmag 1.0000 1 -> -1
+ctmx754 comparetotmag 1.00001 1 -> 1
+ctmx755 comparetotmag 1.000001 1 -> 1
+ctmx756 comparetotmag 1.0000001 1 -> 1
+
+-- a selection of longies
+ctmx760 comparetotmag -36852134.84194296250843579428931 -5830629.8347085025808756560357940 -> 1
+ctmx761 comparetotmag -36852134.84194296250843579428931 -36852134.84194296250843579428931 -> 0
+ctmx762 comparetotmag -36852134.94194296250843579428931 -36852134.84194296250843579428931 -> 1
+ctmx763 comparetotmag -36852134.84194296250843579428931 -36852134.94194296250843579428931 -> -1
+-- precisions above or below the difference should have no effect
+precision: 11
+ctmx764 comparetotmag -36852134.84194296250843579428931 -36852134.94194296250843579428931 -> -1
+precision: 10
+ctmx765 comparetotmag -36852134.84194296250843579428931 -36852134.94194296250843579428931 -> -1
+precision: 9
+ctmx766 comparetotmag -36852134.84194296250843579428931 -36852134.94194296250843579428931 -> -1
+precision: 8
+ctmx767 comparetotmag -36852134.84194296250843579428931 -36852134.94194296250843579428931 -> -1
+precision: 7
+ctmx768 comparetotmag -36852134.84194296250843579428931 -36852134.94194296250843579428931 -> -1
+precision: 6
+ctmx769 comparetotmag -36852134.84194296250843579428931 -36852134.94194296250843579428931 -> -1
+precision: 5
+ctmx770 comparetotmag -36852134.84194296250843579428931 -36852134.94194296250843579428931 -> -1
+precision: 4
+ctmx771 comparetotmag -36852134.84194296250843579428931 -36852134.94194296250843579428931 -> -1
+precision: 3
+ctmx772 comparetotmag -36852134.84194296250843579428931 -36852134.94194296250843579428931 -> -1
+precision: 2
+ctmx773 comparetotmag -36852134.84194296250843579428931 -36852134.94194296250843579428931 -> -1
+precision: 1
+ctmx774 comparetotmag -36852134.84194296250843579428931 -36852134.94194296250843579428931 -> -1
+
+-- Specials
+precision: 9
+ctmx780 comparetotmag Inf -Inf -> 0
+ctmx781 comparetotmag Inf -1000 -> 1
+ctmx782 comparetotmag Inf -1 -> 1
+ctmx783 comparetotmag Inf -0 -> 1
+ctmx784 comparetotmag Inf 0 -> 1
+ctmx785 comparetotmag Inf 1 -> 1
+ctmx786 comparetotmag Inf 1000 -> 1
+ctmx787 comparetotmag Inf Inf -> 0
+ctmx788 comparetotmag -1000 Inf -> -1
+ctmx789 comparetotmag -Inf Inf -> 0
+ctmx790 comparetotmag -1 Inf -> -1
+ctmx791 comparetotmag -0 Inf -> -1
+ctmx792 comparetotmag 0 Inf -> -1
+ctmx793 comparetotmag 1 Inf -> -1
+ctmx794 comparetotmag 1000 Inf -> -1
+ctmx795 comparetotmag Inf Inf -> 0
+
+ctmx800 comparetotmag -Inf -Inf -> 0
+ctmx801 comparetotmag -Inf -1000 -> 1
+ctmx802 comparetotmag -Inf -1 -> 1
+ctmx803 comparetotmag -Inf -0 -> 1
+ctmx804 comparetotmag -Inf 0 -> 1
+ctmx805 comparetotmag -Inf 1 -> 1
+ctmx806 comparetotmag -Inf 1000 -> 1
+ctmx807 comparetotmag -Inf Inf -> 0
+ctmx808 comparetotmag -Inf -Inf -> 0
+ctmx809 comparetotmag -1000 -Inf -> -1
+ctmx810 comparetotmag -1 -Inf -> -1
+ctmx811 comparetotmag -0 -Inf -> -1
+ctmx812 comparetotmag 0 -Inf -> -1
+ctmx813 comparetotmag 1 -Inf -> -1
+ctmx814 comparetotmag 1000 -Inf -> -1
+ctmx815 comparetotmag Inf -Inf -> 0
+
+ctmx821 comparetotmag NaN -Inf -> 1
+ctmx822 comparetotmag NaN -1000 -> 1
+ctmx823 comparetotmag NaN -1 -> 1
+ctmx824 comparetotmag NaN -0 -> 1
+ctmx825 comparetotmag NaN 0 -> 1
+ctmx826 comparetotmag NaN 1 -> 1
+ctmx827 comparetotmag NaN 1000 -> 1
+ctmx828 comparetotmag NaN Inf -> 1
+ctmx829 comparetotmag NaN NaN -> 0
+ctmx830 comparetotmag -Inf NaN -> -1
+ctmx831 comparetotmag -1000 NaN -> -1
+ctmx832 comparetotmag -1 NaN -> -1
+ctmx833 comparetotmag -0 NaN -> -1
+ctmx834 comparetotmag 0 NaN -> -1
+ctmx835 comparetotmag 1 NaN -> -1
+ctmx836 comparetotmag 1000 NaN -> -1
+ctmx837 comparetotmag Inf NaN -> -1
+ctmx838 comparetotmag -NaN -NaN -> 0
+ctmx839 comparetotmag +NaN -NaN -> 0
+ctmx840 comparetotmag -NaN +NaN -> 0
+
+ctmx841 comparetotmag sNaN -sNaN -> 0
+ctmx842 comparetotmag sNaN -NaN -> -1
+ctmx843 comparetotmag sNaN -Inf -> 1
+ctmx844 comparetotmag sNaN -1000 -> 1
+ctmx845 comparetotmag sNaN -1 -> 1
+ctmx846 comparetotmag sNaN -0 -> 1
+ctmx847 comparetotmag sNaN 0 -> 1
+ctmx848 comparetotmag sNaN 1 -> 1
+ctmx849 comparetotmag sNaN 1000 -> 1
+ctmx850 comparetotmag sNaN NaN -> -1
+ctmx851 comparetotmag sNaN sNaN -> 0
+
+ctmx852 comparetotmag -sNaN sNaN -> 0
+ctmx853 comparetotmag -NaN sNaN -> 1
+ctmx854 comparetotmag -Inf sNaN -> -1
+ctmx855 comparetotmag -1000 sNaN -> -1
+ctmx856 comparetotmag -1 sNaN -> -1
+ctmx857 comparetotmag -0 sNaN -> -1
+ctmx858 comparetotmag 0 sNaN -> -1
+ctmx859 comparetotmag 1 sNaN -> -1
+ctmx860 comparetotmag 1000 sNaN -> -1
+ctmx861 comparetotmag Inf sNaN -> -1
+ctmx862 comparetotmag NaN sNaN -> 1
+ctmx863 comparetotmag sNaN sNaN -> 0
+
+ctmx871 comparetotmag -sNaN -sNaN -> 0
+ctmx872 comparetotmag -sNaN -NaN -> -1
+ctmx873 comparetotmag -sNaN -Inf -> 1
+ctmx874 comparetotmag -sNaN -1000 -> 1
+ctmx875 comparetotmag -sNaN -1 -> 1
+ctmx876 comparetotmag -sNaN -0 -> 1
+ctmx877 comparetotmag -sNaN 0 -> 1
+ctmx878 comparetotmag -sNaN 1 -> 1
+ctmx879 comparetotmag -sNaN 1000 -> 1
+ctmx880 comparetotmag -sNaN NaN -> -1
+ctmx881 comparetotmag -sNaN sNaN -> 0
+
+ctmx882 comparetotmag -sNaN -sNaN -> 0
+ctmx883 comparetotmag -NaN -sNaN -> 1
+ctmx884 comparetotmag -Inf -sNaN -> -1
+ctmx885 comparetotmag -1000 -sNaN -> -1
+ctmx886 comparetotmag -1 -sNaN -> -1
+ctmx887 comparetotmag -0 -sNaN -> -1
+ctmx888 comparetotmag 0 -sNaN -> -1
+ctmx889 comparetotmag 1 -sNaN -> -1
+ctmx890 comparetotmag 1000 -sNaN -> -1
+ctmx891 comparetotmag Inf -sNaN -> -1
+ctmx892 comparetotmag NaN -sNaN -> 1
+ctmx893 comparetotmag sNaN -sNaN -> 0
+
+-- NaNs with payload
+ctmx960 comparetotmag NaN9 -Inf -> 1
+ctmx961 comparetotmag NaN8 999 -> 1
+ctmx962 comparetotmag NaN77 Inf -> 1
+ctmx963 comparetotmag -NaN67 NaN5 -> 1
+ctmx964 comparetotmag -Inf -NaN4 -> -1
+ctmx965 comparetotmag -999 -NaN33 -> -1
+ctmx966 comparetotmag Inf NaN2 -> -1
+
+ctmx970 comparetotmag -NaN41 -NaN42 -> -1
+ctmx971 comparetotmag +NaN41 -NaN42 -> -1
+ctmx972 comparetotmag -NaN41 +NaN42 -> -1
+ctmx973 comparetotmag +NaN41 +NaN42 -> -1
+ctmx974 comparetotmag -NaN42 -NaN01 -> 1
+ctmx975 comparetotmag +NaN42 -NaN01 -> 1
+ctmx976 comparetotmag -NaN42 +NaN01 -> 1
+ctmx977 comparetotmag +NaN42 +NaN01 -> 1
+
+ctmx980 comparetotmag -sNaN771 -sNaN772 -> -1
+ctmx981 comparetotmag +sNaN771 -sNaN772 -> -1
+ctmx982 comparetotmag -sNaN771 +sNaN772 -> -1
+ctmx983 comparetotmag +sNaN771 +sNaN772 -> -1
+ctmx984 comparetotmag -sNaN772 -sNaN771 -> 1
+ctmx985 comparetotmag +sNaN772 -sNaN771 -> 1
+ctmx986 comparetotmag -sNaN772 +sNaN771 -> 1
+ctmx987 comparetotmag +sNaN772 +sNaN771 -> 1
+
+ctmx991 comparetotmag -sNaN99 -Inf -> 1
+ctmx992 comparetotmag sNaN98 -11 -> 1
+ctmx993 comparetotmag sNaN97 NaN -> -1
+ctmx994 comparetotmag sNaN16 sNaN94 -> -1
+ctmx995 comparetotmag NaN85 sNaN83 -> 1
+ctmx996 comparetotmag -Inf sNaN92 -> -1
+ctmx997 comparetotmag 088 sNaN81 -> -1
+ctmx998 comparetotmag Inf sNaN90 -> -1
+ctmx999 comparetotmag NaN -sNaN89 -> 1
+
+-- overflow and underflow tests .. subnormal results now allowed
+maxExponent: 999999999
+minexponent: -999999999
+ctmx1080 comparetotmag +1.23456789012345E-0 9E+999999999 -> -1
+ctmx1081 comparetotmag 9E+999999999 +1.23456789012345E-0 -> 1
+ctmx1082 comparetotmag +0.100 9E-999999999 -> 1
+ctmx1083 comparetotmag 9E-999999999 +0.100 -> -1
+ctmx1085 comparetotmag -1.23456789012345E-0 9E+999999999 -> -1
+ctmx1086 comparetotmag 9E+999999999 -1.23456789012345E-0 -> 1
+ctmx1087 comparetotmag -0.100 9E-999999999 -> 1
+ctmx1088 comparetotmag 9E-999999999 -0.100 -> -1
+
+ctmx1089 comparetotmag 1e-599999999 1e-400000001 -> -1
+ctmx1090 comparetotmag 1e-599999999 1e-400000000 -> -1
+ctmx1091 comparetotmag 1e-600000000 1e-400000000 -> -1
+ctmx1092 comparetotmag 9e-999999998 0.01 -> -1
+ctmx1093 comparetotmag 9e-999999998 0.1 -> -1
+ctmx1094 comparetotmag 0.01 9e-999999998 -> 1
+ctmx1095 comparetotmag 1e599999999 1e400000001 -> 1
+ctmx1096 comparetotmag 1e599999999 1e400000000 -> 1
+ctmx1097 comparetotmag 1e600000000 1e400000000 -> 1
+ctmx1098 comparetotmag 9e999999998 100 -> 1
+ctmx1099 comparetotmag 9e999999998 10 -> 1
+ctmx1100 comparetotmag 100 9e999999998 -> -1
+-- signs
+ctmx1101 comparetotmag 1e+777777777 1e+411111111 -> 1
+ctmx1102 comparetotmag 1e+777777777 -1e+411111111 -> 1
+ctmx1103 comparetotmag -1e+777777777 1e+411111111 -> 1
+ctmx1104 comparetotmag -1e+777777777 -1e+411111111 -> 1
+ctmx1105 comparetotmag 1e-777777777 1e-411111111 -> -1
+ctmx1106 comparetotmag 1e-777777777 -1e-411111111 -> -1
+ctmx1107 comparetotmag -1e-777777777 1e-411111111 -> -1
+ctmx1108 comparetotmag -1e-777777777 -1e-411111111 -> -1
+
+-- spread zeros
+ctmx1110 comparetotmag 0E-383 0 -> -1
+ctmx1111 comparetotmag 0E-383 -0 -> -1
+ctmx1112 comparetotmag -0E-383 0 -> -1
+ctmx1113 comparetotmag -0E-383 -0 -> -1
+ctmx1114 comparetotmag 0E-383 0E+384 -> -1
+ctmx1115 comparetotmag 0E-383 -0E+384 -> -1
+ctmx1116 comparetotmag -0E-383 0E+384 -> -1
+ctmx1117 comparetotmag -0E-383 -0E+384 -> -1
+ctmx1118 comparetotmag 0 0E+384 -> -1
+ctmx1119 comparetotmag 0 -0E+384 -> -1
+ctmx1120 comparetotmag -0 0E+384 -> -1
+ctmx1121 comparetotmag -0 -0E+384 -> -1
+
+ctmx1130 comparetotmag 0E+384 0 -> 1
+ctmx1131 comparetotmag 0E+384 -0 -> 1
+ctmx1132 comparetotmag -0E+384 0 -> 1
+ctmx1133 comparetotmag -0E+384 -0 -> 1
+ctmx1134 comparetotmag 0E+384 0E-383 -> 1
+ctmx1135 comparetotmag 0E+384 -0E-383 -> 1
+ctmx1136 comparetotmag -0E+384 0E-383 -> 1
+ctmx1137 comparetotmag -0E+384 -0E-383 -> 1
+ctmx1138 comparetotmag 0 0E-383 -> 1
+ctmx1139 comparetotmag 0 -0E-383 -> 1
+ctmx1140 comparetotmag -0 0E-383 -> 1
+ctmx1141 comparetotmag -0 -0E-383 -> 1
+
+-- Null tests
+ctmx9990 comparetotmag 10 # -> NaN Invalid_operation
+ctmx9991 comparetotmag # 10 -> NaN Invalid_operation
diff --git a/Lib/test/decimaltestdata/copy.decTest b/Lib/test/decimaltestdata/copy.decTest
new file mode 100644
index 0000000..5d4065d
--- /dev/null
+++ b/Lib/test/decimaltestdata/copy.decTest
@@ -0,0 +1,86 @@
+------------------------------------------------------------------------
+-- copy.decTest -- quiet copy --
+-- Copyright (c) IBM Corporation, 1981, 2007. All rights reserved. --
+------------------------------------------------------------------------
+-- Please see the document "General Decimal Arithmetic Testcases" --
+-- at http://www2.hursley.ibm.com/decimal for the description of --
+-- these testcases. --
+-- --
+-- These testcases are experimental ('beta' versions), and they --
+-- may contain errors. They are offered on an as-is basis. In --
+-- particular, achieving the same results as the tests here is not --
+-- a guarantee that an implementation complies with any Standard --
+-- or specification. The tests are not exhaustive. --
+-- --
+-- Please send comments, suggestions, and corrections to the author: --
+-- Mike Cowlishaw, IBM Fellow --
+-- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK --
+-- mfc@uk.ibm.com --
+------------------------------------------------------------------------
+version: 2.56
+
+extended: 1
+precision: 9
+rounding: half_up
+maxExponent: 999
+minExponent: -999
+
+-- Sanity check
+cpyx001 copy +7.50 -> 7.50
+
+-- Infinities
+cpyx011 copy Infinity -> Infinity
+cpyx012 copy -Infinity -> -Infinity
+
+-- NaNs, 0 payload
+cpyx021 copy NaN -> NaN
+cpyx022 copy -NaN -> -NaN
+cpyx023 copy sNaN -> sNaN
+cpyx024 copy -sNaN -> -sNaN
+
+-- NaNs, non-0 payload
+cpyx031 copy NaN10 -> NaN10
+cpyx032 copy -NaN10 -> -NaN10
+cpyx033 copy sNaN10 -> sNaN10
+cpyx034 copy -sNaN10 -> -sNaN10
+cpyx035 copy NaN7 -> NaN7
+cpyx036 copy -NaN7 -> -NaN7
+cpyx037 copy sNaN101 -> sNaN101
+cpyx038 copy -sNaN101 -> -sNaN101
+
+-- finites
+cpyx101 copy 7 -> 7
+cpyx102 copy -7 -> -7
+cpyx103 copy 75 -> 75
+cpyx104 copy -75 -> -75
+cpyx105 copy 7.50 -> 7.50
+cpyx106 copy -7.50 -> -7.50
+cpyx107 copy 7.500 -> 7.500
+cpyx108 copy -7.500 -> -7.500
+
+-- zeros
+cpyx111 copy 0 -> 0
+cpyx112 copy -0 -> -0
+cpyx113 copy 0E+4 -> 0E+4
+cpyx114 copy -0E+4 -> -0E+4
+cpyx115 copy 0.0000 -> 0.0000
+cpyx116 copy -0.0000 -> -0.0000
+cpyx117 copy 0E-141 -> 0E-141
+cpyx118 copy -0E-141 -> -0E-141
+
+-- full coefficients, alternating bits
+cpyx121 copy 268268268 -> 268268268
+cpyx122 copy -268268268 -> -268268268
+cpyx123 copy 134134134 -> 134134134
+cpyx124 copy -134134134 -> -134134134
+
+-- Nmax, Nmin, Ntiny
+cpyx131 copy 9.99999999E+999 -> 9.99999999E+999
+cpyx132 copy 1E-999 -> 1E-999
+cpyx133 copy 1.00000000E-999 -> 1.00000000E-999
+cpyx134 copy 1E-1007 -> 1E-1007
+
+cpyx135 copy -1E-1007 -> -1E-1007
+cpyx136 copy -1.00000000E-999 -> -1.00000000E-999
+cpyx137 copy -1E-999 -> -1E-999
+cpyx138 copy -9.99999999E+999 -> -9.99999999E+999
diff --git a/Lib/test/decimaltestdata/copyabs.decTest b/Lib/test/decimaltestdata/copyabs.decTest
new file mode 100644
index 0000000..7457552
--- /dev/null
+++ b/Lib/test/decimaltestdata/copyabs.decTest
@@ -0,0 +1,86 @@
+------------------------------------------------------------------------
+-- copyAbs.decTest -- quiet copy and set sign to zero --
+-- Copyright (c) IBM Corporation, 1981, 2007. All rights reserved. --
+------------------------------------------------------------------------
+-- Please see the document "General Decimal Arithmetic Testcases" --
+-- at http://www2.hursley.ibm.com/decimal for the description of --
+-- these testcases. --
+-- --
+-- These testcases are experimental ('beta' versions), and they --
+-- may contain errors. They are offered on an as-is basis. In --
+-- particular, achieving the same results as the tests here is not --
+-- a guarantee that an implementation complies with any Standard --
+-- or specification. The tests are not exhaustive. --
+-- --
+-- Please send comments, suggestions, and corrections to the author: --
+-- Mike Cowlishaw, IBM Fellow --
+-- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK --
+-- mfc@uk.ibm.com --
+------------------------------------------------------------------------
+version: 2.56
+
+extended: 1
+precision: 9
+rounding: half_up
+maxExponent: 999
+minExponent: -999
+
+-- Sanity check
+cpax001 copyabs +7.50 -> 7.50
+
+-- Infinities
+cpax011 copyabs Infinity -> Infinity
+cpax012 copyabs -Infinity -> Infinity
+
+-- NaNs, 0 payload
+cpax021 copyabs NaN -> NaN
+cpax022 copyabs -NaN -> NaN
+cpax023 copyabs sNaN -> sNaN
+cpax024 copyabs -sNaN -> sNaN
+
+-- NaNs, non-0 payload
+cpax031 copyabs NaN10 -> NaN10
+cpax032 copyabs -NaN15 -> NaN15
+cpax033 copyabs sNaN15 -> sNaN15
+cpax034 copyabs -sNaN10 -> sNaN10
+cpax035 copyabs NaN7 -> NaN7
+cpax036 copyabs -NaN7 -> NaN7
+cpax037 copyabs sNaN101 -> sNaN101
+cpax038 copyabs -sNaN101 -> sNaN101
+
+-- finites
+cpax101 copyabs 7 -> 7
+cpax102 copyabs -7 -> 7
+cpax103 copyabs 75 -> 75
+cpax104 copyabs -75 -> 75
+cpax105 copyabs 7.10 -> 7.10
+cpax106 copyabs -7.10 -> 7.10
+cpax107 copyabs 7.500 -> 7.500
+cpax108 copyabs -7.500 -> 7.500
+
+-- zeros
+cpax111 copyabs 0 -> 0
+cpax112 copyabs -0 -> 0
+cpax113 copyabs 0E+6 -> 0E+6
+cpax114 copyabs -0E+6 -> 0E+6
+cpax115 copyabs 0.0000 -> 0.0000
+cpax116 copyabs -0.0000 -> 0.0000
+cpax117 copyabs 0E-141 -> 0E-141
+cpax118 copyabs -0E-141 -> 0E-141
+
+-- full coefficients, alternating bits
+cpax121 copyabs 268268268 -> 268268268
+cpax122 copyabs -268268268 -> 268268268
+cpax123 copyabs 134134134 -> 134134134
+cpax124 copyabs -134134134 -> 134134134
+
+-- Nmax, Nmin, Ntiny
+cpax131 copyabs 9.99999999E+999 -> 9.99999999E+999
+cpax132 copyabs 1E-999 -> 1E-999
+cpax133 copyabs 1.00000000E-999 -> 1.00000000E-999
+cpax134 copyabs 1E-1007 -> 1E-1007
+
+cpax135 copyabs -1E-1007 -> 1E-1007
+cpax136 copyabs -1.00000000E-999 -> 1.00000000E-999
+cpax137 copyabs -1E-999 -> 1E-999
+cpax199 copyabs -9.99999999E+999 -> 9.99999999E+999
diff --git a/Lib/test/decimaltestdata/copynegate.decTest b/Lib/test/decimaltestdata/copynegate.decTest
new file mode 100644
index 0000000..3e502be
--- /dev/null
+++ b/Lib/test/decimaltestdata/copynegate.decTest
@@ -0,0 +1,86 @@
+------------------------------------------------------------------------
+-- copyNegate.decTest -- quiet copy and negate --
+-- Copyright (c) IBM Corporation, 1981, 2007. All rights reserved. --
+------------------------------------------------------------------------
+-- Please see the document "General Decimal Arithmetic Testcases" --
+-- at http://www2.hursley.ibm.com/decimal for the description of --
+-- these testcases. --
+-- --
+-- These testcases are experimental ('beta' versions), and they --
+-- may contain errors. They are offered on an as-is basis. In --
+-- particular, achieving the same results as the tests here is not --
+-- a guarantee that an implementation complies with any Standard --
+-- or specification. The tests are not exhaustive. --
+-- --
+-- Please send comments, suggestions, and corrections to the author: --
+-- Mike Cowlishaw, IBM Fellow --
+-- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK --
+-- mfc@uk.ibm.com --
+------------------------------------------------------------------------
+version: 2.56
+
+extended: 1
+precision: 9
+rounding: half_up
+maxExponent: 999
+minExponent: -999
+
+-- Sanity check
+cpnx001 copynegate +7.50 -> -7.50
+
+-- Infinities
+cpnx011 copynegate Infinity -> -Infinity
+cpnx012 copynegate -Infinity -> Infinity
+
+-- NaNs, 0 payload
+cpnx021 copynegate NaN -> -NaN
+cpnx022 copynegate -NaN -> NaN
+cpnx023 copynegate sNaN -> -sNaN
+cpnx024 copynegate -sNaN -> sNaN
+
+-- NaNs, non-0 payload
+cpnx031 copynegate NaN13 -> -NaN13
+cpnx032 copynegate -NaN13 -> NaN13
+cpnx033 copynegate sNaN13 -> -sNaN13
+cpnx034 copynegate -sNaN13 -> sNaN13
+cpnx035 copynegate NaN70 -> -NaN70
+cpnx036 copynegate -NaN70 -> NaN70
+cpnx037 copynegate sNaN101 -> -sNaN101
+cpnx038 copynegate -sNaN101 -> sNaN101
+
+-- finites
+cpnx101 copynegate 7 -> -7
+cpnx102 copynegate -7 -> 7
+cpnx103 copynegate 75 -> -75
+cpnx104 copynegate -75 -> 75
+cpnx105 copynegate 7.50 -> -7.50
+cpnx106 copynegate -7.50 -> 7.50
+cpnx107 copynegate 7.500 -> -7.500
+cpnx108 copynegate -7.500 -> 7.500
+
+-- zeros
+cpnx111 copynegate 0 -> -0
+cpnx112 copynegate -0 -> 0
+cpnx113 copynegate 0E+4 -> -0E+4
+cpnx114 copynegate -0E+4 -> 0E+4
+cpnx115 copynegate 0.0000 -> -0.0000
+cpnx116 copynegate -0.0000 -> 0.0000
+cpnx117 copynegate 0E-141 -> -0E-141
+cpnx118 copynegate -0E-141 -> 0E-141
+
+-- full coefficients, alternating bits
+cpnx121 copynegate 268268268 -> -268268268
+cpnx122 copynegate -268268268 -> 268268268
+cpnx123 copynegate 134134134 -> -134134134
+cpnx124 copynegate -134134134 -> 134134134
+
+-- Nmax, Nmin, Ntiny
+cpnx131 copynegate 9.99999999E+999 -> -9.99999999E+999
+cpnx132 copynegate 1E-999 -> -1E-999
+cpnx133 copynegate 1.00000000E-999 -> -1.00000000E-999
+cpnx134 copynegate 1E-1007 -> -1E-1007
+
+cpnx135 copynegate -1E-1007 -> 1E-1007
+cpnx136 copynegate -1.00000000E-999 -> 1.00000000E-999
+cpnx137 copynegate -1E-999 -> 1E-999
+cpnx138 copynegate -9.99999999E+999 -> 9.99999999E+999
diff --git a/Lib/test/decimaltestdata/copysign.decTest b/Lib/test/decimaltestdata/copysign.decTest
new file mode 100644
index 0000000..6b20fda
--- /dev/null
+++ b/Lib/test/decimaltestdata/copysign.decTest
@@ -0,0 +1,177 @@
+------------------------------------------------------------------------
+-- copysign.decTest -- quiet copy with sign from rhs --
+-- Copyright (c) IBM Corporation, 1981, 2007. All rights reserved. --
+------------------------------------------------------------------------
+-- Please see the document "General Decimal Arithmetic Testcases" --
+-- at http://www2.hursley.ibm.com/decimal for the description of --
+-- these testcases. --
+-- --
+-- These testcases are experimental ('beta' versions), and they --
+-- may contain errors. They are offered on an as-is basis. In --
+-- particular, achieving the same results as the tests here is not --
+-- a guarantee that an implementation complies with any Standard --
+-- or specification. The tests are not exhaustive. --
+-- --
+-- Please send comments, suggestions, and corrections to the author: --
+-- Mike Cowlishaw, IBM Fellow --
+-- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK --
+-- mfc@uk.ibm.com --
+------------------------------------------------------------------------
+version: 2.56
+
+extended: 1
+precision: 9
+rounding: half_up
+maxExponent: 999
+minExponent: -999
+
+-- Sanity check, and examples from decArith
+cpsx001 copysign +7.50 11 -> 7.50
+cpsx002 copysign '1.50' '7.33' -> 1.50
+cpsx003 copysign '-1.50' '7.33' -> 1.50
+cpsx004 copysign '1.50' '-7.33' -> -1.50
+cpsx005 copysign '-1.50' '-7.33' -> -1.50
+
+-- Infinities
+cpsx011 copysign Infinity 11 -> Infinity
+cpsx012 copysign -Infinity 11 -> Infinity
+
+-- NaNs, 0 payload
+cpsx021 copysign NaN 11 -> NaN
+cpsx022 copysign -NaN 11 -> NaN
+cpsx023 copysign sNaN 11 -> sNaN
+cpsx024 copysign -sNaN 11 -> sNaN
+
+-- NaNs, non-0 payload
+cpsx031 copysign NaN10 11 -> NaN10
+cpsx032 copysign -NaN10 11 -> NaN10
+cpsx033 copysign sNaN10 11 -> sNaN10
+cpsx034 copysign -sNaN10 11 -> sNaN10
+cpsx035 copysign NaN7 11 -> NaN7
+cpsx036 copysign -NaN7 11 -> NaN7
+cpsx037 copysign sNaN101 11 -> sNaN101
+cpsx038 copysign -sNaN101 11 -> sNaN101
+
+-- finites
+cpsx101 copysign 7 11 -> 7
+cpsx102 copysign -7 11 -> 7
+cpsx103 copysign 75 11 -> 75
+cpsx104 copysign -75 11 -> 75
+cpsx105 copysign 7.50 11 -> 7.50
+cpsx106 copysign -7.50 11 -> 7.50
+cpsx107 copysign 7.500 11 -> 7.500
+cpsx108 copysign -7.500 11 -> 7.500
+
+-- zeros
+cpsx111 copysign 0 11 -> 0
+cpsx112 copysign -0 11 -> 0
+cpsx113 copysign 0E+4 11 -> 0E+4
+cpsx114 copysign -0E+4 11 -> 0E+4
+cpsx115 copysign 0.0000 11 -> 0.0000
+cpsx116 copysign -0.0000 11 -> 0.0000
+cpsx117 copysign 0E-141 11 -> 0E-141
+cpsx118 copysign -0E-141 11 -> 0E-141
+
+-- full coefficients, alternating bits
+cpsx121 copysign 268268268 11 -> 268268268
+cpsx122 copysign -268268268 11 -> 268268268
+cpsx123 copysign 134134134 11 -> 134134134
+cpsx124 copysign -134134134 11 -> 134134134
+
+-- Nmax, Nmin, Ntiny
+cpsx131 copysign 9.99999999E+999 11 -> 9.99999999E+999
+cpsx132 copysign 1E-999 11 -> 1E-999
+cpsx133 copysign 1.00000000E-999 11 -> 1.00000000E-999
+cpsx134 copysign 1E-1007 11 -> 1E-1007
+
+cpsx135 copysign -1E-1007 11 -> 1E-1007
+cpsx136 copysign -1.00000000E-999 11 -> 1.00000000E-999
+cpsx137 copysign -1E-999 11 -> 1E-999
+cpsx138 copysign -9.99999999E+999 11 -> 9.99999999E+999
+
+-- repeat with negative RHS
+
+-- Infinities
+cpsx211 copysign Infinity -34 -> -Infinity
+cpsx212 copysign -Infinity -34 -> -Infinity
+
+-- NaNs, 0 payload
+cpsx221 copysign NaN -34 -> -NaN
+cpsx222 copysign -NaN -34 -> -NaN
+cpsx223 copysign sNaN -34 -> -sNaN
+cpsx224 copysign -sNaN -34 -> -sNaN
+
+-- NaNs, non-0 payload
+cpsx231 copysign NaN10 -34 -> -NaN10
+cpsx232 copysign -NaN10 -34 -> -NaN10
+cpsx233 copysign sNaN10 -34 -> -sNaN10
+cpsx234 copysign -sNaN10 -34 -> -sNaN10
+cpsx235 copysign NaN7 -34 -> -NaN7
+cpsx236 copysign -NaN7 -34 -> -NaN7
+cpsx237 copysign sNaN101 -34 -> -sNaN101
+cpsx238 copysign -sNaN101 -34 -> -sNaN101
+
+-- finites
+cpsx301 copysign 7 -34 -> -7
+cpsx302 copysign -7 -34 -> -7
+cpsx303 copysign 75 -34 -> -75
+cpsx304 copysign -75 -34 -> -75
+cpsx305 copysign 7.50 -34 -> -7.50
+cpsx306 copysign -7.50 -34 -> -7.50
+cpsx307 copysign 7.500 -34 -> -7.500
+cpsx308 copysign -7.500 -34 -> -7.500
+
+-- zeros
+cpsx311 copysign 0 -34 -> -0
+cpsx312 copysign -0 -34 -> -0
+cpsx313 copysign 0E+4 -34 -> -0E+4
+cpsx314 copysign -0E+4 -34 -> -0E+4
+cpsx315 copysign 0.0000 -34 -> -0.0000
+cpsx316 copysign -0.0000 -34 -> -0.0000
+cpsx317 copysign 0E-141 -34 -> -0E-141
+cpsx318 copysign -0E-141 -34 -> -0E-141
+
+-- full coefficients, alternating bits
+cpsx321 copysign 268268268 -18 -> -268268268
+cpsx322 copysign -268268268 -18 -> -268268268
+cpsx323 copysign 134134134 -18 -> -134134134
+cpsx324 copysign -134134134 -18 -> -134134134
+
+-- Nmax, Nmin, Ntiny
+cpsx331 copysign 9.99999999E+999 -18 -> -9.99999999E+999
+cpsx332 copysign 1E-999 -18 -> -1E-999
+cpsx333 copysign 1.00000000E-999 -18 -> -1.00000000E-999
+cpsx334 copysign 1E-1007 -18 -> -1E-1007
+
+cpsx335 copysign -1E-1007 -18 -> -1E-1007
+cpsx336 copysign -1.00000000E-999 -18 -> -1.00000000E-999
+cpsx337 copysign -1E-999 -18 -> -1E-999
+cpsx338 copysign -9.99999999E+999 -18 -> -9.99999999E+999
+
+-- Other kinds of RHS
+cpsx401 copysign 701 -34 -> -701
+cpsx402 copysign -720 -34 -> -720
+cpsx403 copysign 701 -0 -> -701
+cpsx404 copysign -720 -0 -> -720
+cpsx405 copysign 701 +0 -> 701
+cpsx406 copysign -720 +0 -> 720
+cpsx407 copysign 701 +34 -> 701
+cpsx408 copysign -720 +34 -> 720
+
+cpsx413 copysign 701 -Inf -> -701
+cpsx414 copysign -720 -Inf -> -720
+cpsx415 copysign 701 +Inf -> 701
+cpsx416 copysign -720 +Inf -> 720
+
+cpsx420 copysign 701 -NaN -> -701
+cpsx421 copysign -720 -NaN -> -720
+cpsx422 copysign 701 +NaN -> 701
+cpsx423 copysign -720 +NaN -> 720
+cpsx425 copysign -720 +NaN8 -> 720
+
+cpsx426 copysign 701 -sNaN -> -701
+cpsx427 copysign -720 -sNaN -> -720
+cpsx428 copysign 701 +sNaN -> 701
+cpsx429 copysign -720 +sNaN -> 720
+cpsx430 copysign -720 +sNaN3 -> 720
+
diff --git a/Lib/test/decimaltestdata/ddAbs.decTest b/Lib/test/decimaltestdata/ddAbs.decTest
new file mode 100644
index 0000000..4da662c
--- /dev/null
+++ b/Lib/test/decimaltestdata/ddAbs.decTest
@@ -0,0 +1,126 @@
+------------------------------------------------------------------------
+-- ddAbs.decTest -- decDouble absolute value, heeding sNaN --
+-- Copyright (c) IBM Corporation, 1981, 2007. All rights reserved. --
+------------------------------------------------------------------------
+-- Please see the document "General Decimal Arithmetic Testcases" --
+-- at http://www2.hursley.ibm.com/decimal for the description of --
+-- these testcases. --
+-- --
+-- These testcases are experimental ('beta' versions), and they --
+-- may contain errors. They are offered on an as-is basis. In --
+-- particular, achieving the same results as the tests here is not --
+-- a guarantee that an implementation complies with any Standard --
+-- or specification. The tests are not exhaustive. --
+-- --
+-- Please send comments, suggestions, and corrections to the author: --
+-- Mike Cowlishaw, IBM Fellow --
+-- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK --
+-- mfc@uk.ibm.com --
+------------------------------------------------------------------------
+version: 2.56
+
+precision: 16
+maxExponent: 384
+minExponent: -383
+extended: 1
+clamp: 1
+rounding: half_even
+
+ddabs001 abs '1' -> '1'
+ddabs002 abs '-1' -> '1'
+ddabs003 abs '1.00' -> '1.00'
+ddabs004 abs '-1.00' -> '1.00'
+ddabs005 abs '0' -> '0'
+ddabs006 abs '0.00' -> '0.00'
+ddabs007 abs '00.0' -> '0.0'
+ddabs008 abs '00.00' -> '0.00'
+ddabs009 abs '00' -> '0'
+
+ddabs010 abs '-2' -> '2'
+ddabs011 abs '2' -> '2'
+ddabs012 abs '-2.00' -> '2.00'
+ddabs013 abs '2.00' -> '2.00'
+ddabs014 abs '-0' -> '0'
+ddabs015 abs '-0.00' -> '0.00'
+ddabs016 abs '-00.0' -> '0.0'
+ddabs017 abs '-00.00' -> '0.00'
+ddabs018 abs '-00' -> '0'
+
+ddabs020 abs '-2000000' -> '2000000'
+ddabs021 abs '2000000' -> '2000000'
+
+ddabs030 abs '+0.1' -> '0.1'
+ddabs031 abs '-0.1' -> '0.1'
+ddabs032 abs '+0.01' -> '0.01'
+ddabs033 abs '-0.01' -> '0.01'
+ddabs034 abs '+0.001' -> '0.001'
+ddabs035 abs '-0.001' -> '0.001'
+ddabs036 abs '+0.000001' -> '0.000001'
+ddabs037 abs '-0.000001' -> '0.000001'
+ddabs038 abs '+0.000000000001' -> '1E-12'
+ddabs039 abs '-0.000000000001' -> '1E-12'
+
+-- examples from decArith
+ddabs040 abs '2.1' -> '2.1'
+ddabs041 abs '-100' -> '100'
+ddabs042 abs '101.5' -> '101.5'
+ddabs043 abs '-101.5' -> '101.5'
+
+-- more fixed, potential LHS swaps/overlays if done by subtract 0
+ddabs060 abs '-56267E-10' -> '0.0000056267'
+ddabs061 abs '-56267E-5' -> '0.56267'
+ddabs062 abs '-56267E-2' -> '562.67'
+ddabs063 abs '-56267E-1' -> '5626.7'
+ddabs065 abs '-56267E-0' -> '56267'
+
+-- subnormals and underflow
+
+-- long operand tests
+ddabs321 abs 1234567890123456 -> 1234567890123456
+ddabs322 abs 12345678000 -> 12345678000
+ddabs323 abs 1234567800 -> 1234567800
+ddabs324 abs 1234567890 -> 1234567890
+ddabs325 abs 1234567891 -> 1234567891
+ddabs326 abs 12345678901 -> 12345678901
+ddabs327 abs 1234567896 -> 1234567896
+
+-- zeros
+ddabs111 abs 0 -> 0
+ddabs112 abs -0 -> 0
+ddabs113 abs 0E+6 -> 0E+6
+ddabs114 abs -0E+6 -> 0E+6
+ddabs115 abs 0.0000 -> 0.0000
+ddabs116 abs -0.0000 -> 0.0000
+ddabs117 abs 0E-141 -> 0E-141
+ddabs118 abs -0E-141 -> 0E-141
+
+-- full coefficients, alternating bits
+ddabs121 abs 2682682682682682 -> 2682682682682682
+ddabs122 abs -2682682682682682 -> 2682682682682682
+ddabs123 abs 1341341341341341 -> 1341341341341341
+ddabs124 abs -1341341341341341 -> 1341341341341341
+
+-- Nmax, Nmin, Ntiny
+ddabs131 abs 9.999999999999999E+384 -> 9.999999999999999E+384
+ddabs132 abs 1E-383 -> 1E-383
+ddabs133 abs 1.000000000000000E-383 -> 1.000000000000000E-383
+ddabs134 abs 1E-398 -> 1E-398 Subnormal
+
+ddabs135 abs -1E-398 -> 1E-398 Subnormal
+ddabs136 abs -1.000000000000000E-383 -> 1.000000000000000E-383
+ddabs137 abs -1E-383 -> 1E-383
+ddabs138 abs -9.999999999999999E+384 -> 9.999999999999999E+384
+
+-- specials
+ddabs520 abs 'Inf' -> 'Infinity'
+ddabs521 abs '-Inf' -> 'Infinity'
+ddabs522 abs NaN -> NaN
+ddabs523 abs sNaN -> NaN Invalid_operation
+ddabs524 abs NaN22 -> NaN22
+ddabs525 abs sNaN33 -> NaN33 Invalid_operation
+ddabs526 abs -NaN22 -> -NaN22
+ddabs527 abs -sNaN33 -> -NaN33 Invalid_operation
+
+-- Null tests
+ddabs900 abs # -> NaN Invalid_operation
+
diff --git a/Lib/test/decimaltestdata/ddAdd.decTest b/Lib/test/decimaltestdata/ddAdd.decTest
new file mode 100644
index 0000000..49d89d4
--- /dev/null
+++ b/Lib/test/decimaltestdata/ddAdd.decTest
@@ -0,0 +1,1290 @@
+------------------------------------------------------------------------
+-- ddAdd.decTest -- decDouble addition --
+-- Copyright (c) IBM Corporation, 1981, 2007. All rights reserved. --
+------------------------------------------------------------------------
+-- Please see the document "General Decimal Arithmetic Testcases" --
+-- at http://www2.hursley.ibm.com/decimal for the description of --
+-- these testcases. --
+-- --
+-- These testcases are experimental ('beta' versions), and they --
+-- may contain errors. They are offered on an as-is basis. In --
+-- particular, achieving the same results as the tests here is not --
+-- a guarantee that an implementation complies with any Standard --
+-- or specification. The tests are not exhaustive. --
+-- --
+-- Please send comments, suggestions, and corrections to the author: --
+-- Mike Cowlishaw, IBM Fellow --
+-- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK --
+-- mfc@uk.ibm.com --
+------------------------------------------------------------------------
+version: 2.56
+
+-- This set of tests are for decDoubles only; all arguments are
+-- representable in a decDouble
+precision: 16
+maxExponent: 384
+minExponent: -383
+extended: 1
+clamp: 1
+rounding: half_even
+
+-- [first group are 'quick confidence check']
+ddadd001 add 1 1 -> 2
+ddadd002 add 2 3 -> 5
+ddadd003 add '5.75' '3.3' -> 9.05
+ddadd004 add '5' '-3' -> 2
+ddadd005 add '-5' '-3' -> -8
+ddadd006 add '-7' '2.5' -> -4.5
+ddadd007 add '0.7' '0.3' -> 1.0
+ddadd008 add '1.25' '1.25' -> 2.50
+ddadd009 add '1.23456789' '1.00000000' -> '2.23456789'
+ddadd010 add '1.23456789' '1.00000011' -> '2.23456800'
+
+-- 1234567890123456 1234567890123456
+ddadd011 add '0.4444444444444446' '0.5555555555555555' -> '1.000000000000000' Inexact Rounded
+ddadd012 add '0.4444444444444445' '0.5555555555555555' -> '1.000000000000000' Rounded
+ddadd013 add '0.4444444444444444' '0.5555555555555555' -> '0.9999999999999999'
+ddadd014 add '4444444444444444' '0.49' -> '4444444444444444' Inexact Rounded
+ddadd015 add '4444444444444444' '0.499' -> '4444444444444444' Inexact Rounded
+ddadd016 add '4444444444444444' '0.4999' -> '4444444444444444' Inexact Rounded
+ddadd017 add '4444444444444444' '0.5000' -> '4444444444444444' Inexact Rounded
+ddadd018 add '4444444444444444' '0.5001' -> '4444444444444445' Inexact Rounded
+ddadd019 add '4444444444444444' '0.501' -> '4444444444444445' Inexact Rounded
+ddadd020 add '4444444444444444' '0.51' -> '4444444444444445' Inexact Rounded
+
+ddadd021 add 0 1 -> 1
+ddadd022 add 1 1 -> 2
+ddadd023 add 2 1 -> 3
+ddadd024 add 3 1 -> 4
+ddadd025 add 4 1 -> 5
+ddadd026 add 5 1 -> 6
+ddadd027 add 6 1 -> 7
+ddadd028 add 7 1 -> 8
+ddadd029 add 8 1 -> 9
+ddadd030 add 9 1 -> 10
+
+-- some carrying effects
+ddadd031 add '0.9998' '0.0000' -> '0.9998'
+ddadd032 add '0.9998' '0.0001' -> '0.9999'
+ddadd033 add '0.9998' '0.0002' -> '1.0000'
+ddadd034 add '0.9998' '0.0003' -> '1.0001'
+
+ddadd035 add '70' '10000e+16' -> '1.000000000000000E+20' Inexact Rounded
+ddadd036 add '700' '10000e+16' -> '1.000000000000000E+20' Inexact Rounded
+ddadd037 add '7000' '10000e+16' -> '1.000000000000000E+20' Inexact Rounded
+ddadd038 add '70000' '10000e+16' -> '1.000000000000001E+20' Inexact Rounded
+ddadd039 add '700000' '10000e+16' -> '1.000000000000007E+20' Rounded
+
+-- symmetry:
+ddadd040 add '10000e+16' '70' -> '1.000000000000000E+20' Inexact Rounded
+ddadd041 add '10000e+16' '700' -> '1.000000000000000E+20' Inexact Rounded
+ddadd042 add '10000e+16' '7000' -> '1.000000000000000E+20' Inexact Rounded
+ddadd044 add '10000e+16' '70000' -> '1.000000000000001E+20' Inexact Rounded
+ddadd045 add '10000e+16' '700000' -> '1.000000000000007E+20' Rounded
+
+-- same, without rounding
+ddadd046 add '10000e+9' '7' -> '10000000000007'
+ddadd047 add '10000e+9' '70' -> '10000000000070'
+ddadd048 add '10000e+9' '700' -> '10000000000700'
+ddadd049 add '10000e+9' '7000' -> '10000000007000'
+ddadd050 add '10000e+9' '70000' -> '10000000070000'
+ddadd051 add '10000e+9' '700000' -> '10000000700000'
+ddadd052 add '10000e+9' '7000000' -> '10000007000000'
+
+-- examples from decarith
+ddadd053 add '12' '7.00' -> '19.00'
+ddadd054 add '1.3' '-1.07' -> '0.23'
+ddadd055 add '1.3' '-1.30' -> '0.00'
+ddadd056 add '1.3' '-2.07' -> '-0.77'
+ddadd057 add '1E+2' '1E+4' -> '1.01E+4'
+
+-- leading zero preservation
+ddadd061 add 1 '0.0001' -> '1.0001'
+ddadd062 add 1 '0.00001' -> '1.00001'
+ddadd063 add 1 '0.000001' -> '1.000001'
+ddadd064 add 1 '0.0000001' -> '1.0000001'
+ddadd065 add 1 '0.00000001' -> '1.00000001'
+
+-- some funny zeros [in case of bad signum]
+ddadd070 add 1 0 -> 1
+ddadd071 add 1 0. -> 1
+ddadd072 add 1 .0 -> 1.0
+ddadd073 add 1 0.0 -> 1.0
+ddadd074 add 1 0.00 -> 1.00
+ddadd075 add 0 1 -> 1
+ddadd076 add 0. 1 -> 1
+ddadd077 add .0 1 -> 1.0
+ddadd078 add 0.0 1 -> 1.0
+ddadd079 add 0.00 1 -> 1.00
+
+-- some carries
+ddadd080 add 999999998 1 -> 999999999
+ddadd081 add 999999999 1 -> 1000000000
+ddadd082 add 99999999 1 -> 100000000
+ddadd083 add 9999999 1 -> 10000000
+ddadd084 add 999999 1 -> 1000000
+ddadd085 add 99999 1 -> 100000
+ddadd086 add 9999 1 -> 10000
+ddadd087 add 999 1 -> 1000
+ddadd088 add 99 1 -> 100
+ddadd089 add 9 1 -> 10
+
+
+-- more LHS swaps
+ddadd090 add '-56267E-10' 0 -> '-0.0000056267'
+ddadd091 add '-56267E-6' 0 -> '-0.056267'
+ddadd092 add '-56267E-5' 0 -> '-0.56267'
+ddadd093 add '-56267E-4' 0 -> '-5.6267'
+ddadd094 add '-56267E-3' 0 -> '-56.267'
+ddadd095 add '-56267E-2' 0 -> '-562.67'
+ddadd096 add '-56267E-1' 0 -> '-5626.7'
+ddadd097 add '-56267E-0' 0 -> '-56267'
+ddadd098 add '-5E-10' 0 -> '-5E-10'
+ddadd099 add '-5E-7' 0 -> '-5E-7'
+ddadd100 add '-5E-6' 0 -> '-0.000005'
+ddadd101 add '-5E-5' 0 -> '-0.00005'
+ddadd102 add '-5E-4' 0 -> '-0.0005'
+ddadd103 add '-5E-1' 0 -> '-0.5'
+ddadd104 add '-5E0' 0 -> '-5'
+ddadd105 add '-5E1' 0 -> '-50'
+ddadd106 add '-5E5' 0 -> '-500000'
+ddadd107 add '-5E15' 0 -> '-5000000000000000'
+ddadd108 add '-5E16' 0 -> '-5.000000000000000E+16' Rounded
+ddadd109 add '-5E17' 0 -> '-5.000000000000000E+17' Rounded
+ddadd110 add '-5E18' 0 -> '-5.000000000000000E+18' Rounded
+ddadd111 add '-5E100' 0 -> '-5.000000000000000E+100' Rounded
+
+-- more RHS swaps
+ddadd113 add 0 '-56267E-10' -> '-0.0000056267'
+ddadd114 add 0 '-56267E-6' -> '-0.056267'
+ddadd116 add 0 '-56267E-5' -> '-0.56267'
+ddadd117 add 0 '-56267E-4' -> '-5.6267'
+ddadd119 add 0 '-56267E-3' -> '-56.267'
+ddadd120 add 0 '-56267E-2' -> '-562.67'
+ddadd121 add 0 '-56267E-1' -> '-5626.7'
+ddadd122 add 0 '-56267E-0' -> '-56267'
+ddadd123 add 0 '-5E-10' -> '-5E-10'
+ddadd124 add 0 '-5E-7' -> '-5E-7'
+ddadd125 add 0 '-5E-6' -> '-0.000005'
+ddadd126 add 0 '-5E-5' -> '-0.00005'
+ddadd127 add 0 '-5E-4' -> '-0.0005'
+ddadd128 add 0 '-5E-1' -> '-0.5'
+ddadd129 add 0 '-5E0' -> '-5'
+ddadd130 add 0 '-5E1' -> '-50'
+ddadd131 add 0 '-5E5' -> '-500000'
+ddadd132 add 0 '-5E15' -> '-5000000000000000'
+ddadd133 add 0 '-5E16' -> '-5.000000000000000E+16' Rounded
+ddadd134 add 0 '-5E17' -> '-5.000000000000000E+17' Rounded
+ddadd135 add 0 '-5E18' -> '-5.000000000000000E+18' Rounded
+ddadd136 add 0 '-5E100' -> '-5.000000000000000E+100' Rounded
+
+-- related
+ddadd137 add 1 '0E-19' -> '1.000000000000000' Rounded
+ddadd138 add -1 '0E-19' -> '-1.000000000000000' Rounded
+ddadd139 add '0E-19' 1 -> '1.000000000000000' Rounded
+ddadd140 add '0E-19' -1 -> '-1.000000000000000' Rounded
+ddadd141 add 1E+11 0.0000 -> '100000000000.0000'
+ddadd142 add 1E+11 0.00000 -> '100000000000.0000' Rounded
+ddadd143 add 0.000 1E+12 -> '1000000000000.000'
+ddadd144 add 0.0000 1E+12 -> '1000000000000.000' Rounded
+
+-- [some of the next group are really constructor tests]
+ddadd146 add '00.0' 0 -> '0.0'
+ddadd147 add '0.00' 0 -> '0.00'
+ddadd148 add 0 '0.00' -> '0.00'
+ddadd149 add 0 '00.0' -> '0.0'
+ddadd150 add '00.0' '0.00' -> '0.00'
+ddadd151 add '0.00' '00.0' -> '0.00'
+ddadd152 add '3' '.3' -> '3.3'
+ddadd153 add '3.' '.3' -> '3.3'
+ddadd154 add '3.0' '.3' -> '3.3'
+ddadd155 add '3.00' '.3' -> '3.30'
+ddadd156 add '3' '3' -> '6'
+ddadd157 add '3' '+3' -> '6'
+ddadd158 add '3' '-3' -> '0'
+ddadd159 add '0.3' '-0.3' -> '0.0'
+ddadd160 add '0.03' '-0.03' -> '0.00'
+
+-- try borderline precision, with carries, etc.
+ddadd161 add '1E+12' '-1' -> '999999999999'
+ddadd162 add '1E+12' '1.11' -> '1000000000001.11'
+ddadd163 add '1.11' '1E+12' -> '1000000000001.11'
+ddadd164 add '-1' '1E+12' -> '999999999999'
+ddadd165 add '7E+12' '-1' -> '6999999999999'
+ddadd166 add '7E+12' '1.11' -> '7000000000001.11'
+ddadd167 add '1.11' '7E+12' -> '7000000000001.11'
+ddadd168 add '-1' '7E+12' -> '6999999999999'
+
+rounding: half_up
+-- 1.234567890123456 1234567890123456 1 234567890123456
+ddadd170 add '4.444444444444444' '0.5555555555555567' -> '5.000000000000001' Inexact Rounded
+ddadd171 add '4.444444444444444' '0.5555555555555566' -> '5.000000000000001' Inexact Rounded
+ddadd172 add '4.444444444444444' '0.5555555555555565' -> '5.000000000000001' Inexact Rounded
+ddadd173 add '4.444444444444444' '0.5555555555555564' -> '5.000000000000000' Inexact Rounded
+ddadd174 add '4.444444444444444' '0.5555555555555553' -> '4.999999999999999' Inexact Rounded
+ddadd175 add '4.444444444444444' '0.5555555555555552' -> '4.999999999999999' Inexact Rounded
+ddadd176 add '4.444444444444444' '0.5555555555555551' -> '4.999999999999999' Inexact Rounded
+ddadd177 add '4.444444444444444' '0.5555555555555550' -> '4.999999999999999' Rounded
+ddadd178 add '4.444444444444444' '0.5555555555555545' -> '4.999999999999999' Inexact Rounded
+ddadd179 add '4.444444444444444' '0.5555555555555544' -> '4.999999999999998' Inexact Rounded
+ddadd180 add '4.444444444444444' '0.5555555555555543' -> '4.999999999999998' Inexact Rounded
+ddadd181 add '4.444444444444444' '0.5555555555555542' -> '4.999999999999998' Inexact Rounded
+ddadd182 add '4.444444444444444' '0.5555555555555541' -> '4.999999999999998' Inexact Rounded
+ddadd183 add '4.444444444444444' '0.5555555555555540' -> '4.999999999999998' Rounded
+
+-- and some more, including residue effects and different roundings
+rounding: half_up
+ddadd200 add '1234560123456789' 0 -> '1234560123456789'
+ddadd201 add '1234560123456789' 0.000000001 -> '1234560123456789' Inexact Rounded
+ddadd202 add '1234560123456789' 0.000001 -> '1234560123456789' Inexact Rounded
+ddadd203 add '1234560123456789' 0.1 -> '1234560123456789' Inexact Rounded
+ddadd204 add '1234560123456789' 0.4 -> '1234560123456789' Inexact Rounded
+ddadd205 add '1234560123456789' 0.49 -> '1234560123456789' Inexact Rounded
+ddadd206 add '1234560123456789' 0.499999 -> '1234560123456789' Inexact Rounded
+ddadd207 add '1234560123456789' 0.499999999 -> '1234560123456789' Inexact Rounded
+ddadd208 add '1234560123456789' 0.5 -> '1234560123456790' Inexact Rounded
+ddadd209 add '1234560123456789' 0.500000001 -> '1234560123456790' Inexact Rounded
+ddadd210 add '1234560123456789' 0.500001 -> '1234560123456790' Inexact Rounded
+ddadd211 add '1234560123456789' 0.51 -> '1234560123456790' Inexact Rounded
+ddadd212 add '1234560123456789' 0.6 -> '1234560123456790' Inexact Rounded
+ddadd213 add '1234560123456789' 0.9 -> '1234560123456790' Inexact Rounded
+ddadd214 add '1234560123456789' 0.99999 -> '1234560123456790' Inexact Rounded
+ddadd215 add '1234560123456789' 0.999999999 -> '1234560123456790' Inexact Rounded
+ddadd216 add '1234560123456789' 1 -> '1234560123456790'
+ddadd217 add '1234560123456789' 1.000000001 -> '1234560123456790' Inexact Rounded
+ddadd218 add '1234560123456789' 1.00001 -> '1234560123456790' Inexact Rounded
+ddadd219 add '1234560123456789' 1.1 -> '1234560123456790' Inexact Rounded
+
+rounding: half_even
+ddadd220 add '1234560123456789' 0 -> '1234560123456789'
+ddadd221 add '1234560123456789' 0.000000001 -> '1234560123456789' Inexact Rounded
+ddadd222 add '1234560123456789' 0.000001 -> '1234560123456789' Inexact Rounded
+ddadd223 add '1234560123456789' 0.1 -> '1234560123456789' Inexact Rounded
+ddadd224 add '1234560123456789' 0.4 -> '1234560123456789' Inexact Rounded
+ddadd225 add '1234560123456789' 0.49 -> '1234560123456789' Inexact Rounded
+ddadd226 add '1234560123456789' 0.499999 -> '1234560123456789' Inexact Rounded
+ddadd227 add '1234560123456789' 0.499999999 -> '1234560123456789' Inexact Rounded
+ddadd228 add '1234560123456789' 0.5 -> '1234560123456790' Inexact Rounded
+ddadd229 add '1234560123456789' 0.500000001 -> '1234560123456790' Inexact Rounded
+ddadd230 add '1234560123456789' 0.500001 -> '1234560123456790' Inexact Rounded
+ddadd231 add '1234560123456789' 0.51 -> '1234560123456790' Inexact Rounded
+ddadd232 add '1234560123456789' 0.6 -> '1234560123456790' Inexact Rounded
+ddadd233 add '1234560123456789' 0.9 -> '1234560123456790' Inexact Rounded
+ddadd234 add '1234560123456789' 0.99999 -> '1234560123456790' Inexact Rounded
+ddadd235 add '1234560123456789' 0.999999999 -> '1234560123456790' Inexact Rounded
+ddadd236 add '1234560123456789' 1 -> '1234560123456790'
+ddadd237 add '1234560123456789' 1.00000001 -> '1234560123456790' Inexact Rounded
+ddadd238 add '1234560123456789' 1.00001 -> '1234560123456790' Inexact Rounded
+ddadd239 add '1234560123456789' 1.1 -> '1234560123456790' Inexact Rounded
+-- critical few with even bottom digit...
+ddadd240 add '1234560123456788' 0.499999999 -> '1234560123456788' Inexact Rounded
+ddadd241 add '1234560123456788' 0.5 -> '1234560123456788' Inexact Rounded
+ddadd242 add '1234560123456788' 0.500000001 -> '1234560123456789' Inexact Rounded
+
+rounding: down
+ddadd250 add '1234560123456789' 0 -> '1234560123456789'
+ddadd251 add '1234560123456789' 0.000000001 -> '1234560123456789' Inexact Rounded
+ddadd252 add '1234560123456789' 0.000001 -> '1234560123456789' Inexact Rounded
+ddadd253 add '1234560123456789' 0.1 -> '1234560123456789' Inexact Rounded
+ddadd254 add '1234560123456789' 0.4 -> '1234560123456789' Inexact Rounded
+ddadd255 add '1234560123456789' 0.49 -> '1234560123456789' Inexact Rounded
+ddadd256 add '1234560123456789' 0.499999 -> '1234560123456789' Inexact Rounded
+ddadd257 add '1234560123456789' 0.499999999 -> '1234560123456789' Inexact Rounded
+ddadd258 add '1234560123456789' 0.5 -> '1234560123456789' Inexact Rounded
+ddadd259 add '1234560123456789' 0.500000001 -> '1234560123456789' Inexact Rounded
+ddadd260 add '1234560123456789' 0.500001 -> '1234560123456789' Inexact Rounded
+ddadd261 add '1234560123456789' 0.51 -> '1234560123456789' Inexact Rounded
+ddadd262 add '1234560123456789' 0.6 -> '1234560123456789' Inexact Rounded
+ddadd263 add '1234560123456789' 0.9 -> '1234560123456789' Inexact Rounded
+ddadd264 add '1234560123456789' 0.99999 -> '1234560123456789' Inexact Rounded
+ddadd265 add '1234560123456789' 0.999999999 -> '1234560123456789' Inexact Rounded
+ddadd266 add '1234560123456789' 1 -> '1234560123456790'
+ddadd267 add '1234560123456789' 1.00000001 -> '1234560123456790' Inexact Rounded
+ddadd268 add '1234560123456789' 1.00001 -> '1234560123456790' Inexact Rounded
+ddadd269 add '1234560123456789' 1.1 -> '1234560123456790' Inexact Rounded
+
+-- 1 in last place tests
+rounding: half_up
+ddadd301 add -1 1 -> 0
+ddadd302 add 0 1 -> 1
+ddadd303 add 1 1 -> 2
+ddadd304 add 12 1 -> 13
+ddadd305 add 98 1 -> 99
+ddadd306 add 99 1 -> 100
+ddadd307 add 100 1 -> 101
+ddadd308 add 101 1 -> 102
+ddadd309 add -1 -1 -> -2
+ddadd310 add 0 -1 -> -1
+ddadd311 add 1 -1 -> 0
+ddadd312 add 12 -1 -> 11
+ddadd313 add 98 -1 -> 97
+ddadd314 add 99 -1 -> 98
+ddadd315 add 100 -1 -> 99
+ddadd316 add 101 -1 -> 100
+
+ddadd321 add -0.01 0.01 -> 0.00
+ddadd322 add 0.00 0.01 -> 0.01
+ddadd323 add 0.01 0.01 -> 0.02
+ddadd324 add 0.12 0.01 -> 0.13
+ddadd325 add 0.98 0.01 -> 0.99
+ddadd326 add 0.99 0.01 -> 1.00
+ddadd327 add 1.00 0.01 -> 1.01
+ddadd328 add 1.01 0.01 -> 1.02
+ddadd329 add -0.01 -0.01 -> -0.02
+ddadd330 add 0.00 -0.01 -> -0.01
+ddadd331 add 0.01 -0.01 -> 0.00
+ddadd332 add 0.12 -0.01 -> 0.11
+ddadd333 add 0.98 -0.01 -> 0.97
+ddadd334 add 0.99 -0.01 -> 0.98
+ddadd335 add 1.00 -0.01 -> 0.99
+ddadd336 add 1.01 -0.01 -> 1.00
+
+-- some more cases where adding 0 affects the coefficient
+ddadd340 add 1E+3 0 -> 1000
+ddadd341 add 1E+15 0 -> 1000000000000000
+ddadd342 add 1E+16 0 -> 1.000000000000000E+16 Rounded
+ddadd343 add 1E+20 0 -> 1.000000000000000E+20 Rounded
+-- which simply follow from these cases ...
+ddadd344 add 1E+3 1 -> 1001
+ddadd345 add 1E+15 1 -> 1000000000000001
+ddadd346 add 1E+16 1 -> 1.000000000000000E+16 Inexact Rounded
+ddadd347 add 1E+20 1 -> 1.000000000000000E+20 Inexact Rounded
+ddadd348 add 1E+3 7 -> 1007
+ddadd349 add 1E+15 7 -> 1000000000000007
+ddadd350 add 1E+16 7 -> 1.000000000000001E+16 Inexact Rounded
+ddadd351 add 1E+20 7 -> 1.000000000000000E+20 Inexact Rounded
+
+-- tryzeros cases
+rounding: half_up
+ddadd360 add 0E+50 10000E+1 -> 1.0000E+5
+ddadd361 add 0E-50 10000E+1 -> 100000.0000000000 Rounded
+ddadd362 add 10000E+1 0E-50 -> 100000.0000000000 Rounded
+ddadd363 add 10000E+1 10000E-50 -> 100000.0000000000 Rounded Inexact
+ddadd364 add 9.999999999999999E+384 -9.999999999999999E+384 -> 0E+369
+
+-- a curiosity from JSR 13 testing
+rounding: half_down
+ddadd370 add 999999999999999 815 -> 1000000000000814
+ddadd371 add 9999999999999999 815 -> 1.000000000000081E+16 Rounded Inexact
+rounding: half_up
+ddadd372 add 999999999999999 815 -> 1000000000000814
+ddadd373 add 9999999999999999 815 -> 1.000000000000081E+16 Rounded Inexact
+rounding: half_even
+ddadd374 add 999999999999999 815 -> 1000000000000814
+ddadd375 add 9999999999999999 815 -> 1.000000000000081E+16 Rounded Inexact
+
+-- operands folded
+ddadd380 add 1E+384 1E+384 -> 2.000000000000000E+384 Clamped
+ddadd381 add 1E+380 1E+380 -> 2.00000000000E+380 Clamped
+ddadd382 add 1E+376 1E+376 -> 2.0000000E+376 Clamped
+ddadd383 add 1E+372 1E+372 -> 2.000E+372 Clamped
+ddadd384 add 1E+370 1E+370 -> 2.0E+370 Clamped
+ddadd385 add 1E+369 1E+369 -> 2E+369
+ddadd386 add 1E+368 1E+368 -> 2E+368
+
+-- ulp replacement tests
+ddadd400 add 1 77e-14 -> 1.00000000000077
+ddadd401 add 1 77e-15 -> 1.000000000000077
+ddadd402 add 1 77e-16 -> 1.000000000000008 Inexact Rounded
+ddadd403 add 1 77e-17 -> 1.000000000000001 Inexact Rounded
+ddadd404 add 1 77e-18 -> 1.000000000000000 Inexact Rounded
+ddadd405 add 1 77e-19 -> 1.000000000000000 Inexact Rounded
+ddadd406 add 1 77e-299 -> 1.000000000000000 Inexact Rounded
+
+ddadd410 add 10 77e-14 -> 10.00000000000077
+ddadd411 add 10 77e-15 -> 10.00000000000008 Inexact Rounded
+ddadd412 add 10 77e-16 -> 10.00000000000001 Inexact Rounded
+ddadd413 add 10 77e-17 -> 10.00000000000000 Inexact Rounded
+ddadd414 add 10 77e-18 -> 10.00000000000000 Inexact Rounded
+ddadd415 add 10 77e-19 -> 10.00000000000000 Inexact Rounded
+ddadd416 add 10 77e-299 -> 10.00000000000000 Inexact Rounded
+
+ddadd420 add 77e-14 1 -> 1.00000000000077
+ddadd421 add 77e-15 1 -> 1.000000000000077
+ddadd422 add 77e-16 1 -> 1.000000000000008 Inexact Rounded
+ddadd423 add 77e-17 1 -> 1.000000000000001 Inexact Rounded
+ddadd424 add 77e-18 1 -> 1.000000000000000 Inexact Rounded
+ddadd425 add 77e-19 1 -> 1.000000000000000 Inexact Rounded
+ddadd426 add 77e-299 1 -> 1.000000000000000 Inexact Rounded
+
+ddadd430 add 77e-14 10 -> 10.00000000000077
+ddadd431 add 77e-15 10 -> 10.00000000000008 Inexact Rounded
+ddadd432 add 77e-16 10 -> 10.00000000000001 Inexact Rounded
+ddadd433 add 77e-17 10 -> 10.00000000000000 Inexact Rounded
+ddadd434 add 77e-18 10 -> 10.00000000000000 Inexact Rounded
+ddadd435 add 77e-19 10 -> 10.00000000000000 Inexact Rounded
+ddadd436 add 77e-299 10 -> 10.00000000000000 Inexact Rounded
+
+-- negative ulps
+ddadd6440 add 1 -77e-14 -> 0.99999999999923
+ddadd6441 add 1 -77e-15 -> 0.999999999999923
+ddadd6442 add 1 -77e-16 -> 0.9999999999999923
+ddadd6443 add 1 -77e-17 -> 0.9999999999999992 Inexact Rounded
+ddadd6444 add 1 -77e-18 -> 0.9999999999999999 Inexact Rounded
+ddadd6445 add 1 -77e-19 -> 1.000000000000000 Inexact Rounded
+ddadd6446 add 1 -77e-99 -> 1.000000000000000 Inexact Rounded
+
+ddadd6450 add 10 -77e-14 -> 9.99999999999923
+ddadd6451 add 10 -77e-15 -> 9.999999999999923
+ddadd6452 add 10 -77e-16 -> 9.999999999999992 Inexact Rounded
+ddadd6453 add 10 -77e-17 -> 9.999999999999999 Inexact Rounded
+ddadd6454 add 10 -77e-18 -> 10.00000000000000 Inexact Rounded
+ddadd6455 add 10 -77e-19 -> 10.00000000000000 Inexact Rounded
+ddadd6456 add 10 -77e-99 -> 10.00000000000000 Inexact Rounded
+
+ddadd6460 add -77e-14 1 -> 0.99999999999923
+ddadd6461 add -77e-15 1 -> 0.999999999999923
+ddadd6462 add -77e-16 1 -> 0.9999999999999923
+ddadd6463 add -77e-17 1 -> 0.9999999999999992 Inexact Rounded
+ddadd6464 add -77e-18 1 -> 0.9999999999999999 Inexact Rounded
+ddadd6465 add -77e-19 1 -> 1.000000000000000 Inexact Rounded
+ddadd6466 add -77e-99 1 -> 1.000000000000000 Inexact Rounded
+
+ddadd6470 add -77e-14 10 -> 9.99999999999923
+ddadd6471 add -77e-15 10 -> 9.999999999999923
+ddadd6472 add -77e-16 10 -> 9.999999999999992 Inexact Rounded
+ddadd6473 add -77e-17 10 -> 9.999999999999999 Inexact Rounded
+ddadd6474 add -77e-18 10 -> 10.00000000000000 Inexact Rounded
+ddadd6475 add -77e-19 10 -> 10.00000000000000 Inexact Rounded
+ddadd6476 add -77e-99 10 -> 10.00000000000000 Inexact Rounded
+
+-- negative ulps
+ddadd6480 add -1 77e-14 -> -0.99999999999923
+ddadd6481 add -1 77e-15 -> -0.999999999999923
+ddadd6482 add -1 77e-16 -> -0.9999999999999923
+ddadd6483 add -1 77e-17 -> -0.9999999999999992 Inexact Rounded
+ddadd6484 add -1 77e-18 -> -0.9999999999999999 Inexact Rounded
+ddadd6485 add -1 77e-19 -> -1.000000000000000 Inexact Rounded
+ddadd6486 add -1 77e-99 -> -1.000000000000000 Inexact Rounded
+
+ddadd6490 add -10 77e-14 -> -9.99999999999923
+ddadd6491 add -10 77e-15 -> -9.999999999999923
+ddadd6492 add -10 77e-16 -> -9.999999999999992 Inexact Rounded
+ddadd6493 add -10 77e-17 -> -9.999999999999999 Inexact Rounded
+ddadd6494 add -10 77e-18 -> -10.00000000000000 Inexact Rounded
+ddadd6495 add -10 77e-19 -> -10.00000000000000 Inexact Rounded
+ddadd6496 add -10 77e-99 -> -10.00000000000000 Inexact Rounded
+
+ddadd6500 add 77e-14 -1 -> -0.99999999999923
+ddadd6501 add 77e-15 -1 -> -0.999999999999923
+ddadd6502 add 77e-16 -1 -> -0.9999999999999923
+ddadd6503 add 77e-17 -1 -> -0.9999999999999992 Inexact Rounded
+ddadd6504 add 77e-18 -1 -> -0.9999999999999999 Inexact Rounded
+ddadd6505 add 77e-19 -1 -> -1.000000000000000 Inexact Rounded
+ddadd6506 add 77e-99 -1 -> -1.000000000000000 Inexact Rounded
+
+ddadd6510 add 77e-14 -10 -> -9.99999999999923
+ddadd6511 add 77e-15 -10 -> -9.999999999999923
+ddadd6512 add 77e-16 -10 -> -9.999999999999992 Inexact Rounded
+ddadd6513 add 77e-17 -10 -> -9.999999999999999 Inexact Rounded
+ddadd6514 add 77e-18 -10 -> -10.00000000000000 Inexact Rounded
+ddadd6515 add 77e-19 -10 -> -10.00000000000000 Inexact Rounded
+ddadd6516 add 77e-99 -10 -> -10.00000000000000 Inexact Rounded
+
+-- and some more residue effects and different roundings
+rounding: half_up
+ddadd6540 add '6543210123456789' 0 -> '6543210123456789'
+ddadd6541 add '6543210123456789' 0.000000001 -> '6543210123456789' Inexact Rounded
+ddadd6542 add '6543210123456789' 0.000001 -> '6543210123456789' Inexact Rounded
+ddadd6543 add '6543210123456789' 0.1 -> '6543210123456789' Inexact Rounded
+ddadd6544 add '6543210123456789' 0.4 -> '6543210123456789' Inexact Rounded
+ddadd6545 add '6543210123456789' 0.49 -> '6543210123456789' Inexact Rounded
+ddadd6546 add '6543210123456789' 0.499999 -> '6543210123456789' Inexact Rounded
+ddadd6547 add '6543210123456789' 0.499999999 -> '6543210123456789' Inexact Rounded
+ddadd6548 add '6543210123456789' 0.5 -> '6543210123456790' Inexact Rounded
+ddadd6549 add '6543210123456789' 0.500000001 -> '6543210123456790' Inexact Rounded
+ddadd6550 add '6543210123456789' 0.500001 -> '6543210123456790' Inexact Rounded
+ddadd6551 add '6543210123456789' 0.51 -> '6543210123456790' Inexact Rounded
+ddadd6552 add '6543210123456789' 0.6 -> '6543210123456790' Inexact Rounded
+ddadd6553 add '6543210123456789' 0.9 -> '6543210123456790' Inexact Rounded
+ddadd6554 add '6543210123456789' 0.99999 -> '6543210123456790' Inexact Rounded
+ddadd6555 add '6543210123456789' 0.999999999 -> '6543210123456790' Inexact Rounded
+ddadd6556 add '6543210123456789' 1 -> '6543210123456790'
+ddadd6557 add '6543210123456789' 1.000000001 -> '6543210123456790' Inexact Rounded
+ddadd6558 add '6543210123456789' 1.00001 -> '6543210123456790' Inexact Rounded
+ddadd6559 add '6543210123456789' 1.1 -> '6543210123456790' Inexact Rounded
+
+rounding: half_even
+ddadd6560 add '6543210123456789' 0 -> '6543210123456789'
+ddadd6561 add '6543210123456789' 0.000000001 -> '6543210123456789' Inexact Rounded
+ddadd6562 add '6543210123456789' 0.000001 -> '6543210123456789' Inexact Rounded
+ddadd6563 add '6543210123456789' 0.1 -> '6543210123456789' Inexact Rounded
+ddadd6564 add '6543210123456789' 0.4 -> '6543210123456789' Inexact Rounded
+ddadd6565 add '6543210123456789' 0.49 -> '6543210123456789' Inexact Rounded
+ddadd6566 add '6543210123456789' 0.499999 -> '6543210123456789' Inexact Rounded
+ddadd6567 add '6543210123456789' 0.499999999 -> '6543210123456789' Inexact Rounded
+ddadd6568 add '6543210123456789' 0.5 -> '6543210123456790' Inexact Rounded
+ddadd6569 add '6543210123456789' 0.500000001 -> '6543210123456790' Inexact Rounded
+ddadd6570 add '6543210123456789' 0.500001 -> '6543210123456790' Inexact Rounded
+ddadd6571 add '6543210123456789' 0.51 -> '6543210123456790' Inexact Rounded
+ddadd6572 add '6543210123456789' 0.6 -> '6543210123456790' Inexact Rounded
+ddadd6573 add '6543210123456789' 0.9 -> '6543210123456790' Inexact Rounded
+ddadd6574 add '6543210123456789' 0.99999 -> '6543210123456790' Inexact Rounded
+ddadd6575 add '6543210123456789' 0.999999999 -> '6543210123456790' Inexact Rounded
+ddadd6576 add '6543210123456789' 1 -> '6543210123456790'
+ddadd6577 add '6543210123456789' 1.00000001 -> '6543210123456790' Inexact Rounded
+ddadd6578 add '6543210123456789' 1.00001 -> '6543210123456790' Inexact Rounded
+ddadd6579 add '6543210123456789' 1.1 -> '6543210123456790' Inexact Rounded
+
+-- critical few with even bottom digit...
+ddadd7540 add '6543210123456788' 0.499999999 -> '6543210123456788' Inexact Rounded
+ddadd7541 add '6543210123456788' 0.5 -> '6543210123456788' Inexact Rounded
+ddadd7542 add '6543210123456788' 0.500000001 -> '6543210123456789' Inexact Rounded
+
+rounding: down
+ddadd7550 add '6543210123456789' 0 -> '6543210123456789'
+ddadd7551 add '6543210123456789' 0.000000001 -> '6543210123456789' Inexact Rounded
+ddadd7552 add '6543210123456789' 0.000001 -> '6543210123456789' Inexact Rounded
+ddadd7553 add '6543210123456789' 0.1 -> '6543210123456789' Inexact Rounded
+ddadd7554 add '6543210123456789' 0.4 -> '6543210123456789' Inexact Rounded
+ddadd7555 add '6543210123456789' 0.49 -> '6543210123456789' Inexact Rounded
+ddadd7556 add '6543210123456789' 0.499999 -> '6543210123456789' Inexact Rounded
+ddadd7557 add '6543210123456789' 0.499999999 -> '6543210123456789' Inexact Rounded
+ddadd7558 add '6543210123456789' 0.5 -> '6543210123456789' Inexact Rounded
+ddadd7559 add '6543210123456789' 0.500000001 -> '6543210123456789' Inexact Rounded
+ddadd7560 add '6543210123456789' 0.500001 -> '6543210123456789' Inexact Rounded
+ddadd7561 add '6543210123456789' 0.51 -> '6543210123456789' Inexact Rounded
+ddadd7562 add '6543210123456789' 0.6 -> '6543210123456789' Inexact Rounded
+ddadd7563 add '6543210123456789' 0.9 -> '6543210123456789' Inexact Rounded
+ddadd7564 add '6543210123456789' 0.99999 -> '6543210123456789' Inexact Rounded
+ddadd7565 add '6543210123456789' 0.999999999 -> '6543210123456789' Inexact Rounded
+ddadd7566 add '6543210123456789' 1 -> '6543210123456790'
+ddadd7567 add '6543210123456789' 1.00000001 -> '6543210123456790' Inexact Rounded
+ddadd7568 add '6543210123456789' 1.00001 -> '6543210123456790' Inexact Rounded
+ddadd7569 add '6543210123456789' 1.1 -> '6543210123456790' Inexact Rounded
+
+-- verify a query
+rounding: down
+ddadd7661 add 1e-398 9.000000000000000E+384 -> 9.000000000000000E+384 Inexact Rounded
+ddadd7662 add 0 9.000000000000000E+384 -> 9.000000000000000E+384 Rounded
+ddadd7663 add 1e-388 9.000000000000000E+374 -> 9.000000000000000E+374 Inexact Rounded
+ddadd7664 add 0 9.000000000000000E+374 -> 9.000000000000000E+374 Rounded
+
+-- more zeros, etc.
+rounding: half_even
+
+ddadd7701 add 5.00 1.00E-3 -> 5.00100
+ddadd7702 add 00.00 0.000 -> 0.000
+ddadd7703 add 00.00 0E-3 -> 0.000
+ddadd7704 add 0E-3 00.00 -> 0.000
+
+ddadd7710 add 0E+3 00.00 -> 0.00
+ddadd7711 add 0E+3 00.0 -> 0.0
+ddadd7712 add 0E+3 00. -> 0
+ddadd7713 add 0E+3 00.E+1 -> 0E+1
+ddadd7714 add 0E+3 00.E+2 -> 0E+2
+ddadd7715 add 0E+3 00.E+3 -> 0E+3
+ddadd7716 add 0E+3 00.E+4 -> 0E+3
+ddadd7717 add 0E+3 00.E+5 -> 0E+3
+ddadd7718 add 0E+3 -00.0 -> 0.0
+ddadd7719 add 0E+3 -00. -> 0
+ddadd7731 add 0E+3 -00.E+1 -> 0E+1
+
+ddadd7720 add 00.00 0E+3 -> 0.00
+ddadd7721 add 00.0 0E+3 -> 0.0
+ddadd7722 add 00. 0E+3 -> 0
+ddadd7723 add 00.E+1 0E+3 -> 0E+1
+ddadd7724 add 00.E+2 0E+3 -> 0E+2
+ddadd7725 add 00.E+3 0E+3 -> 0E+3
+ddadd7726 add 00.E+4 0E+3 -> 0E+3
+ddadd7727 add 00.E+5 0E+3 -> 0E+3
+ddadd7728 add -00.00 0E+3 -> 0.00
+ddadd7729 add -00.0 0E+3 -> 0.0
+ddadd7730 add -00. 0E+3 -> 0
+
+ddadd7732 add 0 0 -> 0
+ddadd7733 add 0 -0 -> 0
+ddadd7734 add -0 0 -> 0
+ddadd7735 add -0 -0 -> -0 -- IEEE 854 special case
+
+ddadd7736 add 1 -1 -> 0
+ddadd7737 add -1 -1 -> -2
+ddadd7738 add 1 1 -> 2
+ddadd7739 add -1 1 -> 0
+
+ddadd7741 add 0 -1 -> -1
+ddadd7742 add -0 -1 -> -1
+ddadd7743 add 0 1 -> 1
+ddadd7744 add -0 1 -> 1
+ddadd7745 add -1 0 -> -1
+ddadd7746 add -1 -0 -> -1
+ddadd7747 add 1 0 -> 1
+ddadd7748 add 1 -0 -> 1
+
+ddadd7751 add 0.0 -1 -> -1.0
+ddadd7752 add -0.0 -1 -> -1.0
+ddadd7753 add 0.0 1 -> 1.0
+ddadd7754 add -0.0 1 -> 1.0
+ddadd7755 add -1.0 0 -> -1.0
+ddadd7756 add -1.0 -0 -> -1.0
+ddadd7757 add 1.0 0 -> 1.0
+ddadd7758 add 1.0 -0 -> 1.0
+
+ddadd7761 add 0 -1.0 -> -1.0
+ddadd7762 add -0 -1.0 -> -1.0
+ddadd7763 add 0 1.0 -> 1.0
+ddadd7764 add -0 1.0 -> 1.0
+ddadd7765 add -1 0.0 -> -1.0
+ddadd7766 add -1 -0.0 -> -1.0
+ddadd7767 add 1 0.0 -> 1.0
+ddadd7768 add 1 -0.0 -> 1.0
+
+ddadd7771 add 0.0 -1.0 -> -1.0
+ddadd7772 add -0.0 -1.0 -> -1.0
+ddadd7773 add 0.0 1.0 -> 1.0
+ddadd7774 add -0.0 1.0 -> 1.0
+ddadd7775 add -1.0 0.0 -> -1.0
+ddadd7776 add -1.0 -0.0 -> -1.0
+ddadd7777 add 1.0 0.0 -> 1.0
+ddadd7778 add 1.0 -0.0 -> 1.0
+
+-- Specials
+ddadd7780 add -Inf -Inf -> -Infinity
+ddadd7781 add -Inf -1000 -> -Infinity
+ddadd7782 add -Inf -1 -> -Infinity
+ddadd7783 add -Inf -0 -> -Infinity
+ddadd7784 add -Inf 0 -> -Infinity
+ddadd7785 add -Inf 1 -> -Infinity
+ddadd7786 add -Inf 1000 -> -Infinity
+ddadd7787 add -1000 -Inf -> -Infinity
+ddadd7788 add -Inf -Inf -> -Infinity
+ddadd7789 add -1 -Inf -> -Infinity
+ddadd7790 add -0 -Inf -> -Infinity
+ddadd7791 add 0 -Inf -> -Infinity
+ddadd7792 add 1 -Inf -> -Infinity
+ddadd7793 add 1000 -Inf -> -Infinity
+ddadd7794 add Inf -Inf -> NaN Invalid_operation
+
+ddadd7800 add Inf -Inf -> NaN Invalid_operation
+ddadd7801 add Inf -1000 -> Infinity
+ddadd7802 add Inf -1 -> Infinity
+ddadd7803 add Inf -0 -> Infinity
+ddadd7804 add Inf 0 -> Infinity
+ddadd7805 add Inf 1 -> Infinity
+ddadd7806 add Inf 1000 -> Infinity
+ddadd7807 add Inf Inf -> Infinity
+ddadd7808 add -1000 Inf -> Infinity
+ddadd7809 add -Inf Inf -> NaN Invalid_operation
+ddadd7810 add -1 Inf -> Infinity
+ddadd7811 add -0 Inf -> Infinity
+ddadd7812 add 0 Inf -> Infinity
+ddadd7813 add 1 Inf -> Infinity
+ddadd7814 add 1000 Inf -> Infinity
+ddadd7815 add Inf Inf -> Infinity
+
+ddadd7821 add NaN -Inf -> NaN
+ddadd7822 add NaN -1000 -> NaN
+ddadd7823 add NaN -1 -> NaN
+ddadd7824 add NaN -0 -> NaN
+ddadd7825 add NaN 0 -> NaN
+ddadd7826 add NaN 1 -> NaN
+ddadd7827 add NaN 1000 -> NaN
+ddadd7828 add NaN Inf -> NaN
+ddadd7829 add NaN NaN -> NaN
+ddadd7830 add -Inf NaN -> NaN
+ddadd7831 add -1000 NaN -> NaN
+ddadd7832 add -1 NaN -> NaN
+ddadd7833 add -0 NaN -> NaN
+ddadd7834 add 0 NaN -> NaN
+ddadd7835 add 1 NaN -> NaN
+ddadd7836 add 1000 NaN -> NaN
+ddadd7837 add Inf NaN -> NaN
+
+ddadd7841 add sNaN -Inf -> NaN Invalid_operation
+ddadd7842 add sNaN -1000 -> NaN Invalid_operation
+ddadd7843 add sNaN -1 -> NaN Invalid_operation
+ddadd7844 add sNaN -0 -> NaN Invalid_operation
+ddadd7845 add sNaN 0 -> NaN Invalid_operation
+ddadd7846 add sNaN 1 -> NaN Invalid_operation
+ddadd7847 add sNaN 1000 -> NaN Invalid_operation
+ddadd7848 add sNaN NaN -> NaN Invalid_operation
+ddadd7849 add sNaN sNaN -> NaN Invalid_operation
+ddadd7850 add NaN sNaN -> NaN Invalid_operation
+ddadd7851 add -Inf sNaN -> NaN Invalid_operation
+ddadd7852 add -1000 sNaN -> NaN Invalid_operation
+ddadd7853 add -1 sNaN -> NaN Invalid_operation
+ddadd7854 add -0 sNaN -> NaN Invalid_operation
+ddadd7855 add 0 sNaN -> NaN Invalid_operation
+ddadd7856 add 1 sNaN -> NaN Invalid_operation
+ddadd7857 add 1000 sNaN -> NaN Invalid_operation
+ddadd7858 add Inf sNaN -> NaN Invalid_operation
+ddadd7859 add NaN sNaN -> NaN Invalid_operation
+
+-- propagating NaNs
+ddadd7861 add NaN1 -Inf -> NaN1
+ddadd7862 add +NaN2 -1000 -> NaN2
+ddadd7863 add NaN3 1000 -> NaN3
+ddadd7864 add NaN4 Inf -> NaN4
+ddadd7865 add NaN5 +NaN6 -> NaN5
+ddadd7866 add -Inf NaN7 -> NaN7
+ddadd7867 add -1000 NaN8 -> NaN8
+ddadd7868 add 1000 NaN9 -> NaN9
+ddadd7869 add Inf +NaN10 -> NaN10
+ddadd7871 add sNaN11 -Inf -> NaN11 Invalid_operation
+ddadd7872 add sNaN12 -1000 -> NaN12 Invalid_operation
+ddadd7873 add sNaN13 1000 -> NaN13 Invalid_operation
+ddadd7874 add sNaN14 NaN17 -> NaN14 Invalid_operation
+ddadd7875 add sNaN15 sNaN18 -> NaN15 Invalid_operation
+ddadd7876 add NaN16 sNaN19 -> NaN19 Invalid_operation
+ddadd7877 add -Inf +sNaN20 -> NaN20 Invalid_operation
+ddadd7878 add -1000 sNaN21 -> NaN21 Invalid_operation
+ddadd7879 add 1000 sNaN22 -> NaN22 Invalid_operation
+ddadd7880 add Inf sNaN23 -> NaN23 Invalid_operation
+ddadd7881 add +NaN25 +sNaN24 -> NaN24 Invalid_operation
+ddadd7882 add -NaN26 NaN28 -> -NaN26
+ddadd7883 add -sNaN27 sNaN29 -> -NaN27 Invalid_operation
+ddadd7884 add 1000 -NaN30 -> -NaN30
+ddadd7885 add 1000 -sNaN31 -> -NaN31 Invalid_operation
+
+-- Here we explore near the boundary of rounding a subnormal to Nmin
+ddadd7575 add 1E-383 -1E-398 -> 9.99999999999999E-384 Subnormal
+ddadd7576 add -1E-383 +1E-398 -> -9.99999999999999E-384 Subnormal
+
+-- check overflow edge case
+-- 1234567890123456
+ddadd7972 apply 9.999999999999999E+384 -> 9.999999999999999E+384
+ddadd7973 add 9.999999999999999E+384 1 -> 9.999999999999999E+384 Inexact Rounded
+ddadd7974 add 9999999999999999E+369 1 -> 9.999999999999999E+384 Inexact Rounded
+ddadd7975 add 9999999999999999E+369 1E+369 -> Infinity Overflow Inexact Rounded
+ddadd7976 add 9999999999999999E+369 9E+368 -> Infinity Overflow Inexact Rounded
+ddadd7977 add 9999999999999999E+369 8E+368 -> Infinity Overflow Inexact Rounded
+ddadd7978 add 9999999999999999E+369 7E+368 -> Infinity Overflow Inexact Rounded
+ddadd7979 add 9999999999999999E+369 6E+368 -> Infinity Overflow Inexact Rounded
+ddadd7980 add 9999999999999999E+369 5E+368 -> Infinity Overflow Inexact Rounded
+ddadd7981 add 9999999999999999E+369 4E+368 -> 9.999999999999999E+384 Inexact Rounded
+ddadd7982 add 9999999999999999E+369 3E+368 -> 9.999999999999999E+384 Inexact Rounded
+ddadd7983 add 9999999999999999E+369 2E+368 -> 9.999999999999999E+384 Inexact Rounded
+ddadd7984 add 9999999999999999E+369 1E+368 -> 9.999999999999999E+384 Inexact Rounded
+
+ddadd7985 apply -9.999999999999999E+384 -> -9.999999999999999E+384
+ddadd7986 add -9.999999999999999E+384 -1 -> -9.999999999999999E+384 Inexact Rounded
+ddadd7987 add -9999999999999999E+369 -1 -> -9.999999999999999E+384 Inexact Rounded
+ddadd7988 add -9999999999999999E+369 -1E+369 -> -Infinity Overflow Inexact Rounded
+ddadd7989 add -9999999999999999E+369 -9E+368 -> -Infinity Overflow Inexact Rounded
+ddadd7990 add -9999999999999999E+369 -8E+368 -> -Infinity Overflow Inexact Rounded
+ddadd7991 add -9999999999999999E+369 -7E+368 -> -Infinity Overflow Inexact Rounded
+ddadd7992 add -9999999999999999E+369 -6E+368 -> -Infinity Overflow Inexact Rounded
+ddadd7993 add -9999999999999999E+369 -5E+368 -> -Infinity Overflow Inexact Rounded
+ddadd7994 add -9999999999999999E+369 -4E+368 -> -9.999999999999999E+384 Inexact Rounded
+ddadd7995 add -9999999999999999E+369 -3E+368 -> -9.999999999999999E+384 Inexact Rounded
+ddadd7996 add -9999999999999999E+369 -2E+368 -> -9.999999999999999E+384 Inexact Rounded
+ddadd7997 add -9999999999999999E+369 -1E+368 -> -9.999999999999999E+384 Inexact Rounded
+
+-- And for round down full and subnormal results
+rounding: down
+ddadd71100 add 1e+2 -1e-383 -> 99.99999999999999 Rounded Inexact
+ddadd71101 add 1e+1 -1e-383 -> 9.999999999999999 Rounded Inexact
+ddadd71103 add +1 -1e-383 -> 0.9999999999999999 Rounded Inexact
+ddadd71104 add 1e-1 -1e-383 -> 0.09999999999999999 Rounded Inexact
+ddadd71105 add 1e-2 -1e-383 -> 0.009999999999999999 Rounded Inexact
+ddadd71106 add 1e-3 -1e-383 -> 0.0009999999999999999 Rounded Inexact
+ddadd71107 add 1e-4 -1e-383 -> 0.00009999999999999999 Rounded Inexact
+ddadd71108 add 1e-5 -1e-383 -> 0.000009999999999999999 Rounded Inexact
+ddadd71109 add 1e-6 -1e-383 -> 9.999999999999999E-7 Rounded Inexact
+
+rounding: ceiling
+ddadd71110 add -1e+2 +1e-383 -> -99.99999999999999 Rounded Inexact
+ddadd71111 add -1e+1 +1e-383 -> -9.999999999999999 Rounded Inexact
+ddadd71113 add -1 +1e-383 -> -0.9999999999999999 Rounded Inexact
+ddadd71114 add -1e-1 +1e-383 -> -0.09999999999999999 Rounded Inexact
+ddadd71115 add -1e-2 +1e-383 -> -0.009999999999999999 Rounded Inexact
+ddadd71116 add -1e-3 +1e-383 -> -0.0009999999999999999 Rounded Inexact
+ddadd71117 add -1e-4 +1e-383 -> -0.00009999999999999999 Rounded Inexact
+ddadd71118 add -1e-5 +1e-383 -> -0.000009999999999999999 Rounded Inexact
+ddadd71119 add -1e-6 +1e-383 -> -9.999999999999999E-7 Rounded Inexact
+
+-- tests based on Gunnar Degnbol's edge case
+rounding: half_even
+
+ddadd71300 add 1E16 -0.5 -> 1.000000000000000E+16 Inexact Rounded
+ddadd71310 add 1E16 -0.51 -> 9999999999999999 Inexact Rounded
+ddadd71311 add 1E16 -0.501 -> 9999999999999999 Inexact Rounded
+ddadd71312 add 1E16 -0.5001 -> 9999999999999999 Inexact Rounded
+ddadd71313 add 1E16 -0.50001 -> 9999999999999999 Inexact Rounded
+ddadd71314 add 1E16 -0.500001 -> 9999999999999999 Inexact Rounded
+ddadd71315 add 1E16 -0.5000001 -> 9999999999999999 Inexact Rounded
+ddadd71316 add 1E16 -0.50000001 -> 9999999999999999 Inexact Rounded
+ddadd71317 add 1E16 -0.500000001 -> 9999999999999999 Inexact Rounded
+ddadd71318 add 1E16 -0.5000000001 -> 9999999999999999 Inexact Rounded
+ddadd71319 add 1E16 -0.50000000001 -> 9999999999999999 Inexact Rounded
+ddadd71320 add 1E16 -0.500000000001 -> 9999999999999999 Inexact Rounded
+ddadd71321 add 1E16 -0.5000000000001 -> 9999999999999999 Inexact Rounded
+ddadd71322 add 1E16 -0.50000000000001 -> 9999999999999999 Inexact Rounded
+ddadd71323 add 1E16 -0.500000000000001 -> 9999999999999999 Inexact Rounded
+ddadd71324 add 1E16 -0.5000000000000001 -> 9999999999999999 Inexact Rounded
+ddadd71325 add 1E16 -0.5000000000000000 -> 1.000000000000000E+16 Inexact Rounded
+ddadd71326 add 1E16 -0.500000000000000 -> 1.000000000000000E+16 Inexact Rounded
+ddadd71327 add 1E16 -0.50000000000000 -> 1.000000000000000E+16 Inexact Rounded
+ddadd71328 add 1E16 -0.5000000000000 -> 1.000000000000000E+16 Inexact Rounded
+ddadd71329 add 1E16 -0.500000000000 -> 1.000000000000000E+16 Inexact Rounded
+ddadd71330 add 1E16 -0.50000000000 -> 1.000000000000000E+16 Inexact Rounded
+ddadd71331 add 1E16 -0.5000000000 -> 1.000000000000000E+16 Inexact Rounded
+ddadd71332 add 1E16 -0.500000000 -> 1.000000000000000E+16 Inexact Rounded
+ddadd71333 add 1E16 -0.50000000 -> 1.000000000000000E+16 Inexact Rounded
+ddadd71334 add 1E16 -0.5000000 -> 1.000000000000000E+16 Inexact Rounded
+ddadd71335 add 1E16 -0.500000 -> 1.000000000000000E+16 Inexact Rounded
+ddadd71336 add 1E16 -0.50000 -> 1.000000000000000E+16 Inexact Rounded
+ddadd71337 add 1E16 -0.5000 -> 1.000000000000000E+16 Inexact Rounded
+ddadd71338 add 1E16 -0.500 -> 1.000000000000000E+16 Inexact Rounded
+ddadd71339 add 1E16 -0.50 -> 1.000000000000000E+16 Inexact Rounded
+
+ddadd71340 add 1E16 -5000000.000010001 -> 9999999995000000 Inexact Rounded
+ddadd71341 add 1E16 -5000000.000000001 -> 9999999995000000 Inexact Rounded
+
+ddadd71349 add 9999999999999999 0.4 -> 9999999999999999 Inexact Rounded
+ddadd71350 add 9999999999999999 0.49 -> 9999999999999999 Inexact Rounded
+ddadd71351 add 9999999999999999 0.499 -> 9999999999999999 Inexact Rounded
+ddadd71352 add 9999999999999999 0.4999 -> 9999999999999999 Inexact Rounded
+ddadd71353 add 9999999999999999 0.49999 -> 9999999999999999 Inexact Rounded
+ddadd71354 add 9999999999999999 0.499999 -> 9999999999999999 Inexact Rounded
+ddadd71355 add 9999999999999999 0.4999999 -> 9999999999999999 Inexact Rounded
+ddadd71356 add 9999999999999999 0.49999999 -> 9999999999999999 Inexact Rounded
+ddadd71357 add 9999999999999999 0.499999999 -> 9999999999999999 Inexact Rounded
+ddadd71358 add 9999999999999999 0.4999999999 -> 9999999999999999 Inexact Rounded
+ddadd71359 add 9999999999999999 0.49999999999 -> 9999999999999999 Inexact Rounded
+ddadd71360 add 9999999999999999 0.499999999999 -> 9999999999999999 Inexact Rounded
+ddadd71361 add 9999999999999999 0.4999999999999 -> 9999999999999999 Inexact Rounded
+ddadd71362 add 9999999999999999 0.49999999999999 -> 9999999999999999 Inexact Rounded
+ddadd71363 add 9999999999999999 0.499999999999999 -> 9999999999999999 Inexact Rounded
+ddadd71364 add 9999999999999999 0.4999999999999999 -> 9999999999999999 Inexact Rounded
+ddadd71365 add 9999999999999999 0.5000000000000000 -> 1.000000000000000E+16 Inexact Rounded
+ddadd71367 add 9999999999999999 0.500000000000000 -> 1.000000000000000E+16 Inexact Rounded
+ddadd71368 add 9999999999999999 0.50000000000000 -> 1.000000000000000E+16 Inexact Rounded
+ddadd71369 add 9999999999999999 0.5000000000000 -> 1.000000000000000E+16 Inexact Rounded
+ddadd71370 add 9999999999999999 0.500000000000 -> 1.000000000000000E+16 Inexact Rounded
+ddadd71371 add 9999999999999999 0.50000000000 -> 1.000000000000000E+16 Inexact Rounded
+ddadd71372 add 9999999999999999 0.5000000000 -> 1.000000000000000E+16 Inexact Rounded
+ddadd71373 add 9999999999999999 0.500000000 -> 1.000000000000000E+16 Inexact Rounded
+ddadd71374 add 9999999999999999 0.50000000 -> 1.000000000000000E+16 Inexact Rounded
+ddadd71375 add 9999999999999999 0.5000000 -> 1.000000000000000E+16 Inexact Rounded
+ddadd71376 add 9999999999999999 0.500000 -> 1.000000000000000E+16 Inexact Rounded
+ddadd71377 add 9999999999999999 0.50000 -> 1.000000000000000E+16 Inexact Rounded
+ddadd71378 add 9999999999999999 0.5000 -> 1.000000000000000E+16 Inexact Rounded
+ddadd71379 add 9999999999999999 0.500 -> 1.000000000000000E+16 Inexact Rounded
+ddadd71380 add 9999999999999999 0.50 -> 1.000000000000000E+16 Inexact Rounded
+ddadd71381 add 9999999999999999 0.5 -> 1.000000000000000E+16 Inexact Rounded
+ddadd71382 add 9999999999999999 0.5000000000000001 -> 1.000000000000000E+16 Inexact Rounded
+ddadd71383 add 9999999999999999 0.500000000000001 -> 1.000000000000000E+16 Inexact Rounded
+ddadd71384 add 9999999999999999 0.50000000000001 -> 1.000000000000000E+16 Inexact Rounded
+ddadd71385 add 9999999999999999 0.5000000000001 -> 1.000000000000000E+16 Inexact Rounded
+ddadd71386 add 9999999999999999 0.500000000001 -> 1.000000000000000E+16 Inexact Rounded
+ddadd71387 add 9999999999999999 0.50000000001 -> 1.000000000000000E+16 Inexact Rounded
+ddadd71388 add 9999999999999999 0.5000000001 -> 1.000000000000000E+16 Inexact Rounded
+ddadd71389 add 9999999999999999 0.500000001 -> 1.000000000000000E+16 Inexact Rounded
+ddadd71390 add 9999999999999999 0.50000001 -> 1.000000000000000E+16 Inexact Rounded
+ddadd71391 add 9999999999999999 0.5000001 -> 1.000000000000000E+16 Inexact Rounded
+ddadd71392 add 9999999999999999 0.500001 -> 1.000000000000000E+16 Inexact Rounded
+ddadd71393 add 9999999999999999 0.50001 -> 1.000000000000000E+16 Inexact Rounded
+ddadd71394 add 9999999999999999 0.5001 -> 1.000000000000000E+16 Inexact Rounded
+ddadd71395 add 9999999999999999 0.501 -> 1.000000000000000E+16 Inexact Rounded
+ddadd71396 add 9999999999999999 0.51 -> 1.000000000000000E+16 Inexact Rounded
+
+-- More GD edge cases, where difference between the unadjusted
+-- exponents is larger than the maximum precision and one side is 0
+ddadd71420 add 0 1.123456789012345 -> 1.123456789012345
+ddadd71421 add 0 1.123456789012345E-1 -> 0.1123456789012345
+ddadd71422 add 0 1.123456789012345E-2 -> 0.01123456789012345
+ddadd71423 add 0 1.123456789012345E-3 -> 0.001123456789012345
+ddadd71424 add 0 1.123456789012345E-4 -> 0.0001123456789012345
+ddadd71425 add 0 1.123456789012345E-5 -> 0.00001123456789012345
+ddadd71426 add 0 1.123456789012345E-6 -> 0.000001123456789012345
+ddadd71427 add 0 1.123456789012345E-7 -> 1.123456789012345E-7
+ddadd71428 add 0 1.123456789012345E-8 -> 1.123456789012345E-8
+ddadd71429 add 0 1.123456789012345E-9 -> 1.123456789012345E-9
+ddadd71430 add 0 1.123456789012345E-10 -> 1.123456789012345E-10
+ddadd71431 add 0 1.123456789012345E-11 -> 1.123456789012345E-11
+ddadd71432 add 0 1.123456789012345E-12 -> 1.123456789012345E-12
+ddadd71433 add 0 1.123456789012345E-13 -> 1.123456789012345E-13
+ddadd71434 add 0 1.123456789012345E-14 -> 1.123456789012345E-14
+ddadd71435 add 0 1.123456789012345E-15 -> 1.123456789012345E-15
+ddadd71436 add 0 1.123456789012345E-16 -> 1.123456789012345E-16
+ddadd71437 add 0 1.123456789012345E-17 -> 1.123456789012345E-17
+ddadd71438 add 0 1.123456789012345E-18 -> 1.123456789012345E-18
+ddadd71439 add 0 1.123456789012345E-19 -> 1.123456789012345E-19
+
+-- same, reversed 0
+ddadd71440 add 1.123456789012345 0 -> 1.123456789012345
+ddadd71441 add 1.123456789012345E-1 0 -> 0.1123456789012345
+ddadd71442 add 1.123456789012345E-2 0 -> 0.01123456789012345
+ddadd71443 add 1.123456789012345E-3 0 -> 0.001123456789012345
+ddadd71444 add 1.123456789012345E-4 0 -> 0.0001123456789012345
+ddadd71445 add 1.123456789012345E-5 0 -> 0.00001123456789012345
+ddadd71446 add 1.123456789012345E-6 0 -> 0.000001123456789012345
+ddadd71447 add 1.123456789012345E-7 0 -> 1.123456789012345E-7
+ddadd71448 add 1.123456789012345E-8 0 -> 1.123456789012345E-8
+ddadd71449 add 1.123456789012345E-9 0 -> 1.123456789012345E-9
+ddadd71450 add 1.123456789012345E-10 0 -> 1.123456789012345E-10
+ddadd71451 add 1.123456789012345E-11 0 -> 1.123456789012345E-11
+ddadd71452 add 1.123456789012345E-12 0 -> 1.123456789012345E-12
+ddadd71453 add 1.123456789012345E-13 0 -> 1.123456789012345E-13
+ddadd71454 add 1.123456789012345E-14 0 -> 1.123456789012345E-14
+ddadd71455 add 1.123456789012345E-15 0 -> 1.123456789012345E-15
+ddadd71456 add 1.123456789012345E-16 0 -> 1.123456789012345E-16
+ddadd71457 add 1.123456789012345E-17 0 -> 1.123456789012345E-17
+ddadd71458 add 1.123456789012345E-18 0 -> 1.123456789012345E-18
+ddadd71459 add 1.123456789012345E-19 0 -> 1.123456789012345E-19
+
+-- same, Es on the 0
+ddadd71460 add 1.123456789012345 0E-0 -> 1.123456789012345
+ddadd71461 add 1.123456789012345 0E-1 -> 1.123456789012345
+ddadd71462 add 1.123456789012345 0E-2 -> 1.123456789012345
+ddadd71463 add 1.123456789012345 0E-3 -> 1.123456789012345
+ddadd71464 add 1.123456789012345 0E-4 -> 1.123456789012345
+ddadd71465 add 1.123456789012345 0E-5 -> 1.123456789012345
+ddadd71466 add 1.123456789012345 0E-6 -> 1.123456789012345
+ddadd71467 add 1.123456789012345 0E-7 -> 1.123456789012345
+ddadd71468 add 1.123456789012345 0E-8 -> 1.123456789012345
+ddadd71469 add 1.123456789012345 0E-9 -> 1.123456789012345
+ddadd71470 add 1.123456789012345 0E-10 -> 1.123456789012345
+ddadd71471 add 1.123456789012345 0E-11 -> 1.123456789012345
+ddadd71472 add 1.123456789012345 0E-12 -> 1.123456789012345
+ddadd71473 add 1.123456789012345 0E-13 -> 1.123456789012345
+ddadd71474 add 1.123456789012345 0E-14 -> 1.123456789012345
+ddadd71475 add 1.123456789012345 0E-15 -> 1.123456789012345
+-- next four flag Rounded because the 0 extends the result
+ddadd71476 add 1.123456789012345 0E-16 -> 1.123456789012345 Rounded
+ddadd71477 add 1.123456789012345 0E-17 -> 1.123456789012345 Rounded
+ddadd71478 add 1.123456789012345 0E-18 -> 1.123456789012345 Rounded
+ddadd71479 add 1.123456789012345 0E-19 -> 1.123456789012345 Rounded
+
+-- sum of two opposite-sign operands is exactly 0 and floor => -0
+rounding: half_up
+-- exact zeros from zeros
+ddadd71500 add 0 0E-19 -> 0E-19
+ddadd71501 add -0 0E-19 -> 0E-19
+ddadd71502 add 0 -0E-19 -> 0E-19
+ddadd71503 add -0 -0E-19 -> -0E-19
+-- exact zeros from non-zeros
+ddadd71511 add -11 11 -> 0
+ddadd71512 add 11 -11 -> 0
+
+rounding: half_down
+-- exact zeros from zeros
+ddadd71520 add 0 0E-19 -> 0E-19
+ddadd71521 add -0 0E-19 -> 0E-19
+ddadd71522 add 0 -0E-19 -> 0E-19
+ddadd71523 add -0 -0E-19 -> -0E-19
+-- exact zeros from non-zeros
+ddadd71531 add -11 11 -> 0
+ddadd71532 add 11 -11 -> 0
+
+rounding: half_even
+-- exact zeros from zeros
+ddadd71540 add 0 0E-19 -> 0E-19
+ddadd71541 add -0 0E-19 -> 0E-19
+ddadd71542 add 0 -0E-19 -> 0E-19
+ddadd71543 add -0 -0E-19 -> -0E-19
+-- exact zeros from non-zeros
+ddadd71551 add -11 11 -> 0
+ddadd71552 add 11 -11 -> 0
+
+rounding: up
+-- exact zeros from zeros
+ddadd71560 add 0 0E-19 -> 0E-19
+ddadd71561 add -0 0E-19 -> 0E-19
+ddadd71562 add 0 -0E-19 -> 0E-19
+ddadd71563 add -0 -0E-19 -> -0E-19
+-- exact zeros from non-zeros
+ddadd71571 add -11 11 -> 0
+ddadd71572 add 11 -11 -> 0
+
+rounding: down
+-- exact zeros from zeros
+ddadd71580 add 0 0E-19 -> 0E-19
+ddadd71581 add -0 0E-19 -> 0E-19
+ddadd71582 add 0 -0E-19 -> 0E-19
+ddadd71583 add -0 -0E-19 -> -0E-19
+-- exact zeros from non-zeros
+ddadd71591 add -11 11 -> 0
+ddadd71592 add 11 -11 -> 0
+
+rounding: ceiling
+-- exact zeros from zeros
+ddadd71600 add 0 0E-19 -> 0E-19
+ddadd71601 add -0 0E-19 -> 0E-19
+ddadd71602 add 0 -0E-19 -> 0E-19
+ddadd71603 add -0 -0E-19 -> -0E-19
+-- exact zeros from non-zeros
+ddadd71611 add -11 11 -> 0
+ddadd71612 add 11 -11 -> 0
+
+-- and the extra-special ugly case; unusual minuses marked by -- *
+rounding: floor
+-- exact zeros from zeros
+ddadd71620 add 0 0E-19 -> 0E-19
+ddadd71621 add -0 0E-19 -> -0E-19 -- *
+ddadd71622 add 0 -0E-19 -> -0E-19 -- *
+ddadd71623 add -0 -0E-19 -> -0E-19
+-- exact zeros from non-zeros
+ddadd71631 add -11 11 -> -0 -- *
+ddadd71632 add 11 -11 -> -0 -- *
+
+-- Examples from SQL proposal (Krishna Kulkarni)
+ddadd71701 add 130E-2 120E-2 -> 2.50
+ddadd71702 add 130E-2 12E-1 -> 2.50
+ddadd71703 add 130E-2 1E0 -> 2.30
+ddadd71704 add 1E2 1E4 -> 1.01E+4
+ddadd71705 add 130E-2 -120E-2 -> 0.10
+ddadd71706 add 130E-2 -12E-1 -> 0.10
+ddadd71707 add 130E-2 -1E0 -> 0.30
+ddadd71708 add 1E2 -1E4 -> -9.9E+3
+
+-- Gappy coefficients; check residue handling even with full coefficient gap
+rounding: half_even
+
+ddadd75001 add 1234567890123456 1 -> 1234567890123457
+ddadd75002 add 1234567890123456 0.6 -> 1234567890123457 Inexact Rounded
+ddadd75003 add 1234567890123456 0.06 -> 1234567890123456 Inexact Rounded
+ddadd75004 add 1234567890123456 6E-3 -> 1234567890123456 Inexact Rounded
+ddadd75005 add 1234567890123456 6E-4 -> 1234567890123456 Inexact Rounded
+ddadd75006 add 1234567890123456 6E-5 -> 1234567890123456 Inexact Rounded
+ddadd75007 add 1234567890123456 6E-6 -> 1234567890123456 Inexact Rounded
+ddadd75008 add 1234567890123456 6E-7 -> 1234567890123456 Inexact Rounded
+ddadd75009 add 1234567890123456 6E-8 -> 1234567890123456 Inexact Rounded
+ddadd75010 add 1234567890123456 6E-9 -> 1234567890123456 Inexact Rounded
+ddadd75011 add 1234567890123456 6E-10 -> 1234567890123456 Inexact Rounded
+ddadd75012 add 1234567890123456 6E-11 -> 1234567890123456 Inexact Rounded
+ddadd75013 add 1234567890123456 6E-12 -> 1234567890123456 Inexact Rounded
+ddadd75014 add 1234567890123456 6E-13 -> 1234567890123456 Inexact Rounded
+ddadd75015 add 1234567890123456 6E-14 -> 1234567890123456 Inexact Rounded
+ddadd75016 add 1234567890123456 6E-15 -> 1234567890123456 Inexact Rounded
+ddadd75017 add 1234567890123456 6E-16 -> 1234567890123456 Inexact Rounded
+ddadd75018 add 1234567890123456 6E-17 -> 1234567890123456 Inexact Rounded
+ddadd75019 add 1234567890123456 6E-18 -> 1234567890123456 Inexact Rounded
+ddadd75020 add 1234567890123456 6E-19 -> 1234567890123456 Inexact Rounded
+ddadd75021 add 1234567890123456 6E-20 -> 1234567890123456 Inexact Rounded
+
+-- widening second argument at gap
+ddadd75030 add 12345678 1 -> 12345679
+ddadd75031 add 12345678 0.1 -> 12345678.1
+ddadd75032 add 12345678 0.12 -> 12345678.12
+ddadd75033 add 12345678 0.123 -> 12345678.123
+ddadd75034 add 12345678 0.1234 -> 12345678.1234
+ddadd75035 add 12345678 0.12345 -> 12345678.12345
+ddadd75036 add 12345678 0.123456 -> 12345678.123456
+ddadd75037 add 12345678 0.1234567 -> 12345678.1234567
+ddadd75038 add 12345678 0.12345678 -> 12345678.12345678
+ddadd75039 add 12345678 0.123456789 -> 12345678.12345679 Inexact Rounded
+ddadd75040 add 12345678 0.123456785 -> 12345678.12345678 Inexact Rounded
+ddadd75041 add 12345678 0.1234567850 -> 12345678.12345678 Inexact Rounded
+ddadd75042 add 12345678 0.1234567851 -> 12345678.12345679 Inexact Rounded
+ddadd75043 add 12345678 0.12345678501 -> 12345678.12345679 Inexact Rounded
+ddadd75044 add 12345678 0.123456785001 -> 12345678.12345679 Inexact Rounded
+ddadd75045 add 12345678 0.1234567850001 -> 12345678.12345679 Inexact Rounded
+ddadd75046 add 12345678 0.12345678500001 -> 12345678.12345679 Inexact Rounded
+ddadd75047 add 12345678 0.123456785000001 -> 12345678.12345679 Inexact Rounded
+ddadd75048 add 12345678 0.1234567850000001 -> 12345678.12345679 Inexact Rounded
+ddadd75049 add 12345678 0.1234567850000000 -> 12345678.12345678 Inexact Rounded
+-- 90123456
+rounding: half_even
+ddadd75050 add 12345678 0.0234567750000000 -> 12345678.02345678 Inexact Rounded
+ddadd75051 add 12345678 0.0034567750000000 -> 12345678.00345678 Inexact Rounded
+ddadd75052 add 12345678 0.0004567750000000 -> 12345678.00045678 Inexact Rounded
+ddadd75053 add 12345678 0.0000567750000000 -> 12345678.00005678 Inexact Rounded
+ddadd75054 add 12345678 0.0000067750000000 -> 12345678.00000678 Inexact Rounded
+ddadd75055 add 12345678 0.0000007750000000 -> 12345678.00000078 Inexact Rounded
+ddadd75056 add 12345678 0.0000000750000000 -> 12345678.00000008 Inexact Rounded
+ddadd75057 add 12345678 0.0000000050000000 -> 12345678.00000000 Inexact Rounded
+ddadd75060 add 12345678 0.0234567750000001 -> 12345678.02345678 Inexact Rounded
+ddadd75061 add 12345678 0.0034567750000001 -> 12345678.00345678 Inexact Rounded
+ddadd75062 add 12345678 0.0004567750000001 -> 12345678.00045678 Inexact Rounded
+ddadd75063 add 12345678 0.0000567750000001 -> 12345678.00005678 Inexact Rounded
+ddadd75064 add 12345678 0.0000067750000001 -> 12345678.00000678 Inexact Rounded
+ddadd75065 add 12345678 0.0000007750000001 -> 12345678.00000078 Inexact Rounded
+ddadd75066 add 12345678 0.0000000750000001 -> 12345678.00000008 Inexact Rounded
+ddadd75067 add 12345678 0.0000000050000001 -> 12345678.00000001 Inexact Rounded
+-- far-out residues (full coefficient gap is 16+15 digits)
+rounding: up
+ddadd75070 add 12345678 1E-8 -> 12345678.00000001
+ddadd75071 add 12345678 1E-9 -> 12345678.00000001 Inexact Rounded
+ddadd75072 add 12345678 1E-10 -> 12345678.00000001 Inexact Rounded
+ddadd75073 add 12345678 1E-11 -> 12345678.00000001 Inexact Rounded
+ddadd75074 add 12345678 1E-12 -> 12345678.00000001 Inexact Rounded
+ddadd75075 add 12345678 1E-13 -> 12345678.00000001 Inexact Rounded
+ddadd75076 add 12345678 1E-14 -> 12345678.00000001 Inexact Rounded
+ddadd75077 add 12345678 1E-15 -> 12345678.00000001 Inexact Rounded
+ddadd75078 add 12345678 1E-16 -> 12345678.00000001 Inexact Rounded
+ddadd75079 add 12345678 1E-17 -> 12345678.00000001 Inexact Rounded
+ddadd75080 add 12345678 1E-18 -> 12345678.00000001 Inexact Rounded
+ddadd75081 add 12345678 1E-19 -> 12345678.00000001 Inexact Rounded
+ddadd75082 add 12345678 1E-20 -> 12345678.00000001 Inexact Rounded
+ddadd75083 add 12345678 1E-25 -> 12345678.00000001 Inexact Rounded
+ddadd75084 add 12345678 1E-30 -> 12345678.00000001 Inexact Rounded
+ddadd75085 add 12345678 1E-31 -> 12345678.00000001 Inexact Rounded
+ddadd75086 add 12345678 1E-32 -> 12345678.00000001 Inexact Rounded
+ddadd75087 add 12345678 1E-33 -> 12345678.00000001 Inexact Rounded
+ddadd75088 add 12345678 1E-34 -> 12345678.00000001 Inexact Rounded
+ddadd75089 add 12345678 1E-35 -> 12345678.00000001 Inexact Rounded
+
+-- Punit's
+ddadd75100 add 1.000 -200.000 -> -199.000
+
+-- Rounding swathe
+rounding: half_even
+ddadd81100 add .2300 12345678901234.00 -> 12345678901234.23 Rounded
+ddadd81101 add .2301 12345678901234.00 -> 12345678901234.23 Inexact Rounded
+ddadd81102 add .2310 12345678901234.00 -> 12345678901234.23 Inexact Rounded
+ddadd81103 add .2350 12345678901234.00 -> 12345678901234.24 Inexact Rounded
+ddadd81104 add .2351 12345678901234.00 -> 12345678901234.24 Inexact Rounded
+ddadd81105 add .2450 12345678901234.00 -> 12345678901234.24 Inexact Rounded
+ddadd81106 add .2451 12345678901234.00 -> 12345678901234.25 Inexact Rounded
+ddadd81107 add .2360 12345678901234.00 -> 12345678901234.24 Inexact Rounded
+ddadd81108 add .2370 12345678901234.00 -> 12345678901234.24 Inexact Rounded
+ddadd81109 add .2399 12345678901234.00 -> 12345678901234.24 Inexact Rounded
+ddadd81120 add 9999999999999999E+369 9E+369 -> Infinity Overflow Inexact Rounded
+ddadd81121 add -9999999999999999E+369 -9E+369 -> -Infinity Overflow Inexact Rounded
+
+rounding: half_up
+ddadd81200 add .2300 12345678901234.00 -> 12345678901234.23 Rounded
+ddadd81201 add .2301 12345678901234.00 -> 12345678901234.23 Inexact Rounded
+ddadd81202 add .2310 12345678901234.00 -> 12345678901234.23 Inexact Rounded
+ddadd81203 add .2350 12345678901234.00 -> 12345678901234.24 Inexact Rounded
+ddadd81204 add .2351 12345678901234.00 -> 12345678901234.24 Inexact Rounded
+ddadd81205 add .2450 12345678901234.00 -> 12345678901234.25 Inexact Rounded
+ddadd81206 add .2451 12345678901234.00 -> 12345678901234.25 Inexact Rounded
+ddadd81207 add .2360 12345678901234.00 -> 12345678901234.24 Inexact Rounded
+ddadd81208 add .2370 12345678901234.00 -> 12345678901234.24 Inexact Rounded
+ddadd81209 add .2399 12345678901234.00 -> 12345678901234.24 Inexact Rounded
+ddadd81220 add 9999999999999999E+369 9E+369 -> Infinity Overflow Inexact Rounded
+ddadd81221 add -9999999999999999E+369 -9E+369 -> -Infinity Overflow Inexact Rounded
+
+rounding: half_down
+ddadd81300 add .2300 12345678901234.00 -> 12345678901234.23 Rounded
+ddadd81301 add .2301 12345678901234.00 -> 12345678901234.23 Inexact Rounded
+ddadd81302 add .2310 12345678901234.00 -> 12345678901234.23 Inexact Rounded
+ddadd81303 add .2350 12345678901234.00 -> 12345678901234.23 Inexact Rounded
+ddadd81304 add .2351 12345678901234.00 -> 12345678901234.24 Inexact Rounded
+ddadd81305 add .2450 12345678901234.00 -> 12345678901234.24 Inexact Rounded
+ddadd81306 add .2451 12345678901234.00 -> 12345678901234.25 Inexact Rounded
+ddadd81307 add .2360 12345678901234.00 -> 12345678901234.24 Inexact Rounded
+ddadd81308 add .2370 12345678901234.00 -> 12345678901234.24 Inexact Rounded
+ddadd81309 add .2399 12345678901234.00 -> 12345678901234.24 Inexact Rounded
+ddadd81320 add 9999999999999999E+369 9E+369 -> Infinity Overflow Inexact Rounded
+ddadd81321 add -9999999999999999E+369 -9E+369 -> -Infinity Overflow Inexact Rounded
+
+rounding: up
+ddadd81400 add .2300 12345678901234.00 -> 12345678901234.23 Rounded
+ddadd81401 add .2301 12345678901234.00 -> 12345678901234.24 Inexact Rounded
+ddadd81402 add .2310 12345678901234.00 -> 12345678901234.24 Inexact Rounded
+ddadd81403 add .2350 12345678901234.00 -> 12345678901234.24 Inexact Rounded
+ddadd81404 add .2351 12345678901234.00 -> 12345678901234.24 Inexact Rounded
+ddadd81405 add .2450 12345678901234.00 -> 12345678901234.25 Inexact Rounded
+ddadd81406 add .2451 12345678901234.00 -> 12345678901234.25 Inexact Rounded
+ddadd81407 add .2360 12345678901234.00 -> 12345678901234.24 Inexact Rounded
+ddadd81408 add .2370 12345678901234.00 -> 12345678901234.24 Inexact Rounded
+ddadd81409 add .2399 12345678901234.00 -> 12345678901234.24 Inexact Rounded
+ddadd81411 add -.2399 -12345678901234.00 -> -12345678901234.24 Inexact Rounded
+ddadd81420 add 9999999999999999E+369 9E+369 -> Infinity Overflow Inexact Rounded
+ddadd81421 add -9999999999999999E+369 -9E+369 -> -Infinity Overflow Inexact Rounded
+
+rounding: down
+ddadd81500 add .2300 12345678901234.00 -> 12345678901234.23 Rounded
+ddadd81501 add .2301 12345678901234.00 -> 12345678901234.23 Inexact Rounded
+ddadd81502 add .2310 12345678901234.00 -> 12345678901234.23 Inexact Rounded
+ddadd81503 add .2350 12345678901234.00 -> 12345678901234.23 Inexact Rounded
+ddadd81504 add .2351 12345678901234.00 -> 12345678901234.23 Inexact Rounded
+ddadd81505 add .2450 12345678901234.00 -> 12345678901234.24 Inexact Rounded
+ddadd81506 add .2451 12345678901234.00 -> 12345678901234.24 Inexact Rounded
+ddadd81507 add .2360 12345678901234.00 -> 12345678901234.23 Inexact Rounded
+ddadd81508 add .2370 12345678901234.00 -> 12345678901234.23 Inexact Rounded
+ddadd81509 add .2399 12345678901234.00 -> 12345678901234.23 Inexact Rounded
+ddadd81511 add -.2399 -12345678901234.00 -> -12345678901234.23 Inexact Rounded
+ddadd81520 add 9999999999999999E+369 9E+369 -> 9.999999999999999E+384 Overflow Inexact Rounded
+ddadd81521 add -9999999999999999E+369 -9E+369 -> -9.999999999999999E+384 Overflow Inexact Rounded
+
+rounding: ceiling
+ddadd81600 add .2300 12345678901234.00 -> 12345678901234.23 Rounded
+ddadd81601 add .2301 12345678901234.00 -> 12345678901234.24 Inexact Rounded
+ddadd81602 add .2310 12345678901234.00 -> 12345678901234.24 Inexact Rounded
+ddadd81603 add .2350 12345678901234.00 -> 12345678901234.24 Inexact Rounded
+ddadd81604 add .2351 12345678901234.00 -> 12345678901234.24 Inexact Rounded
+ddadd81605 add .2450 12345678901234.00 -> 12345678901234.25 Inexact Rounded
+ddadd81606 add .2451 12345678901234.00 -> 12345678901234.25 Inexact Rounded
+ddadd81607 add .2360 12345678901234.00 -> 12345678901234.24 Inexact Rounded
+ddadd81608 add .2370 12345678901234.00 -> 12345678901234.24 Inexact Rounded
+ddadd81609 add .2399 12345678901234.00 -> 12345678901234.24 Inexact Rounded
+ddadd81611 add -.2399 -12345678901234.00 -> -12345678901234.23 Inexact Rounded
+ddadd81620 add 9999999999999999E+369 9E+369 -> Infinity Overflow Inexact Rounded
+ddadd81621 add -9999999999999999E+369 -9E+369 -> -9.999999999999999E+384 Overflow Inexact Rounded
+
+rounding: floor
+ddadd81700 add .2300 12345678901234.00 -> 12345678901234.23 Rounded
+ddadd81701 add .2301 12345678901234.00 -> 12345678901234.23 Inexact Rounded
+ddadd81702 add .2310 12345678901234.00 -> 12345678901234.23 Inexact Rounded
+ddadd81703 add .2350 12345678901234.00 -> 12345678901234.23 Inexact Rounded
+ddadd81704 add .2351 12345678901234.00 -> 12345678901234.23 Inexact Rounded
+ddadd81705 add .2450 12345678901234.00 -> 12345678901234.24 Inexact Rounded
+ddadd81706 add .2451 12345678901234.00 -> 12345678901234.24 Inexact Rounded
+ddadd81707 add .2360 12345678901234.00 -> 12345678901234.23 Inexact Rounded
+ddadd81708 add .2370 12345678901234.00 -> 12345678901234.23 Inexact Rounded
+ddadd81709 add .2399 12345678901234.00 -> 12345678901234.23 Inexact Rounded
+ddadd81711 add -.2399 -12345678901234.00 -> -12345678901234.24 Inexact Rounded
+ddadd81720 add 9999999999999999E+369 9E+369 -> 9.999999999999999E+384 Overflow Inexact Rounded
+ddadd81721 add -9999999999999999E+369 -9E+369 -> -Infinity Overflow Inexact Rounded
+
+rounding: 05up
+ddadd81800 add .2000 12345678901234.00 -> 12345678901234.20 Rounded
+ddadd81801 add .2001 12345678901234.00 -> 12345678901234.21 Inexact Rounded
+ddadd81802 add .2010 12345678901234.00 -> 12345678901234.21 Inexact Rounded
+ddadd81803 add .2050 12345678901234.00 -> 12345678901234.21 Inexact Rounded
+ddadd81804 add .2051 12345678901234.00 -> 12345678901234.21 Inexact Rounded
+ddadd81807 add .2060 12345678901234.00 -> 12345678901234.21 Inexact Rounded
+ddadd81808 add .2070 12345678901234.00 -> 12345678901234.21 Inexact Rounded
+ddadd81809 add .2099 12345678901234.00 -> 12345678901234.21 Inexact Rounded
+ddadd81811 add -.2099 -12345678901234.00 -> -12345678901234.21 Inexact Rounded
+ddadd81820 add 9999999999999999E+369 9E+369 -> 9.999999999999999E+384 Overflow Inexact Rounded
+ddadd81821 add -9999999999999999E+369 -9E+369 -> -9.999999999999999E+384 Overflow Inexact Rounded
+
+ddadd81900 add .2100 12345678901234.00 -> 12345678901234.21 Rounded
+ddadd81901 add .2101 12345678901234.00 -> 12345678901234.21 Inexact Rounded
+ddadd81902 add .2110 12345678901234.00 -> 12345678901234.21 Inexact Rounded
+ddadd81903 add .2150 12345678901234.00 -> 12345678901234.21 Inexact Rounded
+ddadd81904 add .2151 12345678901234.00 -> 12345678901234.21 Inexact Rounded
+ddadd81907 add .2160 12345678901234.00 -> 12345678901234.21 Inexact Rounded
+ddadd81908 add .2170 12345678901234.00 -> 12345678901234.21 Inexact Rounded
+ddadd81909 add .2199 12345678901234.00 -> 12345678901234.21 Inexact Rounded
+ddadd81911 add -.2199 -12345678901234.00 -> -12345678901234.21 Inexact Rounded
+
+ddadd82000 add .2400 12345678901234.00 -> 12345678901234.24 Rounded
+ddadd82001 add .2401 12345678901234.00 -> 12345678901234.24 Inexact Rounded
+ddadd82002 add .2410 12345678901234.00 -> 12345678901234.24 Inexact Rounded
+ddadd82003 add .2450 12345678901234.00 -> 12345678901234.24 Inexact Rounded
+ddadd82004 add .2451 12345678901234.00 -> 12345678901234.24 Inexact Rounded
+ddadd82007 add .2460 12345678901234.00 -> 12345678901234.24 Inexact Rounded
+ddadd82008 add .2470 12345678901234.00 -> 12345678901234.24 Inexact Rounded
+ddadd82009 add .2499 12345678901234.00 -> 12345678901234.24 Inexact Rounded
+ddadd82011 add -.2499 -12345678901234.00 -> -12345678901234.24 Inexact Rounded
+
+ddadd82100 add .2500 12345678901234.00 -> 12345678901234.25 Rounded
+ddadd82101 add .2501 12345678901234.00 -> 12345678901234.26 Inexact Rounded
+ddadd82102 add .2510 12345678901234.00 -> 12345678901234.26 Inexact Rounded
+ddadd82103 add .2550 12345678901234.00 -> 12345678901234.26 Inexact Rounded
+ddadd82104 add .2551 12345678901234.00 -> 12345678901234.26 Inexact Rounded
+ddadd82107 add .2560 12345678901234.00 -> 12345678901234.26 Inexact Rounded
+ddadd82108 add .2570 12345678901234.00 -> 12345678901234.26 Inexact Rounded
+ddadd82109 add .2599 12345678901234.00 -> 12345678901234.26 Inexact Rounded
+ddadd82111 add -.2599 -12345678901234.00 -> -12345678901234.26 Inexact Rounded
+
+ddadd82200 add .2600 12345678901234.00 -> 12345678901234.26 Rounded
+ddadd82201 add .2601 12345678901234.00 -> 12345678901234.26 Inexact Rounded
+ddadd82202 add .2610 12345678901234.00 -> 12345678901234.26 Inexact Rounded
+ddadd82203 add .2650 12345678901234.00 -> 12345678901234.26 Inexact Rounded
+ddadd82204 add .2651 12345678901234.00 -> 12345678901234.26 Inexact Rounded
+ddadd82207 add .2660 12345678901234.00 -> 12345678901234.26 Inexact Rounded
+ddadd82208 add .2670 12345678901234.00 -> 12345678901234.26 Inexact Rounded
+ddadd82209 add .2699 12345678901234.00 -> 12345678901234.26 Inexact Rounded
+ddadd82211 add -.2699 -12345678901234.00 -> -12345678901234.26 Inexact Rounded
+
+ddadd82300 add .2900 12345678901234.00 -> 12345678901234.29 Rounded
+ddadd82301 add .2901 12345678901234.00 -> 12345678901234.29 Inexact Rounded
+ddadd82302 add .2910 12345678901234.00 -> 12345678901234.29 Inexact Rounded
+ddadd82303 add .2950 12345678901234.00 -> 12345678901234.29 Inexact Rounded
+ddadd82304 add .2951 12345678901234.00 -> 12345678901234.29 Inexact Rounded
+ddadd82307 add .2960 12345678901234.00 -> 12345678901234.29 Inexact Rounded
+ddadd82308 add .2970 12345678901234.00 -> 12345678901234.29 Inexact Rounded
+ddadd82309 add .2999 12345678901234.00 -> 12345678901234.29 Inexact Rounded
+ddadd82311 add -.2999 -12345678901234.00 -> -12345678901234.29 Inexact Rounded
+
+-- Null tests
+ddadd9990 add 10 # -> NaN Invalid_operation
+ddadd9991 add # 10 -> NaN Invalid_operation
diff --git a/Lib/test/decimaltestdata/ddAnd.decTest b/Lib/test/decimaltestdata/ddAnd.decTest
new file mode 100644
index 0000000..e5fa38d
--- /dev/null
+++ b/Lib/test/decimaltestdata/ddAnd.decTest
@@ -0,0 +1,347 @@
+------------------------------------------------------------------------
+-- ddAnd.decTest -- digitwise logical AND for decDoubles --
+-- Copyright (c) IBM Corporation, 1981, 2007. All rights reserved. --
+------------------------------------------------------------------------
+-- Please see the document "General Decimal Arithmetic Testcases" --
+-- at http://www2.hursley.ibm.com/decimal for the description of --
+-- these testcases. --
+-- --
+-- These testcases are experimental ('beta' versions), and they --
+-- may contain errors. They are offered on an as-is basis. In --
+-- particular, achieving the same results as the tests here is not --
+-- a guarantee that an implementation complies with any Standard --
+-- or specification. The tests are not exhaustive. --
+-- --
+-- Please send comments, suggestions, and corrections to the author: --
+-- Mike Cowlishaw, IBM Fellow --
+-- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK --
+-- mfc@uk.ibm.com --
+------------------------------------------------------------------------
+version: 2.56
+
+precision: 16
+maxExponent: 384
+minExponent: -383
+extended: 1
+clamp: 1
+rounding: half_even
+
+-- Sanity check (truth table)
+ddand001 and 0 0 -> 0
+ddand002 and 0 1 -> 0
+ddand003 and 1 0 -> 0
+ddand004 and 1 1 -> 1
+ddand005 and 1100 1010 -> 1000
+-- and at msd and msd-1
+-- 1234567890123456 1234567890123456 1234567890123456
+ddand006 and 0000000000000000 0000000000000000 -> 0
+ddand007 and 0000000000000000 1000000000000000 -> 0
+ddand008 and 1000000000000000 0000000000000000 -> 0
+ddand009 and 1000000000000000 1000000000000000 -> 1000000000000000
+ddand010 and 0000000000000000 0000000000000000 -> 0
+ddand011 and 0000000000000000 0100000000000000 -> 0
+ddand012 and 0100000000000000 0000000000000000 -> 0
+ddand013 and 0100000000000000 0100000000000000 -> 100000000000000
+
+-- Various lengths
+-- 1234567890123456 1234567890123456 1234567890123456
+ddand021 and 1111111111111111 1111111111111111 -> 1111111111111111
+ddand024 and 1111111111111111 111111111111111 -> 111111111111111
+ddand025 and 1111111111111111 11111111111111 -> 11111111111111
+ddand026 and 1111111111111111 1111111111111 -> 1111111111111
+ddand027 and 1111111111111111 111111111111 -> 111111111111
+ddand028 and 1111111111111111 11111111111 -> 11111111111
+ddand029 and 1111111111111111 1111111111 -> 1111111111
+ddand030 and 1111111111111111 111111111 -> 111111111
+ddand031 and 1111111111111111 11111111 -> 11111111
+ddand032 and 1111111111111111 1111111 -> 1111111
+ddand033 and 1111111111111111 111111 -> 111111
+ddand034 and 1111111111111111 11111 -> 11111
+ddand035 and 1111111111111111 1111 -> 1111
+ddand036 and 1111111111111111 111 -> 111
+ddand037 and 1111111111111111 11 -> 11
+ddand038 and 1111111111111111 1 -> 1
+ddand039 and 1111111111111111 0 -> 0
+
+ddand040 and 1111111111111111 1111111111111111 -> 1111111111111111
+ddand041 and 111111111111111 1111111111111111 -> 111111111111111
+ddand042 and 111111111111111 1111111111111111 -> 111111111111111
+ddand043 and 11111111111111 1111111111111111 -> 11111111111111
+ddand044 and 1111111111111 1111111111111111 -> 1111111111111
+ddand045 and 111111111111 1111111111111111 -> 111111111111
+ddand046 and 11111111111 1111111111111111 -> 11111111111
+ddand047 and 1111111111 1111111111111111 -> 1111111111
+ddand048 and 111111111 1111111111111111 -> 111111111
+ddand049 and 11111111 1111111111111111 -> 11111111
+ddand050 and 1111111 1111111111111111 -> 1111111
+ddand051 and 111111 1111111111111111 -> 111111
+ddand052 and 11111 1111111111111111 -> 11111
+ddand053 and 1111 1111111111111111 -> 1111
+ddand054 and 111 1111111111111111 -> 111
+ddand055 and 11 1111111111111111 -> 11
+ddand056 and 1 1111111111111111 -> 1
+ddand057 and 0 1111111111111111 -> 0
+
+ddand150 and 1111111111 1 -> 1
+ddand151 and 111111111 1 -> 1
+ddand152 and 11111111 1 -> 1
+ddand153 and 1111111 1 -> 1
+ddand154 and 111111 1 -> 1
+ddand155 and 11111 1 -> 1
+ddand156 and 1111 1 -> 1
+ddand157 and 111 1 -> 1
+ddand158 and 11 1 -> 1
+ddand159 and 1 1 -> 1
+
+ddand160 and 1111111111 0 -> 0
+ddand161 and 111111111 0 -> 0
+ddand162 and 11111111 0 -> 0
+ddand163 and 1111111 0 -> 0
+ddand164 and 111111 0 -> 0
+ddand165 and 11111 0 -> 0
+ddand166 and 1111 0 -> 0
+ddand167 and 111 0 -> 0
+ddand168 and 11 0 -> 0
+ddand169 and 1 0 -> 0
+
+ddand170 and 1 1111111111 -> 1
+ddand171 and 1 111111111 -> 1
+ddand172 and 1 11111111 -> 1
+ddand173 and 1 1111111 -> 1
+ddand174 and 1 111111 -> 1
+ddand175 and 1 11111 -> 1
+ddand176 and 1 1111 -> 1
+ddand177 and 1 111 -> 1
+ddand178 and 1 11 -> 1
+ddand179 and 1 1 -> 1
+
+ddand180 and 0 1111111111 -> 0
+ddand181 and 0 111111111 -> 0
+ddand182 and 0 11111111 -> 0
+ddand183 and 0 1111111 -> 0
+ddand184 and 0 111111 -> 0
+ddand185 and 0 11111 -> 0
+ddand186 and 0 1111 -> 0
+ddand187 and 0 111 -> 0
+ddand188 and 0 11 -> 0
+ddand189 and 0 1 -> 0
+
+ddand090 and 011111111 111111111 -> 11111111
+ddand091 and 101111111 111111111 -> 101111111
+ddand092 and 110111111 111111111 -> 110111111
+ddand093 and 111011111 111111111 -> 111011111
+ddand094 and 111101111 111111111 -> 111101111
+ddand095 and 111110111 111111111 -> 111110111
+ddand096 and 111111011 111111111 -> 111111011
+ddand097 and 111111101 111111111 -> 111111101
+ddand098 and 111111110 111111111 -> 111111110
+
+ddand100 and 111111111 011111111 -> 11111111
+ddand101 and 111111111 101111111 -> 101111111
+ddand102 and 111111111 110111111 -> 110111111
+ddand103 and 111111111 111011111 -> 111011111
+ddand104 and 111111111 111101111 -> 111101111
+ddand105 and 111111111 111110111 -> 111110111
+ddand106 and 111111111 111111011 -> 111111011
+ddand107 and 111111111 111111101 -> 111111101
+ddand108 and 111111111 111111110 -> 111111110
+
+-- non-0/1 should not be accepted, nor should signs
+ddand220 and 111111112 111111111 -> NaN Invalid_operation
+ddand221 and 333333333 333333333 -> NaN Invalid_operation
+ddand222 and 555555555 555555555 -> NaN Invalid_operation
+ddand223 and 777777777 777777777 -> NaN Invalid_operation
+ddand224 and 999999999 999999999 -> NaN Invalid_operation
+ddand225 and 222222222 999999999 -> NaN Invalid_operation
+ddand226 and 444444444 999999999 -> NaN Invalid_operation
+ddand227 and 666666666 999999999 -> NaN Invalid_operation
+ddand228 and 888888888 999999999 -> NaN Invalid_operation
+ddand229 and 999999999 222222222 -> NaN Invalid_operation
+ddand230 and 999999999 444444444 -> NaN Invalid_operation
+ddand231 and 999999999 666666666 -> NaN Invalid_operation
+ddand232 and 999999999 888888888 -> NaN Invalid_operation
+-- a few randoms
+ddand240 and 567468689 -934981942 -> NaN Invalid_operation
+ddand241 and 567367689 934981942 -> NaN Invalid_operation
+ddand242 and -631917772 -706014634 -> NaN Invalid_operation
+ddand243 and -756253257 138579234 -> NaN Invalid_operation
+ddand244 and 835590149 567435400 -> NaN Invalid_operation
+-- test MSD
+ddand250 and 2000000000000000 1000000000000000 -> NaN Invalid_operation
+ddand251 and 7000000000000000 1000000000000000 -> NaN Invalid_operation
+ddand252 and 8000000000000000 1000000000000000 -> NaN Invalid_operation
+ddand253 and 9000000000000000 1000000000000000 -> NaN Invalid_operation
+ddand254 and 2000000000000000 0000000000000000 -> NaN Invalid_operation
+ddand255 and 7000000000000000 0000000000000000 -> NaN Invalid_operation
+ddand256 and 8000000000000000 0000000000000000 -> NaN Invalid_operation
+ddand257 and 9000000000000000 0000000000000000 -> NaN Invalid_operation
+ddand258 and 1000000000000000 2000000000000000 -> NaN Invalid_operation
+ddand259 and 1000000000000000 7000000000000000 -> NaN Invalid_operation
+ddand260 and 1000000000000000 8000000000000000 -> NaN Invalid_operation
+ddand261 and 1000000000000000 9000000000000000 -> NaN Invalid_operation
+ddand262 and 0000000000000000 2000000000000000 -> NaN Invalid_operation
+ddand263 and 0000000000000000 7000000000000000 -> NaN Invalid_operation
+ddand264 and 0000000000000000 8000000000000000 -> NaN Invalid_operation
+ddand265 and 0000000000000000 9000000000000000 -> NaN Invalid_operation
+-- test MSD-1
+ddand270 and 0200001000000000 1000100000000010 -> NaN Invalid_operation
+ddand271 and 0700000100000000 1000010000000100 -> NaN Invalid_operation
+ddand272 and 0800000010000000 1000001000001000 -> NaN Invalid_operation
+ddand273 and 0900000001000000 1000000100010000 -> NaN Invalid_operation
+ddand274 and 1000000000100000 0200000010100000 -> NaN Invalid_operation
+ddand275 and 1000000000010000 0700000001000000 -> NaN Invalid_operation
+ddand276 and 1000000000001000 0800000010100000 -> NaN Invalid_operation
+ddand277 and 1000000000000100 0900000000010000 -> NaN Invalid_operation
+-- test LSD
+ddand280 and 0010000000000002 1000000100000001 -> NaN Invalid_operation
+ddand281 and 0001000000000007 1000001000000011 -> NaN Invalid_operation
+ddand282 and 0000100000000008 1000010000000001 -> NaN Invalid_operation
+ddand283 and 0000010000000009 1000100000000001 -> NaN Invalid_operation
+ddand284 and 1000001000000000 0001000000000002 -> NaN Invalid_operation
+ddand285 and 1000000100000000 0010000000000007 -> NaN Invalid_operation
+ddand286 and 1000000010000000 0100000000000008 -> NaN Invalid_operation
+ddand287 and 1000000001000000 1000000000000009 -> NaN Invalid_operation
+-- test Middie
+ddand288 and 0010000020000000 1000001000000000 -> NaN Invalid_operation
+ddand289 and 0001000070000001 1000000100000000 -> NaN Invalid_operation
+ddand290 and 0000100080000010 1000000010000000 -> NaN Invalid_operation
+ddand291 and 0000010090000100 1000000001000000 -> NaN Invalid_operation
+ddand292 and 1000001000001000 0000000020100000 -> NaN Invalid_operation
+ddand293 and 1000000100010000 0000000070010000 -> NaN Invalid_operation
+ddand294 and 1000000010100000 0000000080001000 -> NaN Invalid_operation
+ddand295 and 1000000001000000 0000000090000100 -> NaN Invalid_operation
+-- signs
+ddand296 and -1000000001000000 -0000010000000100 -> NaN Invalid_operation
+ddand297 and -1000000001000000 0000000010000100 -> NaN Invalid_operation
+ddand298 and 1000000001000000 -0000001000000100 -> NaN Invalid_operation
+ddand299 and 1000000001000000 0000000011000100 -> 1000000
+
+-- Nmax, Nmin, Ntiny-like
+ddand331 and 2 9.99999999E+199 -> NaN Invalid_operation
+ddand332 and 3 1E-199 -> NaN Invalid_operation
+ddand333 and 4 1.00000000E-199 -> NaN Invalid_operation
+ddand334 and 5 1E-100 -> NaN Invalid_operation
+ddand335 and 6 -1E-100 -> NaN Invalid_operation
+ddand336 and 7 -1.00000000E-199 -> NaN Invalid_operation
+ddand337 and 8 -1E-199 -> NaN Invalid_operation
+ddand338 and 9 -9.99999999E+199 -> NaN Invalid_operation
+ddand341 and 9.99999999E+199 -18 -> NaN Invalid_operation
+ddand342 and 1E-199 01 -> NaN Invalid_operation
+ddand343 and 1.00000000E-199 -18 -> NaN Invalid_operation
+ddand344 and 1E-100 18 -> NaN Invalid_operation
+ddand345 and -1E-100 -10 -> NaN Invalid_operation
+ddand346 and -1.00000000E-199 18 -> NaN Invalid_operation
+ddand347 and -1E-199 10 -> NaN Invalid_operation
+ddand348 and -9.99999999E+199 -18 -> NaN Invalid_operation
+
+-- A few other non-integers
+ddand361 and 1.0 1 -> NaN Invalid_operation
+ddand362 and 1E+1 1 -> NaN Invalid_operation
+ddand363 and 0.0 1 -> NaN Invalid_operation
+ddand364 and 0E+1 1 -> NaN Invalid_operation
+ddand365 and 9.9 1 -> NaN Invalid_operation
+ddand366 and 9E+1 1 -> NaN Invalid_operation
+ddand371 and 0 1.0 -> NaN Invalid_operation
+ddand372 and 0 1E+1 -> NaN Invalid_operation
+ddand373 and 0 0.0 -> NaN Invalid_operation
+ddand374 and 0 0E+1 -> NaN Invalid_operation
+ddand375 and 0 9.9 -> NaN Invalid_operation
+ddand376 and 0 9E+1 -> NaN Invalid_operation
+
+-- All Specials are in error
+ddand780 and -Inf -Inf -> NaN Invalid_operation
+ddand781 and -Inf -1000 -> NaN Invalid_operation
+ddand782 and -Inf -1 -> NaN Invalid_operation
+ddand783 and -Inf -0 -> NaN Invalid_operation
+ddand784 and -Inf 0 -> NaN Invalid_operation
+ddand785 and -Inf 1 -> NaN Invalid_operation
+ddand786 and -Inf 1000 -> NaN Invalid_operation
+ddand787 and -1000 -Inf -> NaN Invalid_operation
+ddand788 and -Inf -Inf -> NaN Invalid_operation
+ddand789 and -1 -Inf -> NaN Invalid_operation
+ddand790 and -0 -Inf -> NaN Invalid_operation
+ddand791 and 0 -Inf -> NaN Invalid_operation
+ddand792 and 1 -Inf -> NaN Invalid_operation
+ddand793 and 1000 -Inf -> NaN Invalid_operation
+ddand794 and Inf -Inf -> NaN Invalid_operation
+
+ddand800 and Inf -Inf -> NaN Invalid_operation
+ddand801 and Inf -1000 -> NaN Invalid_operation
+ddand802 and Inf -1 -> NaN Invalid_operation
+ddand803 and Inf -0 -> NaN Invalid_operation
+ddand804 and Inf 0 -> NaN Invalid_operation
+ddand805 and Inf 1 -> NaN Invalid_operation
+ddand806 and Inf 1000 -> NaN Invalid_operation
+ddand807 and Inf Inf -> NaN Invalid_operation
+ddand808 and -1000 Inf -> NaN Invalid_operation
+ddand809 and -Inf Inf -> NaN Invalid_operation
+ddand810 and -1 Inf -> NaN Invalid_operation
+ddand811 and -0 Inf -> NaN Invalid_operation
+ddand812 and 0 Inf -> NaN Invalid_operation
+ddand813 and 1 Inf -> NaN Invalid_operation
+ddand814 and 1000 Inf -> NaN Invalid_operation
+ddand815 and Inf Inf -> NaN Invalid_operation
+
+ddand821 and NaN -Inf -> NaN Invalid_operation
+ddand822 and NaN -1000 -> NaN Invalid_operation
+ddand823 and NaN -1 -> NaN Invalid_operation
+ddand824 and NaN -0 -> NaN Invalid_operation
+ddand825 and NaN 0 -> NaN Invalid_operation
+ddand826 and NaN 1 -> NaN Invalid_operation
+ddand827 and NaN 1000 -> NaN Invalid_operation
+ddand828 and NaN Inf -> NaN Invalid_operation
+ddand829 and NaN NaN -> NaN Invalid_operation
+ddand830 and -Inf NaN -> NaN Invalid_operation
+ddand831 and -1000 NaN -> NaN Invalid_operation
+ddand832 and -1 NaN -> NaN Invalid_operation
+ddand833 and -0 NaN -> NaN Invalid_operation
+ddand834 and 0 NaN -> NaN Invalid_operation
+ddand835 and 1 NaN -> NaN Invalid_operation
+ddand836 and 1000 NaN -> NaN Invalid_operation
+ddand837 and Inf NaN -> NaN Invalid_operation
+
+ddand841 and sNaN -Inf -> NaN Invalid_operation
+ddand842 and sNaN -1000 -> NaN Invalid_operation
+ddand843 and sNaN -1 -> NaN Invalid_operation
+ddand844 and sNaN -0 -> NaN Invalid_operation
+ddand845 and sNaN 0 -> NaN Invalid_operation
+ddand846 and sNaN 1 -> NaN Invalid_operation
+ddand847 and sNaN 1000 -> NaN Invalid_operation
+ddand848 and sNaN NaN -> NaN Invalid_operation
+ddand849 and sNaN sNaN -> NaN Invalid_operation
+ddand850 and NaN sNaN -> NaN Invalid_operation
+ddand851 and -Inf sNaN -> NaN Invalid_operation
+ddand852 and -1000 sNaN -> NaN Invalid_operation
+ddand853 and -1 sNaN -> NaN Invalid_operation
+ddand854 and -0 sNaN -> NaN Invalid_operation
+ddand855 and 0 sNaN -> NaN Invalid_operation
+ddand856 and 1 sNaN -> NaN Invalid_operation
+ddand857 and 1000 sNaN -> NaN Invalid_operation
+ddand858 and Inf sNaN -> NaN Invalid_operation
+ddand859 and NaN sNaN -> NaN Invalid_operation
+
+-- propagating NaNs
+ddand861 and NaN1 -Inf -> NaN Invalid_operation
+ddand862 and +NaN2 -1000 -> NaN Invalid_operation
+ddand863 and NaN3 1000 -> NaN Invalid_operation
+ddand864 and NaN4 Inf -> NaN Invalid_operation
+ddand865 and NaN5 +NaN6 -> NaN Invalid_operation
+ddand866 and -Inf NaN7 -> NaN Invalid_operation
+ddand867 and -1000 NaN8 -> NaN Invalid_operation
+ddand868 and 1000 NaN9 -> NaN Invalid_operation
+ddand869 and Inf +NaN10 -> NaN Invalid_operation
+ddand871 and sNaN11 -Inf -> NaN Invalid_operation
+ddand872 and sNaN12 -1000 -> NaN Invalid_operation
+ddand873 and sNaN13 1000 -> NaN Invalid_operation
+ddand874 and sNaN14 NaN17 -> NaN Invalid_operation
+ddand875 and sNaN15 sNaN18 -> NaN Invalid_operation
+ddand876 and NaN16 sNaN19 -> NaN Invalid_operation
+ddand877 and -Inf +sNaN20 -> NaN Invalid_operation
+ddand878 and -1000 sNaN21 -> NaN Invalid_operation
+ddand879 and 1000 sNaN22 -> NaN Invalid_operation
+ddand880 and Inf sNaN23 -> NaN Invalid_operation
+ddand881 and +NaN25 +sNaN24 -> NaN Invalid_operation
+ddand882 and -NaN26 NaN28 -> NaN Invalid_operation
+ddand883 and -sNaN27 sNaN29 -> NaN Invalid_operation
+ddand884 and 1000 -NaN30 -> NaN Invalid_operation
+ddand885 and 1000 -sNaN31 -> NaN Invalid_operation
diff --git a/Lib/test/decimaltestdata/ddBase.decTest b/Lib/test/decimaltestdata/ddBase.decTest
new file mode 100644
index 0000000..431bce1
--- /dev/null
+++ b/Lib/test/decimaltestdata/ddBase.decTest
@@ -0,0 +1,1096 @@
+------------------------------------------------------------------------
+-- ddBase.decTest -- base decDouble <--> string conversions --
+-- Copyright (c) IBM Corporation, 1981, 2007. All rights reserved. --
+------------------------------------------------------------------------
+-- Please see the document "General Decimal Arithmetic Testcases" --
+-- at http://www2.hursley.ibm.com/decimal for the description of --
+-- these testcases. --
+-- --
+-- These testcases are experimental ('beta' versions), and they --
+-- may contain errors. They are offered on an as-is basis. In --
+-- particular, achieving the same results as the tests here is not --
+-- a guarantee that an implementation complies with any Standard --
+-- or specification. The tests are not exhaustive. --
+-- --
+-- Please send comments, suggestions, and corrections to the author: --
+-- Mike Cowlishaw, IBM Fellow --
+-- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK --
+-- mfc@uk.ibm.com --
+------------------------------------------------------------------------
+version: 2.56
+
+-- This file tests base conversions from string to a decimal number
+-- and back to a string (in Scientific form)
+
+-- Note that unlike other operations the operand is subject to rounding
+-- to conform to emax and precision settings (that is, numbers will
+-- conform to rules and exponent will be in permitted range). The
+-- 'left hand side', therefore, may have numbers that cannot be
+-- represented in a decDouble. Some testcases go to the limit of the
+-- next-wider format, and hence these testcases may also be used to
+-- test narrowing and widening operations.
+
+precision: 16
+maxExponent: 384
+minExponent: -383
+extended: 1
+clamp: 1
+rounding: half_even
+
+ddbas001 toSci 0 -> 0
+ddbas002 toSci 1 -> 1
+ddbas003 toSci 1.0 -> 1.0
+ddbas004 toSci 1.00 -> 1.00
+ddbas005 toSci 10 -> 10
+ddbas006 toSci 1000 -> 1000
+ddbas007 toSci 10.0 -> 10.0
+ddbas008 toSci 10.1 -> 10.1
+ddbas009 toSci 10.4 -> 10.4
+ddbas010 toSci 10.5 -> 10.5
+ddbas011 toSci 10.6 -> 10.6
+ddbas012 toSci 10.9 -> 10.9
+ddbas013 toSci 11.0 -> 11.0
+ddbas014 toSci 1.234 -> 1.234
+ddbas015 toSci 0.123 -> 0.123
+ddbas016 toSci 0.012 -> 0.012
+ddbas017 toSci -0 -> -0
+ddbas018 toSci -0.0 -> -0.0
+ddbas019 toSci -00.00 -> -0.00
+
+ddbas021 toSci -1 -> -1
+ddbas022 toSci -1.0 -> -1.0
+ddbas023 toSci -0.1 -> -0.1
+ddbas024 toSci -9.1 -> -9.1
+ddbas025 toSci -9.11 -> -9.11
+ddbas026 toSci -9.119 -> -9.119
+ddbas027 toSci -9.999 -> -9.999
+
+ddbas030 toSci '123456789.123456' -> '123456789.123456'
+ddbas031 toSci '123456789.000000' -> '123456789.000000'
+ddbas032 toSci '123456789123456' -> '123456789123456'
+ddbas033 toSci '0.0000123456789' -> '0.0000123456789'
+ddbas034 toSci '0.00000123456789' -> '0.00000123456789'
+ddbas035 toSci '0.000000123456789' -> '1.23456789E-7'
+ddbas036 toSci '0.0000000123456789' -> '1.23456789E-8'
+
+ddbas037 toSci '0.123456789012344' -> '0.123456789012344'
+ddbas038 toSci '0.123456789012345' -> '0.123456789012345'
+
+-- test finite bounds (Negs of, then 0, Ntiny, Nmin, other, Nmax)
+ddbsn001 toSci -9.999999999999999E+384 -> -9.999999999999999E+384
+ddbsn002 toSci -1E-383 -> -1E-383
+ddbsn003 toSci -1E-398 -> -1E-398 Subnormal
+ddbsn004 toSci -0 -> -0
+ddbsn005 toSci +0 -> 0
+ddbsn006 toSci +1E-398 -> 1E-398 Subnormal
+ddbsn007 toSci +1E-383 -> 1E-383
+ddbsn008 toSci +9.999999999999999E+384 -> 9.999999999999999E+384
+
+-- String [many more examples are implicitly tested elsewhere]
+-- strings without E cannot generate E in result
+ddbas040 toSci "12" -> '12'
+ddbas041 toSci "-76" -> '-76'
+ddbas042 toSci "12.76" -> '12.76'
+ddbas043 toSci "+12.76" -> '12.76'
+ddbas044 toSci "012.76" -> '12.76'
+ddbas045 toSci "+0.003" -> '0.003'
+ddbas046 toSci "17." -> '17'
+ddbas047 toSci ".5" -> '0.5'
+ddbas048 toSci "044" -> '44'
+ddbas049 toSci "0044" -> '44'
+ddbas050 toSci "0.0005" -> '0.0005'
+ddbas051 toSci "00.00005" -> '0.00005'
+ddbas052 toSci "0.000005" -> '0.000005'
+ddbas053 toSci "0.0000050" -> '0.0000050'
+ddbas054 toSci "0.0000005" -> '5E-7'
+ddbas055 toSci "0.00000005" -> '5E-8'
+ddbas056 toSci "12345678.543210" -> '12345678.543210'
+ddbas057 toSci "2345678.543210" -> '2345678.543210'
+ddbas058 toSci "345678.543210" -> '345678.543210'
+ddbas059 toSci "0345678.54321" -> '345678.54321'
+ddbas060 toSci "345678.5432" -> '345678.5432'
+ddbas061 toSci "+345678.5432" -> '345678.5432'
+ddbas062 toSci "+0345678.5432" -> '345678.5432'
+ddbas063 toSci "+00345678.5432" -> '345678.5432'
+ddbas064 toSci "-345678.5432" -> '-345678.5432'
+ddbas065 toSci "-0345678.5432" -> '-345678.5432'
+ddbas066 toSci "-00345678.5432" -> '-345678.5432'
+-- examples
+ddbas067 toSci "5E-6" -> '0.000005'
+ddbas068 toSci "50E-7" -> '0.0000050'
+ddbas069 toSci "5E-7" -> '5E-7'
+
+-- [No exotics as no Unicode]
+
+-- rounded with dots in all (including edge) places
+ddbas071 toSci .1234567890123456123 -> 0.1234567890123456 Inexact Rounded
+ddbas072 toSci 1.234567890123456123 -> 1.234567890123456 Inexact Rounded
+ddbas073 toSci 12.34567890123456123 -> 12.34567890123456 Inexact Rounded
+ddbas074 toSci 123.4567890123456123 -> 123.4567890123456 Inexact Rounded
+ddbas075 toSci 1234.567890123456123 -> 1234.567890123456 Inexact Rounded
+ddbas076 toSci 12345.67890123456123 -> 12345.67890123456 Inexact Rounded
+ddbas077 toSci 123456.7890123456123 -> 123456.7890123456 Inexact Rounded
+ddbas078 toSci 1234567.890123456123 -> 1234567.890123456 Inexact Rounded
+ddbas079 toSci 12345678.90123456123 -> 12345678.90123456 Inexact Rounded
+ddbas080 toSci 123456789.0123456123 -> 123456789.0123456 Inexact Rounded
+ddbas081 toSci 1234567890.123456123 -> 1234567890.123456 Inexact Rounded
+ddbas082 toSci 12345678901.23456123 -> 12345678901.23456 Inexact Rounded
+ddbas083 toSci 123456789012.3456123 -> 123456789012.3456 Inexact Rounded
+ddbas084 toSci 1234567890123.456123 -> 1234567890123.456 Inexact Rounded
+ddbas085 toSci 12345678901234.56123 -> 12345678901234.56 Inexact Rounded
+ddbas086 toSci 123456789012345.6123 -> 123456789012345.6 Inexact Rounded
+ddbas087 toSci 1234567890123456.123 -> 1234567890123456 Inexact Rounded
+ddbas088 toSci 12345678901234561.23 -> 1.234567890123456E+16 Inexact Rounded
+ddbas089 toSci 123456789012345612.3 -> 1.234567890123456E+17 Inexact Rounded
+ddbas090 toSci 1234567890123456123. -> 1.234567890123456E+18 Inexact Rounded
+
+
+-- Numbers with E
+ddbas130 toSci "0.000E-1" -> '0.0000'
+ddbas131 toSci "0.000E-2" -> '0.00000'
+ddbas132 toSci "0.000E-3" -> '0.000000'
+ddbas133 toSci "0.000E-4" -> '0E-7'
+ddbas134 toSci "0.00E-2" -> '0.0000'
+ddbas135 toSci "0.00E-3" -> '0.00000'
+ddbas136 toSci "0.00E-4" -> '0.000000'
+ddbas137 toSci "0.00E-5" -> '0E-7'
+ddbas138 toSci "+0E+9" -> '0E+9'
+ddbas139 toSci "-0E+9" -> '-0E+9'
+ddbas140 toSci "1E+9" -> '1E+9'
+ddbas141 toSci "1e+09" -> '1E+9'
+ddbas142 toSci "1E+90" -> '1E+90'
+ddbas143 toSci "+1E+009" -> '1E+9'
+ddbas144 toSci "0E+9" -> '0E+9'
+ddbas145 toSci "1E+9" -> '1E+9'
+ddbas146 toSci "1E+09" -> '1E+9'
+ddbas147 toSci "1e+90" -> '1E+90'
+ddbas148 toSci "1E+009" -> '1E+9'
+ddbas149 toSci "000E+9" -> '0E+9'
+ddbas150 toSci "1E9" -> '1E+9'
+ddbas151 toSci "1e09" -> '1E+9'
+ddbas152 toSci "1E90" -> '1E+90'
+ddbas153 toSci "1E009" -> '1E+9'
+ddbas154 toSci "0E9" -> '0E+9'
+ddbas155 toSci "0.000e+0" -> '0.000'
+ddbas156 toSci "0.000E-1" -> '0.0000'
+ddbas157 toSci "4E+9" -> '4E+9'
+ddbas158 toSci "44E+9" -> '4.4E+10'
+ddbas159 toSci "0.73e-7" -> '7.3E-8'
+ddbas160 toSci "00E+9" -> '0E+9'
+ddbas161 toSci "00E-9" -> '0E-9'
+ddbas162 toSci "10E+9" -> '1.0E+10'
+ddbas163 toSci "10E+09" -> '1.0E+10'
+ddbas164 toSci "10e+90" -> '1.0E+91'
+ddbas165 toSci "10E+009" -> '1.0E+10'
+ddbas166 toSci "100e+9" -> '1.00E+11'
+ddbas167 toSci "100e+09" -> '1.00E+11'
+ddbas168 toSci "100E+90" -> '1.00E+92'
+ddbas169 toSci "100e+009" -> '1.00E+11'
+
+ddbas170 toSci "1.265" -> '1.265'
+ddbas171 toSci "1.265E-20" -> '1.265E-20'
+ddbas172 toSci "1.265E-8" -> '1.265E-8'
+ddbas173 toSci "1.265E-4" -> '0.0001265'
+ddbas174 toSci "1.265E-3" -> '0.001265'
+ddbas175 toSci "1.265E-2" -> '0.01265'
+ddbas176 toSci "1.265E-1" -> '0.1265'
+ddbas177 toSci "1.265E-0" -> '1.265'
+ddbas178 toSci "1.265E+1" -> '12.65'
+ddbas179 toSci "1.265E+2" -> '126.5'
+ddbas180 toSci "1.265E+3" -> '1265'
+ddbas181 toSci "1.265E+4" -> '1.265E+4'
+ddbas182 toSci "1.265E+8" -> '1.265E+8'
+ddbas183 toSci "1.265E+20" -> '1.265E+20'
+
+ddbas190 toSci "12.65" -> '12.65'
+ddbas191 toSci "12.65E-20" -> '1.265E-19'
+ddbas192 toSci "12.65E-8" -> '1.265E-7'
+ddbas193 toSci "12.65E-4" -> '0.001265'
+ddbas194 toSci "12.65E-3" -> '0.01265'
+ddbas195 toSci "12.65E-2" -> '0.1265'
+ddbas196 toSci "12.65E-1" -> '1.265'
+ddbas197 toSci "12.65E-0" -> '12.65'
+ddbas198 toSci "12.65E+1" -> '126.5'
+ddbas199 toSci "12.65E+2" -> '1265'
+ddbas200 toSci "12.65E+3" -> '1.265E+4'
+ddbas201 toSci "12.65E+4" -> '1.265E+5'
+ddbas202 toSci "12.65E+8" -> '1.265E+9'
+ddbas203 toSci "12.65E+20" -> '1.265E+21'
+
+ddbas210 toSci "126.5" -> '126.5'
+ddbas211 toSci "126.5E-20" -> '1.265E-18'
+ddbas212 toSci "126.5E-8" -> '0.000001265'
+ddbas213 toSci "126.5E-4" -> '0.01265'
+ddbas214 toSci "126.5E-3" -> '0.1265'
+ddbas215 toSci "126.5E-2" -> '1.265'
+ddbas216 toSci "126.5E-1" -> '12.65'
+ddbas217 toSci "126.5E-0" -> '126.5'
+ddbas218 toSci "126.5E+1" -> '1265'
+ddbas219 toSci "126.5E+2" -> '1.265E+4'
+ddbas220 toSci "126.5E+3" -> '1.265E+5'
+ddbas221 toSci "126.5E+4" -> '1.265E+6'
+ddbas222 toSci "126.5E+8" -> '1.265E+10'
+ddbas223 toSci "126.5E+20" -> '1.265E+22'
+
+ddbas230 toSci "1265" -> '1265'
+ddbas231 toSci "1265E-20" -> '1.265E-17'
+ddbas232 toSci "1265E-8" -> '0.00001265'
+ddbas233 toSci "1265E-4" -> '0.1265'
+ddbas234 toSci "1265E-3" -> '1.265'
+ddbas235 toSci "1265E-2" -> '12.65'
+ddbas236 toSci "1265E-1" -> '126.5'
+ddbas237 toSci "1265E-0" -> '1265'
+ddbas238 toSci "1265E+1" -> '1.265E+4'
+ddbas239 toSci "1265E+2" -> '1.265E+5'
+ddbas240 toSci "1265E+3" -> '1.265E+6'
+ddbas241 toSci "1265E+4" -> '1.265E+7'
+ddbas242 toSci "1265E+8" -> '1.265E+11'
+ddbas243 toSci "1265E+20" -> '1.265E+23'
+ddbas244 toSci "1265E-9" -> '0.000001265'
+ddbas245 toSci "1265E-10" -> '1.265E-7'
+ddbas246 toSci "1265E-11" -> '1.265E-8'
+ddbas247 toSci "1265E-12" -> '1.265E-9'
+
+ddbas250 toSci "0.1265" -> '0.1265'
+ddbas251 toSci "0.1265E-20" -> '1.265E-21'
+ddbas252 toSci "0.1265E-8" -> '1.265E-9'
+ddbas253 toSci "0.1265E-4" -> '0.00001265'
+ddbas254 toSci "0.1265E-3" -> '0.0001265'
+ddbas255 toSci "0.1265E-2" -> '0.001265'
+ddbas256 toSci "0.1265E-1" -> '0.01265'
+ddbas257 toSci "0.1265E-0" -> '0.1265'
+ddbas258 toSci "0.1265E+1" -> '1.265'
+ddbas259 toSci "0.1265E+2" -> '12.65'
+ddbas260 toSci "0.1265E+3" -> '126.5'
+ddbas261 toSci "0.1265E+4" -> '1265'
+ddbas262 toSci "0.1265E+8" -> '1.265E+7'
+ddbas263 toSci "0.1265E+20" -> '1.265E+19'
+
+-- some more negative zeros [systematic tests below]
+ddbas290 toSci "-0.000E-1" -> '-0.0000'
+ddbas291 toSci "-0.000E-2" -> '-0.00000'
+ddbas292 toSci "-0.000E-3" -> '-0.000000'
+ddbas293 toSci "-0.000E-4" -> '-0E-7'
+ddbas294 toSci "-0.00E-2" -> '-0.0000'
+ddbas295 toSci "-0.00E-3" -> '-0.00000'
+ddbas296 toSci "-0.0E-2" -> '-0.000'
+ddbas297 toSci "-0.0E-3" -> '-0.0000'
+ddbas298 toSci "-0E-2" -> '-0.00'
+ddbas299 toSci "-0E-3" -> '-0.000'
+
+-- Engineering notation tests
+ddbas301 toSci 10e12 -> 1.0E+13
+ddbas302 toEng 10e12 -> 10E+12
+ddbas303 toSci 10e11 -> 1.0E+12
+ddbas304 toEng 10e11 -> 1.0E+12
+ddbas305 toSci 10e10 -> 1.0E+11
+ddbas306 toEng 10e10 -> 100E+9
+ddbas307 toSci 10e9 -> 1.0E+10
+ddbas308 toEng 10e9 -> 10E+9
+ddbas309 toSci 10e8 -> 1.0E+9
+ddbas310 toEng 10e8 -> 1.0E+9
+ddbas311 toSci 10e7 -> 1.0E+8
+ddbas312 toEng 10e7 -> 100E+6
+ddbas313 toSci 10e6 -> 1.0E+7
+ddbas314 toEng 10e6 -> 10E+6
+ddbas315 toSci 10e5 -> 1.0E+6
+ddbas316 toEng 10e5 -> 1.0E+6
+ddbas317 toSci 10e4 -> 1.0E+5
+ddbas318 toEng 10e4 -> 100E+3
+ddbas319 toSci 10e3 -> 1.0E+4
+ddbas320 toEng 10e3 -> 10E+3
+ddbas321 toSci 10e2 -> 1.0E+3
+ddbas322 toEng 10e2 -> 1.0E+3
+ddbas323 toSci 10e1 -> 1.0E+2
+ddbas324 toEng 10e1 -> 100
+ddbas325 toSci 10e0 -> 10
+ddbas326 toEng 10e0 -> 10
+ddbas327 toSci 10e-1 -> 1.0
+ddbas328 toEng 10e-1 -> 1.0
+ddbas329 toSci 10e-2 -> 0.10
+ddbas330 toEng 10e-2 -> 0.10
+ddbas331 toSci 10e-3 -> 0.010
+ddbas332 toEng 10e-3 -> 0.010
+ddbas333 toSci 10e-4 -> 0.0010
+ddbas334 toEng 10e-4 -> 0.0010
+ddbas335 toSci 10e-5 -> 0.00010
+ddbas336 toEng 10e-5 -> 0.00010
+ddbas337 toSci 10e-6 -> 0.000010
+ddbas338 toEng 10e-6 -> 0.000010
+ddbas339 toSci 10e-7 -> 0.0000010
+ddbas340 toEng 10e-7 -> 0.0000010
+ddbas341 toSci 10e-8 -> 1.0E-7
+ddbas342 toEng 10e-8 -> 100E-9
+ddbas343 toSci 10e-9 -> 1.0E-8
+ddbas344 toEng 10e-9 -> 10E-9
+ddbas345 toSci 10e-10 -> 1.0E-9
+ddbas346 toEng 10e-10 -> 1.0E-9
+ddbas347 toSci 10e-11 -> 1.0E-10
+ddbas348 toEng 10e-11 -> 100E-12
+ddbas349 toSci 10e-12 -> 1.0E-11
+ddbas350 toEng 10e-12 -> 10E-12
+ddbas351 toSci 10e-13 -> 1.0E-12
+ddbas352 toEng 10e-13 -> 1.0E-12
+
+ddbas361 toSci 7E12 -> 7E+12
+ddbas362 toEng 7E12 -> 7E+12
+ddbas363 toSci 7E11 -> 7E+11
+ddbas364 toEng 7E11 -> 700E+9
+ddbas365 toSci 7E10 -> 7E+10
+ddbas366 toEng 7E10 -> 70E+9
+ddbas367 toSci 7E9 -> 7E+9
+ddbas368 toEng 7E9 -> 7E+9
+ddbas369 toSci 7E8 -> 7E+8
+ddbas370 toEng 7E8 -> 700E+6
+ddbas371 toSci 7E7 -> 7E+7
+ddbas372 toEng 7E7 -> 70E+6
+ddbas373 toSci 7E6 -> 7E+6
+ddbas374 toEng 7E6 -> 7E+6
+ddbas375 toSci 7E5 -> 7E+5
+ddbas376 toEng 7E5 -> 700E+3
+ddbas377 toSci 7E4 -> 7E+4
+ddbas378 toEng 7E4 -> 70E+3
+ddbas379 toSci 7E3 -> 7E+3
+ddbas380 toEng 7E3 -> 7E+3
+ddbas381 toSci 7E2 -> 7E+2
+ddbas382 toEng 7E2 -> 700
+ddbas383 toSci 7E1 -> 7E+1
+ddbas384 toEng 7E1 -> 70
+ddbas385 toSci 7E0 -> 7
+ddbas386 toEng 7E0 -> 7
+ddbas387 toSci 7E-1 -> 0.7
+ddbas388 toEng 7E-1 -> 0.7
+ddbas389 toSci 7E-2 -> 0.07
+ddbas390 toEng 7E-2 -> 0.07
+ddbas391 toSci 7E-3 -> 0.007
+ddbas392 toEng 7E-3 -> 0.007
+ddbas393 toSci 7E-4 -> 0.0007
+ddbas394 toEng 7E-4 -> 0.0007
+ddbas395 toSci 7E-5 -> 0.00007
+ddbas396 toEng 7E-5 -> 0.00007
+ddbas397 toSci 7E-6 -> 0.000007
+ddbas398 toEng 7E-6 -> 0.000007
+ddbas399 toSci 7E-7 -> 7E-7
+ddbas400 toEng 7E-7 -> 700E-9
+ddbas401 toSci 7E-8 -> 7E-8
+ddbas402 toEng 7E-8 -> 70E-9
+ddbas403 toSci 7E-9 -> 7E-9
+ddbas404 toEng 7E-9 -> 7E-9
+ddbas405 toSci 7E-10 -> 7E-10
+ddbas406 toEng 7E-10 -> 700E-12
+ddbas407 toSci 7E-11 -> 7E-11
+ddbas408 toEng 7E-11 -> 70E-12
+ddbas409 toSci 7E-12 -> 7E-12
+ddbas410 toEng 7E-12 -> 7E-12
+ddbas411 toSci 7E-13 -> 7E-13
+ddbas412 toEng 7E-13 -> 700E-15
+
+-- Exacts remain exact up to precision ..
+rounding: half_up
+ddbas420 toSci 100 -> 100
+ddbas421 toEng 100 -> 100
+ddbas422 toSci 1000 -> 1000
+ddbas423 toEng 1000 -> 1000
+ddbas424 toSci 999.9 -> 999.9
+ddbas425 toEng 999.9 -> 999.9
+ddbas426 toSci 1000.0 -> 1000.0
+ddbas427 toEng 1000.0 -> 1000.0
+ddbas428 toSci 1000.1 -> 1000.1
+ddbas429 toEng 1000.1 -> 1000.1
+ddbas430 toSci 10000 -> 10000
+ddbas431 toEng 10000 -> 10000
+ddbas432 toSci 100000 -> 100000
+ddbas433 toEng 100000 -> 100000
+ddbas434 toSci 1000000 -> 1000000
+ddbas435 toEng 1000000 -> 1000000
+ddbas436 toSci 10000000 -> 10000000
+ddbas437 toEng 10000000 -> 10000000
+ddbas438 toSci 100000000 -> 100000000
+ddbas439 toEng 1000000000000000 -> 1000000000000000
+ddbas440 toSci 10000000000000000 -> 1.000000000000000E+16 Rounded
+ddbas441 toEng 10000000000000000 -> 10.00000000000000E+15 Rounded
+ddbas442 toSci 10000000000000001 -> 1.000000000000000E+16 Rounded Inexact
+ddbas443 toEng 10000000000000001 -> 10.00000000000000E+15 Rounded Inexact
+ddbas444 toSci 10000000000000003 -> 1.000000000000000E+16 Rounded Inexact
+ddbas445 toEng 10000000000000003 -> 10.00000000000000E+15 Rounded Inexact
+ddbas446 toSci 10000000000000005 -> 1.000000000000001E+16 Rounded Inexact
+ddbas447 toEng 10000000000000005 -> 10.00000000000001E+15 Rounded Inexact
+ddbas448 toSci 100000000000000050 -> 1.000000000000001E+17 Rounded Inexact
+ddbas449 toEng 100000000000000050 -> 100.0000000000001E+15 Rounded Inexact
+ddbas450 toSci 10000000000000009 -> 1.000000000000001E+16 Rounded Inexact
+ddbas451 toEng 10000000000000009 -> 10.00000000000001E+15 Rounded Inexact
+ddbas452 toSci 100000000000000000 -> 1.000000000000000E+17 Rounded
+ddbas453 toEng 100000000000000000 -> 100.0000000000000E+15 Rounded
+ddbas454 toSci 100000000000000003 -> 1.000000000000000E+17 Rounded Inexact
+ddbas455 toEng 100000000000000003 -> 100.0000000000000E+15 Rounded Inexact
+ddbas456 toSci 100000000000000005 -> 1.000000000000000E+17 Rounded Inexact
+ddbas457 toEng 100000000000000005 -> 100.0000000000000E+15 Rounded Inexact
+ddbas458 toSci 100000000000000009 -> 1.000000000000000E+17 Rounded Inexact
+ddbas459 toEng 100000000000000009 -> 100.0000000000000E+15 Rounded Inexact
+ddbas460 toSci 1000000000000000000 -> 1.000000000000000E+18 Rounded
+ddbas461 toEng 1000000000000000000 -> 1.000000000000000E+18 Rounded
+ddbas462 toSci 1000000000000000300 -> 1.000000000000000E+18 Rounded Inexact
+ddbas463 toEng 1000000000000000300 -> 1.000000000000000E+18 Rounded Inexact
+ddbas464 toSci 1000000000000000500 -> 1.000000000000001E+18 Rounded Inexact
+ddbas465 toEng 1000000000000000500 -> 1.000000000000001E+18 Rounded Inexact
+ddbas466 toSci 1000000000000000900 -> 1.000000000000001E+18 Rounded Inexact
+ddbas467 toEng 1000000000000000900 -> 1.000000000000001E+18 Rounded Inexact
+ddbas468 toSci 10000000000000000000 -> 1.000000000000000E+19 Rounded
+ddbas469 toEng 10000000000000000000 -> 10.00000000000000E+18 Rounded
+ddbas470 toSci 10000000000000003000 -> 1.000000000000000E+19 Rounded Inexact
+ddbas471 toEng 10000000000000003000 -> 10.00000000000000E+18 Rounded Inexact
+ddbas472 toSci 10000000000000005000 -> 1.000000000000001E+19 Rounded Inexact
+ddbas473 toEng 10000000000000005000 -> 10.00000000000001E+18 Rounded Inexact
+ddbas474 toSci 10000000000000009000 -> 1.000000000000001E+19 Rounded Inexact
+ddbas475 toEng 10000000000000009000 -> 10.00000000000001E+18 Rounded Inexact
+
+-- check rounding modes heeded
+rounding: ceiling
+ddbsr401 toSci 1.1111111111123450 -> 1.111111111112345 Rounded
+ddbsr402 toSci 1.11111111111234549 -> 1.111111111112346 Rounded Inexact
+ddbsr403 toSci 1.11111111111234550 -> 1.111111111112346 Rounded Inexact
+ddbsr404 toSci 1.11111111111234551 -> 1.111111111112346 Rounded Inexact
+rounding: up
+ddbsr405 toSci 1.1111111111123450 -> 1.111111111112345 Rounded
+ddbsr406 toSci 1.11111111111234549 -> 1.111111111112346 Rounded Inexact
+ddbsr407 toSci 1.11111111111234550 -> 1.111111111112346 Rounded Inexact
+ddbsr408 toSci 1.11111111111234551 -> 1.111111111112346 Rounded Inexact
+rounding: floor
+ddbsr410 toSci 1.1111111111123450 -> 1.111111111112345 Rounded
+ddbsr411 toSci 1.11111111111234549 -> 1.111111111112345 Rounded Inexact
+ddbsr412 toSci 1.11111111111234550 -> 1.111111111112345 Rounded Inexact
+ddbsr413 toSci 1.11111111111234551 -> 1.111111111112345 Rounded Inexact
+rounding: half_down
+ddbsr415 toSci 1.1111111111123450 -> 1.111111111112345 Rounded
+ddbsr416 toSci 1.11111111111234549 -> 1.111111111112345 Rounded Inexact
+ddbsr417 toSci 1.11111111111234550 -> 1.111111111112345 Rounded Inexact
+ddbsr418 toSci 1.11111111111234650 -> 1.111111111112346 Rounded Inexact
+ddbsr419 toSci 1.11111111111234551 -> 1.111111111112346 Rounded Inexact
+rounding: half_even
+ddbsr421 toSci 1.1111111111123450 -> 1.111111111112345 Rounded
+ddbsr422 toSci 1.11111111111234549 -> 1.111111111112345 Rounded Inexact
+ddbsr423 toSci 1.11111111111234550 -> 1.111111111112346 Rounded Inexact
+ddbsr424 toSci 1.11111111111234650 -> 1.111111111112346 Rounded Inexact
+ddbsr425 toSci 1.11111111111234551 -> 1.111111111112346 Rounded Inexact
+rounding: down
+ddbsr426 toSci 1.1111111111123450 -> 1.111111111112345 Rounded
+ddbsr427 toSci 1.11111111111234549 -> 1.111111111112345 Rounded Inexact
+ddbsr428 toSci 1.11111111111234550 -> 1.111111111112345 Rounded Inexact
+ddbsr429 toSci 1.11111111111234551 -> 1.111111111112345 Rounded Inexact
+rounding: half_up
+ddbsr431 toSci 1.1111111111123450 -> 1.111111111112345 Rounded
+ddbsr432 toSci 1.11111111111234549 -> 1.111111111112345 Rounded Inexact
+ddbsr433 toSci 1.11111111111234550 -> 1.111111111112346 Rounded Inexact
+ddbsr434 toSci 1.11111111111234650 -> 1.111111111112347 Rounded Inexact
+ddbsr435 toSci 1.11111111111234551 -> 1.111111111112346 Rounded Inexact
+-- negatives
+rounding: ceiling
+ddbsr501 toSci -1.1111111111123450 -> -1.111111111112345 Rounded
+ddbsr502 toSci -1.11111111111234549 -> -1.111111111112345 Rounded Inexact
+ddbsr503 toSci -1.11111111111234550 -> -1.111111111112345 Rounded Inexact
+ddbsr504 toSci -1.11111111111234551 -> -1.111111111112345 Rounded Inexact
+rounding: up
+ddbsr505 toSci -1.1111111111123450 -> -1.111111111112345 Rounded
+ddbsr506 toSci -1.11111111111234549 -> -1.111111111112346 Rounded Inexact
+ddbsr507 toSci -1.11111111111234550 -> -1.111111111112346 Rounded Inexact
+ddbsr508 toSci -1.11111111111234551 -> -1.111111111112346 Rounded Inexact
+rounding: floor
+ddbsr510 toSci -1.1111111111123450 -> -1.111111111112345 Rounded
+ddbsr511 toSci -1.11111111111234549 -> -1.111111111112346 Rounded Inexact
+ddbsr512 toSci -1.11111111111234550 -> -1.111111111112346 Rounded Inexact
+ddbsr513 toSci -1.11111111111234551 -> -1.111111111112346 Rounded Inexact
+rounding: half_down
+ddbsr515 toSci -1.1111111111123450 -> -1.111111111112345 Rounded
+ddbsr516 toSci -1.11111111111234549 -> -1.111111111112345 Rounded Inexact
+ddbsr517 toSci -1.11111111111234550 -> -1.111111111112345 Rounded Inexact
+ddbsr518 toSci -1.11111111111234650 -> -1.111111111112346 Rounded Inexact
+ddbsr519 toSci -1.11111111111234551 -> -1.111111111112346 Rounded Inexact
+rounding: half_even
+ddbsr521 toSci -1.1111111111123450 -> -1.111111111112345 Rounded
+ddbsr522 toSci -1.11111111111234549 -> -1.111111111112345 Rounded Inexact
+ddbsr523 toSci -1.11111111111234550 -> -1.111111111112346 Rounded Inexact
+ddbsr524 toSci -1.11111111111234650 -> -1.111111111112346 Rounded Inexact
+ddbsr525 toSci -1.11111111111234551 -> -1.111111111112346 Rounded Inexact
+rounding: down
+ddbsr526 toSci -1.1111111111123450 -> -1.111111111112345 Rounded
+ddbsr527 toSci -1.11111111111234549 -> -1.111111111112345 Rounded Inexact
+ddbsr528 toSci -1.11111111111234550 -> -1.111111111112345 Rounded Inexact
+ddbsr529 toSci -1.11111111111234551 -> -1.111111111112345 Rounded Inexact
+rounding: half_up
+ddbsr531 toSci -1.1111111111123450 -> -1.111111111112345 Rounded
+ddbsr532 toSci -1.11111111111234549 -> -1.111111111112345 Rounded Inexact
+ddbsr533 toSci -1.11111111111234550 -> -1.111111111112346 Rounded Inexact
+ddbsr534 toSci -1.11111111111234650 -> -1.111111111112347 Rounded Inexact
+ddbsr535 toSci -1.11111111111234551 -> -1.111111111112346 Rounded Inexact
+
+rounding: half_even
+
+-- The 'baddies' tests from DiagBigDecimal, plus some new ones
+ddbas500 toSci '1..2' -> NaN Conversion_syntax
+ddbas501 toSci '.' -> NaN Conversion_syntax
+ddbas502 toSci '..' -> NaN Conversion_syntax
+ddbas503 toSci '++1' -> NaN Conversion_syntax
+ddbas504 toSci '--1' -> NaN Conversion_syntax
+ddbas505 toSci '-+1' -> NaN Conversion_syntax
+ddbas506 toSci '+-1' -> NaN Conversion_syntax
+ddbas507 toSci '12e' -> NaN Conversion_syntax
+ddbas508 toSci '12e++' -> NaN Conversion_syntax
+ddbas509 toSci '12f4' -> NaN Conversion_syntax
+ddbas510 toSci ' +1' -> NaN Conversion_syntax
+ddbas511 toSci '+ 1' -> NaN Conversion_syntax
+ddbas512 toSci '12 ' -> NaN Conversion_syntax
+ddbas513 toSci ' + 1' -> NaN Conversion_syntax
+ddbas514 toSci ' - 1 ' -> NaN Conversion_syntax
+ddbas515 toSci 'x' -> NaN Conversion_syntax
+ddbas516 toSci '-1-' -> NaN Conversion_syntax
+ddbas517 toSci '12-' -> NaN Conversion_syntax
+ddbas518 toSci '3+' -> NaN Conversion_syntax
+ddbas519 toSci '' -> NaN Conversion_syntax
+ddbas520 toSci '1e-' -> NaN Conversion_syntax
+ddbas521 toSci '7e99999a' -> NaN Conversion_syntax
+ddbas522 toSci '7e123567890x' -> NaN Conversion_syntax
+ddbas523 toSci '7e12356789012x' -> NaN Conversion_syntax
+ddbas524 toSci '' -> NaN Conversion_syntax
+ddbas525 toSci 'e100' -> NaN Conversion_syntax
+ddbas526 toSci '\u0e5a' -> NaN Conversion_syntax
+ddbas527 toSci '\u0b65' -> NaN Conversion_syntax
+ddbas528 toSci '123,65' -> NaN Conversion_syntax
+ddbas529 toSci '1.34.5' -> NaN Conversion_syntax
+ddbas530 toSci '.123.5' -> NaN Conversion_syntax
+ddbas531 toSci '01.35.' -> NaN Conversion_syntax
+ddbas532 toSci '01.35-' -> NaN Conversion_syntax
+ddbas533 toSci '0000..' -> NaN Conversion_syntax
+ddbas534 toSci '.0000.' -> NaN Conversion_syntax
+ddbas535 toSci '00..00' -> NaN Conversion_syntax
+ddbas536 toSci '111e*123' -> NaN Conversion_syntax
+ddbas537 toSci '111e123-' -> NaN Conversion_syntax
+ddbas538 toSci '111e+12+' -> NaN Conversion_syntax
+ddbas539 toSci '111e1-3-' -> NaN Conversion_syntax
+ddbas540 toSci '111e1*23' -> NaN Conversion_syntax
+ddbas541 toSci '111e1e+3' -> NaN Conversion_syntax
+ddbas542 toSci '1e1.0' -> NaN Conversion_syntax
+ddbas543 toSci '1e123e' -> NaN Conversion_syntax
+ddbas544 toSci 'ten' -> NaN Conversion_syntax
+ddbas545 toSci 'ONE' -> NaN Conversion_syntax
+ddbas546 toSci '1e.1' -> NaN Conversion_syntax
+ddbas547 toSci '1e1.' -> NaN Conversion_syntax
+ddbas548 toSci '1ee' -> NaN Conversion_syntax
+ddbas549 toSci 'e+1' -> NaN Conversion_syntax
+ddbas550 toSci '1.23.4' -> NaN Conversion_syntax
+ddbas551 toSci '1.2.1' -> NaN Conversion_syntax
+ddbas552 toSci '1E+1.2' -> NaN Conversion_syntax
+ddbas553 toSci '1E+1.2.3' -> NaN Conversion_syntax
+ddbas554 toSci '1E++1' -> NaN Conversion_syntax
+ddbas555 toSci '1E--1' -> NaN Conversion_syntax
+ddbas556 toSci '1E+-1' -> NaN Conversion_syntax
+ddbas557 toSci '1E-+1' -> NaN Conversion_syntax
+ddbas558 toSci '1E''1' -> NaN Conversion_syntax
+ddbas559 toSci "1E""1" -> NaN Conversion_syntax
+ddbas560 toSci "1E""""" -> NaN Conversion_syntax
+-- Near-specials
+ddbas561 toSci "qNaN" -> NaN Conversion_syntax
+ddbas562 toSci "NaNq" -> NaN Conversion_syntax
+ddbas563 toSci "NaNs" -> NaN Conversion_syntax
+ddbas564 toSci "Infi" -> NaN Conversion_syntax
+ddbas565 toSci "Infin" -> NaN Conversion_syntax
+ddbas566 toSci "Infini" -> NaN Conversion_syntax
+ddbas567 toSci "Infinit" -> NaN Conversion_syntax
+ddbas568 toSci "-Infinit" -> NaN Conversion_syntax
+ddbas569 toSci "0Inf" -> NaN Conversion_syntax
+ddbas570 toSci "9Inf" -> NaN Conversion_syntax
+ddbas571 toSci "-0Inf" -> NaN Conversion_syntax
+ddbas572 toSci "-9Inf" -> NaN Conversion_syntax
+ddbas573 toSci "-sNa" -> NaN Conversion_syntax
+ddbas574 toSci "xNaN" -> NaN Conversion_syntax
+ddbas575 toSci "0sNaN" -> NaN Conversion_syntax
+
+-- some baddies with dots and Es and dots and specials
+ddbas576 toSci 'e+1' -> NaN Conversion_syntax
+ddbas577 toSci '.e+1' -> NaN Conversion_syntax
+ddbas578 toSci '+.e+1' -> NaN Conversion_syntax
+ddbas579 toSci '-.e+' -> NaN Conversion_syntax
+ddbas580 toSci '-.e' -> NaN Conversion_syntax
+ddbas581 toSci 'E+1' -> NaN Conversion_syntax
+ddbas582 toSci '.E+1' -> NaN Conversion_syntax
+ddbas583 toSci '+.E+1' -> NaN Conversion_syntax
+ddbas584 toSci '-.E+' -> NaN Conversion_syntax
+ddbas585 toSci '-.E' -> NaN Conversion_syntax
+
+ddbas586 toSci '.NaN' -> NaN Conversion_syntax
+ddbas587 toSci '-.NaN' -> NaN Conversion_syntax
+ddbas588 toSci '+.sNaN' -> NaN Conversion_syntax
+ddbas589 toSci '+.Inf' -> NaN Conversion_syntax
+ddbas590 toSci '.Infinity' -> NaN Conversion_syntax
+
+-- Zeros
+ddbas601 toSci 0.000000000 -> 0E-9
+ddbas602 toSci 0.00000000 -> 0E-8
+ddbas603 toSci 0.0000000 -> 0E-7
+ddbas604 toSci 0.000000 -> 0.000000
+ddbas605 toSci 0.00000 -> 0.00000
+ddbas606 toSci 0.0000 -> 0.0000
+ddbas607 toSci 0.000 -> 0.000
+ddbas608 toSci 0.00 -> 0.00
+ddbas609 toSci 0.0 -> 0.0
+ddbas610 toSci .0 -> 0.0
+ddbas611 toSci 0. -> 0
+ddbas612 toSci -.0 -> -0.0
+ddbas613 toSci -0. -> -0
+ddbas614 toSci -0.0 -> -0.0
+ddbas615 toSci -0.00 -> -0.00
+ddbas616 toSci -0.000 -> -0.000
+ddbas617 toSci -0.0000 -> -0.0000
+ddbas618 toSci -0.00000 -> -0.00000
+ddbas619 toSci -0.000000 -> -0.000000
+ddbas620 toSci -0.0000000 -> -0E-7
+ddbas621 toSci -0.00000000 -> -0E-8
+ddbas622 toSci -0.000000000 -> -0E-9
+
+ddbas630 toSci 0.00E+0 -> 0.00
+ddbas631 toSci 0.00E+1 -> 0.0
+ddbas632 toSci 0.00E+2 -> 0
+ddbas633 toSci 0.00E+3 -> 0E+1
+ddbas634 toSci 0.00E+4 -> 0E+2
+ddbas635 toSci 0.00E+5 -> 0E+3
+ddbas636 toSci 0.00E+6 -> 0E+4
+ddbas637 toSci 0.00E+7 -> 0E+5
+ddbas638 toSci 0.00E+8 -> 0E+6
+ddbas639 toSci 0.00E+9 -> 0E+7
+
+ddbas640 toSci 0.0E+0 -> 0.0
+ddbas641 toSci 0.0E+1 -> 0
+ddbas642 toSci 0.0E+2 -> 0E+1
+ddbas643 toSci 0.0E+3 -> 0E+2
+ddbas644 toSci 0.0E+4 -> 0E+3
+ddbas645 toSci 0.0E+5 -> 0E+4
+ddbas646 toSci 0.0E+6 -> 0E+5
+ddbas647 toSci 0.0E+7 -> 0E+6
+ddbas648 toSci 0.0E+8 -> 0E+7
+ddbas649 toSci 0.0E+9 -> 0E+8
+
+ddbas650 toSci 0E+0 -> 0
+ddbas651 toSci 0E+1 -> 0E+1
+ddbas652 toSci 0E+2 -> 0E+2
+ddbas653 toSci 0E+3 -> 0E+3
+ddbas654 toSci 0E+4 -> 0E+4
+ddbas655 toSci 0E+5 -> 0E+5
+ddbas656 toSci 0E+6 -> 0E+6
+ddbas657 toSci 0E+7 -> 0E+7
+ddbas658 toSci 0E+8 -> 0E+8
+ddbas659 toSci 0E+9 -> 0E+9
+
+ddbas660 toSci 0.0E-0 -> 0.0
+ddbas661 toSci 0.0E-1 -> 0.00
+ddbas662 toSci 0.0E-2 -> 0.000
+ddbas663 toSci 0.0E-3 -> 0.0000
+ddbas664 toSci 0.0E-4 -> 0.00000
+ddbas665 toSci 0.0E-5 -> 0.000000
+ddbas666 toSci 0.0E-6 -> 0E-7
+ddbas667 toSci 0.0E-7 -> 0E-8
+ddbas668 toSci 0.0E-8 -> 0E-9
+ddbas669 toSci 0.0E-9 -> 0E-10
+
+ddbas670 toSci 0.00E-0 -> 0.00
+ddbas671 toSci 0.00E-1 -> 0.000
+ddbas672 toSci 0.00E-2 -> 0.0000
+ddbas673 toSci 0.00E-3 -> 0.00000
+ddbas674 toSci 0.00E-4 -> 0.000000
+ddbas675 toSci 0.00E-5 -> 0E-7
+ddbas676 toSci 0.00E-6 -> 0E-8
+ddbas677 toSci 0.00E-7 -> 0E-9
+ddbas678 toSci 0.00E-8 -> 0E-10
+ddbas679 toSci 0.00E-9 -> 0E-11
+
+ddbas680 toSci 000000. -> 0
+ddbas681 toSci 00000. -> 0
+ddbas682 toSci 0000. -> 0
+ddbas683 toSci 000. -> 0
+ddbas684 toSci 00. -> 0
+ddbas685 toSci 0. -> 0
+ddbas686 toSci +00000. -> 0
+ddbas687 toSci -00000. -> -0
+ddbas688 toSci +0. -> 0
+ddbas689 toSci -0. -> -0
+
+-- Specials
+ddbas700 toSci "NaN" -> NaN
+ddbas701 toSci "nan" -> NaN
+ddbas702 toSci "nAn" -> NaN
+ddbas703 toSci "NAN" -> NaN
+ddbas704 toSci "+NaN" -> NaN
+ddbas705 toSci "+nan" -> NaN
+ddbas706 toSci "+nAn" -> NaN
+ddbas707 toSci "+NAN" -> NaN
+ddbas708 toSci "-NaN" -> -NaN
+ddbas709 toSci "-nan" -> -NaN
+ddbas710 toSci "-nAn" -> -NaN
+ddbas711 toSci "-NAN" -> -NaN
+ddbas712 toSci 'NaN0' -> NaN
+ddbas713 toSci 'NaN1' -> NaN1
+ddbas714 toSci 'NaN12' -> NaN12
+ddbas715 toSci 'NaN123' -> NaN123
+ddbas716 toSci 'NaN1234' -> NaN1234
+ddbas717 toSci 'NaN01' -> NaN1
+ddbas718 toSci 'NaN012' -> NaN12
+ddbas719 toSci 'NaN0123' -> NaN123
+ddbas720 toSci 'NaN01234' -> NaN1234
+ddbas721 toSci 'NaN001' -> NaN1
+ddbas722 toSci 'NaN0012' -> NaN12
+ddbas723 toSci 'NaN00123' -> NaN123
+ddbas724 toSci 'NaN001234' -> NaN1234
+ddbas725 toSci 'NaN1234567890123456' -> NaN Conversion_syntax
+ddbas726 toSci 'NaN123e+1' -> NaN Conversion_syntax
+ddbas727 toSci 'NaN12.45' -> NaN Conversion_syntax
+ddbas728 toSci 'NaN-12' -> NaN Conversion_syntax
+ddbas729 toSci 'NaN+12' -> NaN Conversion_syntax
+
+ddbas730 toSci "sNaN" -> sNaN
+ddbas731 toSci "snan" -> sNaN
+ddbas732 toSci "SnAn" -> sNaN
+ddbas733 toSci "SNAN" -> sNaN
+ddbas734 toSci "+sNaN" -> sNaN
+ddbas735 toSci "+snan" -> sNaN
+ddbas736 toSci "+SnAn" -> sNaN
+ddbas737 toSci "+SNAN" -> sNaN
+ddbas738 toSci "-sNaN" -> -sNaN
+ddbas739 toSci "-snan" -> -sNaN
+ddbas740 toSci "-SnAn" -> -sNaN
+ddbas741 toSci "-SNAN" -> -sNaN
+ddbas742 toSci 'sNaN0000' -> sNaN
+ddbas743 toSci 'sNaN7' -> sNaN7
+ddbas744 toSci 'sNaN007234' -> sNaN7234
+ddbas745 toSci 'sNaN7234561234567890' -> NaN Conversion_syntax
+ddbas746 toSci 'sNaN72.45' -> NaN Conversion_syntax
+ddbas747 toSci 'sNaN-72' -> NaN Conversion_syntax
+
+ddbas748 toSci "Inf" -> Infinity
+ddbas749 toSci "inf" -> Infinity
+ddbas750 toSci "iNf" -> Infinity
+ddbas751 toSci "INF" -> Infinity
+ddbas752 toSci "+Inf" -> Infinity
+ddbas753 toSci "+inf" -> Infinity
+ddbas754 toSci "+iNf" -> Infinity
+ddbas755 toSci "+INF" -> Infinity
+ddbas756 toSci "-Inf" -> -Infinity
+ddbas757 toSci "-inf" -> -Infinity
+ddbas758 toSci "-iNf" -> -Infinity
+ddbas759 toSci "-INF" -> -Infinity
+
+ddbas760 toSci "Infinity" -> Infinity
+ddbas761 toSci "infinity" -> Infinity
+ddbas762 toSci "iNfInItY" -> Infinity
+ddbas763 toSci "INFINITY" -> Infinity
+ddbas764 toSci "+Infinity" -> Infinity
+ddbas765 toSci "+infinity" -> Infinity
+ddbas766 toSci "+iNfInItY" -> Infinity
+ddbas767 toSci "+INFINITY" -> Infinity
+ddbas768 toSci "-Infinity" -> -Infinity
+ddbas769 toSci "-infinity" -> -Infinity
+ddbas770 toSci "-iNfInItY" -> -Infinity
+ddbas771 toSci "-INFINITY" -> -Infinity
+
+-- Specials and zeros for toEng
+ddbast772 toEng "NaN" -> NaN
+ddbast773 toEng "-Infinity" -> -Infinity
+ddbast774 toEng "-sNaN" -> -sNaN
+ddbast775 toEng "-NaN" -> -NaN
+ddbast776 toEng "+Infinity" -> Infinity
+ddbast778 toEng "+sNaN" -> sNaN
+ddbast779 toEng "+NaN" -> NaN
+ddbast780 toEng "INFINITY" -> Infinity
+ddbast781 toEng "SNAN" -> sNaN
+ddbast782 toEng "NAN" -> NaN
+ddbast783 toEng "infinity" -> Infinity
+ddbast784 toEng "snan" -> sNaN
+ddbast785 toEng "nan" -> NaN
+ddbast786 toEng "InFINITY" -> Infinity
+ddbast787 toEng "SnAN" -> sNaN
+ddbast788 toEng "nAN" -> NaN
+ddbast789 toEng "iNfinity" -> Infinity
+ddbast790 toEng "sNan" -> sNaN
+ddbast791 toEng "Nan" -> NaN
+ddbast792 toEng "Infinity" -> Infinity
+ddbast793 toEng "sNaN" -> sNaN
+
+-- Zero toEng, etc.
+ddbast800 toEng 0e+1 -> "0.00E+3" -- doc example
+
+ddbast801 toEng 0.000000000 -> 0E-9
+ddbast802 toEng 0.00000000 -> 0.00E-6
+ddbast803 toEng 0.0000000 -> 0.0E-6
+ddbast804 toEng 0.000000 -> 0.000000
+ddbast805 toEng 0.00000 -> 0.00000
+ddbast806 toEng 0.0000 -> 0.0000
+ddbast807 toEng 0.000 -> 0.000
+ddbast808 toEng 0.00 -> 0.00
+ddbast809 toEng 0.0 -> 0.0
+ddbast810 toEng .0 -> 0.0
+ddbast811 toEng 0. -> 0
+ddbast812 toEng -.0 -> -0.0
+ddbast813 toEng -0. -> -0
+ddbast814 toEng -0.0 -> -0.0
+ddbast815 toEng -0.00 -> -0.00
+ddbast816 toEng -0.000 -> -0.000
+ddbast817 toEng -0.0000 -> -0.0000
+ddbast818 toEng -0.00000 -> -0.00000
+ddbast819 toEng -0.000000 -> -0.000000
+ddbast820 toEng -0.0000000 -> -0.0E-6
+ddbast821 toEng -0.00000000 -> -0.00E-6
+ddbast822 toEng -0.000000000 -> -0E-9
+
+ddbast830 toEng 0.00E+0 -> 0.00
+ddbast831 toEng 0.00E+1 -> 0.0
+ddbast832 toEng 0.00E+2 -> 0
+ddbast833 toEng 0.00E+3 -> 0.00E+3
+ddbast834 toEng 0.00E+4 -> 0.0E+3
+ddbast835 toEng 0.00E+5 -> 0E+3
+ddbast836 toEng 0.00E+6 -> 0.00E+6
+ddbast837 toEng 0.00E+7 -> 0.0E+6
+ddbast838 toEng 0.00E+8 -> 0E+6
+ddbast839 toEng 0.00E+9 -> 0.00E+9
+
+ddbast840 toEng 0.0E+0 -> 0.0
+ddbast841 toEng 0.0E+1 -> 0
+ddbast842 toEng 0.0E+2 -> 0.00E+3
+ddbast843 toEng 0.0E+3 -> 0.0E+3
+ddbast844 toEng 0.0E+4 -> 0E+3
+ddbast845 toEng 0.0E+5 -> 0.00E+6
+ddbast846 toEng 0.0E+6 -> 0.0E+6
+ddbast847 toEng 0.0E+7 -> 0E+6
+ddbast848 toEng 0.0E+8 -> 0.00E+9
+ddbast849 toEng 0.0E+9 -> 0.0E+9
+
+ddbast850 toEng 0E+0 -> 0
+ddbast851 toEng 0E+1 -> 0.00E+3
+ddbast852 toEng 0E+2 -> 0.0E+3
+ddbast853 toEng 0E+3 -> 0E+3
+ddbast854 toEng 0E+4 -> 0.00E+6
+ddbast855 toEng 0E+5 -> 0.0E+6
+ddbast856 toEng 0E+6 -> 0E+6
+ddbast857 toEng 0E+7 -> 0.00E+9
+ddbast858 toEng 0E+8 -> 0.0E+9
+ddbast859 toEng 0E+9 -> 0E+9
+
+ddbast860 toEng 0.0E-0 -> 0.0
+ddbast861 toEng 0.0E-1 -> 0.00
+ddbast862 toEng 0.0E-2 -> 0.000
+ddbast863 toEng 0.0E-3 -> 0.0000
+ddbast864 toEng 0.0E-4 -> 0.00000
+ddbast865 toEng 0.0E-5 -> 0.000000
+ddbast866 toEng 0.0E-6 -> 0.0E-6
+ddbast867 toEng 0.0E-7 -> 0.00E-6
+ddbast868 toEng 0.0E-8 -> 0E-9
+ddbast869 toEng 0.0E-9 -> 0.0E-9
+
+ddbast870 toEng 0.00E-0 -> 0.00
+ddbast871 toEng 0.00E-1 -> 0.000
+ddbast872 toEng 0.00E-2 -> 0.0000
+ddbast873 toEng 0.00E-3 -> 0.00000
+ddbast874 toEng 0.00E-4 -> 0.000000
+ddbast875 toEng 0.00E-5 -> 0.0E-6
+ddbast876 toEng 0.00E-6 -> 0.00E-6
+ddbast877 toEng 0.00E-7 -> 0E-9
+ddbast878 toEng 0.00E-8 -> 0.0E-9
+ddbast879 toEng 0.00E-9 -> 0.00E-9
+
+-- long input strings
+ddbas801 tosci '01234567890123456' -> 1234567890123456
+ddbas802 tosci '001234567890123456' -> 1234567890123456
+ddbas803 tosci '0001234567890123456' -> 1234567890123456
+ddbas804 tosci '00001234567890123456' -> 1234567890123456
+ddbas805 tosci '000001234567890123456' -> 1234567890123456
+ddbas806 tosci '0000001234567890123456' -> 1234567890123456
+ddbas807 tosci '00000001234567890123456' -> 1234567890123456
+ddbas808 tosci '000000001234567890123456' -> 1234567890123456
+ddbas809 tosci '0000000001234567890123456' -> 1234567890123456
+ddbas810 tosci '00000000001234567890123456' -> 1234567890123456
+
+ddbas811 tosci '0.1234567890123456' -> 0.1234567890123456
+ddbas812 tosci '0.01234567890123456' -> 0.01234567890123456
+ddbas813 tosci '0.001234567890123456' -> 0.001234567890123456
+ddbas814 tosci '0.0001234567890123456' -> 0.0001234567890123456
+ddbas815 tosci '0.00001234567890123456' -> 0.00001234567890123456
+ddbas816 tosci '0.000001234567890123456' -> 0.000001234567890123456
+ddbas817 tosci '0.0000001234567890123456' -> 1.234567890123456E-7
+ddbas818 tosci '0.00000001234567890123456' -> 1.234567890123456E-8
+ddbas819 tosci '0.000000001234567890123456' -> 1.234567890123456E-9
+ddbas820 tosci '0.0000000001234567890123456' -> 1.234567890123456E-10
+
+ddbas821 tosci '12345678901234567890' -> 1.234567890123457E+19 Inexact Rounded
+ddbas822 tosci '123456789012345678901' -> 1.234567890123457E+20 Inexact Rounded
+ddbas823 tosci '1234567890123456789012' -> 1.234567890123457E+21 Inexact Rounded
+ddbas824 tosci '12345678901234567890123' -> 1.234567890123457E+22 Inexact Rounded
+ddbas825 tosci '123456789012345678901234' -> 1.234567890123457E+23 Inexact Rounded
+ddbas826 tosci '1234567890123456789012345' -> 1.234567890123457E+24 Inexact Rounded
+ddbas827 tosci '12345678901234567890123456' -> 1.234567890123457E+25 Inexact Rounded
+ddbas828 tosci '123456789012345678901234567' -> 1.234567890123457E+26 Inexact Rounded
+ddbas829 tosci '1234567890123456789012345678' -> 1.234567890123457E+27 Inexact Rounded
+
+-- subnormals and overflows
+ddbas906 toSci '99e999999999' -> Infinity Overflow Inexact Rounded
+ddbas907 toSci '999e999999999' -> Infinity Overflow Inexact Rounded
+ddbas908 toSci '0.9e-999999999' -> 0E-398 Underflow Subnormal Inexact Rounded Clamped
+ddbas909 toSci '0.09e-999999999' -> 0E-398 Underflow Subnormal Inexact Rounded Clamped
+ddbas910 toSci '0.1e1000000000' -> Infinity Overflow Inexact Rounded
+ddbas911 toSci '10e-1000000000' -> 0E-398 Underflow Subnormal Inexact Rounded Clamped
+ddbas912 toSci '0.9e9999999999' -> Infinity Overflow Inexact Rounded
+ddbas913 toSci '99e-9999999999' -> 0E-398 Underflow Subnormal Inexact Rounded Clamped
+ddbas914 toSci '111e9999999999' -> Infinity Overflow Inexact Rounded
+ddbas915 toSci '1111e-9999999999' -> 0E-398 Underflow Subnormal Inexact Rounded Clamped
+ddbas916 toSci '1111e-99999999999' -> 0E-398 Underflow Subnormal Inexact Rounded Clamped
+ddbas917 toSci '7e1000000000' -> Infinity Overflow Inexact Rounded
+-- negatives the same
+ddbas918 toSci '-99e999999999' -> -Infinity Overflow Inexact Rounded
+ddbas919 toSci '-999e999999999' -> -Infinity Overflow Inexact Rounded
+ddbas920 toSci '-0.9e-999999999' -> -0E-398 Underflow Subnormal Inexact Rounded Clamped
+ddbas921 toSci '-0.09e-999999999' -> -0E-398 Underflow Subnormal Inexact Rounded Clamped
+ddbas922 toSci '-0.1e1000000000' -> -Infinity Overflow Inexact Rounded
+ddbas923 toSci '-10e-1000000000' -> -0E-398 Underflow Subnormal Inexact Rounded Clamped
+ddbas924 toSci '-0.9e9999999999' -> -Infinity Overflow Inexact Rounded
+ddbas925 toSci '-99e-9999999999' -> -0E-398 Underflow Subnormal Inexact Rounded Clamped
+ddbas926 toSci '-111e9999999999' -> -Infinity Overflow Inexact Rounded
+ddbas927 toSci '-1111e-9999999999' -> -0E-398 Underflow Subnormal Inexact Rounded Clamped
+ddbas928 toSci '-1111e-99999999999' -> -0E-398 Underflow Subnormal Inexact Rounded Clamped
+ddbas929 toSci '-7e1000000000' -> -Infinity Overflow Inexact Rounded
+
+-- overflow results at different rounding modes
+rounding: ceiling
+ddbas930 toSci '7e10000' -> Infinity Overflow Inexact Rounded
+ddbas931 toSci '-7e10000' -> -9.999999999999999E+384 Overflow Inexact Rounded
+rounding: up
+ddbas932 toSci '7e10000' -> Infinity Overflow Inexact Rounded
+ddbas933 toSci '-7e10000' -> -Infinity Overflow Inexact Rounded
+rounding: down
+ddbas934 toSci '7e10000' -> 9.999999999999999E+384 Overflow Inexact Rounded
+ddbas935 toSci '-7e10000' -> -9.999999999999999E+384 Overflow Inexact Rounded
+rounding: floor
+ddbas936 toSci '7e10000' -> 9.999999999999999E+384 Overflow Inexact Rounded
+ddbas937 toSci '-7e10000' -> -Infinity Overflow Inexact Rounded
+
+rounding: half_up
+ddbas938 toSci '7e10000' -> Infinity Overflow Inexact Rounded
+ddbas939 toSci '-7e10000' -> -Infinity Overflow Inexact Rounded
+rounding: half_even
+ddbas940 toSci '7e10000' -> Infinity Overflow Inexact Rounded
+ddbas941 toSci '-7e10000' -> -Infinity Overflow Inexact Rounded
+rounding: half_down
+ddbas942 toSci '7e10000' -> Infinity Overflow Inexact Rounded
+ddbas943 toSci '-7e10000' -> -Infinity Overflow Inexact Rounded
+
+rounding: half_even
+
+-- Now check 854/754r some subnormals and underflow to 0
+ddbem400 toSci 1.0000E-383 -> 1.0000E-383
+ddbem401 toSci 0.1E-394 -> 1E-395 Subnormal
+ddbem402 toSci 0.1000E-394 -> 1.000E-395 Subnormal
+ddbem403 toSci 0.0100E-394 -> 1.00E-396 Subnormal
+ddbem404 toSci 0.0010E-394 -> 1.0E-397 Subnormal
+ddbem405 toSci 0.0001E-394 -> 1E-398 Subnormal
+ddbem406 toSci 0.00010E-394 -> 1E-398 Subnormal Rounded
+ddbem407 toSci 0.00013E-394 -> 1E-398 Underflow Subnormal Inexact Rounded
+ddbem408 toSci 0.00015E-394 -> 2E-398 Underflow Subnormal Inexact Rounded
+ddbem409 toSci 0.00017E-394 -> 2E-398 Underflow Subnormal Inexact Rounded
+ddbem410 toSci 0.00023E-394 -> 2E-398 Underflow Subnormal Inexact Rounded
+ddbem411 toSci 0.00025E-394 -> 2E-398 Underflow Subnormal Inexact Rounded
+ddbem412 toSci 0.00027E-394 -> 3E-398 Underflow Subnormal Inexact Rounded
+ddbem413 toSci 0.000149E-394 -> 1E-398 Underflow Subnormal Inexact Rounded
+ddbem414 toSci 0.000150E-394 -> 2E-398 Underflow Subnormal Inexact Rounded
+ddbem415 toSci 0.000151E-394 -> 2E-398 Underflow Subnormal Inexact Rounded
+ddbem416 toSci 0.000249E-394 -> 2E-398 Underflow Subnormal Inexact Rounded
+ddbem417 toSci 0.000250E-394 -> 2E-398 Underflow Subnormal Inexact Rounded
+ddbem418 toSci 0.000251E-394 -> 3E-398 Underflow Subnormal Inexact Rounded
+ddbem419 toSci 0.00009E-394 -> 1E-398 Underflow Subnormal Inexact Rounded
+ddbem420 toSci 0.00005E-394 -> 0E-398 Underflow Subnormal Inexact Rounded Clamped
+ddbem421 toSci 0.00003E-394 -> 0E-398 Underflow Subnormal Inexact Rounded Clamped
+ddbem422 toSci 0.000009E-394 -> 0E-398 Underflow Subnormal Inexact Rounded Clamped
+ddbem423 toSci 0.000005E-394 -> 0E-398 Underflow Subnormal Inexact Rounded Clamped
+ddbem424 toSci 0.000003E-394 -> 0E-398 Underflow Subnormal Inexact Rounded Clamped
+
+ddbem425 toSci 0.001049E-394 -> 1.0E-397 Underflow Subnormal Inexact Rounded
+ddbem426 toSci 0.001050E-394 -> 1.0E-397 Underflow Subnormal Inexact Rounded
+ddbem427 toSci 0.001051E-394 -> 1.1E-397 Underflow Subnormal Inexact Rounded
+ddbem428 toSci 0.001149E-394 -> 1.1E-397 Underflow Subnormal Inexact Rounded
+ddbem429 toSci 0.001150E-394 -> 1.2E-397 Underflow Subnormal Inexact Rounded
+ddbem430 toSci 0.001151E-394 -> 1.2E-397 Underflow Subnormal Inexact Rounded
+
+ddbem432 toSci 0.010049E-394 -> 1.00E-396 Underflow Subnormal Inexact Rounded
+ddbem433 toSci 0.010050E-394 -> 1.00E-396 Underflow Subnormal Inexact Rounded
+ddbem434 toSci 0.010051E-394 -> 1.01E-396 Underflow Subnormal Inexact Rounded
+ddbem435 toSci 0.010149E-394 -> 1.01E-396 Underflow Subnormal Inexact Rounded
+ddbem436 toSci 0.010150E-394 -> 1.02E-396 Underflow Subnormal Inexact Rounded
+ddbem437 toSci 0.010151E-394 -> 1.02E-396 Underflow Subnormal Inexact Rounded
+
+ddbem440 toSci 0.10103E-394 -> 1.010E-395 Underflow Subnormal Inexact Rounded
+ddbem441 toSci 0.10105E-394 -> 1.010E-395 Underflow Subnormal Inexact Rounded
+ddbem442 toSci 0.10107E-394 -> 1.011E-395 Underflow Subnormal Inexact Rounded
+ddbem443 toSci 0.10113E-394 -> 1.011E-395 Underflow Subnormal Inexact Rounded
+ddbem444 toSci 0.10115E-394 -> 1.012E-395 Underflow Subnormal Inexact Rounded
+ddbem445 toSci 0.10117E-394 -> 1.012E-395 Underflow Subnormal Inexact Rounded
+
+ddbem450 toSci 1.10730E-395 -> 1.107E-395 Underflow Subnormal Inexact Rounded
+ddbem451 toSci 1.10750E-395 -> 1.108E-395 Underflow Subnormal Inexact Rounded
+ddbem452 toSci 1.10770E-395 -> 1.108E-395 Underflow Subnormal Inexact Rounded
+ddbem453 toSci 1.10830E-395 -> 1.108E-395 Underflow Subnormal Inexact Rounded
+ddbem454 toSci 1.10850E-395 -> 1.108E-395 Underflow Subnormal Inexact Rounded
+ddbem455 toSci 1.10870E-395 -> 1.109E-395 Underflow Subnormal Inexact Rounded
+
+-- make sure sign OK
+ddbem456 toSci -0.10103E-394 -> -1.010E-395 Underflow Subnormal Inexact Rounded
+ddbem457 toSci -0.10105E-394 -> -1.010E-395 Underflow Subnormal Inexact Rounded
+ddbem458 toSci -0.10107E-394 -> -1.011E-395 Underflow Subnormal Inexact Rounded
+ddbem459 toSci -0.10113E-394 -> -1.011E-395 Underflow Subnormal Inexact Rounded
+ddbem460 toSci -0.10115E-394 -> -1.012E-395 Underflow Subnormal Inexact Rounded
+ddbem461 toSci -0.10117E-394 -> -1.012E-395 Underflow Subnormal Inexact Rounded
+
+-- '999s' cases
+ddbem464 toSci 999999E-395 -> 9.99999E-390 Subnormal
+ddbem465 toSci 99999.0E-394 -> 9.99990E-390 Subnormal
+ddbem466 toSci 99999.E-394 -> 9.9999E-390 Subnormal
+ddbem467 toSci 9999.9E-394 -> 9.9999E-391 Subnormal
+ddbem468 toSci 999.99E-394 -> 9.9999E-392 Subnormal
+ddbem469 toSci 99.999E-394 -> 9.9999E-393 Subnormal
+ddbem470 toSci 9.9999E-394 -> 9.9999E-394 Subnormal
+ddbem471 toSci 0.99999E-394 -> 1.0000E-394 Underflow Subnormal Inexact Rounded
+ddbem472 toSci 0.099999E-394 -> 1.000E-395 Underflow Subnormal Inexact Rounded
+ddbem473 toSci 0.0099999E-394 -> 1.00E-396 Underflow Subnormal Inexact Rounded
+ddbem474 toSci 0.00099999E-394 -> 1.0E-397 Underflow Subnormal Inexact Rounded
+ddbem475 toSci 0.000099999E-394 -> 1E-398 Underflow Subnormal Inexact Rounded
+ddbem476 toSci 0.0000099999E-394 -> 0E-398 Underflow Subnormal Inexact Rounded Clamped
+ddbem477 toSci 0.00000099999E-394 -> 0E-398 Underflow Subnormal Inexact Rounded Clamped
+ddbem478 toSci 0.000000099999E-394 -> 0E-398 Underflow Subnormal Inexact Rounded Clamped
+
+-- Exponents with insignificant leading zeros
+ddbas1001 toSci 1e999999999 -> Infinity Overflow Inexact Rounded
+ddbas1002 toSci 1e0999999999 -> Infinity Overflow Inexact Rounded
+ddbas1003 toSci 1e00999999999 -> Infinity Overflow Inexact Rounded
+ddbas1004 toSci 1e000999999999 -> Infinity Overflow Inexact Rounded
+ddbas1005 toSci 1e000000000000999999999 -> Infinity Overflow Inexact Rounded
+ddbas1006 toSci 1e000000000001000000007 -> Infinity Overflow Inexact Rounded
+ddbas1007 toSci 1e-999999999 -> 0E-398 Underflow Subnormal Inexact Rounded Clamped
+ddbas1008 toSci 1e-0999999999 -> 0E-398 Underflow Subnormal Inexact Rounded Clamped
+ddbas1009 toSci 1e-00999999999 -> 0E-398 Underflow Subnormal Inexact Rounded Clamped
+ddbas1010 toSci 1e-000999999999 -> 0E-398 Underflow Subnormal Inexact Rounded Clamped
+ddbas1011 toSci 1e-000000000000999999999 -> 0E-398 Underflow Subnormal Inexact Rounded Clamped
+ddbas1012 toSci 1e-000000000001000000007 -> 0E-398 Underflow Subnormal Inexact Rounded Clamped
+
+-- check for double-rounded subnormals
+ddbas1041 toSci 1.1111111111152444E-384 -> 1.11111111111524E-384 Inexact Rounded Subnormal Underflow
+ddbas1042 toSci 1.1111111111152445E-384 -> 1.11111111111524E-384 Inexact Rounded Subnormal Underflow
+ddbas1043 toSci 1.1111111111152446E-384 -> 1.11111111111524E-384 Inexact Rounded Subnormal Underflow
+
+-- clamped zeros [see also clamp.decTest]
+ddbas1075 toSci 0e+10000 -> 0E+369 Clamped
+ddbas1076 toSci 0e-10000 -> 0E-398 Clamped
+ddbas1077 toSci -0e+10000 -> -0E+369 Clamped
+ddbas1078 toSci -0e-10000 -> -0E-398 Clamped
+
+-- extreme values from next-wider
+ddbas1101 toSci -9.99999999999999999999999999999999E+6144 -> -Infinity Overflow Inexact Rounded
+ddbas1102 toSci -1E-6143 -> -0E-398 Inexact Rounded Subnormal Underflow Clamped
+ddbas1103 toSci -1E-6176 -> -0E-398 Inexact Rounded Subnormal Underflow Clamped
+ddbas1104 toSci -0 -> -0
+ddbas1105 toSci +0 -> 0
+ddbas1106 toSci +1E-6176 -> 0E-398 Inexact Rounded Subnormal Underflow Clamped
+ddbas1107 toSci +1E-6173 -> 0E-398 Inexact Rounded Subnormal Underflow Clamped
+ddbas1108 toSci +9.99999999999999999999999999999999E+6144 -> Infinity Overflow Inexact Rounded
+
diff --git a/Lib/test/decimaltestdata/ddCanonical.decTest b/Lib/test/decimaltestdata/ddCanonical.decTest
new file mode 100644
index 0000000..308b9ff
--- /dev/null
+++ b/Lib/test/decimaltestdata/ddCanonical.decTest
@@ -0,0 +1,357 @@
+------------------------------------------------------------------------
+-- ddCanonical.decTest -- test decDouble canonical results --
+-- Copyright (c) IBM Corporation, 1981, 2007. All rights reserved. --
+------------------------------------------------------------------------
+-- Please see the document "General Decimal Arithmetic Testcases" --
+-- at http://www2.hursley.ibm.com/decimal for the description of --
+-- these testcases. --
+-- --
+-- These testcases are experimental ('beta' versions), and they --
+-- may contain errors. They are offered on an as-is basis. In --
+-- particular, achieving the same results as the tests here is not --
+-- a guarantee that an implementation complies with any Standard --
+-- or specification. The tests are not exhaustive. --
+-- --
+-- Please send comments, suggestions, and corrections to the author: --
+-- Mike Cowlishaw, IBM Fellow --
+-- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK --
+-- mfc@uk.ibm.com --
+------------------------------------------------------------------------
+version: 2.56
+
+-- This file tests that copy operations leave uncanonical operands
+-- unchanged, and vice versa
+-- All operands and results are decDoubles.
+precision: 16
+maxExponent: 384
+minExponent: -383
+extended: 1
+clamp: 1
+rounding: half_even
+
+-- Uncanonical declets are: abc, where:
+-- a=1,2,3
+-- b=6,7,e,f
+-- c=e,f
+
+-- assert some standard (canonical) values; this tests that FromString
+-- produces canonical results (many more in decimalNN)
+ddcan001 apply 9.999999999999999E+384 -> #77fcff3fcff3fcff
+ddcan002 apply 0 -> #2238000000000000
+ddcan003 apply 1 -> #2238000000000001
+ddcan004 apply -1 -> #a238000000000001
+ddcan005 apply Infinity -> #7800000000000000
+ddcan006 apply -Infinity -> #f800000000000000
+ddcan007 apply -NaN -> #fc00000000000000
+ddcan008 apply -sNaN -> #fe00000000000000
+ddcan009 apply NaN999999999999999 -> #7c00ff3fcff3fcff
+ddcan010 apply sNaN999999999999999 -> #7e00ff3fcff3fcff
+decan011 apply 9999999999999999 -> #6e38ff3fcff3fcff
+ddcan012 apply 7.50 -> #22300000000003d0
+ddcan013 apply 9.99 -> #22300000000000ff
+
+-- Base tests for canonical encodings (individual operator
+-- propagation is tested later)
+
+-- Finites: declets in coefficient
+ddcan021 canonical #77fcff3fcff3fcff -> #77fcff3fcff3fcff
+ddcan022 canonical #77fcff3fcff3fcff -> #77fcff3fcff3fcff
+ddcan023 canonical #77ffff3fcff3fcff -> #77fcff3fcff3fcff
+ddcan024 canonical #77ffff3fcff3fcff -> #77fcff3fcff3fcff
+ddcan025 canonical #77fcffffcff3fcff -> #77fcff3fcff3fcff
+ddcan026 canonical #77fcffffcff3fcff -> #77fcff3fcff3fcff
+ddcan027 canonical #77fcff3ffff3fcff -> #77fcff3fcff3fcff
+ddcan028 canonical #77fcff3ffff3fcff -> #77fcff3fcff3fcff
+ddcan030 canonical #77fcff3fcffffcff -> #77fcff3fcff3fcff
+ddcan031 canonical #77fcff3fcffffcff -> #77fcff3fcff3fcff
+ddcan032 canonical #77fcff3fcff3ffff -> #77fcff3fcff3fcff
+ddcan033 canonical #77fcff3fcff3ffff -> #77fcff3fcff3fcff
+ddcan035 canonical #77fcff3fdff3fcff -> #77fcff3fcff3fcff
+ddcan036 canonical #77fcff3feff3fcff -> #77fcff3fcff3fcff
+
+-- NaN: declets in payload
+ddcan100 canonical NaN999999999999999 -> #7c00ff3fcff3fcff
+ddcan101 canonical #7c00ff3fcff3fcff -> #7c00ff3fcff3fcff
+ddcan102 canonical #7c03ff3fcff3fcff -> #7c00ff3fcff3fcff
+ddcan103 canonical #7c00ffffcff3fcff -> #7c00ff3fcff3fcff
+ddcan104 canonical #7c00ff3ffff3fcff -> #7c00ff3fcff3fcff
+ddcan105 canonical #7c00ff3fcffffcff -> #7c00ff3fcff3fcff
+ddcan106 canonical #7c00ff3fcff3ffff -> #7c00ff3fcff3fcff
+ddcan107 canonical #7c00ff3fcff3ffff -> #7c00ff3fcff3fcff
+-- NaN: exponent continuation bits [excluding sNaN selector]
+ddcan110 canonical #7c00ff3fcff3fcff -> #7c00ff3fcff3fcff
+ddcan112 canonical #7d00ff3fcff3fcff -> #7c00ff3fcff3fcff
+ddcan113 canonical #7c80ff3fcff3fcff -> #7c00ff3fcff3fcff
+ddcan114 canonical #7c40ff3fcff3fcff -> #7c00ff3fcff3fcff
+ddcan115 canonical #7c20ff3fcff3fcff -> #7c00ff3fcff3fcff
+ddcan116 canonical #7c10ff3fcff3fcff -> #7c00ff3fcff3fcff
+ddcan117 canonical #7c08ff3fcff3fcff -> #7c00ff3fcff3fcff
+ddcan118 canonical #7c04ff3fcff3fcff -> #7c00ff3fcff3fcff
+
+-- sNaN: declets in payload
+ddcan120 canonical sNaN999999999999999 -> #7e00ff3fcff3fcff
+ddcan121 canonical #7e00ff3fcff3fcff -> #7e00ff3fcff3fcff
+ddcan122 canonical #7e03ff3fcff3fcff -> #7e00ff3fcff3fcff
+ddcan123 canonical #7e00ffffcff3fcff -> #7e00ff3fcff3fcff
+ddcan124 canonical #7e00ff3ffff3fcff -> #7e00ff3fcff3fcff
+ddcan125 canonical #7e00ff3fcffffcff -> #7e00ff3fcff3fcff
+ddcan126 canonical #7e00ff3fcff3ffff -> #7e00ff3fcff3fcff
+ddcan127 canonical #7e00ff3fcff3ffff -> #7e00ff3fcff3fcff
+-- sNaN: exponent continuation bits [excluding sNaN selector]
+ddcan130 canonical #7e00ff3fcff3fcff -> #7e00ff3fcff3fcff
+ddcan132 canonical #7f00ff3fcff3fcff -> #7e00ff3fcff3fcff
+ddcan133 canonical #7e80ff3fcff3fcff -> #7e00ff3fcff3fcff
+ddcan134 canonical #7e40ff3fcff3fcff -> #7e00ff3fcff3fcff
+ddcan135 canonical #7e20ff3fcff3fcff -> #7e00ff3fcff3fcff
+ddcan136 canonical #7e10ff3fcff3fcff -> #7e00ff3fcff3fcff
+ddcan137 canonical #7e08ff3fcff3fcff -> #7e00ff3fcff3fcff
+ddcan138 canonical #7e04ff3fcff3fcff -> #7e00ff3fcff3fcff
+
+-- Inf: exponent continuation bits
+ddcan140 canonical #7800000000000000 -> #7800000000000000
+ddcan141 canonical #7900000000000000 -> #7800000000000000
+ddcan142 canonical #7a00000000000000 -> #7800000000000000
+ddcan143 canonical #7880000000000000 -> #7800000000000000
+ddcan144 canonical #7840000000000000 -> #7800000000000000
+ddcan145 canonical #7820000000000000 -> #7800000000000000
+ddcan146 canonical #7810000000000000 -> #7800000000000000
+ddcan147 canonical #7808000000000000 -> #7800000000000000
+ddcan148 canonical #7804000000000000 -> #7800000000000000
+
+-- Inf: coefficient continuation bits (first, last, and a few others)
+ddcan150 canonical #7800000000000000 -> #7800000000000000
+ddcan151 canonical #7802000000000000 -> #7800000000000000
+ddcan152 canonical #7800000000000001 -> #7800000000000000
+ddcan153 canonical #7801000000000000 -> #7800000000000000
+ddcan154 canonical #7800200000000000 -> #7800000000000000
+ddcan155 canonical #7800080000000000 -> #7800000000000000
+ddcan156 canonical #7800002000000000 -> #7800000000000000
+ddcan157 canonical #7800000400000000 -> #7800000000000000
+ddcan158 canonical #7800000040000000 -> #7800000000000000
+ddcan159 canonical #7800000008000000 -> #7800000000000000
+ddcan160 canonical #7800000000400000 -> #7800000000000000
+ddcan161 canonical #7800000000020000 -> #7800000000000000
+ddcan162 canonical #7800000000008000 -> #7800000000000000
+ddcan163 canonical #7800000000000200 -> #7800000000000000
+ddcan164 canonical #7800000000000040 -> #7800000000000000
+ddcan165 canonical #7800000000000008 -> #7800000000000000
+
+
+-- Now the operators -- trying to check paths that might fail to
+-- canonicalize propagated operands
+
+----- Add:
+-- Finites: neutral 0
+ddcan202 add 0E+384 #77ffff3fcff3fcff -> #77fcff3fcff3fcff
+ddcan203 add #77fcffffcff3fcff 0E+384 -> #77fcff3fcff3fcff
+-- tiny zero
+ddcan204 add 0E-398 #77ffff3fcff3fcff -> #77fcff3fcff3fcff Rounded
+ddcan205 add #77fcffffcff3fcff 0E-398 -> #77fcff3fcff3fcff Rounded
+-- tiny non zero
+ddcan206 add -1E-398 #77ffff3fcff3fcff -> #77fcff3fcff3fcff Inexact Rounded
+ddcan207 add #77ffff3fcff3fcff -1E-398 -> #77fcff3fcff3fcff Inexact Rounded
+-- NaN: declets in payload
+ddcan211 add 0 #7c03ff3fcff3fcff -> #7c00ff3fcff3fcff
+ddcan212 add #7c03ff3fcff3fcff 0 -> #7c00ff3fcff3fcff
+-- NaN: exponent continuation bits [excluding sNaN selector]
+ddcan213 add 0 #7c40ff3fcff3fcff -> #7c00ff3fcff3fcff
+ddcan214 add #7c40ff3fcff3fcff 0 -> #7c00ff3fcff3fcff
+-- sNaN: declets in payload
+ddcan215 add 0 #7e00ffffcff3fcff -> #7c00ff3fcff3fcff Invalid_operation
+ddcan216 add #7e00ffffcff3fcff 0 -> #7c00ff3fcff3fcff Invalid_operation
+-- sNaN: exponent continuation bits [excluding sNaN selector]
+ddcan217 add 0 #7e80ff3fcff3fcff -> #7c00ff3fcff3fcff Invalid_operation
+ddcan218 add #7e80ff3fcff3fcff 0 -> #7c00ff3fcff3fcff Invalid_operation
+-- Inf: exponent continuation bits
+ddcan220 add 0 #7880000000000000 -> #7800000000000000
+ddcan221 add #7880000000000000 0 -> #7800000000000000
+-- Inf: coefficient continuation bits
+ddcan222 add 0 #7802000000000000 -> #7800000000000000
+ddcan223 add #7802000000000000 0 -> #7800000000000000
+ddcan224 add 0 #7800000000000001 -> #7800000000000000
+ddcan225 add #7800000000000001 0 -> #7800000000000000
+ddcan226 add 0 #7800002000000000 -> #7800000000000000
+ddcan227 add #7800002000000000 0 -> #7800000000000000
+
+----- Class: [does not return encoded]
+
+----- Compare:
+ddcan231 compare -Inf 1 -> #a238000000000001
+ddcan232 compare -Inf -Inf -> #2238000000000000
+ddcan233 compare 1 -Inf -> #2238000000000001
+ddcan234 compare #7c00ff3ffff3fcff -1000 -> #7c00ff3fcff3fcff
+ddcan235 compare #7e00ff3ffff3fcff -1000 -> #7c00ff3fcff3fcff Invalid_operation
+
+----- CompareSig:
+ddcan241 comparesig -Inf 1 -> #a238000000000001
+ddcan242 comparesig -Inf -Inf -> #2238000000000000
+ddcan243 comparesig 1 -Inf -> #2238000000000001
+ddcan244 comparesig #7c00ff3ffff3fcff -1000 -> #7c00ff3fcff3fcff Invalid_operation
+ddcan245 comparesig #7e00ff3ffff3fcff -1000 -> #7c00ff3fcff3fcff Invalid_operation
+
+----- Copy: [does not usually canonicalize]
+-- finites
+ddcan250 copy #77ffff3fcff3fcff -> #77ffff3fcff3fcff
+ddcan251 copy #77fcff3fdff3fcff -> #77fcff3fdff3fcff
+-- NaNs
+ddcan252 copy #7c03ff3fcff3fcff -> #7c03ff3fcff3fcff
+ddcan253 copy #7c00ff3fcff3ffff -> #7c00ff3fcff3ffff
+ddcan254 copy #7d00ff3fcff3fcff -> #7d00ff3fcff3fcff
+ddcan255 copy #7c04ff3fcff3fcff -> #7c04ff3fcff3fcff
+-- sNaN
+ddcan256 copy #7e00ff3fcffffcff -> #7e00ff3fcffffcff
+ddcan257 copy #7e40ff3fcff3fcff -> #7e40ff3fcff3fcff
+-- Inf
+ddcan258 copy #7a00000000000000 -> #7a00000000000000
+ddcan259 copy #7800200000000000 -> #7800200000000000
+
+----- CopyAbs: [does not usually canonicalize]
+-- finites
+ddcan260 copyabs #f7ffff3fcff3fcff -> #77ffff3fcff3fcff
+ddcan261 copyabs #f7fcff3fdff3fcff -> #77fcff3fdff3fcff
+-- NaNs
+ddcan262 copyabs #fc03ff3fcff3fcff -> #7c03ff3fcff3fcff
+ddcan263 copyabs #fc00ff3fcff3ffff -> #7c00ff3fcff3ffff
+ddcan264 copyabs #fd00ff3fcff3fcff -> #7d00ff3fcff3fcff
+ddcan265 copyabs #fc04ff3fcff3fcff -> #7c04ff3fcff3fcff
+-- sNaN
+ddcan266 copyabs #fe00ff3fcffffcff -> #7e00ff3fcffffcff
+ddcan267 copyabs #fe40ff3fcff3fcff -> #7e40ff3fcff3fcff
+-- Inf
+ddcan268 copyabs #fa00000000000000 -> #7a00000000000000
+ddcan269 copyabs #f800200000000000 -> #7800200000000000
+
+----- CopyNegate: [does not usually canonicalize]
+-- finites
+ddcan270 copynegate #77ffff3fcff3fcff -> #f7ffff3fcff3fcff
+ddcan271 copynegate #77fcff3fdff3fcff -> #f7fcff3fdff3fcff
+-- NaNs
+ddcan272 copynegate #7c03ff3fcff3fcff -> #fc03ff3fcff3fcff
+ddcan273 copynegate #7c00ff3fcff3ffff -> #fc00ff3fcff3ffff
+ddcan274 copynegate #7d00ff3fcff3fcff -> #fd00ff3fcff3fcff
+ddcan275 copynegate #7c04ff3fcff3fcff -> #fc04ff3fcff3fcff
+-- sNaN
+ddcan276 copynegate #7e00ff3fcffffcff -> #fe00ff3fcffffcff
+ddcan277 copynegate #7e40ff3fcff3fcff -> #fe40ff3fcff3fcff
+-- Inf
+ddcan278 copynegate #7a00000000000000 -> #fa00000000000000
+ddcan279 copynegate #7800200000000000 -> #f800200000000000
+
+----- CopySign: [does not usually canonicalize]
+-- finites
+ddcan280 copysign #77ffff3fcff3fcff -1 -> #f7ffff3fcff3fcff
+ddcan281 copysign #77fcff3fdff3fcff 1 -> #77fcff3fdff3fcff
+-- NaNs
+ddcan282 copysign #7c03ff3fcff3fcff -1 -> #fc03ff3fcff3fcff
+ddcan283 copysign #7c00ff3fcff3ffff 1 -> #7c00ff3fcff3ffff
+ddcan284 copysign #7d00ff3fcff3fcff -1 -> #fd00ff3fcff3fcff
+ddcan285 copysign #7c04ff3fcff3fcff 1 -> #7c04ff3fcff3fcff
+-- sNaN
+ddcan286 copysign #7e00ff3fcffffcff -1 -> #fe00ff3fcffffcff
+ddcan287 copysign #7e40ff3fcff3fcff 1 -> #7e40ff3fcff3fcff
+-- Inf
+ddcan288 copysign #7a00000000000000 -1 -> #fa00000000000000
+ddcan289 copysign #7800200000000000 1 -> #7800200000000000
+
+----- Multiply:
+-- Finites: neutral 0
+ddcan302 multiply 1 #77ffff3fcff3fcff -> #77fcff3fcff3fcff
+ddcan303 multiply #77fcffffcff3fcff 1 -> #77fcff3fcff3fcff
+-- negative
+ddcan306 multiply -1 #77ffff3fcff3fcff -> #f7fcff3fcff3fcff
+ddcan307 multiply #77fcffffcff3fcff -1 -> #f7fcff3fcff3fcff
+-- NaN: declets in payload
+ddcan311 multiply 1 #7c03ff3fcff3fcff -> #7c00ff3fcff3fcff
+ddcan312 multiply #7c03ff3fcff3fcff 1 -> #7c00ff3fcff3fcff
+-- NaN: exponent continuation bits [excluding sNaN selector]
+ddcan313 multiply 1 #7c40ff3fcff3fcff -> #7c00ff3fcff3fcff
+ddcan314 multiply #7c40ff3fcff3fcff 1 -> #7c00ff3fcff3fcff
+-- sNaN: declets in payload
+ddcan315 multiply 1 #7e00ffffcff3fcff -> #7c00ff3fcff3fcff Invalid_operation
+ddcan316 multiply #7e00ffffcff3fcff 1 -> #7c00ff3fcff3fcff Invalid_operation
+-- sNaN: exponent continuation bits [excluding sNaN selector]
+ddcan317 multiply 1 #7e80ff3fcff3fcff -> #7c00ff3fcff3fcff Invalid_operation
+ddcan318 multiply #7e80ff3fcff3fcff 1 -> #7c00ff3fcff3fcff Invalid_operation
+-- Inf: exponent continuation bits
+ddcan320 multiply 1 #7880000000000000 -> #7800000000000000
+ddcan321 multiply #7880000000000000 1 -> #7800000000000000
+-- Inf: coefficient continuation bits
+ddcan322 multiply 1 #7802000000000000 -> #7800000000000000
+ddcan323 multiply #7802000000000000 1 -> #7800000000000000
+ddcan324 multiply 1 #7800000000000001 -> #7800000000000000
+ddcan325 multiply #7800000000000001 1 -> #7800000000000000
+ddcan326 multiply 1 #7800002000000000 -> #7800000000000000
+ddcan327 multiply #7800002000000000 1 -> #7800000000000000
+
+----- Quantize:
+ddcan401 quantize #6e38ff3ffff3fcff 1 -> #6e38ff3fcff3fcff
+ddcan402 quantize #6e38ff3fcff3fdff 0 -> #6e38ff3fcff3fcff
+ddcan403 quantize #7880000000000000 Inf -> #7800000000000000
+ddcan404 quantize #7802000000000000 -Inf -> #7800000000000000
+ddcan410 quantize #7c03ff3fcff3fcff 1 -> #7c00ff3fcff3fcff
+ddcan411 quantize #7c03ff3fcff3fcff 1 -> #7c00ff3fcff3fcff
+ddcan412 quantize #7c40ff3fcff3fcff 1 -> #7c00ff3fcff3fcff
+ddcan413 quantize #7c40ff3fcff3fcff 1 -> #7c00ff3fcff3fcff
+ddcan414 quantize #7e00ffffcff3fcff 1 -> #7c00ff3fcff3fcff Invalid_operation
+ddcan415 quantize #7e00ffffcff3fcff 1 -> #7c00ff3fcff3fcff Invalid_operation
+ddcan416 quantize #7e80ff3fcff3fcff 1 -> #7c00ff3fcff3fcff Invalid_operation
+ddcan417 quantize #7e80ff3fcff3fcff 1 -> #7c00ff3fcff3fcff Invalid_operation
+
+----- Subtract:
+-- Finites: neutral 0
+ddcan502 subtract 0E+384 #77ffff3fcff3fcff -> #f7fcff3fcff3fcff
+ddcan503 subtract #77fcffffcff3fcff 0E+384 -> #77fcff3fcff3fcff
+-- tiny zero
+ddcan504 subtract 0E-398 #77ffff3fcff3fcff -> #f7fcff3fcff3fcff Rounded
+ddcan505 subtract #77fcffffcff3fcff 0E-398 -> #77fcff3fcff3fcff Rounded
+-- tiny non zero
+ddcan506 subtract -1E-398 #77ffff3fcff3fcff -> #f7fcff3fcff3fcff Inexact Rounded
+ddcan507 subtract #77ffff3fcff3fcff -1E-398 -> #77fcff3fcff3fcff Inexact Rounded
+-- NaN: declets in payload
+ddcan511 subtract 0 #7c03ff3fcff3fcff -> #7c00ff3fcff3fcff
+ddcan512 subtract #7c03ff3fcff3fcff 0 -> #7c00ff3fcff3fcff
+-- NaN: exponent continuation bits [excluding sNaN selector]
+ddcan513 subtract 0 #7c40ff3fcff3fcff -> #7c00ff3fcff3fcff
+ddcan514 subtract #7c40ff3fcff3fcff 0 -> #7c00ff3fcff3fcff
+-- sNaN: declets in payload
+ddcan515 subtract 0 #7e00ffffcff3fcff -> #7c00ff3fcff3fcff Invalid_operation
+ddcan516 subtract #7e00ffffcff3fcff 0 -> #7c00ff3fcff3fcff Invalid_operation
+-- sNaN: exponent continuation bits [excluding sNaN selector]
+ddcan517 subtract 0 #7e80ff3fcff3fcff -> #7c00ff3fcff3fcff Invalid_operation
+ddcan518 subtract #7e80ff3fcff3fcff 0 -> #7c00ff3fcff3fcff Invalid_operation
+-- Inf: exponent continuation bits
+ddcan520 subtract 0 #7880000000000000 -> #f800000000000000
+ddcan521 subtract #7880000000000000 0 -> #7800000000000000
+-- Inf: coefficient continuation bits
+ddcan522 subtract 0 #7802000000000000 -> #f800000000000000
+ddcan523 subtract #7802000000000000 0 -> #7800000000000000
+ddcan524 subtract 0 #7800000000000001 -> #f800000000000000
+ddcan525 subtract #7800000000000001 0 -> #7800000000000000
+ddcan526 subtract 0 #7800002000000000 -> #f800000000000000
+ddcan527 subtract #7800002000000000 0 -> #7800000000000000
+
+----- ToIntegral:
+ddcan601 tointegralx #6e38ff3ffff3fcff -> #6e38ff3fcff3fcff
+ddcan602 tointegralx #6e38ff3fcff3fdff -> #6e38ff3fcff3fcff
+ddcan603 tointegralx #7880000000000000 -> #7800000000000000
+ddcan604 tointegralx #7802000000000000 -> #7800000000000000
+ddcan610 tointegralx #7c03ff3fcff3fcff -> #7c00ff3fcff3fcff
+ddcan611 tointegralx #7c03ff3fcff3fcff -> #7c00ff3fcff3fcff
+ddcan612 tointegralx #7c40ff3fcff3fcff -> #7c00ff3fcff3fcff
+ddcan613 tointegralx #7c40ff3fcff3fcff -> #7c00ff3fcff3fcff
+ddcan614 tointegralx #7e00ffffcff3fcff -> #7c00ff3fcff3fcff Invalid_operation
+ddcan615 tointegralx #7e00ffffcff3fcff -> #7c00ff3fcff3fcff Invalid_operation
+ddcan616 tointegralx #7e80ff3fcff3fcff -> #7c00ff3fcff3fcff Invalid_operation
+ddcan617 tointegralx #7e80ff3fcff3fcff -> #7c00ff3fcff3fcff Invalid_operation
+-- uncanonical 3999, 39.99, 3.99, 0.399, and negatives
+ddcan618 tointegralx #2238000000000fff -> #2238000000000cff
+ddcan619 tointegralx #2230000000000fff -> #2238000000000040 Inexact Rounded
+ddcan620 tointegralx #222c000000000fff -> #2238000000000004 Inexact Rounded
+ddcan621 tointegralx #2228000000000fff -> #2238000000000000 Inexact Rounded
+ddcan622 tointegralx #a238000000000fff -> #a238000000000cff
+ddcan623 tointegralx #a230000000000fff -> #a238000000000040 Inexact Rounded
+ddcan624 tointegralx #a22c000000000fff -> #a238000000000004 Inexact Rounded
+ddcan625 tointegralx #a228000000000fff -> #a238000000000000 Inexact Rounded
+
+
+
diff --git a/Lib/test/decimaltestdata/ddClass.decTest b/Lib/test/decimaltestdata/ddClass.decTest
new file mode 100644
index 0000000..0b1d1f3
--- /dev/null
+++ b/Lib/test/decimaltestdata/ddClass.decTest
@@ -0,0 +1,76 @@
+------------------------------------------------------------------------
+-- ddClass.decTest -- decDouble Class operations --
+-- Copyright (c) IBM Corporation, 1981, 2007. All rights reserved. --
+------------------------------------------------------------------------
+-- Please see the document "General Decimal Arithmetic Testcases" --
+-- at http://www2.hursley.ibm.com/decimal for the description of --
+-- these testcases. --
+-- --
+-- These testcases are experimental ('beta' versions), and they --
+-- may contain errors. They are offered on an as-is basis. In --
+-- particular, achieving the same results as the tests here is not --
+-- a guarantee that an implementation complies with any Standard --
+-- or specification. The tests are not exhaustive. --
+-- --
+-- Please send comments, suggestions, and corrections to the author: --
+-- Mike Cowlishaw, IBM Fellow --
+-- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK --
+-- mfc@uk.ibm.com --
+------------------------------------------------------------------------
+version: 2.56
+
+-- [New 2006.11.27]
+precision: 16
+maxExponent: 384
+minExponent: -383
+extended: 1
+clamp: 1
+rounding: half_even
+
+ddcla001 class 0 -> +Zero
+ddcla002 class 0.00 -> +Zero
+ddcla003 class 0E+5 -> +Zero
+ddcla004 class 1E-396 -> +Subnormal
+ddcla005 class 0.1E-383 -> +Subnormal
+ddcla006 class 0.999999999999999E-383 -> +Subnormal
+ddcla007 class 1.000000000000000E-383 -> +Normal
+ddcla008 class 1E-383 -> +Normal
+ddcla009 class 1E-100 -> +Normal
+ddcla010 class 1E-10 -> +Normal
+ddcla012 class 1E-1 -> +Normal
+ddcla013 class 1 -> +Normal
+ddcla014 class 2.50 -> +Normal
+ddcla015 class 100.100 -> +Normal
+ddcla016 class 1E+30 -> +Normal
+ddcla017 class 1E+384 -> +Normal
+ddcla018 class 9.999999999999999E+384 -> +Normal
+ddcla019 class Inf -> +Infinity
+
+ddcla021 class -0 -> -Zero
+ddcla022 class -0.00 -> -Zero
+ddcla023 class -0E+5 -> -Zero
+ddcla024 class -1E-396 -> -Subnormal
+ddcla025 class -0.1E-383 -> -Subnormal
+ddcla026 class -0.999999999999999E-383 -> -Subnormal
+ddcla027 class -1.000000000000000E-383 -> -Normal
+ddcla028 class -1E-383 -> -Normal
+ddcla029 class -1E-100 -> -Normal
+ddcla030 class -1E-10 -> -Normal
+ddcla032 class -1E-1 -> -Normal
+ddcla033 class -1 -> -Normal
+ddcla034 class -2.50 -> -Normal
+ddcla035 class -100.100 -> -Normal
+ddcla036 class -1E+30 -> -Normal
+ddcla037 class -1E+384 -> -Normal
+ddcla038 class -9.999999999999999E+384 -> -Normal
+ddcla039 class -Inf -> -Infinity
+
+ddcla041 class NaN -> NaN
+ddcla042 class -NaN -> NaN
+ddcla043 class +NaN12345 -> NaN
+ddcla044 class sNaN -> sNaN
+ddcla045 class -sNaN -> sNaN
+ddcla046 class +sNaN12345 -> sNaN
+
+
+
diff --git a/Lib/test/decimaltestdata/ddCompare.decTest b/Lib/test/decimaltestdata/ddCompare.decTest
new file mode 100644
index 0000000..b225d0d
--- /dev/null
+++ b/Lib/test/decimaltestdata/ddCompare.decTest
@@ -0,0 +1,744 @@
+------------------------------------------------------------------------
+-- ddCompare.decTest -- decDouble comparison that allows quiet NaNs --
+-- Copyright (c) IBM Corporation, 1981, 2007. All rights reserved. --
+------------------------------------------------------------------------
+-- Please see the document "General Decimal Arithmetic Testcases" --
+-- at http://www2.hursley.ibm.com/decimal for the description of --
+-- these testcases. --
+-- --
+-- These testcases are experimental ('beta' versions), and they --
+-- may contain errors. They are offered on an as-is basis. In --
+-- particular, achieving the same results as the tests here is not --
+-- a guarantee that an implementation complies with any Standard --
+-- or specification. The tests are not exhaustive. --
+-- --
+-- Please send comments, suggestions, and corrections to the author: --
+-- Mike Cowlishaw, IBM Fellow --
+-- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK --
+-- mfc@uk.ibm.com --
+------------------------------------------------------------------------
+version: 2.56
+
+-- Note that we cannot assume add/subtract tests cover paths adequately,
+-- here, because the code might be quite different (comparison cannot
+-- overflow or underflow, so actual subtractions are not necessary).
+
+-- All operands and results are decDoubles.
+precision: 16
+maxExponent: 384
+minExponent: -383
+extended: 1
+clamp: 1
+rounding: half_even
+
+-- sanity checks
+ddcom001 compare -2 -2 -> 0
+ddcom002 compare -2 -1 -> -1
+ddcom003 compare -2 0 -> -1
+ddcom004 compare -2 1 -> -1
+ddcom005 compare -2 2 -> -1
+ddcom006 compare -1 -2 -> 1
+ddcom007 compare -1 -1 -> 0
+ddcom008 compare -1 0 -> -1
+ddcom009 compare -1 1 -> -1
+ddcom010 compare -1 2 -> -1
+ddcom011 compare 0 -2 -> 1
+ddcom012 compare 0 -1 -> 1
+ddcom013 compare 0 0 -> 0
+ddcom014 compare 0 1 -> -1
+ddcom015 compare 0 2 -> -1
+ddcom016 compare 1 -2 -> 1
+ddcom017 compare 1 -1 -> 1
+ddcom018 compare 1 0 -> 1
+ddcom019 compare 1 1 -> 0
+ddcom020 compare 1 2 -> -1
+ddcom021 compare 2 -2 -> 1
+ddcom022 compare 2 -1 -> 1
+ddcom023 compare 2 0 -> 1
+ddcom025 compare 2 1 -> 1
+ddcom026 compare 2 2 -> 0
+
+ddcom031 compare -20 -20 -> 0
+ddcom032 compare -20 -10 -> -1
+ddcom033 compare -20 00 -> -1
+ddcom034 compare -20 10 -> -1
+ddcom035 compare -20 20 -> -1
+ddcom036 compare -10 -20 -> 1
+ddcom037 compare -10 -10 -> 0
+ddcom038 compare -10 00 -> -1
+ddcom039 compare -10 10 -> -1
+ddcom040 compare -10 20 -> -1
+ddcom041 compare 00 -20 -> 1
+ddcom042 compare 00 -10 -> 1
+ddcom043 compare 00 00 -> 0
+ddcom044 compare 00 10 -> -1
+ddcom045 compare 00 20 -> -1
+ddcom046 compare 10 -20 -> 1
+ddcom047 compare 10 -10 -> 1
+ddcom048 compare 10 00 -> 1
+ddcom049 compare 10 10 -> 0
+ddcom050 compare 10 20 -> -1
+ddcom051 compare 20 -20 -> 1
+ddcom052 compare 20 -10 -> 1
+ddcom053 compare 20 00 -> 1
+ddcom055 compare 20 10 -> 1
+ddcom056 compare 20 20 -> 0
+
+ddcom061 compare -2.0 -2.0 -> 0
+ddcom062 compare -2.0 -1.0 -> -1
+ddcom063 compare -2.0 0.0 -> -1
+ddcom064 compare -2.0 1.0 -> -1
+ddcom065 compare -2.0 2.0 -> -1
+ddcom066 compare -1.0 -2.0 -> 1
+ddcom067 compare -1.0 -1.0 -> 0
+ddcom068 compare -1.0 0.0 -> -1
+ddcom069 compare -1.0 1.0 -> -1
+ddcom070 compare -1.0 2.0 -> -1
+ddcom071 compare 0.0 -2.0 -> 1
+ddcom072 compare 0.0 -1.0 -> 1
+ddcom073 compare 0.0 0.0 -> 0
+ddcom074 compare 0.0 1.0 -> -1
+ddcom075 compare 0.0 2.0 -> -1
+ddcom076 compare 1.0 -2.0 -> 1
+ddcom077 compare 1.0 -1.0 -> 1
+ddcom078 compare 1.0 0.0 -> 1
+ddcom079 compare 1.0 1.0 -> 0
+ddcom080 compare 1.0 2.0 -> -1
+ddcom081 compare 2.0 -2.0 -> 1
+ddcom082 compare 2.0 -1.0 -> 1
+ddcom083 compare 2.0 0.0 -> 1
+ddcom085 compare 2.0 1.0 -> 1
+ddcom086 compare 2.0 2.0 -> 0
+ddcom087 compare 1.0 0.1 -> 1
+ddcom088 compare 0.1 1.0 -> -1
+
+-- now some cases which might overflow if subtract were used
+ddcom095 compare 9.999999999999999E+384 9.999999999999999E+384 -> 0
+ddcom096 compare -9.999999999999999E+384 9.999999999999999E+384 -> -1
+ddcom097 compare 9.999999999999999E+384 -9.999999999999999E+384 -> 1
+ddcom098 compare -9.999999999999999E+384 -9.999999999999999E+384 -> 0
+
+-- some differing length/exponent cases
+ddcom100 compare 7.0 7.0 -> 0
+ddcom101 compare 7.0 7 -> 0
+ddcom102 compare 7 7.0 -> 0
+ddcom103 compare 7E+0 7.0 -> 0
+ddcom104 compare 70E-1 7.0 -> 0
+ddcom105 compare 0.7E+1 7 -> 0
+ddcom106 compare 70E-1 7 -> 0
+ddcom107 compare 7.0 7E+0 -> 0
+ddcom108 compare 7.0 70E-1 -> 0
+ddcom109 compare 7 0.7E+1 -> 0
+ddcom110 compare 7 70E-1 -> 0
+
+ddcom120 compare 8.0 7.0 -> 1
+ddcom121 compare 8.0 7 -> 1
+ddcom122 compare 8 7.0 -> 1
+ddcom123 compare 8E+0 7.0 -> 1
+ddcom124 compare 80E-1 7.0 -> 1
+ddcom125 compare 0.8E+1 7 -> 1
+ddcom126 compare 80E-1 7 -> 1
+ddcom127 compare 8.0 7E+0 -> 1
+ddcom128 compare 8.0 70E-1 -> 1
+ddcom129 compare 8 0.7E+1 -> 1
+ddcom130 compare 8 70E-1 -> 1
+
+ddcom140 compare 8.0 9.0 -> -1
+ddcom141 compare 8.0 9 -> -1
+ddcom142 compare 8 9.0 -> -1
+ddcom143 compare 8E+0 9.0 -> -1
+ddcom144 compare 80E-1 9.0 -> -1
+ddcom145 compare 0.8E+1 9 -> -1
+ddcom146 compare 80E-1 9 -> -1
+ddcom147 compare 8.0 9E+0 -> -1
+ddcom148 compare 8.0 90E-1 -> -1
+ddcom149 compare 8 0.9E+1 -> -1
+ddcom150 compare 8 90E-1 -> -1
+
+-- and again, with sign changes -+ ..
+ddcom200 compare -7.0 7.0 -> -1
+ddcom201 compare -7.0 7 -> -1
+ddcom202 compare -7 7.0 -> -1
+ddcom203 compare -7E+0 7.0 -> -1
+ddcom204 compare -70E-1 7.0 -> -1
+ddcom205 compare -0.7E+1 7 -> -1
+ddcom206 compare -70E-1 7 -> -1
+ddcom207 compare -7.0 7E+0 -> -1
+ddcom208 compare -7.0 70E-1 -> -1
+ddcom209 compare -7 0.7E+1 -> -1
+ddcom210 compare -7 70E-1 -> -1
+
+ddcom220 compare -8.0 7.0 -> -1
+ddcom221 compare -8.0 7 -> -1
+ddcom222 compare -8 7.0 -> -1
+ddcom223 compare -8E+0 7.0 -> -1
+ddcom224 compare -80E-1 7.0 -> -1
+ddcom225 compare -0.8E+1 7 -> -1
+ddcom226 compare -80E-1 7 -> -1
+ddcom227 compare -8.0 7E+0 -> -1
+ddcom228 compare -8.0 70E-1 -> -1
+ddcom229 compare -8 0.7E+1 -> -1
+ddcom230 compare -8 70E-1 -> -1
+
+ddcom240 compare -8.0 9.0 -> -1
+ddcom241 compare -8.0 9 -> -1
+ddcom242 compare -8 9.0 -> -1
+ddcom243 compare -8E+0 9.0 -> -1
+ddcom244 compare -80E-1 9.0 -> -1
+ddcom245 compare -0.8E+1 9 -> -1
+ddcom246 compare -80E-1 9 -> -1
+ddcom247 compare -8.0 9E+0 -> -1
+ddcom248 compare -8.0 90E-1 -> -1
+ddcom249 compare -8 0.9E+1 -> -1
+ddcom250 compare -8 90E-1 -> -1
+
+-- and again, with sign changes +- ..
+ddcom300 compare 7.0 -7.0 -> 1
+ddcom301 compare 7.0 -7 -> 1
+ddcom302 compare 7 -7.0 -> 1
+ddcom303 compare 7E+0 -7.0 -> 1
+ddcom304 compare 70E-1 -7.0 -> 1
+ddcom305 compare .7E+1 -7 -> 1
+ddcom306 compare 70E-1 -7 -> 1
+ddcom307 compare 7.0 -7E+0 -> 1
+ddcom308 compare 7.0 -70E-1 -> 1
+ddcom309 compare 7 -.7E+1 -> 1
+ddcom310 compare 7 -70E-1 -> 1
+
+ddcom320 compare 8.0 -7.0 -> 1
+ddcom321 compare 8.0 -7 -> 1
+ddcom322 compare 8 -7.0 -> 1
+ddcom323 compare 8E+0 -7.0 -> 1
+ddcom324 compare 80E-1 -7.0 -> 1
+ddcom325 compare .8E+1 -7 -> 1
+ddcom326 compare 80E-1 -7 -> 1
+ddcom327 compare 8.0 -7E+0 -> 1
+ddcom328 compare 8.0 -70E-1 -> 1
+ddcom329 compare 8 -.7E+1 -> 1
+ddcom330 compare 8 -70E-1 -> 1
+
+ddcom340 compare 8.0 -9.0 -> 1
+ddcom341 compare 8.0 -9 -> 1
+ddcom342 compare 8 -9.0 -> 1
+ddcom343 compare 8E+0 -9.0 -> 1
+ddcom344 compare 80E-1 -9.0 -> 1
+ddcom345 compare .8E+1 -9 -> 1
+ddcom346 compare 80E-1 -9 -> 1
+ddcom347 compare 8.0 -9E+0 -> 1
+ddcom348 compare 8.0 -90E-1 -> 1
+ddcom349 compare 8 -.9E+1 -> 1
+ddcom350 compare 8 -90E-1 -> 1
+
+-- and again, with sign changes -- ..
+ddcom400 compare -7.0 -7.0 -> 0
+ddcom401 compare -7.0 -7 -> 0
+ddcom402 compare -7 -7.0 -> 0
+ddcom403 compare -7E+0 -7.0 -> 0
+ddcom404 compare -70E-1 -7.0 -> 0
+ddcom405 compare -.7E+1 -7 -> 0
+ddcom406 compare -70E-1 -7 -> 0
+ddcom407 compare -7.0 -7E+0 -> 0
+ddcom408 compare -7.0 -70E-1 -> 0
+ddcom409 compare -7 -.7E+1 -> 0
+ddcom410 compare -7 -70E-1 -> 0
+
+ddcom420 compare -8.0 -7.0 -> -1
+ddcom421 compare -8.0 -7 -> -1
+ddcom422 compare -8 -7.0 -> -1
+ddcom423 compare -8E+0 -7.0 -> -1
+ddcom424 compare -80E-1 -7.0 -> -1
+ddcom425 compare -.8E+1 -7 -> -1
+ddcom426 compare -80E-1 -7 -> -1
+ddcom427 compare -8.0 -7E+0 -> -1
+ddcom428 compare -8.0 -70E-1 -> -1
+ddcom429 compare -8 -.7E+1 -> -1
+ddcom430 compare -8 -70E-1 -> -1
+
+ddcom440 compare -8.0 -9.0 -> 1
+ddcom441 compare -8.0 -9 -> 1
+ddcom442 compare -8 -9.0 -> 1
+ddcom443 compare -8E+0 -9.0 -> 1
+ddcom444 compare -80E-1 -9.0 -> 1
+ddcom445 compare -.8E+1 -9 -> 1
+ddcom446 compare -80E-1 -9 -> 1
+ddcom447 compare -8.0 -9E+0 -> 1
+ddcom448 compare -8.0 -90E-1 -> 1
+ddcom449 compare -8 -.9E+1 -> 1
+ddcom450 compare -8 -90E-1 -> 1
+
+-- misalignment traps for little-endian
+ddcom451 compare 1.0 0.1 -> 1
+ddcom452 compare 0.1 1.0 -> -1
+ddcom453 compare 10.0 0.1 -> 1
+ddcom454 compare 0.1 10.0 -> -1
+ddcom455 compare 100 1.0 -> 1
+ddcom456 compare 1.0 100 -> -1
+ddcom457 compare 1000 10.0 -> 1
+ddcom458 compare 10.0 1000 -> -1
+ddcom459 compare 10000 100.0 -> 1
+ddcom460 compare 100.0 10000 -> -1
+ddcom461 compare 100000 1000.0 -> 1
+ddcom462 compare 1000.0 100000 -> -1
+ddcom463 compare 1000000 10000.0 -> 1
+ddcom464 compare 10000.0 1000000 -> -1
+
+-- testcases that subtract to lots of zeros at boundaries [pgr]
+ddcom473 compare 123.4560000000000E-89 123.456E-89 -> 0
+ddcom474 compare 123.456000000000E+89 123.456E+89 -> 0
+ddcom475 compare 123.45600000000E-89 123.456E-89 -> 0
+ddcom476 compare 123.4560000000E+89 123.456E+89 -> 0
+ddcom477 compare 123.456000000E-89 123.456E-89 -> 0
+ddcom478 compare 123.45600000E+89 123.456E+89 -> 0
+ddcom479 compare 123.4560000E-89 123.456E-89 -> 0
+ddcom480 compare 123.456000E+89 123.456E+89 -> 0
+ddcom481 compare 123.45600E-89 123.456E-89 -> 0
+ddcom482 compare 123.4560E+89 123.456E+89 -> 0
+ddcom483 compare 123.456E-89 123.456E-89 -> 0
+ddcom487 compare 123.456E+89 123.4560000000000E+89 -> 0
+ddcom488 compare 123.456E-89 123.456000000000E-89 -> 0
+ddcom489 compare 123.456E+89 123.45600000000E+89 -> 0
+ddcom490 compare 123.456E-89 123.4560000000E-89 -> 0
+ddcom491 compare 123.456E+89 123.456000000E+89 -> 0
+ddcom492 compare 123.456E-89 123.45600000E-89 -> 0
+ddcom493 compare 123.456E+89 123.4560000E+89 -> 0
+ddcom494 compare 123.456E-89 123.456000E-89 -> 0
+ddcom495 compare 123.456E+89 123.45600E+89 -> 0
+ddcom496 compare 123.456E-89 123.4560E-89 -> 0
+ddcom497 compare 123.456E+89 123.456E+89 -> 0
+
+-- wide-ranging, around precision; signs equal
+ddcom500 compare 1 1E-15 -> 1
+ddcom501 compare 1 1E-14 -> 1
+ddcom502 compare 1 1E-13 -> 1
+ddcom503 compare 1 1E-12 -> 1
+ddcom504 compare 1 1E-11 -> 1
+ddcom505 compare 1 1E-10 -> 1
+ddcom506 compare 1 1E-9 -> 1
+ddcom507 compare 1 1E-8 -> 1
+ddcom508 compare 1 1E-7 -> 1
+ddcom509 compare 1 1E-6 -> 1
+ddcom510 compare 1 1E-5 -> 1
+ddcom511 compare 1 1E-4 -> 1
+ddcom512 compare 1 1E-3 -> 1
+ddcom513 compare 1 1E-2 -> 1
+ddcom514 compare 1 1E-1 -> 1
+ddcom515 compare 1 1E-0 -> 0
+ddcom516 compare 1 1E+1 -> -1
+ddcom517 compare 1 1E+2 -> -1
+ddcom518 compare 1 1E+3 -> -1
+ddcom519 compare 1 1E+4 -> -1
+ddcom521 compare 1 1E+5 -> -1
+ddcom522 compare 1 1E+6 -> -1
+ddcom523 compare 1 1E+7 -> -1
+ddcom524 compare 1 1E+8 -> -1
+ddcom525 compare 1 1E+9 -> -1
+ddcom526 compare 1 1E+10 -> -1
+ddcom527 compare 1 1E+11 -> -1
+ddcom528 compare 1 1E+12 -> -1
+ddcom529 compare 1 1E+13 -> -1
+ddcom530 compare 1 1E+14 -> -1
+ddcom531 compare 1 1E+15 -> -1
+-- LR swap
+ddcom540 compare 1E-15 1 -> -1
+ddcom541 compare 1E-14 1 -> -1
+ddcom542 compare 1E-13 1 -> -1
+ddcom543 compare 1E-12 1 -> -1
+ddcom544 compare 1E-11 1 -> -1
+ddcom545 compare 1E-10 1 -> -1
+ddcom546 compare 1E-9 1 -> -1
+ddcom547 compare 1E-8 1 -> -1
+ddcom548 compare 1E-7 1 -> -1
+ddcom549 compare 1E-6 1 -> -1
+ddcom550 compare 1E-5 1 -> -1
+ddcom551 compare 1E-4 1 -> -1
+ddcom552 compare 1E-3 1 -> -1
+ddcom553 compare 1E-2 1 -> -1
+ddcom554 compare 1E-1 1 -> -1
+ddcom555 compare 1E-0 1 -> 0
+ddcom556 compare 1E+1 1 -> 1
+ddcom557 compare 1E+2 1 -> 1
+ddcom558 compare 1E+3 1 -> 1
+ddcom559 compare 1E+4 1 -> 1
+ddcom561 compare 1E+5 1 -> 1
+ddcom562 compare 1E+6 1 -> 1
+ddcom563 compare 1E+7 1 -> 1
+ddcom564 compare 1E+8 1 -> 1
+ddcom565 compare 1E+9 1 -> 1
+ddcom566 compare 1E+10 1 -> 1
+ddcom567 compare 1E+11 1 -> 1
+ddcom568 compare 1E+12 1 -> 1
+ddcom569 compare 1E+13 1 -> 1
+ddcom570 compare 1E+14 1 -> 1
+ddcom571 compare 1E+15 1 -> 1
+-- similar with a useful coefficient, one side only
+ddcom580 compare 0.000000987654321 1E-15 -> 1
+ddcom581 compare 0.000000987654321 1E-14 -> 1
+ddcom582 compare 0.000000987654321 1E-13 -> 1
+ddcom583 compare 0.000000987654321 1E-12 -> 1
+ddcom584 compare 0.000000987654321 1E-11 -> 1
+ddcom585 compare 0.000000987654321 1E-10 -> 1
+ddcom586 compare 0.000000987654321 1E-9 -> 1
+ddcom587 compare 0.000000987654321 1E-8 -> 1
+ddcom588 compare 0.000000987654321 1E-7 -> 1
+ddcom589 compare 0.000000987654321 1E-6 -> -1
+ddcom590 compare 0.000000987654321 1E-5 -> -1
+ddcom591 compare 0.000000987654321 1E-4 -> -1
+ddcom592 compare 0.000000987654321 1E-3 -> -1
+ddcom593 compare 0.000000987654321 1E-2 -> -1
+ddcom594 compare 0.000000987654321 1E-1 -> -1
+ddcom595 compare 0.000000987654321 1E-0 -> -1
+ddcom596 compare 0.000000987654321 1E+1 -> -1
+ddcom597 compare 0.000000987654321 1E+2 -> -1
+ddcom598 compare 0.000000987654321 1E+3 -> -1
+ddcom599 compare 0.000000987654321 1E+4 -> -1
+
+-- check some unit-y traps
+ddcom600 compare 12 12.2345 -> -1
+ddcom601 compare 12.0 12.2345 -> -1
+ddcom602 compare 12.00 12.2345 -> -1
+ddcom603 compare 12.000 12.2345 -> -1
+ddcom604 compare 12.0000 12.2345 -> -1
+ddcom605 compare 12.00000 12.2345 -> -1
+ddcom606 compare 12.000000 12.2345 -> -1
+ddcom607 compare 12.0000000 12.2345 -> -1
+ddcom608 compare 12.00000000 12.2345 -> -1
+ddcom609 compare 12.000000000 12.2345 -> -1
+ddcom610 compare 12.1234 12 -> 1
+ddcom611 compare 12.1234 12.0 -> 1
+ddcom612 compare 12.1234 12.00 -> 1
+ddcom613 compare 12.1234 12.000 -> 1
+ddcom614 compare 12.1234 12.0000 -> 1
+ddcom615 compare 12.1234 12.00000 -> 1
+ddcom616 compare 12.1234 12.000000 -> 1
+ddcom617 compare 12.1234 12.0000000 -> 1
+ddcom618 compare 12.1234 12.00000000 -> 1
+ddcom619 compare 12.1234 12.000000000 -> 1
+ddcom620 compare -12 -12.2345 -> 1
+ddcom621 compare -12.0 -12.2345 -> 1
+ddcom622 compare -12.00 -12.2345 -> 1
+ddcom623 compare -12.000 -12.2345 -> 1
+ddcom624 compare -12.0000 -12.2345 -> 1
+ddcom625 compare -12.00000 -12.2345 -> 1
+ddcom626 compare -12.000000 -12.2345 -> 1
+ddcom627 compare -12.0000000 -12.2345 -> 1
+ddcom628 compare -12.00000000 -12.2345 -> 1
+ddcom629 compare -12.000000000 -12.2345 -> 1
+ddcom630 compare -12.1234 -12 -> -1
+ddcom631 compare -12.1234 -12.0 -> -1
+ddcom632 compare -12.1234 -12.00 -> -1
+ddcom633 compare -12.1234 -12.000 -> -1
+ddcom634 compare -12.1234 -12.0000 -> -1
+ddcom635 compare -12.1234 -12.00000 -> -1
+ddcom636 compare -12.1234 -12.000000 -> -1
+ddcom637 compare -12.1234 -12.0000000 -> -1
+ddcom638 compare -12.1234 -12.00000000 -> -1
+ddcom639 compare -12.1234 -12.000000000 -> -1
+
+-- extended zeros
+ddcom640 compare 0 0 -> 0
+ddcom641 compare 0 -0 -> 0
+ddcom642 compare 0 -0.0 -> 0
+ddcom643 compare 0 0.0 -> 0
+ddcom644 compare -0 0 -> 0
+ddcom645 compare -0 -0 -> 0
+ddcom646 compare -0 -0.0 -> 0
+ddcom647 compare -0 0.0 -> 0
+ddcom648 compare 0.0 0 -> 0
+ddcom649 compare 0.0 -0 -> 0
+ddcom650 compare 0.0 -0.0 -> 0
+ddcom651 compare 0.0 0.0 -> 0
+ddcom652 compare -0.0 0 -> 0
+ddcom653 compare -0.0 -0 -> 0
+ddcom654 compare -0.0 -0.0 -> 0
+ddcom655 compare -0.0 0.0 -> 0
+
+ddcom656 compare -0E1 0.0 -> 0
+ddcom657 compare -0E2 0.0 -> 0
+ddcom658 compare 0E1 0.0 -> 0
+ddcom659 compare 0E2 0.0 -> 0
+ddcom660 compare -0E1 0 -> 0
+ddcom661 compare -0E2 0 -> 0
+ddcom662 compare 0E1 0 -> 0
+ddcom663 compare 0E2 0 -> 0
+ddcom664 compare -0E1 -0E1 -> 0
+ddcom665 compare -0E2 -0E1 -> 0
+ddcom666 compare 0E1 -0E1 -> 0
+ddcom667 compare 0E2 -0E1 -> 0
+ddcom668 compare -0E1 -0E2 -> 0
+ddcom669 compare -0E2 -0E2 -> 0
+ddcom670 compare 0E1 -0E2 -> 0
+ddcom671 compare 0E2 -0E2 -> 0
+ddcom672 compare -0E1 0E1 -> 0
+ddcom673 compare -0E2 0E1 -> 0
+ddcom674 compare 0E1 0E1 -> 0
+ddcom675 compare 0E2 0E1 -> 0
+ddcom676 compare -0E1 0E2 -> 0
+ddcom677 compare -0E2 0E2 -> 0
+ddcom678 compare 0E1 0E2 -> 0
+ddcom679 compare 0E2 0E2 -> 0
+
+-- trailing zeros; unit-y
+ddcom680 compare 12 12 -> 0
+ddcom681 compare 12 12.0 -> 0
+ddcom682 compare 12 12.00 -> 0
+ddcom683 compare 12 12.000 -> 0
+ddcom684 compare 12 12.0000 -> 0
+ddcom685 compare 12 12.00000 -> 0
+ddcom686 compare 12 12.000000 -> 0
+ddcom687 compare 12 12.0000000 -> 0
+ddcom688 compare 12 12.00000000 -> 0
+ddcom689 compare 12 12.000000000 -> 0
+ddcom690 compare 12 12 -> 0
+ddcom691 compare 12.0 12 -> 0
+ddcom692 compare 12.00 12 -> 0
+ddcom693 compare 12.000 12 -> 0
+ddcom694 compare 12.0000 12 -> 0
+ddcom695 compare 12.00000 12 -> 0
+ddcom696 compare 12.000000 12 -> 0
+ddcom697 compare 12.0000000 12 -> 0
+ddcom698 compare 12.00000000 12 -> 0
+ddcom699 compare 12.000000000 12 -> 0
+
+-- first, second, & last digit
+ddcom700 compare 1234567890123456 1234567890123455 -> 1
+ddcom701 compare 1234567890123456 1234567890123456 -> 0
+ddcom702 compare 1234567890123456 1234567890123457 -> -1
+ddcom703 compare 1234567890123456 0234567890123456 -> 1
+ddcom704 compare 1234567890123456 1234567890123456 -> 0
+ddcom705 compare 1234567890123456 2234567890123456 -> -1
+ddcom706 compare 1134567890123456 1034567890123456 -> 1
+ddcom707 compare 1134567890123456 1134567890123456 -> 0
+ddcom708 compare 1134567890123456 1234567890123456 -> -1
+
+-- miscellaneous
+ddcom721 compare 12345678000 1 -> 1
+ddcom722 compare 1 12345678000 -> -1
+ddcom723 compare 1234567800 1 -> 1
+ddcom724 compare 1 1234567800 -> -1
+ddcom725 compare 1234567890 1 -> 1
+ddcom726 compare 1 1234567890 -> -1
+ddcom727 compare 1234567891 1 -> 1
+ddcom728 compare 1 1234567891 -> -1
+ddcom729 compare 12345678901 1 -> 1
+ddcom730 compare 1 12345678901 -> -1
+ddcom731 compare 1234567896 1 -> 1
+ddcom732 compare 1 1234567896 -> -1
+
+-- residue cases at lower precision
+ddcom740 compare 1 0.9999999 -> 1
+ddcom741 compare 1 0.999999 -> 1
+ddcom742 compare 1 0.99999 -> 1
+ddcom743 compare 1 1.0000 -> 0
+ddcom744 compare 1 1.00001 -> -1
+ddcom745 compare 1 1.000001 -> -1
+ddcom746 compare 1 1.0000001 -> -1
+ddcom750 compare 0.9999999 1 -> -1
+ddcom751 compare 0.999999 1 -> -1
+ddcom752 compare 0.99999 1 -> -1
+ddcom753 compare 1.0000 1 -> 0
+ddcom754 compare 1.00001 1 -> 1
+ddcom755 compare 1.000001 1 -> 1
+ddcom756 compare 1.0000001 1 -> 1
+
+-- Specials
+ddcom780 compare Inf -Inf -> 1
+ddcom781 compare Inf -1000 -> 1
+ddcom782 compare Inf -1 -> 1
+ddcom783 compare Inf -0 -> 1
+ddcom784 compare Inf 0 -> 1
+ddcom785 compare Inf 1 -> 1
+ddcom786 compare Inf 1000 -> 1
+ddcom787 compare Inf Inf -> 0
+ddcom788 compare -1000 Inf -> -1
+ddcom789 compare -Inf Inf -> -1
+ddcom790 compare -1 Inf -> -1
+ddcom791 compare -0 Inf -> -1
+ddcom792 compare 0 Inf -> -1
+ddcom793 compare 1 Inf -> -1
+ddcom794 compare 1000 Inf -> -1
+ddcom795 compare Inf Inf -> 0
+
+ddcom800 compare -Inf -Inf -> 0
+ddcom801 compare -Inf -1000 -> -1
+ddcom802 compare -Inf -1 -> -1
+ddcom803 compare -Inf -0 -> -1
+ddcom804 compare -Inf 0 -> -1
+ddcom805 compare -Inf 1 -> -1
+ddcom806 compare -Inf 1000 -> -1
+ddcom807 compare -Inf Inf -> -1
+ddcom808 compare -Inf -Inf -> 0
+ddcom809 compare -1000 -Inf -> 1
+ddcom810 compare -1 -Inf -> 1
+ddcom811 compare -0 -Inf -> 1
+ddcom812 compare 0 -Inf -> 1
+ddcom813 compare 1 -Inf -> 1
+ddcom814 compare 1000 -Inf -> 1
+ddcom815 compare Inf -Inf -> 1
+
+ddcom821 compare NaN -Inf -> NaN
+ddcom822 compare NaN -1000 -> NaN
+ddcom823 compare NaN -1 -> NaN
+ddcom824 compare NaN -0 -> NaN
+ddcom825 compare NaN 0 -> NaN
+ddcom826 compare NaN 1 -> NaN
+ddcom827 compare NaN 1000 -> NaN
+ddcom828 compare NaN Inf -> NaN
+ddcom829 compare NaN NaN -> NaN
+ddcom830 compare -Inf NaN -> NaN
+ddcom831 compare -1000 NaN -> NaN
+ddcom832 compare -1 NaN -> NaN
+ddcom833 compare -0 NaN -> NaN
+ddcom834 compare 0 NaN -> NaN
+ddcom835 compare 1 NaN -> NaN
+ddcom836 compare 1000 NaN -> NaN
+ddcom837 compare Inf NaN -> NaN
+ddcom838 compare -NaN -NaN -> -NaN
+ddcom839 compare +NaN -NaN -> NaN
+ddcom840 compare -NaN +NaN -> -NaN
+
+ddcom841 compare sNaN -Inf -> NaN Invalid_operation
+ddcom842 compare sNaN -1000 -> NaN Invalid_operation
+ddcom843 compare sNaN -1 -> NaN Invalid_operation
+ddcom844 compare sNaN -0 -> NaN Invalid_operation
+ddcom845 compare sNaN 0 -> NaN Invalid_operation
+ddcom846 compare sNaN 1 -> NaN Invalid_operation
+ddcom847 compare sNaN 1000 -> NaN Invalid_operation
+ddcom848 compare sNaN NaN -> NaN Invalid_operation
+ddcom849 compare sNaN sNaN -> NaN Invalid_operation
+ddcom850 compare NaN sNaN -> NaN Invalid_operation
+ddcom851 compare -Inf sNaN -> NaN Invalid_operation
+ddcom852 compare -1000 sNaN -> NaN Invalid_operation
+ddcom853 compare -1 sNaN -> NaN Invalid_operation
+ddcom854 compare -0 sNaN -> NaN Invalid_operation
+ddcom855 compare 0 sNaN -> NaN Invalid_operation
+ddcom856 compare 1 sNaN -> NaN Invalid_operation
+ddcom857 compare 1000 sNaN -> NaN Invalid_operation
+ddcom858 compare Inf sNaN -> NaN Invalid_operation
+ddcom859 compare NaN sNaN -> NaN Invalid_operation
+
+-- propagating NaNs
+ddcom860 compare NaN9 -Inf -> NaN9
+ddcom861 compare NaN8 999 -> NaN8
+ddcom862 compare NaN77 Inf -> NaN77
+ddcom863 compare -NaN67 NaN5 -> -NaN67
+ddcom864 compare -Inf -NaN4 -> -NaN4
+ddcom865 compare -999 -NaN33 -> -NaN33
+ddcom866 compare Inf NaN2 -> NaN2
+ddcom867 compare -NaN41 -NaN42 -> -NaN41
+ddcom868 compare +NaN41 -NaN42 -> NaN41
+ddcom869 compare -NaN41 +NaN42 -> -NaN41
+ddcom870 compare +NaN41 +NaN42 -> NaN41
+
+ddcom871 compare -sNaN99 -Inf -> -NaN99 Invalid_operation
+ddcom872 compare sNaN98 -11 -> NaN98 Invalid_operation
+ddcom873 compare sNaN97 NaN -> NaN97 Invalid_operation
+ddcom874 compare sNaN16 sNaN94 -> NaN16 Invalid_operation
+ddcom875 compare NaN85 sNaN83 -> NaN83 Invalid_operation
+ddcom876 compare -Inf sNaN92 -> NaN92 Invalid_operation
+ddcom877 compare 088 sNaN81 -> NaN81 Invalid_operation
+ddcom878 compare Inf sNaN90 -> NaN90 Invalid_operation
+ddcom879 compare NaN -sNaN89 -> -NaN89 Invalid_operation
+
+-- wide range
+ddcom880 compare +1.23456789012345E-0 9E+384 -> -1
+ddcom881 compare 9E+384 +1.23456789012345E-0 -> 1
+ddcom882 compare +0.100 9E-383 -> 1
+ddcom883 compare 9E-383 +0.100 -> -1
+ddcom885 compare -1.23456789012345E-0 9E+384 -> -1
+ddcom886 compare 9E+384 -1.23456789012345E-0 -> 1
+ddcom887 compare -0.100 9E-383 -> -1
+ddcom888 compare 9E-383 -0.100 -> 1
+
+-- spread zeros
+ddcom900 compare 0E-383 0 -> 0
+ddcom901 compare 0E-383 -0 -> 0
+ddcom902 compare -0E-383 0 -> 0
+ddcom903 compare -0E-383 -0 -> 0
+ddcom904 compare 0E-383 0E+384 -> 0
+ddcom905 compare 0E-383 -0E+384 -> 0
+ddcom906 compare -0E-383 0E+384 -> 0
+ddcom907 compare -0E-383 -0E+384 -> 0
+ddcom908 compare 0 0E+384 -> 0
+ddcom909 compare 0 -0E+384 -> 0
+ddcom910 compare -0 0E+384 -> 0
+ddcom911 compare -0 -0E+384 -> 0
+ddcom930 compare 0E+384 0 -> 0
+ddcom931 compare 0E+384 -0 -> 0
+ddcom932 compare -0E+384 0 -> 0
+ddcom933 compare -0E+384 -0 -> 0
+ddcom934 compare 0E+384 0E-383 -> 0
+ddcom935 compare 0E+384 -0E-383 -> 0
+ddcom936 compare -0E+384 0E-383 -> 0
+ddcom937 compare -0E+384 -0E-383 -> 0
+ddcom938 compare 0 0E-383 -> 0
+ddcom939 compare 0 -0E-383 -> 0
+ddcom940 compare -0 0E-383 -> 0
+ddcom941 compare -0 -0E-383 -> 0
+
+-- signs
+ddcom961 compare 1e+77 1e+11 -> 1
+ddcom962 compare 1e+77 -1e+11 -> 1
+ddcom963 compare -1e+77 1e+11 -> -1
+ddcom964 compare -1e+77 -1e+11 -> -1
+ddcom965 compare 1e-77 1e-11 -> -1
+ddcom966 compare 1e-77 -1e-11 -> 1
+ddcom967 compare -1e-77 1e-11 -> -1
+ddcom968 compare -1e-77 -1e-11 -> 1
+
+-- full alignment range, both ways
+ddcomp1001 compare 1 1.000000000000000 -> 0
+ddcomp1002 compare 1 1.00000000000000 -> 0
+ddcomp1003 compare 1 1.0000000000000 -> 0
+ddcomp1004 compare 1 1.000000000000 -> 0
+ddcomp1005 compare 1 1.00000000000 -> 0
+ddcomp1006 compare 1 1.0000000000 -> 0
+ddcomp1007 compare 1 1.000000000 -> 0
+ddcomp1008 compare 1 1.00000000 -> 0
+ddcomp1009 compare 1 1.0000000 -> 0
+ddcomp1010 compare 1 1.000000 -> 0
+ddcomp1011 compare 1 1.00000 -> 0
+ddcomp1012 compare 1 1.0000 -> 0
+ddcomp1013 compare 1 1.000 -> 0
+ddcomp1014 compare 1 1.00 -> 0
+ddcomp1015 compare 1 1.0 -> 0
+ddcomp1021 compare 1.000000000000000 1 -> 0
+ddcomp1022 compare 1.00000000000000 1 -> 0
+ddcomp1023 compare 1.0000000000000 1 -> 0
+ddcomp1024 compare 1.000000000000 1 -> 0
+ddcomp1025 compare 1.00000000000 1 -> 0
+ddcomp1026 compare 1.0000000000 1 -> 0
+ddcomp1027 compare 1.000000000 1 -> 0
+ddcomp1028 compare 1.00000000 1 -> 0
+ddcomp1029 compare 1.0000000 1 -> 0
+ddcomp1030 compare 1.000000 1 -> 0
+ddcomp1031 compare 1.00000 1 -> 0
+ddcomp1032 compare 1.0000 1 -> 0
+ddcomp1033 compare 1.000 1 -> 0
+ddcomp1034 compare 1.00 1 -> 0
+ddcomp1035 compare 1.0 1 -> 0
+
+-- check MSD always detected non-zero
+ddcomp1040 compare 0 0.000000000000000 -> 0
+ddcomp1041 compare 0 1.000000000000000 -> -1
+ddcomp1042 compare 0 2.000000000000000 -> -1
+ddcomp1043 compare 0 3.000000000000000 -> -1
+ddcomp1044 compare 0 4.000000000000000 -> -1
+ddcomp1045 compare 0 5.000000000000000 -> -1
+ddcomp1046 compare 0 6.000000000000000 -> -1
+ddcomp1047 compare 0 7.000000000000000 -> -1
+ddcomp1048 compare 0 8.000000000000000 -> -1
+ddcomp1049 compare 0 9.000000000000000 -> -1
+ddcomp1050 compare 0.000000000000000 0 -> 0
+ddcomp1051 compare 1.000000000000000 0 -> 1
+ddcomp1052 compare 2.000000000000000 0 -> 1
+ddcomp1053 compare 3.000000000000000 0 -> 1
+ddcomp1054 compare 4.000000000000000 0 -> 1
+ddcomp1055 compare 5.000000000000000 0 -> 1
+ddcomp1056 compare 6.000000000000000 0 -> 1
+ddcomp1057 compare 7.000000000000000 0 -> 1
+ddcomp1058 compare 8.000000000000000 0 -> 1
+ddcomp1059 compare 9.000000000000000 0 -> 1
+
+-- Null tests
+ddcom9990 compare 10 # -> NaN Invalid_operation
+ddcom9991 compare # 10 -> NaN Invalid_operation
diff --git a/Lib/test/decimaltestdata/ddCompareSig.decTest b/Lib/test/decimaltestdata/ddCompareSig.decTest
new file mode 100644
index 0000000..388a656
--- /dev/null
+++ b/Lib/test/decimaltestdata/ddCompareSig.decTest
@@ -0,0 +1,647 @@
+------------------------------------------------------------------------
+-- ddCompareSig.decTest -- decDouble comparison; all NaNs signal --
+-- Copyright (c) IBM Corporation, 1981, 2007. All rights reserved. --
+------------------------------------------------------------------------
+-- Please see the document "General Decimal Arithmetic Testcases" --
+-- at http://www2.hursley.ibm.com/decimal for the description of --
+-- these testcases. --
+-- --
+-- These testcases are experimental ('beta' versions), and they --
+-- may contain errors. They are offered on an as-is basis. In --
+-- particular, achieving the same results as the tests here is not --
+-- a guarantee that an implementation complies with any Standard --
+-- or specification. The tests are not exhaustive. --
+-- --
+-- Please send comments, suggestions, and corrections to the author: --
+-- Mike Cowlishaw, IBM Fellow --
+-- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK --
+-- mfc@uk.ibm.com --
+------------------------------------------------------------------------
+version: 2.56
+
+-- Note that we cannot assume add/subtract tests cover paths adequately,
+-- here, because the code might be quite different (comparison cannot
+-- overflow or underflow, so actual subtractions are not necessary).
+
+-- All operands and results are decDoubles.
+precision: 16
+maxExponent: 384
+minExponent: -383
+extended: 1
+clamp: 1
+rounding: half_even
+
+-- sanity checks
+ddcms001 comparesig -2 -2 -> 0
+ddcms002 comparesig -2 -1 -> -1
+ddcms003 comparesig -2 0 -> -1
+ddcms004 comparesig -2 1 -> -1
+ddcms005 comparesig -2 2 -> -1
+ddcms006 comparesig -1 -2 -> 1
+ddcms007 comparesig -1 -1 -> 0
+ddcms008 comparesig -1 0 -> -1
+ddcms009 comparesig -1 1 -> -1
+ddcms010 comparesig -1 2 -> -1
+ddcms011 comparesig 0 -2 -> 1
+ddcms012 comparesig 0 -1 -> 1
+ddcms013 comparesig 0 0 -> 0
+ddcms014 comparesig 0 1 -> -1
+ddcms015 comparesig 0 2 -> -1
+ddcms016 comparesig 1 -2 -> 1
+ddcms017 comparesig 1 -1 -> 1
+ddcms018 comparesig 1 0 -> 1
+ddcms019 comparesig 1 1 -> 0
+ddcms020 comparesig 1 2 -> -1
+ddcms021 comparesig 2 -2 -> 1
+ddcms022 comparesig 2 -1 -> 1
+ddcms023 comparesig 2 0 -> 1
+ddcms025 comparesig 2 1 -> 1
+ddcms026 comparesig 2 2 -> 0
+
+ddcms031 comparesig -20 -20 -> 0
+ddcms032 comparesig -20 -10 -> -1
+ddcms033 comparesig -20 00 -> -1
+ddcms034 comparesig -20 10 -> -1
+ddcms035 comparesig -20 20 -> -1
+ddcms036 comparesig -10 -20 -> 1
+ddcms037 comparesig -10 -10 -> 0
+ddcms038 comparesig -10 00 -> -1
+ddcms039 comparesig -10 10 -> -1
+ddcms040 comparesig -10 20 -> -1
+ddcms041 comparesig 00 -20 -> 1
+ddcms042 comparesig 00 -10 -> 1
+ddcms043 comparesig 00 00 -> 0
+ddcms044 comparesig 00 10 -> -1
+ddcms045 comparesig 00 20 -> -1
+ddcms046 comparesig 10 -20 -> 1
+ddcms047 comparesig 10 -10 -> 1
+ddcms048 comparesig 10 00 -> 1
+ddcms049 comparesig 10 10 -> 0
+ddcms050 comparesig 10 20 -> -1
+ddcms051 comparesig 20 -20 -> 1
+ddcms052 comparesig 20 -10 -> 1
+ddcms053 comparesig 20 00 -> 1
+ddcms055 comparesig 20 10 -> 1
+ddcms056 comparesig 20 20 -> 0
+
+ddcms061 comparesig -2.0 -2.0 -> 0
+ddcms062 comparesig -2.0 -1.0 -> -1
+ddcms063 comparesig -2.0 0.0 -> -1
+ddcms064 comparesig -2.0 1.0 -> -1
+ddcms065 comparesig -2.0 2.0 -> -1
+ddcms066 comparesig -1.0 -2.0 -> 1
+ddcms067 comparesig -1.0 -1.0 -> 0
+ddcms068 comparesig -1.0 0.0 -> -1
+ddcms069 comparesig -1.0 1.0 -> -1
+ddcms070 comparesig -1.0 2.0 -> -1
+ddcms071 comparesig 0.0 -2.0 -> 1
+ddcms072 comparesig 0.0 -1.0 -> 1
+ddcms073 comparesig 0.0 0.0 -> 0
+ddcms074 comparesig 0.0 1.0 -> -1
+ddcms075 comparesig 0.0 2.0 -> -1
+ddcms076 comparesig 1.0 -2.0 -> 1
+ddcms077 comparesig 1.0 -1.0 -> 1
+ddcms078 comparesig 1.0 0.0 -> 1
+ddcms079 comparesig 1.0 1.0 -> 0
+ddcms080 comparesig 1.0 2.0 -> -1
+ddcms081 comparesig 2.0 -2.0 -> 1
+ddcms082 comparesig 2.0 -1.0 -> 1
+ddcms083 comparesig 2.0 0.0 -> 1
+ddcms085 comparesig 2.0 1.0 -> 1
+ddcms086 comparesig 2.0 2.0 -> 0
+
+-- now some cases which might overflow if subtract were used
+ddcms090 comparesig 9.999999999999999E+384 9.999999999999999E+384 -> 0
+ddcms091 comparesig -9.999999999999999E+384 9.999999999999999E+384 -> -1
+ddcms092 comparesig 9.999999999999999E+384 -9.999999999999999E+384 -> 1
+ddcms093 comparesig -9.999999999999999E+384 -9.999999999999999E+384 -> 0
+
+-- some differing length/exponent cases
+ddcms100 comparesig 7.0 7.0 -> 0
+ddcms101 comparesig 7.0 7 -> 0
+ddcms102 comparesig 7 7.0 -> 0
+ddcms103 comparesig 7E+0 7.0 -> 0
+ddcms104 comparesig 70E-1 7.0 -> 0
+ddcms105 comparesig 0.7E+1 7 -> 0
+ddcms106 comparesig 70E-1 7 -> 0
+ddcms107 comparesig 7.0 7E+0 -> 0
+ddcms108 comparesig 7.0 70E-1 -> 0
+ddcms109 comparesig 7 0.7E+1 -> 0
+ddcms110 comparesig 7 70E-1 -> 0
+
+ddcms120 comparesig 8.0 7.0 -> 1
+ddcms121 comparesig 8.0 7 -> 1
+ddcms122 comparesig 8 7.0 -> 1
+ddcms123 comparesig 8E+0 7.0 -> 1
+ddcms124 comparesig 80E-1 7.0 -> 1
+ddcms125 comparesig 0.8E+1 7 -> 1
+ddcms126 comparesig 80E-1 7 -> 1
+ddcms127 comparesig 8.0 7E+0 -> 1
+ddcms128 comparesig 8.0 70E-1 -> 1
+ddcms129 comparesig 8 0.7E+1 -> 1
+ddcms130 comparesig 8 70E-1 -> 1
+
+ddcms140 comparesig 8.0 9.0 -> -1
+ddcms141 comparesig 8.0 9 -> -1
+ddcms142 comparesig 8 9.0 -> -1
+ddcms143 comparesig 8E+0 9.0 -> -1
+ddcms144 comparesig 80E-1 9.0 -> -1
+ddcms145 comparesig 0.8E+1 9 -> -1
+ddcms146 comparesig 80E-1 9 -> -1
+ddcms147 comparesig 8.0 9E+0 -> -1
+ddcms148 comparesig 8.0 90E-1 -> -1
+ddcms149 comparesig 8 0.9E+1 -> -1
+ddcms150 comparesig 8 90E-1 -> -1
+
+-- and again, with sign changes -+ ..
+ddcms200 comparesig -7.0 7.0 -> -1
+ddcms201 comparesig -7.0 7 -> -1
+ddcms202 comparesig -7 7.0 -> -1
+ddcms203 comparesig -7E+0 7.0 -> -1
+ddcms204 comparesig -70E-1 7.0 -> -1
+ddcms205 comparesig -0.7E+1 7 -> -1
+ddcms206 comparesig -70E-1 7 -> -1
+ddcms207 comparesig -7.0 7E+0 -> -1
+ddcms208 comparesig -7.0 70E-1 -> -1
+ddcms209 comparesig -7 0.7E+1 -> -1
+ddcms210 comparesig -7 70E-1 -> -1
+
+ddcms220 comparesig -8.0 7.0 -> -1
+ddcms221 comparesig -8.0 7 -> -1
+ddcms222 comparesig -8 7.0 -> -1
+ddcms223 comparesig -8E+0 7.0 -> -1
+ddcms224 comparesig -80E-1 7.0 -> -1
+ddcms225 comparesig -0.8E+1 7 -> -1
+ddcms226 comparesig -80E-1 7 -> -1
+ddcms227 comparesig -8.0 7E+0 -> -1
+ddcms228 comparesig -8.0 70E-1 -> -1
+ddcms229 comparesig -8 0.7E+1 -> -1
+ddcms230 comparesig -8 70E-1 -> -1
+
+ddcms240 comparesig -8.0 9.0 -> -1
+ddcms241 comparesig -8.0 9 -> -1
+ddcms242 comparesig -8 9.0 -> -1
+ddcms243 comparesig -8E+0 9.0 -> -1
+ddcms244 comparesig -80E-1 9.0 -> -1
+ddcms245 comparesig -0.8E+1 9 -> -1
+ddcms246 comparesig -80E-1 9 -> -1
+ddcms247 comparesig -8.0 9E+0 -> -1
+ddcms248 comparesig -8.0 90E-1 -> -1
+ddcms249 comparesig -8 0.9E+1 -> -1
+ddcms250 comparesig -8 90E-1 -> -1
+
+-- and again, with sign changes +- ..
+ddcms300 comparesig 7.0 -7.0 -> 1
+ddcms301 comparesig 7.0 -7 -> 1
+ddcms302 comparesig 7 -7.0 -> 1
+ddcms303 comparesig 7E+0 -7.0 -> 1
+ddcms304 comparesig 70E-1 -7.0 -> 1
+ddcms305 comparesig .7E+1 -7 -> 1
+ddcms306 comparesig 70E-1 -7 -> 1
+ddcms307 comparesig 7.0 -7E+0 -> 1
+ddcms308 comparesig 7.0 -70E-1 -> 1
+ddcms309 comparesig 7 -.7E+1 -> 1
+ddcms310 comparesig 7 -70E-1 -> 1
+
+ddcms320 comparesig 8.0 -7.0 -> 1
+ddcms321 comparesig 8.0 -7 -> 1
+ddcms322 comparesig 8 -7.0 -> 1
+ddcms323 comparesig 8E+0 -7.0 -> 1
+ddcms324 comparesig 80E-1 -7.0 -> 1
+ddcms325 comparesig .8E+1 -7 -> 1
+ddcms326 comparesig 80E-1 -7 -> 1
+ddcms327 comparesig 8.0 -7E+0 -> 1
+ddcms328 comparesig 8.0 -70E-1 -> 1
+ddcms329 comparesig 8 -.7E+1 -> 1
+ddcms330 comparesig 8 -70E-1 -> 1
+
+ddcms340 comparesig 8.0 -9.0 -> 1
+ddcms341 comparesig 8.0 -9 -> 1
+ddcms342 comparesig 8 -9.0 -> 1
+ddcms343 comparesig 8E+0 -9.0 -> 1
+ddcms344 comparesig 80E-1 -9.0 -> 1
+ddcms345 comparesig .8E+1 -9 -> 1
+ddcms346 comparesig 80E-1 -9 -> 1
+ddcms347 comparesig 8.0 -9E+0 -> 1
+ddcms348 comparesig 8.0 -90E-1 -> 1
+ddcms349 comparesig 8 -.9E+1 -> 1
+ddcms350 comparesig 8 -90E-1 -> 1
+
+-- and again, with sign changes -- ..
+ddcms400 comparesig -7.0 -7.0 -> 0
+ddcms401 comparesig -7.0 -7 -> 0
+ddcms402 comparesig -7 -7.0 -> 0
+ddcms403 comparesig -7E+0 -7.0 -> 0
+ddcms404 comparesig -70E-1 -7.0 -> 0
+ddcms405 comparesig -.7E+1 -7 -> 0
+ddcms406 comparesig -70E-1 -7 -> 0
+ddcms407 comparesig -7.0 -7E+0 -> 0
+ddcms408 comparesig -7.0 -70E-1 -> 0
+ddcms409 comparesig -7 -.7E+1 -> 0
+ddcms410 comparesig -7 -70E-1 -> 0
+
+ddcms420 comparesig -8.0 -7.0 -> -1
+ddcms421 comparesig -8.0 -7 -> -1
+ddcms422 comparesig -8 -7.0 -> -1
+ddcms423 comparesig -8E+0 -7.0 -> -1
+ddcms424 comparesig -80E-1 -7.0 -> -1
+ddcms425 comparesig -.8E+1 -7 -> -1
+ddcms426 comparesig -80E-1 -7 -> -1
+ddcms427 comparesig -8.0 -7E+0 -> -1
+ddcms428 comparesig -8.0 -70E-1 -> -1
+ddcms429 comparesig -8 -.7E+1 -> -1
+ddcms430 comparesig -8 -70E-1 -> -1
+
+ddcms440 comparesig -8.0 -9.0 -> 1
+ddcms441 comparesig -8.0 -9 -> 1
+ddcms442 comparesig -8 -9.0 -> 1
+ddcms443 comparesig -8E+0 -9.0 -> 1
+ddcms444 comparesig -80E-1 -9.0 -> 1
+ddcms445 comparesig -.8E+1 -9 -> 1
+ddcms446 comparesig -80E-1 -9 -> 1
+ddcms447 comparesig -8.0 -9E+0 -> 1
+ddcms448 comparesig -8.0 -90E-1 -> 1
+ddcms449 comparesig -8 -.9E+1 -> 1
+ddcms450 comparesig -8 -90E-1 -> 1
+
+
+-- testcases that subtract to lots of zeros at boundaries [pgr]
+ddcms473 comparesig 123.4560000000000E-89 123.456E-89 -> 0
+ddcms474 comparesig 123.456000000000E+89 123.456E+89 -> 0
+ddcms475 comparesig 123.45600000000E-89 123.456E-89 -> 0
+ddcms476 comparesig 123.4560000000E+89 123.456E+89 -> 0
+ddcms477 comparesig 123.456000000E-89 123.456E-89 -> 0
+ddcms478 comparesig 123.45600000E+89 123.456E+89 -> 0
+ddcms479 comparesig 123.4560000E-89 123.456E-89 -> 0
+ddcms480 comparesig 123.456000E+89 123.456E+89 -> 0
+ddcms481 comparesig 123.45600E-89 123.456E-89 -> 0
+ddcms482 comparesig 123.4560E+89 123.456E+89 -> 0
+ddcms483 comparesig 123.456E-89 123.456E-89 -> 0
+ddcms487 comparesig 123.456E+89 123.4560000000000E+89 -> 0
+ddcms488 comparesig 123.456E-89 123.456000000000E-89 -> 0
+ddcms489 comparesig 123.456E+89 123.45600000000E+89 -> 0
+ddcms490 comparesig 123.456E-89 123.4560000000E-89 -> 0
+ddcms491 comparesig 123.456E+89 123.456000000E+89 -> 0
+ddcms492 comparesig 123.456E-89 123.45600000E-89 -> 0
+ddcms493 comparesig 123.456E+89 123.4560000E+89 -> 0
+ddcms494 comparesig 123.456E-89 123.456000E-89 -> 0
+ddcms495 comparesig 123.456E+89 123.45600E+89 -> 0
+ddcms496 comparesig 123.456E-89 123.4560E-89 -> 0
+ddcms497 comparesig 123.456E+89 123.456E+89 -> 0
+
+-- wide-ranging, around precision; signs equal
+ddcms500 comparesig 1 1E-15 -> 1
+ddcms501 comparesig 1 1E-14 -> 1
+ddcms502 comparesig 1 1E-13 -> 1
+ddcms503 comparesig 1 1E-12 -> 1
+ddcms504 comparesig 1 1E-11 -> 1
+ddcms505 comparesig 1 1E-10 -> 1
+ddcms506 comparesig 1 1E-9 -> 1
+ddcms507 comparesig 1 1E-8 -> 1
+ddcms508 comparesig 1 1E-7 -> 1
+ddcms509 comparesig 1 1E-6 -> 1
+ddcms510 comparesig 1 1E-5 -> 1
+ddcms511 comparesig 1 1E-4 -> 1
+ddcms512 comparesig 1 1E-3 -> 1
+ddcms513 comparesig 1 1E-2 -> 1
+ddcms514 comparesig 1 1E-1 -> 1
+ddcms515 comparesig 1 1E-0 -> 0
+ddcms516 comparesig 1 1E+1 -> -1
+ddcms517 comparesig 1 1E+2 -> -1
+ddcms518 comparesig 1 1E+3 -> -1
+ddcms519 comparesig 1 1E+4 -> -1
+ddcms521 comparesig 1 1E+5 -> -1
+ddcms522 comparesig 1 1E+6 -> -1
+ddcms523 comparesig 1 1E+7 -> -1
+ddcms524 comparesig 1 1E+8 -> -1
+ddcms525 comparesig 1 1E+9 -> -1
+ddcms526 comparesig 1 1E+10 -> -1
+ddcms527 comparesig 1 1E+11 -> -1
+ddcms528 comparesig 1 1E+12 -> -1
+ddcms529 comparesig 1 1E+13 -> -1
+ddcms530 comparesig 1 1E+14 -> -1
+ddcms531 comparesig 1 1E+15 -> -1
+-- LR swap
+ddcms540 comparesig 1E-15 1 -> -1
+ddcms541 comparesig 1E-14 1 -> -1
+ddcms542 comparesig 1E-13 1 -> -1
+ddcms543 comparesig 1E-12 1 -> -1
+ddcms544 comparesig 1E-11 1 -> -1
+ddcms545 comparesig 1E-10 1 -> -1
+ddcms546 comparesig 1E-9 1 -> -1
+ddcms547 comparesig 1E-8 1 -> -1
+ddcms548 comparesig 1E-7 1 -> -1
+ddcms549 comparesig 1E-6 1 -> -1
+ddcms550 comparesig 1E-5 1 -> -1
+ddcms551 comparesig 1E-4 1 -> -1
+ddcms552 comparesig 1E-3 1 -> -1
+ddcms553 comparesig 1E-2 1 -> -1
+ddcms554 comparesig 1E-1 1 -> -1
+ddcms555 comparesig 1E-0 1 -> 0
+ddcms556 comparesig 1E+1 1 -> 1
+ddcms557 comparesig 1E+2 1 -> 1
+ddcms558 comparesig 1E+3 1 -> 1
+ddcms559 comparesig 1E+4 1 -> 1
+ddcms561 comparesig 1E+5 1 -> 1
+ddcms562 comparesig 1E+6 1 -> 1
+ddcms563 comparesig 1E+7 1 -> 1
+ddcms564 comparesig 1E+8 1 -> 1
+ddcms565 comparesig 1E+9 1 -> 1
+ddcms566 comparesig 1E+10 1 -> 1
+ddcms567 comparesig 1E+11 1 -> 1
+ddcms568 comparesig 1E+12 1 -> 1
+ddcms569 comparesig 1E+13 1 -> 1
+ddcms570 comparesig 1E+14 1 -> 1
+ddcms571 comparesig 1E+15 1 -> 1
+-- similar with a useful coefficient, one side only
+ddcms580 comparesig 0.000000987654321 1E-15 -> 1
+ddcms581 comparesig 0.000000987654321 1E-14 -> 1
+ddcms582 comparesig 0.000000987654321 1E-13 -> 1
+ddcms583 comparesig 0.000000987654321 1E-12 -> 1
+ddcms584 comparesig 0.000000987654321 1E-11 -> 1
+ddcms585 comparesig 0.000000987654321 1E-10 -> 1
+ddcms586 comparesig 0.000000987654321 1E-9 -> 1
+ddcms587 comparesig 0.000000987654321 1E-8 -> 1
+ddcms588 comparesig 0.000000987654321 1E-7 -> 1
+ddcms589 comparesig 0.000000987654321 1E-6 -> -1
+ddcms590 comparesig 0.000000987654321 1E-5 -> -1
+ddcms591 comparesig 0.000000987654321 1E-4 -> -1
+ddcms592 comparesig 0.000000987654321 1E-3 -> -1
+ddcms593 comparesig 0.000000987654321 1E-2 -> -1
+ddcms594 comparesig 0.000000987654321 1E-1 -> -1
+ddcms595 comparesig 0.000000987654321 1E-0 -> -1
+ddcms596 comparesig 0.000000987654321 1E+1 -> -1
+ddcms597 comparesig 0.000000987654321 1E+2 -> -1
+ddcms598 comparesig 0.000000987654321 1E+3 -> -1
+ddcms599 comparesig 0.000000987654321 1E+4 -> -1
+
+-- check some unit-y traps
+ddcms600 comparesig 12 12.2345 -> -1
+ddcms601 comparesig 12.0 12.2345 -> -1
+ddcms602 comparesig 12.00 12.2345 -> -1
+ddcms603 comparesig 12.000 12.2345 -> -1
+ddcms604 comparesig 12.0000 12.2345 -> -1
+ddcms605 comparesig 12.00000 12.2345 -> -1
+ddcms606 comparesig 12.000000 12.2345 -> -1
+ddcms607 comparesig 12.0000000 12.2345 -> -1
+ddcms608 comparesig 12.00000000 12.2345 -> -1
+ddcms609 comparesig 12.000000000 12.2345 -> -1
+ddcms610 comparesig 12.1234 12 -> 1
+ddcms611 comparesig 12.1234 12.0 -> 1
+ddcms612 comparesig 12.1234 12.00 -> 1
+ddcms613 comparesig 12.1234 12.000 -> 1
+ddcms614 comparesig 12.1234 12.0000 -> 1
+ddcms615 comparesig 12.1234 12.00000 -> 1
+ddcms616 comparesig 12.1234 12.000000 -> 1
+ddcms617 comparesig 12.1234 12.0000000 -> 1
+ddcms618 comparesig 12.1234 12.00000000 -> 1
+ddcms619 comparesig 12.1234 12.000000000 -> 1
+ddcms620 comparesig -12 -12.2345 -> 1
+ddcms621 comparesig -12.0 -12.2345 -> 1
+ddcms622 comparesig -12.00 -12.2345 -> 1
+ddcms623 comparesig -12.000 -12.2345 -> 1
+ddcms624 comparesig -12.0000 -12.2345 -> 1
+ddcms625 comparesig -12.00000 -12.2345 -> 1
+ddcms626 comparesig -12.000000 -12.2345 -> 1
+ddcms627 comparesig -12.0000000 -12.2345 -> 1
+ddcms628 comparesig -12.00000000 -12.2345 -> 1
+ddcms629 comparesig -12.000000000 -12.2345 -> 1
+ddcms630 comparesig -12.1234 -12 -> -1
+ddcms631 comparesig -12.1234 -12.0 -> -1
+ddcms632 comparesig -12.1234 -12.00 -> -1
+ddcms633 comparesig -12.1234 -12.000 -> -1
+ddcms634 comparesig -12.1234 -12.0000 -> -1
+ddcms635 comparesig -12.1234 -12.00000 -> -1
+ddcms636 comparesig -12.1234 -12.000000 -> -1
+ddcms637 comparesig -12.1234 -12.0000000 -> -1
+ddcms638 comparesig -12.1234 -12.00000000 -> -1
+ddcms639 comparesig -12.1234 -12.000000000 -> -1
+
+-- extended zeros
+ddcms640 comparesig 0 0 -> 0
+ddcms641 comparesig 0 -0 -> 0
+ddcms642 comparesig 0 -0.0 -> 0
+ddcms643 comparesig 0 0.0 -> 0
+ddcms644 comparesig -0 0 -> 0
+ddcms645 comparesig -0 -0 -> 0
+ddcms646 comparesig -0 -0.0 -> 0
+ddcms647 comparesig -0 0.0 -> 0
+ddcms648 comparesig 0.0 0 -> 0
+ddcms649 comparesig 0.0 -0 -> 0
+ddcms650 comparesig 0.0 -0.0 -> 0
+ddcms651 comparesig 0.0 0.0 -> 0
+ddcms652 comparesig -0.0 0 -> 0
+ddcms653 comparesig -0.0 -0 -> 0
+ddcms654 comparesig -0.0 -0.0 -> 0
+ddcms655 comparesig -0.0 0.0 -> 0
+
+ddcms656 comparesig -0E1 0.0 -> 0
+ddcms657 comparesig -0E2 0.0 -> 0
+ddcms658 comparesig 0E1 0.0 -> 0
+ddcms659 comparesig 0E2 0.0 -> 0
+ddcms660 comparesig -0E1 0 -> 0
+ddcms661 comparesig -0E2 0 -> 0
+ddcms662 comparesig 0E1 0 -> 0
+ddcms663 comparesig 0E2 0 -> 0
+ddcms664 comparesig -0E1 -0E1 -> 0
+ddcms665 comparesig -0E2 -0E1 -> 0
+ddcms666 comparesig 0E1 -0E1 -> 0
+ddcms667 comparesig 0E2 -0E1 -> 0
+ddcms668 comparesig -0E1 -0E2 -> 0
+ddcms669 comparesig -0E2 -0E2 -> 0
+ddcms670 comparesig 0E1 -0E2 -> 0
+ddcms671 comparesig 0E2 -0E2 -> 0
+ddcms672 comparesig -0E1 0E1 -> 0
+ddcms673 comparesig -0E2 0E1 -> 0
+ddcms674 comparesig 0E1 0E1 -> 0
+ddcms675 comparesig 0E2 0E1 -> 0
+ddcms676 comparesig -0E1 0E2 -> 0
+ddcms677 comparesig -0E2 0E2 -> 0
+ddcms678 comparesig 0E1 0E2 -> 0
+ddcms679 comparesig 0E2 0E2 -> 0
+
+-- trailing zeros; unit-y
+ddcms680 comparesig 12 12 -> 0
+ddcms681 comparesig 12 12.0 -> 0
+ddcms682 comparesig 12 12.00 -> 0
+ddcms683 comparesig 12 12.000 -> 0
+ddcms684 comparesig 12 12.0000 -> 0
+ddcms685 comparesig 12 12.00000 -> 0
+ddcms686 comparesig 12 12.000000 -> 0
+ddcms687 comparesig 12 12.0000000 -> 0
+ddcms688 comparesig 12 12.00000000 -> 0
+ddcms689 comparesig 12 12.000000000 -> 0
+ddcms690 comparesig 12 12 -> 0
+ddcms691 comparesig 12.0 12 -> 0
+ddcms692 comparesig 12.00 12 -> 0
+ddcms693 comparesig 12.000 12 -> 0
+ddcms694 comparesig 12.0000 12 -> 0
+ddcms695 comparesig 12.00000 12 -> 0
+ddcms696 comparesig 12.000000 12 -> 0
+ddcms697 comparesig 12.0000000 12 -> 0
+ddcms698 comparesig 12.00000000 12 -> 0
+ddcms699 comparesig 12.000000000 12 -> 0
+
+-- first, second, & last digit
+ddcms700 comparesig 1234567890123456 1234567890123455 -> 1
+ddcms701 comparesig 1234567890123456 1234567890123456 -> 0
+ddcms702 comparesig 1234567890123456 1234567890123457 -> -1
+ddcms703 comparesig 1234567890123456 0234567890123456 -> 1
+ddcms704 comparesig 1234567890123456 1234567890123456 -> 0
+ddcms705 comparesig 1234567890123456 2234567890123456 -> -1
+ddcms706 comparesig 1134567890123456 1034567890123456 -> 1
+ddcms707 comparesig 1134567890123456 1134567890123456 -> 0
+ddcms708 comparesig 1134567890123456 1234567890123456 -> -1
+
+-- miscellaneous
+ddcms721 comparesig 12345678000 1 -> 1
+ddcms722 comparesig 1 12345678000 -> -1
+ddcms723 comparesig 1234567800 1 -> 1
+ddcms724 comparesig 1 1234567800 -> -1
+ddcms725 comparesig 1234567890 1 -> 1
+ddcms726 comparesig 1 1234567890 -> -1
+ddcms727 comparesig 1234567891 1 -> 1
+ddcms728 comparesig 1 1234567891 -> -1
+ddcms729 comparesig 12345678901 1 -> 1
+ddcms730 comparesig 1 12345678901 -> -1
+ddcms731 comparesig 1234567896 1 -> 1
+ddcms732 comparesig 1 1234567896 -> -1
+
+-- residue cases at lower precision
+ddcms740 comparesig 1 0.9999999 -> 1
+ddcms741 comparesig 1 0.999999 -> 1
+ddcms742 comparesig 1 0.99999 -> 1
+ddcms743 comparesig 1 1.0000 -> 0
+ddcms744 comparesig 1 1.00001 -> -1
+ddcms745 comparesig 1 1.000001 -> -1
+ddcms746 comparesig 1 1.0000001 -> -1
+ddcms750 comparesig 0.9999999 1 -> -1
+ddcms751 comparesig 0.999999 1 -> -1
+ddcms752 comparesig 0.99999 1 -> -1
+ddcms753 comparesig 1.0000 1 -> 0
+ddcms754 comparesig 1.00001 1 -> 1
+ddcms755 comparesig 1.000001 1 -> 1
+ddcms756 comparesig 1.0000001 1 -> 1
+
+-- Specials
+ddcms780 comparesig Inf -Inf -> 1
+ddcms781 comparesig Inf -1000 -> 1
+ddcms782 comparesig Inf -1 -> 1
+ddcms783 comparesig Inf -0 -> 1
+ddcms784 comparesig Inf 0 -> 1
+ddcms785 comparesig Inf 1 -> 1
+ddcms786 comparesig Inf 1000 -> 1
+ddcms787 comparesig Inf Inf -> 0
+ddcms788 comparesig -1000 Inf -> -1
+ddcms789 comparesig -Inf Inf -> -1
+ddcms790 comparesig -1 Inf -> -1
+ddcms791 comparesig -0 Inf -> -1
+ddcms792 comparesig 0 Inf -> -1
+ddcms793 comparesig 1 Inf -> -1
+ddcms794 comparesig 1000 Inf -> -1
+ddcms795 comparesig Inf Inf -> 0
+
+ddcms800 comparesig -Inf -Inf -> 0
+ddcms801 comparesig -Inf -1000 -> -1
+ddcms802 comparesig -Inf -1 -> -1
+ddcms803 comparesig -Inf -0 -> -1
+ddcms804 comparesig -Inf 0 -> -1
+ddcms805 comparesig -Inf 1 -> -1
+ddcms806 comparesig -Inf 1000 -> -1
+ddcms807 comparesig -Inf Inf -> -1
+ddcms808 comparesig -Inf -Inf -> 0
+ddcms809 comparesig -1000 -Inf -> 1
+ddcms810 comparesig -1 -Inf -> 1
+ddcms811 comparesig -0 -Inf -> 1
+ddcms812 comparesig 0 -Inf -> 1
+ddcms813 comparesig 1 -Inf -> 1
+ddcms814 comparesig 1000 -Inf -> 1
+ddcms815 comparesig Inf -Inf -> 1
+
+ddcms821 comparesig NaN -Inf -> NaN Invalid_operation
+ddcms822 comparesig NaN -1000 -> NaN Invalid_operation
+ddcms823 comparesig NaN -1 -> NaN Invalid_operation
+ddcms824 comparesig NaN -0 -> NaN Invalid_operation
+ddcms825 comparesig NaN 0 -> NaN Invalid_operation
+ddcms826 comparesig NaN 1 -> NaN Invalid_operation
+ddcms827 comparesig NaN 1000 -> NaN Invalid_operation
+ddcms828 comparesig NaN Inf -> NaN Invalid_operation
+ddcms829 comparesig NaN NaN -> NaN Invalid_operation
+ddcms830 comparesig -Inf NaN -> NaN Invalid_operation
+ddcms831 comparesig -1000 NaN -> NaN Invalid_operation
+ddcms832 comparesig -1 NaN -> NaN Invalid_operation
+ddcms833 comparesig -0 NaN -> NaN Invalid_operation
+ddcms834 comparesig 0 NaN -> NaN Invalid_operation
+ddcms835 comparesig 1 NaN -> NaN Invalid_operation
+ddcms836 comparesig 1000 NaN -> NaN Invalid_operation
+ddcms837 comparesig Inf NaN -> NaN Invalid_operation
+ddcms838 comparesig -NaN -NaN -> -NaN Invalid_operation
+ddcms839 comparesig +NaN -NaN -> NaN Invalid_operation
+ddcms840 comparesig -NaN +NaN -> -NaN Invalid_operation
+
+ddcms841 comparesig sNaN -Inf -> NaN Invalid_operation
+ddcms842 comparesig sNaN -1000 -> NaN Invalid_operation
+ddcms843 comparesig sNaN -1 -> NaN Invalid_operation
+ddcms844 comparesig sNaN -0 -> NaN Invalid_operation
+ddcms845 comparesig sNaN 0 -> NaN Invalid_operation
+ddcms846 comparesig sNaN 1 -> NaN Invalid_operation
+ddcms847 comparesig sNaN 1000 -> NaN Invalid_operation
+ddcms848 comparesig sNaN NaN -> NaN Invalid_operation
+ddcms849 comparesig sNaN sNaN -> NaN Invalid_operation
+ddcms850 comparesig NaN sNaN -> NaN Invalid_operation
+ddcms851 comparesig -Inf sNaN -> NaN Invalid_operation
+ddcms852 comparesig -1000 sNaN -> NaN Invalid_operation
+ddcms853 comparesig -1 sNaN -> NaN Invalid_operation
+ddcms854 comparesig -0 sNaN -> NaN Invalid_operation
+ddcms855 comparesig 0 sNaN -> NaN Invalid_operation
+ddcms856 comparesig 1 sNaN -> NaN Invalid_operation
+ddcms857 comparesig 1000 sNaN -> NaN Invalid_operation
+ddcms858 comparesig Inf sNaN -> NaN Invalid_operation
+ddcms859 comparesig NaN sNaN -> NaN Invalid_operation
+
+-- propagating NaNs
+ddcms860 comparesig NaN9 -Inf -> NaN9 Invalid_operation
+ddcms861 comparesig NaN8 999 -> NaN8 Invalid_operation
+ddcms862 comparesig NaN77 Inf -> NaN77 Invalid_operation
+ddcms863 comparesig -NaN67 NaN5 -> -NaN67 Invalid_operation
+ddcms864 comparesig -Inf -NaN4 -> -NaN4 Invalid_operation
+ddcms865 comparesig -999 -NaN33 -> -NaN33 Invalid_operation
+ddcms866 comparesig Inf NaN2 -> NaN2 Invalid_operation
+ddcms867 comparesig -NaN41 -NaN42 -> -NaN41 Invalid_operation
+ddcms868 comparesig +NaN41 -NaN42 -> NaN41 Invalid_operation
+ddcms869 comparesig -NaN41 +NaN42 -> -NaN41 Invalid_operation
+ddcms870 comparesig +NaN41 +NaN42 -> NaN41 Invalid_operation
+
+ddcms871 comparesig -sNaN99 -Inf -> -NaN99 Invalid_operation
+ddcms872 comparesig sNaN98 -11 -> NaN98 Invalid_operation
+ddcms873 comparesig sNaN97 NaN -> NaN97 Invalid_operation
+ddcms874 comparesig sNaN16 sNaN94 -> NaN16 Invalid_operation
+ddcms875 comparesig NaN85 sNaN83 -> NaN83 Invalid_operation
+ddcms876 comparesig -Inf sNaN92 -> NaN92 Invalid_operation
+ddcms877 comparesig 088 sNaN81 -> NaN81 Invalid_operation
+ddcms878 comparesig Inf sNaN90 -> NaN90 Invalid_operation
+ddcms879 comparesig NaN -sNaN89 -> -NaN89 Invalid_operation
+
+-- wide range
+ddcms880 comparesig +1.23456789012345E-0 9E+384 -> -1
+ddcms881 comparesig 9E+384 +1.23456789012345E-0 -> 1
+ddcms882 comparesig +0.100 9E-383 -> 1
+ddcms883 comparesig 9E-383 +0.100 -> -1
+ddcms885 comparesig -1.23456789012345E-0 9E+384 -> -1
+ddcms886 comparesig 9E+384 -1.23456789012345E-0 -> 1
+ddcms887 comparesig -0.100 9E-383 -> -1
+ddcms888 comparesig 9E-383 -0.100 -> 1
+
+-- signs
+ddcms901 comparesig 1e+77 1e+11 -> 1
+ddcms902 comparesig 1e+77 -1e+11 -> 1
+ddcms903 comparesig -1e+77 1e+11 -> -1
+ddcms904 comparesig -1e+77 -1e+11 -> -1
+ddcms905 comparesig 1e-77 1e-11 -> -1
+ddcms906 comparesig 1e-77 -1e-11 -> 1
+ddcms907 comparesig -1e-77 1e-11 -> -1
+ddcms908 comparesig -1e-77 -1e-11 -> 1
+
+-- Null tests
+ddcms990 comparesig 10 # -> NaN Invalid_operation
+ddcms991 comparesig # 10 -> NaN Invalid_operation
diff --git a/Lib/test/decimaltestdata/ddCompareTotal.decTest b/Lib/test/decimaltestdata/ddCompareTotal.decTest
new file mode 100644
index 0000000..a8bf477
--- /dev/null
+++ b/Lib/test/decimaltestdata/ddCompareTotal.decTest
@@ -0,0 +1,706 @@
+------------------------------------------------------------------------
+-- ddCompareTotal.decTest -- decDouble comparison using total ordering--
+-- Copyright (c) IBM Corporation, 1981, 2007. All rights reserved. --
+------------------------------------------------------------------------
+-- Please see the document "General Decimal Arithmetic Testcases" --
+-- at http://www2.hursley.ibm.com/decimal for the description of --
+-- these testcases. --
+-- --
+-- These testcases are experimental ('beta' versions), and they --
+-- may contain errors. They are offered on an as-is basis. In --
+-- particular, achieving the same results as the tests here is not --
+-- a guarantee that an implementation complies with any Standard --
+-- or specification. The tests are not exhaustive. --
+-- --
+-- Please send comments, suggestions, and corrections to the author: --
+-- Mike Cowlishaw, IBM Fellow --
+-- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK --
+-- mfc@uk.ibm.com --
+------------------------------------------------------------------------
+version: 2.56
+
+-- Note that we cannot assume add/subtract tests cover paths adequately,
+-- here, because the code might be quite different (comparison cannot
+-- overflow or underflow, so actual subtractions are not necessary).
+-- Similarly, comparetotal will have some radically different paths
+-- than compare.
+
+-- All operands and results are decDoubles.
+precision: 16
+maxExponent: 384
+minExponent: -383
+extended: 1
+clamp: 1
+rounding: half_even
+
+-- sanity checks
+ddcot001 comparetotal -2 -2 -> 0
+ddcot002 comparetotal -2 -1 -> -1
+ddcot003 comparetotal -2 0 -> -1
+ddcot004 comparetotal -2 1 -> -1
+ddcot005 comparetotal -2 2 -> -1
+ddcot006 comparetotal -1 -2 -> 1
+ddcot007 comparetotal -1 -1 -> 0
+ddcot008 comparetotal -1 0 -> -1
+ddcot009 comparetotal -1 1 -> -1
+ddcot010 comparetotal -1 2 -> -1
+ddcot011 comparetotal 0 -2 -> 1
+ddcot012 comparetotal 0 -1 -> 1
+ddcot013 comparetotal 0 0 -> 0
+ddcot014 comparetotal 0 1 -> -1
+ddcot015 comparetotal 0 2 -> -1
+ddcot016 comparetotal 1 -2 -> 1
+ddcot017 comparetotal 1 -1 -> 1
+ddcot018 comparetotal 1 0 -> 1
+ddcot019 comparetotal 1 1 -> 0
+ddcot020 comparetotal 1 2 -> -1
+ddcot021 comparetotal 2 -2 -> 1
+ddcot022 comparetotal 2 -1 -> 1
+ddcot023 comparetotal 2 0 -> 1
+ddcot025 comparetotal 2 1 -> 1
+ddcot026 comparetotal 2 2 -> 0
+
+ddcot031 comparetotal -20 -20 -> 0
+ddcot032 comparetotal -20 -10 -> -1
+ddcot033 comparetotal -20 00 -> -1
+ddcot034 comparetotal -20 10 -> -1
+ddcot035 comparetotal -20 20 -> -1
+ddcot036 comparetotal -10 -20 -> 1
+ddcot037 comparetotal -10 -10 -> 0
+ddcot038 comparetotal -10 00 -> -1
+ddcot039 comparetotal -10 10 -> -1
+ddcot040 comparetotal -10 20 -> -1
+ddcot041 comparetotal 00 -20 -> 1
+ddcot042 comparetotal 00 -10 -> 1
+ddcot043 comparetotal 00 00 -> 0
+ddcot044 comparetotal 00 10 -> -1
+ddcot045 comparetotal 00 20 -> -1
+ddcot046 comparetotal 10 -20 -> 1
+ddcot047 comparetotal 10 -10 -> 1
+ddcot048 comparetotal 10 00 -> 1
+ddcot049 comparetotal 10 10 -> 0
+ddcot050 comparetotal 10 20 -> -1
+ddcot051 comparetotal 20 -20 -> 1
+ddcot052 comparetotal 20 -10 -> 1
+ddcot053 comparetotal 20 00 -> 1
+ddcot055 comparetotal 20 10 -> 1
+ddcot056 comparetotal 20 20 -> 0
+
+ddcot061 comparetotal -2.0 -2.0 -> 0
+ddcot062 comparetotal -2.0 -1.0 -> -1
+ddcot063 comparetotal -2.0 0.0 -> -1
+ddcot064 comparetotal -2.0 1.0 -> -1
+ddcot065 comparetotal -2.0 2.0 -> -1
+ddcot066 comparetotal -1.0 -2.0 -> 1
+ddcot067 comparetotal -1.0 -1.0 -> 0
+ddcot068 comparetotal -1.0 0.0 -> -1
+ddcot069 comparetotal -1.0 1.0 -> -1
+ddcot070 comparetotal -1.0 2.0 -> -1
+ddcot071 comparetotal 0.0 -2.0 -> 1
+ddcot072 comparetotal 0.0 -1.0 -> 1
+ddcot073 comparetotal 0.0 0.0 -> 0
+ddcot074 comparetotal 0.0 1.0 -> -1
+ddcot075 comparetotal 0.0 2.0 -> -1
+ddcot076 comparetotal 1.0 -2.0 -> 1
+ddcot077 comparetotal 1.0 -1.0 -> 1
+ddcot078 comparetotal 1.0 0.0 -> 1
+ddcot079 comparetotal 1.0 1.0 -> 0
+ddcot080 comparetotal 1.0 2.0 -> -1
+ddcot081 comparetotal 2.0 -2.0 -> 1
+ddcot082 comparetotal 2.0 -1.0 -> 1
+ddcot083 comparetotal 2.0 0.0 -> 1
+ddcot085 comparetotal 2.0 1.0 -> 1
+ddcot086 comparetotal 2.0 2.0 -> 0
+
+-- now some cases which might overflow if subtract were used
+ddcot090 comparetotal 9.99999999E+384 9.99999999E+384 -> 0
+ddcot091 comparetotal -9.99999999E+384 9.99999999E+384 -> -1
+ddcot092 comparetotal 9.99999999E+384 -9.99999999E+384 -> 1
+ddcot093 comparetotal -9.99999999E+384 -9.99999999E+384 -> 0
+
+-- some differing length/exponent cases
+-- in this first group, compare would compare all equal
+ddcot100 comparetotal 7.0 7.0 -> 0
+ddcot101 comparetotal 7.0 7 -> -1
+ddcot102 comparetotal 7 7.0 -> 1
+ddcot103 comparetotal 7E+0 7.0 -> 1
+ddcot104 comparetotal 70E-1 7.0 -> 0
+ddcot105 comparetotal 0.7E+1 7 -> 0
+ddcot106 comparetotal 70E-1 7 -> -1
+ddcot107 comparetotal 7.0 7E+0 -> -1
+ddcot108 comparetotal 7.0 70E-1 -> 0
+ddcot109 comparetotal 7 0.7E+1 -> 0
+ddcot110 comparetotal 7 70E-1 -> 1
+
+ddcot120 comparetotal 8.0 7.0 -> 1
+ddcot121 comparetotal 8.0 7 -> 1
+ddcot122 comparetotal 8 7.0 -> 1
+ddcot123 comparetotal 8E+0 7.0 -> 1
+ddcot124 comparetotal 80E-1 7.0 -> 1
+ddcot125 comparetotal 0.8E+1 7 -> 1
+ddcot126 comparetotal 80E-1 7 -> 1
+ddcot127 comparetotal 8.0 7E+0 -> 1
+ddcot128 comparetotal 8.0 70E-1 -> 1
+ddcot129 comparetotal 8 0.7E+1 -> 1
+ddcot130 comparetotal 8 70E-1 -> 1
+
+ddcot140 comparetotal 8.0 9.0 -> -1
+ddcot141 comparetotal 8.0 9 -> -1
+ddcot142 comparetotal 8 9.0 -> -1
+ddcot143 comparetotal 8E+0 9.0 -> -1
+ddcot144 comparetotal 80E-1 9.0 -> -1
+ddcot145 comparetotal 0.8E+1 9 -> -1
+ddcot146 comparetotal 80E-1 9 -> -1
+ddcot147 comparetotal 8.0 9E+0 -> -1
+ddcot148 comparetotal 8.0 90E-1 -> -1
+ddcot149 comparetotal 8 0.9E+1 -> -1
+ddcot150 comparetotal 8 90E-1 -> -1
+
+-- and again, with sign changes -+ ..
+ddcot200 comparetotal -7.0 7.0 -> -1
+ddcot201 comparetotal -7.0 7 -> -1
+ddcot202 comparetotal -7 7.0 -> -1
+ddcot203 comparetotal -7E+0 7.0 -> -1
+ddcot204 comparetotal -70E-1 7.0 -> -1
+ddcot205 comparetotal -0.7E+1 7 -> -1
+ddcot206 comparetotal -70E-1 7 -> -1
+ddcot207 comparetotal -7.0 7E+0 -> -1
+ddcot208 comparetotal -7.0 70E-1 -> -1
+ddcot209 comparetotal -7 0.7E+1 -> -1
+ddcot210 comparetotal -7 70E-1 -> -1
+
+ddcot220 comparetotal -8.0 7.0 -> -1
+ddcot221 comparetotal -8.0 7 -> -1
+ddcot222 comparetotal -8 7.0 -> -1
+ddcot223 comparetotal -8E+0 7.0 -> -1
+ddcot224 comparetotal -80E-1 7.0 -> -1
+ddcot225 comparetotal -0.8E+1 7 -> -1
+ddcot226 comparetotal -80E-1 7 -> -1
+ddcot227 comparetotal -8.0 7E+0 -> -1
+ddcot228 comparetotal -8.0 70E-1 -> -1
+ddcot229 comparetotal -8 0.7E+1 -> -1
+ddcot230 comparetotal -8 70E-1 -> -1
+
+ddcot240 comparetotal -8.0 9.0 -> -1
+ddcot241 comparetotal -8.0 9 -> -1
+ddcot242 comparetotal -8 9.0 -> -1
+ddcot243 comparetotal -8E+0 9.0 -> -1
+ddcot244 comparetotal -80E-1 9.0 -> -1
+ddcot245 comparetotal -0.8E+1 9 -> -1
+ddcot246 comparetotal -80E-1 9 -> -1
+ddcot247 comparetotal -8.0 9E+0 -> -1
+ddcot248 comparetotal -8.0 90E-1 -> -1
+ddcot249 comparetotal -8 0.9E+1 -> -1
+ddcot250 comparetotal -8 90E-1 -> -1
+
+-- and again, with sign changes +- ..
+ddcot300 comparetotal 7.0 -7.0 -> 1
+ddcot301 comparetotal 7.0 -7 -> 1
+ddcot302 comparetotal 7 -7.0 -> 1
+ddcot303 comparetotal 7E+0 -7.0 -> 1
+ddcot304 comparetotal 70E-1 -7.0 -> 1
+ddcot305 comparetotal .7E+1 -7 -> 1
+ddcot306 comparetotal 70E-1 -7 -> 1
+ddcot307 comparetotal 7.0 -7E+0 -> 1
+ddcot308 comparetotal 7.0 -70E-1 -> 1
+ddcot309 comparetotal 7 -.7E+1 -> 1
+ddcot310 comparetotal 7 -70E-1 -> 1
+
+ddcot320 comparetotal 8.0 -7.0 -> 1
+ddcot321 comparetotal 8.0 -7 -> 1
+ddcot322 comparetotal 8 -7.0 -> 1
+ddcot323 comparetotal 8E+0 -7.0 -> 1
+ddcot324 comparetotal 80E-1 -7.0 -> 1
+ddcot325 comparetotal .8E+1 -7 -> 1
+ddcot326 comparetotal 80E-1 -7 -> 1
+ddcot327 comparetotal 8.0 -7E+0 -> 1
+ddcot328 comparetotal 8.0 -70E-1 -> 1
+ddcot329 comparetotal 8 -.7E+1 -> 1
+ddcot330 comparetotal 8 -70E-1 -> 1
+
+ddcot340 comparetotal 8.0 -9.0 -> 1
+ddcot341 comparetotal 8.0 -9 -> 1
+ddcot342 comparetotal 8 -9.0 -> 1
+ddcot343 comparetotal 8E+0 -9.0 -> 1
+ddcot344 comparetotal 80E-1 -9.0 -> 1
+ddcot345 comparetotal .8E+1 -9 -> 1
+ddcot346 comparetotal 80E-1 -9 -> 1
+ddcot347 comparetotal 8.0 -9E+0 -> 1
+ddcot348 comparetotal 8.0 -90E-1 -> 1
+ddcot349 comparetotal 8 -.9E+1 -> 1
+ddcot350 comparetotal 8 -90E-1 -> 1
+
+-- and again, with sign changes -- ..
+ddcot400 comparetotal -7.0 -7.0 -> 0
+ddcot401 comparetotal -7.0 -7 -> 1
+ddcot402 comparetotal -7 -7.0 -> -1
+ddcot403 comparetotal -7E+0 -7.0 -> -1
+ddcot404 comparetotal -70E-1 -7.0 -> 0
+ddcot405 comparetotal -.7E+1 -7 -> 0
+ddcot406 comparetotal -70E-1 -7 -> 1
+ddcot407 comparetotal -7.0 -7E+0 -> 1
+ddcot408 comparetotal -7.0 -70E-1 -> 0
+ddcot409 comparetotal -7 -.7E+1 -> 0
+ddcot410 comparetotal -7 -70E-1 -> -1
+
+ddcot420 comparetotal -8.0 -7.0 -> -1
+ddcot421 comparetotal -8.0 -7 -> -1
+ddcot422 comparetotal -8 -7.0 -> -1
+ddcot423 comparetotal -8E+0 -7.0 -> -1
+ddcot424 comparetotal -80E-1 -7.0 -> -1
+ddcot425 comparetotal -.8E+1 -7 -> -1
+ddcot426 comparetotal -80E-1 -7 -> -1
+ddcot427 comparetotal -8.0 -7E+0 -> -1
+ddcot428 comparetotal -8.0 -70E-1 -> -1
+ddcot429 comparetotal -8 -.7E+1 -> -1
+ddcot430 comparetotal -8 -70E-1 -> -1
+
+ddcot440 comparetotal -8.0 -9.0 -> 1
+ddcot441 comparetotal -8.0 -9 -> 1
+ddcot442 comparetotal -8 -9.0 -> 1
+ddcot443 comparetotal -8E+0 -9.0 -> 1
+ddcot444 comparetotal -80E-1 -9.0 -> 1
+ddcot445 comparetotal -.8E+1 -9 -> 1
+ddcot446 comparetotal -80E-1 -9 -> 1
+ddcot447 comparetotal -8.0 -9E+0 -> 1
+ddcot448 comparetotal -8.0 -90E-1 -> 1
+ddcot449 comparetotal -8 -.9E+1 -> 1
+ddcot450 comparetotal -8 -90E-1 -> 1
+
+
+-- testcases that subtract to lots of zeros at boundaries [pgr]
+ddcot473 comparetotal 123.4560000000000E-89 123.456E-89 -> -1
+ddcot474 comparetotal 123.456000000000E+89 123.456E+89 -> -1
+ddcot475 comparetotal 123.45600000000E-89 123.456E-89 -> -1
+ddcot476 comparetotal 123.4560000000E+89 123.456E+89 -> -1
+ddcot477 comparetotal 123.456000000E-89 123.456E-89 -> -1
+ddcot478 comparetotal 123.45600000E+89 123.456E+89 -> -1
+ddcot479 comparetotal 123.4560000E-89 123.456E-89 -> -1
+ddcot480 comparetotal 123.456000E+89 123.456E+89 -> -1
+ddcot481 comparetotal 123.45600E-89 123.456E-89 -> -1
+ddcot482 comparetotal 123.4560E+89 123.456E+89 -> -1
+ddcot483 comparetotal 123.456E-89 123.456E-89 -> 0
+ddcot487 comparetotal 123.456E+89 123.4560000000000E+89 -> 1
+ddcot488 comparetotal 123.456E-89 123.456000000000E-89 -> 1
+ddcot489 comparetotal 123.456E+89 123.45600000000E+89 -> 1
+ddcot490 comparetotal 123.456E-89 123.4560000000E-89 -> 1
+ddcot491 comparetotal 123.456E+89 123.456000000E+89 -> 1
+ddcot492 comparetotal 123.456E-89 123.45600000E-89 -> 1
+ddcot493 comparetotal 123.456E+89 123.4560000E+89 -> 1
+ddcot494 comparetotal 123.456E-89 123.456000E-89 -> 1
+ddcot495 comparetotal 123.456E+89 123.45600E+89 -> 1
+ddcot496 comparetotal 123.456E-89 123.4560E-89 -> 1
+ddcot497 comparetotal 123.456E+89 123.456E+89 -> 0
+
+-- wide-ranging, around precision; signs equal
+ddcot498 comparetotal 1 1E-17 -> 1
+ddcot499 comparetotal 1 1E-16 -> 1
+ddcot500 comparetotal 1 1E-15 -> 1
+ddcot501 comparetotal 1 1E-14 -> 1
+ddcot502 comparetotal 1 1E-13 -> 1
+ddcot503 comparetotal 1 1E-12 -> 1
+ddcot504 comparetotal 1 1E-11 -> 1
+ddcot505 comparetotal 1 1E-10 -> 1
+ddcot506 comparetotal 1 1E-9 -> 1
+ddcot507 comparetotal 1 1E-8 -> 1
+ddcot508 comparetotal 1 1E-7 -> 1
+ddcot509 comparetotal 1 1E-6 -> 1
+ddcot510 comparetotal 1 1E-5 -> 1
+ddcot511 comparetotal 1 1E-4 -> 1
+ddcot512 comparetotal 1 1E-3 -> 1
+ddcot513 comparetotal 1 1E-2 -> 1
+ddcot514 comparetotal 1 1E-1 -> 1
+ddcot515 comparetotal 1 1E-0 -> 0
+ddcot516 comparetotal 1 1E+1 -> -1
+ddcot517 comparetotal 1 1E+2 -> -1
+ddcot518 comparetotal 1 1E+3 -> -1
+ddcot519 comparetotal 1 1E+4 -> -1
+ddcot521 comparetotal 1 1E+5 -> -1
+ddcot522 comparetotal 1 1E+6 -> -1
+ddcot523 comparetotal 1 1E+7 -> -1
+ddcot524 comparetotal 1 1E+8 -> -1
+ddcot525 comparetotal 1 1E+9 -> -1
+ddcot526 comparetotal 1 1E+10 -> -1
+ddcot527 comparetotal 1 1E+11 -> -1
+ddcot528 comparetotal 1 1E+12 -> -1
+ddcot529 comparetotal 1 1E+13 -> -1
+ddcot530 comparetotal 1 1E+14 -> -1
+ddcot531 comparetotal 1 1E+15 -> -1
+ddcot532 comparetotal 1 1E+16 -> -1
+ddcot533 comparetotal 1 1E+17 -> -1
+-- LR swap
+ddcot538 comparetotal 1E-17 1 -> -1
+ddcot539 comparetotal 1E-16 1 -> -1
+ddcot540 comparetotal 1E-15 1 -> -1
+ddcot541 comparetotal 1E-14 1 -> -1
+ddcot542 comparetotal 1E-13 1 -> -1
+ddcot543 comparetotal 1E-12 1 -> -1
+ddcot544 comparetotal 1E-11 1 -> -1
+ddcot545 comparetotal 1E-10 1 -> -1
+ddcot546 comparetotal 1E-9 1 -> -1
+ddcot547 comparetotal 1E-8 1 -> -1
+ddcot548 comparetotal 1E-7 1 -> -1
+ddcot549 comparetotal 1E-6 1 -> -1
+ddcot550 comparetotal 1E-5 1 -> -1
+ddcot551 comparetotal 1E-4 1 -> -1
+ddcot552 comparetotal 1E-3 1 -> -1
+ddcot553 comparetotal 1E-2 1 -> -1
+ddcot554 comparetotal 1E-1 1 -> -1
+ddcot555 comparetotal 1E-0 1 -> 0
+ddcot556 comparetotal 1E+1 1 -> 1
+ddcot557 comparetotal 1E+2 1 -> 1
+ddcot558 comparetotal 1E+3 1 -> 1
+ddcot559 comparetotal 1E+4 1 -> 1
+ddcot561 comparetotal 1E+5 1 -> 1
+ddcot562 comparetotal 1E+6 1 -> 1
+ddcot563 comparetotal 1E+7 1 -> 1
+ddcot564 comparetotal 1E+8 1 -> 1
+ddcot565 comparetotal 1E+9 1 -> 1
+ddcot566 comparetotal 1E+10 1 -> 1
+ddcot567 comparetotal 1E+11 1 -> 1
+ddcot568 comparetotal 1E+12 1 -> 1
+ddcot569 comparetotal 1E+13 1 -> 1
+ddcot570 comparetotal 1E+14 1 -> 1
+ddcot571 comparetotal 1E+15 1 -> 1
+ddcot572 comparetotal 1E+16 1 -> 1
+ddcot573 comparetotal 1E+17 1 -> 1
+-- similar with a useful coefficient, one side only
+ddcot578 comparetotal 0.000000987654321 1E-17 -> 1
+ddcot579 comparetotal 0.000000987654321 1E-16 -> 1
+ddcot580 comparetotal 0.000000987654321 1E-15 -> 1
+ddcot581 comparetotal 0.000000987654321 1E-14 -> 1
+ddcot582 comparetotal 0.000000987654321 1E-13 -> 1
+ddcot583 comparetotal 0.000000987654321 1E-12 -> 1
+ddcot584 comparetotal 0.000000987654321 1E-11 -> 1
+ddcot585 comparetotal 0.000000987654321 1E-10 -> 1
+ddcot586 comparetotal 0.000000987654321 1E-9 -> 1
+ddcot587 comparetotal 0.000000987654321 1E-8 -> 1
+ddcot588 comparetotal 0.000000987654321 1E-7 -> 1
+ddcot589 comparetotal 0.000000987654321 1E-6 -> -1
+ddcot590 comparetotal 0.000000987654321 1E-5 -> -1
+ddcot591 comparetotal 0.000000987654321 1E-4 -> -1
+ddcot592 comparetotal 0.000000987654321 1E-3 -> -1
+ddcot593 comparetotal 0.000000987654321 1E-2 -> -1
+ddcot594 comparetotal 0.000000987654321 1E-1 -> -1
+ddcot595 comparetotal 0.000000987654321 1E-0 -> -1
+ddcot596 comparetotal 0.000000987654321 1E+1 -> -1
+ddcot597 comparetotal 0.000000987654321 1E+2 -> -1
+ddcot598 comparetotal 0.000000987654321 1E+3 -> -1
+ddcot599 comparetotal 0.000000987654321 1E+4 -> -1
+
+-- check some unit-y traps
+ddcot600 comparetotal 12 12.2345 -> -1
+ddcot601 comparetotal 12.0 12.2345 -> -1
+ddcot602 comparetotal 12.00 12.2345 -> -1
+ddcot603 comparetotal 12.000 12.2345 -> -1
+ddcot604 comparetotal 12.0000 12.2345 -> -1
+ddcot605 comparetotal 12.00000 12.2345 -> -1
+ddcot606 comparetotal 12.000000 12.2345 -> -1
+ddcot607 comparetotal 12.0000000 12.2345 -> -1
+ddcot608 comparetotal 12.00000000 12.2345 -> -1
+ddcot609 comparetotal 12.000000000 12.2345 -> -1
+ddcot610 comparetotal 12.1234 12 -> 1
+ddcot611 comparetotal 12.1234 12.0 -> 1
+ddcot612 comparetotal 12.1234 12.00 -> 1
+ddcot613 comparetotal 12.1234 12.000 -> 1
+ddcot614 comparetotal 12.1234 12.0000 -> 1
+ddcot615 comparetotal 12.1234 12.00000 -> 1
+ddcot616 comparetotal 12.1234 12.000000 -> 1
+ddcot617 comparetotal 12.1234 12.0000000 -> 1
+ddcot618 comparetotal 12.1234 12.00000000 -> 1
+ddcot619 comparetotal 12.1234 12.000000000 -> 1
+ddcot620 comparetotal -12 -12.2345 -> 1
+ddcot621 comparetotal -12.0 -12.2345 -> 1
+ddcot622 comparetotal -12.00 -12.2345 -> 1
+ddcot623 comparetotal -12.000 -12.2345 -> 1
+ddcot624 comparetotal -12.0000 -12.2345 -> 1
+ddcot625 comparetotal -12.00000 -12.2345 -> 1
+ddcot626 comparetotal -12.000000 -12.2345 -> 1
+ddcot627 comparetotal -12.0000000 -12.2345 -> 1
+ddcot628 comparetotal -12.00000000 -12.2345 -> 1
+ddcot629 comparetotal -12.000000000 -12.2345 -> 1
+ddcot630 comparetotal -12.1234 -12 -> -1
+ddcot631 comparetotal -12.1234 -12.0 -> -1
+ddcot632 comparetotal -12.1234 -12.00 -> -1
+ddcot633 comparetotal -12.1234 -12.000 -> -1
+ddcot634 comparetotal -12.1234 -12.0000 -> -1
+ddcot635 comparetotal -12.1234 -12.00000 -> -1
+ddcot636 comparetotal -12.1234 -12.000000 -> -1
+ddcot637 comparetotal -12.1234 -12.0000000 -> -1
+ddcot638 comparetotal -12.1234 -12.00000000 -> -1
+ddcot639 comparetotal -12.1234 -12.000000000 -> -1
+
+-- extended zeros
+ddcot640 comparetotal 0 0 -> 0
+ddcot641 comparetotal 0 -0 -> 1
+ddcot642 comparetotal 0 -0.0 -> 1
+ddcot643 comparetotal 0 0.0 -> 1
+ddcot644 comparetotal -0 0 -> -1
+ddcot645 comparetotal -0 -0 -> 0
+ddcot646 comparetotal -0 -0.0 -> -1
+ddcot647 comparetotal -0 0.0 -> -1
+ddcot648 comparetotal 0.0 0 -> -1
+ddcot649 comparetotal 0.0 -0 -> 1
+ddcot650 comparetotal 0.0 -0.0 -> 1
+ddcot651 comparetotal 0.0 0.0 -> 0
+ddcot652 comparetotal -0.0 0 -> -1
+ddcot653 comparetotal -0.0 -0 -> 1
+ddcot654 comparetotal -0.0 -0.0 -> 0
+ddcot655 comparetotal -0.0 0.0 -> -1
+
+ddcot656 comparetotal -0E1 0.0 -> -1
+ddcot657 comparetotal -0E2 0.0 -> -1
+ddcot658 comparetotal 0E1 0.0 -> 1
+ddcot659 comparetotal 0E2 0.0 -> 1
+ddcot660 comparetotal -0E1 0 -> -1
+ddcot661 comparetotal -0E2 0 -> -1
+ddcot662 comparetotal 0E1 0 -> 1
+ddcot663 comparetotal 0E2 0 -> 1
+ddcot664 comparetotal -0E1 -0E1 -> 0
+ddcot665 comparetotal -0E2 -0E1 -> -1
+ddcot666 comparetotal 0E1 -0E1 -> 1
+ddcot667 comparetotal 0E2 -0E1 -> 1
+ddcot668 comparetotal -0E1 -0E2 -> 1
+ddcot669 comparetotal -0E2 -0E2 -> 0
+ddcot670 comparetotal 0E1 -0E2 -> 1
+ddcot671 comparetotal 0E2 -0E2 -> 1
+ddcot672 comparetotal -0E1 0E1 -> -1
+ddcot673 comparetotal -0E2 0E1 -> -1
+ddcot674 comparetotal 0E1 0E1 -> 0
+ddcot675 comparetotal 0E2 0E1 -> 1
+ddcot676 comparetotal -0E1 0E2 -> -1
+ddcot677 comparetotal -0E2 0E2 -> -1
+ddcot678 comparetotal 0E1 0E2 -> -1
+ddcot679 comparetotal 0E2 0E2 -> 0
+
+-- trailing zeros; unit-y
+ddcot680 comparetotal 12 12 -> 0
+ddcot681 comparetotal 12 12.0 -> 1
+ddcot682 comparetotal 12 12.00 -> 1
+ddcot683 comparetotal 12 12.000 -> 1
+ddcot684 comparetotal 12 12.0000 -> 1
+ddcot685 comparetotal 12 12.00000 -> 1
+ddcot686 comparetotal 12 12.000000 -> 1
+ddcot687 comparetotal 12 12.0000000 -> 1
+ddcot688 comparetotal 12 12.00000000 -> 1
+ddcot689 comparetotal 12 12.000000000 -> 1
+ddcot690 comparetotal 12 12 -> 0
+ddcot691 comparetotal 12.0 12 -> -1
+ddcot692 comparetotal 12.00 12 -> -1
+ddcot693 comparetotal 12.000 12 -> -1
+ddcot694 comparetotal 12.0000 12 -> -1
+ddcot695 comparetotal 12.00000 12 -> -1
+ddcot696 comparetotal 12.000000 12 -> -1
+ddcot697 comparetotal 12.0000000 12 -> -1
+ddcot698 comparetotal 12.00000000 12 -> -1
+ddcot699 comparetotal 12.000000000 12 -> -1
+
+-- old long operand checks
+ddcot701 comparetotal 12345678000 1 -> 1
+ddcot702 comparetotal 1 12345678000 -> -1
+ddcot703 comparetotal 1234567800 1 -> 1
+ddcot704 comparetotal 1 1234567800 -> -1
+ddcot705 comparetotal 1234567890 1 -> 1
+ddcot706 comparetotal 1 1234567890 -> -1
+ddcot707 comparetotal 1234567891 1 -> 1
+ddcot708 comparetotal 1 1234567891 -> -1
+ddcot709 comparetotal 12345678901 1 -> 1
+ddcot710 comparetotal 1 12345678901 -> -1
+ddcot711 comparetotal 1234567896 1 -> 1
+ddcot712 comparetotal 1 1234567896 -> -1
+ddcot713 comparetotal -1234567891 1 -> -1
+ddcot714 comparetotal 1 -1234567891 -> 1
+ddcot715 comparetotal -12345678901 1 -> -1
+ddcot716 comparetotal 1 -12345678901 -> 1
+ddcot717 comparetotal -1234567896 1 -> -1
+ddcot718 comparetotal 1 -1234567896 -> 1
+
+-- old residue cases
+ddcot740 comparetotal 1 0.9999999 -> 1
+ddcot741 comparetotal 1 0.999999 -> 1
+ddcot742 comparetotal 1 0.99999 -> 1
+ddcot743 comparetotal 1 1.0000 -> 1
+ddcot744 comparetotal 1 1.00001 -> -1
+ddcot745 comparetotal 1 1.000001 -> -1
+ddcot746 comparetotal 1 1.0000001 -> -1
+ddcot750 comparetotal 0.9999999 1 -> -1
+ddcot751 comparetotal 0.999999 1 -> -1
+ddcot752 comparetotal 0.99999 1 -> -1
+ddcot753 comparetotal 1.0000 1 -> -1
+ddcot754 comparetotal 1.00001 1 -> 1
+ddcot755 comparetotal 1.000001 1 -> 1
+ddcot756 comparetotal 1.0000001 1 -> 1
+
+-- Specials
+ddcot780 comparetotal Inf -Inf -> 1
+ddcot781 comparetotal Inf -1000 -> 1
+ddcot782 comparetotal Inf -1 -> 1
+ddcot783 comparetotal Inf -0 -> 1
+ddcot784 comparetotal Inf 0 -> 1
+ddcot785 comparetotal Inf 1 -> 1
+ddcot786 comparetotal Inf 1000 -> 1
+ddcot787 comparetotal Inf Inf -> 0
+ddcot788 comparetotal -1000 Inf -> -1
+ddcot789 comparetotal -Inf Inf -> -1
+ddcot790 comparetotal -1 Inf -> -1
+ddcot791 comparetotal -0 Inf -> -1
+ddcot792 comparetotal 0 Inf -> -1
+ddcot793 comparetotal 1 Inf -> -1
+ddcot794 comparetotal 1000 Inf -> -1
+ddcot795 comparetotal Inf Inf -> 0
+
+ddcot800 comparetotal -Inf -Inf -> 0
+ddcot801 comparetotal -Inf -1000 -> -1
+ddcot802 comparetotal -Inf -1 -> -1
+ddcot803 comparetotal -Inf -0 -> -1
+ddcot804 comparetotal -Inf 0 -> -1
+ddcot805 comparetotal -Inf 1 -> -1
+ddcot806 comparetotal -Inf 1000 -> -1
+ddcot807 comparetotal -Inf Inf -> -1
+ddcot808 comparetotal -Inf -Inf -> 0
+ddcot809 comparetotal -1000 -Inf -> 1
+ddcot810 comparetotal -1 -Inf -> 1
+ddcot811 comparetotal -0 -Inf -> 1
+ddcot812 comparetotal 0 -Inf -> 1
+ddcot813 comparetotal 1 -Inf -> 1
+ddcot814 comparetotal 1000 -Inf -> 1
+ddcot815 comparetotal Inf -Inf -> 1
+
+ddcot821 comparetotal NaN -Inf -> 1
+ddcot822 comparetotal NaN -1000 -> 1
+ddcot823 comparetotal NaN -1 -> 1
+ddcot824 comparetotal NaN -0 -> 1
+ddcot825 comparetotal NaN 0 -> 1
+ddcot826 comparetotal NaN 1 -> 1
+ddcot827 comparetotal NaN 1000 -> 1
+ddcot828 comparetotal NaN Inf -> 1
+ddcot829 comparetotal NaN NaN -> 0
+ddcot830 comparetotal -Inf NaN -> -1
+ddcot831 comparetotal -1000 NaN -> -1
+ddcot832 comparetotal -1 NaN -> -1
+ddcot833 comparetotal -0 NaN -> -1
+ddcot834 comparetotal 0 NaN -> -1
+ddcot835 comparetotal 1 NaN -> -1
+ddcot836 comparetotal 1000 NaN -> -1
+ddcot837 comparetotal Inf NaN -> -1
+ddcot838 comparetotal -NaN -NaN -> 0
+ddcot839 comparetotal +NaN -NaN -> 1
+ddcot840 comparetotal -NaN +NaN -> -1
+
+ddcot841 comparetotal sNaN -sNaN -> 1
+ddcot842 comparetotal sNaN -NaN -> 1
+ddcot843 comparetotal sNaN -Inf -> 1
+ddcot844 comparetotal sNaN -1000 -> 1
+ddcot845 comparetotal sNaN -1 -> 1
+ddcot846 comparetotal sNaN -0 -> 1
+ddcot847 comparetotal sNaN 0 -> 1
+ddcot848 comparetotal sNaN 1 -> 1
+ddcot849 comparetotal sNaN 1000 -> 1
+ddcot850 comparetotal sNaN NaN -> -1
+ddcot851 comparetotal sNaN sNaN -> 0
+
+ddcot852 comparetotal -sNaN sNaN -> -1
+ddcot853 comparetotal -NaN sNaN -> -1
+ddcot854 comparetotal -Inf sNaN -> -1
+ddcot855 comparetotal -1000 sNaN -> -1
+ddcot856 comparetotal -1 sNaN -> -1
+ddcot857 comparetotal -0 sNaN -> -1
+ddcot858 comparetotal 0 sNaN -> -1
+ddcot859 comparetotal 1 sNaN -> -1
+ddcot860 comparetotal 1000 sNaN -> -1
+ddcot861 comparetotal Inf sNaN -> -1
+ddcot862 comparetotal NaN sNaN -> 1
+ddcot863 comparetotal sNaN sNaN -> 0
+
+ddcot871 comparetotal -sNaN -sNaN -> 0
+ddcot872 comparetotal -sNaN -NaN -> 1
+ddcot873 comparetotal -sNaN -Inf -> -1
+ddcot874 comparetotal -sNaN -1000 -> -1
+ddcot875 comparetotal -sNaN -1 -> -1
+ddcot876 comparetotal -sNaN -0 -> -1
+ddcot877 comparetotal -sNaN 0 -> -1
+ddcot878 comparetotal -sNaN 1 -> -1
+ddcot879 comparetotal -sNaN 1000 -> -1
+ddcot880 comparetotal -sNaN NaN -> -1
+ddcot881 comparetotal -sNaN sNaN -> -1
+
+ddcot882 comparetotal -sNaN -sNaN -> 0
+ddcot883 comparetotal -NaN -sNaN -> -1
+ddcot884 comparetotal -Inf -sNaN -> 1
+ddcot885 comparetotal -1000 -sNaN -> 1
+ddcot886 comparetotal -1 -sNaN -> 1
+ddcot887 comparetotal -0 -sNaN -> 1
+ddcot888 comparetotal 0 -sNaN -> 1
+ddcot889 comparetotal 1 -sNaN -> 1
+ddcot890 comparetotal 1000 -sNaN -> 1
+ddcot891 comparetotal Inf -sNaN -> 1
+ddcot892 comparetotal NaN -sNaN -> 1
+ddcot893 comparetotal sNaN -sNaN -> 1
+
+-- NaNs with payload
+ddcot960 comparetotal NaN9 -Inf -> 1
+ddcot961 comparetotal NaN8 999 -> 1
+ddcot962 comparetotal NaN77 Inf -> 1
+ddcot963 comparetotal -NaN67 NaN5 -> -1
+ddcot964 comparetotal -Inf -NaN4 -> 1
+ddcot965 comparetotal -999 -NaN33 -> 1
+ddcot966 comparetotal Inf NaN2 -> -1
+
+ddcot970 comparetotal -NaN41 -NaN42 -> 1
+ddcot971 comparetotal +NaN41 -NaN42 -> 1
+ddcot972 comparetotal -NaN41 +NaN42 -> -1
+ddcot973 comparetotal +NaN41 +NaN42 -> -1
+ddcot974 comparetotal -NaN42 -NaN01 -> -1
+ddcot975 comparetotal +NaN42 -NaN01 -> 1
+ddcot976 comparetotal -NaN42 +NaN01 -> -1
+ddcot977 comparetotal +NaN42 +NaN01 -> 1
+
+ddcot980 comparetotal -sNaN771 -sNaN772 -> 1
+ddcot981 comparetotal +sNaN771 -sNaN772 -> 1
+ddcot982 comparetotal -sNaN771 +sNaN772 -> -1
+ddcot983 comparetotal +sNaN771 +sNaN772 -> -1
+ddcot984 comparetotal -sNaN772 -sNaN771 -> -1
+ddcot985 comparetotal +sNaN772 -sNaN771 -> 1
+ddcot986 comparetotal -sNaN772 +sNaN771 -> -1
+ddcot987 comparetotal +sNaN772 +sNaN771 -> 1
+
+ddcot991 comparetotal -sNaN99 -Inf -> -1
+ddcot992 comparetotal sNaN98 -11 -> 1
+ddcot993 comparetotal sNaN97 NaN -> -1
+ddcot994 comparetotal sNaN16 sNaN94 -> -1
+ddcot995 comparetotal NaN85 sNaN83 -> 1
+ddcot996 comparetotal -Inf sNaN92 -> -1
+ddcot997 comparetotal 088 sNaN81 -> -1
+ddcot998 comparetotal Inf sNaN90 -> -1
+ddcot999 comparetotal NaN -sNaN89 -> 1
+
+-- spread zeros
+ddcot1110 comparetotal 0E-383 0 -> -1
+ddcot1111 comparetotal 0E-383 -0 -> 1
+ddcot1112 comparetotal -0E-383 0 -> -1
+ddcot1113 comparetotal -0E-383 -0 -> 1
+ddcot1114 comparetotal 0E-383 0E+384 -> -1
+ddcot1115 comparetotal 0E-383 -0E+384 -> 1
+ddcot1116 comparetotal -0E-383 0E+384 -> -1
+ddcot1117 comparetotal -0E-383 -0E+384 -> 1
+ddcot1118 comparetotal 0 0E+384 -> -1
+ddcot1119 comparetotal 0 -0E+384 -> 1
+ddcot1120 comparetotal -0 0E+384 -> -1
+ddcot1121 comparetotal -0 -0E+384 -> 1
+
+ddcot1130 comparetotal 0E+384 0 -> 1
+ddcot1131 comparetotal 0E+384 -0 -> 1
+ddcot1132 comparetotal -0E+384 0 -> -1
+ddcot1133 comparetotal -0E+384 -0 -> -1
+ddcot1134 comparetotal 0E+384 0E-383 -> 1
+ddcot1135 comparetotal 0E+384 -0E-383 -> 1
+ddcot1136 comparetotal -0E+384 0E-383 -> -1
+ddcot1137 comparetotal -0E+384 -0E-383 -> -1
+ddcot1138 comparetotal 0 0E-383 -> 1
+ddcot1139 comparetotal 0 -0E-383 -> 1
+ddcot1140 comparetotal -0 0E-383 -> -1
+ddcot1141 comparetotal -0 -0E-383 -> -1
+
+-- Null tests
+ddcot9990 comparetotal 10 # -> NaN Invalid_operation
+ddcot9991 comparetotal # 10 -> NaN Invalid_operation
diff --git a/Lib/test/decimaltestdata/ddCompareTotalMag.decTest b/Lib/test/decimaltestdata/ddCompareTotalMag.decTest
new file mode 100644
index 0000000..b19cf64
--- /dev/null
+++ b/Lib/test/decimaltestdata/ddCompareTotalMag.decTest
@@ -0,0 +1,706 @@
+------------------------------------------------------------------------
+-- ddCompareTotalMag.decTest -- decDouble comparison; abs. total order--
+-- Copyright (c) IBM Corporation, 1981, 2007. All rights reserved. --
+------------------------------------------------------------------------
+-- Please see the document "General Decimal Arithmetic Testcases" --
+-- at http://www2.hursley.ibm.com/decimal for the description of --
+-- these testcases. --
+-- --
+-- These testcases are experimental ('beta' versions), and they --
+-- may contain errors. They are offered on an as-is basis. In --
+-- particular, achieving the same results as the tests here is not --
+-- a guarantee that an implementation complies with any Standard --
+-- or specification. The tests are not exhaustive. --
+-- --
+-- Please send comments, suggestions, and corrections to the author: --
+-- Mike Cowlishaw, IBM Fellow --
+-- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK --
+-- mfc@uk.ibm.com --
+------------------------------------------------------------------------
+version: 2.56
+
+-- Note that we cannot assume add/subtract tests cover paths adequately,
+-- here, because the code might be quite different (comparison cannot
+-- overflow or underflow, so actual subtractions are not necessary).
+-- Similarly, comparetotal will have some radically different paths
+-- than compare.
+
+-- All operands and results are decDoubles.
+precision: 16
+maxExponent: 384
+minExponent: -383
+extended: 1
+clamp: 1
+rounding: half_even
+
+-- sanity checks
+ddctm001 comparetotmag -2 -2 -> 0
+ddctm002 comparetotmag -2 -1 -> 1
+ddctm003 comparetotmag -2 0 -> 1
+ddctm004 comparetotmag -2 1 -> 1
+ddctm005 comparetotmag -2 2 -> 0
+ddctm006 comparetotmag -1 -2 -> -1
+ddctm007 comparetotmag -1 -1 -> 0
+ddctm008 comparetotmag -1 0 -> 1
+ddctm009 comparetotmag -1 1 -> 0
+ddctm010 comparetotmag -1 2 -> -1
+ddctm011 comparetotmag 0 -2 -> -1
+ddctm012 comparetotmag 0 -1 -> -1
+ddctm013 comparetotmag 0 0 -> 0
+ddctm014 comparetotmag 0 1 -> -1
+ddctm015 comparetotmag 0 2 -> -1
+ddctm016 comparetotmag 1 -2 -> -1
+ddctm017 comparetotmag 1 -1 -> 0
+ddctm018 comparetotmag 1 0 -> 1
+ddctm019 comparetotmag 1 1 -> 0
+ddctm020 comparetotmag 1 2 -> -1
+ddctm021 comparetotmag 2 -2 -> 0
+ddctm022 comparetotmag 2 -1 -> 1
+ddctm023 comparetotmag 2 0 -> 1
+ddctm025 comparetotmag 2 1 -> 1
+ddctm026 comparetotmag 2 2 -> 0
+
+ddctm031 comparetotmag -20 -20 -> 0
+ddctm032 comparetotmag -20 -10 -> 1
+ddctm033 comparetotmag -20 00 -> 1
+ddctm034 comparetotmag -20 10 -> 1
+ddctm035 comparetotmag -20 20 -> 0
+ddctm036 comparetotmag -10 -20 -> -1
+ddctm037 comparetotmag -10 -10 -> 0
+ddctm038 comparetotmag -10 00 -> 1
+ddctm039 comparetotmag -10 10 -> 0
+ddctm040 comparetotmag -10 20 -> -1
+ddctm041 comparetotmag 00 -20 -> -1
+ddctm042 comparetotmag 00 -10 -> -1
+ddctm043 comparetotmag 00 00 -> 0
+ddctm044 comparetotmag 00 10 -> -1
+ddctm045 comparetotmag 00 20 -> -1
+ddctm046 comparetotmag 10 -20 -> -1
+ddctm047 comparetotmag 10 -10 -> 0
+ddctm048 comparetotmag 10 00 -> 1
+ddctm049 comparetotmag 10 10 -> 0
+ddctm050 comparetotmag 10 20 -> -1
+ddctm051 comparetotmag 20 -20 -> 0
+ddctm052 comparetotmag 20 -10 -> 1
+ddctm053 comparetotmag 20 00 -> 1
+ddctm055 comparetotmag 20 10 -> 1
+ddctm056 comparetotmag 20 20 -> 0
+
+ddctm061 comparetotmag -2.0 -2.0 -> 0
+ddctm062 comparetotmag -2.0 -1.0 -> 1
+ddctm063 comparetotmag -2.0 0.0 -> 1
+ddctm064 comparetotmag -2.0 1.0 -> 1
+ddctm065 comparetotmag -2.0 2.0 -> 0
+ddctm066 comparetotmag -1.0 -2.0 -> -1
+ddctm067 comparetotmag -1.0 -1.0 -> 0
+ddctm068 comparetotmag -1.0 0.0 -> 1
+ddctm069 comparetotmag -1.0 1.0 -> 0
+ddctm070 comparetotmag -1.0 2.0 -> -1
+ddctm071 comparetotmag 0.0 -2.0 -> -1
+ddctm072 comparetotmag 0.0 -1.0 -> -1
+ddctm073 comparetotmag 0.0 0.0 -> 0
+ddctm074 comparetotmag 0.0 1.0 -> -1
+ddctm075 comparetotmag 0.0 2.0 -> -1
+ddctm076 comparetotmag 1.0 -2.0 -> -1
+ddctm077 comparetotmag 1.0 -1.0 -> 0
+ddctm078 comparetotmag 1.0 0.0 -> 1
+ddctm079 comparetotmag 1.0 1.0 -> 0
+ddctm080 comparetotmag 1.0 2.0 -> -1
+ddctm081 comparetotmag 2.0 -2.0 -> 0
+ddctm082 comparetotmag 2.0 -1.0 -> 1
+ddctm083 comparetotmag 2.0 0.0 -> 1
+ddctm085 comparetotmag 2.0 1.0 -> 1
+ddctm086 comparetotmag 2.0 2.0 -> 0
+
+-- now some cases which might overflow if subtract were used
+ddctm090 comparetotmag 9.99999999E+384 9.99999999E+384 -> 0
+ddctm091 comparetotmag -9.99999999E+384 9.99999999E+384 -> 0
+ddctm092 comparetotmag 9.99999999E+384 -9.99999999E+384 -> 0
+ddctm093 comparetotmag -9.99999999E+384 -9.99999999E+384 -> 0
+
+-- some differing length/exponent cases
+-- in this first group, compare would compare all equal
+ddctm100 comparetotmag 7.0 7.0 -> 0
+ddctm101 comparetotmag 7.0 7 -> -1
+ddctm102 comparetotmag 7 7.0 -> 1
+ddctm103 comparetotmag 7E+0 7.0 -> 1
+ddctm104 comparetotmag 70E-1 7.0 -> 0
+ddctm105 comparetotmag 0.7E+1 7 -> 0
+ddctm106 comparetotmag 70E-1 7 -> -1
+ddctm107 comparetotmag 7.0 7E+0 -> -1
+ddctm108 comparetotmag 7.0 70E-1 -> 0
+ddctm109 comparetotmag 7 0.7E+1 -> 0
+ddctm110 comparetotmag 7 70E-1 -> 1
+
+ddctm120 comparetotmag 8.0 7.0 -> 1
+ddctm121 comparetotmag 8.0 7 -> 1
+ddctm122 comparetotmag 8 7.0 -> 1
+ddctm123 comparetotmag 8E+0 7.0 -> 1
+ddctm124 comparetotmag 80E-1 7.0 -> 1
+ddctm125 comparetotmag 0.8E+1 7 -> 1
+ddctm126 comparetotmag 80E-1 7 -> 1
+ddctm127 comparetotmag 8.0 7E+0 -> 1
+ddctm128 comparetotmag 8.0 70E-1 -> 1
+ddctm129 comparetotmag 8 0.7E+1 -> 1
+ddctm130 comparetotmag 8 70E-1 -> 1
+
+ddctm140 comparetotmag 8.0 9.0 -> -1
+ddctm141 comparetotmag 8.0 9 -> -1
+ddctm142 comparetotmag 8 9.0 -> -1
+ddctm143 comparetotmag 8E+0 9.0 -> -1
+ddctm144 comparetotmag 80E-1 9.0 -> -1
+ddctm145 comparetotmag 0.8E+1 9 -> -1
+ddctm146 comparetotmag 80E-1 9 -> -1
+ddctm147 comparetotmag 8.0 9E+0 -> -1
+ddctm148 comparetotmag 8.0 90E-1 -> -1
+ddctm149 comparetotmag 8 0.9E+1 -> -1
+ddctm150 comparetotmag 8 90E-1 -> -1
+
+-- and again, with sign changes -+ ..
+ddctm200 comparetotmag -7.0 7.0 -> 0
+ddctm201 comparetotmag -7.0 7 -> -1
+ddctm202 comparetotmag -7 7.0 -> 1
+ddctm203 comparetotmag -7E+0 7.0 -> 1
+ddctm204 comparetotmag -70E-1 7.0 -> 0
+ddctm205 comparetotmag -0.7E+1 7 -> 0
+ddctm206 comparetotmag -70E-1 7 -> -1
+ddctm207 comparetotmag -7.0 7E+0 -> -1
+ddctm208 comparetotmag -7.0 70E-1 -> 0
+ddctm209 comparetotmag -7 0.7E+1 -> 0
+ddctm210 comparetotmag -7 70E-1 -> 1
+
+ddctm220 comparetotmag -8.0 7.0 -> 1
+ddctm221 comparetotmag -8.0 7 -> 1
+ddctm222 comparetotmag -8 7.0 -> 1
+ddctm223 comparetotmag -8E+0 7.0 -> 1
+ddctm224 comparetotmag -80E-1 7.0 -> 1
+ddctm225 comparetotmag -0.8E+1 7 -> 1
+ddctm226 comparetotmag -80E-1 7 -> 1
+ddctm227 comparetotmag -8.0 7E+0 -> 1
+ddctm228 comparetotmag -8.0 70E-1 -> 1
+ddctm229 comparetotmag -8 0.7E+1 -> 1
+ddctm230 comparetotmag -8 70E-1 -> 1
+
+ddctm240 comparetotmag -8.0 9.0 -> -1
+ddctm241 comparetotmag -8.0 9 -> -1
+ddctm242 comparetotmag -8 9.0 -> -1
+ddctm243 comparetotmag -8E+0 9.0 -> -1
+ddctm244 comparetotmag -80E-1 9.0 -> -1
+ddctm245 comparetotmag -0.8E+1 9 -> -1
+ddctm246 comparetotmag -80E-1 9 -> -1
+ddctm247 comparetotmag -8.0 9E+0 -> -1
+ddctm248 comparetotmag -8.0 90E-1 -> -1
+ddctm249 comparetotmag -8 0.9E+1 -> -1
+ddctm250 comparetotmag -8 90E-1 -> -1
+
+-- and again, with sign changes +- ..
+ddctm300 comparetotmag 7.0 -7.0 -> 0
+ddctm301 comparetotmag 7.0 -7 -> -1
+ddctm302 comparetotmag 7 -7.0 -> 1
+ddctm303 comparetotmag 7E+0 -7.0 -> 1
+ddctm304 comparetotmag 70E-1 -7.0 -> 0
+ddctm305 comparetotmag .7E+1 -7 -> 0
+ddctm306 comparetotmag 70E-1 -7 -> -1
+ddctm307 comparetotmag 7.0 -7E+0 -> -1
+ddctm308 comparetotmag 7.0 -70E-1 -> 0
+ddctm309 comparetotmag 7 -.7E+1 -> 0
+ddctm310 comparetotmag 7 -70E-1 -> 1
+
+ddctm320 comparetotmag 8.0 -7.0 -> 1
+ddctm321 comparetotmag 8.0 -7 -> 1
+ddctm322 comparetotmag 8 -7.0 -> 1
+ddctm323 comparetotmag 8E+0 -7.0 -> 1
+ddctm324 comparetotmag 80E-1 -7.0 -> 1
+ddctm325 comparetotmag .8E+1 -7 -> 1
+ddctm326 comparetotmag 80E-1 -7 -> 1
+ddctm327 comparetotmag 8.0 -7E+0 -> 1
+ddctm328 comparetotmag 8.0 -70E-1 -> 1
+ddctm329 comparetotmag 8 -.7E+1 -> 1
+ddctm330 comparetotmag 8 -70E-1 -> 1
+
+ddctm340 comparetotmag 8.0 -9.0 -> -1
+ddctm341 comparetotmag 8.0 -9 -> -1
+ddctm342 comparetotmag 8 -9.0 -> -1
+ddctm343 comparetotmag 8E+0 -9.0 -> -1
+ddctm344 comparetotmag 80E-1 -9.0 -> -1
+ddctm345 comparetotmag .8E+1 -9 -> -1
+ddctm346 comparetotmag 80E-1 -9 -> -1
+ddctm347 comparetotmag 8.0 -9E+0 -> -1
+ddctm348 comparetotmag 8.0 -90E-1 -> -1
+ddctm349 comparetotmag 8 -.9E+1 -> -1
+ddctm350 comparetotmag 8 -90E-1 -> -1
+
+-- and again, with sign changes -- ..
+ddctm400 comparetotmag -7.0 -7.0 -> 0
+ddctm401 comparetotmag -7.0 -7 -> -1
+ddctm402 comparetotmag -7 -7.0 -> 1
+ddctm403 comparetotmag -7E+0 -7.0 -> 1
+ddctm404 comparetotmag -70E-1 -7.0 -> 0
+ddctm405 comparetotmag -.7E+1 -7 -> 0
+ddctm406 comparetotmag -70E-1 -7 -> -1
+ddctm407 comparetotmag -7.0 -7E+0 -> -1
+ddctm408 comparetotmag -7.0 -70E-1 -> 0
+ddctm409 comparetotmag -7 -.7E+1 -> 0
+ddctm410 comparetotmag -7 -70E-1 -> 1
+
+ddctm420 comparetotmag -8.0 -7.0 -> 1
+ddctm421 comparetotmag -8.0 -7 -> 1
+ddctm422 comparetotmag -8 -7.0 -> 1
+ddctm423 comparetotmag -8E+0 -7.0 -> 1
+ddctm424 comparetotmag -80E-1 -7.0 -> 1
+ddctm425 comparetotmag -.8E+1 -7 -> 1
+ddctm426 comparetotmag -80E-1 -7 -> 1
+ddctm427 comparetotmag -8.0 -7E+0 -> 1
+ddctm428 comparetotmag -8.0 -70E-1 -> 1
+ddctm429 comparetotmag -8 -.7E+1 -> 1
+ddctm430 comparetotmag -8 -70E-1 -> 1
+
+ddctm440 comparetotmag -8.0 -9.0 -> -1
+ddctm441 comparetotmag -8.0 -9 -> -1
+ddctm442 comparetotmag -8 -9.0 -> -1
+ddctm443 comparetotmag -8E+0 -9.0 -> -1
+ddctm444 comparetotmag -80E-1 -9.0 -> -1
+ddctm445 comparetotmag -.8E+1 -9 -> -1
+ddctm446 comparetotmag -80E-1 -9 -> -1
+ddctm447 comparetotmag -8.0 -9E+0 -> -1
+ddctm448 comparetotmag -8.0 -90E-1 -> -1
+ddctm449 comparetotmag -8 -.9E+1 -> -1
+ddctm450 comparetotmag -8 -90E-1 -> -1
+
+
+-- testcases that subtract to lots of zeros at boundaries [pgr]
+ddctm473 comparetotmag 123.4560000000000E-89 123.456E-89 -> -1
+ddctm474 comparetotmag 123.456000000000E+89 123.456E+89 -> -1
+ddctm475 comparetotmag 123.45600000000E-89 123.456E-89 -> -1
+ddctm476 comparetotmag 123.4560000000E+89 123.456E+89 -> -1
+ddctm477 comparetotmag 123.456000000E-89 123.456E-89 -> -1
+ddctm478 comparetotmag 123.45600000E+89 123.456E+89 -> -1
+ddctm479 comparetotmag 123.4560000E-89 123.456E-89 -> -1
+ddctm480 comparetotmag 123.456000E+89 123.456E+89 -> -1
+ddctm481 comparetotmag 123.45600E-89 123.456E-89 -> -1
+ddctm482 comparetotmag 123.4560E+89 123.456E+89 -> -1
+ddctm483 comparetotmag 123.456E-89 123.456E-89 -> 0
+ddctm487 comparetotmag 123.456E+89 123.4560000000000E+89 -> 1
+ddctm488 comparetotmag 123.456E-89 123.456000000000E-89 -> 1
+ddctm489 comparetotmag 123.456E+89 123.45600000000E+89 -> 1
+ddctm490 comparetotmag 123.456E-89 123.4560000000E-89 -> 1
+ddctm491 comparetotmag 123.456E+89 123.456000000E+89 -> 1
+ddctm492 comparetotmag 123.456E-89 123.45600000E-89 -> 1
+ddctm493 comparetotmag 123.456E+89 123.4560000E+89 -> 1
+ddctm494 comparetotmag 123.456E-89 123.456000E-89 -> 1
+ddctm495 comparetotmag 123.456E+89 123.45600E+89 -> 1
+ddctm496 comparetotmag 123.456E-89 123.4560E-89 -> 1
+ddctm497 comparetotmag 123.456E+89 123.456E+89 -> 0
+
+-- wide-ranging, around precision; signs equal
+ddctm498 comparetotmag 1 1E-17 -> 1
+ddctm499 comparetotmag 1 1E-16 -> 1
+ddctm500 comparetotmag 1 1E-15 -> 1
+ddctm501 comparetotmag 1 1E-14 -> 1
+ddctm502 comparetotmag 1 1E-13 -> 1
+ddctm503 comparetotmag 1 1E-12 -> 1
+ddctm504 comparetotmag 1 1E-11 -> 1
+ddctm505 comparetotmag 1 1E-10 -> 1
+ddctm506 comparetotmag 1 1E-9 -> 1
+ddctm507 comparetotmag 1 1E-8 -> 1
+ddctm508 comparetotmag 1 1E-7 -> 1
+ddctm509 comparetotmag 1 1E-6 -> 1
+ddctm510 comparetotmag 1 1E-5 -> 1
+ddctm511 comparetotmag 1 1E-4 -> 1
+ddctm512 comparetotmag 1 1E-3 -> 1
+ddctm513 comparetotmag 1 1E-2 -> 1
+ddctm514 comparetotmag 1 1E-1 -> 1
+ddctm515 comparetotmag 1 1E-0 -> 0
+ddctm516 comparetotmag 1 1E+1 -> -1
+ddctm517 comparetotmag 1 1E+2 -> -1
+ddctm518 comparetotmag 1 1E+3 -> -1
+ddctm519 comparetotmag 1 1E+4 -> -1
+ddctm521 comparetotmag 1 1E+5 -> -1
+ddctm522 comparetotmag 1 1E+6 -> -1
+ddctm523 comparetotmag 1 1E+7 -> -1
+ddctm524 comparetotmag 1 1E+8 -> -1
+ddctm525 comparetotmag 1 1E+9 -> -1
+ddctm526 comparetotmag 1 1E+10 -> -1
+ddctm527 comparetotmag 1 1E+11 -> -1
+ddctm528 comparetotmag 1 1E+12 -> -1
+ddctm529 comparetotmag 1 1E+13 -> -1
+ddctm530 comparetotmag 1 1E+14 -> -1
+ddctm531 comparetotmag 1 1E+15 -> -1
+ddctm532 comparetotmag 1 1E+16 -> -1
+ddctm533 comparetotmag 1 1E+17 -> -1
+-- LR swap
+ddctm538 comparetotmag 1E-17 1 -> -1
+ddctm539 comparetotmag 1E-16 1 -> -1
+ddctm540 comparetotmag 1E-15 1 -> -1
+ddctm541 comparetotmag 1E-14 1 -> -1
+ddctm542 comparetotmag 1E-13 1 -> -1
+ddctm543 comparetotmag 1E-12 1 -> -1
+ddctm544 comparetotmag 1E-11 1 -> -1
+ddctm545 comparetotmag 1E-10 1 -> -1
+ddctm546 comparetotmag 1E-9 1 -> -1
+ddctm547 comparetotmag 1E-8 1 -> -1
+ddctm548 comparetotmag 1E-7 1 -> -1
+ddctm549 comparetotmag 1E-6 1 -> -1
+ddctm550 comparetotmag 1E-5 1 -> -1
+ddctm551 comparetotmag 1E-4 1 -> -1
+ddctm552 comparetotmag 1E-3 1 -> -1
+ddctm553 comparetotmag 1E-2 1 -> -1
+ddctm554 comparetotmag 1E-1 1 -> -1
+ddctm555 comparetotmag 1E-0 1 -> 0
+ddctm556 comparetotmag 1E+1 1 -> 1
+ddctm557 comparetotmag 1E+2 1 -> 1
+ddctm558 comparetotmag 1E+3 1 -> 1
+ddctm559 comparetotmag 1E+4 1 -> 1
+ddctm561 comparetotmag 1E+5 1 -> 1
+ddctm562 comparetotmag 1E+6 1 -> 1
+ddctm563 comparetotmag 1E+7 1 -> 1
+ddctm564 comparetotmag 1E+8 1 -> 1
+ddctm565 comparetotmag 1E+9 1 -> 1
+ddctm566 comparetotmag 1E+10 1 -> 1
+ddctm567 comparetotmag 1E+11 1 -> 1
+ddctm568 comparetotmag 1E+12 1 -> 1
+ddctm569 comparetotmag 1E+13 1 -> 1
+ddctm570 comparetotmag 1E+14 1 -> 1
+ddctm571 comparetotmag 1E+15 1 -> 1
+ddctm572 comparetotmag 1E+16 1 -> 1
+ddctm573 comparetotmag 1E+17 1 -> 1
+-- similar with a useful coefficient, one side only
+ddctm578 comparetotmag 0.000000987654321 1E-17 -> 1
+ddctm579 comparetotmag 0.000000987654321 1E-16 -> 1
+ddctm580 comparetotmag 0.000000987654321 1E-15 -> 1
+ddctm581 comparetotmag 0.000000987654321 1E-14 -> 1
+ddctm582 comparetotmag 0.000000987654321 1E-13 -> 1
+ddctm583 comparetotmag 0.000000987654321 1E-12 -> 1
+ddctm584 comparetotmag 0.000000987654321 1E-11 -> 1
+ddctm585 comparetotmag 0.000000987654321 1E-10 -> 1
+ddctm586 comparetotmag 0.000000987654321 1E-9 -> 1
+ddctm587 comparetotmag 0.000000987654321 1E-8 -> 1
+ddctm588 comparetotmag 0.000000987654321 1E-7 -> 1
+ddctm589 comparetotmag 0.000000987654321 1E-6 -> -1
+ddctm590 comparetotmag 0.000000987654321 1E-5 -> -1
+ddctm591 comparetotmag 0.000000987654321 1E-4 -> -1
+ddctm592 comparetotmag 0.000000987654321 1E-3 -> -1
+ddctm593 comparetotmag 0.000000987654321 1E-2 -> -1
+ddctm594 comparetotmag 0.000000987654321 1E-1 -> -1
+ddctm595 comparetotmag 0.000000987654321 1E-0 -> -1
+ddctm596 comparetotmag 0.000000987654321 1E+1 -> -1
+ddctm597 comparetotmag 0.000000987654321 1E+2 -> -1
+ddctm598 comparetotmag 0.000000987654321 1E+3 -> -1
+ddctm599 comparetotmag 0.000000987654321 1E+4 -> -1
+
+-- check some unit-y traps
+ddctm600 comparetotmag 12 12.2345 -> -1
+ddctm601 comparetotmag 12.0 12.2345 -> -1
+ddctm602 comparetotmag 12.00 12.2345 -> -1
+ddctm603 comparetotmag 12.000 12.2345 -> -1
+ddctm604 comparetotmag 12.0000 12.2345 -> -1
+ddctm605 comparetotmag 12.00000 12.2345 -> -1
+ddctm606 comparetotmag 12.000000 12.2345 -> -1
+ddctm607 comparetotmag 12.0000000 12.2345 -> -1
+ddctm608 comparetotmag 12.00000000 12.2345 -> -1
+ddctm609 comparetotmag 12.000000000 12.2345 -> -1
+ddctm610 comparetotmag 12.1234 12 -> 1
+ddctm611 comparetotmag 12.1234 12.0 -> 1
+ddctm612 comparetotmag 12.1234 12.00 -> 1
+ddctm613 comparetotmag 12.1234 12.000 -> 1
+ddctm614 comparetotmag 12.1234 12.0000 -> 1
+ddctm615 comparetotmag 12.1234 12.00000 -> 1
+ddctm616 comparetotmag 12.1234 12.000000 -> 1
+ddctm617 comparetotmag 12.1234 12.0000000 -> 1
+ddctm618 comparetotmag 12.1234 12.00000000 -> 1
+ddctm619 comparetotmag 12.1234 12.000000000 -> 1
+ddctm620 comparetotmag -12 -12.2345 -> -1
+ddctm621 comparetotmag -12.0 -12.2345 -> -1
+ddctm622 comparetotmag -12.00 -12.2345 -> -1
+ddctm623 comparetotmag -12.000 -12.2345 -> -1
+ddctm624 comparetotmag -12.0000 -12.2345 -> -1
+ddctm625 comparetotmag -12.00000 -12.2345 -> -1
+ddctm626 comparetotmag -12.000000 -12.2345 -> -1
+ddctm627 comparetotmag -12.0000000 -12.2345 -> -1
+ddctm628 comparetotmag -12.00000000 -12.2345 -> -1
+ddctm629 comparetotmag -12.000000000 -12.2345 -> -1
+ddctm630 comparetotmag -12.1234 -12 -> 1
+ddctm631 comparetotmag -12.1234 -12.0 -> 1
+ddctm632 comparetotmag -12.1234 -12.00 -> 1
+ddctm633 comparetotmag -12.1234 -12.000 -> 1
+ddctm634 comparetotmag -12.1234 -12.0000 -> 1
+ddctm635 comparetotmag -12.1234 -12.00000 -> 1
+ddctm636 comparetotmag -12.1234 -12.000000 -> 1
+ddctm637 comparetotmag -12.1234 -12.0000000 -> 1
+ddctm638 comparetotmag -12.1234 -12.00000000 -> 1
+ddctm639 comparetotmag -12.1234 -12.000000000 -> 1
+
+-- extended zeros
+ddctm640 comparetotmag 0 0 -> 0
+ddctm641 comparetotmag 0 -0 -> 0
+ddctm642 comparetotmag 0 -0.0 -> 1
+ddctm643 comparetotmag 0 0.0 -> 1
+ddctm644 comparetotmag -0 0 -> 0
+ddctm645 comparetotmag -0 -0 -> 0
+ddctm646 comparetotmag -0 -0.0 -> 1
+ddctm647 comparetotmag -0 0.0 -> 1
+ddctm648 comparetotmag 0.0 0 -> -1
+ddctm649 comparetotmag 0.0 -0 -> -1
+ddctm650 comparetotmag 0.0 -0.0 -> 0
+ddctm651 comparetotmag 0.0 0.0 -> 0
+ddctm652 comparetotmag -0.0 0 -> -1
+ddctm653 comparetotmag -0.0 -0 -> -1
+ddctm654 comparetotmag -0.0 -0.0 -> 0
+ddctm655 comparetotmag -0.0 0.0 -> 0
+
+ddctm656 comparetotmag -0E1 0.0 -> 1
+ddctm657 comparetotmag -0E2 0.0 -> 1
+ddctm658 comparetotmag 0E1 0.0 -> 1
+ddctm659 comparetotmag 0E2 0.0 -> 1
+ddctm660 comparetotmag -0E1 0 -> 1
+ddctm661 comparetotmag -0E2 0 -> 1
+ddctm662 comparetotmag 0E1 0 -> 1
+ddctm663 comparetotmag 0E2 0 -> 1
+ddctm664 comparetotmag -0E1 -0E1 -> 0
+ddctm665 comparetotmag -0E2 -0E1 -> 1
+ddctm666 comparetotmag 0E1 -0E1 -> 0
+ddctm667 comparetotmag 0E2 -0E1 -> 1
+ddctm668 comparetotmag -0E1 -0E2 -> -1
+ddctm669 comparetotmag -0E2 -0E2 -> 0
+ddctm670 comparetotmag 0E1 -0E2 -> -1
+ddctm671 comparetotmag 0E2 -0E2 -> 0
+ddctm672 comparetotmag -0E1 0E1 -> 0
+ddctm673 comparetotmag -0E2 0E1 -> 1
+ddctm674 comparetotmag 0E1 0E1 -> 0
+ddctm675 comparetotmag 0E2 0E1 -> 1
+ddctm676 comparetotmag -0E1 0E2 -> -1
+ddctm677 comparetotmag -0E2 0E2 -> 0
+ddctm678 comparetotmag 0E1 0E2 -> -1
+ddctm679 comparetotmag 0E2 0E2 -> 0
+
+-- trailing zeros; unit-y
+ddctm680 comparetotmag 12 12 -> 0
+ddctm681 comparetotmag 12 12.0 -> 1
+ddctm682 comparetotmag 12 12.00 -> 1
+ddctm683 comparetotmag 12 12.000 -> 1
+ddctm684 comparetotmag 12 12.0000 -> 1
+ddctm685 comparetotmag 12 12.00000 -> 1
+ddctm686 comparetotmag 12 12.000000 -> 1
+ddctm687 comparetotmag 12 12.0000000 -> 1
+ddctm688 comparetotmag 12 12.00000000 -> 1
+ddctm689 comparetotmag 12 12.000000000 -> 1
+ddctm690 comparetotmag 12 12 -> 0
+ddctm691 comparetotmag 12.0 12 -> -1
+ddctm692 comparetotmag 12.00 12 -> -1
+ddctm693 comparetotmag 12.000 12 -> -1
+ddctm694 comparetotmag 12.0000 12 -> -1
+ddctm695 comparetotmag 12.00000 12 -> -1
+ddctm696 comparetotmag 12.000000 12 -> -1
+ddctm697 comparetotmag 12.0000000 12 -> -1
+ddctm698 comparetotmag 12.00000000 12 -> -1
+ddctm699 comparetotmag 12.000000000 12 -> -1
+
+-- old long operand checks
+ddctm701 comparetotmag 12345678000 1 -> 1
+ddctm702 comparetotmag 1 12345678000 -> -1
+ddctm703 comparetotmag 1234567800 1 -> 1
+ddctm704 comparetotmag 1 1234567800 -> -1
+ddctm705 comparetotmag 1234567890 1 -> 1
+ddctm706 comparetotmag 1 1234567890 -> -1
+ddctm707 comparetotmag 1234567891 1 -> 1
+ddctm708 comparetotmag 1 1234567891 -> -1
+ddctm709 comparetotmag 12345678901 1 -> 1
+ddctm710 comparetotmag 1 12345678901 -> -1
+ddctm711 comparetotmag 1234567896 1 -> 1
+ddctm712 comparetotmag 1 1234567896 -> -1
+ddctm713 comparetotmag -1234567891 1 -> 1
+ddctm714 comparetotmag 1 -1234567891 -> -1
+ddctm715 comparetotmag -12345678901 1 -> 1
+ddctm716 comparetotmag 1 -12345678901 -> -1
+ddctm717 comparetotmag -1234567896 1 -> 1
+ddctm718 comparetotmag 1 -1234567896 -> -1
+
+-- old residue cases
+ddctm740 comparetotmag 1 0.9999999 -> 1
+ddctm741 comparetotmag 1 0.999999 -> 1
+ddctm742 comparetotmag 1 0.99999 -> 1
+ddctm743 comparetotmag 1 1.0000 -> 1
+ddctm744 comparetotmag 1 1.00001 -> -1
+ddctm745 comparetotmag 1 1.000001 -> -1
+ddctm746 comparetotmag 1 1.0000001 -> -1
+ddctm750 comparetotmag 0.9999999 1 -> -1
+ddctm751 comparetotmag 0.999999 1 -> -1
+ddctm752 comparetotmag 0.99999 1 -> -1
+ddctm753 comparetotmag 1.0000 1 -> -1
+ddctm754 comparetotmag 1.00001 1 -> 1
+ddctm755 comparetotmag 1.000001 1 -> 1
+ddctm756 comparetotmag 1.0000001 1 -> 1
+
+-- Specials
+ddctm780 comparetotmag Inf -Inf -> 0
+ddctm781 comparetotmag Inf -1000 -> 1
+ddctm782 comparetotmag Inf -1 -> 1
+ddctm783 comparetotmag Inf -0 -> 1
+ddctm784 comparetotmag Inf 0 -> 1
+ddctm785 comparetotmag Inf 1 -> 1
+ddctm786 comparetotmag Inf 1000 -> 1
+ddctm787 comparetotmag Inf Inf -> 0
+ddctm788 comparetotmag -1000 Inf -> -1
+ddctm789 comparetotmag -Inf Inf -> 0
+ddctm790 comparetotmag -1 Inf -> -1
+ddctm791 comparetotmag -0 Inf -> -1
+ddctm792 comparetotmag 0 Inf -> -1
+ddctm793 comparetotmag 1 Inf -> -1
+ddctm794 comparetotmag 1000 Inf -> -1
+ddctm795 comparetotmag Inf Inf -> 0
+
+ddctm800 comparetotmag -Inf -Inf -> 0
+ddctm801 comparetotmag -Inf -1000 -> 1
+ddctm802 comparetotmag -Inf -1 -> 1
+ddctm803 comparetotmag -Inf -0 -> 1
+ddctm804 comparetotmag -Inf 0 -> 1
+ddctm805 comparetotmag -Inf 1 -> 1
+ddctm806 comparetotmag -Inf 1000 -> 1
+ddctm807 comparetotmag -Inf Inf -> 0
+ddctm808 comparetotmag -Inf -Inf -> 0
+ddctm809 comparetotmag -1000 -Inf -> -1
+ddctm810 comparetotmag -1 -Inf -> -1
+ddctm811 comparetotmag -0 -Inf -> -1
+ddctm812 comparetotmag 0 -Inf -> -1
+ddctm813 comparetotmag 1 -Inf -> -1
+ddctm814 comparetotmag 1000 -Inf -> -1
+ddctm815 comparetotmag Inf -Inf -> 0
+
+ddctm821 comparetotmag NaN -Inf -> 1
+ddctm822 comparetotmag NaN -1000 -> 1
+ddctm823 comparetotmag NaN -1 -> 1
+ddctm824 comparetotmag NaN -0 -> 1
+ddctm825 comparetotmag NaN 0 -> 1
+ddctm826 comparetotmag NaN 1 -> 1
+ddctm827 comparetotmag NaN 1000 -> 1
+ddctm828 comparetotmag NaN Inf -> 1
+ddctm829 comparetotmag NaN NaN -> 0
+ddctm830 comparetotmag -Inf NaN -> -1
+ddctm831 comparetotmag -1000 NaN -> -1
+ddctm832 comparetotmag -1 NaN -> -1
+ddctm833 comparetotmag -0 NaN -> -1
+ddctm834 comparetotmag 0 NaN -> -1
+ddctm835 comparetotmag 1 NaN -> -1
+ddctm836 comparetotmag 1000 NaN -> -1
+ddctm837 comparetotmag Inf NaN -> -1
+ddctm838 comparetotmag -NaN -NaN -> 0
+ddctm839 comparetotmag +NaN -NaN -> 0
+ddctm840 comparetotmag -NaN +NaN -> 0
+
+ddctm841 comparetotmag sNaN -sNaN -> 0
+ddctm842 comparetotmag sNaN -NaN -> -1
+ddctm843 comparetotmag sNaN -Inf -> 1
+ddctm844 comparetotmag sNaN -1000 -> 1
+ddctm845 comparetotmag sNaN -1 -> 1
+ddctm846 comparetotmag sNaN -0 -> 1
+ddctm847 comparetotmag sNaN 0 -> 1
+ddctm848 comparetotmag sNaN 1 -> 1
+ddctm849 comparetotmag sNaN 1000 -> 1
+ddctm850 comparetotmag sNaN NaN -> -1
+ddctm851 comparetotmag sNaN sNaN -> 0
+
+ddctm852 comparetotmag -sNaN sNaN -> 0
+ddctm853 comparetotmag -NaN sNaN -> 1
+ddctm854 comparetotmag -Inf sNaN -> -1
+ddctm855 comparetotmag -1000 sNaN -> -1
+ddctm856 comparetotmag -1 sNaN -> -1
+ddctm857 comparetotmag -0 sNaN -> -1
+ddctm858 comparetotmag 0 sNaN -> -1
+ddctm859 comparetotmag 1 sNaN -> -1
+ddctm860 comparetotmag 1000 sNaN -> -1
+ddctm861 comparetotmag Inf sNaN -> -1
+ddctm862 comparetotmag NaN sNaN -> 1
+ddctm863 comparetotmag sNaN sNaN -> 0
+
+ddctm871 comparetotmag -sNaN -sNaN -> 0
+ddctm872 comparetotmag -sNaN -NaN -> -1
+ddctm873 comparetotmag -sNaN -Inf -> 1
+ddctm874 comparetotmag -sNaN -1000 -> 1
+ddctm875 comparetotmag -sNaN -1 -> 1
+ddctm876 comparetotmag -sNaN -0 -> 1
+ddctm877 comparetotmag -sNaN 0 -> 1
+ddctm878 comparetotmag -sNaN 1 -> 1
+ddctm879 comparetotmag -sNaN 1000 -> 1
+ddctm880 comparetotmag -sNaN NaN -> -1
+ddctm881 comparetotmag -sNaN sNaN -> 0
+
+ddctm882 comparetotmag -sNaN -sNaN -> 0
+ddctm883 comparetotmag -NaN -sNaN -> 1
+ddctm884 comparetotmag -Inf -sNaN -> -1
+ddctm885 comparetotmag -1000 -sNaN -> -1
+ddctm886 comparetotmag -1 -sNaN -> -1
+ddctm887 comparetotmag -0 -sNaN -> -1
+ddctm888 comparetotmag 0 -sNaN -> -1
+ddctm889 comparetotmag 1 -sNaN -> -1
+ddctm890 comparetotmag 1000 -sNaN -> -1
+ddctm891 comparetotmag Inf -sNaN -> -1
+ddctm892 comparetotmag NaN -sNaN -> 1
+ddctm893 comparetotmag sNaN -sNaN -> 0
+
+-- NaNs with payload
+ddctm960 comparetotmag NaN9 -Inf -> 1
+ddctm961 comparetotmag NaN8 999 -> 1
+ddctm962 comparetotmag NaN77 Inf -> 1
+ddctm963 comparetotmag -NaN67 NaN5 -> 1
+ddctm964 comparetotmag -Inf -NaN4 -> -1
+ddctm965 comparetotmag -999 -NaN33 -> -1
+ddctm966 comparetotmag Inf NaN2 -> -1
+
+ddctm970 comparetotmag -NaN41 -NaN42 -> -1
+ddctm971 comparetotmag +NaN41 -NaN42 -> -1
+ddctm972 comparetotmag -NaN41 +NaN42 -> -1
+ddctm973 comparetotmag +NaN41 +NaN42 -> -1
+ddctm974 comparetotmag -NaN42 -NaN01 -> 1
+ddctm975 comparetotmag +NaN42 -NaN01 -> 1
+ddctm976 comparetotmag -NaN42 +NaN01 -> 1
+ddctm977 comparetotmag +NaN42 +NaN01 -> 1
+
+ddctm980 comparetotmag -sNaN771 -sNaN772 -> -1
+ddctm981 comparetotmag +sNaN771 -sNaN772 -> -1
+ddctm982 comparetotmag -sNaN771 +sNaN772 -> -1
+ddctm983 comparetotmag +sNaN771 +sNaN772 -> -1
+ddctm984 comparetotmag -sNaN772 -sNaN771 -> 1
+ddctm985 comparetotmag +sNaN772 -sNaN771 -> 1
+ddctm986 comparetotmag -sNaN772 +sNaN771 -> 1
+ddctm987 comparetotmag +sNaN772 +sNaN771 -> 1
+
+ddctm991 comparetotmag -sNaN99 -Inf -> 1
+ddctm992 comparetotmag sNaN98 -11 -> 1
+ddctm993 comparetotmag sNaN97 NaN -> -1
+ddctm994 comparetotmag sNaN16 sNaN94 -> -1
+ddctm995 comparetotmag NaN85 sNaN83 -> 1
+ddctm996 comparetotmag -Inf sNaN92 -> -1
+ddctm997 comparetotmag 088 sNaN81 -> -1
+ddctm998 comparetotmag Inf sNaN90 -> -1
+ddctm999 comparetotmag NaN -sNaN89 -> 1
+
+-- spread zeros
+ddctm1110 comparetotmag 0E-383 0 -> -1
+ddctm1111 comparetotmag 0E-383 -0 -> -1
+ddctm1112 comparetotmag -0E-383 0 -> -1
+ddctm1113 comparetotmag -0E-383 -0 -> -1
+ddctm1114 comparetotmag 0E-383 0E+384 -> -1
+ddctm1115 comparetotmag 0E-383 -0E+384 -> -1
+ddctm1116 comparetotmag -0E-383 0E+384 -> -1
+ddctm1117 comparetotmag -0E-383 -0E+384 -> -1
+ddctm1118 comparetotmag 0 0E+384 -> -1
+ddctm1119 comparetotmag 0 -0E+384 -> -1
+ddctm1120 comparetotmag -0 0E+384 -> -1
+ddctm1121 comparetotmag -0 -0E+384 -> -1
+
+ddctm1130 comparetotmag 0E+384 0 -> 1
+ddctm1131 comparetotmag 0E+384 -0 -> 1
+ddctm1132 comparetotmag -0E+384 0 -> 1
+ddctm1133 comparetotmag -0E+384 -0 -> 1
+ddctm1134 comparetotmag 0E+384 0E-383 -> 1
+ddctm1135 comparetotmag 0E+384 -0E-383 -> 1
+ddctm1136 comparetotmag -0E+384 0E-383 -> 1
+ddctm1137 comparetotmag -0E+384 -0E-383 -> 1
+ddctm1138 comparetotmag 0 0E-383 -> 1
+ddctm1139 comparetotmag 0 -0E-383 -> 1
+ddctm1140 comparetotmag -0 0E-383 -> 1
+ddctm1141 comparetotmag -0 -0E-383 -> 1
+
+-- Null tests
+ddctm9990 comparetotmag 10 # -> NaN Invalid_operation
+ddctm9991 comparetotmag # 10 -> NaN Invalid_operation
diff --git a/Lib/test/decimaltestdata/ddCopy.decTest b/Lib/test/decimaltestdata/ddCopy.decTest
new file mode 100644
index 0000000..49c6824
--- /dev/null
+++ b/Lib/test/decimaltestdata/ddCopy.decTest
@@ -0,0 +1,88 @@
+------------------------------------------------------------------------
+-- ddCopy.decTest -- quiet decDouble copy --
+-- Copyright (c) IBM Corporation, 1981, 2007. All rights reserved. --
+------------------------------------------------------------------------
+-- Please see the document "General Decimal Arithmetic Testcases" --
+-- at http://www2.hursley.ibm.com/decimal for the description of --
+-- these testcases. --
+-- --
+-- These testcases are experimental ('beta' versions), and they --
+-- may contain errors. They are offered on an as-is basis. In --
+-- particular, achieving the same results as the tests here is not --
+-- a guarantee that an implementation complies with any Standard --
+-- or specification. The tests are not exhaustive. --
+-- --
+-- Please send comments, suggestions, and corrections to the author: --
+-- Mike Cowlishaw, IBM Fellow --
+-- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK --
+-- mfc@uk.ibm.com --
+------------------------------------------------------------------------
+version: 2.56
+
+-- All operands and results are decDoubles.
+precision: 16
+maxExponent: 384
+minExponent: -383
+extended: 1
+clamp: 1
+rounding: half_even
+
+-- Sanity check
+ddcpy001 copy +7.50 -> 7.50
+
+-- Infinities
+ddcpy011 copy Infinity -> Infinity
+ddcpy012 copy -Infinity -> -Infinity
+
+-- NaNs, 0 payload
+ddcpy021 copy NaN -> NaN
+ddcpy022 copy -NaN -> -NaN
+ddcpy023 copy sNaN -> sNaN
+ddcpy024 copy -sNaN -> -sNaN
+
+-- NaNs, non-0 payload
+ddcpy031 copy NaN10 -> NaN10
+ddcpy032 copy -NaN10 -> -NaN10
+ddcpy033 copy sNaN10 -> sNaN10
+ddcpy034 copy -sNaN10 -> -sNaN10
+ddcpy035 copy NaN7 -> NaN7
+ddcpy036 copy -NaN7 -> -NaN7
+ddcpy037 copy sNaN101 -> sNaN101
+ddcpy038 copy -sNaN101 -> -sNaN101
+
+-- finites
+ddcpy101 copy 7 -> 7
+ddcpy102 copy -7 -> -7
+ddcpy103 copy 75 -> 75
+ddcpy104 copy -75 -> -75
+ddcpy105 copy 7.50 -> 7.50
+ddcpy106 copy -7.50 -> -7.50
+ddcpy107 copy 7.500 -> 7.500
+ddcpy108 copy -7.500 -> -7.500
+
+-- zeros
+ddcpy111 copy 0 -> 0
+ddcpy112 copy -0 -> -0
+ddcpy113 copy 0E+4 -> 0E+4
+ddcpy114 copy -0E+4 -> -0E+4
+ddcpy115 copy 0.0000 -> 0.0000
+ddcpy116 copy -0.0000 -> -0.0000
+ddcpy117 copy 0E-141 -> 0E-141
+ddcpy118 copy -0E-141 -> -0E-141
+
+-- full coefficients, alternating bits
+ddcpy121 copy 2682682682682682 -> 2682682682682682
+ddcpy122 copy -2682682682682682 -> -2682682682682682
+ddcpy123 copy 1341341341341341 -> 1341341341341341
+ddcpy124 copy -1341341341341341 -> -1341341341341341
+
+-- Nmax, Nmin, Ntiny
+ddcpy131 copy 9.999999999999999E+384 -> 9.999999999999999E+384
+ddcpy132 copy 1E-383 -> 1E-383
+ddcpy133 copy 1.000000000000000E-383 -> 1.000000000000000E-383
+ddcpy134 copy 1E-398 -> 1E-398
+
+ddcpy135 copy -1E-398 -> -1E-398
+ddcpy136 copy -1.000000000000000E-383 -> -1.000000000000000E-383
+ddcpy137 copy -1E-383 -> -1E-383
+ddcpy138 copy -9.999999999999999E+384 -> -9.999999999999999E+384
diff --git a/Lib/test/decimaltestdata/ddCopyAbs.decTest b/Lib/test/decimaltestdata/ddCopyAbs.decTest
new file mode 100644
index 0000000..b65f063
--- /dev/null
+++ b/Lib/test/decimaltestdata/ddCopyAbs.decTest
@@ -0,0 +1,88 @@
+------------------------------------------------------------------------
+-- ddCopyAbs.decTest -- quiet decDouble copy and set sign to zero --
+-- Copyright (c) IBM Corporation, 1981, 2007. All rights reserved. --
+------------------------------------------------------------------------
+-- Please see the document "General Decimal Arithmetic Testcases" --
+-- at http://www2.hursley.ibm.com/decimal for the description of --
+-- these testcases. --
+-- --
+-- These testcases are experimental ('beta' versions), and they --
+-- may contain errors. They are offered on an as-is basis. In --
+-- particular, achieving the same results as the tests here is not --
+-- a guarantee that an implementation complies with any Standard --
+-- or specification. The tests are not exhaustive. --
+-- --
+-- Please send comments, suggestions, and corrections to the author: --
+-- Mike Cowlishaw, IBM Fellow --
+-- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK --
+-- mfc@uk.ibm.com --
+------------------------------------------------------------------------
+version: 2.56
+
+-- All operands and results are decDoubles.
+precision: 16
+maxExponent: 384
+minExponent: -383
+extended: 1
+clamp: 1
+rounding: half_even
+
+-- Sanity check
+ddcpa001 copyabs +7.50 -> 7.50
+
+-- Infinities
+ddcpa011 copyabs Infinity -> Infinity
+ddcpa012 copyabs -Infinity -> Infinity
+
+-- NaNs, 0 payload
+ddcpa021 copyabs NaN -> NaN
+ddcpa022 copyabs -NaN -> NaN
+ddcpa023 copyabs sNaN -> sNaN
+ddcpa024 copyabs -sNaN -> sNaN
+
+-- NaNs, non-0 payload
+ddcpa031 copyabs NaN10 -> NaN10
+ddcpa032 copyabs -NaN15 -> NaN15
+ddcpa033 copyabs sNaN15 -> sNaN15
+ddcpa034 copyabs -sNaN10 -> sNaN10
+ddcpa035 copyabs NaN7 -> NaN7
+ddcpa036 copyabs -NaN7 -> NaN7
+ddcpa037 copyabs sNaN101 -> sNaN101
+ddcpa038 copyabs -sNaN101 -> sNaN101
+
+-- finites
+ddcpa101 copyabs 7 -> 7
+ddcpa102 copyabs -7 -> 7
+ddcpa103 copyabs 75 -> 75
+ddcpa104 copyabs -75 -> 75
+ddcpa105 copyabs 7.10 -> 7.10
+ddcpa106 copyabs -7.10 -> 7.10
+ddcpa107 copyabs 7.500 -> 7.500
+ddcpa108 copyabs -7.500 -> 7.500
+
+-- zeros
+ddcpa111 copyabs 0 -> 0
+ddcpa112 copyabs -0 -> 0
+ddcpa113 copyabs 0E+6 -> 0E+6
+ddcpa114 copyabs -0E+6 -> 0E+6
+ddcpa115 copyabs 0.0000 -> 0.0000
+ddcpa116 copyabs -0.0000 -> 0.0000
+ddcpa117 copyabs 0E-141 -> 0E-141
+ddcpa118 copyabs -0E-141 -> 0E-141
+
+-- full coefficients, alternating bits
+ddcpa121 copyabs 2682682682682682 -> 2682682682682682
+ddcpa122 copyabs -2682682682682682 -> 2682682682682682
+ddcpa123 copyabs 1341341341341341 -> 1341341341341341
+ddcpa124 copyabs -1341341341341341 -> 1341341341341341
+
+-- Nmax, Nmin, Ntiny
+ddcpa131 copyabs 9.999999999999999E+384 -> 9.999999999999999E+384
+ddcpa132 copyabs 1E-383 -> 1E-383
+ddcpa133 copyabs 1.000000000000000E-383 -> 1.000000000000000E-383
+ddcpa134 copyabs 1E-398 -> 1E-398
+
+ddcpa135 copyabs -1E-398 -> 1E-398
+ddcpa136 copyabs -1.000000000000000E-383 -> 1.000000000000000E-383
+ddcpa137 copyabs -1E-383 -> 1E-383
+ddcpa138 copyabs -9.999999999999999E+384 -> 9.999999999999999E+384
diff --git a/Lib/test/decimaltestdata/ddCopyNegate.decTest b/Lib/test/decimaltestdata/ddCopyNegate.decTest
new file mode 100644
index 0000000..b111c9b
--- /dev/null
+++ b/Lib/test/decimaltestdata/ddCopyNegate.decTest
@@ -0,0 +1,88 @@
+------------------------------------------------------------------------
+-- ddCopyNegate.decTest -- quiet decDouble copy and negate --
+-- Copyright (c) IBM Corporation, 1981, 2007. All rights reserved. --
+------------------------------------------------------------------------
+-- Please see the document "General Decimal Arithmetic Testcases" --
+-- at http://www2.hursley.ibm.com/decimal for the description of --
+-- these testcases. --
+-- --
+-- These testcases are experimental ('beta' versions), and they --
+-- may contain errors. They are offered on an as-is basis. In --
+-- particular, achieving the same results as the tests here is not --
+-- a guarantee that an implementation complies with any Standard --
+-- or specification. The tests are not exhaustive. --
+-- --
+-- Please send comments, suggestions, and corrections to the author: --
+-- Mike Cowlishaw, IBM Fellow --
+-- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK --
+-- mfc@uk.ibm.com --
+------------------------------------------------------------------------
+version: 2.56
+
+-- All operands and results are decDoubles.
+precision: 16
+maxExponent: 384
+minExponent: -383
+extended: 1
+clamp: 1
+rounding: half_even
+
+-- Sanity check
+ddcpn001 copynegate +7.50 -> -7.50
+
+-- Infinities
+ddcpn011 copynegate Infinity -> -Infinity
+ddcpn012 copynegate -Infinity -> Infinity
+
+-- NaNs, 0 payload
+ddcpn021 copynegate NaN -> -NaN
+ddcpn022 copynegate -NaN -> NaN
+ddcpn023 copynegate sNaN -> -sNaN
+ddcpn024 copynegate -sNaN -> sNaN
+
+-- NaNs, non-0 payload
+ddcpn031 copynegate NaN13 -> -NaN13
+ddcpn032 copynegate -NaN13 -> NaN13
+ddcpn033 copynegate sNaN13 -> -sNaN13
+ddcpn034 copynegate -sNaN13 -> sNaN13
+ddcpn035 copynegate NaN70 -> -NaN70
+ddcpn036 copynegate -NaN70 -> NaN70
+ddcpn037 copynegate sNaN101 -> -sNaN101
+ddcpn038 copynegate -sNaN101 -> sNaN101
+
+-- finites
+ddcpn101 copynegate 7 -> -7
+ddcpn102 copynegate -7 -> 7
+ddcpn103 copynegate 75 -> -75
+ddcpn104 copynegate -75 -> 75
+ddcpn105 copynegate 7.50 -> -7.50
+ddcpn106 copynegate -7.50 -> 7.50
+ddcpn107 copynegate 7.500 -> -7.500
+ddcpn108 copynegate -7.500 -> 7.500
+
+-- zeros
+ddcpn111 copynegate 0 -> -0
+ddcpn112 copynegate -0 -> 0
+ddcpn113 copynegate 0E+4 -> -0E+4
+ddcpn114 copynegate -0E+4 -> 0E+4
+ddcpn115 copynegate 0.0000 -> -0.0000
+ddcpn116 copynegate -0.0000 -> 0.0000
+ddcpn117 copynegate 0E-141 -> -0E-141
+ddcpn118 copynegate -0E-141 -> 0E-141
+
+-- full coefficients, alternating bits
+ddcpn121 copynegate 2682682682682682 -> -2682682682682682
+ddcpn122 copynegate -2682682682682682 -> 2682682682682682
+ddcpn123 copynegate 1341341341341341 -> -1341341341341341
+ddcpn124 copynegate -1341341341341341 -> 1341341341341341
+
+-- Nmax, Nmin, Ntiny
+ddcpn131 copynegate 9.999999999999999E+384 -> -9.999999999999999E+384
+ddcpn132 copynegate 1E-383 -> -1E-383
+ddcpn133 copynegate 1.000000000000000E-383 -> -1.000000000000000E-383
+ddcpn134 copynegate 1E-398 -> -1E-398
+
+ddcpn135 copynegate -1E-398 -> 1E-398
+ddcpn136 copynegate -1.000000000000000E-383 -> 1.000000000000000E-383
+ddcpn137 copynegate -1E-383 -> 1E-383
+ddcpn138 copynegate -9.999999999999999E+384 -> 9.999999999999999E+384
diff --git a/Lib/test/decimaltestdata/ddCopySign.decTest b/Lib/test/decimaltestdata/ddCopySign.decTest
new file mode 100644
index 0000000..7c83416
--- /dev/null
+++ b/Lib/test/decimaltestdata/ddCopySign.decTest
@@ -0,0 +1,175 @@
+------------------------------------------------------------------------
+-- ddCopySign.decTest -- quiet decDouble copy with sign from rhs --
+-- Copyright (c) IBM Corporation, 1981, 2007. All rights reserved. --
+------------------------------------------------------------------------
+-- Please see the document "General Decimal Arithmetic Testcases" --
+-- at http://www2.hursley.ibm.com/decimal for the description of --
+-- these testcases. --
+-- --
+-- These testcases are experimental ('beta' versions), and they --
+-- may contain errors. They are offered on an as-is basis. In --
+-- particular, achieving the same results as the tests here is not --
+-- a guarantee that an implementation complies with any Standard --
+-- or specification. The tests are not exhaustive. --
+-- --
+-- Please send comments, suggestions, and corrections to the author: --
+-- Mike Cowlishaw, IBM Fellow --
+-- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK --
+-- mfc@uk.ibm.com --
+------------------------------------------------------------------------
+version: 2.56
+
+-- All operands and results are decDoubles.
+precision: 16
+maxExponent: 384
+minExponent: -383
+extended: 1
+clamp: 1
+rounding: half_even
+
+-- Sanity check
+ddcps001 copysign +7.50 11 -> 7.50
+
+-- Infinities
+ddcps011 copysign Infinity 11 -> Infinity
+ddcps012 copysign -Infinity 11 -> Infinity
+
+-- NaNs, 0 payload
+ddcps021 copysign NaN 11 -> NaN
+ddcps022 copysign -NaN 11 -> NaN
+ddcps023 copysign sNaN 11 -> sNaN
+ddcps024 copysign -sNaN 11 -> sNaN
+
+-- NaNs, non-0 payload
+ddcps031 copysign NaN10 11 -> NaN10
+ddcps032 copysign -NaN10 11 -> NaN10
+ddcps033 copysign sNaN10 11 -> sNaN10
+ddcps034 copysign -sNaN10 11 -> sNaN10
+ddcps035 copysign NaN7 11 -> NaN7
+ddcps036 copysign -NaN7 11 -> NaN7
+ddcps037 copysign sNaN101 11 -> sNaN101
+ddcps038 copysign -sNaN101 11 -> sNaN101
+
+-- finites
+ddcps101 copysign 7 11 -> 7
+ddcps102 copysign -7 11 -> 7
+ddcps103 copysign 75 11 -> 75
+ddcps104 copysign -75 11 -> 75
+ddcps105 copysign 7.50 11 -> 7.50
+ddcps106 copysign -7.50 11 -> 7.50
+ddcps107 copysign 7.500 11 -> 7.500
+ddcps108 copysign -7.500 11 -> 7.500
+
+-- zeros
+ddcps111 copysign 0 11 -> 0
+ddcps112 copysign -0 11 -> 0
+ddcps113 copysign 0E+4 11 -> 0E+4
+ddcps114 copysign -0E+4 11 -> 0E+4
+ddcps115 copysign 0.0000 11 -> 0.0000
+ddcps116 copysign -0.0000 11 -> 0.0000
+ddcps117 copysign 0E-141 11 -> 0E-141
+ddcps118 copysign -0E-141 11 -> 0E-141
+
+-- full coefficients, alternating bits
+ddcps121 copysign 2682682682682682 11 -> 2682682682682682
+ddcps122 copysign -2682682682682682 11 -> 2682682682682682
+ddcps123 copysign 1341341341341341 11 -> 1341341341341341
+ddcps124 copysign -1341341341341341 11 -> 1341341341341341
+
+-- Nmax, Nmin, Ntiny
+ddcps131 copysign 9.999999999999999E+384 11 -> 9.999999999999999E+384
+ddcps132 copysign 1E-383 11 -> 1E-383
+ddcps133 copysign 1.000000000000000E-383 11 -> 1.000000000000000E-383
+ddcps134 copysign 1E-398 11 -> 1E-398
+
+ddcps135 copysign -1E-398 11 -> 1E-398
+ddcps136 copysign -1.000000000000000E-383 11 -> 1.000000000000000E-383
+ddcps137 copysign -1E-383 11 -> 1E-383
+ddcps138 copysign -9.999999999999999E+384 11 -> 9.999999999999999E+384
+
+-- repeat with negative RHS
+
+-- Infinities
+ddcps211 copysign Infinity -34 -> -Infinity
+ddcps212 copysign -Infinity -34 -> -Infinity
+
+-- NaNs, 0 payload
+ddcps221 copysign NaN -34 -> -NaN
+ddcps222 copysign -NaN -34 -> -NaN
+ddcps223 copysign sNaN -34 -> -sNaN
+ddcps224 copysign -sNaN -34 -> -sNaN
+
+-- NaNs, non-0 payload
+ddcps231 copysign NaN10 -34 -> -NaN10
+ddcps232 copysign -NaN10 -34 -> -NaN10
+ddcps233 copysign sNaN10 -34 -> -sNaN10
+ddcps234 copysign -sNaN10 -34 -> -sNaN10
+ddcps235 copysign NaN7 -34 -> -NaN7
+ddcps236 copysign -NaN7 -34 -> -NaN7
+ddcps237 copysign sNaN101 -34 -> -sNaN101
+ddcps238 copysign -sNaN101 -34 -> -sNaN101
+
+-- finites
+ddcps301 copysign 7 -34 -> -7
+ddcps302 copysign -7 -34 -> -7
+ddcps303 copysign 75 -34 -> -75
+ddcps304 copysign -75 -34 -> -75
+ddcps305 copysign 7.50 -34 -> -7.50
+ddcps306 copysign -7.50 -34 -> -7.50
+ddcps307 copysign 7.500 -34 -> -7.500
+ddcps308 copysign -7.500 -34 -> -7.500
+
+-- zeros
+ddcps311 copysign 0 -34 -> -0
+ddcps312 copysign -0 -34 -> -0
+ddcps313 copysign 0E+4 -34 -> -0E+4
+ddcps314 copysign -0E+4 -34 -> -0E+4
+ddcps315 copysign 0.0000 -34 -> -0.0000
+ddcps316 copysign -0.0000 -34 -> -0.0000
+ddcps317 copysign 0E-141 -34 -> -0E-141
+ddcps318 copysign -0E-141 -34 -> -0E-141
+
+-- full coefficients, alternating bits
+ddcps321 copysign 2682682682682682 -34 -> -2682682682682682
+ddcps322 copysign -2682682682682682 -34 -> -2682682682682682
+ddcps323 copysign 1341341341341341 -34 -> -1341341341341341
+ddcps324 copysign -1341341341341341 -34 -> -1341341341341341
+
+-- Nmax, Nmin, Ntiny
+ddcps331 copysign 9.999999999999999E+384 -34 -> -9.999999999999999E+384
+ddcps332 copysign 1E-383 -34 -> -1E-383
+ddcps333 copysign 1.000000000000000E-383 -34 -> -1.000000000000000E-383
+ddcps334 copysign 1E-398 -34 -> -1E-398
+
+ddcps335 copysign -1E-398 -34 -> -1E-398
+ddcps336 copysign -1.000000000000000E-383 -34 -> -1.000000000000000E-383
+ddcps337 copysign -1E-383 -34 -> -1E-383
+ddcps338 copysign -9.999999999999999E+384 -34 -> -9.999999999999999E+384
+
+-- Other kinds of RHS
+ddcps401 copysign 701 -34 -> -701
+ddcps402 copysign -720 -34 -> -720
+ddcps403 copysign 701 -0 -> -701
+ddcps404 copysign -720 -0 -> -720
+ddcps405 copysign 701 +0 -> 701
+ddcps406 copysign -720 +0 -> 720
+ddcps407 copysign 701 +34 -> 701
+ddcps408 copysign -720 +34 -> 720
+
+ddcps413 copysign 701 -Inf -> -701
+ddcps414 copysign -720 -Inf -> -720
+ddcps415 copysign 701 +Inf -> 701
+ddcps416 copysign -720 +Inf -> 720
+
+ddcps420 copysign 701 -NaN -> -701
+ddcps421 copysign -720 -NaN -> -720
+ddcps422 copysign 701 +NaN -> 701
+ddcps423 copysign -720 +NaN -> 720
+ddcps425 copysign -720 +NaN8 -> 720
+
+ddcps426 copysign 701 -sNaN -> -701
+ddcps427 copysign -720 -sNaN -> -720
+ddcps428 copysign 701 +sNaN -> 701
+ddcps429 copysign -720 +sNaN -> 720
+ddcps430 copysign -720 +sNaN3 -> 720
+
diff --git a/Lib/test/decimaltestdata/ddDivide.decTest b/Lib/test/decimaltestdata/ddDivide.decTest
new file mode 100644
index 0000000..1a953f7
--- /dev/null
+++ b/Lib/test/decimaltestdata/ddDivide.decTest
@@ -0,0 +1,854 @@
+------------------------------------------------------------------------
+-- ddDivide.decTest -- decDouble division --
+-- Copyright (c) IBM Corporation, 1981, 2007. All rights reserved. --
+------------------------------------------------------------------------
+-- Please see the document "General Decimal Arithmetic Testcases" --
+-- at http://www2.hursley.ibm.com/decimal for the description of --
+-- these testcases. --
+-- --
+-- These testcases are experimental ('beta' versions), and they --
+-- may contain errors. They are offered on an as-is basis. In --
+-- particular, achieving the same results as the tests here is not --
+-- a guarantee that an implementation complies with any Standard --
+-- or specification. The tests are not exhaustive. --
+-- --
+-- Please send comments, suggestions, and corrections to the author: --
+-- Mike Cowlishaw, IBM Fellow --
+-- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK --
+-- mfc@uk.ibm.com --
+------------------------------------------------------------------------
+version: 2.56
+
+precision: 16
+maxExponent: 384
+minExponent: -383
+extended: 1
+clamp: 1
+rounding: half_even
+
+-- sanity checks
+dddiv001 divide 1 1 -> 1
+dddiv002 divide 2 1 -> 2
+dddiv003 divide 1 2 -> 0.5
+dddiv004 divide 2 2 -> 1
+dddiv005 divide 0 1 -> 0
+dddiv006 divide 0 2 -> 0
+dddiv007 divide 1 3 -> 0.3333333333333333 Inexact Rounded
+dddiv008 divide 2 3 -> 0.6666666666666667 Inexact Rounded
+dddiv009 divide 3 3 -> 1
+
+dddiv010 divide 2.4 1 -> 2.4
+dddiv011 divide 2.4 -1 -> -2.4
+dddiv012 divide -2.4 1 -> -2.4
+dddiv013 divide -2.4 -1 -> 2.4
+dddiv014 divide 2.40 1 -> 2.40
+dddiv015 divide 2.400 1 -> 2.400
+dddiv016 divide 2.4 2 -> 1.2
+dddiv017 divide 2.400 2 -> 1.200
+dddiv018 divide 2. 2 -> 1
+dddiv019 divide 20 20 -> 1
+
+dddiv020 divide 187 187 -> 1
+dddiv021 divide 5 2 -> 2.5
+dddiv022 divide 50 20 -> 2.5
+dddiv023 divide 500 200 -> 2.5
+dddiv024 divide 50.0 20.0 -> 2.5
+dddiv025 divide 5.00 2.00 -> 2.5
+dddiv026 divide 5 2.0 -> 2.5
+dddiv027 divide 5 2.000 -> 2.5
+dddiv028 divide 5 0.20 -> 25
+dddiv029 divide 5 0.200 -> 25
+dddiv030 divide 10 1 -> 10
+dddiv031 divide 100 1 -> 100
+dddiv032 divide 1000 1 -> 1000
+dddiv033 divide 1000 100 -> 10
+
+dddiv035 divide 1 2 -> 0.5
+dddiv036 divide 1 4 -> 0.25
+dddiv037 divide 1 8 -> 0.125
+dddiv038 divide 1 16 -> 0.0625
+dddiv039 divide 1 32 -> 0.03125
+dddiv040 divide 1 64 -> 0.015625
+dddiv041 divide 1 -2 -> -0.5
+dddiv042 divide 1 -4 -> -0.25
+dddiv043 divide 1 -8 -> -0.125
+dddiv044 divide 1 -16 -> -0.0625
+dddiv045 divide 1 -32 -> -0.03125
+dddiv046 divide 1 -64 -> -0.015625
+dddiv047 divide -1 2 -> -0.5
+dddiv048 divide -1 4 -> -0.25
+dddiv049 divide -1 8 -> -0.125
+dddiv050 divide -1 16 -> -0.0625
+dddiv051 divide -1 32 -> -0.03125
+dddiv052 divide -1 64 -> -0.015625
+dddiv053 divide -1 -2 -> 0.5
+dddiv054 divide -1 -4 -> 0.25
+dddiv055 divide -1 -8 -> 0.125
+dddiv056 divide -1 -16 -> 0.0625
+dddiv057 divide -1 -32 -> 0.03125
+dddiv058 divide -1 -64 -> 0.015625
+
+-- bcdTime
+dddiv060 divide 1 7 -> 0.1428571428571429 Inexact Rounded
+dddiv061 divide 1.2345678 1.9876543 -> 0.6211179680490717 Inexact Rounded
+
+-- 1234567890123456
+dddiv071 divide 9999999999999999 1 -> 9999999999999999
+dddiv072 divide 999999999999999 1 -> 999999999999999
+dddiv073 divide 99999999999999 1 -> 99999999999999
+dddiv074 divide 9999999999999 1 -> 9999999999999
+dddiv075 divide 999999999999 1 -> 999999999999
+dddiv076 divide 99999999999 1 -> 99999999999
+dddiv077 divide 9999999999 1 -> 9999999999
+dddiv078 divide 999999999 1 -> 999999999
+dddiv079 divide 99999999 1 -> 99999999
+dddiv080 divide 9999999 1 -> 9999999
+dddiv081 divide 999999 1 -> 999999
+dddiv082 divide 99999 1 -> 99999
+dddiv083 divide 9999 1 -> 9999
+dddiv084 divide 999 1 -> 999
+dddiv085 divide 99 1 -> 99
+dddiv086 divide 9 1 -> 9
+
+dddiv090 divide 0. 1 -> 0
+dddiv091 divide .0 1 -> 0.0
+dddiv092 divide 0.00 1 -> 0.00
+dddiv093 divide 0.00E+9 1 -> 0E+7
+dddiv094 divide 0.0000E-50 1 -> 0E-54
+
+dddiv095 divide 1 1E-8 -> 1E+8
+dddiv096 divide 1 1E-9 -> 1E+9
+dddiv097 divide 1 1E-10 -> 1E+10
+dddiv098 divide 1 1E-11 -> 1E+11
+dddiv099 divide 1 1E-12 -> 1E+12
+
+dddiv100 divide 1 1 -> 1
+dddiv101 divide 1 2 -> 0.5
+dddiv102 divide 1 3 -> 0.3333333333333333 Inexact Rounded
+dddiv103 divide 1 4 -> 0.25
+dddiv104 divide 1 5 -> 0.2
+dddiv105 divide 1 6 -> 0.1666666666666667 Inexact Rounded
+dddiv106 divide 1 7 -> 0.1428571428571429 Inexact Rounded
+dddiv107 divide 1 8 -> 0.125
+dddiv108 divide 1 9 -> 0.1111111111111111 Inexact Rounded
+dddiv109 divide 1 10 -> 0.1
+dddiv110 divide 1 1 -> 1
+dddiv111 divide 2 1 -> 2
+dddiv112 divide 3 1 -> 3
+dddiv113 divide 4 1 -> 4
+dddiv114 divide 5 1 -> 5
+dddiv115 divide 6 1 -> 6
+dddiv116 divide 7 1 -> 7
+dddiv117 divide 8 1 -> 8
+dddiv118 divide 9 1 -> 9
+dddiv119 divide 10 1 -> 10
+
+dddiv120 divide 3E+1 0.001 -> 3E+4
+dddiv121 divide 2.200 2 -> 1.100
+
+dddiv130 divide 12345 4.999 -> 2469.493898779756 Inexact Rounded
+dddiv131 divide 12345 4.99 -> 2473.947895791583 Inexact Rounded
+dddiv132 divide 12345 4.9 -> 2519.387755102041 Inexact Rounded
+dddiv133 divide 12345 5 -> 2469
+dddiv134 divide 12345 5.1 -> 2420.588235294118 Inexact Rounded
+dddiv135 divide 12345 5.01 -> 2464.071856287425 Inexact Rounded
+dddiv136 divide 12345 5.001 -> 2468.506298740252 Inexact Rounded
+
+-- test possibly imprecise results
+dddiv220 divide 391 597 -> 0.6549413735343384 Inexact Rounded
+dddiv221 divide 391 -597 -> -0.6549413735343384 Inexact Rounded
+dddiv222 divide -391 597 -> -0.6549413735343384 Inexact Rounded
+dddiv223 divide -391 -597 -> 0.6549413735343384 Inexact Rounded
+
+-- test some cases that are close to exponent overflow
+dddiv270 divide 1 1e384 -> 1E-384 Subnormal
+dddiv271 divide 1 0.9e384 -> 1.11111111111111E-384 Rounded Inexact Subnormal Underflow
+dddiv272 divide 1 0.99e384 -> 1.01010101010101E-384 Rounded Inexact Subnormal Underflow
+dddiv273 divide 1 0.9999999999999999e384 -> 1.00000000000000E-384 Rounded Inexact Subnormal Underflow
+dddiv274 divide 9e384 1 -> 9.000000000000000E+384 Clamped
+dddiv275 divide 9.9e384 1 -> 9.900000000000000E+384 Clamped
+dddiv276 divide 9.99e384 1 -> 9.990000000000000E+384 Clamped
+dddiv277 divide 9.999999999999999e384 1 -> 9.999999999999999E+384
+
+-- Divide into 0 tests
+dddiv301 divide 0 7 -> 0
+dddiv302 divide 0 7E-5 -> 0E+5
+dddiv303 divide 0 7E-1 -> 0E+1
+dddiv304 divide 0 7E+1 -> 0.0
+dddiv305 divide 0 7E+5 -> 0.00000
+dddiv306 divide 0 7E+6 -> 0.000000
+dddiv307 divide 0 7E+7 -> 0E-7
+dddiv308 divide 0 70E-5 -> 0E+5
+dddiv309 divide 0 70E-1 -> 0E+1
+dddiv310 divide 0 70E+0 -> 0
+dddiv311 divide 0 70E+1 -> 0.0
+dddiv312 divide 0 70E+5 -> 0.00000
+dddiv313 divide 0 70E+6 -> 0.000000
+dddiv314 divide 0 70E+7 -> 0E-7
+dddiv315 divide 0 700E-5 -> 0E+5
+dddiv316 divide 0 700E-1 -> 0E+1
+dddiv317 divide 0 700E+0 -> 0
+dddiv318 divide 0 700E+1 -> 0.0
+dddiv319 divide 0 700E+5 -> 0.00000
+dddiv320 divide 0 700E+6 -> 0.000000
+dddiv321 divide 0 700E+7 -> 0E-7
+dddiv322 divide 0 700E+77 -> 0E-77
+
+dddiv331 divide 0E-3 7E-5 -> 0E+2
+dddiv332 divide 0E-3 7E-1 -> 0.00
+dddiv333 divide 0E-3 7E+1 -> 0.0000
+dddiv334 divide 0E-3 7E+5 -> 0E-8
+dddiv335 divide 0E-1 7E-5 -> 0E+4
+dddiv336 divide 0E-1 7E-1 -> 0
+dddiv337 divide 0E-1 7E+1 -> 0.00
+dddiv338 divide 0E-1 7E+5 -> 0.000000
+dddiv339 divide 0E+1 7E-5 -> 0E+6
+dddiv340 divide 0E+1 7E-1 -> 0E+2
+dddiv341 divide 0E+1 7E+1 -> 0
+dddiv342 divide 0E+1 7E+5 -> 0.0000
+dddiv343 divide 0E+3 7E-5 -> 0E+8
+dddiv344 divide 0E+3 7E-1 -> 0E+4
+dddiv345 divide 0E+3 7E+1 -> 0E+2
+dddiv346 divide 0E+3 7E+5 -> 0.00
+
+-- These were 'input rounding'
+dddiv441 divide 12345678000 1 -> 12345678000
+dddiv442 divide 1 12345678000 -> 8.100000664200054E-11 Inexact Rounded
+dddiv443 divide 1234567800 1 -> 1234567800
+dddiv444 divide 1 1234567800 -> 8.100000664200054E-10 Inexact Rounded
+dddiv445 divide 1234567890 1 -> 1234567890
+dddiv446 divide 1 1234567890 -> 8.100000073710001E-10 Inexact Rounded
+dddiv447 divide 1234567891 1 -> 1234567891
+dddiv448 divide 1 1234567891 -> 8.100000067149001E-10 Inexact Rounded
+dddiv449 divide 12345678901 1 -> 12345678901
+dddiv450 divide 1 12345678901 -> 8.100000073053901E-11 Inexact Rounded
+dddiv451 divide 1234567896 1 -> 1234567896
+dddiv452 divide 1 1234567896 -> 8.100000034344000E-10 Inexact Rounded
+
+-- high-lows
+dddiv453 divide 1e+1 1 -> 1E+1
+dddiv454 divide 1e+1 1.0 -> 1E+1
+dddiv455 divide 1e+1 1.00 -> 1E+1
+dddiv456 divide 1e+2 2 -> 5E+1
+dddiv457 divide 1e+2 2.0 -> 5E+1
+dddiv458 divide 1e+2 2.00 -> 5E+1
+
+-- some from IEEE discussions
+dddiv460 divide 3e0 2e0 -> 1.5
+dddiv461 divide 30e-1 2e0 -> 1.5
+dddiv462 divide 300e-2 2e0 -> 1.50
+dddiv464 divide 3000e-3 2e0 -> 1.500
+dddiv465 divide 3e0 20e-1 -> 1.5
+dddiv466 divide 30e-1 20e-1 -> 1.5
+dddiv467 divide 300e-2 20e-1 -> 1.5
+dddiv468 divide 3000e-3 20e-1 -> 1.50
+dddiv469 divide 3e0 200e-2 -> 1.5
+dddiv470 divide 30e-1 200e-2 -> 1.5
+dddiv471 divide 300e-2 200e-2 -> 1.5
+dddiv472 divide 3000e-3 200e-2 -> 1.5
+dddiv473 divide 3e0 2000e-3 -> 1.5
+dddiv474 divide 30e-1 2000e-3 -> 1.5
+dddiv475 divide 300e-2 2000e-3 -> 1.5
+dddiv476 divide 3000e-3 2000e-3 -> 1.5
+
+-- some reciprocals
+dddiv480 divide 1 1.0E+33 -> 1E-33
+dddiv481 divide 1 10E+33 -> 1E-34
+dddiv482 divide 1 1.0E-33 -> 1E+33
+dddiv483 divide 1 10E-33 -> 1E+32
+
+-- RMS discussion table
+dddiv484 divide 0e5 1e3 -> 0E+2
+dddiv485 divide 0e5 2e3 -> 0E+2
+dddiv486 divide 0e5 10e2 -> 0E+3
+dddiv487 divide 0e5 20e2 -> 0E+3
+dddiv488 divide 0e5 100e1 -> 0E+4
+dddiv489 divide 0e5 200e1 -> 0E+4
+
+dddiv491 divide 1e5 1e3 -> 1E+2
+dddiv492 divide 1e5 2e3 -> 5E+1
+dddiv493 divide 1e5 10e2 -> 1E+2
+dddiv494 divide 1e5 20e2 -> 5E+1
+dddiv495 divide 1e5 100e1 -> 1E+2
+dddiv496 divide 1e5 200e1 -> 5E+1
+
+-- tryzeros cases
+rounding: half_up
+dddiv497 divide 0E+380 1000E-13 -> 0E+369 Clamped
+dddiv498 divide 0E-390 1000E+13 -> 0E-398 Clamped
+
+rounding: half_up
+
+-- focus on trailing zeros issues
+dddiv500 divide 1 9.9 -> 0.1010101010101010 Inexact Rounded
+dddiv501 divide 1 9.09 -> 0.1100110011001100 Inexact Rounded
+dddiv502 divide 1 9.009 -> 0.1110001110001110 Inexact Rounded
+
+dddiv511 divide 1 2 -> 0.5
+dddiv512 divide 1.0 2 -> 0.5
+dddiv513 divide 1.00 2 -> 0.50
+dddiv514 divide 1.000 2 -> 0.500
+dddiv515 divide 1.0000 2 -> 0.5000
+dddiv516 divide 1.00000 2 -> 0.50000
+dddiv517 divide 1.000000 2 -> 0.500000
+dddiv518 divide 1.0000000 2 -> 0.5000000
+dddiv519 divide 1.00 2.00 -> 0.5
+
+dddiv521 divide 2 1 -> 2
+dddiv522 divide 2 1.0 -> 2
+dddiv523 divide 2 1.00 -> 2
+dddiv524 divide 2 1.000 -> 2
+dddiv525 divide 2 1.0000 -> 2
+dddiv526 divide 2 1.00000 -> 2
+dddiv527 divide 2 1.000000 -> 2
+dddiv528 divide 2 1.0000000 -> 2
+dddiv529 divide 2.00 1.00 -> 2
+
+dddiv530 divide 2.40 2 -> 1.20
+dddiv531 divide 2.40 4 -> 0.60
+dddiv532 divide 2.40 10 -> 0.24
+dddiv533 divide 2.40 2.0 -> 1.2
+dddiv534 divide 2.40 4.0 -> 0.6
+dddiv535 divide 2.40 10.0 -> 0.24
+dddiv536 divide 2.40 2.00 -> 1.2
+dddiv537 divide 2.40 4.00 -> 0.6
+dddiv538 divide 2.40 10.00 -> 0.24
+dddiv539 divide 0.9 0.1 -> 9
+dddiv540 divide 0.9 0.01 -> 9E+1
+dddiv541 divide 0.9 0.001 -> 9E+2
+dddiv542 divide 5 2 -> 2.5
+dddiv543 divide 5 2.0 -> 2.5
+dddiv544 divide 5 2.00 -> 2.5
+dddiv545 divide 5 20 -> 0.25
+dddiv546 divide 5 20.0 -> 0.25
+dddiv547 divide 2.400 2 -> 1.200
+dddiv548 divide 2.400 2.0 -> 1.20
+dddiv549 divide 2.400 2.400 -> 1
+
+dddiv550 divide 240 1 -> 240
+dddiv551 divide 240 10 -> 24
+dddiv552 divide 240 100 -> 2.4
+dddiv553 divide 240 1000 -> 0.24
+dddiv554 divide 2400 1 -> 2400
+dddiv555 divide 2400 10 -> 240
+dddiv556 divide 2400 100 -> 24
+dddiv557 divide 2400 1000 -> 2.4
+
+-- +ve exponent
+dddiv600 divide 2.4E+9 2 -> 1.2E+9
+dddiv601 divide 2.40E+9 2 -> 1.20E+9
+dddiv602 divide 2.400E+9 2 -> 1.200E+9
+dddiv603 divide 2.4000E+9 2 -> 1.2000E+9
+dddiv604 divide 24E+8 2 -> 1.2E+9
+dddiv605 divide 240E+7 2 -> 1.20E+9
+dddiv606 divide 2400E+6 2 -> 1.200E+9
+dddiv607 divide 24000E+5 2 -> 1.2000E+9
+
+-- more zeros, etc.
+dddiv731 divide 5.00 1E-3 -> 5.00E+3
+dddiv732 divide 00.00 0.000 -> NaN Division_undefined
+dddiv733 divide 00.00 0E-3 -> NaN Division_undefined
+dddiv734 divide 0 -0 -> NaN Division_undefined
+dddiv735 divide -0 0 -> NaN Division_undefined
+dddiv736 divide -0 -0 -> NaN Division_undefined
+
+dddiv741 divide 0 -1 -> -0
+dddiv742 divide -0 -1 -> 0
+dddiv743 divide 0 1 -> 0
+dddiv744 divide -0 1 -> -0
+dddiv745 divide -1 0 -> -Infinity Division_by_zero
+dddiv746 divide -1 -0 -> Infinity Division_by_zero
+dddiv747 divide 1 0 -> Infinity Division_by_zero
+dddiv748 divide 1 -0 -> -Infinity Division_by_zero
+
+dddiv751 divide 0.0 -1 -> -0.0
+dddiv752 divide -0.0 -1 -> 0.0
+dddiv753 divide 0.0 1 -> 0.0
+dddiv754 divide -0.0 1 -> -0.0
+dddiv755 divide -1.0 0 -> -Infinity Division_by_zero
+dddiv756 divide -1.0 -0 -> Infinity Division_by_zero
+dddiv757 divide 1.0 0 -> Infinity Division_by_zero
+dddiv758 divide 1.0 -0 -> -Infinity Division_by_zero
+
+dddiv761 divide 0 -1.0 -> -0E+1
+dddiv762 divide -0 -1.0 -> 0E+1
+dddiv763 divide 0 1.0 -> 0E+1
+dddiv764 divide -0 1.0 -> -0E+1
+dddiv765 divide -1 0.0 -> -Infinity Division_by_zero
+dddiv766 divide -1 -0.0 -> Infinity Division_by_zero
+dddiv767 divide 1 0.0 -> Infinity Division_by_zero
+dddiv768 divide 1 -0.0 -> -Infinity Division_by_zero
+
+dddiv771 divide 0.0 -1.0 -> -0
+dddiv772 divide -0.0 -1.0 -> 0
+dddiv773 divide 0.0 1.0 -> 0
+dddiv774 divide -0.0 1.0 -> -0
+dddiv775 divide -1.0 0.0 -> -Infinity Division_by_zero
+dddiv776 divide -1.0 -0.0 -> Infinity Division_by_zero
+dddiv777 divide 1.0 0.0 -> Infinity Division_by_zero
+dddiv778 divide 1.0 -0.0 -> -Infinity Division_by_zero
+
+-- Specials
+dddiv780 divide Inf -Inf -> NaN Invalid_operation
+dddiv781 divide Inf -1000 -> -Infinity
+dddiv782 divide Inf -1 -> -Infinity
+dddiv783 divide Inf -0 -> -Infinity
+dddiv784 divide Inf 0 -> Infinity
+dddiv785 divide Inf 1 -> Infinity
+dddiv786 divide Inf 1000 -> Infinity
+dddiv787 divide Inf Inf -> NaN Invalid_operation
+dddiv788 divide -1000 Inf -> -0E-398 Clamped
+dddiv789 divide -Inf Inf -> NaN Invalid_operation
+dddiv790 divide -1 Inf -> -0E-398 Clamped
+dddiv791 divide -0 Inf -> -0E-398 Clamped
+dddiv792 divide 0 Inf -> 0E-398 Clamped
+dddiv793 divide 1 Inf -> 0E-398 Clamped
+dddiv794 divide 1000 Inf -> 0E-398 Clamped
+dddiv795 divide Inf Inf -> NaN Invalid_operation
+
+dddiv800 divide -Inf -Inf -> NaN Invalid_operation
+dddiv801 divide -Inf -1000 -> Infinity
+dddiv802 divide -Inf -1 -> Infinity
+dddiv803 divide -Inf -0 -> Infinity
+dddiv804 divide -Inf 0 -> -Infinity
+dddiv805 divide -Inf 1 -> -Infinity
+dddiv806 divide -Inf 1000 -> -Infinity
+dddiv807 divide -Inf Inf -> NaN Invalid_operation
+dddiv808 divide -1000 Inf -> -0E-398 Clamped
+dddiv809 divide -Inf -Inf -> NaN Invalid_operation
+dddiv810 divide -1 -Inf -> 0E-398 Clamped
+dddiv811 divide -0 -Inf -> 0E-398 Clamped
+dddiv812 divide 0 -Inf -> -0E-398 Clamped
+dddiv813 divide 1 -Inf -> -0E-398 Clamped
+dddiv814 divide 1000 -Inf -> -0E-398 Clamped
+dddiv815 divide Inf -Inf -> NaN Invalid_operation
+
+dddiv821 divide NaN -Inf -> NaN
+dddiv822 divide NaN -1000 -> NaN
+dddiv823 divide NaN -1 -> NaN
+dddiv824 divide NaN -0 -> NaN
+dddiv825 divide NaN 0 -> NaN
+dddiv826 divide NaN 1 -> NaN
+dddiv827 divide NaN 1000 -> NaN
+dddiv828 divide NaN Inf -> NaN
+dddiv829 divide NaN NaN -> NaN
+dddiv830 divide -Inf NaN -> NaN
+dddiv831 divide -1000 NaN -> NaN
+dddiv832 divide -1 NaN -> NaN
+dddiv833 divide -0 NaN -> NaN
+dddiv834 divide 0 NaN -> NaN
+dddiv835 divide 1 NaN -> NaN
+dddiv836 divide 1000 NaN -> NaN
+dddiv837 divide Inf NaN -> NaN
+
+dddiv841 divide sNaN -Inf -> NaN Invalid_operation
+dddiv842 divide sNaN -1000 -> NaN Invalid_operation
+dddiv843 divide sNaN -1 -> NaN Invalid_operation
+dddiv844 divide sNaN -0 -> NaN Invalid_operation
+dddiv845 divide sNaN 0 -> NaN Invalid_operation
+dddiv846 divide sNaN 1 -> NaN Invalid_operation
+dddiv847 divide sNaN 1000 -> NaN Invalid_operation
+dddiv848 divide sNaN NaN -> NaN Invalid_operation
+dddiv849 divide sNaN sNaN -> NaN Invalid_operation
+dddiv850 divide NaN sNaN -> NaN Invalid_operation
+dddiv851 divide -Inf sNaN -> NaN Invalid_operation
+dddiv852 divide -1000 sNaN -> NaN Invalid_operation
+dddiv853 divide -1 sNaN -> NaN Invalid_operation
+dddiv854 divide -0 sNaN -> NaN Invalid_operation
+dddiv855 divide 0 sNaN -> NaN Invalid_operation
+dddiv856 divide 1 sNaN -> NaN Invalid_operation
+dddiv857 divide 1000 sNaN -> NaN Invalid_operation
+dddiv858 divide Inf sNaN -> NaN Invalid_operation
+dddiv859 divide NaN sNaN -> NaN Invalid_operation
+
+-- propagating NaNs
+dddiv861 divide NaN9 -Inf -> NaN9
+dddiv862 divide NaN8 1000 -> NaN8
+dddiv863 divide NaN7 Inf -> NaN7
+dddiv864 divide NaN6 NaN5 -> NaN6
+dddiv865 divide -Inf NaN4 -> NaN4
+dddiv866 divide -1000 NaN3 -> NaN3
+dddiv867 divide Inf NaN2 -> NaN2
+
+dddiv871 divide sNaN99 -Inf -> NaN99 Invalid_operation
+dddiv872 divide sNaN98 -1 -> NaN98 Invalid_operation
+dddiv873 divide sNaN97 NaN -> NaN97 Invalid_operation
+dddiv874 divide sNaN96 sNaN94 -> NaN96 Invalid_operation
+dddiv875 divide NaN95 sNaN93 -> NaN93 Invalid_operation
+dddiv876 divide -Inf sNaN92 -> NaN92 Invalid_operation
+dddiv877 divide 0 sNaN91 -> NaN91 Invalid_operation
+dddiv878 divide Inf sNaN90 -> NaN90 Invalid_operation
+dddiv879 divide NaN sNaN89 -> NaN89 Invalid_operation
+
+dddiv881 divide -NaN9 -Inf -> -NaN9
+dddiv882 divide -NaN8 1000 -> -NaN8
+dddiv883 divide -NaN7 Inf -> -NaN7
+dddiv884 divide -NaN6 -NaN5 -> -NaN6
+dddiv885 divide -Inf -NaN4 -> -NaN4
+dddiv886 divide -1000 -NaN3 -> -NaN3
+dddiv887 divide Inf -NaN2 -> -NaN2
+
+dddiv891 divide -sNaN99 -Inf -> -NaN99 Invalid_operation
+dddiv892 divide -sNaN98 -1 -> -NaN98 Invalid_operation
+dddiv893 divide -sNaN97 NaN -> -NaN97 Invalid_operation
+dddiv894 divide -sNaN96 -sNaN94 -> -NaN96 Invalid_operation
+dddiv895 divide -NaN95 -sNaN93 -> -NaN93 Invalid_operation
+dddiv896 divide -Inf -sNaN92 -> -NaN92 Invalid_operation
+dddiv897 divide 0 -sNaN91 -> -NaN91 Invalid_operation
+dddiv898 divide Inf -sNaN90 -> -NaN90 Invalid_operation
+dddiv899 divide -NaN -sNaN89 -> -NaN89 Invalid_operation
+
+-- Various flavours of divide by 0
+dddiv901 divide 0 0 -> NaN Division_undefined
+dddiv902 divide 0.0E5 0 -> NaN Division_undefined
+dddiv903 divide 0.000 0 -> NaN Division_undefined
+dddiv904 divide 0.0001 0 -> Infinity Division_by_zero
+dddiv905 divide 0.01 0 -> Infinity Division_by_zero
+dddiv906 divide 0.1 0 -> Infinity Division_by_zero
+dddiv907 divide 1 0 -> Infinity Division_by_zero
+dddiv908 divide 1 0.0 -> Infinity Division_by_zero
+dddiv909 divide 10 0.0 -> Infinity Division_by_zero
+dddiv910 divide 1E+100 0.0 -> Infinity Division_by_zero
+dddiv911 divide 1E+100 0 -> Infinity Division_by_zero
+
+dddiv921 divide -0.0001 0 -> -Infinity Division_by_zero
+dddiv922 divide -0.01 0 -> -Infinity Division_by_zero
+dddiv923 divide -0.1 0 -> -Infinity Division_by_zero
+dddiv924 divide -1 0 -> -Infinity Division_by_zero
+dddiv925 divide -1 0.0 -> -Infinity Division_by_zero
+dddiv926 divide -10 0.0 -> -Infinity Division_by_zero
+dddiv927 divide -1E+100 0.0 -> -Infinity Division_by_zero
+dddiv928 divide -1E+100 0 -> -Infinity Division_by_zero
+
+dddiv931 divide 0.0001 -0 -> -Infinity Division_by_zero
+dddiv932 divide 0.01 -0 -> -Infinity Division_by_zero
+dddiv933 divide 0.1 -0 -> -Infinity Division_by_zero
+dddiv934 divide 1 -0 -> -Infinity Division_by_zero
+dddiv935 divide 1 -0.0 -> -Infinity Division_by_zero
+dddiv936 divide 10 -0.0 -> -Infinity Division_by_zero
+dddiv937 divide 1E+100 -0.0 -> -Infinity Division_by_zero
+dddiv938 divide 1E+100 -0 -> -Infinity Division_by_zero
+
+dddiv941 divide -0.0001 -0 -> Infinity Division_by_zero
+dddiv942 divide -0.01 -0 -> Infinity Division_by_zero
+dddiv943 divide -0.1 -0 -> Infinity Division_by_zero
+dddiv944 divide -1 -0 -> Infinity Division_by_zero
+dddiv945 divide -1 -0.0 -> Infinity Division_by_zero
+dddiv946 divide -10 -0.0 -> Infinity Division_by_zero
+dddiv947 divide -1E+100 -0.0 -> Infinity Division_by_zero
+dddiv948 divide -1E+100 -0 -> Infinity Division_by_zero
+
+-- Examples from SQL proposal (Krishna Kulkarni)
+dddiv1021 divide 1E0 1E0 -> 1
+dddiv1022 divide 1E0 2E0 -> 0.5
+dddiv1023 divide 1E0 3E0 -> 0.3333333333333333 Inexact Rounded
+dddiv1024 divide 100E-2 1000E-3 -> 1
+dddiv1025 divide 24E-1 2E0 -> 1.2
+dddiv1026 divide 2400E-3 2E0 -> 1.200
+dddiv1027 divide 5E0 2E0 -> 2.5
+dddiv1028 divide 5E0 20E-1 -> 2.5
+dddiv1029 divide 5E0 2000E-3 -> 2.5
+dddiv1030 divide 5E0 2E-1 -> 25
+dddiv1031 divide 5E0 20E-2 -> 25
+dddiv1032 divide 480E-2 3E0 -> 1.60
+dddiv1033 divide 47E-1 2E0 -> 2.35
+
+-- ECMAScript bad examples
+rounding: half_down
+dddiv1040 divide 5 9 -> 0.5555555555555556 Inexact Rounded
+rounding: half_even
+dddiv1041 divide 6 11 -> 0.5454545454545455 Inexact Rounded
+
+-- overflow and underflow tests .. note subnormal results
+-- signs
+dddiv1051 divide 1e+277 1e-311 -> Infinity Overflow Inexact Rounded
+dddiv1052 divide 1e+277 -1e-311 -> -Infinity Overflow Inexact Rounded
+dddiv1053 divide -1e+277 1e-311 -> -Infinity Overflow Inexact Rounded
+dddiv1054 divide -1e+277 -1e-311 -> Infinity Overflow Inexact Rounded
+dddiv1055 divide 1e-277 1e+311 -> 0E-398 Underflow Subnormal Inexact Rounded Clamped
+dddiv1056 divide 1e-277 -1e+311 -> -0E-398 Underflow Subnormal Inexact Rounded Clamped
+dddiv1057 divide -1e-277 1e+311 -> -0E-398 Underflow Subnormal Inexact Rounded Clamped
+dddiv1058 divide -1e-277 -1e+311 -> 0E-398 Underflow Subnormal Inexact Rounded Clamped
+
+-- 'subnormal' boundary (all hard underflow or overflow in base arithemtic)
+dddiv1060 divide 1e-291 1e+101 -> 1E-392 Subnormal
+dddiv1061 divide 1e-291 1e+102 -> 1E-393 Subnormal
+dddiv1062 divide 1e-291 1e+103 -> 1E-394 Subnormal
+dddiv1063 divide 1e-291 1e+104 -> 1E-395 Subnormal
+dddiv1064 divide 1e-291 1e+105 -> 1E-396 Subnormal
+dddiv1065 divide 1e-291 1e+106 -> 1E-397 Subnormal
+dddiv1066 divide 1e-291 1e+107 -> 1E-398 Subnormal
+dddiv1067 divide 1e-291 1e+108 -> 0E-398 Underflow Subnormal Inexact Rounded Clamped
+dddiv1068 divide 1e-291 1e+109 -> 0E-398 Underflow Subnormal Inexact Rounded Clamped
+dddiv1069 divide 1e-291 1e+110 -> 0E-398 Underflow Subnormal Inexact Rounded Clamped
+-- [no equivalent of 'subnormal' for overflow]
+dddiv1070 divide 1e+60 1e-321 -> 1.000000000000E+381 Clamped
+dddiv1071 divide 1e+60 1e-322 -> 1.0000000000000E+382 Clamped
+dddiv1072 divide 1e+60 1e-323 -> 1.00000000000000E+383 Clamped
+dddiv1073 divide 1e+60 1e-324 -> 1.000000000000000E+384 Clamped
+dddiv1074 divide 1e+60 1e-325 -> Infinity Overflow Inexact Rounded
+dddiv1075 divide 1e+60 1e-326 -> Infinity Overflow Inexact Rounded
+dddiv1076 divide 1e+60 1e-327 -> Infinity Overflow Inexact Rounded
+dddiv1077 divide 1e+60 1e-328 -> Infinity Overflow Inexact Rounded
+dddiv1078 divide 1e+60 1e-329 -> Infinity Overflow Inexact Rounded
+dddiv1079 divide 1e+60 1e-330 -> Infinity Overflow Inexact Rounded
+
+dddiv1101 divide 1.0000E-394 1 -> 1.0000E-394 Subnormal
+dddiv1102 divide 1.000E-394 1e+1 -> 1.000E-395 Subnormal
+dddiv1103 divide 1.00E-394 1e+2 -> 1.00E-396 Subnormal
+dddiv1104 divide 1.0E-394 1e+3 -> 1.0E-397 Subnormal
+dddiv1105 divide 1.0E-394 1e+4 -> 1E-398 Subnormal Rounded
+dddiv1106 divide 1.3E-394 1e+4 -> 1E-398 Underflow Subnormal Inexact Rounded
+dddiv1107 divide 1.5E-394 1e+4 -> 2E-398 Underflow Subnormal Inexact Rounded
+dddiv1108 divide 1.7E-394 1e+4 -> 2E-398 Underflow Subnormal Inexact Rounded
+dddiv1109 divide 2.3E-394 1e+4 -> 2E-398 Underflow Subnormal Inexact Rounded
+dddiv1110 divide 2.5E-394 1e+4 -> 2E-398 Underflow Subnormal Inexact Rounded
+dddiv1111 divide 2.7E-394 1e+4 -> 3E-398 Underflow Subnormal Inexact Rounded
+dddiv1112 divide 1.49E-394 1e+4 -> 1E-398 Underflow Subnormal Inexact Rounded
+dddiv1113 divide 1.50E-394 1e+4 -> 2E-398 Underflow Subnormal Inexact Rounded
+dddiv1114 divide 1.51E-394 1e+4 -> 2E-398 Underflow Subnormal Inexact Rounded
+dddiv1115 divide 2.49E-394 1e+4 -> 2E-398 Underflow Subnormal Inexact Rounded
+dddiv1116 divide 2.50E-394 1e+4 -> 2E-398 Underflow Subnormal Inexact Rounded
+dddiv1117 divide 2.51E-394 1e+4 -> 3E-398 Underflow Subnormal Inexact Rounded
+
+dddiv1118 divide 1E-394 1e+4 -> 1E-398 Subnormal
+dddiv1119 divide 3E-394 1e+5 -> 0E-398 Underflow Subnormal Inexact Rounded Clamped
+dddiv1120 divide 5E-394 1e+5 -> 0E-398 Underflow Subnormal Inexact Rounded Clamped
+dddiv1121 divide 7E-394 1e+5 -> 1E-398 Underflow Subnormal Inexact Rounded
+dddiv1122 divide 9E-394 1e+5 -> 1E-398 Underflow Subnormal Inexact Rounded
+dddiv1123 divide 9.9E-394 1e+5 -> 1E-398 Underflow Subnormal Inexact Rounded
+
+dddiv1124 divide 1E-394 -1e+4 -> -1E-398 Subnormal
+dddiv1125 divide 3E-394 -1e+5 -> -0E-398 Underflow Subnormal Inexact Rounded Clamped
+dddiv1126 divide -5E-394 1e+5 -> -0E-398 Underflow Subnormal Inexact Rounded Clamped
+dddiv1127 divide 7E-394 -1e+5 -> -1E-398 Underflow Subnormal Inexact Rounded
+dddiv1128 divide -9E-394 1e+5 -> -1E-398 Underflow Subnormal Inexact Rounded
+dddiv1129 divide 9.9E-394 -1e+5 -> -1E-398 Underflow Subnormal Inexact Rounded
+dddiv1130 divide 3.0E-394 -1e+5 -> -0E-398 Underflow Subnormal Inexact Rounded Clamped
+
+dddiv1131 divide 1.0E-199 1e+200 -> 0E-398 Underflow Subnormal Inexact Rounded Clamped
+dddiv1132 divide 1.0E-199 1e+199 -> 1E-398 Subnormal Rounded
+dddiv1133 divide 1.0E-199 1e+198 -> 1.0E-397 Subnormal
+dddiv1134 divide 2.0E-199 2e+198 -> 1.0E-397 Subnormal
+dddiv1135 divide 4.0E-199 4e+198 -> 1.0E-397 Subnormal
+dddiv1136 divide 10.0E-199 10e+198 -> 1.0E-397 Subnormal
+dddiv1137 divide 30.0E-199 30e+198 -> 1.0E-397 Subnormal
+
+-- randoms
+dddiv2010 divide -3.303226714900711E-35 8.796578842713183E+73 -> -3.755126594058783E-109 Inexact Rounded
+dddiv2011 divide 933153327821073.6 68782181090246.25 -> 13.56678885475763 Inexact Rounded
+dddiv2012 divide 5.04752436057906E-72 -8.179481771238642E+64 -> -6.170958627632835E-137 Inexact Rounded
+dddiv2013 divide -3707613309582318 3394911196503.048 -> -1092.109070010836 Inexact Rounded
+dddiv2014 divide 99689.0555190461 -4.735208553891464 -> -21052.72753765411 Inexact Rounded
+dddiv2015 divide -1447915775613329 269750797.8184875 -> -5367605.164925653 Inexact Rounded
+dddiv2016 divide -9.394881304225258E-19 -830585.0252671636 -> 1.131116143251358E-24 Inexact Rounded
+dddiv2017 divide -1.056283432738934 88.58754555124013 -> -0.01192361100159352 Inexact Rounded
+dddiv2018 divide 5763220933343.081 689089567025052.1 -> 0.008363529516524456 Inexact Rounded
+dddiv2019 divide 873819.122103216 9.740612494523300E-49 -> 8.970884763093948E+53 Inexact Rounded
+dddiv2020 divide 8022914.838533576 6178.566801742713 -> 1298.507420243583 Inexact Rounded
+dddiv2021 divide 203982.7605650363 -2158.283639053435 -> -94.51156320422168 Inexact Rounded
+dddiv2022 divide 803.6310547013030 7101143795399.238 -> 1.131692411611166E-10 Inexact Rounded
+dddiv2023 divide 9.251697842123399E-82 -1.342350220606119E-7 -> -6.892163982321936E-75 Inexact Rounded
+dddiv2024 divide -1.980600645637992E-53 -5.474262753214457E+77 -> 3.618022617703168E-131 Inexact Rounded
+dddiv2025 divide -210.0322996351690 -8.580951835872843E+80 -> 2.447657365434971E-79 Inexact Rounded
+dddiv2026 divide -1.821980314020370E+85 -3.018915267138165 -> 6.035215144503042E+84 Inexact Rounded
+dddiv2027 divide -772264503601.1047 5.158258271408988E-86 -> -1.497141986630614E+97 Inexact Rounded
+dddiv2028 divide -767.0532415847106 2.700027228028939E-59 -> -2.840909282772941E+61 Inexact Rounded
+dddiv2029 divide 496724.8548250093 7.32700588163100E+66 -> 6.779370220929013E-62 Inexact Rounded
+dddiv2030 divide -304232651447703.9 -108.9730808657440 -> 2791814721862.565 Inexact Rounded
+dddiv2031 divide -7.233817192699405E+42 -5711302004.149411 -> 1.266579352211430E+33 Inexact Rounded
+dddiv2032 divide -9.999221444912745E+96 4010569406446197 -> -2.493217404202250E+81 Inexact Rounded
+dddiv2033 divide -1837272.061937622 8.356322838066762 -> -219866.0939196882 Inexact Rounded
+dddiv2034 divide 2168.517555606529 209.1910258615061 -> 10.36620737756784 Inexact Rounded
+dddiv2035 divide -1.884389790576371E+88 2.95181953870583E+20 -> -6.383824505079828E+67 Inexact Rounded
+dddiv2036 divide 732263.6037438196 961222.3634446889 -> 0.7618045850698269 Inexact Rounded
+dddiv2037 divide -813461419.0348336 5.376293753809143E+84 -> -1.513052404285927E-76 Inexact Rounded
+dddiv2038 divide -45562133508108.50 -9.776843494690107E+51 -> 4.660208945029519E-39 Inexact Rounded
+dddiv2039 divide -6.489393172441016E+80 -9101965.097852113 -> 7.129661674897421E+73 Inexact Rounded
+dddiv2040 divide 3.694576237117349E+93 6683512.012622003 -> 5.527896456443912E+86 Inexact Rounded
+dddiv2041 divide -2.252877726403272E+19 -7451913256.181367 -> 3023220546.125531 Inexact Rounded
+dddiv2042 divide 518303.1989111842 50.01587020474133 -> 10362.77479107123 Inexact Rounded
+dddiv2043 divide 2.902087881880103E+24 33.32400992305702 -> 8.708699488989578E+22 Inexact Rounded
+dddiv2044 divide 549619.4559510557 1660824845196338 -> 3.309316196351104E-10 Inexact Rounded
+dddiv2045 divide -6775670774684043 8292152023.077262 -> -817118.4941891062 Inexact Rounded
+dddiv2046 divide -77.50923921524079 -5.636882655425815E+74 -> 1.375037302588405E-73 Inexact Rounded
+dddiv2047 divide -2.984889459605149E-10 -88106156784122.99 -> 3.387833005721384E-24 Inexact Rounded
+dddiv2048 divide 0.949517293997085 44767115.96450998 -> 2.121015110175589E-8 Inexact Rounded
+dddiv2049 divide -2760937211.084521 -1087015876975408 -> 0.000002539923537057024 Inexact Rounded
+dddiv2050 divide 28438351.85030536 -4.209397904088624E-47 -> -6.755919135770688E+53 Inexact Rounded
+dddiv2051 divide -85562731.6820956 -7.166045442530185E+45 -> 1.194002080621542E-38 Inexact Rounded
+dddiv2052 divide 2533802852165.25 7154.119606235955 -> 354173957.3317501 Inexact Rounded
+dddiv2053 divide -8858831346851.474 97.59734208801716 -> -90769186509.83577 Inexact Rounded
+dddiv2054 divide 176783629801387.5 840073263.3109817 -> 210438.3480848206 Inexact Rounded
+dddiv2055 divide -493506471796175.6 79733894790822.03 -> -6.189418854940746 Inexact Rounded
+dddiv2056 divide 790.1682542103445 829.9449370367435 -> 0.9520731062371214 Inexact Rounded
+dddiv2057 divide -8920459838.583164 -4767.889187899214 -> 1870945.294035581 Inexact Rounded
+dddiv2058 divide 53536687164422.1 53137.5007032689 -> 1007512330.385698 Inexact Rounded
+dddiv2059 divide 4.051532311146561E-74 -2.343089768972261E+94 -> -1.729140882606332E-168 Inexact Rounded
+dddiv2060 divide -14847758778636.88 3.062543516383807E-43 -> -4.848178874587497E+55 Inexact Rounded
+
+-- Division probably has pre-rounding, so need to test rounding
+-- explicitly rather than assume included through other tests;
+-- tests include simple rounding and also the tricky cases of sticky
+-- bits following two zeros
+--
+-- 1/99999 gives 0.0000100001000010000100001000010000100001
+-- 1234567890123456
+--
+-- 1/999999 gives 0.000001000001000001000001000001000001000001
+-- 1234567890123456
+
+rounding: ceiling
+dddiv3001 divide 1 3 -> 0.3333333333333334 Inexact Rounded
+dddiv3002 divide 2 3 -> 0.6666666666666667 Inexact Rounded
+dddiv3003 divide 1 99999 -> 0.00001000010000100002 Inexact Rounded
+dddiv3004 divide 1 999999 -> 0.000001000001000001001 Inexact Rounded
+
+rounding: floor
+dddiv3011 divide 1 3 -> 0.3333333333333333 Inexact Rounded
+dddiv3012 divide 2 3 -> 0.6666666666666666 Inexact Rounded
+dddiv3013 divide 1 99999 -> 0.00001000010000100001 Inexact Rounded
+dddiv3014 divide 1 999999 -> 0.000001000001000001000 Inexact Rounded
+
+rounding: up
+dddiv3021 divide 1 3 -> 0.3333333333333334 Inexact Rounded
+dddiv3022 divide 2 3 -> 0.6666666666666667 Inexact Rounded
+dddiv3023 divide 1 99999 -> 0.00001000010000100002 Inexact Rounded
+dddiv3024 divide 1 999999 -> 0.000001000001000001001 Inexact Rounded
+
+rounding: down
+dddiv3031 divide 1 3 -> 0.3333333333333333 Inexact Rounded
+dddiv3032 divide 2 3 -> 0.6666666666666666 Inexact Rounded
+dddiv3033 divide 1 99999 -> 0.00001000010000100001 Inexact Rounded
+dddiv3034 divide 1 999999 -> 0.000001000001000001000 Inexact Rounded
+
+rounding: half_up
+dddiv3041 divide 1 3 -> 0.3333333333333333 Inexact Rounded
+dddiv3042 divide 2 3 -> 0.6666666666666667 Inexact Rounded
+dddiv3043 divide 1 99999 -> 0.00001000010000100001 Inexact Rounded
+dddiv3044 divide 1 999999 -> 0.000001000001000001000 Inexact Rounded
+
+rounding: half_down
+dddiv3051 divide 1 3 -> 0.3333333333333333 Inexact Rounded
+dddiv3052 divide 2 3 -> 0.6666666666666667 Inexact Rounded
+dddiv3053 divide 1 99999 -> 0.00001000010000100001 Inexact Rounded
+dddiv3054 divide 1 999999 -> 0.000001000001000001000 Inexact Rounded
+
+rounding: half_even
+dddiv3061 divide 1 3 -> 0.3333333333333333 Inexact Rounded
+dddiv3062 divide 2 3 -> 0.6666666666666667 Inexact Rounded
+dddiv3063 divide 1 99999 -> 0.00001000010000100001 Inexact Rounded
+dddiv3064 divide 1 999999 -> 0.000001000001000001000 Inexact Rounded
+
+rounding: 05up
+dddiv3071 divide 1 3 -> 0.3333333333333333 Inexact Rounded
+dddiv3072 divide 2 3 -> 0.6666666666666666 Inexact Rounded
+dddiv3073 divide 1 99999 -> 0.00001000010000100001 Inexact Rounded
+dddiv3074 divide 1 999999 -> 0.000001000001000001001 Inexact Rounded
+
+-- random divide tests with result near 1
+rounding: half_even
+dddiv4001 divide 3195385192916917 3195385192946695 -> 0.9999999999906809 Inexact Rounded
+dddiv4002 divide 1393723067526993 1393723067519475 -> 1.000000000005394 Inexact Rounded
+dddiv4003 divide 759985543702302 759985543674015 -> 1.000000000037220 Inexact Rounded
+dddiv4004 divide 9579158456027302 9579158456036864 -> 0.9999999999990018 Inexact Rounded
+dddiv4005 divide 7079398299143569 7079398299156904 -> 0.9999999999981164 Inexact Rounded
+dddiv4006 divide 6636169255366598 6636169255336386 -> 1.000000000004553 Inexact Rounded
+dddiv4007 divide 6964813971340090 6964813971321554 -> 1.000000000002661 Inexact Rounded
+dddiv4008 divide 4182275225480784 4182275225454009 -> 1.000000000006402 Inexact Rounded
+dddiv4009 divide 9228325124938029 9228325124918730 -> 1.000000000002091 Inexact Rounded
+dddiv4010 divide 3428346338630192 3428346338609843 -> 1.000000000005936 Inexact Rounded
+dddiv4011 divide 2143511550722893 2143511550751754 -> 0.9999999999865356 Inexact Rounded
+dddiv4012 divide 1672732924396785 1672732924401811 -> 0.9999999999969953 Inexact Rounded
+dddiv4013 divide 4190714611948216 4190714611948664 -> 0.9999999999998931 Inexact Rounded
+dddiv4014 divide 3942254800848877 3942254800814556 -> 1.000000000008706 Inexact Rounded
+dddiv4015 divide 2854459826952334 2854459826960762 -> 0.9999999999970474 Inexact Rounded
+dddiv4016 divide 2853258953664731 2853258953684471 -> 0.9999999999930816 Inexact Rounded
+dddiv4017 divide 9453512638125978 9453512638146425 -> 0.9999999999978371 Inexact Rounded
+dddiv4018 divide 339476633940369 339476633912887 -> 1.000000000080954 Inexact Rounded
+dddiv4019 divide 4542181492688467 4542181492697735 -> 0.9999999999979596 Inexact Rounded
+dddiv4020 divide 7312600192399197 7312600192395424 -> 1.000000000000516 Inexact Rounded
+dddiv4021 divide 1811674985570111 1811674985603935 -> 0.9999999999813300 Inexact Rounded
+dddiv4022 divide 1706462639003481 1706462639017740 -> 0.9999999999916441 Inexact Rounded
+dddiv4023 divide 6697052654940368 6697052654934110 -> 1.000000000000934 Inexact Rounded
+dddiv4024 divide 5015283664277539 5015283664310719 -> 0.9999999999933842 Inexact Rounded
+dddiv4025 divide 2359501561537464 2359501561502464 -> 1.000000000014834 Inexact Rounded
+dddiv4026 divide 2669850227909157 2669850227901548 -> 1.000000000002850 Inexact Rounded
+dddiv4027 divide 9329725546974648 9329725547002445 -> 0.9999999999970206 Inexact Rounded
+dddiv4028 divide 3228562867071248 3228562867106206 -> 0.9999999999891723 Inexact Rounded
+dddiv4029 divide 4862226644921175 4862226644909380 -> 1.000000000002426 Inexact Rounded
+dddiv4030 divide 1022267997054529 1022267997071329 -> 0.9999999999835660 Inexact Rounded
+dddiv4031 divide 1048777482023719 1048777482000948 -> 1.000000000021712 Inexact Rounded
+dddiv4032 divide 9980113777337098 9980113777330539 -> 1.000000000000657 Inexact Rounded
+dddiv4033 divide 7506839167963908 7506839167942901 -> 1.000000000002798 Inexact Rounded
+dddiv4034 divide 231119751977860 231119751962453 -> 1.000000000066662 Inexact Rounded
+dddiv4035 divide 4034903664762962 4034903664795526 -> 0.9999999999919294 Inexact Rounded
+dddiv4036 divide 5700122152274696 5700122152251386 -> 1.000000000004089 Inexact Rounded
+dddiv4037 divide 6869599590293110 6869599590293495 -> 0.9999999999999440 Inexact Rounded
+dddiv4038 divide 5576281960092797 5576281960105579 -> 0.9999999999977078 Inexact Rounded
+dddiv4039 divide 2304844888381318 2304844888353073 -> 1.000000000012255 Inexact Rounded
+dddiv4040 divide 3265933651656452 3265933651682779 -> 0.9999999999919389 Inexact Rounded
+dddiv4041 divide 5235714985079914 5235714985066131 -> 1.000000000002632 Inexact Rounded
+dddiv4042 divide 5578481572827551 5578481572822945 -> 1.000000000000826 Inexact Rounded
+dddiv4043 divide 4909616081396134 4909616081373076 -> 1.000000000004696 Inexact Rounded
+dddiv4044 divide 636447224349537 636447224338757 -> 1.000000000016938 Inexact Rounded
+dddiv4045 divide 1539373428396640 1539373428364727 -> 1.000000000020731 Inexact Rounded
+dddiv4046 divide 2028786707377893 2028786707378866 -> 0.9999999999995204 Inexact Rounded
+dddiv4047 divide 137643260486222 137643260487419 -> 0.9999999999913036 Inexact Rounded
+dddiv4048 divide 247451519746765 247451519752267 -> 0.9999999999777653 Inexact Rounded
+dddiv4049 divide 7877858475022054 7877858474999794 -> 1.000000000002826 Inexact Rounded
+dddiv4050 divide 7333242694766258 7333242694744628 -> 1.000000000002950 Inexact Rounded
+dddiv4051 divide 124051503698592 124051503699397 -> 0.9999999999935108 Inexact Rounded
+dddiv4052 divide 8944737432385188 8944737432406860 -> 0.9999999999975771 Inexact Rounded
+dddiv4053 divide 9883948923406874 9883948923424843 -> 0.9999999999981820 Inexact Rounded
+dddiv4054 divide 6829178741654284 6829178741671973 -> 0.9999999999974098 Inexact Rounded
+dddiv4055 divide 7342752479768122 7342752479793385 -> 0.9999999999965595 Inexact Rounded
+dddiv4056 divide 8066426579008783 8066426578977563 -> 1.000000000003870 Inexact Rounded
+dddiv4057 divide 8992775071383295 8992775071352712 -> 1.000000000003401 Inexact Rounded
+dddiv4058 divide 5485011755545641 5485011755543611 -> 1.000000000000370 Inexact Rounded
+dddiv4059 divide 5779983054353918 5779983054365300 -> 0.9999999999980308 Inexact Rounded
+dddiv4060 divide 9502265102713774 9502265102735208 -> 0.9999999999977443 Inexact Rounded
+dddiv4061 divide 2109558399130981 2109558399116281 -> 1.000000000006968 Inexact Rounded
+dddiv4062 divide 5296182636350471 5296182636351521 -> 0.9999999999998017 Inexact Rounded
+dddiv4063 divide 1440019225591883 1440019225601844 -> 0.9999999999930827 Inexact Rounded
+dddiv4064 divide 8182110791881341 8182110791847174 -> 1.000000000004176 Inexact Rounded
+dddiv4065 divide 489098235512060 489098235534516 -> 0.9999999999540869 Inexact Rounded
+dddiv4066 divide 6475687084782038 6475687084756089 -> 1.000000000004007 Inexact Rounded
+dddiv4067 divide 8094348555736948 8094348555759236 -> 0.9999999999972465 Inexact Rounded
+dddiv4068 divide 1982766816291543 1982766816309463 -> 0.9999999999909621 Inexact Rounded
+dddiv4069 divide 9277314300113251 9277314300084467 -> 1.000000000003103 Inexact Rounded
+dddiv4070 divide 4335532959318934 4335532959293167 -> 1.000000000005943 Inexact Rounded
+dddiv4071 divide 7767113032981348 7767113032968132 -> 1.000000000001702 Inexact Rounded
+dddiv4072 divide 1578548053342868 1578548053370448 -> 0.9999999999825282 Inexact Rounded
+dddiv4073 divide 3790420686666898 3790420686636315 -> 1.000000000008068 Inexact Rounded
+dddiv4074 divide 871682421955147 871682421976441 -> 0.9999999999755714 Inexact Rounded
+dddiv4075 divide 744141054479940 744141054512329 -> 0.9999999999564746 Inexact Rounded
+dddiv4076 divide 8956824183670735 8956824183641741 -> 1.000000000003237 Inexact Rounded
+dddiv4077 divide 8337291694485682 8337291694451193 -> 1.000000000004137 Inexact Rounded
+dddiv4078 divide 4107775944683669 4107775944657097 -> 1.000000000006469 Inexact Rounded
+dddiv4079 divide 8691900057964648 8691900057997555 -> 0.9999999999962141 Inexact Rounded
+dddiv4080 divide 2229528520536462 2229528520502337 -> 1.000000000015306 Inexact Rounded
+dddiv4081 divide 398442083774322 398442083746273 -> 1.000000000070397 Inexact Rounded
+dddiv4082 divide 5319819776808759 5319819776838313 -> 0.9999999999944445 Inexact Rounded
+dddiv4083 divide 7710491299066855 7710491299041858 -> 1.000000000003242 Inexact Rounded
+dddiv4084 divide 9083231296087266 9083231296058160 -> 1.000000000003204 Inexact Rounded
+dddiv4085 divide 3566873574904559 3566873574890328 -> 1.000000000003990 Inexact Rounded
+dddiv4086 divide 596343290550525 596343290555614 -> 0.9999999999914663 Inexact Rounded
+dddiv4087 divide 278227925093192 278227925068104 -> 1.000000000090171 Inexact Rounded
+dddiv4088 divide 3292902958490649 3292902958519881 -> 0.9999999999911227 Inexact Rounded
+dddiv4089 divide 5521871364245881 5521871364229536 -> 1.000000000002960 Inexact Rounded
+dddiv4090 divide 2406505602883617 2406505602857997 -> 1.000000000010646 Inexact Rounded
+dddiv4091 divide 7741146984869208 7741146984867255 -> 1.000000000000252 Inexact Rounded
+dddiv4092 divide 4576041832414909 4576041832405102 -> 1.000000000002143 Inexact Rounded
+dddiv4093 divide 9183756982878057 9183756982901934 -> 0.9999999999974001 Inexact Rounded
+dddiv4094 divide 6215736513855159 6215736513870342 -> 0.9999999999975573 Inexact Rounded
+dddiv4095 divide 248554968534533 248554968551417 -> 0.9999999999320714 Inexact Rounded
+dddiv4096 divide 376314165668645 376314165659755 -> 1.000000000023624 Inexact Rounded
+dddiv4097 divide 5513569249809718 5513569249808906 -> 1.000000000000147 Inexact Rounded
+dddiv4098 divide 3367992242167904 3367992242156228 -> 1.000000000003467 Inexact Rounded
+dddiv4099 divide 6134869538966967 6134869538985986 -> 0.9999999999968999 Inexact Rounded
+
+-- Null tests
+dddiv9998 divide 10 # -> NaN Invalid_operation
+dddiv9999 divide # 10 -> NaN Invalid_operation
+
diff --git a/Lib/test/decimaltestdata/ddDivideInt.decTest b/Lib/test/decimaltestdata/ddDivideInt.decTest
new file mode 100644
index 0000000..782fe8d
--- /dev/null
+++ b/Lib/test/decimaltestdata/ddDivideInt.decTest
@@ -0,0 +1,449 @@
+------------------------------------------------------------------------
+-- ddDivideInt.decTest -- decDouble integer division --
+-- Copyright (c) IBM Corporation, 1981, 2007. All rights reserved. --
+------------------------------------------------------------------------
+-- Please see the document "General Decimal Arithmetic Testcases" --
+-- at http://www2.hursley.ibm.com/decimal for the description of --
+-- these testcases. --
+-- --
+-- These testcases are experimental ('beta' versions), and they --
+-- may contain errors. They are offered on an as-is basis. In --
+-- particular, achieving the same results as the tests here is not --
+-- a guarantee that an implementation complies with any Standard --
+-- or specification. The tests are not exhaustive. --
+-- --
+-- Please send comments, suggestions, and corrections to the author: --
+-- Mike Cowlishaw, IBM Fellow --
+-- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK --
+-- mfc@uk.ibm.com --
+------------------------------------------------------------------------
+version: 2.56
+
+precision: 16
+maxExponent: 384
+minExponent: -383
+extended: 1
+clamp: 1
+rounding: half_even
+
+dddvi001 divideint 1 1 -> 1
+dddvi002 divideint 2 1 -> 2
+dddvi003 divideint 1 2 -> 0
+dddvi004 divideint 2 2 -> 1
+dddvi005 divideint 0 1 -> 0
+dddvi006 divideint 0 2 -> 0
+dddvi007 divideint 1 3 -> 0
+dddvi008 divideint 2 3 -> 0
+dddvi009 divideint 3 3 -> 1
+
+dddvi010 divideint 2.4 1 -> 2
+dddvi011 divideint 2.4 -1 -> -2
+dddvi012 divideint -2.4 1 -> -2
+dddvi013 divideint -2.4 -1 -> 2
+dddvi014 divideint 2.40 1 -> 2
+dddvi015 divideint 2.400 1 -> 2
+dddvi016 divideint 2.4 2 -> 1
+dddvi017 divideint 2.400 2 -> 1
+dddvi018 divideint 2. 2 -> 1
+dddvi019 divideint 20 20 -> 1
+
+dddvi020 divideint 187 187 -> 1
+dddvi021 divideint 5 2 -> 2
+dddvi022 divideint 5 2.0 -> 2
+dddvi023 divideint 5 2.000 -> 2
+dddvi024 divideint 5 0.200 -> 25
+dddvi025 divideint 5 0.200 -> 25
+
+dddvi030 divideint 1 2 -> 0
+dddvi031 divideint 1 4 -> 0
+dddvi032 divideint 1 8 -> 0
+dddvi033 divideint 1 16 -> 0
+dddvi034 divideint 1 32 -> 0
+dddvi035 divideint 1 64 -> 0
+dddvi040 divideint 1 -2 -> -0
+dddvi041 divideint 1 -4 -> -0
+dddvi042 divideint 1 -8 -> -0
+dddvi043 divideint 1 -16 -> -0
+dddvi044 divideint 1 -32 -> -0
+dddvi045 divideint 1 -64 -> -0
+dddvi050 divideint -1 2 -> -0
+dddvi051 divideint -1 4 -> -0
+dddvi052 divideint -1 8 -> -0
+dddvi053 divideint -1 16 -> -0
+dddvi054 divideint -1 32 -> -0
+dddvi055 divideint -1 64 -> -0
+dddvi060 divideint -1 -2 -> 0
+dddvi061 divideint -1 -4 -> 0
+dddvi062 divideint -1 -8 -> 0
+dddvi063 divideint -1 -16 -> 0
+dddvi064 divideint -1 -32 -> 0
+dddvi065 divideint -1 -64 -> 0
+
+-- similar with powers of ten
+dddvi160 divideint 1 1 -> 1
+dddvi161 divideint 1 10 -> 0
+dddvi162 divideint 1 100 -> 0
+dddvi163 divideint 1 1000 -> 0
+dddvi164 divideint 1 10000 -> 0
+dddvi165 divideint 1 100000 -> 0
+dddvi166 divideint 1 1000000 -> 0
+dddvi167 divideint 1 10000000 -> 0
+dddvi168 divideint 1 100000000 -> 0
+dddvi170 divideint 1 -1 -> -1
+dddvi171 divideint 1 -10 -> -0
+dddvi172 divideint 1 -100 -> -0
+dddvi173 divideint 1 -1000 -> -0
+dddvi174 divideint 1 -10000 -> -0
+dddvi175 divideint 1 -100000 -> -0
+dddvi176 divideint 1 -1000000 -> -0
+dddvi177 divideint 1 -10000000 -> -0
+dddvi178 divideint 1 -100000000 -> -0
+dddvi180 divideint -1 1 -> -1
+dddvi181 divideint -1 10 -> -0
+dddvi182 divideint -1 100 -> -0
+dddvi183 divideint -1 1000 -> -0
+dddvi184 divideint -1 10000 -> -0
+dddvi185 divideint -1 100000 -> -0
+dddvi186 divideint -1 1000000 -> -0
+dddvi187 divideint -1 10000000 -> -0
+dddvi188 divideint -1 100000000 -> -0
+dddvi190 divideint -1 -1 -> 1
+dddvi191 divideint -1 -10 -> 0
+dddvi192 divideint -1 -100 -> 0
+dddvi193 divideint -1 -1000 -> 0
+dddvi194 divideint -1 -10000 -> 0
+dddvi195 divideint -1 -100000 -> 0
+dddvi196 divideint -1 -1000000 -> 0
+dddvi197 divideint -1 -10000000 -> 0
+dddvi198 divideint -1 -100000000 -> 0
+
+-- some long operand (at p=9) cases
+dddvi070 divideint 999999999 1 -> 999999999
+dddvi071 divideint 999999999.4 1 -> 999999999
+dddvi072 divideint 999999999.5 1 -> 999999999
+dddvi073 divideint 999999999.9 1 -> 999999999
+dddvi074 divideint 999999999.999 1 -> 999999999
+
+dddvi090 divideint 0. 1 -> 0
+dddvi091 divideint .0 1 -> 0
+dddvi092 divideint 0.00 1 -> 0
+dddvi093 divideint 0.00E+9 1 -> 0
+dddvi094 divideint 0.0000E-50 1 -> 0
+
+dddvi100 divideint 1 1 -> 1
+dddvi101 divideint 1 2 -> 0
+dddvi102 divideint 1 3 -> 0
+dddvi103 divideint 1 4 -> 0
+dddvi104 divideint 1 5 -> 0
+dddvi105 divideint 1 6 -> 0
+dddvi106 divideint 1 7 -> 0
+dddvi107 divideint 1 8 -> 0
+dddvi108 divideint 1 9 -> 0
+dddvi109 divideint 1 10 -> 0
+dddvi110 divideint 1 1 -> 1
+dddvi111 divideint 2 1 -> 2
+dddvi112 divideint 3 1 -> 3
+dddvi113 divideint 4 1 -> 4
+dddvi114 divideint 5 1 -> 5
+dddvi115 divideint 6 1 -> 6
+dddvi116 divideint 7 1 -> 7
+dddvi117 divideint 8 1 -> 8
+dddvi118 divideint 9 1 -> 9
+dddvi119 divideint 10 1 -> 10
+
+-- from DiagBigDecimal
+dddvi131 divideint 101.3 1 -> 101
+dddvi132 divideint 101.0 1 -> 101
+dddvi133 divideint 101.3 3 -> 33
+dddvi134 divideint 101.0 3 -> 33
+dddvi135 divideint 2.4 1 -> 2
+dddvi136 divideint 2.400 1 -> 2
+dddvi137 divideint 18 18 -> 1
+dddvi138 divideint 1120 1000 -> 1
+dddvi139 divideint 2.4 2 -> 1
+dddvi140 divideint 2.400 2 -> 1
+dddvi141 divideint 0.5 2.000 -> 0
+dddvi142 divideint 8.005 7 -> 1
+dddvi143 divideint 5 2 -> 2
+dddvi144 divideint 0 2 -> 0
+dddvi145 divideint 0.00 2 -> 0
+
+-- Others
+dddvi150 divideint 12345 4.999 -> 2469
+dddvi151 divideint 12345 4.99 -> 2473
+dddvi152 divideint 12345 4.9 -> 2519
+dddvi153 divideint 12345 5 -> 2469
+dddvi154 divideint 12345 5.1 -> 2420
+dddvi155 divideint 12345 5.01 -> 2464
+dddvi156 divideint 12345 5.001 -> 2468
+dddvi157 divideint 101 7.6 -> 13
+
+-- Various flavours of divideint by 0
+dddvi201 divideint 0 0 -> NaN Division_undefined
+dddvi202 divideint 0.0E5 0 -> NaN Division_undefined
+dddvi203 divideint 0.000 0 -> NaN Division_undefined
+dddvi204 divideint 0.0001 0 -> Infinity Division_by_zero
+dddvi205 divideint 0.01 0 -> Infinity Division_by_zero
+dddvi206 divideint 0.1 0 -> Infinity Division_by_zero
+dddvi207 divideint 1 0 -> Infinity Division_by_zero
+dddvi208 divideint 1 0.0 -> Infinity Division_by_zero
+dddvi209 divideint 10 0.0 -> Infinity Division_by_zero
+dddvi210 divideint 1E+100 0.0 -> Infinity Division_by_zero
+dddvi211 divideint 1E+380 0 -> Infinity Division_by_zero
+dddvi214 divideint -0.0001 0 -> -Infinity Division_by_zero
+dddvi215 divideint -0.01 0 -> -Infinity Division_by_zero
+dddvi216 divideint -0.1 0 -> -Infinity Division_by_zero
+dddvi217 divideint -1 0 -> -Infinity Division_by_zero
+dddvi218 divideint -1 0.0 -> -Infinity Division_by_zero
+dddvi219 divideint -10 0.0 -> -Infinity Division_by_zero
+dddvi220 divideint -1E+100 0.0 -> -Infinity Division_by_zero
+dddvi221 divideint -1E+380 0 -> -Infinity Division_by_zero
+
+-- test some cases that are close to exponent overflow
+dddvi270 divideint 1 1e384 -> 0
+dddvi271 divideint 1 0.9e384 -> 0
+dddvi272 divideint 1 0.99e384 -> 0
+dddvi273 divideint 1 0.9999999999999999e384 -> 0
+dddvi274 divideint 9e384 1 -> NaN Division_impossible
+dddvi275 divideint 9.9e384 1 -> NaN Division_impossible
+dddvi276 divideint 9.99e384 1 -> NaN Division_impossible
+dddvi277 divideint 9.999999999999999e384 1 -> NaN Division_impossible
+
+dddvi280 divideint 0.1 9e-383 -> NaN Division_impossible
+dddvi281 divideint 0.1 99e-383 -> NaN Division_impossible
+dddvi282 divideint 0.1 999e-383 -> NaN Division_impossible
+dddvi283 divideint 0.1 9e-382 -> NaN Division_impossible
+dddvi284 divideint 0.1 99e-382 -> NaN Division_impossible
+
+-- GD edge cases: lhs smaller than rhs but more digits
+dddvi301 divideint 0.9 2 -> 0
+dddvi302 divideint 0.9 2.0 -> 0
+dddvi303 divideint 0.9 2.1 -> 0
+dddvi304 divideint 0.9 2.00 -> 0
+dddvi305 divideint 0.9 2.01 -> 0
+dddvi306 divideint 0.12 1 -> 0
+dddvi307 divideint 0.12 1.0 -> 0
+dddvi308 divideint 0.12 1.00 -> 0
+dddvi309 divideint 0.12 1.0 -> 0
+dddvi310 divideint 0.12 1.00 -> 0
+dddvi311 divideint 0.12 2 -> 0
+dddvi312 divideint 0.12 2.0 -> 0
+dddvi313 divideint 0.12 2.1 -> 0
+dddvi314 divideint 0.12 2.00 -> 0
+dddvi315 divideint 0.12 2.01 -> 0
+
+-- edge cases of impossible
+dddvi330 divideint 1234567890123456 10 -> 123456789012345
+dddvi331 divideint 1234567890123456 1 -> 1234567890123456
+dddvi332 divideint 1234567890123456 0.1 -> NaN Division_impossible
+dddvi333 divideint 1234567890123456 0.01 -> NaN Division_impossible
+
+-- overflow and underflow tests [from divide]
+dddvi1051 divideint 1e+277 1e-311 -> NaN Division_impossible
+dddvi1052 divideint 1e+277 -1e-311 -> NaN Division_impossible
+dddvi1053 divideint -1e+277 1e-311 -> NaN Division_impossible
+dddvi1054 divideint -1e+277 -1e-311 -> NaN Division_impossible
+dddvi1055 divideint 1e-277 1e+311 -> 0
+dddvi1056 divideint 1e-277 -1e+311 -> -0
+dddvi1057 divideint -1e-277 1e+311 -> -0
+dddvi1058 divideint -1e-277 -1e+311 -> 0
+
+-- 'subnormal' boundary (all hard underflow or overflow in base arithemtic)
+dddvi1060 divideint 1e-291 1e+101 -> 0
+dddvi1061 divideint 1e-291 1e+102 -> 0
+dddvi1062 divideint 1e-291 1e+103 -> 0
+dddvi1063 divideint 1e-291 1e+104 -> 0
+dddvi1064 divideint 1e-291 1e+105 -> 0
+dddvi1065 divideint 1e-291 1e+106 -> 0
+dddvi1066 divideint 1e-291 1e+107 -> 0
+dddvi1067 divideint 1e-291 1e+108 -> 0
+dddvi1068 divideint 1e-291 1e+109 -> 0
+dddvi1069 divideint 1e-291 1e+110 -> 0
+
+dddvi1101 divideint 1.0000E-394 1 -> 0
+dddvi1102 divideint 1.000E-394 1e+1 -> 0
+dddvi1103 divideint 1.00E-394 1e+2 -> 0
+
+dddvi1118 divideint 1E-394 1e+4 -> 0
+dddvi1119 divideint 3E-394 -1e+5 -> -0
+dddvi1120 divideint 5E-394 1e+5 -> 0
+
+dddvi1124 divideint 1E-394 -1e+4 -> -0
+dddvi1130 divideint 3.0E-394 -1e+5 -> -0
+
+dddvi1131 divideint 1.0E-199 1e+200 -> 0
+dddvi1132 divideint 1.0E-199 1e+199 -> 0
+dddvi1133 divideint 1.0E-199 1e+198 -> 0
+dddvi1134 divideint 2.0E-199 2e+198 -> 0
+dddvi1135 divideint 4.0E-199 4e+198 -> 0
+
+-- long operand checks
+dddvi401 divideint 12345678000 100 -> 123456780
+dddvi402 divideint 1 12345678000 -> 0
+dddvi403 divideint 1234567800 10 -> 123456780
+dddvi404 divideint 1 1234567800 -> 0
+dddvi405 divideint 1234567890 10 -> 123456789
+dddvi406 divideint 1 1234567890 -> 0
+dddvi407 divideint 1234567891 10 -> 123456789
+dddvi408 divideint 1 1234567891 -> 0
+dddvi409 divideint 12345678901 100 -> 123456789
+dddvi410 divideint 1 12345678901 -> 0
+dddvi411 divideint 1234567896 10 -> 123456789
+dddvi412 divideint 1 1234567896 -> 0
+dddvi413 divideint 12345678948 100 -> 123456789
+dddvi414 divideint 12345678949 100 -> 123456789
+dddvi415 divideint 12345678950 100 -> 123456789
+dddvi416 divideint 12345678951 100 -> 123456789
+dddvi417 divideint 12345678999 100 -> 123456789
+dddvi441 divideint 12345678000 1 -> 12345678000
+dddvi442 divideint 1 12345678000 -> 0
+dddvi443 divideint 1234567800 1 -> 1234567800
+dddvi444 divideint 1 1234567800 -> 0
+dddvi445 divideint 1234567890 1 -> 1234567890
+dddvi446 divideint 1 1234567890 -> 0
+dddvi447 divideint 1234567891 1 -> 1234567891
+dddvi448 divideint 1 1234567891 -> 0
+dddvi449 divideint 12345678901 1 -> 12345678901
+dddvi450 divideint 1 12345678901 -> 0
+dddvi451 divideint 1234567896 1 -> 1234567896
+dddvi452 divideint 1 1234567896 -> 0
+
+-- more zeros, etc.
+dddvi531 divideint 5.00 1E-3 -> 5000
+dddvi532 divideint 00.00 0.000 -> NaN Division_undefined
+dddvi533 divideint 00.00 0E-3 -> NaN Division_undefined
+dddvi534 divideint 0 -0 -> NaN Division_undefined
+dddvi535 divideint -0 0 -> NaN Division_undefined
+dddvi536 divideint -0 -0 -> NaN Division_undefined
+
+dddvi541 divideint 0 -1 -> -0
+dddvi542 divideint -0 -1 -> 0
+dddvi543 divideint 0 1 -> 0
+dddvi544 divideint -0 1 -> -0
+dddvi545 divideint -1 0 -> -Infinity Division_by_zero
+dddvi546 divideint -1 -0 -> Infinity Division_by_zero
+dddvi547 divideint 1 0 -> Infinity Division_by_zero
+dddvi548 divideint 1 -0 -> -Infinity Division_by_zero
+
+dddvi551 divideint 0.0 -1 -> -0
+dddvi552 divideint -0.0 -1 -> 0
+dddvi553 divideint 0.0 1 -> 0
+dddvi554 divideint -0.0 1 -> -0
+dddvi555 divideint -1.0 0 -> -Infinity Division_by_zero
+dddvi556 divideint -1.0 -0 -> Infinity Division_by_zero
+dddvi557 divideint 1.0 0 -> Infinity Division_by_zero
+dddvi558 divideint 1.0 -0 -> -Infinity Division_by_zero
+
+dddvi561 divideint 0 -1.0 -> -0
+dddvi562 divideint -0 -1.0 -> 0
+dddvi563 divideint 0 1.0 -> 0
+dddvi564 divideint -0 1.0 -> -0
+dddvi565 divideint -1 0.0 -> -Infinity Division_by_zero
+dddvi566 divideint -1 -0.0 -> Infinity Division_by_zero
+dddvi567 divideint 1 0.0 -> Infinity Division_by_zero
+dddvi568 divideint 1 -0.0 -> -Infinity Division_by_zero
+
+dddvi571 divideint 0.0 -1.0 -> -0
+dddvi572 divideint -0.0 -1.0 -> 0
+dddvi573 divideint 0.0 1.0 -> 0
+dddvi574 divideint -0.0 1.0 -> -0
+dddvi575 divideint -1.0 0.0 -> -Infinity Division_by_zero
+dddvi576 divideint -1.0 -0.0 -> Infinity Division_by_zero
+dddvi577 divideint 1.0 0.0 -> Infinity Division_by_zero
+dddvi578 divideint 1.0 -0.0 -> -Infinity Division_by_zero
+
+-- Specials
+dddvi580 divideint Inf -Inf -> NaN Invalid_operation
+dddvi581 divideint Inf -1000 -> -Infinity
+dddvi582 divideint Inf -1 -> -Infinity
+dddvi583 divideint Inf -0 -> -Infinity
+dddvi584 divideint Inf 0 -> Infinity
+dddvi585 divideint Inf 1 -> Infinity
+dddvi586 divideint Inf 1000 -> Infinity
+dddvi587 divideint Inf Inf -> NaN Invalid_operation
+dddvi588 divideint -1000 Inf -> -0
+dddvi589 divideint -Inf Inf -> NaN Invalid_operation
+dddvi590 divideint -1 Inf -> -0
+dddvi591 divideint -0 Inf -> -0
+dddvi592 divideint 0 Inf -> 0
+dddvi593 divideint 1 Inf -> 0
+dddvi594 divideint 1000 Inf -> 0
+dddvi595 divideint Inf Inf -> NaN Invalid_operation
+
+dddvi600 divideint -Inf -Inf -> NaN Invalid_operation
+dddvi601 divideint -Inf -1000 -> Infinity
+dddvi602 divideint -Inf -1 -> Infinity
+dddvi603 divideint -Inf -0 -> Infinity
+dddvi604 divideint -Inf 0 -> -Infinity
+dddvi605 divideint -Inf 1 -> -Infinity
+dddvi606 divideint -Inf 1000 -> -Infinity
+dddvi607 divideint -Inf Inf -> NaN Invalid_operation
+dddvi608 divideint -1000 Inf -> -0
+dddvi609 divideint -Inf -Inf -> NaN Invalid_operation
+dddvi610 divideint -1 -Inf -> 0
+dddvi611 divideint -0 -Inf -> 0
+dddvi612 divideint 0 -Inf -> -0
+dddvi613 divideint 1 -Inf -> -0
+dddvi614 divideint 1000 -Inf -> -0
+dddvi615 divideint Inf -Inf -> NaN Invalid_operation
+
+dddvi621 divideint NaN -Inf -> NaN
+dddvi622 divideint NaN -1000 -> NaN
+dddvi623 divideint NaN -1 -> NaN
+dddvi624 divideint NaN -0 -> NaN
+dddvi625 divideint NaN 0 -> NaN
+dddvi626 divideint NaN 1 -> NaN
+dddvi627 divideint NaN 1000 -> NaN
+dddvi628 divideint NaN Inf -> NaN
+dddvi629 divideint NaN NaN -> NaN
+dddvi630 divideint -Inf NaN -> NaN
+dddvi631 divideint -1000 NaN -> NaN
+dddvi632 divideint -1 NaN -> NaN
+dddvi633 divideint -0 NaN -> NaN
+dddvi634 divideint 0 NaN -> NaN
+dddvi635 divideint 1 NaN -> NaN
+dddvi636 divideint 1000 NaN -> NaN
+dddvi637 divideint Inf NaN -> NaN
+
+dddvi641 divideint sNaN -Inf -> NaN Invalid_operation
+dddvi642 divideint sNaN -1000 -> NaN Invalid_operation
+dddvi643 divideint sNaN -1 -> NaN Invalid_operation
+dddvi644 divideint sNaN -0 -> NaN Invalid_operation
+dddvi645 divideint sNaN 0 -> NaN Invalid_operation
+dddvi646 divideint sNaN 1 -> NaN Invalid_operation
+dddvi647 divideint sNaN 1000 -> NaN Invalid_operation
+dddvi648 divideint sNaN NaN -> NaN Invalid_operation
+dddvi649 divideint sNaN sNaN -> NaN Invalid_operation
+dddvi650 divideint NaN sNaN -> NaN Invalid_operation
+dddvi651 divideint -Inf sNaN -> NaN Invalid_operation
+dddvi652 divideint -1000 sNaN -> NaN Invalid_operation
+dddvi653 divideint -1 sNaN -> NaN Invalid_operation
+dddvi654 divideint -0 sNaN -> NaN Invalid_operation
+dddvi655 divideint 0 sNaN -> NaN Invalid_operation
+dddvi656 divideint 1 sNaN -> NaN Invalid_operation
+dddvi657 divideint 1000 sNaN -> NaN Invalid_operation
+dddvi658 divideint Inf sNaN -> NaN Invalid_operation
+dddvi659 divideint NaN sNaN -> NaN Invalid_operation
+
+-- propagating NaNs
+dddvi661 divideint NaN9 -Inf -> NaN9
+dddvi662 divideint NaN8 1000 -> NaN8
+dddvi663 divideint NaN7 Inf -> NaN7
+dddvi664 divideint -NaN6 NaN5 -> -NaN6
+dddvi665 divideint -Inf NaN4 -> NaN4
+dddvi666 divideint -1000 NaN3 -> NaN3
+dddvi667 divideint Inf -NaN2 -> -NaN2
+
+dddvi671 divideint -sNaN99 -Inf -> -NaN99 Invalid_operation
+dddvi672 divideint sNaN98 -1 -> NaN98 Invalid_operation
+dddvi673 divideint sNaN97 NaN -> NaN97 Invalid_operation
+dddvi674 divideint sNaN96 sNaN94 -> NaN96 Invalid_operation
+dddvi675 divideint NaN95 sNaN93 -> NaN93 Invalid_operation
+dddvi676 divideint -Inf sNaN92 -> NaN92 Invalid_operation
+dddvi677 divideint 0 sNaN91 -> NaN91 Invalid_operation
+dddvi678 divideint Inf -sNaN90 -> -NaN90 Invalid_operation
+dddvi679 divideint NaN sNaN89 -> NaN89 Invalid_operation
+
+-- Null tests
+dddvi900 divideint 10 # -> NaN Invalid_operation
+dddvi901 divideint # 10 -> NaN Invalid_operation
diff --git a/Lib/test/decimaltestdata/ddEncode.decTest b/Lib/test/decimaltestdata/ddEncode.decTest
new file mode 100644
index 0000000..16264fc
--- /dev/null
+++ b/Lib/test/decimaltestdata/ddEncode.decTest
@@ -0,0 +1,487 @@
+------------------------------------------------------------------------
+-- ddEncode.decTest -- decimal eight-byte format testcases --
+-- Copyright (c) IBM Corporation, 2000, 2007. All rights reserved. --
+------------------------------------------------------------------------
+-- Please see the document "General Decimal Arithmetic Testcases" --
+-- at http://www2.hursley.ibm.com/decimal for the description of --
+-- these testcases. --
+-- --
+-- These testcases are experimental ('beta' versions), and they --
+-- may contain errors. They are offered on an as-is basis. In --
+-- particular, achieving the same results as the tests here is not --
+-- a guarantee that an implementation complies with any Standard --
+-- or specification. The tests are not exhaustive. --
+-- --
+-- Please send comments, suggestions, and corrections to the author: --
+-- Mike Cowlishaw, IBM Fellow --
+-- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK --
+-- mfc@uk.ibm.com --
+------------------------------------------------------------------------
+-- [Previously called decimal64.decTest]
+version: 2.56
+
+-- This set of tests is for the eight-byte concrete representation.
+-- Its characteristics are:
+--
+-- 1 bit sign
+-- 5 bits combination field
+-- 8 bits exponent continuation
+-- 50 bits coefficient continuation
+--
+-- Total exponent length 10 bits
+-- Total coefficient length 54 bits (16 digits)
+--
+-- Elimit = 767 (maximum encoded exponent)
+-- Emax = 384 (largest exponent value)
+-- Emin = -383 (smallest exponent value)
+-- bias = 398 (subtracted from encoded exponent) = -Etiny
+
+-- The testcases here have only exactly representable data on the
+-- 'left-hand-side'; rounding from strings is tested in 'base'
+-- testcase groups.
+
+extended: 1
+clamp: 1
+precision: 16
+rounding: half_up
+maxExponent: 384
+minExponent: -383
+
+-- General testcases
+-- (mostly derived from the Strawman 4 document and examples)
+dece001 apply #A2300000000003D0 -> -7.50
+dece002 apply -7.50 -> #A2300000000003D0
+-- derivative canonical plain strings
+dece003 apply #A23c0000000003D0 -> -7.50E+3
+dece004 apply -7.50E+3 -> #A23c0000000003D0
+dece005 apply #A2380000000003D0 -> -750
+dece006 apply -750 -> #A2380000000003D0
+dece007 apply #A2340000000003D0 -> -75.0
+dece008 apply -75.0 -> #A2340000000003D0
+dece009 apply #A22c0000000003D0 -> -0.750
+dece010 apply -0.750 -> #A22c0000000003D0
+dece011 apply #A2280000000003D0 -> -0.0750
+dece012 apply -0.0750 -> #A2280000000003D0
+dece013 apply #A2200000000003D0 -> -0.000750
+dece014 apply -0.000750 -> #A2200000000003D0
+dece015 apply #A2180000000003D0 -> -0.00000750
+dece016 apply -0.00000750 -> #A2180000000003D0
+dece017 apply #A2140000000003D0 -> -7.50E-7
+dece018 apply -7.50E-7 -> #A2140000000003D0
+
+-- Normality
+dece020 apply 1234567890123456 -> #263934b9c1e28e56
+dece021 apply -1234567890123456 -> #a63934b9c1e28e56
+dece022 apply 1234.567890123456 -> #260934b9c1e28e56
+dece023 apply #260934b9c1e28e56 -> 1234.567890123456
+dece024 apply 1111111111111111 -> #2638912449124491
+dece025 apply 9999999999999999 -> #6e38ff3fcff3fcff
+
+-- Nmax and similar
+dece031 apply 9999999999999999E+369 -> #77fcff3fcff3fcff
+dece032 apply 9.999999999999999E+384 -> #77fcff3fcff3fcff
+dece033 apply #77fcff3fcff3fcff -> 9.999999999999999E+384
+dece034 apply 1.234567890123456E+384 -> #47fd34b9c1e28e56
+dece035 apply #47fd34b9c1e28e56 -> 1.234567890123456E+384
+-- fold-downs (more below)
+dece036 apply 1.23E+384 -> #47fd300000000000 Clamped
+dece037 apply #47fd300000000000 -> 1.230000000000000E+384
+decd038 apply 1E+384 -> #47fc000000000000 Clamped
+decd039 apply #47fc000000000000 -> 1.000000000000000E+384
+
+decd051 apply 12345 -> #22380000000049c5
+decd052 apply #22380000000049c5 -> 12345
+decd053 apply 1234 -> #2238000000000534
+decd054 apply #2238000000000534 -> 1234
+decd055 apply 123 -> #22380000000000a3
+decd056 apply #22380000000000a3 -> 123
+decd057 apply 12 -> #2238000000000012
+decd058 apply #2238000000000012 -> 12
+decd059 apply 1 -> #2238000000000001
+decd060 apply #2238000000000001 -> 1
+decd061 apply 1.23 -> #22300000000000a3
+decd062 apply #22300000000000a3 -> 1.23
+decd063 apply 123.45 -> #22300000000049c5
+decd064 apply #22300000000049c5 -> 123.45
+
+-- Nmin and below
+decd071 apply 1E-383 -> #003c000000000001
+decd072 apply #003c000000000001 -> 1E-383
+decd073 apply 1.000000000000000E-383 -> #0400000000000000
+decd074 apply #0400000000000000 -> 1.000000000000000E-383
+decd075 apply 1.000000000000001E-383 -> #0400000000000001
+decd076 apply #0400000000000001 -> 1.000000000000001E-383
+
+decd077 apply 0.100000000000000E-383 -> #0000800000000000 Subnormal
+decd078 apply #0000800000000000 -> 1.00000000000000E-384 Subnormal
+decd079 apply 0.000000000000010E-383 -> #0000000000000010 Subnormal
+decd080 apply #0000000000000010 -> 1.0E-397 Subnormal
+decd081 apply 0.00000000000001E-383 -> #0004000000000001 Subnormal
+decd082 apply #0004000000000001 -> 1E-397 Subnormal
+decd083 apply 0.000000000000001E-383 -> #0000000000000001 Subnormal
+decd084 apply #0000000000000001 -> 1E-398 Subnormal
+-- next is smallest all-nines
+decd085 apply 9999999999999999E-398 -> #6400ff3fcff3fcff
+decd086 apply #6400ff3fcff3fcff -> 9.999999999999999E-383
+-- and a problematic divide result
+decd088 apply 1.111111111111111E-383 -> #0400912449124491
+decd089 apply #0400912449124491 -> 1.111111111111111E-383
+
+-- forties
+decd090 apply 40 -> #2238000000000040
+decd091 apply 39.99 -> #2230000000000cff
+
+-- underflows cannot be tested as all LHS exact
+
+-- Same again, negatives
+-- Nmax and similar
+decd122 apply -9.999999999999999E+384 -> #f7fcff3fcff3fcff
+decd123 apply #f7fcff3fcff3fcff -> -9.999999999999999E+384
+decd124 apply -1.234567890123456E+384 -> #c7fd34b9c1e28e56
+decd125 apply #c7fd34b9c1e28e56 -> -1.234567890123456E+384
+-- fold-downs (more below)
+decd130 apply -1.23E+384 -> #c7fd300000000000 Clamped
+decd131 apply #c7fd300000000000 -> -1.230000000000000E+384
+decd132 apply -1E+384 -> #c7fc000000000000 Clamped
+decd133 apply #c7fc000000000000 -> -1.000000000000000E+384
+
+-- overflows
+decd151 apply -12345 -> #a2380000000049c5
+decd152 apply #a2380000000049c5 -> -12345
+decd153 apply -1234 -> #a238000000000534
+decd154 apply #a238000000000534 -> -1234
+decd155 apply -123 -> #a2380000000000a3
+decd156 apply #a2380000000000a3 -> -123
+decd157 apply -12 -> #a238000000000012
+decd158 apply #a238000000000012 -> -12
+decd159 apply -1 -> #a238000000000001
+decd160 apply #a238000000000001 -> -1
+decd161 apply -1.23 -> #a2300000000000a3
+decd162 apply #a2300000000000a3 -> -1.23
+decd163 apply -123.45 -> #a2300000000049c5
+decd164 apply #a2300000000049c5 -> -123.45
+
+-- Nmin and below
+decd171 apply -1E-383 -> #803c000000000001
+decd172 apply #803c000000000001 -> -1E-383
+decd173 apply -1.000000000000000E-383 -> #8400000000000000
+decd174 apply #8400000000000000 -> -1.000000000000000E-383
+decd175 apply -1.000000000000001E-383 -> #8400000000000001
+decd176 apply #8400000000000001 -> -1.000000000000001E-383
+
+decd177 apply -0.100000000000000E-383 -> #8000800000000000 Subnormal
+decd178 apply #8000800000000000 -> -1.00000000000000E-384 Subnormal
+decd179 apply -0.000000000000010E-383 -> #8000000000000010 Subnormal
+decd180 apply #8000000000000010 -> -1.0E-397 Subnormal
+decd181 apply -0.00000000000001E-383 -> #8004000000000001 Subnormal
+decd182 apply #8004000000000001 -> -1E-397 Subnormal
+decd183 apply -0.000000000000001E-383 -> #8000000000000001 Subnormal
+decd184 apply #8000000000000001 -> -1E-398 Subnormal
+-- next is smallest all-nines
+decd185 apply -9999999999999999E-398 -> #e400ff3fcff3fcff
+decd186 apply #e400ff3fcff3fcff -> -9.999999999999999E-383
+-- and a tricky subnormal
+decd187 apply 1.11111111111524E-384 -> #00009124491246a4 Subnormal
+decd188 apply #00009124491246a4 -> 1.11111111111524E-384 Subnormal
+
+-- near-underflows
+decd189 apply -1e-398 -> #8000000000000001 Subnormal
+decd190 apply -1.0e-398 -> #8000000000000001 Subnormal Rounded
+
+-- zeros
+decd401 apply 0E-500 -> #0000000000000000 Clamped
+decd402 apply 0E-400 -> #0000000000000000 Clamped
+decd403 apply 0E-398 -> #0000000000000000
+decd404 apply #0000000000000000 -> 0E-398
+decd405 apply 0.000000000000000E-383 -> #0000000000000000
+decd406 apply #0000000000000000 -> 0E-398
+decd407 apply 0E-2 -> #2230000000000000
+decd408 apply #2230000000000000 -> 0.00
+decd409 apply 0 -> #2238000000000000
+decd410 apply #2238000000000000 -> 0
+decd411 apply 0E+3 -> #2244000000000000
+decd412 apply #2244000000000000 -> 0E+3
+decd413 apply 0E+369 -> #43fc000000000000
+decd414 apply #43fc000000000000 -> 0E+369
+-- clamped zeros...
+decd415 apply 0E+370 -> #43fc000000000000 Clamped
+decd416 apply #43fc000000000000 -> 0E+369
+decd417 apply 0E+384 -> #43fc000000000000 Clamped
+decd418 apply #43fc000000000000 -> 0E+369
+decd419 apply 0E+400 -> #43fc000000000000 Clamped
+decd420 apply #43fc000000000000 -> 0E+369
+decd421 apply 0E+500 -> #43fc000000000000 Clamped
+decd422 apply #43fc000000000000 -> 0E+369
+
+-- negative zeros
+decd431 apply -0E-400 -> #8000000000000000 Clamped
+decd432 apply -0E-400 -> #8000000000000000 Clamped
+decd433 apply -0E-398 -> #8000000000000000
+decd434 apply #8000000000000000 -> -0E-398
+decd435 apply -0.000000000000000E-383 -> #8000000000000000
+decd436 apply #8000000000000000 -> -0E-398
+decd437 apply -0E-2 -> #a230000000000000
+decd438 apply #a230000000000000 -> -0.00
+decd439 apply -0 -> #a238000000000000
+decd440 apply #a238000000000000 -> -0
+decd441 apply -0E+3 -> #a244000000000000
+decd442 apply #a244000000000000 -> -0E+3
+decd443 apply -0E+369 -> #c3fc000000000000
+decd444 apply #c3fc000000000000 -> -0E+369
+-- clamped zeros...
+decd445 apply -0E+370 -> #c3fc000000000000 Clamped
+decd446 apply #c3fc000000000000 -> -0E+369
+decd447 apply -0E+384 -> #c3fc000000000000 Clamped
+decd448 apply #c3fc000000000000 -> -0E+369
+decd449 apply -0E+400 -> #c3fc000000000000 Clamped
+decd450 apply #c3fc000000000000 -> -0E+369
+decd451 apply -0E+500 -> #c3fc000000000000 Clamped
+decd452 apply #c3fc000000000000 -> -0E+369
+
+-- exponents
+decd460 apply #225c000000000007 -> 7E+9
+decd461 apply 7E+9 -> #225c000000000007
+decd462 apply #23c4000000000007 -> 7E+99
+decd463 apply 7E+99 -> #23c4000000000007
+
+-- Specials
+decd500 apply Infinity -> #7800000000000000
+decd501 apply #7878787878787878 -> #7800000000000000
+decd502 apply #7800000000000000 -> Infinity
+decd503 apply #7979797979797979 -> #7800000000000000
+decd504 apply #7900000000000000 -> Infinity
+decd505 apply #7a7a7a7a7a7a7a7a -> #7800000000000000
+decd506 apply #7a00000000000000 -> Infinity
+decd507 apply #7b7b7b7b7b7b7b7b -> #7800000000000000
+decd508 apply #7b00000000000000 -> Infinity
+
+decd509 apply NaN -> #7c00000000000000
+decd510 apply #7c7c7c7c7c7c7c7c -> #7c007c7c7c7c7c7c
+decd511 apply #7c00000000000000 -> NaN
+decd512 apply #7d7d7d7d7d7d7d7d -> #7c017d7d7d7d7d7d
+decd513 apply #7d00000000000000 -> NaN
+decd514 apply #7e7e7e7e7e7e7e7e -> #7e007e7e7e7e7c7e
+decd515 apply #7e00000000000000 -> sNaN
+decd516 apply #7f7f7f7f7f7f7f7f -> #7e007f7f7f7f7c7f
+decd517 apply #7f00000000000000 -> sNaN
+decd518 apply #7fffffffffffffff -> sNaN999999999999999
+decd519 apply #7fffffffffffffff -> #7e00ff3fcff3fcff
+
+decd520 apply -Infinity -> #f800000000000000
+decd521 apply #f878787878787878 -> #f800000000000000
+decd522 apply #f800000000000000 -> -Infinity
+decd523 apply #f979797979797979 -> #f800000000000000
+decd524 apply #f900000000000000 -> -Infinity
+decd525 apply #fa7a7a7a7a7a7a7a -> #f800000000000000
+decd526 apply #fa00000000000000 -> -Infinity
+decd527 apply #fb7b7b7b7b7b7b7b -> #f800000000000000
+decd528 apply #fb00000000000000 -> -Infinity
+
+decd529 apply -NaN -> #fc00000000000000
+decd530 apply #fc7c7c7c7c7c7c7c -> #fc007c7c7c7c7c7c
+decd531 apply #fc00000000000000 -> -NaN
+decd532 apply #fd7d7d7d7d7d7d7d -> #fc017d7d7d7d7d7d
+decd533 apply #fd00000000000000 -> -NaN
+decd534 apply #fe7e7e7e7e7e7e7e -> #fe007e7e7e7e7c7e
+decd535 apply #fe00000000000000 -> -sNaN
+decd536 apply #ff7f7f7f7f7f7f7f -> #fe007f7f7f7f7c7f
+decd537 apply #ff00000000000000 -> -sNaN
+decd538 apply #ffffffffffffffff -> -sNaN999999999999999
+decd539 apply #ffffffffffffffff -> #fe00ff3fcff3fcff
+
+-- diagnostic NaNs
+decd540 apply NaN -> #7c00000000000000
+decd541 apply NaN0 -> #7c00000000000000
+decd542 apply NaN1 -> #7c00000000000001
+decd543 apply NaN12 -> #7c00000000000012
+decd544 apply NaN79 -> #7c00000000000079
+decd545 apply NaN12345 -> #7c000000000049c5
+decd546 apply NaN123456 -> #7c00000000028e56
+decd547 apply NaN799799 -> #7c000000000f7fdf
+decd548 apply NaN799799799799799 -> #7c03dff7fdff7fdf
+decd549 apply NaN999999999999999 -> #7c00ff3fcff3fcff
+-- too many digits
+
+-- fold-down full sequence
+decd601 apply 1E+384 -> #47fc000000000000 Clamped
+decd602 apply #47fc000000000000 -> 1.000000000000000E+384
+decd603 apply 1E+383 -> #43fc800000000000 Clamped
+decd604 apply #43fc800000000000 -> 1.00000000000000E+383
+decd605 apply 1E+382 -> #43fc100000000000 Clamped
+decd606 apply #43fc100000000000 -> 1.0000000000000E+382
+decd607 apply 1E+381 -> #43fc010000000000 Clamped
+decd608 apply #43fc010000000000 -> 1.000000000000E+381
+decd609 apply 1E+380 -> #43fc002000000000 Clamped
+decd610 apply #43fc002000000000 -> 1.00000000000E+380
+decd611 apply 1E+379 -> #43fc000400000000 Clamped
+decd612 apply #43fc000400000000 -> 1.0000000000E+379
+decd613 apply 1E+378 -> #43fc000040000000 Clamped
+decd614 apply #43fc000040000000 -> 1.000000000E+378
+decd615 apply 1E+377 -> #43fc000008000000 Clamped
+decd616 apply #43fc000008000000 -> 1.00000000E+377
+decd617 apply 1E+376 -> #43fc000001000000 Clamped
+decd618 apply #43fc000001000000 -> 1.0000000E+376
+decd619 apply 1E+375 -> #43fc000000100000 Clamped
+decd620 apply #43fc000000100000 -> 1.000000E+375
+decd621 apply 1E+374 -> #43fc000000020000 Clamped
+decd622 apply #43fc000000020000 -> 1.00000E+374
+decd623 apply 1E+373 -> #43fc000000004000 Clamped
+decd624 apply #43fc000000004000 -> 1.0000E+373
+decd625 apply 1E+372 -> #43fc000000000400 Clamped
+decd626 apply #43fc000000000400 -> 1.000E+372
+decd627 apply 1E+371 -> #43fc000000000080 Clamped
+decd628 apply #43fc000000000080 -> 1.00E+371
+decd629 apply 1E+370 -> #43fc000000000010 Clamped
+decd630 apply #43fc000000000010 -> 1.0E+370
+decd631 apply 1E+369 -> #43fc000000000001
+decd632 apply #43fc000000000001 -> 1E+369
+decd633 apply 1E+368 -> #43f8000000000001
+decd634 apply #43f8000000000001 -> 1E+368
+-- same with 9s
+decd641 apply 9E+384 -> #77fc000000000000 Clamped
+decd642 apply #77fc000000000000 -> 9.000000000000000E+384
+decd643 apply 9E+383 -> #43fc8c0000000000 Clamped
+decd644 apply #43fc8c0000000000 -> 9.00000000000000E+383
+decd645 apply 9E+382 -> #43fc1a0000000000 Clamped
+decd646 apply #43fc1a0000000000 -> 9.0000000000000E+382
+decd647 apply 9E+381 -> #43fc090000000000 Clamped
+decd648 apply #43fc090000000000 -> 9.000000000000E+381
+decd649 apply 9E+380 -> #43fc002300000000 Clamped
+decd650 apply #43fc002300000000 -> 9.00000000000E+380
+decd651 apply 9E+379 -> #43fc000680000000 Clamped
+decd652 apply #43fc000680000000 -> 9.0000000000E+379
+decd653 apply 9E+378 -> #43fc000240000000 Clamped
+decd654 apply #43fc000240000000 -> 9.000000000E+378
+decd655 apply 9E+377 -> #43fc000008c00000 Clamped
+decd656 apply #43fc000008c00000 -> 9.00000000E+377
+decd657 apply 9E+376 -> #43fc000001a00000 Clamped
+decd658 apply #43fc000001a00000 -> 9.0000000E+376
+decd659 apply 9E+375 -> #43fc000000900000 Clamped
+decd660 apply #43fc000000900000 -> 9.000000E+375
+decd661 apply 9E+374 -> #43fc000000023000 Clamped
+decd662 apply #43fc000000023000 -> 9.00000E+374
+decd663 apply 9E+373 -> #43fc000000006800 Clamped
+decd664 apply #43fc000000006800 -> 9.0000E+373
+decd665 apply 9E+372 -> #43fc000000002400 Clamped
+decd666 apply #43fc000000002400 -> 9.000E+372
+decd667 apply 9E+371 -> #43fc00000000008c Clamped
+decd668 apply #43fc00000000008c -> 9.00E+371
+decd669 apply 9E+370 -> #43fc00000000001a Clamped
+decd670 apply #43fc00000000001a -> 9.0E+370
+decd671 apply 9E+369 -> #43fc000000000009
+decd672 apply #43fc000000000009 -> 9E+369
+decd673 apply 9E+368 -> #43f8000000000009
+decd674 apply #43f8000000000009 -> 9E+368
+
+
+-- Selected DPD codes
+decd700 apply #2238000000000000 -> 0
+decd701 apply #2238000000000009 -> 9
+decd702 apply #2238000000000010 -> 10
+decd703 apply #2238000000000019 -> 19
+decd704 apply #2238000000000020 -> 20
+decd705 apply #2238000000000029 -> 29
+decd706 apply #2238000000000030 -> 30
+decd707 apply #2238000000000039 -> 39
+decd708 apply #2238000000000040 -> 40
+decd709 apply #2238000000000049 -> 49
+decd710 apply #2238000000000050 -> 50
+decd711 apply #2238000000000059 -> 59
+decd712 apply #2238000000000060 -> 60
+decd713 apply #2238000000000069 -> 69
+decd714 apply #2238000000000070 -> 70
+decd715 apply #2238000000000071 -> 71
+decd716 apply #2238000000000072 -> 72
+decd717 apply #2238000000000073 -> 73
+decd718 apply #2238000000000074 -> 74
+decd719 apply #2238000000000075 -> 75
+decd720 apply #2238000000000076 -> 76
+decd721 apply #2238000000000077 -> 77
+decd722 apply #2238000000000078 -> 78
+decd723 apply #2238000000000079 -> 79
+
+decd725 apply #223800000000029e -> 994
+decd726 apply #223800000000029f -> 995
+decd727 apply #22380000000002a0 -> 520
+decd728 apply #22380000000002a1 -> 521
+-- from telco test data
+decd730 apply #2238000000000188 -> 308
+decd731 apply #22380000000001a3 -> 323
+decd732 apply #223800000000002a -> 82
+decd733 apply #22380000000001a9 -> 329
+decd734 apply #2238000000000081 -> 101
+decd735 apply #22380000000002a2 -> 522
+
+-- DPD: one of each of the huffman groups
+decd740 apply #22380000000003f7 -> 777
+decd741 apply #22380000000003f8 -> 778
+decd742 apply #22380000000003eb -> 787
+decd743 apply #223800000000037d -> 877
+decd744 apply #223800000000039f -> 997
+decd745 apply #22380000000003bf -> 979
+decd746 apply #22380000000003df -> 799
+decd747 apply #223800000000006e -> 888
+
+-- DPD all-highs cases (includes the 24 redundant codes)
+decd750 apply #223800000000006e -> 888
+decd751 apply #223800000000016e -> 888
+decd752 apply #223800000000026e -> 888
+decd753 apply #223800000000036e -> 888
+decd754 apply #223800000000006f -> 889
+decd755 apply #223800000000016f -> 889
+decd756 apply #223800000000026f -> 889
+decd757 apply #223800000000036f -> 889
+
+decd760 apply #223800000000007e -> 898
+decd761 apply #223800000000017e -> 898
+decd762 apply #223800000000027e -> 898
+decd763 apply #223800000000037e -> 898
+decd764 apply #223800000000007f -> 899
+decd765 apply #223800000000017f -> 899
+decd766 apply #223800000000027f -> 899
+decd767 apply #223800000000037f -> 899
+
+decd770 apply #22380000000000ee -> 988
+decd771 apply #22380000000001ee -> 988
+decd772 apply #22380000000002ee -> 988
+decd773 apply #22380000000003ee -> 988
+decd774 apply #22380000000000ef -> 989
+decd775 apply #22380000000001ef -> 989
+decd776 apply #22380000000002ef -> 989
+decd777 apply #22380000000003ef -> 989
+
+decd780 apply #22380000000000fe -> 998
+decd781 apply #22380000000001fe -> 998
+decd782 apply #22380000000002fe -> 998
+decd783 apply #22380000000003fe -> 998
+decd784 apply #22380000000000ff -> 999
+decd785 apply #22380000000001ff -> 999
+decd786 apply #22380000000002ff -> 999
+decd787 apply #22380000000003ff -> 999
+
+-- values around [u]int32 edges (zeros done earlier)
+decd800 apply -2147483646 -> #a23800008c78af46
+decd801 apply -2147483647 -> #a23800008c78af47
+decd802 apply -2147483648 -> #a23800008c78af48
+decd803 apply -2147483649 -> #a23800008c78af49
+decd804 apply 2147483646 -> #223800008c78af46
+decd805 apply 2147483647 -> #223800008c78af47
+decd806 apply 2147483648 -> #223800008c78af48
+decd807 apply 2147483649 -> #223800008c78af49
+decd808 apply 4294967294 -> #2238000115afb55a
+decd809 apply 4294967295 -> #2238000115afb55b
+decd810 apply 4294967296 -> #2238000115afb57a
+decd811 apply 4294967297 -> #2238000115afb57b
+
+decd820 apply #a23800008c78af46 -> -2147483646
+decd821 apply #a23800008c78af47 -> -2147483647
+decd822 apply #a23800008c78af48 -> -2147483648
+decd823 apply #a23800008c78af49 -> -2147483649
+decd824 apply #223800008c78af46 -> 2147483646
+decd825 apply #223800008c78af47 -> 2147483647
+decd826 apply #223800008c78af48 -> 2147483648
+decd827 apply #223800008c78af49 -> 2147483649
+decd828 apply #2238000115afb55a -> 4294967294
+decd829 apply #2238000115afb55b -> 4294967295
+decd830 apply #2238000115afb57a -> 4294967296
+decd831 apply #2238000115afb57b -> 4294967297
diff --git a/Lib/test/decimaltestdata/ddFMA.decTest b/Lib/test/decimaltestdata/ddFMA.decTest
new file mode 100644
index 0000000..946d680
--- /dev/null
+++ b/Lib/test/decimaltestdata/ddFMA.decTest
@@ -0,0 +1,1670 @@
+------------------------------------------------------------------------
+-- ddFMA.decTest -- decDouble Fused Multiply Add --
+-- Copyright (c) IBM Corporation, 1981, 2007. All rights reserved. --
+------------------------------------------------------------------------
+-- Please see the document "General Decimal Arithmetic Testcases" --
+-- at http://www2.hursley.ibm.com/decimal for the description of --
+-- these testcases. --
+-- --
+-- These testcases are experimental ('beta' versions), and they --
+-- may contain errors. They are offered on an as-is basis. In --
+-- particular, achieving the same results as the tests here is not --
+-- a guarantee that an implementation complies with any Standard --
+-- or specification. The tests are not exhaustive. --
+-- --
+-- Please send comments, suggestions, and corrections to the author: --
+-- Mike Cowlishaw, IBM Fellow --
+-- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK --
+-- mfc@uk.ibm.com --
+------------------------------------------------------------------------
+version: 2.56
+
+precision: 16
+maxExponent: 384
+minExponent: -383
+extended: 1
+clamp: 1
+rounding: half_even
+
+-- These tests comprese three parts:
+-- 1. Sanity checks and other three-operand tests (especially those
+-- where the fused operation makes a difference)
+-- 2. Multiply tests (third operand is neutral zero [0E+emax])
+-- 3. Addition tests (first operand is 1)
+-- The multiply and addition tests are extensive because FMA may have
+-- its own dedicated multiplication or addition routine(s), and they
+-- also inherently check the left-to-right properties.
+
+-- Sanity checks
+ddfma0001 fma 1 1 1 -> 2
+ddfma0002 fma 1 1 2 -> 3
+ddfma0003 fma 2 2 3 -> 7
+ddfma0004 fma 9 9 9 -> 90
+ddfma0005 fma -1 1 1 -> 0
+ddfma0006 fma -1 1 2 -> 1
+ddfma0007 fma -2 2 3 -> -1
+ddfma0008 fma -9 9 9 -> -72
+ddfma0011 fma 1 -1 1 -> 0
+ddfma0012 fma 1 -1 2 -> 1
+ddfma0013 fma 2 -2 3 -> -1
+ddfma0014 fma 9 -9 9 -> -72
+ddfma0015 fma 1 1 -1 -> 0
+ddfma0016 fma 1 1 -2 -> -1
+ddfma0017 fma 2 2 -3 -> 1
+ddfma0018 fma 9 9 -9 -> 72
+
+-- non-integer exacts
+ddfma0100 fma 25.2 63.6 -438 -> 1164.72
+ddfma0101 fma 0.301 0.380 334 -> 334.114380
+ddfma0102 fma 49.2 -4.8 23.3 -> -212.86
+ddfma0103 fma 4.22 0.079 -94.6 -> -94.26662
+ddfma0104 fma 903 0.797 0.887 -> 720.578
+ddfma0105 fma 6.13 -161 65.9 -> -921.03
+ddfma0106 fma 28.2 727 5.45 -> 20506.85
+ddfma0107 fma 4 605 688 -> 3108
+ddfma0108 fma 93.3 0.19 0.226 -> 17.953
+ddfma0109 fma 0.169 -341 5.61 -> -52.019
+ddfma0110 fma -72.2 30 -51.2 -> -2217.2
+ddfma0111 fma -0.409 13 20.4 -> 15.083
+ddfma0112 fma 317 77.0 19.0 -> 24428.0
+ddfma0113 fma 47 6.58 1.62 -> 310.88
+ddfma0114 fma 1.36 0.984 0.493 -> 1.83124
+ddfma0115 fma 72.7 274 1.56 -> 19921.36
+ddfma0116 fma 335 847 83 -> 283828
+ddfma0117 fma 666 0.247 25.4 -> 189.902
+ddfma0118 fma -3.87 3.06 78.0 -> 66.1578
+ddfma0119 fma 0.742 192 35.6 -> 178.064
+ddfma0120 fma -91.6 5.29 0.153 -> -484.411
+
+-- cases where result is different from separate multiply + add; each
+-- is preceded by the result of unfused multiply and add
+-- [this is about 20% of all similar cases in general]
+-- -> 7.123356429257969E+16
+ddfma0201 fma 27583489.6645 2582471078.04 2593183.42371 -> 7.123356429257970E+16 Inexact Rounded
+-- -> 22813275328.80506
+ddfma0208 fma 24280.355566 939577.397653 2032.013252 -> 22813275328.80507 Inexact Rounded
+-- -> -2.030397734278062E+16
+ddfma0209 fma 7848976432 -2586831.2281 137903.517909 -> -2.030397734278061E+16 Inexact Rounded
+-- -> 2040774094814.077
+ddfma0217 fma 56890.388731 35872030.4255 339337.123410 -> 2040774094814.078 Inexact Rounded
+-- -> 2.714469575205049E+18
+ddfma0220 fma 7533543.57445 360317763928 5073392.31638 -> 2.714469575205050E+18 Inexact Rounded
+-- -> 1.011676297716716E+19
+ddfma0223 fma 739945255.563 13672312784.1 -994381.53572 -> 1.011676297716715E+19 Inexact Rounded
+-- -> -2.914135721455315E+23
+ddfma0224 fma -413510957218 704729988550 9234162614.0 -> -2.914135721455314E+23 Inexact Rounded
+-- -> 2.620119863365786E+17
+ddfma0226 fma 437484.00601 598906432790 894450638.442 -> 2.620119863365787E+17 Inexact Rounded
+-- -> 1.272647995808178E+19
+ddfma0253 fma 73287556929 173651305.784 -358312568.389 -> 1.272647995808177E+19 Inexact Rounded
+-- -> -1.753769320861851E+18
+ddfma0257 fma 203258304486 -8628278.8066 153127.446727 -> -1.753769320861850E+18 Inexact Rounded
+-- -> -1.550737835263346E+17
+ddfma0260 fma 42560533.1774 -3643605282.86 178277.96377 -> -1.550737835263347E+17 Inexact Rounded
+-- -> 2.897624620576005E+22
+ddfma0269 fma 142656587375 203118879670 604576103991 -> 2.897624620576004E+22 Inexact Rounded
+
+-- Cases where multiply would overflow or underflow if separate
+fma0300 fma 9e+384 10 0 -> Infinity Overflow Inexact Rounded
+fma0301 fma 1e+384 10 0 -> Infinity Overflow Inexact Rounded
+fma0302 fma 1e+384 10 -1e+384 -> 9.000000000000000E+384 Clamped
+fma0303 fma 1e+384 10 -9e+384 -> 1.000000000000000E+384 Clamped
+-- subnormal etc.
+fma0305 fma 1e-398 0.1 0 -> 0E-398 Underflow Subnormal Inexact Rounded Clamped
+fma0306 fma 1e-398 0.1 1 -> 1.000000000000000 Inexact Rounded
+fma0307 fma 1e-398 0.1 1e-398 -> 1E-398 Underflow Subnormal Inexact Rounded
+
+-- Infinite combinations
+ddfma0800 fma Inf Inf Inf -> Infinity
+ddfma0801 fma Inf Inf -Inf -> NaN Invalid_operation
+ddfma0802 fma Inf -Inf Inf -> NaN Invalid_operation
+ddfma0803 fma Inf -Inf -Inf -> -Infinity
+ddfma0804 fma -Inf Inf Inf -> NaN Invalid_operation
+ddfma0805 fma -Inf Inf -Inf -> -Infinity
+ddfma0806 fma -Inf -Inf Inf -> Infinity
+ddfma0807 fma -Inf -Inf -Inf -> NaN Invalid_operation
+
+-- Triple NaN propagation
+ddfma0900 fma NaN2 NaN3 NaN5 -> NaN2
+ddfma0901 fma 0 NaN3 NaN5 -> NaN3
+ddfma0902 fma 0 0 NaN5 -> NaN5
+-- first sNaN wins (consider qNaN from earlier sNaN being
+-- overridden by an sNaN in third operand)
+ddfma0903 fma sNaN1 sNaN2 sNaN3 -> NaN1 Invalid_operation
+ddfma0904 fma 0 sNaN2 sNaN3 -> NaN2 Invalid_operation
+ddfma0905 fma 0 0 sNaN3 -> NaN3 Invalid_operation
+ddfma0906 fma sNaN1 sNaN2 sNaN3 -> NaN1 Invalid_operation
+ddfma0907 fma NaN7 sNaN2 sNaN3 -> NaN2 Invalid_operation
+ddfma0908 fma NaN7 NaN5 sNaN3 -> NaN3 Invalid_operation
+
+-- MULTIPLICATION TESTS ------------------------------------------------
+
+-- sanity checks
+ddfma2000 fma 2 2 0e+384 -> 4
+ddfma2001 fma 2 3 0e+384 -> 6
+ddfma2002 fma 5 1 0e+384 -> 5
+ddfma2003 fma 5 2 0e+384 -> 10
+ddfma2004 fma 1.20 2 0e+384 -> 2.40
+ddfma2005 fma 1.20 0 0e+384 -> 0.00
+ddfma2006 fma 1.20 -2 0e+384 -> -2.40
+ddfma2007 fma -1.20 2 0e+384 -> -2.40
+ddfma2008 fma -1.20 0 0e+384 -> 0.00
+ddfma2009 fma -1.20 -2 0e+384 -> 2.40
+ddfma2010 fma 5.09 7.1 0e+384 -> 36.139
+ddfma2011 fma 2.5 4 0e+384 -> 10.0
+ddfma2012 fma 2.50 4 0e+384 -> 10.00
+ddfma2013 fma 1.23456789 1.00000000 0e+384 -> 1.234567890000000 Rounded
+ddfma2015 fma 2.50 4 0e+384 -> 10.00
+ddfma2016 fma 9.999999999 9.999999999 0e+384 -> 99.99999998000000 Inexact Rounded
+ddfma2017 fma 9.999999999 -9.999999999 0e+384 -> -99.99999998000000 Inexact Rounded
+ddfma2018 fma -9.999999999 9.999999999 0e+384 -> -99.99999998000000 Inexact Rounded
+ddfma2019 fma -9.999999999 -9.999999999 0e+384 -> 99.99999998000000 Inexact Rounded
+
+-- zeros, etc.
+ddfma2021 fma 0 0 0e+384 -> 0
+ddfma2022 fma 0 -0 0e+384 -> 0
+ddfma2023 fma -0 0 0e+384 -> 0
+ddfma2024 fma -0 -0 0e+384 -> 0
+ddfma2025 fma -0.0 -0.0 0e+384 -> 0.00
+ddfma2026 fma -0.0 -0.0 0e+384 -> 0.00
+ddfma2027 fma -0.0 -0.0 0e+384 -> 0.00
+ddfma2028 fma -0.0 -0.0 0e+384 -> 0.00
+ddfma2030 fma 5.00 1E-3 0e+384 -> 0.00500
+ddfma2031 fma 00.00 0.000 0e+384 -> 0.00000
+ddfma2032 fma 00.00 0E-3 0e+384 -> 0.00000 -- rhs is 0
+ddfma2033 fma 0E-3 00.00 0e+384 -> 0.00000 -- lhs is 0
+ddfma2034 fma -5.00 1E-3 0e+384 -> -0.00500
+ddfma2035 fma -00.00 0.000 0e+384 -> 0.00000
+ddfma2036 fma -00.00 0E-3 0e+384 -> 0.00000 -- rhs is 0
+ddfma2037 fma -0E-3 00.00 0e+384 -> 0.00000 -- lhs is 0
+ddfma2038 fma 5.00 -1E-3 0e+384 -> -0.00500
+ddfma2039 fma 00.00 -0.000 0e+384 -> 0.00000
+ddfma2040 fma 00.00 -0E-3 0e+384 -> 0.00000 -- rhs is 0
+ddfma2041 fma 0E-3 -00.00 0e+384 -> 0.00000 -- lhs is 0
+ddfma2042 fma -5.00 -1E-3 0e+384 -> 0.00500
+ddfma2043 fma -00.00 -0.000 0e+384 -> 0.00000
+ddfma2044 fma -00.00 -0E-3 0e+384 -> 0.00000 -- rhs is 0
+ddfma2045 fma -0E-3 -00.00 -0e+384 -> 0.00000 -- lhs is 0
+ddfma2046 fma -0E-3 00.00 -0e+384 -> -0.00000
+ddfma2047 fma 0E-3 -00.00 -0e+384 -> -0.00000
+ddfma2048 fma 0E-3 00.00 -0e+384 -> 0.00000
+
+-- examples from decarith
+ddfma2050 fma 1.20 3 0e+384 -> 3.60
+ddfma2051 fma 7 3 0e+384 -> 21
+ddfma2052 fma 0.9 0.8 0e+384 -> 0.72
+ddfma2053 fma 0.9 -0 0e+384 -> 0.0
+ddfma2054 fma 654321 654321 0e+384 -> 428135971041
+
+ddfma2060 fma 123.45 1e7 0e+384 -> 1.2345E+9
+ddfma2061 fma 123.45 1e8 0e+384 -> 1.2345E+10
+ddfma2062 fma 123.45 1e+9 0e+384 -> 1.2345E+11
+ddfma2063 fma 123.45 1e10 0e+384 -> 1.2345E+12
+ddfma2064 fma 123.45 1e11 0e+384 -> 1.2345E+13
+ddfma2065 fma 123.45 1e12 0e+384 -> 1.2345E+14
+ddfma2066 fma 123.45 1e13 0e+384 -> 1.2345E+15
+
+
+-- test some intermediate lengths
+-- 1234567890123456
+ddfma2080 fma 0.1 1230123456456789 0e+384 -> 123012345645678.9
+ddfma2084 fma 0.1 1230123456456789 0e+384 -> 123012345645678.9
+ddfma2090 fma 1230123456456789 0.1 0e+384 -> 123012345645678.9
+ddfma2094 fma 1230123456456789 0.1 0e+384 -> 123012345645678.9
+
+-- test some more edge cases and carries
+ddfma2101 fma 9 9 0e+384 -> 81
+ddfma2102 fma 9 90 0e+384 -> 810
+ddfma2103 fma 9 900 0e+384 -> 8100
+ddfma2104 fma 9 9000 0e+384 -> 81000
+ddfma2105 fma 9 90000 0e+384 -> 810000
+ddfma2106 fma 9 900000 0e+384 -> 8100000
+ddfma2107 fma 9 9000000 0e+384 -> 81000000
+ddfma2108 fma 9 90000000 0e+384 -> 810000000
+ddfma2109 fma 9 900000000 0e+384 -> 8100000000
+ddfma2110 fma 9 9000000000 0e+384 -> 81000000000
+ddfma2111 fma 9 90000000000 0e+384 -> 810000000000
+ddfma2112 fma 9 900000000000 0e+384 -> 8100000000000
+ddfma2113 fma 9 9000000000000 0e+384 -> 81000000000000
+ddfma2114 fma 9 90000000000000 0e+384 -> 810000000000000
+ddfma2115 fma 9 900000000000000 0e+384 -> 8100000000000000
+--ddfma2116 fma 9 9000000000000000 0e+384 -> 81000000000000000
+--ddfma2117 fma 9 90000000000000000 0e+384 -> 810000000000000000
+--ddfma2118 fma 9 900000000000000000 0e+384 -> 8100000000000000000
+--ddfma2119 fma 9 9000000000000000000 0e+384 -> 81000000000000000000
+--ddfma2120 fma 9 90000000000000000000 0e+384 -> 810000000000000000000
+--ddfma2121 fma 9 900000000000000000000 0e+384 -> 8100000000000000000000
+--ddfma2122 fma 9 9000000000000000000000 0e+384 -> 81000000000000000000000
+--ddfma2123 fma 9 90000000000000000000000 0e+384 -> 810000000000000000000000
+-- test some more edge cases without carries
+ddfma2131 fma 3 3 0e+384 -> 9
+ddfma2132 fma 3 30 0e+384 -> 90
+ddfma2133 fma 3 300 0e+384 -> 900
+ddfma2134 fma 3 3000 0e+384 -> 9000
+ddfma2135 fma 3 30000 0e+384 -> 90000
+ddfma2136 fma 3 300000 0e+384 -> 900000
+ddfma2137 fma 3 3000000 0e+384 -> 9000000
+ddfma2138 fma 3 30000000 0e+384 -> 90000000
+ddfma2139 fma 3 300000000 0e+384 -> 900000000
+ddfma2140 fma 3 3000000000 0e+384 -> 9000000000
+ddfma2141 fma 3 30000000000 0e+384 -> 90000000000
+ddfma2142 fma 3 300000000000 0e+384 -> 900000000000
+ddfma2143 fma 3 3000000000000 0e+384 -> 9000000000000
+ddfma2144 fma 3 30000000000000 0e+384 -> 90000000000000
+ddfma2145 fma 3 300000000000000 0e+384 -> 900000000000000
+
+-- test some edge cases with exact rounding
+ddfma2301 fma 9 9 0e+384 -> 81
+ddfma2302 fma 9 90 0e+384 -> 810
+ddfma2303 fma 9 900 0e+384 -> 8100
+ddfma2304 fma 9 9000 0e+384 -> 81000
+ddfma2305 fma 9 90000 0e+384 -> 810000
+ddfma2306 fma 9 900000 0e+384 -> 8100000
+ddfma2307 fma 9 9000000 0e+384 -> 81000000
+ddfma2308 fma 9 90000000 0e+384 -> 810000000
+ddfma2309 fma 9 900000000 0e+384 -> 8100000000
+ddfma2310 fma 9 9000000000 0e+384 -> 81000000000
+ddfma2311 fma 9 90000000000 0e+384 -> 810000000000
+ddfma2312 fma 9 900000000000 0e+384 -> 8100000000000
+ddfma2313 fma 9 9000000000000 0e+384 -> 81000000000000
+ddfma2314 fma 9 90000000000000 0e+384 -> 810000000000000
+ddfma2315 fma 9 900000000000000 0e+384 -> 8100000000000000
+ddfma2316 fma 9 9000000000000000 0e+384 -> 8.100000000000000E+16 Rounded
+ddfma2317 fma 90 9000000000000000 0e+384 -> 8.100000000000000E+17 Rounded
+ddfma2318 fma 900 9000000000000000 0e+384 -> 8.100000000000000E+18 Rounded
+ddfma2319 fma 9000 9000000000000000 0e+384 -> 8.100000000000000E+19 Rounded
+ddfma2320 fma 90000 9000000000000000 0e+384 -> 8.100000000000000E+20 Rounded
+ddfma2321 fma 900000 9000000000000000 0e+384 -> 8.100000000000000E+21 Rounded
+ddfma2322 fma 9000000 9000000000000000 0e+384 -> 8.100000000000000E+22 Rounded
+ddfma2323 fma 90000000 9000000000000000 0e+384 -> 8.100000000000000E+23 Rounded
+
+-- tryzeros cases
+ddfma2504 fma 0E-260 1000E-260 0e+384 -> 0E-398 Clamped
+ddfma2505 fma 100E+260 0E+260 0e+384 -> 0E+369 Clamped
+
+-- mixed with zeros
+ddfma2541 fma 0 -1 0e+384 -> 0
+ddfma2542 fma -0 -1 0e+384 -> 0
+ddfma2543 fma 0 1 0e+384 -> 0
+ddfma2544 fma -0 1 0e+384 -> 0
+ddfma2545 fma -1 0 0e+384 -> 0
+ddfma2546 fma -1 -0 0e+384 -> 0
+ddfma2547 fma 1 0 0e+384 -> 0
+ddfma2548 fma 1 -0 0e+384 -> 0
+
+ddfma2551 fma 0.0 -1 0e+384 -> 0.0
+ddfma2552 fma -0.0 -1 0e+384 -> 0.0
+ddfma2553 fma 0.0 1 0e+384 -> 0.0
+ddfma2554 fma -0.0 1 0e+384 -> 0.0
+ddfma2555 fma -1.0 0 0e+384 -> 0.0
+ddfma2556 fma -1.0 -0 0e+384 -> 0.0
+ddfma2557 fma 1.0 0 0e+384 -> 0.0
+ddfma2558 fma 1.0 -0 0e+384 -> 0.0
+
+ddfma2561 fma 0 -1.0 0e+384 -> 0.0
+ddfma2562 fma -0 -1.0 0e+384 -> 0.0
+ddfma2563 fma 0 1.0 0e+384 -> 0.0
+ddfma2564 fma -0 1.0 0e+384 -> 0.0
+ddfma2565 fma -1 0.0 0e+384 -> 0.0
+ddfma2566 fma -1 -0.0 0e+384 -> 0.0
+ddfma2567 fma 1 0.0 0e+384 -> 0.0
+ddfma2568 fma 1 -0.0 0e+384 -> 0.0
+
+ddfma2571 fma 0.0 -1.0 0e+384 -> 0.00
+ddfma2572 fma -0.0 -1.0 0e+384 -> 0.00
+ddfma2573 fma 0.0 1.0 0e+384 -> 0.00
+ddfma2574 fma -0.0 1.0 0e+384 -> 0.00
+ddfma2575 fma -1.0 0.0 0e+384 -> 0.00
+ddfma2576 fma -1.0 -0.0 0e+384 -> 0.00
+ddfma2577 fma 1.0 0.0 0e+384 -> 0.00
+ddfma2578 fma 1.0 -0.0 0e+384 -> 0.00
+
+-- Specials
+ddfma2580 fma Inf -Inf 0e+384 -> -Infinity
+ddfma2581 fma Inf -1000 0e+384 -> -Infinity
+ddfma2582 fma Inf -1 0e+384 -> -Infinity
+ddfma2583 fma Inf -0 0e+384 -> NaN Invalid_operation
+ddfma2584 fma Inf 0 0e+384 -> NaN Invalid_operation
+ddfma2585 fma Inf 1 0e+384 -> Infinity
+ddfma2586 fma Inf 1000 0e+384 -> Infinity
+ddfma2587 fma Inf Inf 0e+384 -> Infinity
+ddfma2588 fma -1000 Inf 0e+384 -> -Infinity
+ddfma2589 fma -Inf Inf 0e+384 -> -Infinity
+ddfma2590 fma -1 Inf 0e+384 -> -Infinity
+ddfma2591 fma -0 Inf 0e+384 -> NaN Invalid_operation
+ddfma2592 fma 0 Inf 0e+384 -> NaN Invalid_operation
+ddfma2593 fma 1 Inf 0e+384 -> Infinity
+ddfma2594 fma 1000 Inf 0e+384 -> Infinity
+ddfma2595 fma Inf Inf 0e+384 -> Infinity
+
+ddfma2600 fma -Inf -Inf 0e+384 -> Infinity
+ddfma2601 fma -Inf -1000 0e+384 -> Infinity
+ddfma2602 fma -Inf -1 0e+384 -> Infinity
+ddfma2603 fma -Inf -0 0e+384 -> NaN Invalid_operation
+ddfma2604 fma -Inf 0 0e+384 -> NaN Invalid_operation
+ddfma2605 fma -Inf 1 0e+384 -> -Infinity
+ddfma2606 fma -Inf 1000 0e+384 -> -Infinity
+ddfma2607 fma -Inf Inf 0e+384 -> -Infinity
+ddfma2608 fma -1000 Inf 0e+384 -> -Infinity
+ddfma2609 fma -Inf -Inf 0e+384 -> Infinity
+ddfma2610 fma -1 -Inf 0e+384 -> Infinity
+ddfma2611 fma -0 -Inf 0e+384 -> NaN Invalid_operation
+ddfma2612 fma 0 -Inf 0e+384 -> NaN Invalid_operation
+ddfma2613 fma 1 -Inf 0e+384 -> -Infinity
+ddfma2614 fma 1000 -Inf 0e+384 -> -Infinity
+ddfma2615 fma Inf -Inf 0e+384 -> -Infinity
+
+ddfma2621 fma NaN -Inf 0e+384 -> NaN
+ddfma2622 fma NaN -1000 0e+384 -> NaN
+ddfma2623 fma NaN -1 0e+384 -> NaN
+ddfma2624 fma NaN -0 0e+384 -> NaN
+ddfma2625 fma NaN 0 0e+384 -> NaN
+ddfma2626 fma NaN 1 0e+384 -> NaN
+ddfma2627 fma NaN 1000 0e+384 -> NaN
+ddfma2628 fma NaN Inf 0e+384 -> NaN
+ddfma2629 fma NaN NaN 0e+384 -> NaN
+ddfma2630 fma -Inf NaN 0e+384 -> NaN
+ddfma2631 fma -1000 NaN 0e+384 -> NaN
+ddfma2632 fma -1 NaN 0e+384 -> NaN
+ddfma2633 fma -0 NaN 0e+384 -> NaN
+ddfma2634 fma 0 NaN 0e+384 -> NaN
+ddfma2635 fma 1 NaN 0e+384 -> NaN
+ddfma2636 fma 1000 NaN 0e+384 -> NaN
+ddfma2637 fma Inf NaN 0e+384 -> NaN
+
+ddfma2641 fma sNaN -Inf 0e+384 -> NaN Invalid_operation
+ddfma2642 fma sNaN -1000 0e+384 -> NaN Invalid_operation
+ddfma2643 fma sNaN -1 0e+384 -> NaN Invalid_operation
+ddfma2644 fma sNaN -0 0e+384 -> NaN Invalid_operation
+ddfma2645 fma sNaN 0 0e+384 -> NaN Invalid_operation
+ddfma2646 fma sNaN 1 0e+384 -> NaN Invalid_operation
+ddfma2647 fma sNaN 1000 0e+384 -> NaN Invalid_operation
+ddfma2648 fma sNaN NaN 0e+384 -> NaN Invalid_operation
+ddfma2649 fma sNaN sNaN 0e+384 -> NaN Invalid_operation
+ddfma2650 fma NaN sNaN 0e+384 -> NaN Invalid_operation
+ddfma2651 fma -Inf sNaN 0e+384 -> NaN Invalid_operation
+ddfma2652 fma -1000 sNaN 0e+384 -> NaN Invalid_operation
+ddfma2653 fma -1 sNaN 0e+384 -> NaN Invalid_operation
+ddfma2654 fma -0 sNaN 0e+384 -> NaN Invalid_operation
+ddfma2655 fma 0 sNaN 0e+384 -> NaN Invalid_operation
+ddfma2656 fma 1 sNaN 0e+384 -> NaN Invalid_operation
+ddfma2657 fma 1000 sNaN 0e+384 -> NaN Invalid_operation
+ddfma2658 fma Inf sNaN 0e+384 -> NaN Invalid_operation
+ddfma2659 fma NaN sNaN 0e+384 -> NaN Invalid_operation
+
+-- propagating NaNs
+ddfma2661 fma NaN9 -Inf 0e+384 -> NaN9
+ddfma2662 fma NaN8 999 0e+384 -> NaN8
+ddfma2663 fma NaN71 Inf 0e+384 -> NaN71
+ddfma2664 fma NaN6 NaN5 0e+384 -> NaN6
+ddfma2665 fma -Inf NaN4 0e+384 -> NaN4
+ddfma2666 fma -999 NaN33 0e+384 -> NaN33
+ddfma2667 fma Inf NaN2 0e+384 -> NaN2
+
+ddfma2671 fma sNaN99 -Inf 0e+384 -> NaN99 Invalid_operation
+ddfma2672 fma sNaN98 -11 0e+384 -> NaN98 Invalid_operation
+ddfma2673 fma sNaN97 NaN 0e+384 -> NaN97 Invalid_operation
+ddfma2674 fma sNaN16 sNaN94 0e+384 -> NaN16 Invalid_operation
+ddfma2675 fma NaN95 sNaN93 0e+384 -> NaN93 Invalid_operation
+ddfma2676 fma -Inf sNaN92 0e+384 -> NaN92 Invalid_operation
+ddfma2677 fma 088 sNaN91 0e+384 -> NaN91 Invalid_operation
+ddfma2678 fma Inf sNaN90 0e+384 -> NaN90 Invalid_operation
+ddfma2679 fma NaN sNaN89 0e+384 -> NaN89 Invalid_operation
+
+ddfma2681 fma -NaN9 -Inf 0e+384 -> -NaN9
+ddfma2682 fma -NaN8 999 0e+384 -> -NaN8
+ddfma2683 fma -NaN71 Inf 0e+384 -> -NaN71
+ddfma2684 fma -NaN6 -NaN5 0e+384 -> -NaN6
+ddfma2685 fma -Inf -NaN4 0e+384 -> -NaN4
+ddfma2686 fma -999 -NaN33 0e+384 -> -NaN33
+ddfma2687 fma Inf -NaN2 0e+384 -> -NaN2
+
+ddfma2691 fma -sNaN99 -Inf 0e+384 -> -NaN99 Invalid_operation
+ddfma2692 fma -sNaN98 -11 0e+384 -> -NaN98 Invalid_operation
+ddfma2693 fma -sNaN97 NaN 0e+384 -> -NaN97 Invalid_operation
+ddfma2694 fma -sNaN16 -sNaN94 0e+384 -> -NaN16 Invalid_operation
+ddfma2695 fma -NaN95 -sNaN93 0e+384 -> -NaN93 Invalid_operation
+ddfma2696 fma -Inf -sNaN92 0e+384 -> -NaN92 Invalid_operation
+ddfma2697 fma 088 -sNaN91 0e+384 -> -NaN91 Invalid_operation
+ddfma2698 fma Inf -sNaN90 0e+384 -> -NaN90 Invalid_operation
+ddfma2699 fma -NaN -sNaN89 0e+384 -> -NaN89 Invalid_operation
+
+ddfma2701 fma -NaN -Inf 0e+384 -> -NaN
+ddfma2702 fma -NaN 999 0e+384 -> -NaN
+ddfma2703 fma -NaN Inf 0e+384 -> -NaN
+ddfma2704 fma -NaN -NaN 0e+384 -> -NaN
+ddfma2705 fma -Inf -NaN0 0e+384 -> -NaN
+ddfma2706 fma -999 -NaN 0e+384 -> -NaN
+ddfma2707 fma Inf -NaN 0e+384 -> -NaN
+
+ddfma2711 fma -sNaN -Inf 0e+384 -> -NaN Invalid_operation
+ddfma2712 fma -sNaN -11 0e+384 -> -NaN Invalid_operation
+ddfma2713 fma -sNaN00 NaN 0e+384 -> -NaN Invalid_operation
+ddfma2714 fma -sNaN -sNaN 0e+384 -> -NaN Invalid_operation
+ddfma2715 fma -NaN -sNaN 0e+384 -> -NaN Invalid_operation
+ddfma2716 fma -Inf -sNaN 0e+384 -> -NaN Invalid_operation
+ddfma2717 fma 088 -sNaN 0e+384 -> -NaN Invalid_operation
+ddfma2718 fma Inf -sNaN 0e+384 -> -NaN Invalid_operation
+ddfma2719 fma -NaN -sNaN 0e+384 -> -NaN Invalid_operation
+
+-- overflow and underflow tests .. note subnormal results
+-- signs
+ddfma2751 fma 1e+277 1e+311 0e+384 -> Infinity Overflow Inexact Rounded
+ddfma2752 fma 1e+277 -1e+311 0e+384 -> -Infinity Overflow Inexact Rounded
+ddfma2753 fma -1e+277 1e+311 0e+384 -> -Infinity Overflow Inexact Rounded
+ddfma2754 fma -1e+277 -1e+311 0e+384 -> Infinity Overflow Inexact Rounded
+ddfma2755 fma 1e-277 1e-311 0e+384 -> 0E-398 Underflow Subnormal Inexact Rounded Clamped
+ddfma2756 fma 1e-277 -1e-311 0e+384 -> -0E-398 Underflow Subnormal Inexact Rounded Clamped
+ddfma2757 fma -1e-277 1e-311 0e+384 -> -0E-398 Underflow Subnormal Inexact Rounded Clamped
+ddfma2758 fma -1e-277 -1e-311 0e+384 -> 0E-398 Underflow Subnormal Inexact Rounded Clamped
+
+-- 'subnormal' boundary (all hard underflow or overflow in base arithemtic)
+ddfma2760 fma 1e-291 1e-101 0e+384 -> 1E-392 Subnormal
+ddfma2761 fma 1e-291 1e-102 0e+384 -> 1E-393 Subnormal
+ddfma2762 fma 1e-291 1e-103 0e+384 -> 1E-394 Subnormal
+ddfma2763 fma 1e-291 1e-104 0e+384 -> 1E-395 Subnormal
+ddfma2764 fma 1e-291 1e-105 0e+384 -> 1E-396 Subnormal
+ddfma2765 fma 1e-291 1e-106 0e+384 -> 1E-397 Subnormal
+ddfma2766 fma 1e-291 1e-107 0e+384 -> 1E-398 Subnormal
+ddfma2767 fma 1e-291 1e-108 0e+384 -> 0E-398 Underflow Subnormal Inexact Rounded Clamped
+ddfma2768 fma 1e-291 1e-109 0e+384 -> 0E-398 Underflow Subnormal Inexact Rounded Clamped
+ddfma2769 fma 1e-291 1e-110 0e+384 -> 0E-398 Underflow Subnormal Inexact Rounded Clamped
+-- [no equivalent of 'subnormal' for overflow]
+ddfma2770 fma 1e+60 1e+321 0e+384 -> 1.000000000000E+381 Clamped
+ddfma2771 fma 1e+60 1e+322 0e+384 -> 1.0000000000000E+382 Clamped
+ddfma2772 fma 1e+60 1e+323 0e+384 -> 1.00000000000000E+383 Clamped
+ddfma2773 fma 1e+60 1e+324 0e+384 -> 1.000000000000000E+384 Clamped
+ddfma2774 fma 1e+60 1e+325 0e+384 -> Infinity Overflow Inexact Rounded
+ddfma2775 fma 1e+60 1e+326 0e+384 -> Infinity Overflow Inexact Rounded
+ddfma2776 fma 1e+60 1e+327 0e+384 -> Infinity Overflow Inexact Rounded
+ddfma2777 fma 1e+60 1e+328 0e+384 -> Infinity Overflow Inexact Rounded
+ddfma2778 fma 1e+60 1e+329 0e+384 -> Infinity Overflow Inexact Rounded
+ddfma2779 fma 1e+60 1e+330 0e+384 -> Infinity Overflow Inexact Rounded
+
+ddfma2801 fma 1.0000E-394 1 0e+384 -> 1.0000E-394 Subnormal
+ddfma2802 fma 1.000E-394 1e-1 0e+384 -> 1.000E-395 Subnormal
+ddfma2803 fma 1.00E-394 1e-2 0e+384 -> 1.00E-396 Subnormal
+ddfma2804 fma 1.0E-394 1e-3 0e+384 -> 1.0E-397 Subnormal
+ddfma2805 fma 1.0E-394 1e-4 0e+384 -> 1E-398 Subnormal Rounded
+ddfma2806 fma 1.3E-394 1e-4 0e+384 -> 1E-398 Underflow Subnormal Inexact Rounded
+ddfma2807 fma 1.5E-394 1e-4 0e+384 -> 2E-398 Underflow Subnormal Inexact Rounded
+ddfma2808 fma 1.7E-394 1e-4 0e+384 -> 2E-398 Underflow Subnormal Inexact Rounded
+ddfma2809 fma 2.3E-394 1e-4 0e+384 -> 2E-398 Underflow Subnormal Inexact Rounded
+ddfma2810 fma 2.5E-394 1e-4 0e+384 -> 2E-398 Underflow Subnormal Inexact Rounded
+ddfma2811 fma 2.7E-394 1e-4 0e+384 -> 3E-398 Underflow Subnormal Inexact Rounded
+ddfma2812 fma 1.49E-394 1e-4 0e+384 -> 1E-398 Underflow Subnormal Inexact Rounded
+ddfma2813 fma 1.50E-394 1e-4 0e+384 -> 2E-398 Underflow Subnormal Inexact Rounded
+ddfma2814 fma 1.51E-394 1e-4 0e+384 -> 2E-398 Underflow Subnormal Inexact Rounded
+ddfma2815 fma 2.49E-394 1e-4 0e+384 -> 2E-398 Underflow Subnormal Inexact Rounded
+ddfma2816 fma 2.50E-394 1e-4 0e+384 -> 2E-398 Underflow Subnormal Inexact Rounded
+ddfma2817 fma 2.51E-394 1e-4 0e+384 -> 3E-398 Underflow Subnormal Inexact Rounded
+
+ddfma2818 fma 1E-394 1e-4 0e+384 -> 1E-398 Subnormal
+ddfma2819 fma 3E-394 1e-5 0e+384 -> 0E-398 Underflow Subnormal Inexact Rounded Clamped
+ddfma2820 fma 5E-394 1e-5 0e+384 -> 0E-398 Underflow Subnormal Inexact Rounded Clamped
+ddfma2821 fma 7E-394 1e-5 0e+384 -> 1E-398 Underflow Subnormal Inexact Rounded
+ddfma2822 fma 9E-394 1e-5 0e+384 -> 1E-398 Underflow Subnormal Inexact Rounded
+ddfma2823 fma 9.9E-394 1e-5 0e+384 -> 1E-398 Underflow Subnormal Inexact Rounded
+
+ddfma2824 fma 1E-394 -1e-4 0e+384 -> -1E-398 Subnormal
+ddfma2825 fma 3E-394 -1e-5 0e+384 -> -0E-398 Underflow Subnormal Inexact Rounded Clamped
+ddfma2826 fma -5E-394 1e-5 0e+384 -> -0E-398 Underflow Subnormal Inexact Rounded Clamped
+ddfma2827 fma 7E-394 -1e-5 0e+384 -> -1E-398 Underflow Subnormal Inexact Rounded
+ddfma2828 fma -9E-394 1e-5 0e+384 -> -1E-398 Underflow Subnormal Inexact Rounded
+ddfma2829 fma 9.9E-394 -1e-5 0e+384 -> -1E-398 Underflow Subnormal Inexact Rounded
+ddfma2830 fma 3.0E-394 -1e-5 0e+384 -> -0E-398 Underflow Subnormal Inexact Rounded Clamped
+
+ddfma2831 fma 1.0E-199 1e-200 0e+384 -> 0E-398 Underflow Subnormal Inexact Rounded Clamped
+ddfma2832 fma 1.0E-199 1e-199 0e+384 -> 1E-398 Subnormal Rounded
+ddfma2833 fma 1.0E-199 1e-198 0e+384 -> 1.0E-397 Subnormal
+ddfma2834 fma 2.0E-199 2e-198 0e+384 -> 4.0E-397 Subnormal
+ddfma2835 fma 4.0E-199 4e-198 0e+384 -> 1.60E-396 Subnormal
+ddfma2836 fma 10.0E-199 10e-198 0e+384 -> 1.000E-395 Subnormal
+ddfma2837 fma 30.0E-199 30e-198 0e+384 -> 9.000E-395 Subnormal
+ddfma2838 fma 40.0E-199 40e-188 0e+384 -> 1.6000E-384 Subnormal
+ddfma2839 fma 40.0E-199 40e-187 0e+384 -> 1.6000E-383
+ddfma2840 fma 40.0E-199 40e-186 0e+384 -> 1.6000E-382
+
+-- Long operand overflow may be a different path
+ddfma2870 fma 100 9.999E+383 0e+384 -> Infinity Inexact Overflow Rounded
+ddfma2871 fma 100 -9.999E+383 0e+384 -> -Infinity Inexact Overflow Rounded
+ddfma2872 fma 9.999E+383 100 0e+384 -> Infinity Inexact Overflow Rounded
+ddfma2873 fma -9.999E+383 100 0e+384 -> -Infinity Inexact Overflow Rounded
+
+-- check for double-rounded subnormals
+ddfma2881 fma 1.2347E-355 1.2347E-40 0e+384 -> 1.524E-395 Inexact Rounded Subnormal Underflow
+ddfma2882 fma 1.234E-355 1.234E-40 0e+384 -> 1.523E-395 Inexact Rounded Subnormal Underflow
+ddfma2883 fma 1.23E-355 1.23E-40 0e+384 -> 1.513E-395 Inexact Rounded Subnormal Underflow
+ddfma2884 fma 1.2E-355 1.2E-40 0e+384 -> 1.44E-395 Subnormal
+ddfma2885 fma 1.2E-355 1.2E-41 0e+384 -> 1.44E-396 Subnormal
+ddfma2886 fma 1.2E-355 1.2E-42 0e+384 -> 1.4E-397 Subnormal Inexact Rounded Underflow
+ddfma2887 fma 1.2E-355 1.3E-42 0e+384 -> 1.6E-397 Subnormal Inexact Rounded Underflow
+ddfma2888 fma 1.3E-355 1.3E-42 0e+384 -> 1.7E-397 Subnormal Inexact Rounded Underflow
+ddfma2889 fma 1.3E-355 1.3E-43 0e+384 -> 2E-398 Subnormal Inexact Rounded Underflow
+ddfma2890 fma 1.3E-356 1.3E-43 0e+384 -> 0E-398 Clamped Subnormal Inexact Rounded Underflow
+
+ddfma2891 fma 1.2345E-39 1.234E-355 0e+384 -> 1.5234E-394 Inexact Rounded Subnormal Underflow
+ddfma2892 fma 1.23456E-39 1.234E-355 0e+384 -> 1.5234E-394 Inexact Rounded Subnormal Underflow
+ddfma2893 fma 1.2345E-40 1.234E-355 0e+384 -> 1.523E-395 Inexact Rounded Subnormal Underflow
+ddfma2894 fma 1.23456E-40 1.234E-355 0e+384 -> 1.523E-395 Inexact Rounded Subnormal Underflow
+ddfma2895 fma 1.2345E-41 1.234E-355 0e+384 -> 1.52E-396 Inexact Rounded Subnormal Underflow
+ddfma2896 fma 1.23456E-41 1.234E-355 0e+384 -> 1.52E-396 Inexact Rounded Subnormal Underflow
+
+-- Now explore the case where we get a normal result with Underflow
+ddfma2900 fma 0.3000000000E-191 0.3000000000E-191 0e+384 -> 9.00000000000000E-384 Subnormal Rounded
+ddfma2901 fma 0.3000000001E-191 0.3000000001E-191 0e+384 -> 9.00000000600000E-384 Underflow Inexact Subnormal Rounded
+ddfma2902 fma 9.999999999999999E-383 0.0999999999999 0e+384 -> 9.99999999999000E-384 Underflow Inexact Subnormal Rounded
+ddfma2903 fma 9.999999999999999E-383 0.09999999999999 0e+384 -> 9.99999999999900E-384 Underflow Inexact Subnormal Rounded
+ddfma2904 fma 9.999999999999999E-383 0.099999999999999 0e+384 -> 9.99999999999990E-384 Underflow Inexact Subnormal Rounded
+ddfma2905 fma 9.999999999999999E-383 0.0999999999999999 0e+384 -> 9.99999999999999E-384 Underflow Inexact Subnormal Rounded
+-- prove operands are exact
+ddfma2906 fma 9.999999999999999E-383 1 0e+384 -> 9.999999999999999E-383
+ddfma2907 fma 1 0.09999999999999999 0e+384 -> 0.09999999999999999
+-- the next rounds to Nmin
+ddfma2908 fma 9.999999999999999E-383 0.09999999999999999 0e+384 -> 1.000000000000000E-383 Underflow Inexact Subnormal Rounded
+
+-- hugest
+ddfma2909 fma 9999999999999999 9999999999999999 0e+384 -> 9.999999999999998E+31 Inexact Rounded
+
+-- Null tests
+ddfma2990 fma 10 # 0e+384 -> NaN Invalid_operation
+ddfma2991 fma # 10 0e+384 -> NaN Invalid_operation
+
+
+-- ADDITION TESTS ------------------------------------------------------
+
+-- [first group are 'quick confidence check']
+ddfma3001 fma 1 1 1 -> 2
+ddfma3002 fma 1 2 3 -> 5
+ddfma3003 fma 1 '5.75' '3.3' -> 9.05
+ddfma3004 fma 1 '5' '-3' -> 2
+ddfma3005 fma 1 '-5' '-3' -> -8
+ddfma3006 fma 1 '-7' '2.5' -> -4.5
+ddfma3007 fma 1 '0.7' '0.3' -> 1.0
+ddfma3008 fma 1 '1.25' '1.25' -> 2.50
+ddfma3009 fma 1 '1.23456789' '1.00000000' -> '2.23456789'
+ddfma3010 fma 1 '1.23456789' '1.00000011' -> '2.23456800'
+
+-- 1234567890123456 1234567890123456
+ddfma3011 fma 1 '0.4444444444444446' '0.5555555555555555' -> '1.000000000000000' Inexact Rounded
+ddfma3012 fma 1 '0.4444444444444445' '0.5555555555555555' -> '1.000000000000000' Rounded
+ddfma3013 fma 1 '0.4444444444444444' '0.5555555555555555' -> '0.9999999999999999'
+ddfma3014 fma 1 '4444444444444444' '0.49' -> '4444444444444444' Inexact Rounded
+ddfma3015 fma 1 '4444444444444444' '0.499' -> '4444444444444444' Inexact Rounded
+ddfma3016 fma 1 '4444444444444444' '0.4999' -> '4444444444444444' Inexact Rounded
+ddfma3017 fma 1 '4444444444444444' '0.5000' -> '4444444444444444' Inexact Rounded
+ddfma3018 fma 1 '4444444444444444' '0.5001' -> '4444444444444445' Inexact Rounded
+ddfma3019 fma 1 '4444444444444444' '0.501' -> '4444444444444445' Inexact Rounded
+ddfma3020 fma 1 '4444444444444444' '0.51' -> '4444444444444445' Inexact Rounded
+
+ddfma3021 fma 1 0 1 -> 1
+ddfma3022 fma 1 1 1 -> 2
+ddfma3023 fma 1 2 1 -> 3
+ddfma3024 fma 1 3 1 -> 4
+ddfma3025 fma 1 4 1 -> 5
+ddfma3026 fma 1 5 1 -> 6
+ddfma3027 fma 1 6 1 -> 7
+ddfma3028 fma 1 7 1 -> 8
+ddfma3029 fma 1 8 1 -> 9
+ddfma3030 fma 1 9 1 -> 10
+
+-- some carrying effects
+ddfma3031 fma 1 '0.9998' '0.0000' -> '0.9998'
+ddfma3032 fma 1 '0.9998' '0.0001' -> '0.9999'
+ddfma3033 fma 1 '0.9998' '0.0002' -> '1.0000'
+ddfma3034 fma 1 '0.9998' '0.0003' -> '1.0001'
+
+ddfma3035 fma 1 '70' '10000e+16' -> '1.000000000000000E+20' Inexact Rounded
+ddfma3036 fma 1 '700' '10000e+16' -> '1.000000000000000E+20' Inexact Rounded
+ddfma3037 fma 1 '7000' '10000e+16' -> '1.000000000000000E+20' Inexact Rounded
+ddfma3038 fma 1 '70000' '10000e+16' -> '1.000000000000001E+20' Inexact Rounded
+ddfma3039 fma 1 '700000' '10000e+16' -> '1.000000000000007E+20' Rounded
+
+-- symmetry:
+ddfma3040 fma 1 '10000e+16' '70' -> '1.000000000000000E+20' Inexact Rounded
+ddfma3041 fma 1 '10000e+16' '700' -> '1.000000000000000E+20' Inexact Rounded
+ddfma3042 fma 1 '10000e+16' '7000' -> '1.000000000000000E+20' Inexact Rounded
+ddfma3044 fma 1 '10000e+16' '70000' -> '1.000000000000001E+20' Inexact Rounded
+ddfma3045 fma 1 '10000e+16' '700000' -> '1.000000000000007E+20' Rounded
+
+-- same, without rounding
+ddfma3046 fma 1 '10000e+9' '7' -> '10000000000007'
+ddfma3047 fma 1 '10000e+9' '70' -> '10000000000070'
+ddfma3048 fma 1 '10000e+9' '700' -> '10000000000700'
+ddfma3049 fma 1 '10000e+9' '7000' -> '10000000007000'
+ddfma3050 fma 1 '10000e+9' '70000' -> '10000000070000'
+ddfma3051 fma 1 '10000e+9' '700000' -> '10000000700000'
+ddfma3052 fma 1 '10000e+9' '7000000' -> '10000007000000'
+
+-- examples from decarith
+ddfma3053 fma 1 '12' '7.00' -> '19.00'
+ddfma3054 fma 1 '1.3' '-1.07' -> '0.23'
+ddfma3055 fma 1 '1.3' '-1.30' -> '0.00'
+ddfma3056 fma 1 '1.3' '-2.07' -> '-0.77'
+ddfma3057 fma 1 '1E+2' '1E+4' -> '1.01E+4'
+
+-- leading zero preservation
+ddfma3061 fma 1 1 '0.0001' -> '1.0001'
+ddfma3062 fma 1 1 '0.00001' -> '1.00001'
+ddfma3063 fma 1 1 '0.000001' -> '1.000001'
+ddfma3064 fma 1 1 '0.0000001' -> '1.0000001'
+ddfma3065 fma 1 1 '0.00000001' -> '1.00000001'
+
+-- some funny zeros [in case of bad signum]
+ddfma3070 fma 1 1 0 -> 1
+ddfma3071 fma 1 1 0. -> 1
+ddfma3072 fma 1 1 .0 -> 1.0
+ddfma3073 fma 1 1 0.0 -> 1.0
+ddfma3074 fma 1 1 0.00 -> 1.00
+ddfma3075 fma 1 0 1 -> 1
+ddfma3076 fma 1 0. 1 -> 1
+ddfma3077 fma 1 .0 1 -> 1.0
+ddfma3078 fma 1 0.0 1 -> 1.0
+ddfma3079 fma 1 0.00 1 -> 1.00
+
+-- some carries
+ddfma3080 fma 1 999999998 1 -> 999999999
+ddfma3081 fma 1 999999999 1 -> 1000000000
+ddfma3082 fma 1 99999999 1 -> 100000000
+ddfma3083 fma 1 9999999 1 -> 10000000
+ddfma3084 fma 1 999999 1 -> 1000000
+ddfma3085 fma 1 99999 1 -> 100000
+ddfma3086 fma 1 9999 1 -> 10000
+ddfma3087 fma 1 999 1 -> 1000
+ddfma3088 fma 1 99 1 -> 100
+ddfma3089 fma 1 9 1 -> 10
+
+
+-- more LHS swaps
+ddfma3090 fma 1 '-56267E-10' 0 -> '-0.0000056267'
+ddfma3091 fma 1 '-56267E-6' 0 -> '-0.056267'
+ddfma3092 fma 1 '-56267E-5' 0 -> '-0.56267'
+ddfma3093 fma 1 '-56267E-4' 0 -> '-5.6267'
+ddfma3094 fma 1 '-56267E-3' 0 -> '-56.267'
+ddfma3095 fma 1 '-56267E-2' 0 -> '-562.67'
+ddfma3096 fma 1 '-56267E-1' 0 -> '-5626.7'
+ddfma3097 fma 1 '-56267E-0' 0 -> '-56267'
+ddfma3098 fma 1 '-5E-10' 0 -> '-5E-10'
+ddfma3099 fma 1 '-5E-7' 0 -> '-5E-7'
+ddfma3100 fma 1 '-5E-6' 0 -> '-0.000005'
+ddfma3101 fma 1 '-5E-5' 0 -> '-0.00005'
+ddfma3102 fma 1 '-5E-4' 0 -> '-0.0005'
+ddfma3103 fma 1 '-5E-1' 0 -> '-0.5'
+ddfma3104 fma 1 '-5E0' 0 -> '-5'
+ddfma3105 fma 1 '-5E1' 0 -> '-50'
+ddfma3106 fma 1 '-5E5' 0 -> '-500000'
+ddfma3107 fma 1 '-5E15' 0 -> '-5000000000000000'
+ddfma3108 fma 1 '-5E16' 0 -> '-5.000000000000000E+16' Rounded
+ddfma3109 fma 1 '-5E17' 0 -> '-5.000000000000000E+17' Rounded
+ddfma3110 fma 1 '-5E18' 0 -> '-5.000000000000000E+18' Rounded
+ddfma3111 fma 1 '-5E100' 0 -> '-5.000000000000000E+100' Rounded
+
+-- more RHS swaps
+ddfma3113 fma 1 0 '-56267E-10' -> '-0.0000056267'
+ddfma3114 fma 1 0 '-56267E-6' -> '-0.056267'
+ddfma3116 fma 1 0 '-56267E-5' -> '-0.56267'
+ddfma3117 fma 1 0 '-56267E-4' -> '-5.6267'
+ddfma3119 fma 1 0 '-56267E-3' -> '-56.267'
+ddfma3120 fma 1 0 '-56267E-2' -> '-562.67'
+ddfma3121 fma 1 0 '-56267E-1' -> '-5626.7'
+ddfma3122 fma 1 0 '-56267E-0' -> '-56267'
+ddfma3123 fma 1 0 '-5E-10' -> '-5E-10'
+ddfma3124 fma 1 0 '-5E-7' -> '-5E-7'
+ddfma3125 fma 1 0 '-5E-6' -> '-0.000005'
+ddfma3126 fma 1 0 '-5E-5' -> '-0.00005'
+ddfma3127 fma 1 0 '-5E-4' -> '-0.0005'
+ddfma3128 fma 1 0 '-5E-1' -> '-0.5'
+ddfma3129 fma 1 0 '-5E0' -> '-5'
+ddfma3130 fma 1 0 '-5E1' -> '-50'
+ddfma3131 fma 1 0 '-5E5' -> '-500000'
+ddfma3132 fma 1 0 '-5E15' -> '-5000000000000000'
+ddfma3133 fma 1 0 '-5E16' -> '-5.000000000000000E+16' Rounded
+ddfma3134 fma 1 0 '-5E17' -> '-5.000000000000000E+17' Rounded
+ddfma3135 fma 1 0 '-5E18' -> '-5.000000000000000E+18' Rounded
+ddfma3136 fma 1 0 '-5E100' -> '-5.000000000000000E+100' Rounded
+
+-- related
+ddfma3137 fma 1 1 '0E-19' -> '1.000000000000000' Rounded
+ddfma3138 fma 1 -1 '0E-19' -> '-1.000000000000000' Rounded
+ddfma3139 fma 1 '0E-19' 1 -> '1.000000000000000' Rounded
+ddfma3140 fma 1 '0E-19' -1 -> '-1.000000000000000' Rounded
+ddfma3141 fma 1 1E+11 0.0000 -> '100000000000.0000'
+ddfma3142 fma 1 1E+11 0.00000 -> '100000000000.0000' Rounded
+ddfma3143 fma 1 0.000 1E+12 -> '1000000000000.000'
+ddfma3144 fma 1 0.0000 1E+12 -> '1000000000000.000' Rounded
+
+-- [some of the next group are really constructor tests]
+ddfma3146 fma 1 '00.0' 0 -> '0.0'
+ddfma3147 fma 1 '0.00' 0 -> '0.00'
+ddfma3148 fma 1 0 '0.00' -> '0.00'
+ddfma3149 fma 1 0 '00.0' -> '0.0'
+ddfma3150 fma 1 '00.0' '0.00' -> '0.00'
+ddfma3151 fma 1 '0.00' '00.0' -> '0.00'
+ddfma3152 fma 1 '3' '.3' -> '3.3'
+ddfma3153 fma 1 '3.' '.3' -> '3.3'
+ddfma3154 fma 1 '3.0' '.3' -> '3.3'
+ddfma3155 fma 1 '3.00' '.3' -> '3.30'
+ddfma3156 fma 1 '3' '3' -> '6'
+ddfma3157 fma 1 '3' '+3' -> '6'
+ddfma3158 fma 1 '3' '-3' -> '0'
+ddfma3159 fma 1 '0.3' '-0.3' -> '0.0'
+ddfma3160 fma 1 '0.03' '-0.03' -> '0.00'
+
+-- try borderline precision, with carries, etc.
+ddfma3161 fma 1 '1E+12' '-1' -> '999999999999'
+ddfma3162 fma 1 '1E+12' '1.11' -> '1000000000001.11'
+ddfma3163 fma 1 '1.11' '1E+12' -> '1000000000001.11'
+ddfma3164 fma 1 '-1' '1E+12' -> '999999999999'
+ddfma3165 fma 1 '7E+12' '-1' -> '6999999999999'
+ddfma3166 fma 1 '7E+12' '1.11' -> '7000000000001.11'
+ddfma3167 fma 1 '1.11' '7E+12' -> '7000000000001.11'
+ddfma3168 fma 1 '-1' '7E+12' -> '6999999999999'
+
+rounding: half_up
+-- 1.234567890123456 1234567890123456 1 234567890123456
+ddfma3170 fma 1 '4.444444444444444' '0.5555555555555567' -> '5.000000000000001' Inexact Rounded
+ddfma3171 fma 1 '4.444444444444444' '0.5555555555555566' -> '5.000000000000001' Inexact Rounded
+ddfma3172 fma 1 '4.444444444444444' '0.5555555555555565' -> '5.000000000000001' Inexact Rounded
+ddfma3173 fma 1 '4.444444444444444' '0.5555555555555564' -> '5.000000000000000' Inexact Rounded
+ddfma3174 fma 1 '4.444444444444444' '0.5555555555555553' -> '4.999999999999999' Inexact Rounded
+ddfma3175 fma 1 '4.444444444444444' '0.5555555555555552' -> '4.999999999999999' Inexact Rounded
+ddfma3176 fma 1 '4.444444444444444' '0.5555555555555551' -> '4.999999999999999' Inexact Rounded
+ddfma3177 fma 1 '4.444444444444444' '0.5555555555555550' -> '4.999999999999999' Rounded
+ddfma3178 fma 1 '4.444444444444444' '0.5555555555555545' -> '4.999999999999999' Inexact Rounded
+ddfma3179 fma 1 '4.444444444444444' '0.5555555555555544' -> '4.999999999999998' Inexact Rounded
+ddfma3180 fma 1 '4.444444444444444' '0.5555555555555543' -> '4.999999999999998' Inexact Rounded
+ddfma3181 fma 1 '4.444444444444444' '0.5555555555555542' -> '4.999999999999998' Inexact Rounded
+ddfma3182 fma 1 '4.444444444444444' '0.5555555555555541' -> '4.999999999999998' Inexact Rounded
+ddfma3183 fma 1 '4.444444444444444' '0.5555555555555540' -> '4.999999999999998' Rounded
+
+-- and some more, including residue effects and different roundings
+rounding: half_up
+ddfma3200 fma 1 '1234560123456789' 0 -> '1234560123456789'
+ddfma3201 fma 1 '1234560123456789' 0.000000001 -> '1234560123456789' Inexact Rounded
+ddfma3202 fma 1 '1234560123456789' 0.000001 -> '1234560123456789' Inexact Rounded
+ddfma3203 fma 1 '1234560123456789' 0.1 -> '1234560123456789' Inexact Rounded
+ddfma3204 fma 1 '1234560123456789' 0.4 -> '1234560123456789' Inexact Rounded
+ddfma3205 fma 1 '1234560123456789' 0.49 -> '1234560123456789' Inexact Rounded
+ddfma3206 fma 1 '1234560123456789' 0.499999 -> '1234560123456789' Inexact Rounded
+ddfma3207 fma 1 '1234560123456789' 0.499999999 -> '1234560123456789' Inexact Rounded
+ddfma3208 fma 1 '1234560123456789' 0.5 -> '1234560123456790' Inexact Rounded
+ddfma3209 fma 1 '1234560123456789' 0.500000001 -> '1234560123456790' Inexact Rounded
+ddfma3210 fma 1 '1234560123456789' 0.500001 -> '1234560123456790' Inexact Rounded
+ddfma3211 fma 1 '1234560123456789' 0.51 -> '1234560123456790' Inexact Rounded
+ddfma3212 fma 1 '1234560123456789' 0.6 -> '1234560123456790' Inexact Rounded
+ddfma3213 fma 1 '1234560123456789' 0.9 -> '1234560123456790' Inexact Rounded
+ddfma3214 fma 1 '1234560123456789' 0.99999 -> '1234560123456790' Inexact Rounded
+ddfma3215 fma 1 '1234560123456789' 0.999999999 -> '1234560123456790' Inexact Rounded
+ddfma3216 fma 1 '1234560123456789' 1 -> '1234560123456790'
+ddfma3217 fma 1 '1234560123456789' 1.000000001 -> '1234560123456790' Inexact Rounded
+ddfma3218 fma 1 '1234560123456789' 1.00001 -> '1234560123456790' Inexact Rounded
+ddfma3219 fma 1 '1234560123456789' 1.1 -> '1234560123456790' Inexact Rounded
+
+rounding: half_even
+ddfma3220 fma 1 '1234560123456789' 0 -> '1234560123456789'
+ddfma3221 fma 1 '1234560123456789' 0.000000001 -> '1234560123456789' Inexact Rounded
+ddfma3222 fma 1 '1234560123456789' 0.000001 -> '1234560123456789' Inexact Rounded
+ddfma3223 fma 1 '1234560123456789' 0.1 -> '1234560123456789' Inexact Rounded
+ddfma3224 fma 1 '1234560123456789' 0.4 -> '1234560123456789' Inexact Rounded
+ddfma3225 fma 1 '1234560123456789' 0.49 -> '1234560123456789' Inexact Rounded
+ddfma3226 fma 1 '1234560123456789' 0.499999 -> '1234560123456789' Inexact Rounded
+ddfma3227 fma 1 '1234560123456789' 0.499999999 -> '1234560123456789' Inexact Rounded
+ddfma3228 fma 1 '1234560123456789' 0.5 -> '1234560123456790' Inexact Rounded
+ddfma3229 fma 1 '1234560123456789' 0.500000001 -> '1234560123456790' Inexact Rounded
+ddfma3230 fma 1 '1234560123456789' 0.500001 -> '1234560123456790' Inexact Rounded
+ddfma3231 fma 1 '1234560123456789' 0.51 -> '1234560123456790' Inexact Rounded
+ddfma3232 fma 1 '1234560123456789' 0.6 -> '1234560123456790' Inexact Rounded
+ddfma3233 fma 1 '1234560123456789' 0.9 -> '1234560123456790' Inexact Rounded
+ddfma3234 fma 1 '1234560123456789' 0.99999 -> '1234560123456790' Inexact Rounded
+ddfma3235 fma 1 '1234560123456789' 0.999999999 -> '1234560123456790' Inexact Rounded
+ddfma3236 fma 1 '1234560123456789' 1 -> '1234560123456790'
+ddfma3237 fma 1 '1234560123456789' 1.00000001 -> '1234560123456790' Inexact Rounded
+ddfma3238 fma 1 '1234560123456789' 1.00001 -> '1234560123456790' Inexact Rounded
+ddfma3239 fma 1 '1234560123456789' 1.1 -> '1234560123456790' Inexact Rounded
+-- critical few with even bottom digit...
+ddfma3240 fma 1 '1234560123456788' 0.499999999 -> '1234560123456788' Inexact Rounded
+ddfma3241 fma 1 '1234560123456788' 0.5 -> '1234560123456788' Inexact Rounded
+ddfma3242 fma 1 '1234560123456788' 0.500000001 -> '1234560123456789' Inexact Rounded
+
+rounding: down
+ddfma3250 fma 1 '1234560123456789' 0 -> '1234560123456789'
+ddfma3251 fma 1 '1234560123456789' 0.000000001 -> '1234560123456789' Inexact Rounded
+ddfma3252 fma 1 '1234560123456789' 0.000001 -> '1234560123456789' Inexact Rounded
+ddfma3253 fma 1 '1234560123456789' 0.1 -> '1234560123456789' Inexact Rounded
+ddfma3254 fma 1 '1234560123456789' 0.4 -> '1234560123456789' Inexact Rounded
+ddfma3255 fma 1 '1234560123456789' 0.49 -> '1234560123456789' Inexact Rounded
+ddfma3256 fma 1 '1234560123456789' 0.499999 -> '1234560123456789' Inexact Rounded
+ddfma3257 fma 1 '1234560123456789' 0.499999999 -> '1234560123456789' Inexact Rounded
+ddfma3258 fma 1 '1234560123456789' 0.5 -> '1234560123456789' Inexact Rounded
+ddfma3259 fma 1 '1234560123456789' 0.500000001 -> '1234560123456789' Inexact Rounded
+ddfma3260 fma 1 '1234560123456789' 0.500001 -> '1234560123456789' Inexact Rounded
+ddfma3261 fma 1 '1234560123456789' 0.51 -> '1234560123456789' Inexact Rounded
+ddfma3262 fma 1 '1234560123456789' 0.6 -> '1234560123456789' Inexact Rounded
+ddfma3263 fma 1 '1234560123456789' 0.9 -> '1234560123456789' Inexact Rounded
+ddfma3264 fma 1 '1234560123456789' 0.99999 -> '1234560123456789' Inexact Rounded
+ddfma3265 fma 1 '1234560123456789' 0.999999999 -> '1234560123456789' Inexact Rounded
+ddfma3266 fma 1 '1234560123456789' 1 -> '1234560123456790'
+ddfma3267 fma 1 '1234560123456789' 1.00000001 -> '1234560123456790' Inexact Rounded
+ddfma3268 fma 1 '1234560123456789' 1.00001 -> '1234560123456790' Inexact Rounded
+ddfma3269 fma 1 '1234560123456789' 1.1 -> '1234560123456790' Inexact Rounded
+
+-- 1 in last place tests
+rounding: half_up
+ddfma3301 fma 1 -1 1 -> 0
+ddfma3302 fma 1 0 1 -> 1
+ddfma3303 fma 1 1 1 -> 2
+ddfma3304 fma 1 12 1 -> 13
+ddfma3305 fma 1 98 1 -> 99
+ddfma3306 fma 1 99 1 -> 100
+ddfma3307 fma 1 100 1 -> 101
+ddfma3308 fma 1 101 1 -> 102
+ddfma3309 fma 1 -1 -1 -> -2
+ddfma3310 fma 1 0 -1 -> -1
+ddfma3311 fma 1 1 -1 -> 0
+ddfma3312 fma 1 12 -1 -> 11
+ddfma3313 fma 1 98 -1 -> 97
+ddfma3314 fma 1 99 -1 -> 98
+ddfma3315 fma 1 100 -1 -> 99
+ddfma3316 fma 1 101 -1 -> 100
+
+ddfma3321 fma 1 -0.01 0.01 -> 0.00
+ddfma3322 fma 1 0.00 0.01 -> 0.01
+ddfma3323 fma 1 0.01 0.01 -> 0.02
+ddfma3324 fma 1 0.12 0.01 -> 0.13
+ddfma3325 fma 1 0.98 0.01 -> 0.99
+ddfma3326 fma 1 0.99 0.01 -> 1.00
+ddfma3327 fma 1 1.00 0.01 -> 1.01
+ddfma3328 fma 1 1.01 0.01 -> 1.02
+ddfma3329 fma 1 -0.01 -0.01 -> -0.02
+ddfma3330 fma 1 0.00 -0.01 -> -0.01
+ddfma3331 fma 1 0.01 -0.01 -> 0.00
+ddfma3332 fma 1 0.12 -0.01 -> 0.11
+ddfma3333 fma 1 0.98 -0.01 -> 0.97
+ddfma3334 fma 1 0.99 -0.01 -> 0.98
+ddfma3335 fma 1 1.00 -0.01 -> 0.99
+ddfma3336 fma 1 1.01 -0.01 -> 1.00
+
+-- some more cases where adding 0 affects the coefficient
+ddfma3340 fma 1 1E+3 0 -> 1000
+ddfma3341 fma 1 1E+15 0 -> 1000000000000000
+ddfma3342 fma 1 1E+16 0 -> 1.000000000000000E+16 Rounded
+ddfma3343 fma 1 1E+20 0 -> 1.000000000000000E+20 Rounded
+-- which simply follow from these cases ...
+ddfma3344 fma 1 1E+3 1 -> 1001
+ddfma3345 fma 1 1E+15 1 -> 1000000000000001
+ddfma3346 fma 1 1E+16 1 -> 1.000000000000000E+16 Inexact Rounded
+ddfma3347 fma 1 1E+20 1 -> 1.000000000000000E+20 Inexact Rounded
+ddfma3348 fma 1 1E+3 7 -> 1007
+ddfma3349 fma 1 1E+15 7 -> 1000000000000007
+ddfma3350 fma 1 1E+16 7 -> 1.000000000000001E+16 Inexact Rounded
+ddfma3351 fma 1 1E+20 7 -> 1.000000000000000E+20 Inexact Rounded
+
+-- tryzeros cases
+rounding: half_up
+ddfma3360 fma 1 0E+50 10000E+1 -> 1.0000E+5
+ddfma3361 fma 1 0E-50 10000E+1 -> 100000.0000000000 Rounded
+ddfma3362 fma 1 10000E+1 0E-50 -> 100000.0000000000 Rounded
+ddfma3363 fma 1 10000E+1 10000E-50 -> 100000.0000000000 Rounded Inexact
+ddfma3364 fma 1 9.999999999999999E+384 -9.999999999999999E+384 -> 0E+369
+
+-- a curiosity from JSR 13 testing
+rounding: half_down
+ddfma3370 fma 1 999999999999999 815 -> 1000000000000814
+ddfma3371 fma 1 9999999999999999 815 -> 1.000000000000081E+16 Rounded Inexact
+rounding: half_up
+ddfma3372 fma 1 999999999999999 815 -> 1000000000000814
+ddfma3373 fma 1 9999999999999999 815 -> 1.000000000000081E+16 Rounded Inexact
+rounding: half_even
+ddfma3374 fma 1 999999999999999 815 -> 1000000000000814
+ddfma3375 fma 1 9999999999999999 815 -> 1.000000000000081E+16 Rounded Inexact
+
+-- ulp replacement tests
+ddfma3400 fma 1 1 77e-14 -> 1.00000000000077
+ddfma3401 fma 1 1 77e-15 -> 1.000000000000077
+ddfma3402 fma 1 1 77e-16 -> 1.000000000000008 Inexact Rounded
+ddfma3403 fma 1 1 77e-17 -> 1.000000000000001 Inexact Rounded
+ddfma3404 fma 1 1 77e-18 -> 1.000000000000000 Inexact Rounded
+ddfma3405 fma 1 1 77e-19 -> 1.000000000000000 Inexact Rounded
+ddfma3406 fma 1 1 77e-299 -> 1.000000000000000 Inexact Rounded
+
+ddfma3410 fma 1 10 77e-14 -> 10.00000000000077
+ddfma3411 fma 1 10 77e-15 -> 10.00000000000008 Inexact Rounded
+ddfma3412 fma 1 10 77e-16 -> 10.00000000000001 Inexact Rounded
+ddfma3413 fma 1 10 77e-17 -> 10.00000000000000 Inexact Rounded
+ddfma3414 fma 1 10 77e-18 -> 10.00000000000000 Inexact Rounded
+ddfma3415 fma 1 10 77e-19 -> 10.00000000000000 Inexact Rounded
+ddfma3416 fma 1 10 77e-299 -> 10.00000000000000 Inexact Rounded
+
+ddfma3420 fma 1 77e-14 1 -> 1.00000000000077
+ddfma3421 fma 1 77e-15 1 -> 1.000000000000077
+ddfma3422 fma 1 77e-16 1 -> 1.000000000000008 Inexact Rounded
+ddfma3423 fma 1 77e-17 1 -> 1.000000000000001 Inexact Rounded
+ddfma3424 fma 1 77e-18 1 -> 1.000000000000000 Inexact Rounded
+ddfma3425 fma 1 77e-19 1 -> 1.000000000000000 Inexact Rounded
+ddfma3426 fma 1 77e-299 1 -> 1.000000000000000 Inexact Rounded
+
+ddfma3430 fma 1 77e-14 10 -> 10.00000000000077
+ddfma3431 fma 1 77e-15 10 -> 10.00000000000008 Inexact Rounded
+ddfma3432 fma 1 77e-16 10 -> 10.00000000000001 Inexact Rounded
+ddfma3433 fma 1 77e-17 10 -> 10.00000000000000 Inexact Rounded
+ddfma3434 fma 1 77e-18 10 -> 10.00000000000000 Inexact Rounded
+ddfma3435 fma 1 77e-19 10 -> 10.00000000000000 Inexact Rounded
+ddfma3436 fma 1 77e-299 10 -> 10.00000000000000 Inexact Rounded
+
+-- negative ulps
+ddfma36440 fma 1 1 -77e-14 -> 0.99999999999923
+ddfma36441 fma 1 1 -77e-15 -> 0.999999999999923
+ddfma36442 fma 1 1 -77e-16 -> 0.9999999999999923
+ddfma36443 fma 1 1 -77e-17 -> 0.9999999999999992 Inexact Rounded
+ddfma36444 fma 1 1 -77e-18 -> 0.9999999999999999 Inexact Rounded
+ddfma36445 fma 1 1 -77e-19 -> 1.000000000000000 Inexact Rounded
+ddfma36446 fma 1 1 -77e-99 -> 1.000000000000000 Inexact Rounded
+
+ddfma36450 fma 1 10 -77e-14 -> 9.99999999999923
+ddfma36451 fma 1 10 -77e-15 -> 9.999999999999923
+ddfma36452 fma 1 10 -77e-16 -> 9.999999999999992 Inexact Rounded
+ddfma36453 fma 1 10 -77e-17 -> 9.999999999999999 Inexact Rounded
+ddfma36454 fma 1 10 -77e-18 -> 10.00000000000000 Inexact Rounded
+ddfma36455 fma 1 10 -77e-19 -> 10.00000000000000 Inexact Rounded
+ddfma36456 fma 1 10 -77e-99 -> 10.00000000000000 Inexact Rounded
+
+ddfma36460 fma 1 -77e-14 1 -> 0.99999999999923
+ddfma36461 fma 1 -77e-15 1 -> 0.999999999999923
+ddfma36462 fma 1 -77e-16 1 -> 0.9999999999999923
+ddfma36463 fma 1 -77e-17 1 -> 0.9999999999999992 Inexact Rounded
+ddfma36464 fma 1 -77e-18 1 -> 0.9999999999999999 Inexact Rounded
+ddfma36465 fma 1 -77e-19 1 -> 1.000000000000000 Inexact Rounded
+ddfma36466 fma 1 -77e-99 1 -> 1.000000000000000 Inexact Rounded
+
+ddfma36470 fma 1 -77e-14 10 -> 9.99999999999923
+ddfma36471 fma 1 -77e-15 10 -> 9.999999999999923
+ddfma36472 fma 1 -77e-16 10 -> 9.999999999999992 Inexact Rounded
+ddfma36473 fma 1 -77e-17 10 -> 9.999999999999999 Inexact Rounded
+ddfma36474 fma 1 -77e-18 10 -> 10.00000000000000 Inexact Rounded
+ddfma36475 fma 1 -77e-19 10 -> 10.00000000000000 Inexact Rounded
+ddfma36476 fma 1 -77e-99 10 -> 10.00000000000000 Inexact Rounded
+
+-- negative ulps
+ddfma36480 fma 1 -1 77e-14 -> -0.99999999999923
+ddfma36481 fma 1 -1 77e-15 -> -0.999999999999923
+ddfma36482 fma 1 -1 77e-16 -> -0.9999999999999923
+ddfma36483 fma 1 -1 77e-17 -> -0.9999999999999992 Inexact Rounded
+ddfma36484 fma 1 -1 77e-18 -> -0.9999999999999999 Inexact Rounded
+ddfma36485 fma 1 -1 77e-19 -> -1.000000000000000 Inexact Rounded
+ddfma36486 fma 1 -1 77e-99 -> -1.000000000000000 Inexact Rounded
+
+ddfma36490 fma 1 -10 77e-14 -> -9.99999999999923
+ddfma36491 fma 1 -10 77e-15 -> -9.999999999999923
+ddfma36492 fma 1 -10 77e-16 -> -9.999999999999992 Inexact Rounded
+ddfma36493 fma 1 -10 77e-17 -> -9.999999999999999 Inexact Rounded
+ddfma36494 fma 1 -10 77e-18 -> -10.00000000000000 Inexact Rounded
+ddfma36495 fma 1 -10 77e-19 -> -10.00000000000000 Inexact Rounded
+ddfma36496 fma 1 -10 77e-99 -> -10.00000000000000 Inexact Rounded
+
+ddfma36500 fma 1 77e-14 -1 -> -0.99999999999923
+ddfma36501 fma 1 77e-15 -1 -> -0.999999999999923
+ddfma36502 fma 1 77e-16 -1 -> -0.9999999999999923
+ddfma36503 fma 1 77e-17 -1 -> -0.9999999999999992 Inexact Rounded
+ddfma36504 fma 1 77e-18 -1 -> -0.9999999999999999 Inexact Rounded
+ddfma36505 fma 1 77e-19 -1 -> -1.000000000000000 Inexact Rounded
+ddfma36506 fma 1 77e-99 -1 -> -1.000000000000000 Inexact Rounded
+
+ddfma36510 fma 1 77e-14 -10 -> -9.99999999999923
+ddfma36511 fma 1 77e-15 -10 -> -9.999999999999923
+ddfma36512 fma 1 77e-16 -10 -> -9.999999999999992 Inexact Rounded
+ddfma36513 fma 1 77e-17 -10 -> -9.999999999999999 Inexact Rounded
+ddfma36514 fma 1 77e-18 -10 -> -10.00000000000000 Inexact Rounded
+ddfma36515 fma 1 77e-19 -10 -> -10.00000000000000 Inexact Rounded
+ddfma36516 fma 1 77e-99 -10 -> -10.00000000000000 Inexact Rounded
+
+-- and a couple more with longer RHS
+ddfma36520 fma 1 1 -7777e-16 -> 0.9999999999992223
+ddfma36521 fma 1 1 -7777e-17 -> 0.9999999999999222 Inexact Rounded
+ddfma36522 fma 1 1 -7777e-18 -> 0.9999999999999922 Inexact Rounded
+ddfma36523 fma 1 1 -7777e-19 -> 0.9999999999999992 Inexact Rounded
+ddfma36524 fma 1 1 -7777e-20 -> 0.9999999999999999 Inexact Rounded
+ddfma36525 fma 1 1 -7777e-21 -> 1.000000000000000 Inexact Rounded
+ddfma36526 fma 1 1 -7777e-22 -> 1.000000000000000 Inexact Rounded
+
+
+-- and some more residue effects and different roundings
+rounding: half_up
+ddfma36540 fma 1 '6543210123456789' 0 -> '6543210123456789'
+ddfma36541 fma 1 '6543210123456789' 0.000000001 -> '6543210123456789' Inexact Rounded
+ddfma36542 fma 1 '6543210123456789' 0.000001 -> '6543210123456789' Inexact Rounded
+ddfma36543 fma 1 '6543210123456789' 0.1 -> '6543210123456789' Inexact Rounded
+ddfma36544 fma 1 '6543210123456789' 0.4 -> '6543210123456789' Inexact Rounded
+ddfma36545 fma 1 '6543210123456789' 0.49 -> '6543210123456789' Inexact Rounded
+ddfma36546 fma 1 '6543210123456789' 0.499999 -> '6543210123456789' Inexact Rounded
+ddfma36547 fma 1 '6543210123456789' 0.499999999 -> '6543210123456789' Inexact Rounded
+ddfma36548 fma 1 '6543210123456789' 0.5 -> '6543210123456790' Inexact Rounded
+ddfma36549 fma 1 '6543210123456789' 0.500000001 -> '6543210123456790' Inexact Rounded
+ddfma36550 fma 1 '6543210123456789' 0.500001 -> '6543210123456790' Inexact Rounded
+ddfma36551 fma 1 '6543210123456789' 0.51 -> '6543210123456790' Inexact Rounded
+ddfma36552 fma 1 '6543210123456789' 0.6 -> '6543210123456790' Inexact Rounded
+ddfma36553 fma 1 '6543210123456789' 0.9 -> '6543210123456790' Inexact Rounded
+ddfma36554 fma 1 '6543210123456789' 0.99999 -> '6543210123456790' Inexact Rounded
+ddfma36555 fma 1 '6543210123456789' 0.999999999 -> '6543210123456790' Inexact Rounded
+ddfma36556 fma 1 '6543210123456789' 1 -> '6543210123456790'
+ddfma36557 fma 1 '6543210123456789' 1.000000001 -> '6543210123456790' Inexact Rounded
+ddfma36558 fma 1 '6543210123456789' 1.00001 -> '6543210123456790' Inexact Rounded
+ddfma36559 fma 1 '6543210123456789' 1.1 -> '6543210123456790' Inexact Rounded
+
+rounding: half_even
+ddfma36560 fma 1 '6543210123456789' 0 -> '6543210123456789'
+ddfma36561 fma 1 '6543210123456789' 0.000000001 -> '6543210123456789' Inexact Rounded
+ddfma36562 fma 1 '6543210123456789' 0.000001 -> '6543210123456789' Inexact Rounded
+ddfma36563 fma 1 '6543210123456789' 0.1 -> '6543210123456789' Inexact Rounded
+ddfma36564 fma 1 '6543210123456789' 0.4 -> '6543210123456789' Inexact Rounded
+ddfma36565 fma 1 '6543210123456789' 0.49 -> '6543210123456789' Inexact Rounded
+ddfma36566 fma 1 '6543210123456789' 0.499999 -> '6543210123456789' Inexact Rounded
+ddfma36567 fma 1 '6543210123456789' 0.499999999 -> '6543210123456789' Inexact Rounded
+ddfma36568 fma 1 '6543210123456789' 0.5 -> '6543210123456790' Inexact Rounded
+ddfma36569 fma 1 '6543210123456789' 0.500000001 -> '6543210123456790' Inexact Rounded
+ddfma36570 fma 1 '6543210123456789' 0.500001 -> '6543210123456790' Inexact Rounded
+ddfma36571 fma 1 '6543210123456789' 0.51 -> '6543210123456790' Inexact Rounded
+ddfma36572 fma 1 '6543210123456789' 0.6 -> '6543210123456790' Inexact Rounded
+ddfma36573 fma 1 '6543210123456789' 0.9 -> '6543210123456790' Inexact Rounded
+ddfma36574 fma 1 '6543210123456789' 0.99999 -> '6543210123456790' Inexact Rounded
+ddfma36575 fma 1 '6543210123456789' 0.999999999 -> '6543210123456790' Inexact Rounded
+ddfma36576 fma 1 '6543210123456789' 1 -> '6543210123456790'
+ddfma36577 fma 1 '6543210123456789' 1.00000001 -> '6543210123456790' Inexact Rounded
+ddfma36578 fma 1 '6543210123456789' 1.00001 -> '6543210123456790' Inexact Rounded
+ddfma36579 fma 1 '6543210123456789' 1.1 -> '6543210123456790' Inexact Rounded
+
+-- critical few with even bottom digit...
+ddfma37540 fma 1 '6543210123456788' 0.499999999 -> '6543210123456788' Inexact Rounded
+ddfma37541 fma 1 '6543210123456788' 0.5 -> '6543210123456788' Inexact Rounded
+ddfma37542 fma 1 '6543210123456788' 0.500000001 -> '6543210123456789' Inexact Rounded
+
+rounding: down
+ddfma37550 fma 1 '6543210123456789' 0 -> '6543210123456789'
+ddfma37551 fma 1 '6543210123456789' 0.000000001 -> '6543210123456789' Inexact Rounded
+ddfma37552 fma 1 '6543210123456789' 0.000001 -> '6543210123456789' Inexact Rounded
+ddfma37553 fma 1 '6543210123456789' 0.1 -> '6543210123456789' Inexact Rounded
+ddfma37554 fma 1 '6543210123456789' 0.4 -> '6543210123456789' Inexact Rounded
+ddfma37555 fma 1 '6543210123456789' 0.49 -> '6543210123456789' Inexact Rounded
+ddfma37556 fma 1 '6543210123456789' 0.499999 -> '6543210123456789' Inexact Rounded
+ddfma37557 fma 1 '6543210123456789' 0.499999999 -> '6543210123456789' Inexact Rounded
+ddfma37558 fma 1 '6543210123456789' 0.5 -> '6543210123456789' Inexact Rounded
+ddfma37559 fma 1 '6543210123456789' 0.500000001 -> '6543210123456789' Inexact Rounded
+ddfma37560 fma 1 '6543210123456789' 0.500001 -> '6543210123456789' Inexact Rounded
+ddfma37561 fma 1 '6543210123456789' 0.51 -> '6543210123456789' Inexact Rounded
+ddfma37562 fma 1 '6543210123456789' 0.6 -> '6543210123456789' Inexact Rounded
+ddfma37563 fma 1 '6543210123456789' 0.9 -> '6543210123456789' Inexact Rounded
+ddfma37564 fma 1 '6543210123456789' 0.99999 -> '6543210123456789' Inexact Rounded
+ddfma37565 fma 1 '6543210123456789' 0.999999999 -> '6543210123456789' Inexact Rounded
+ddfma37566 fma 1 '6543210123456789' 1 -> '6543210123456790'
+ddfma37567 fma 1 '6543210123456789' 1.00000001 -> '6543210123456790' Inexact Rounded
+ddfma37568 fma 1 '6543210123456789' 1.00001 -> '6543210123456790' Inexact Rounded
+ddfma37569 fma 1 '6543210123456789' 1.1 -> '6543210123456790' Inexact Rounded
+
+
+-- verify a query
+rounding: down
+ddfma37661 fma 1 1e-398 9.000000000000000E+384 -> 9.000000000000000E+384 Inexact Rounded
+ddfma37662 fma 1 0 9.000000000000000E+384 -> 9.000000000000000E+384 Rounded
+ddfma37663 fma 1 1e-388 9.000000000000000E+374 -> 9.000000000000000E+374 Inexact Rounded
+ddfma37664 fma 1 0 9.000000000000000E+374 -> 9.000000000000000E+374 Rounded
+
+-- more zeros, etc.
+rounding: half_even
+
+ddfma37701 fma 1 5.00 1.00E-3 -> 5.00100
+ddfma37702 fma 1 00.00 0.000 -> 0.000
+ddfma37703 fma 1 00.00 0E-3 -> 0.000
+ddfma37704 fma 1 0E-3 00.00 -> 0.000
+
+ddfma37710 fma 1 0E+3 00.00 -> 0.00
+ddfma37711 fma 1 0E+3 00.0 -> 0.0
+ddfma37712 fma 1 0E+3 00. -> 0
+ddfma37713 fma 1 0E+3 00.E+1 -> 0E+1
+ddfma37714 fma 1 0E+3 00.E+2 -> 0E+2
+ddfma37715 fma 1 0E+3 00.E+3 -> 0E+3
+ddfma37716 fma 1 0E+3 00.E+4 -> 0E+3
+ddfma37717 fma 1 0E+3 00.E+5 -> 0E+3
+ddfma37718 fma 1 0E+3 -00.0 -> 0.0
+ddfma37719 fma 1 0E+3 -00. -> 0
+ddfma37731 fma 1 0E+3 -00.E+1 -> 0E+1
+
+ddfma37720 fma 1 00.00 0E+3 -> 0.00
+ddfma37721 fma 1 00.0 0E+3 -> 0.0
+ddfma37722 fma 1 00. 0E+3 -> 0
+ddfma37723 fma 1 00.E+1 0E+3 -> 0E+1
+ddfma37724 fma 1 00.E+2 0E+3 -> 0E+2
+ddfma37725 fma 1 00.E+3 0E+3 -> 0E+3
+ddfma37726 fma 1 00.E+4 0E+3 -> 0E+3
+ddfma37727 fma 1 00.E+5 0E+3 -> 0E+3
+ddfma37728 fma 1 -00.00 0E+3 -> 0.00
+ddfma37729 fma 1 -00.0 0E+3 -> 0.0
+ddfma37730 fma 1 -00. 0E+3 -> 0
+
+ddfma37732 fma 1 0 0 -> 0
+ddfma37733 fma 1 0 -0 -> 0
+ddfma37734 fma 1 -0 0 -> 0
+ddfma37735 fma 1 -0 -0 -> -0 -- IEEE 854 special case
+
+ddfma37736 fma 1 1 -1 -> 0
+ddfma37737 fma 1 -1 -1 -> -2
+ddfma37738 fma 1 1 1 -> 2
+ddfma37739 fma 1 -1 1 -> 0
+
+ddfma37741 fma 1 0 -1 -> -1
+ddfma37742 fma 1 -0 -1 -> -1
+ddfma37743 fma 1 0 1 -> 1
+ddfma37744 fma 1 -0 1 -> 1
+ddfma37745 fma 1 -1 0 -> -1
+ddfma37746 fma 1 -1 -0 -> -1
+ddfma37747 fma 1 1 0 -> 1
+ddfma37748 fma 1 1 -0 -> 1
+
+ddfma37751 fma 1 0.0 -1 -> -1.0
+ddfma37752 fma 1 -0.0 -1 -> -1.0
+ddfma37753 fma 1 0.0 1 -> 1.0
+ddfma37754 fma 1 -0.0 1 -> 1.0
+ddfma37755 fma 1 -1.0 0 -> -1.0
+ddfma37756 fma 1 -1.0 -0 -> -1.0
+ddfma37757 fma 1 1.0 0 -> 1.0
+ddfma37758 fma 1 1.0 -0 -> 1.0
+
+ddfma37761 fma 1 0 -1.0 -> -1.0
+ddfma37762 fma 1 -0 -1.0 -> -1.0
+ddfma37763 fma 1 0 1.0 -> 1.0
+ddfma37764 fma 1 -0 1.0 -> 1.0
+ddfma37765 fma 1 -1 0.0 -> -1.0
+ddfma37766 fma 1 -1 -0.0 -> -1.0
+ddfma37767 fma 1 1 0.0 -> 1.0
+ddfma37768 fma 1 1 -0.0 -> 1.0
+
+ddfma37771 fma 1 0.0 -1.0 -> -1.0
+ddfma37772 fma 1 -0.0 -1.0 -> -1.0
+ddfma37773 fma 1 0.0 1.0 -> 1.0
+ddfma37774 fma 1 -0.0 1.0 -> 1.0
+ddfma37775 fma 1 -1.0 0.0 -> -1.0
+ddfma37776 fma 1 -1.0 -0.0 -> -1.0
+ddfma37777 fma 1 1.0 0.0 -> 1.0
+ddfma37778 fma 1 1.0 -0.0 -> 1.0
+
+-- Specials
+ddfma37780 fma 1 -Inf -Inf -> -Infinity
+ddfma37781 fma 1 -Inf -1000 -> -Infinity
+ddfma37782 fma 1 -Inf -1 -> -Infinity
+ddfma37783 fma 1 -Inf -0 -> -Infinity
+ddfma37784 fma 1 -Inf 0 -> -Infinity
+ddfma37785 fma 1 -Inf 1 -> -Infinity
+ddfma37786 fma 1 -Inf 1000 -> -Infinity
+ddfma37787 fma 1 -1000 -Inf -> -Infinity
+ddfma37788 fma 1 -Inf -Inf -> -Infinity
+ddfma37789 fma 1 -1 -Inf -> -Infinity
+ddfma37790 fma 1 -0 -Inf -> -Infinity
+ddfma37791 fma 1 0 -Inf -> -Infinity
+ddfma37792 fma 1 1 -Inf -> -Infinity
+ddfma37793 fma 1 1000 -Inf -> -Infinity
+ddfma37794 fma 1 Inf -Inf -> NaN Invalid_operation
+
+ddfma37800 fma 1 Inf -Inf -> NaN Invalid_operation
+ddfma37801 fma 1 Inf -1000 -> Infinity
+ddfma37802 fma 1 Inf -1 -> Infinity
+ddfma37803 fma 1 Inf -0 -> Infinity
+ddfma37804 fma 1 Inf 0 -> Infinity
+ddfma37805 fma 1 Inf 1 -> Infinity
+ddfma37806 fma 1 Inf 1000 -> Infinity
+ddfma37807 fma 1 Inf Inf -> Infinity
+ddfma37808 fma 1 -1000 Inf -> Infinity
+ddfma37809 fma 1 -Inf Inf -> NaN Invalid_operation
+ddfma37810 fma 1 -1 Inf -> Infinity
+ddfma37811 fma 1 -0 Inf -> Infinity
+ddfma37812 fma 1 0 Inf -> Infinity
+ddfma37813 fma 1 1 Inf -> Infinity
+ddfma37814 fma 1 1000 Inf -> Infinity
+ddfma37815 fma 1 Inf Inf -> Infinity
+
+ddfma37821 fma 1 NaN -Inf -> NaN
+ddfma37822 fma 1 NaN -1000 -> NaN
+ddfma37823 fma 1 NaN -1 -> NaN
+ddfma37824 fma 1 NaN -0 -> NaN
+ddfma37825 fma 1 NaN 0 -> NaN
+ddfma37826 fma 1 NaN 1 -> NaN
+ddfma37827 fma 1 NaN 1000 -> NaN
+ddfma37828 fma 1 NaN Inf -> NaN
+ddfma37829 fma 1 NaN NaN -> NaN
+ddfma37830 fma 1 -Inf NaN -> NaN
+ddfma37831 fma 1 -1000 NaN -> NaN
+ddfma37832 fma 1 -1 NaN -> NaN
+ddfma37833 fma 1 -0 NaN -> NaN
+ddfma37834 fma 1 0 NaN -> NaN
+ddfma37835 fma 1 1 NaN -> NaN
+ddfma37836 fma 1 1000 NaN -> NaN
+ddfma37837 fma 1 Inf NaN -> NaN
+
+ddfma37841 fma 1 sNaN -Inf -> NaN Invalid_operation
+ddfma37842 fma 1 sNaN -1000 -> NaN Invalid_operation
+ddfma37843 fma 1 sNaN -1 -> NaN Invalid_operation
+ddfma37844 fma 1 sNaN -0 -> NaN Invalid_operation
+ddfma37845 fma 1 sNaN 0 -> NaN Invalid_operation
+ddfma37846 fma 1 sNaN 1 -> NaN Invalid_operation
+ddfma37847 fma 1 sNaN 1000 -> NaN Invalid_operation
+ddfma37848 fma 1 sNaN NaN -> NaN Invalid_operation
+ddfma37849 fma 1 sNaN sNaN -> NaN Invalid_operation
+ddfma37850 fma 1 NaN sNaN -> NaN Invalid_operation
+ddfma37851 fma 1 -Inf sNaN -> NaN Invalid_operation
+ddfma37852 fma 1 -1000 sNaN -> NaN Invalid_operation
+ddfma37853 fma 1 -1 sNaN -> NaN Invalid_operation
+ddfma37854 fma 1 -0 sNaN -> NaN Invalid_operation
+ddfma37855 fma 1 0 sNaN -> NaN Invalid_operation
+ddfma37856 fma 1 1 sNaN -> NaN Invalid_operation
+ddfma37857 fma 1 1000 sNaN -> NaN Invalid_operation
+ddfma37858 fma 1 Inf sNaN -> NaN Invalid_operation
+ddfma37859 fma 1 NaN sNaN -> NaN Invalid_operation
+
+-- propagating NaNs
+ddfma37861 fma 1 NaN1 -Inf -> NaN1
+ddfma37862 fma 1 +NaN2 -1000 -> NaN2
+ddfma37863 fma 1 NaN3 1000 -> NaN3
+ddfma37864 fma 1 NaN4 Inf -> NaN4
+ddfma37865 fma 1 NaN5 +NaN6 -> NaN5
+ddfma37866 fma 1 -Inf NaN7 -> NaN7
+ddfma37867 fma 1 -1000 NaN8 -> NaN8
+ddfma37868 fma 1 1000 NaN9 -> NaN9
+ddfma37869 fma 1 Inf +NaN10 -> NaN10
+ddfma37871 fma 1 sNaN11 -Inf -> NaN11 Invalid_operation
+ddfma37872 fma 1 sNaN12 -1000 -> NaN12 Invalid_operation
+ddfma37873 fma 1 sNaN13 1000 -> NaN13 Invalid_operation
+ddfma37874 fma 1 sNaN14 NaN17 -> NaN14 Invalid_operation
+ddfma37875 fma 1 sNaN15 sNaN18 -> NaN15 Invalid_operation
+ddfma37876 fma 1 NaN16 sNaN19 -> NaN19 Invalid_operation
+ddfma37877 fma 1 -Inf +sNaN20 -> NaN20 Invalid_operation
+ddfma37878 fma 1 -1000 sNaN21 -> NaN21 Invalid_operation
+ddfma37879 fma 1 1000 sNaN22 -> NaN22 Invalid_operation
+ddfma37880 fma 1 Inf sNaN23 -> NaN23 Invalid_operation
+ddfma37881 fma 1 +NaN25 +sNaN24 -> NaN24 Invalid_operation
+ddfma37882 fma 1 -NaN26 NaN28 -> -NaN26
+ddfma37883 fma 1 -sNaN27 sNaN29 -> -NaN27 Invalid_operation
+ddfma37884 fma 1 1000 -NaN30 -> -NaN30
+ddfma37885 fma 1 1000 -sNaN31 -> -NaN31 Invalid_operation
+
+-- Here we explore near the boundary of rounding a subnormal to Nmin
+ddfma37575 fma 1 1E-383 -1E-398 -> 9.99999999999999E-384 Subnormal
+ddfma37576 fma 1 -1E-383 +1E-398 -> -9.99999999999999E-384 Subnormal
+
+-- check overflow edge case
+-- 1234567890123456
+ddfma37972 apply 9.999999999999999E+384 -> 9.999999999999999E+384
+ddfma37973 fma 1 9.999999999999999E+384 1 -> 9.999999999999999E+384 Inexact Rounded
+ddfma37974 fma 1 9999999999999999E+369 1 -> 9.999999999999999E+384 Inexact Rounded
+ddfma37975 fma 1 9999999999999999E+369 1E+369 -> Infinity Overflow Inexact Rounded
+ddfma37976 fma 1 9999999999999999E+369 9E+368 -> Infinity Overflow Inexact Rounded
+ddfma37977 fma 1 9999999999999999E+369 8E+368 -> Infinity Overflow Inexact Rounded
+ddfma37978 fma 1 9999999999999999E+369 7E+368 -> Infinity Overflow Inexact Rounded
+ddfma37979 fma 1 9999999999999999E+369 6E+368 -> Infinity Overflow Inexact Rounded
+ddfma37980 fma 1 9999999999999999E+369 5E+368 -> Infinity Overflow Inexact Rounded
+ddfma37981 fma 1 9999999999999999E+369 4E+368 -> 9.999999999999999E+384 Inexact Rounded
+ddfma37982 fma 1 9999999999999999E+369 3E+368 -> 9.999999999999999E+384 Inexact Rounded
+ddfma37983 fma 1 9999999999999999E+369 2E+368 -> 9.999999999999999E+384 Inexact Rounded
+ddfma37984 fma 1 9999999999999999E+369 1E+368 -> 9.999999999999999E+384 Inexact Rounded
+
+ddfma37985 apply -9.999999999999999E+384 -> -9.999999999999999E+384
+ddfma37986 fma 1 -9.999999999999999E+384 -1 -> -9.999999999999999E+384 Inexact Rounded
+ddfma37987 fma 1 -9999999999999999E+369 -1 -> -9.999999999999999E+384 Inexact Rounded
+ddfma37988 fma 1 -9999999999999999E+369 -1E+369 -> -Infinity Overflow Inexact Rounded
+ddfma37989 fma 1 -9999999999999999E+369 -9E+368 -> -Infinity Overflow Inexact Rounded
+ddfma37990 fma 1 -9999999999999999E+369 -8E+368 -> -Infinity Overflow Inexact Rounded
+ddfma37991 fma 1 -9999999999999999E+369 -7E+368 -> -Infinity Overflow Inexact Rounded
+ddfma37992 fma 1 -9999999999999999E+369 -6E+368 -> -Infinity Overflow Inexact Rounded
+ddfma37993 fma 1 -9999999999999999E+369 -5E+368 -> -Infinity Overflow Inexact Rounded
+ddfma37994 fma 1 -9999999999999999E+369 -4E+368 -> -9.999999999999999E+384 Inexact Rounded
+ddfma37995 fma 1 -9999999999999999E+369 -3E+368 -> -9.999999999999999E+384 Inexact Rounded
+ddfma37996 fma 1 -9999999999999999E+369 -2E+368 -> -9.999999999999999E+384 Inexact Rounded
+ddfma37997 fma 1 -9999999999999999E+369 -1E+368 -> -9.999999999999999E+384 Inexact Rounded
+
+-- And for round down full and subnormal results
+rounding: down
+ddfma371100 fma 1 1e+2 -1e-383 -> 99.99999999999999 Rounded Inexact
+ddfma371101 fma 1 1e+1 -1e-383 -> 9.999999999999999 Rounded Inexact
+ddfma371103 fma 1 +1 -1e-383 -> 0.9999999999999999 Rounded Inexact
+ddfma371104 fma 1 1e-1 -1e-383 -> 0.09999999999999999 Rounded Inexact
+ddfma371105 fma 1 1e-2 -1e-383 -> 0.009999999999999999 Rounded Inexact
+ddfma371106 fma 1 1e-3 -1e-383 -> 0.0009999999999999999 Rounded Inexact
+ddfma371107 fma 1 1e-4 -1e-383 -> 0.00009999999999999999 Rounded Inexact
+ddfma371108 fma 1 1e-5 -1e-383 -> 0.000009999999999999999 Rounded Inexact
+ddfma371109 fma 1 1e-6 -1e-383 -> 9.999999999999999E-7 Rounded Inexact
+
+rounding: ceiling
+ddfma371110 fma 1 -1e+2 +1e-383 -> -99.99999999999999 Rounded Inexact
+ddfma371111 fma 1 -1e+1 +1e-383 -> -9.999999999999999 Rounded Inexact
+ddfma371113 fma 1 -1 +1e-383 -> -0.9999999999999999 Rounded Inexact
+ddfma371114 fma 1 -1e-1 +1e-383 -> -0.09999999999999999 Rounded Inexact
+ddfma371115 fma 1 -1e-2 +1e-383 -> -0.009999999999999999 Rounded Inexact
+ddfma371116 fma 1 -1e-3 +1e-383 -> -0.0009999999999999999 Rounded Inexact
+ddfma371117 fma 1 -1e-4 +1e-383 -> -0.00009999999999999999 Rounded Inexact
+ddfma371118 fma 1 -1e-5 +1e-383 -> -0.000009999999999999999 Rounded Inexact
+ddfma371119 fma 1 -1e-6 +1e-383 -> -9.999999999999999E-7 Rounded Inexact
+
+-- tests based on Gunnar Degnbol's edge case
+rounding: half_even
+
+ddfma371300 fma 1 1E16 -0.5 -> 1.000000000000000E+16 Inexact Rounded
+ddfma371310 fma 1 1E16 -0.51 -> 9999999999999999 Inexact Rounded
+ddfma371311 fma 1 1E16 -0.501 -> 9999999999999999 Inexact Rounded
+ddfma371312 fma 1 1E16 -0.5001 -> 9999999999999999 Inexact Rounded
+ddfma371313 fma 1 1E16 -0.50001 -> 9999999999999999 Inexact Rounded
+ddfma371314 fma 1 1E16 -0.500001 -> 9999999999999999 Inexact Rounded
+ddfma371315 fma 1 1E16 -0.5000001 -> 9999999999999999 Inexact Rounded
+ddfma371316 fma 1 1E16 -0.50000001 -> 9999999999999999 Inexact Rounded
+ddfma371317 fma 1 1E16 -0.500000001 -> 9999999999999999 Inexact Rounded
+ddfma371318 fma 1 1E16 -0.5000000001 -> 9999999999999999 Inexact Rounded
+ddfma371319 fma 1 1E16 -0.50000000001 -> 9999999999999999 Inexact Rounded
+ddfma371320 fma 1 1E16 -0.500000000001 -> 9999999999999999 Inexact Rounded
+ddfma371321 fma 1 1E16 -0.5000000000001 -> 9999999999999999 Inexact Rounded
+ddfma371322 fma 1 1E16 -0.50000000000001 -> 9999999999999999 Inexact Rounded
+ddfma371323 fma 1 1E16 -0.500000000000001 -> 9999999999999999 Inexact Rounded
+ddfma371324 fma 1 1E16 -0.5000000000000001 -> 9999999999999999 Inexact Rounded
+ddfma371325 fma 1 1E16 -0.5000000000000000 -> 1.000000000000000E+16 Inexact Rounded
+ddfma371326 fma 1 1E16 -0.500000000000000 -> 1.000000000000000E+16 Inexact Rounded
+ddfma371327 fma 1 1E16 -0.50000000000000 -> 1.000000000000000E+16 Inexact Rounded
+ddfma371328 fma 1 1E16 -0.5000000000000 -> 1.000000000000000E+16 Inexact Rounded
+ddfma371329 fma 1 1E16 -0.500000000000 -> 1.000000000000000E+16 Inexact Rounded
+ddfma371330 fma 1 1E16 -0.50000000000 -> 1.000000000000000E+16 Inexact Rounded
+ddfma371331 fma 1 1E16 -0.5000000000 -> 1.000000000000000E+16 Inexact Rounded
+ddfma371332 fma 1 1E16 -0.500000000 -> 1.000000000000000E+16 Inexact Rounded
+ddfma371333 fma 1 1E16 -0.50000000 -> 1.000000000000000E+16 Inexact Rounded
+ddfma371334 fma 1 1E16 -0.5000000 -> 1.000000000000000E+16 Inexact Rounded
+ddfma371335 fma 1 1E16 -0.500000 -> 1.000000000000000E+16 Inexact Rounded
+ddfma371336 fma 1 1E16 -0.50000 -> 1.000000000000000E+16 Inexact Rounded
+ddfma371337 fma 1 1E16 -0.5000 -> 1.000000000000000E+16 Inexact Rounded
+ddfma371338 fma 1 1E16 -0.500 -> 1.000000000000000E+16 Inexact Rounded
+ddfma371339 fma 1 1E16 -0.50 -> 1.000000000000000E+16 Inexact Rounded
+
+ddfma371340 fma 1 1E16 -5000000.000010001 -> 9999999995000000 Inexact Rounded
+ddfma371341 fma 1 1E16 -5000000.000000001 -> 9999999995000000 Inexact Rounded
+
+ddfma371349 fma 1 9999999999999999 0.4 -> 9999999999999999 Inexact Rounded
+ddfma371350 fma 1 9999999999999999 0.49 -> 9999999999999999 Inexact Rounded
+ddfma371351 fma 1 9999999999999999 0.499 -> 9999999999999999 Inexact Rounded
+ddfma371352 fma 1 9999999999999999 0.4999 -> 9999999999999999 Inexact Rounded
+ddfma371353 fma 1 9999999999999999 0.49999 -> 9999999999999999 Inexact Rounded
+ddfma371354 fma 1 9999999999999999 0.499999 -> 9999999999999999 Inexact Rounded
+ddfma371355 fma 1 9999999999999999 0.4999999 -> 9999999999999999 Inexact Rounded
+ddfma371356 fma 1 9999999999999999 0.49999999 -> 9999999999999999 Inexact Rounded
+ddfma371357 fma 1 9999999999999999 0.499999999 -> 9999999999999999 Inexact Rounded
+ddfma371358 fma 1 9999999999999999 0.4999999999 -> 9999999999999999 Inexact Rounded
+ddfma371359 fma 1 9999999999999999 0.49999999999 -> 9999999999999999 Inexact Rounded
+ddfma371360 fma 1 9999999999999999 0.499999999999 -> 9999999999999999 Inexact Rounded
+ddfma371361 fma 1 9999999999999999 0.4999999999999 -> 9999999999999999 Inexact Rounded
+ddfma371362 fma 1 9999999999999999 0.49999999999999 -> 9999999999999999 Inexact Rounded
+ddfma371363 fma 1 9999999999999999 0.499999999999999 -> 9999999999999999 Inexact Rounded
+ddfma371364 fma 1 9999999999999999 0.4999999999999999 -> 9999999999999999 Inexact Rounded
+ddfma371365 fma 1 9999999999999999 0.5000000000000000 -> 1.000000000000000E+16 Inexact Rounded
+ddfma371367 fma 1 9999999999999999 0.500000000000000 -> 1.000000000000000E+16 Inexact Rounded
+ddfma371368 fma 1 9999999999999999 0.50000000000000 -> 1.000000000000000E+16 Inexact Rounded
+ddfma371369 fma 1 9999999999999999 0.5000000000000 -> 1.000000000000000E+16 Inexact Rounded
+ddfma371370 fma 1 9999999999999999 0.500000000000 -> 1.000000000000000E+16 Inexact Rounded
+ddfma371371 fma 1 9999999999999999 0.50000000000 -> 1.000000000000000E+16 Inexact Rounded
+ddfma371372 fma 1 9999999999999999 0.5000000000 -> 1.000000000000000E+16 Inexact Rounded
+ddfma371373 fma 1 9999999999999999 0.500000000 -> 1.000000000000000E+16 Inexact Rounded
+ddfma371374 fma 1 9999999999999999 0.50000000 -> 1.000000000000000E+16 Inexact Rounded
+ddfma371375 fma 1 9999999999999999 0.5000000 -> 1.000000000000000E+16 Inexact Rounded
+ddfma371376 fma 1 9999999999999999 0.500000 -> 1.000000000000000E+16 Inexact Rounded
+ddfma371377 fma 1 9999999999999999 0.50000 -> 1.000000000000000E+16 Inexact Rounded
+ddfma371378 fma 1 9999999999999999 0.5000 -> 1.000000000000000E+16 Inexact Rounded
+ddfma371379 fma 1 9999999999999999 0.500 -> 1.000000000000000E+16 Inexact Rounded
+ddfma371380 fma 1 9999999999999999 0.50 -> 1.000000000000000E+16 Inexact Rounded
+ddfma371381 fma 1 9999999999999999 0.5 -> 1.000000000000000E+16 Inexact Rounded
+ddfma371382 fma 1 9999999999999999 0.5000000000000001 -> 1.000000000000000E+16 Inexact Rounded
+ddfma371383 fma 1 9999999999999999 0.500000000000001 -> 1.000000000000000E+16 Inexact Rounded
+ddfma371384 fma 1 9999999999999999 0.50000000000001 -> 1.000000000000000E+16 Inexact Rounded
+ddfma371385 fma 1 9999999999999999 0.5000000000001 -> 1.000000000000000E+16 Inexact Rounded
+ddfma371386 fma 1 9999999999999999 0.500000000001 -> 1.000000000000000E+16 Inexact Rounded
+ddfma371387 fma 1 9999999999999999 0.50000000001 -> 1.000000000000000E+16 Inexact Rounded
+ddfma371388 fma 1 9999999999999999 0.5000000001 -> 1.000000000000000E+16 Inexact Rounded
+ddfma371389 fma 1 9999999999999999 0.500000001 -> 1.000000000000000E+16 Inexact Rounded
+ddfma371390 fma 1 9999999999999999 0.50000001 -> 1.000000000000000E+16 Inexact Rounded
+ddfma371391 fma 1 9999999999999999 0.5000001 -> 1.000000000000000E+16 Inexact Rounded
+ddfma371392 fma 1 9999999999999999 0.500001 -> 1.000000000000000E+16 Inexact Rounded
+ddfma371393 fma 1 9999999999999999 0.50001 -> 1.000000000000000E+16 Inexact Rounded
+ddfma371394 fma 1 9999999999999999 0.5001 -> 1.000000000000000E+16 Inexact Rounded
+ddfma371395 fma 1 9999999999999999 0.501 -> 1.000000000000000E+16 Inexact Rounded
+ddfma371396 fma 1 9999999999999999 0.51 -> 1.000000000000000E+16 Inexact Rounded
+
+-- More GD edge cases, where difference between the unadjusted
+-- exponents is larger than the maximum precision and one side is 0
+ddfma371420 fma 1 0 1.123456789012345 -> 1.123456789012345
+ddfma371421 fma 1 0 1.123456789012345E-1 -> 0.1123456789012345
+ddfma371422 fma 1 0 1.123456789012345E-2 -> 0.01123456789012345
+ddfma371423 fma 1 0 1.123456789012345E-3 -> 0.001123456789012345
+ddfma371424 fma 1 0 1.123456789012345E-4 -> 0.0001123456789012345
+ddfma371425 fma 1 0 1.123456789012345E-5 -> 0.00001123456789012345
+ddfma371426 fma 1 0 1.123456789012345E-6 -> 0.000001123456789012345
+ddfma371427 fma 1 0 1.123456789012345E-7 -> 1.123456789012345E-7
+ddfma371428 fma 1 0 1.123456789012345E-8 -> 1.123456789012345E-8
+ddfma371429 fma 1 0 1.123456789012345E-9 -> 1.123456789012345E-9
+ddfma371430 fma 1 0 1.123456789012345E-10 -> 1.123456789012345E-10
+ddfma371431 fma 1 0 1.123456789012345E-11 -> 1.123456789012345E-11
+ddfma371432 fma 1 0 1.123456789012345E-12 -> 1.123456789012345E-12
+ddfma371433 fma 1 0 1.123456789012345E-13 -> 1.123456789012345E-13
+ddfma371434 fma 1 0 1.123456789012345E-14 -> 1.123456789012345E-14
+ddfma371435 fma 1 0 1.123456789012345E-15 -> 1.123456789012345E-15
+ddfma371436 fma 1 0 1.123456789012345E-16 -> 1.123456789012345E-16
+ddfma371437 fma 1 0 1.123456789012345E-17 -> 1.123456789012345E-17
+ddfma371438 fma 1 0 1.123456789012345E-18 -> 1.123456789012345E-18
+ddfma371439 fma 1 0 1.123456789012345E-19 -> 1.123456789012345E-19
+
+-- same, reversed 0
+ddfma371440 fma 1 1.123456789012345 0 -> 1.123456789012345
+ddfma371441 fma 1 1.123456789012345E-1 0 -> 0.1123456789012345
+ddfma371442 fma 1 1.123456789012345E-2 0 -> 0.01123456789012345
+ddfma371443 fma 1 1.123456789012345E-3 0 -> 0.001123456789012345
+ddfma371444 fma 1 1.123456789012345E-4 0 -> 0.0001123456789012345
+ddfma371445 fma 1 1.123456789012345E-5 0 -> 0.00001123456789012345
+ddfma371446 fma 1 1.123456789012345E-6 0 -> 0.000001123456789012345
+ddfma371447 fma 1 1.123456789012345E-7 0 -> 1.123456789012345E-7
+ddfma371448 fma 1 1.123456789012345E-8 0 -> 1.123456789012345E-8
+ddfma371449 fma 1 1.123456789012345E-9 0 -> 1.123456789012345E-9
+ddfma371450 fma 1 1.123456789012345E-10 0 -> 1.123456789012345E-10
+ddfma371451 fma 1 1.123456789012345E-11 0 -> 1.123456789012345E-11
+ddfma371452 fma 1 1.123456789012345E-12 0 -> 1.123456789012345E-12
+ddfma371453 fma 1 1.123456789012345E-13 0 -> 1.123456789012345E-13
+ddfma371454 fma 1 1.123456789012345E-14 0 -> 1.123456789012345E-14
+ddfma371455 fma 1 1.123456789012345E-15 0 -> 1.123456789012345E-15
+ddfma371456 fma 1 1.123456789012345E-16 0 -> 1.123456789012345E-16
+ddfma371457 fma 1 1.123456789012345E-17 0 -> 1.123456789012345E-17
+ddfma371458 fma 1 1.123456789012345E-18 0 -> 1.123456789012345E-18
+ddfma371459 fma 1 1.123456789012345E-19 0 -> 1.123456789012345E-19
+
+-- same, Es on the 0
+ddfma371460 fma 1 1.123456789012345 0E-0 -> 1.123456789012345
+ddfma371461 fma 1 1.123456789012345 0E-1 -> 1.123456789012345
+ddfma371462 fma 1 1.123456789012345 0E-2 -> 1.123456789012345
+ddfma371463 fma 1 1.123456789012345 0E-3 -> 1.123456789012345
+ddfma371464 fma 1 1.123456789012345 0E-4 -> 1.123456789012345
+ddfma371465 fma 1 1.123456789012345 0E-5 -> 1.123456789012345
+ddfma371466 fma 1 1.123456789012345 0E-6 -> 1.123456789012345
+ddfma371467 fma 1 1.123456789012345 0E-7 -> 1.123456789012345
+ddfma371468 fma 1 1.123456789012345 0E-8 -> 1.123456789012345
+ddfma371469 fma 1 1.123456789012345 0E-9 -> 1.123456789012345
+ddfma371470 fma 1 1.123456789012345 0E-10 -> 1.123456789012345
+ddfma371471 fma 1 1.123456789012345 0E-11 -> 1.123456789012345
+ddfma371472 fma 1 1.123456789012345 0E-12 -> 1.123456789012345
+ddfma371473 fma 1 1.123456789012345 0E-13 -> 1.123456789012345
+ddfma371474 fma 1 1.123456789012345 0E-14 -> 1.123456789012345
+ddfma371475 fma 1 1.123456789012345 0E-15 -> 1.123456789012345
+-- next four flag Rounded because the 0 extends the result
+ddfma371476 fma 1 1.123456789012345 0E-16 -> 1.123456789012345 Rounded
+ddfma371477 fma 1 1.123456789012345 0E-17 -> 1.123456789012345 Rounded
+ddfma371478 fma 1 1.123456789012345 0E-18 -> 1.123456789012345 Rounded
+ddfma371479 fma 1 1.123456789012345 0E-19 -> 1.123456789012345 Rounded
+
+-- sum of two opposite-sign operands is exactly 0 and floor => -0
+rounding: half_up
+-- exact zeros from zeros
+ddfma371500 fma 1 0 0E-19 -> 0E-19
+ddfma371501 fma 1 -0 0E-19 -> 0E-19
+ddfma371502 fma 1 0 -0E-19 -> 0E-19
+ddfma371503 fma 1 -0 -0E-19 -> -0E-19
+-- exact zeros from non-zeros
+ddfma371511 fma 1 -11 11 -> 0
+ddfma371512 fma 1 11 -11 -> 0
+
+rounding: half_down
+-- exact zeros from zeros
+ddfma371520 fma 1 0 0E-19 -> 0E-19
+ddfma371521 fma 1 -0 0E-19 -> 0E-19
+ddfma371522 fma 1 0 -0E-19 -> 0E-19
+ddfma371523 fma 1 -0 -0E-19 -> -0E-19
+-- exact zeros from non-zeros
+ddfma371531 fma 1 -11 11 -> 0
+ddfma371532 fma 1 11 -11 -> 0
+
+rounding: half_even
+-- exact zeros from zeros
+ddfma371540 fma 1 0 0E-19 -> 0E-19
+ddfma371541 fma 1 -0 0E-19 -> 0E-19
+ddfma371542 fma 1 0 -0E-19 -> 0E-19
+ddfma371543 fma 1 -0 -0E-19 -> -0E-19
+-- exact zeros from non-zeros
+ddfma371551 fma 1 -11 11 -> 0
+ddfma371552 fma 1 11 -11 -> 0
+
+rounding: up
+-- exact zeros from zeros
+ddfma371560 fma 1 0 0E-19 -> 0E-19
+ddfma371561 fma 1 -0 0E-19 -> 0E-19
+ddfma371562 fma 1 0 -0E-19 -> 0E-19
+ddfma371563 fma 1 -0 -0E-19 -> -0E-19
+-- exact zeros from non-zeros
+ddfma371571 fma 1 -11 11 -> 0
+ddfma371572 fma 1 11 -11 -> 0
+
+rounding: down
+-- exact zeros from zeros
+ddfma371580 fma 1 0 0E-19 -> 0E-19
+ddfma371581 fma 1 -0 0E-19 -> 0E-19
+ddfma371582 fma 1 0 -0E-19 -> 0E-19
+ddfma371583 fma 1 -0 -0E-19 -> -0E-19
+-- exact zeros from non-zeros
+ddfma371591 fma 1 -11 11 -> 0
+ddfma371592 fma 1 11 -11 -> 0
+
+rounding: ceiling
+-- exact zeros from zeros
+ddfma371600 fma 1 0 0E-19 -> 0E-19
+ddfma371601 fma 1 -0 0E-19 -> 0E-19
+ddfma371602 fma 1 0 -0E-19 -> 0E-19
+ddfma371603 fma 1 -0 -0E-19 -> -0E-19
+-- exact zeros from non-zeros
+ddfma371611 fma 1 -11 11 -> 0
+ddfma371612 fma 1 11 -11 -> 0
+
+-- and the extra-special ugly case; unusual minuses marked by -- *
+rounding: floor
+-- exact zeros from zeros
+ddfma371620 fma 1 0 0E-19 -> 0E-19
+ddfma371621 fma 1 -0 0E-19 -> -0E-19 -- *
+ddfma371622 fma 1 0 -0E-19 -> -0E-19 -- *
+ddfma371623 fma 1 -0 -0E-19 -> -0E-19
+-- exact zeros from non-zeros
+ddfma371631 fma 1 -11 11 -> -0 -- *
+ddfma371632 fma 1 11 -11 -> -0 -- *
+
+-- Examples from SQL proposal (Krishna Kulkarni)
+ddfma371701 fma 1 130E-2 120E-2 -> 2.50
+ddfma371702 fma 1 130E-2 12E-1 -> 2.50
+ddfma371703 fma 1 130E-2 1E0 -> 2.30
+ddfma371704 fma 1 1E2 1E4 -> 1.01E+4
+ddfma371705 fma 1 130E-2 -120E-2 -> 0.10
+ddfma371706 fma 1 130E-2 -12E-1 -> 0.10
+ddfma371707 fma 1 130E-2 -1E0 -> 0.30
+ddfma371708 fma 1 1E2 -1E4 -> -9.9E+3
+
+-- Gappy coefficients; check residue handling even with full coefficient gap
+rounding: half_even
+
+ddfma375001 fma 1 1234567890123456 1 -> 1234567890123457
+ddfma375002 fma 1 1234567890123456 0.6 -> 1234567890123457 Inexact Rounded
+ddfma375003 fma 1 1234567890123456 0.06 -> 1234567890123456 Inexact Rounded
+ddfma375004 fma 1 1234567890123456 6E-3 -> 1234567890123456 Inexact Rounded
+ddfma375005 fma 1 1234567890123456 6E-4 -> 1234567890123456 Inexact Rounded
+ddfma375006 fma 1 1234567890123456 6E-5 -> 1234567890123456 Inexact Rounded
+ddfma375007 fma 1 1234567890123456 6E-6 -> 1234567890123456 Inexact Rounded
+ddfma375008 fma 1 1234567890123456 6E-7 -> 1234567890123456 Inexact Rounded
+ddfma375009 fma 1 1234567890123456 6E-8 -> 1234567890123456 Inexact Rounded
+ddfma375010 fma 1 1234567890123456 6E-9 -> 1234567890123456 Inexact Rounded
+ddfma375011 fma 1 1234567890123456 6E-10 -> 1234567890123456 Inexact Rounded
+ddfma375012 fma 1 1234567890123456 6E-11 -> 1234567890123456 Inexact Rounded
+ddfma375013 fma 1 1234567890123456 6E-12 -> 1234567890123456 Inexact Rounded
+ddfma375014 fma 1 1234567890123456 6E-13 -> 1234567890123456 Inexact Rounded
+ddfma375015 fma 1 1234567890123456 6E-14 -> 1234567890123456 Inexact Rounded
+ddfma375016 fma 1 1234567890123456 6E-15 -> 1234567890123456 Inexact Rounded
+ddfma375017 fma 1 1234567890123456 6E-16 -> 1234567890123456 Inexact Rounded
+ddfma375018 fma 1 1234567890123456 6E-17 -> 1234567890123456 Inexact Rounded
+ddfma375019 fma 1 1234567890123456 6E-18 -> 1234567890123456 Inexact Rounded
+ddfma375020 fma 1 1234567890123456 6E-19 -> 1234567890123456 Inexact Rounded
+ddfma375021 fma 1 1234567890123456 6E-20 -> 1234567890123456 Inexact Rounded
+
+-- widening second argument at gap
+ddfma375030 fma 1 12345678 1 -> 12345679
+ddfma375031 fma 1 12345678 0.1 -> 12345678.1
+ddfma375032 fma 1 12345678 0.12 -> 12345678.12
+ddfma375033 fma 1 12345678 0.123 -> 12345678.123
+ddfma375034 fma 1 12345678 0.1234 -> 12345678.1234
+ddfma375035 fma 1 12345678 0.12345 -> 12345678.12345
+ddfma375036 fma 1 12345678 0.123456 -> 12345678.123456
+ddfma375037 fma 1 12345678 0.1234567 -> 12345678.1234567
+ddfma375038 fma 1 12345678 0.12345678 -> 12345678.12345678
+ddfma375039 fma 1 12345678 0.123456789 -> 12345678.12345679 Inexact Rounded
+ddfma375040 fma 1 12345678 0.123456785 -> 12345678.12345678 Inexact Rounded
+ddfma375041 fma 1 12345678 0.1234567850 -> 12345678.12345678 Inexact Rounded
+ddfma375042 fma 1 12345678 0.1234567851 -> 12345678.12345679 Inexact Rounded
+ddfma375043 fma 1 12345678 0.12345678501 -> 12345678.12345679 Inexact Rounded
+ddfma375044 fma 1 12345678 0.123456785001 -> 12345678.12345679 Inexact Rounded
+ddfma375045 fma 1 12345678 0.1234567850001 -> 12345678.12345679 Inexact Rounded
+ddfma375046 fma 1 12345678 0.12345678500001 -> 12345678.12345679 Inexact Rounded
+ddfma375047 fma 1 12345678 0.123456785000001 -> 12345678.12345679 Inexact Rounded
+ddfma375048 fma 1 12345678 0.1234567850000001 -> 12345678.12345679 Inexact Rounded
+ddfma375049 fma 1 12345678 0.1234567850000000 -> 12345678.12345678 Inexact Rounded
+-- 90123456
+rounding: half_even
+ddfma375050 fma 1 12345678 0.0234567750000000 -> 12345678.02345678 Inexact Rounded
+ddfma375051 fma 1 12345678 0.0034567750000000 -> 12345678.00345678 Inexact Rounded
+ddfma375052 fma 1 12345678 0.0004567750000000 -> 12345678.00045678 Inexact Rounded
+ddfma375053 fma 1 12345678 0.0000567750000000 -> 12345678.00005678 Inexact Rounded
+ddfma375054 fma 1 12345678 0.0000067750000000 -> 12345678.00000678 Inexact Rounded
+ddfma375055 fma 1 12345678 0.0000007750000000 -> 12345678.00000078 Inexact Rounded
+ddfma375056 fma 1 12345678 0.0000000750000000 -> 12345678.00000008 Inexact Rounded
+ddfma375057 fma 1 12345678 0.0000000050000000 -> 12345678.00000000 Inexact Rounded
+ddfma375060 fma 1 12345678 0.0234567750000001 -> 12345678.02345678 Inexact Rounded
+ddfma375061 fma 1 12345678 0.0034567750000001 -> 12345678.00345678 Inexact Rounded
+ddfma375062 fma 1 12345678 0.0004567750000001 -> 12345678.00045678 Inexact Rounded
+ddfma375063 fma 1 12345678 0.0000567750000001 -> 12345678.00005678 Inexact Rounded
+ddfma375064 fma 1 12345678 0.0000067750000001 -> 12345678.00000678 Inexact Rounded
+ddfma375065 fma 1 12345678 0.0000007750000001 -> 12345678.00000078 Inexact Rounded
+ddfma375066 fma 1 12345678 0.0000000750000001 -> 12345678.00000008 Inexact Rounded
+ddfma375067 fma 1 12345678 0.0000000050000001 -> 12345678.00000001 Inexact Rounded
+-- far-out residues (full coefficient gap is 16+15 digits)
+rounding: up
+ddfma375070 fma 1 12345678 1E-8 -> 12345678.00000001
+ddfma375071 fma 1 12345678 1E-9 -> 12345678.00000001 Inexact Rounded
+ddfma375072 fma 1 12345678 1E-10 -> 12345678.00000001 Inexact Rounded
+ddfma375073 fma 1 12345678 1E-11 -> 12345678.00000001 Inexact Rounded
+ddfma375074 fma 1 12345678 1E-12 -> 12345678.00000001 Inexact Rounded
+ddfma375075 fma 1 12345678 1E-13 -> 12345678.00000001 Inexact Rounded
+ddfma375076 fma 1 12345678 1E-14 -> 12345678.00000001 Inexact Rounded
+ddfma375077 fma 1 12345678 1E-15 -> 12345678.00000001 Inexact Rounded
+ddfma375078 fma 1 12345678 1E-16 -> 12345678.00000001 Inexact Rounded
+ddfma375079 fma 1 12345678 1E-17 -> 12345678.00000001 Inexact Rounded
+ddfma375080 fma 1 12345678 1E-18 -> 12345678.00000001 Inexact Rounded
+ddfma375081 fma 1 12345678 1E-19 -> 12345678.00000001 Inexact Rounded
+ddfma375082 fma 1 12345678 1E-20 -> 12345678.00000001 Inexact Rounded
+ddfma375083 fma 1 12345678 1E-25 -> 12345678.00000001 Inexact Rounded
+ddfma375084 fma 1 12345678 1E-30 -> 12345678.00000001 Inexact Rounded
+ddfma375085 fma 1 12345678 1E-31 -> 12345678.00000001 Inexact Rounded
+ddfma375086 fma 1 12345678 1E-32 -> 12345678.00000001 Inexact Rounded
+ddfma375087 fma 1 12345678 1E-33 -> 12345678.00000001 Inexact Rounded
+ddfma375088 fma 1 12345678 1E-34 -> 12345678.00000001 Inexact Rounded
+ddfma375089 fma 1 12345678 1E-35 -> 12345678.00000001 Inexact Rounded
+
+-- Null tests
+ddfma39990 fma 1 10 # -> NaN Invalid_operation
+ddfma39991 fma 1 # 10 -> NaN Invalid_operation
+
+
diff --git a/Lib/test/decimaltestdata/ddInvert.decTest b/Lib/test/decimaltestdata/ddInvert.decTest
new file mode 100644
index 0000000..2697f59
--- /dev/null
+++ b/Lib/test/decimaltestdata/ddInvert.decTest
@@ -0,0 +1,202 @@
+------------------------------------------------------------------------
+-- ddInvert.decTest -- digitwise logical INVERT for decDoubles --
+-- Copyright (c) IBM Corporation, 1981, 2007. All rights reserved. --
+------------------------------------------------------------------------
+-- Please see the document "General Decimal Arithmetic Testcases" --
+-- at http://www2.hursley.ibm.com/decimal for the description of --
+-- these testcases. --
+-- --
+-- These testcases are experimental ('beta' versions), and they --
+-- may contain errors. They are offered on an as-is basis. In --
+-- particular, achieving the same results as the tests here is not --
+-- a guarantee that an implementation complies with any Standard --
+-- or specification. The tests are not exhaustive. --
+-- --
+-- Please send comments, suggestions, and corrections to the author: --
+-- Mike Cowlishaw, IBM Fellow --
+-- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK --
+-- mfc@uk.ibm.com --
+------------------------------------------------------------------------
+version: 2.56
+
+precision: 16
+maxExponent: 384
+minExponent: -383
+extended: 1
+clamp: 1
+rounding: half_even
+
+-- Sanity check (truth table)
+ddinv001 invert 0 -> 1111111111111111
+ddinv002 invert 1 -> 1111111111111110
+ddinv003 invert 10 -> 1111111111111101
+ddinv004 invert 111111111 -> 1111111000000000
+ddinv005 invert 000000000 -> 1111111111111111
+-- and at msd and msd-1
+ddinv007 invert 0000000000000000 -> 1111111111111111
+ddinv008 invert 1000000000000000 -> 111111111111111
+ddinv009 invert 0000000000000000 -> 1111111111111111
+ddinv010 invert 0100000000000000 -> 1011111111111111
+ddinv011 invert 0111111111111111 -> 1000000000000000
+ddinv012 invert 1111111111111111 -> 0
+ddinv013 invert 0011111111111111 -> 1100000000000000
+ddinv014 invert 0111111111111111 -> 1000000000000000
+
+-- Various lengths
+-- 123456789 1234567890123456
+ddinv021 invert 111111111 -> 1111111000000000
+ddinv022 invert 111111111111 -> 1111000000000000
+ddinv023 invert 11111111 -> 1111111100000000
+ddinv025 invert 1111111 -> 1111111110000000
+ddinv026 invert 111111 -> 1111111111000000
+ddinv027 invert 11111 -> 1111111111100000
+ddinv028 invert 1111 -> 1111111111110000
+ddinv029 invert 111 -> 1111111111111000
+ddinv031 invert 11 -> 1111111111111100
+ddinv032 invert 1 -> 1111111111111110
+ddinv033 invert 111111111111 -> 1111000000000000
+ddinv034 invert 11111111111 -> 1111100000000000
+ddinv035 invert 1111111111 -> 1111110000000000
+ddinv036 invert 111111111 -> 1111111000000000
+
+ddinv040 invert 011111111 -> 1111111100000000
+ddinv041 invert 101111111 -> 1111111010000000
+ddinv042 invert 110111111 -> 1111111001000000
+ddinv043 invert 111011111 -> 1111111000100000
+ddinv044 invert 111101111 -> 1111111000010000
+ddinv045 invert 111110111 -> 1111111000001000
+ddinv046 invert 111111011 -> 1111111000000100
+ddinv047 invert 111111101 -> 1111111000000010
+ddinv048 invert 111111110 -> 1111111000000001
+ddinv049 invert 011111011 -> 1111111100000100
+ddinv050 invert 101111101 -> 1111111010000010
+ddinv051 invert 110111110 -> 1111111001000001
+ddinv052 invert 111011101 -> 1111111000100010
+ddinv053 invert 111101011 -> 1111111000010100
+ddinv054 invert 111110111 -> 1111111000001000
+ddinv055 invert 111101011 -> 1111111000010100
+ddinv056 invert 111011101 -> 1111111000100010
+ddinv057 invert 110111110 -> 1111111001000001
+ddinv058 invert 101111101 -> 1111111010000010
+ddinv059 invert 011111011 -> 1111111100000100
+
+ddinv080 invert 1000000011111111 -> 111111100000000
+ddinv081 invert 0100000101111111 -> 1011111010000000
+ddinv082 invert 0010000110111111 -> 1101111001000000
+ddinv083 invert 0001000111011111 -> 1110111000100000
+ddinv084 invert 0000100111101111 -> 1111011000010000
+ddinv085 invert 0000010111110111 -> 1111101000001000
+ddinv086 invert 0000001111111011 -> 1111110000000100
+ddinv087 invert 0000010111111101 -> 1111101000000010
+ddinv088 invert 0000100111111110 -> 1111011000000001
+ddinv089 invert 0001000011111011 -> 1110111100000100
+ddinv090 invert 0010000101111101 -> 1101111010000010
+ddinv091 invert 0100000110111110 -> 1011111001000001
+ddinv092 invert 1000000111011101 -> 111111000100010
+ddinv093 invert 0100000111101011 -> 1011111000010100
+ddinv094 invert 0010000111110111 -> 1101111000001000
+ddinv095 invert 0001000111101011 -> 1110111000010100
+ddinv096 invert 0000100111011101 -> 1111011000100010
+ddinv097 invert 0000010110111110 -> 1111101001000001
+ddinv098 invert 0000001101111101 -> 1111110010000010
+ddinv099 invert 0000010011111011 -> 1111101100000100
+
+-- non-0/1 should not be accepted, nor should signs
+ddinv220 invert 111111112 -> NaN Invalid_operation
+ddinv221 invert 333333333 -> NaN Invalid_operation
+ddinv222 invert 555555555 -> NaN Invalid_operation
+ddinv223 invert 777777777 -> NaN Invalid_operation
+ddinv224 invert 999999999 -> NaN Invalid_operation
+ddinv225 invert 222222222 -> NaN Invalid_operation
+ddinv226 invert 444444444 -> NaN Invalid_operation
+ddinv227 invert 666666666 -> NaN Invalid_operation
+ddinv228 invert 888888888 -> NaN Invalid_operation
+ddinv229 invert 999999999 -> NaN Invalid_operation
+ddinv230 invert 999999999 -> NaN Invalid_operation
+ddinv231 invert 999999999 -> NaN Invalid_operation
+ddinv232 invert 999999999 -> NaN Invalid_operation
+-- a few randoms
+ddinv240 invert 567468689 -> NaN Invalid_operation
+ddinv241 invert 567367689 -> NaN Invalid_operation
+ddinv242 invert -631917772 -> NaN Invalid_operation
+ddinv243 invert -756253257 -> NaN Invalid_operation
+ddinv244 invert 835590149 -> NaN Invalid_operation
+-- test MSD
+ddinv250 invert 2000000000000000 -> NaN Invalid_operation
+ddinv251 invert 3000000000000000 -> NaN Invalid_operation
+ddinv252 invert 4000000000000000 -> NaN Invalid_operation
+ddinv253 invert 5000000000000000 -> NaN Invalid_operation
+ddinv254 invert 6000000000000000 -> NaN Invalid_operation
+ddinv255 invert 7000000000000000 -> NaN Invalid_operation
+ddinv256 invert 8000000000000000 -> NaN Invalid_operation
+ddinv257 invert 9000000000000000 -> NaN Invalid_operation
+-- test MSD-1
+ddinv270 invert 0200001000000000 -> NaN Invalid_operation
+ddinv271 invert 0300000100000000 -> NaN Invalid_operation
+ddinv272 invert 0400000010000000 -> NaN Invalid_operation
+ddinv273 invert 0500000001000000 -> NaN Invalid_operation
+ddinv274 invert 1600000000100000 -> NaN Invalid_operation
+ddinv275 invert 1700000000010000 -> NaN Invalid_operation
+ddinv276 invert 1800000000001000 -> NaN Invalid_operation
+ddinv277 invert 1900000000000100 -> NaN Invalid_operation
+-- test LSD
+ddinv280 invert 0010000000000002 -> NaN Invalid_operation
+ddinv281 invert 0001000000000003 -> NaN Invalid_operation
+ddinv282 invert 0000100000000004 -> NaN Invalid_operation
+ddinv283 invert 0000010000000005 -> NaN Invalid_operation
+ddinv284 invert 1000001000000006 -> NaN Invalid_operation
+ddinv285 invert 1000000100000007 -> NaN Invalid_operation
+ddinv286 invert 1000000010000008 -> NaN Invalid_operation
+ddinv287 invert 1000000001000009 -> NaN Invalid_operation
+-- test Middie
+ddinv288 invert 0010000020000000 -> NaN Invalid_operation
+ddinv289 invert 0001000030000001 -> NaN Invalid_operation
+ddinv290 invert 0000100040000010 -> NaN Invalid_operation
+ddinv291 invert 0000010050000100 -> NaN Invalid_operation
+ddinv292 invert 1000001060001000 -> NaN Invalid_operation
+ddinv293 invert 1000000170010000 -> NaN Invalid_operation
+ddinv294 invert 1000000080100000 -> NaN Invalid_operation
+ddinv295 invert 1000000091000000 -> NaN Invalid_operation
+-- sign
+ddinv296 invert -1000000001000000 -> NaN Invalid_operation
+ddinv299 invert 1000000001000000 -> 111111110111111
+
+
+-- Nmax, Nmin, Ntiny-like
+ddinv341 invert 9.99999999E+299 -> NaN Invalid_operation
+ddinv342 invert 1E-299 -> NaN Invalid_operation
+ddinv343 invert 1.00000000E-299 -> NaN Invalid_operation
+ddinv344 invert 1E-207 -> NaN Invalid_operation
+ddinv345 invert -1E-207 -> NaN Invalid_operation
+ddinv346 invert -1.00000000E-299 -> NaN Invalid_operation
+ddinv347 invert -1E-299 -> NaN Invalid_operation
+ddinv348 invert -9.99999999E+299 -> NaN Invalid_operation
+
+-- A few other non-integers
+ddinv361 invert 1.0 -> NaN Invalid_operation
+ddinv362 invert 1E+1 -> NaN Invalid_operation
+ddinv363 invert 0.0 -> NaN Invalid_operation
+ddinv364 invert 0E+1 -> NaN Invalid_operation
+ddinv365 invert 9.9 -> NaN Invalid_operation
+ddinv366 invert 9E+1 -> NaN Invalid_operation
+
+-- All Specials are in error
+ddinv788 invert -Inf -> NaN Invalid_operation
+ddinv794 invert Inf -> NaN Invalid_operation
+ddinv821 invert NaN -> NaN Invalid_operation
+ddinv841 invert sNaN -> NaN Invalid_operation
+-- propagating NaNs
+ddinv861 invert NaN1 -> NaN Invalid_operation
+ddinv862 invert +NaN2 -> NaN Invalid_operation
+ddinv863 invert NaN3 -> NaN Invalid_operation
+ddinv864 invert NaN4 -> NaN Invalid_operation
+ddinv865 invert NaN5 -> NaN Invalid_operation
+ddinv871 invert sNaN11 -> NaN Invalid_operation
+ddinv872 invert sNaN12 -> NaN Invalid_operation
+ddinv873 invert sNaN13 -> NaN Invalid_operation
+ddinv874 invert sNaN14 -> NaN Invalid_operation
+ddinv875 invert sNaN15 -> NaN Invalid_operation
+ddinv876 invert NaN16 -> NaN Invalid_operation
+ddinv881 invert +NaN25 -> NaN Invalid_operation
+ddinv882 invert -NaN26 -> NaN Invalid_operation
+ddinv883 invert -sNaN27 -> NaN Invalid_operation
diff --git a/Lib/test/decimaltestdata/ddLogB.decTest b/Lib/test/decimaltestdata/ddLogB.decTest
new file mode 100644
index 0000000..f18fd5e
--- /dev/null
+++ b/Lib/test/decimaltestdata/ddLogB.decTest
@@ -0,0 +1,159 @@
+------------------------------------------------------------------------
+-- ddLogB.decTest -- integral 754r adjusted exponent, for decDoubles --
+-- Copyright (c) IBM Corporation, 2005, 2007. All rights reserved. --
+------------------------------------------------------------------------
+-- Please see the document "General Decimal Arithmetic Testcases" --
+-- at http://www2.hursley.ibm.com/decimal for the description of --
+-- these testcases. --
+-- --
+-- These testcases are experimental ('beta' versions), and they --
+-- may contain errors. They are offered on an as-is basis. In --
+-- particular, achieving the same results as the tests here is not --
+-- a guarantee that an implementation complies with any Standard --
+-- or specification. The tests are not exhaustive. --
+-- --
+-- Please send comments, suggestions, and corrections to the author: --
+-- Mike Cowlishaw, IBM Fellow --
+-- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK --
+-- mfc@uk.ibm.com --
+------------------------------------------------------------------------
+version: 2.56
+
+precision: 16
+maxExponent: 384
+minExponent: -383
+extended: 1
+clamp: 1
+rounding: half_even
+
+-- basics
+ddlogb000 logb 0 -> -Infinity Division_by_zero
+ddlogb001 logb 1E-398 -> -398
+ddlogb002 logb 1E-383 -> -383
+ddlogb003 logb 0.001 -> -3
+ddlogb004 logb 0.03 -> -2
+ddlogb005 logb 1 -> 0
+ddlogb006 logb 2 -> 0
+ddlogb007 logb 2.5 -> 0
+ddlogb008 logb 2.500 -> 0
+ddlogb009 logb 10 -> 1
+ddlogb010 logb 70 -> 1
+ddlogb011 logb 100 -> 2
+ddlogb012 logb 333 -> 2
+ddlogb013 logb 9E+384 -> 384
+ddlogb014 logb +Infinity -> Infinity
+
+-- negatives appear to be treated as positives
+ddlogb021 logb -0 -> -Infinity Division_by_zero
+ddlogb022 logb -1E-398 -> -398
+ddlogb023 logb -9E-383 -> -383
+ddlogb024 logb -0.001 -> -3
+ddlogb025 logb -1 -> 0
+ddlogb026 logb -2 -> 0
+ddlogb027 logb -10 -> 1
+ddlogb028 logb -70 -> 1
+ddlogb029 logb -100 -> 2
+ddlogb030 logb -9E+384 -> 384
+ddlogb031 logb -Infinity -> Infinity
+
+-- zeros
+ddlogb111 logb 0 -> -Infinity Division_by_zero
+ddlogb112 logb -0 -> -Infinity Division_by_zero
+ddlogb113 logb 0E+4 -> -Infinity Division_by_zero
+ddlogb114 logb -0E+4 -> -Infinity Division_by_zero
+ddlogb115 logb 0.0000 -> -Infinity Division_by_zero
+ddlogb116 logb -0.0000 -> -Infinity Division_by_zero
+ddlogb117 logb 0E-141 -> -Infinity Division_by_zero
+ddlogb118 logb -0E-141 -> -Infinity Division_by_zero
+
+-- full coefficients, alternating bits
+ddlogb121 logb 268268268 -> 8
+ddlogb122 logb -268268268 -> 8
+ddlogb123 logb 134134134 -> 8
+ddlogb124 logb -134134134 -> 8
+
+-- Nmax, Nmin, Ntiny
+ddlogb131 logb 9.999999999999999E+384 -> 384
+ddlogb132 logb 1E-383 -> -383
+ddlogb133 logb 1.000000000000000E-383 -> -383
+ddlogb134 logb 1E-398 -> -398
+
+ddlogb135 logb -1E-398 -> -398
+ddlogb136 logb -1.000000000000000E-383 -> -383
+ddlogb137 logb -1E-383 -> -383
+ddlogb138 logb -9.999999999999999E+384 -> 384
+
+-- ones
+ddlogb0061 logb 1 -> 0
+ddlogb0062 logb 1.0 -> 0
+ddlogb0063 logb 1.000000000000000 -> 0
+
+-- notable cases -- exact powers of 10
+ddlogb1100 logb 1 -> 0
+ddlogb1101 logb 10 -> 1
+ddlogb1102 logb 100 -> 2
+ddlogb1103 logb 1000 -> 3
+ddlogb1104 logb 10000 -> 4
+ddlogb1105 logb 100000 -> 5
+ddlogb1106 logb 1000000 -> 6
+ddlogb1107 logb 10000000 -> 7
+ddlogb1108 logb 100000000 -> 8
+ddlogb1109 logb 1000000000 -> 9
+ddlogb1110 logb 10000000000 -> 10
+ddlogb1111 logb 100000000000 -> 11
+ddlogb1112 logb 1000000000000 -> 12
+ddlogb1113 logb 0.00000000001 -> -11
+ddlogb1114 logb 0.0000000001 -> -10
+ddlogb1115 logb 0.000000001 -> -9
+ddlogb1116 logb 0.00000001 -> -8
+ddlogb1117 logb 0.0000001 -> -7
+ddlogb1118 logb 0.000001 -> -6
+ddlogb1119 logb 0.00001 -> -5
+ddlogb1120 logb 0.0001 -> -4
+ddlogb1121 logb 0.001 -> -3
+ddlogb1122 logb 0.01 -> -2
+ddlogb1123 logb 0.1 -> -1
+ddlogb1124 logb 1E-99 -> -99
+ddlogb1125 logb 1E-100 -> -100
+ddlogb1127 logb 1E-299 -> -299
+ddlogb1126 logb 1E-383 -> -383
+
+-- suggestions from Ilan Nehama
+ddlogb1400 logb 10E-3 -> -2
+ddlogb1401 logb 10E-2 -> -1
+ddlogb1402 logb 100E-2 -> 0
+ddlogb1403 logb 1000E-2 -> 1
+ddlogb1404 logb 10000E-2 -> 2
+ddlogb1405 logb 10E-1 -> 0
+ddlogb1406 logb 100E-1 -> 1
+ddlogb1407 logb 1000E-1 -> 2
+ddlogb1408 logb 10000E-1 -> 3
+ddlogb1409 logb 10E0 -> 1
+ddlogb1410 logb 100E0 -> 2
+ddlogb1411 logb 1000E0 -> 3
+ddlogb1412 logb 10000E0 -> 4
+ddlogb1413 logb 10E1 -> 2
+ddlogb1414 logb 100E1 -> 3
+ddlogb1415 logb 1000E1 -> 4
+ddlogb1416 logb 10000E1 -> 5
+ddlogb1417 logb 10E2 -> 3
+ddlogb1418 logb 100E2 -> 4
+ddlogb1419 logb 1000E2 -> 5
+ddlogb1420 logb 10000E2 -> 6
+
+-- special values
+ddlogb820 logb Infinity -> Infinity
+ddlogb821 logb 0 -> -Infinity Division_by_zero
+ddlogb822 logb NaN -> NaN
+ddlogb823 logb sNaN -> NaN Invalid_operation
+-- propagating NaNs
+ddlogb824 logb sNaN123 -> NaN123 Invalid_operation
+ddlogb825 logb -sNaN321 -> -NaN321 Invalid_operation
+ddlogb826 logb NaN456 -> NaN456
+ddlogb827 logb -NaN654 -> -NaN654
+ddlogb828 logb NaN1 -> NaN1
+
+-- Null test
+ddlogb900 logb # -> NaN Invalid_operation
+
+
diff --git a/Lib/test/decimaltestdata/ddMax.decTest b/Lib/test/decimaltestdata/ddMax.decTest
new file mode 100644
index 0000000..5fe600f
--- /dev/null
+++ b/Lib/test/decimaltestdata/ddMax.decTest
@@ -0,0 +1,322 @@
+------------------------------------------------------------------------
+-- ddMax.decTest -- decDouble maxnum --
+-- Copyright (c) IBM Corporation, 1981, 2007. All rights reserved. --
+------------------------------------------------------------------------
+-- Please see the document "General Decimal Arithmetic Testcases" --
+-- at http://www2.hursley.ibm.com/decimal for the description of --
+-- these testcases. --
+-- --
+-- These testcases are experimental ('beta' versions), and they --
+-- may contain errors. They are offered on an as-is basis. In --
+-- particular, achieving the same results as the tests here is not --
+-- a guarantee that an implementation complies with any Standard --
+-- or specification. The tests are not exhaustive. --
+-- --
+-- Please send comments, suggestions, and corrections to the author: --
+-- Mike Cowlishaw, IBM Fellow --
+-- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK --
+-- mfc@uk.ibm.com --
+------------------------------------------------------------------------
+version: 2.56
+
+-- we assume that base comparison is tested in compare.decTest, so
+-- these mainly cover special cases and rounding
+precision: 16
+maxExponent: 384
+minExponent: -383
+extended: 1
+clamp: 1
+rounding: half_even
+
+-- sanity checks
+ddmax001 max -2 -2 -> -2
+ddmax002 max -2 -1 -> -1
+ddmax003 max -2 0 -> 0
+ddmax004 max -2 1 -> 1
+ddmax005 max -2 2 -> 2
+ddmax006 max -1 -2 -> -1
+ddmax007 max -1 -1 -> -1
+ddmax008 max -1 0 -> 0
+ddmax009 max -1 1 -> 1
+ddmax010 max -1 2 -> 2
+ddmax011 max 0 -2 -> 0
+ddmax012 max 0 -1 -> 0
+ddmax013 max 0 0 -> 0
+ddmax014 max 0 1 -> 1
+ddmax015 max 0 2 -> 2
+ddmax016 max 1 -2 -> 1
+ddmax017 max 1 -1 -> 1
+ddmax018 max 1 0 -> 1
+ddmax019 max 1 1 -> 1
+ddmax020 max 1 2 -> 2
+ddmax021 max 2 -2 -> 2
+ddmax022 max 2 -1 -> 2
+ddmax023 max 2 0 -> 2
+ddmax025 max 2 1 -> 2
+ddmax026 max 2 2 -> 2
+
+-- extended zeros
+ddmax030 max 0 0 -> 0
+ddmax031 max 0 -0 -> 0
+ddmax032 max 0 -0.0 -> 0
+ddmax033 max 0 0.0 -> 0
+ddmax034 max -0 0 -> 0 -- note: -0 = 0, but 0 chosen
+ddmax035 max -0 -0 -> -0
+ddmax036 max -0 -0.0 -> -0.0
+ddmax037 max -0 0.0 -> 0.0
+ddmax038 max 0.0 0 -> 0
+ddmax039 max 0.0 -0 -> 0.0
+ddmax040 max 0.0 -0.0 -> 0.0
+ddmax041 max 0.0 0.0 -> 0.0
+ddmax042 max -0.0 0 -> 0
+ddmax043 max -0.0 -0 -> -0.0
+ddmax044 max -0.0 -0.0 -> -0.0
+ddmax045 max -0.0 0.0 -> 0.0
+
+ddmax050 max -0E1 0E1 -> 0E+1
+ddmax051 max -0E2 0E2 -> 0E+2
+ddmax052 max -0E2 0E1 -> 0E+1
+ddmax053 max -0E1 0E2 -> 0E+2
+ddmax054 max 0E1 -0E1 -> 0E+1
+ddmax055 max 0E2 -0E2 -> 0E+2
+ddmax056 max 0E2 -0E1 -> 0E+2
+ddmax057 max 0E1 -0E2 -> 0E+1
+
+ddmax058 max 0E1 0E1 -> 0E+1
+ddmax059 max 0E2 0E2 -> 0E+2
+ddmax060 max 0E2 0E1 -> 0E+2
+ddmax061 max 0E1 0E2 -> 0E+2
+ddmax062 max -0E1 -0E1 -> -0E+1
+ddmax063 max -0E2 -0E2 -> -0E+2
+ddmax064 max -0E2 -0E1 -> -0E+1
+ddmax065 max -0E1 -0E2 -> -0E+1
+
+-- Specials
+ddmax090 max Inf -Inf -> Infinity
+ddmax091 max Inf -1000 -> Infinity
+ddmax092 max Inf -1 -> Infinity
+ddmax093 max Inf -0 -> Infinity
+ddmax094 max Inf 0 -> Infinity
+ddmax095 max Inf 1 -> Infinity
+ddmax096 max Inf 1000 -> Infinity
+ddmax097 max Inf Inf -> Infinity
+ddmax098 max -1000 Inf -> Infinity
+ddmax099 max -Inf Inf -> Infinity
+ddmax100 max -1 Inf -> Infinity
+ddmax101 max -0 Inf -> Infinity
+ddmax102 max 0 Inf -> Infinity
+ddmax103 max 1 Inf -> Infinity
+ddmax104 max 1000 Inf -> Infinity
+ddmax105 max Inf Inf -> Infinity
+
+ddmax120 max -Inf -Inf -> -Infinity
+ddmax121 max -Inf -1000 -> -1000
+ddmax122 max -Inf -1 -> -1
+ddmax123 max -Inf -0 -> -0
+ddmax124 max -Inf 0 -> 0
+ddmax125 max -Inf 1 -> 1
+ddmax126 max -Inf 1000 -> 1000
+ddmax127 max -Inf Inf -> Infinity
+ddmax128 max -Inf -Inf -> -Infinity
+ddmax129 max -1000 -Inf -> -1000
+ddmax130 max -1 -Inf -> -1
+ddmax131 max -0 -Inf -> -0
+ddmax132 max 0 -Inf -> 0
+ddmax133 max 1 -Inf -> 1
+ddmax134 max 1000 -Inf -> 1000
+ddmax135 max Inf -Inf -> Infinity
+
+-- 2004.08.02 754r chooses number over NaN in mixed cases
+ddmax141 max NaN -Inf -> -Infinity
+ddmax142 max NaN -1000 -> -1000
+ddmax143 max NaN -1 -> -1
+ddmax144 max NaN -0 -> -0
+ddmax145 max NaN 0 -> 0
+ddmax146 max NaN 1 -> 1
+ddmax147 max NaN 1000 -> 1000
+ddmax148 max NaN Inf -> Infinity
+ddmax149 max NaN NaN -> NaN
+ddmax150 max -Inf NaN -> -Infinity
+ddmax151 max -1000 NaN -> -1000
+ddmax152 max -1 NaN -> -1
+ddmax153 max -0 NaN -> -0
+ddmax154 max 0 NaN -> 0
+ddmax155 max 1 NaN -> 1
+ddmax156 max 1000 NaN -> 1000
+ddmax157 max Inf NaN -> Infinity
+
+ddmax161 max sNaN -Inf -> NaN Invalid_operation
+ddmax162 max sNaN -1000 -> NaN Invalid_operation
+ddmax163 max sNaN -1 -> NaN Invalid_operation
+ddmax164 max sNaN -0 -> NaN Invalid_operation
+ddmax165 max sNaN 0 -> NaN Invalid_operation
+ddmax166 max sNaN 1 -> NaN Invalid_operation
+ddmax167 max sNaN 1000 -> NaN Invalid_operation
+ddmax168 max sNaN NaN -> NaN Invalid_operation
+ddmax169 max sNaN sNaN -> NaN Invalid_operation
+ddmax170 max NaN sNaN -> NaN Invalid_operation
+ddmax171 max -Inf sNaN -> NaN Invalid_operation
+ddmax172 max -1000 sNaN -> NaN Invalid_operation
+ddmax173 max -1 sNaN -> NaN Invalid_operation
+ddmax174 max -0 sNaN -> NaN Invalid_operation
+ddmax175 max 0 sNaN -> NaN Invalid_operation
+ddmax176 max 1 sNaN -> NaN Invalid_operation
+ddmax177 max 1000 sNaN -> NaN Invalid_operation
+ddmax178 max Inf sNaN -> NaN Invalid_operation
+ddmax179 max NaN sNaN -> NaN Invalid_operation
+
+-- propagating NaNs
+ddmax181 max NaN9 -Inf -> -Infinity
+ddmax182 max NaN8 9 -> 9
+ddmax183 max -NaN7 Inf -> Infinity
+
+ddmax184 max -NaN1 NaN11 -> -NaN1
+ddmax185 max NaN2 NaN12 -> NaN2
+ddmax186 max -NaN13 -NaN7 -> -NaN13
+ddmax187 max NaN14 -NaN5 -> NaN14
+
+ddmax188 max -Inf NaN4 -> -Infinity
+ddmax189 max -9 -NaN3 -> -9
+ddmax190 max Inf NaN2 -> Infinity
+
+ddmax191 max sNaN99 -Inf -> NaN99 Invalid_operation
+ddmax192 max sNaN98 -1 -> NaN98 Invalid_operation
+ddmax193 max -sNaN97 NaN -> -NaN97 Invalid_operation
+ddmax194 max sNaN96 sNaN94 -> NaN96 Invalid_operation
+ddmax195 max NaN95 sNaN93 -> NaN93 Invalid_operation
+ddmax196 max -Inf sNaN92 -> NaN92 Invalid_operation
+ddmax197 max 0 sNaN91 -> NaN91 Invalid_operation
+ddmax198 max Inf -sNaN90 -> -NaN90 Invalid_operation
+ddmax199 max NaN sNaN89 -> NaN89 Invalid_operation
+
+-- old rounding checks
+ddmax221 max 12345678000 1 -> 12345678000
+ddmax222 max 1 12345678000 -> 12345678000
+ddmax223 max 1234567800 1 -> 1234567800
+ddmax224 max 1 1234567800 -> 1234567800
+ddmax225 max 1234567890 1 -> 1234567890
+ddmax226 max 1 1234567890 -> 1234567890
+ddmax227 max 1234567891 1 -> 1234567891
+ddmax228 max 1 1234567891 -> 1234567891
+ddmax229 max 12345678901 1 -> 12345678901
+ddmax230 max 1 12345678901 -> 12345678901
+ddmax231 max 1234567896 1 -> 1234567896
+ddmax232 max 1 1234567896 -> 1234567896
+ddmax233 max -1234567891 1 -> 1
+ddmax234 max 1 -1234567891 -> 1
+ddmax235 max -12345678901 1 -> 1
+ddmax236 max 1 -12345678901 -> 1
+ddmax237 max -1234567896 1 -> 1
+ddmax238 max 1 -1234567896 -> 1
+
+-- from examples
+ddmax280 max '3' '2' -> '3'
+ddmax281 max '-10' '3' -> '3'
+ddmax282 max '1.0' '1' -> '1'
+ddmax283 max '1' '1.0' -> '1'
+ddmax284 max '7' 'NaN' -> '7'
+
+-- expanded list from min/max 754r purple prose
+-- [explicit tests for exponent ordering]
+ddmax401 max Inf 1.1 -> Infinity
+ddmax402 max 1.1 1 -> 1.1
+ddmax403 max 1 1.0 -> 1
+ddmax404 max 1.0 0.1 -> 1.0
+ddmax405 max 0.1 0.10 -> 0.1
+ddmax406 max 0.10 0.100 -> 0.10
+ddmax407 max 0.10 0 -> 0.10
+ddmax408 max 0 0.0 -> 0
+ddmax409 max 0.0 -0 -> 0.0
+ddmax410 max 0.0 -0.0 -> 0.0
+ddmax411 max 0.00 -0.0 -> 0.00
+ddmax412 max 0.0 -0.00 -> 0.0
+ddmax413 max 0 -0.0 -> 0
+ddmax414 max 0 -0 -> 0
+ddmax415 max -0.0 -0 -> -0.0
+ddmax416 max -0 -0.100 -> -0
+ddmax417 max -0.100 -0.10 -> -0.100
+ddmax418 max -0.10 -0.1 -> -0.10
+ddmax419 max -0.1 -1.0 -> -0.1
+ddmax420 max -1.0 -1 -> -1.0
+ddmax421 max -1 -1.1 -> -1
+ddmax423 max -1.1 -Inf -> -1.1
+-- same with operands reversed
+ddmax431 max 1.1 Inf -> Infinity
+ddmax432 max 1 1.1 -> 1.1
+ddmax433 max 1.0 1 -> 1
+ddmax434 max 0.1 1.0 -> 1.0
+ddmax435 max 0.10 0.1 -> 0.1
+ddmax436 max 0.100 0.10 -> 0.10
+ddmax437 max 0 0.10 -> 0.10
+ddmax438 max 0.0 0 -> 0
+ddmax439 max -0 0.0 -> 0.0
+ddmax440 max -0.0 0.0 -> 0.0
+ddmax441 max -0.0 0.00 -> 0.00
+ddmax442 max -0.00 0.0 -> 0.0
+ddmax443 max -0.0 0 -> 0
+ddmax444 max -0 0 -> 0
+ddmax445 max -0 -0.0 -> -0.0
+ddmax446 max -0.100 -0 -> -0
+ddmax447 max -0.10 -0.100 -> -0.100
+ddmax448 max -0.1 -0.10 -> -0.10
+ddmax449 max -1.0 -0.1 -> -0.1
+ddmax450 max -1 -1.0 -> -1.0
+ddmax451 max -1.1 -1 -> -1
+ddmax453 max -Inf -1.1 -> -1.1
+-- largies
+ddmax460 max 1000 1E+3 -> 1E+3
+ddmax461 max 1E+3 1000 -> 1E+3
+ddmax462 max 1000 -1E+3 -> 1000
+ddmax463 max 1E+3 -1000 -> 1E+3
+ddmax464 max -1000 1E+3 -> 1E+3
+ddmax465 max -1E+3 1000 -> 1000
+ddmax466 max -1000 -1E+3 -> -1000
+ddmax467 max -1E+3 -1000 -> -1000
+
+-- misalignment traps for little-endian
+ddmax471 max 1.0 0.1 -> 1.0
+ddmax472 max 0.1 1.0 -> 1.0
+ddmax473 max 10.0 0.1 -> 10.0
+ddmax474 max 0.1 10.0 -> 10.0
+ddmax475 max 100 1.0 -> 100
+ddmax476 max 1.0 100 -> 100
+ddmax477 max 1000 10.0 -> 1000
+ddmax478 max 10.0 1000 -> 1000
+ddmax479 max 10000 100.0 -> 10000
+ddmax480 max 100.0 10000 -> 10000
+ddmax481 max 100000 1000.0 -> 100000
+ddmax482 max 1000.0 100000 -> 100000
+ddmax483 max 1000000 10000.0 -> 1000000
+ddmax484 max 10000.0 1000000 -> 1000000
+
+-- subnormals
+ddmax510 max 1.00E-383 0 -> 1.00E-383
+ddmax511 max 0.1E-383 0 -> 1E-384 Subnormal
+ddmax512 max 0.10E-383 0 -> 1.0E-384 Subnormal
+ddmax513 max 0.100E-383 0 -> 1.00E-384 Subnormal
+ddmax514 max 0.01E-383 0 -> 1E-385 Subnormal
+ddmax515 max 0.999E-383 0 -> 9.99E-384 Subnormal
+ddmax516 max 0.099E-383 0 -> 9.9E-385 Subnormal
+ddmax517 max 0.009E-383 0 -> 9E-386 Subnormal
+ddmax518 max 0.001E-383 0 -> 1E-386 Subnormal
+ddmax519 max 0.0009E-383 0 -> 9E-387 Subnormal
+ddmax520 max 0.0001E-383 0 -> 1E-387 Subnormal
+
+ddmax530 max -1.00E-383 0 -> 0
+ddmax531 max -0.1E-383 0 -> 0
+ddmax532 max -0.10E-383 0 -> 0
+ddmax533 max -0.100E-383 0 -> 0
+ddmax534 max -0.01E-383 0 -> 0
+ddmax535 max -0.999E-383 0 -> 0
+ddmax536 max -0.099E-383 0 -> 0
+ddmax537 max -0.009E-383 0 -> 0
+ddmax538 max -0.001E-383 0 -> 0
+ddmax539 max -0.0009E-383 0 -> 0
+ddmax540 max -0.0001E-383 0 -> 0
+
+-- Null tests
+ddmax900 max 10 # -> NaN Invalid_operation
+ddmax901 max # 10 -> NaN Invalid_operation
+
+
+
diff --git a/Lib/test/decimaltestdata/ddMaxMag.decTest b/Lib/test/decimaltestdata/ddMaxMag.decTest
new file mode 100644
index 0000000..dbabc99
--- /dev/null
+++ b/Lib/test/decimaltestdata/ddMaxMag.decTest
@@ -0,0 +1,304 @@
+------------------------------------------------------------------------
+-- ddMaxMag.decTest -- decDouble maxnummag --
+-- Copyright (c) IBM Corporation, 1981, 2007. All rights reserved. --
+------------------------------------------------------------------------
+-- Please see the document "General Decimal Arithmetic Testcases" --
+-- at http://www2.hursley.ibm.com/decimal for the description of --
+-- these testcases. --
+-- --
+-- These testcases are experimental ('beta' versions), and they --
+-- may contain errors. They are offered on an as-is basis. In --
+-- particular, achieving the same results as the tests here is not --
+-- a guarantee that an implementation complies with any Standard --
+-- or specification. The tests are not exhaustive. --
+-- --
+-- Please send comments, suggestions, and corrections to the author: --
+-- Mike Cowlishaw, IBM Fellow --
+-- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK --
+-- mfc@uk.ibm.com --
+------------------------------------------------------------------------
+version: 2.56
+
+-- we assume that base comparison is tested in compare.decTest, so
+-- these mainly cover special cases and rounding
+precision: 16
+maxExponent: 384
+minExponent: -383
+extended: 1
+clamp: 1
+rounding: half_even
+
+-- sanity checks
+ddmxg001 maxmag -2 -2 -> -2
+ddmxg002 maxmag -2 -1 -> -2
+ddmxg003 maxmag -2 0 -> -2
+ddmxg004 maxmag -2 1 -> -2
+ddmxg005 maxmag -2 2 -> 2
+ddmxg006 maxmag -1 -2 -> -2
+ddmxg007 maxmag -1 -1 -> -1
+ddmxg008 maxmag -1 0 -> -1
+ddmxg009 maxmag -1 1 -> 1
+ddmxg010 maxmag -1 2 -> 2
+ddmxg011 maxmag 0 -2 -> -2
+ddmxg012 maxmag 0 -1 -> -1
+ddmxg013 maxmag 0 0 -> 0
+ddmxg014 maxmag 0 1 -> 1
+ddmxg015 maxmag 0 2 -> 2
+ddmxg016 maxmag 1 -2 -> -2
+ddmxg017 maxmag 1 -1 -> 1
+ddmxg018 maxmag 1 0 -> 1
+ddmxg019 maxmag 1 1 -> 1
+ddmxg020 maxmag 1 2 -> 2
+ddmxg021 maxmag 2 -2 -> 2
+ddmxg022 maxmag 2 -1 -> 2
+ddmxg023 maxmag 2 0 -> 2
+ddmxg025 maxmag 2 1 -> 2
+ddmxg026 maxmag 2 2 -> 2
+
+-- extended zeros
+ddmxg030 maxmag 0 0 -> 0
+ddmxg031 maxmag 0 -0 -> 0
+ddmxg032 maxmag 0 -0.0 -> 0
+ddmxg033 maxmag 0 0.0 -> 0
+ddmxg034 maxmag -0 0 -> 0 -- note: -0 = 0, but 0 chosen
+ddmxg035 maxmag -0 -0 -> -0
+ddmxg036 maxmag -0 -0.0 -> -0.0
+ddmxg037 maxmag -0 0.0 -> 0.0
+ddmxg038 maxmag 0.0 0 -> 0
+ddmxg039 maxmag 0.0 -0 -> 0.0
+ddmxg040 maxmag 0.0 -0.0 -> 0.0
+ddmxg041 maxmag 0.0 0.0 -> 0.0
+ddmxg042 maxmag -0.0 0 -> 0
+ddmxg043 maxmag -0.0 -0 -> -0.0
+ddmxg044 maxmag -0.0 -0.0 -> -0.0
+ddmxg045 maxmag -0.0 0.0 -> 0.0
+
+ddmxg050 maxmag -0E1 0E1 -> 0E+1
+ddmxg051 maxmag -0E2 0E2 -> 0E+2
+ddmxg052 maxmag -0E2 0E1 -> 0E+1
+ddmxg053 maxmag -0E1 0E2 -> 0E+2
+ddmxg054 maxmag 0E1 -0E1 -> 0E+1
+ddmxg055 maxmag 0E2 -0E2 -> 0E+2
+ddmxg056 maxmag 0E2 -0E1 -> 0E+2
+ddmxg057 maxmag 0E1 -0E2 -> 0E+1
+
+ddmxg058 maxmag 0E1 0E1 -> 0E+1
+ddmxg059 maxmag 0E2 0E2 -> 0E+2
+ddmxg060 maxmag 0E2 0E1 -> 0E+2
+ddmxg061 maxmag 0E1 0E2 -> 0E+2
+ddmxg062 maxmag -0E1 -0E1 -> -0E+1
+ddmxg063 maxmag -0E2 -0E2 -> -0E+2
+ddmxg064 maxmag -0E2 -0E1 -> -0E+1
+ddmxg065 maxmag -0E1 -0E2 -> -0E+1
+
+-- Specials
+ddmxg090 maxmag Inf -Inf -> Infinity
+ddmxg091 maxmag Inf -1000 -> Infinity
+ddmxg092 maxmag Inf -1 -> Infinity
+ddmxg093 maxmag Inf -0 -> Infinity
+ddmxg094 maxmag Inf 0 -> Infinity
+ddmxg095 maxmag Inf 1 -> Infinity
+ddmxg096 maxmag Inf 1000 -> Infinity
+ddmxg097 maxmag Inf Inf -> Infinity
+ddmxg098 maxmag -1000 Inf -> Infinity
+ddmxg099 maxmag -Inf Inf -> Infinity
+ddmxg100 maxmag -1 Inf -> Infinity
+ddmxg101 maxmag -0 Inf -> Infinity
+ddmxg102 maxmag 0 Inf -> Infinity
+ddmxg103 maxmag 1 Inf -> Infinity
+ddmxg104 maxmag 1000 Inf -> Infinity
+ddmxg105 maxmag Inf Inf -> Infinity
+
+ddmxg120 maxmag -Inf -Inf -> -Infinity
+ddmxg121 maxmag -Inf -1000 -> -Infinity
+ddmxg122 maxmag -Inf -1 -> -Infinity
+ddmxg123 maxmag -Inf -0 -> -Infinity
+ddmxg124 maxmag -Inf 0 -> -Infinity
+ddmxg125 maxmag -Inf 1 -> -Infinity
+ddmxg126 maxmag -Inf 1000 -> -Infinity
+ddmxg127 maxmag -Inf Inf -> Infinity
+ddmxg128 maxmag -Inf -Inf -> -Infinity
+ddmxg129 maxmag -1000 -Inf -> -Infinity
+ddmxg130 maxmag -1 -Inf -> -Infinity
+ddmxg131 maxmag -0 -Inf -> -Infinity
+ddmxg132 maxmag 0 -Inf -> -Infinity
+ddmxg133 maxmag 1 -Inf -> -Infinity
+ddmxg134 maxmag 1000 -Inf -> -Infinity
+ddmxg135 maxmag Inf -Inf -> Infinity
+
+-- 2004.08.02 754r chooses number over NaN in mixed cases
+ddmxg141 maxmag NaN -Inf -> -Infinity
+ddmxg142 maxmag NaN -1000 -> -1000
+ddmxg143 maxmag NaN -1 -> -1
+ddmxg144 maxmag NaN -0 -> -0
+ddmxg145 maxmag NaN 0 -> 0
+ddmxg146 maxmag NaN 1 -> 1
+ddmxg147 maxmag NaN 1000 -> 1000
+ddmxg148 maxmag NaN Inf -> Infinity
+ddmxg149 maxmag NaN NaN -> NaN
+ddmxg150 maxmag -Inf NaN -> -Infinity
+ddmxg151 maxmag -1000 NaN -> -1000
+ddmxg152 maxmag -1 NaN -> -1
+ddmxg153 maxmag -0 NaN -> -0
+ddmxg154 maxmag 0 NaN -> 0
+ddmxg155 maxmag 1 NaN -> 1
+ddmxg156 maxmag 1000 NaN -> 1000
+ddmxg157 maxmag Inf NaN -> Infinity
+
+ddmxg161 maxmag sNaN -Inf -> NaN Invalid_operation
+ddmxg162 maxmag sNaN -1000 -> NaN Invalid_operation
+ddmxg163 maxmag sNaN -1 -> NaN Invalid_operation
+ddmxg164 maxmag sNaN -0 -> NaN Invalid_operation
+ddmxg165 maxmag sNaN 0 -> NaN Invalid_operation
+ddmxg166 maxmag sNaN 1 -> NaN Invalid_operation
+ddmxg167 maxmag sNaN 1000 -> NaN Invalid_operation
+ddmxg168 maxmag sNaN NaN -> NaN Invalid_operation
+ddmxg169 maxmag sNaN sNaN -> NaN Invalid_operation
+ddmxg170 maxmag NaN sNaN -> NaN Invalid_operation
+ddmxg171 maxmag -Inf sNaN -> NaN Invalid_operation
+ddmxg172 maxmag -1000 sNaN -> NaN Invalid_operation
+ddmxg173 maxmag -1 sNaN -> NaN Invalid_operation
+ddmxg174 maxmag -0 sNaN -> NaN Invalid_operation
+ddmxg175 maxmag 0 sNaN -> NaN Invalid_operation
+ddmxg176 maxmag 1 sNaN -> NaN Invalid_operation
+ddmxg177 maxmag 1000 sNaN -> NaN Invalid_operation
+ddmxg178 maxmag Inf sNaN -> NaN Invalid_operation
+ddmxg179 maxmag NaN sNaN -> NaN Invalid_operation
+
+-- propagating NaNs
+ddmxg181 maxmag NaN9 -Inf -> -Infinity
+ddmxg182 maxmag NaN8 9 -> 9
+ddmxg183 maxmag -NaN7 Inf -> Infinity
+
+ddmxg184 maxmag -NaN1 NaN11 -> -NaN1
+ddmxg185 maxmag NaN2 NaN12 -> NaN2
+ddmxg186 maxmag -NaN13 -NaN7 -> -NaN13
+ddmxg187 maxmag NaN14 -NaN5 -> NaN14
+
+ddmxg188 maxmag -Inf NaN4 -> -Infinity
+ddmxg189 maxmag -9 -NaN3 -> -9
+ddmxg190 maxmag Inf NaN2 -> Infinity
+
+ddmxg191 maxmag sNaN99 -Inf -> NaN99 Invalid_operation
+ddmxg192 maxmag sNaN98 -1 -> NaN98 Invalid_operation
+ddmxg193 maxmag -sNaN97 NaN -> -NaN97 Invalid_operation
+ddmxg194 maxmag sNaN96 sNaN94 -> NaN96 Invalid_operation
+ddmxg195 maxmag NaN95 sNaN93 -> NaN93 Invalid_operation
+ddmxg196 maxmag -Inf sNaN92 -> NaN92 Invalid_operation
+ddmxg197 maxmag 0 sNaN91 -> NaN91 Invalid_operation
+ddmxg198 maxmag Inf -sNaN90 -> -NaN90 Invalid_operation
+ddmxg199 maxmag NaN sNaN89 -> NaN89 Invalid_operation
+
+-- old rounding checks
+ddmxg221 maxmag 12345678000 1 -> 12345678000
+ddmxg222 maxmag 1 12345678000 -> 12345678000
+ddmxg223 maxmag 1234567800 1 -> 1234567800
+ddmxg224 maxmag 1 1234567800 -> 1234567800
+ddmxg225 maxmag 1234567890 1 -> 1234567890
+ddmxg226 maxmag 1 1234567890 -> 1234567890
+ddmxg227 maxmag 1234567891 1 -> 1234567891
+ddmxg228 maxmag 1 1234567891 -> 1234567891
+ddmxg229 maxmag 12345678901 1 -> 12345678901
+ddmxg230 maxmag 1 12345678901 -> 12345678901
+ddmxg231 maxmag 1234567896 1 -> 1234567896
+ddmxg232 maxmag 1 1234567896 -> 1234567896
+ddmxg233 maxmag -1234567891 1 -> -1234567891
+ddmxg234 maxmag 1 -1234567891 -> -1234567891
+ddmxg235 maxmag -12345678901 1 -> -12345678901
+ddmxg236 maxmag 1 -12345678901 -> -12345678901
+ddmxg237 maxmag -1234567896 1 -> -1234567896
+ddmxg238 maxmag 1 -1234567896 -> -1234567896
+
+-- from examples
+ddmxg280 maxmag '3' '2' -> '3'
+ddmxg281 maxmag '-10' '3' -> '-10'
+ddmxg282 maxmag '1.0' '1' -> '1'
+ddmxg283 maxmag '1' '1.0' -> '1'
+ddmxg284 maxmag '7' 'NaN' -> '7'
+
+-- expanded list from min/max 754r purple prose
+-- [explicit tests for exponent ordering]
+ddmxg401 maxmag Inf 1.1 -> Infinity
+ddmxg402 maxmag 1.1 1 -> 1.1
+ddmxg403 maxmag 1 1.0 -> 1
+ddmxg404 maxmag 1.0 0.1 -> 1.0
+ddmxg405 maxmag 0.1 0.10 -> 0.1
+ddmxg406 maxmag 0.10 0.100 -> 0.10
+ddmxg407 maxmag 0.10 0 -> 0.10
+ddmxg408 maxmag 0 0.0 -> 0
+ddmxg409 maxmag 0.0 -0 -> 0.0
+ddmxg410 maxmag 0.0 -0.0 -> 0.0
+ddmxg411 maxmag 0.00 -0.0 -> 0.00
+ddmxg412 maxmag 0.0 -0.00 -> 0.0
+ddmxg413 maxmag 0 -0.0 -> 0
+ddmxg414 maxmag 0 -0 -> 0
+ddmxg415 maxmag -0.0 -0 -> -0.0
+ddmxg416 maxmag -0 -0.100 -> -0.100
+ddmxg417 maxmag -0.100 -0.10 -> -0.100
+ddmxg418 maxmag -0.10 -0.1 -> -0.10
+ddmxg419 maxmag -0.1 -1.0 -> -1.0
+ddmxg420 maxmag -1.0 -1 -> -1.0
+ddmxg421 maxmag -1 -1.1 -> -1.1
+ddmxg423 maxmag -1.1 -Inf -> -Infinity
+-- same with operands reversed
+ddmxg431 maxmag 1.1 Inf -> Infinity
+ddmxg432 maxmag 1 1.1 -> 1.1
+ddmxg433 maxmag 1.0 1 -> 1
+ddmxg434 maxmag 0.1 1.0 -> 1.0
+ddmxg435 maxmag 0.10 0.1 -> 0.1
+ddmxg436 maxmag 0.100 0.10 -> 0.10
+ddmxg437 maxmag 0 0.10 -> 0.10
+ddmxg438 maxmag 0.0 0 -> 0
+ddmxg439 maxmag -0 0.0 -> 0.0
+ddmxg440 maxmag -0.0 0.0 -> 0.0
+ddmxg441 maxmag -0.0 0.00 -> 0.00
+ddmxg442 maxmag -0.00 0.0 -> 0.0
+ddmxg443 maxmag -0.0 0 -> 0
+ddmxg444 maxmag -0 0 -> 0
+ddmxg445 maxmag -0 -0.0 -> -0.0
+ddmxg446 maxmag -0.100 -0 -> -0.100
+ddmxg447 maxmag -0.10 -0.100 -> -0.100
+ddmxg448 maxmag -0.1 -0.10 -> -0.10
+ddmxg449 maxmag -1.0 -0.1 -> -1.0
+ddmxg450 maxmag -1 -1.0 -> -1.0
+ddmxg451 maxmag -1.1 -1 -> -1.1
+ddmxg453 maxmag -Inf -1.1 -> -Infinity
+-- largies
+ddmxg460 maxmag 1000 1E+3 -> 1E+3
+ddmxg461 maxmag 1E+3 1000 -> 1E+3
+ddmxg462 maxmag 1000 -1E+3 -> 1000
+ddmxg463 maxmag 1E+3 -1000 -> 1E+3
+ddmxg464 maxmag -1000 1E+3 -> 1E+3
+ddmxg465 maxmag -1E+3 1000 -> 1000
+ddmxg466 maxmag -1000 -1E+3 -> -1000
+ddmxg467 maxmag -1E+3 -1000 -> -1000
+
+-- subnormals
+ddmxg510 maxmag 1.00E-383 0 -> 1.00E-383
+ddmxg511 maxmag 0.1E-383 0 -> 1E-384 Subnormal
+ddmxg512 maxmag 0.10E-383 0 -> 1.0E-384 Subnormal
+ddmxg513 maxmag 0.100E-383 0 -> 1.00E-384 Subnormal
+ddmxg514 maxmag 0.01E-383 0 -> 1E-385 Subnormal
+ddmxg515 maxmag 0.999E-383 0 -> 9.99E-384 Subnormal
+ddmxg516 maxmag 0.099E-383 0 -> 9.9E-385 Subnormal
+ddmxg517 maxmag 0.009E-383 0 -> 9E-386 Subnormal
+ddmxg518 maxmag 0.001E-383 0 -> 1E-386 Subnormal
+ddmxg519 maxmag 0.0009E-383 0 -> 9E-387 Subnormal
+ddmxg520 maxmag 0.0001E-383 0 -> 1E-387 Subnormal
+
+ddmxg530 maxmag -1.00E-383 0 -> -1.00E-383
+ddmxg531 maxmag -0.1E-383 0 -> -1E-384 Subnormal
+ddmxg532 maxmag -0.10E-383 0 -> -1.0E-384 Subnormal
+ddmxg533 maxmag -0.100E-383 0 -> -1.00E-384 Subnormal
+ddmxg534 maxmag -0.01E-383 0 -> -1E-385 Subnormal
+ddmxg535 maxmag -0.999E-383 0 -> -9.99E-384 Subnormal
+ddmxg536 maxmag -0.099E-383 0 -> -9.9E-385 Subnormal
+ddmxg537 maxmag -0.009E-383 0 -> -9E-386 Subnormal
+ddmxg538 maxmag -0.001E-383 0 -> -1E-386 Subnormal
+ddmxg539 maxmag -0.0009E-383 0 -> -9E-387 Subnormal
+ddmxg540 maxmag -0.0001E-383 0 -> -1E-387 Subnormal
+
+-- Null tests
+ddmxg900 maxmag 10 # -> NaN Invalid_operation
+ddmxg901 maxmag # 10 -> NaN Invalid_operation
+
diff --git a/Lib/test/decimaltestdata/ddMin.decTest b/Lib/test/decimaltestdata/ddMin.decTest
new file mode 100644
index 0000000..4ba27f7
--- /dev/null
+++ b/Lib/test/decimaltestdata/ddMin.decTest
@@ -0,0 +1,309 @@
+------------------------------------------------------------------------
+-- ddMin.decTest -- decDouble minnum --
+-- Copyright (c) IBM Corporation, 1981, 2007. All rights reserved. --
+------------------------------------------------------------------------
+-- Please see the document "General Decimal Arithmetic Testcases" --
+-- at http://www2.hursley.ibm.com/decimal for the description of --
+-- these testcases. --
+-- --
+-- These testcases are experimental ('beta' versions), and they --
+-- may contain errors. They are offered on an as-is basis. In --
+-- particular, achieving the same results as the tests here is not --
+-- a guarantee that an implementation complies with any Standard --
+-- or specification. The tests are not exhaustive. --
+-- --
+-- Please send comments, suggestions, and corrections to the author: --
+-- Mike Cowlishaw, IBM Fellow --
+-- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK --
+-- mfc@uk.ibm.com --
+------------------------------------------------------------------------
+version: 2.56
+
+-- we assume that base comparison is tested in compare.decTest, so
+-- these mainly cover special cases and rounding
+precision: 16
+maxExponent: 384
+minExponent: -383
+extended: 1
+clamp: 1
+rounding: half_even
+
+-- sanity checks
+ddmin001 min -2 -2 -> -2
+ddmin002 min -2 -1 -> -2
+ddmin003 min -2 0 -> -2
+ddmin004 min -2 1 -> -2
+ddmin005 min -2 2 -> -2
+ddmin006 min -1 -2 -> -2
+ddmin007 min -1 -1 -> -1
+ddmin008 min -1 0 -> -1
+ddmin009 min -1 1 -> -1
+ddmin010 min -1 2 -> -1
+ddmin011 min 0 -2 -> -2
+ddmin012 min 0 -1 -> -1
+ddmin013 min 0 0 -> 0
+ddmin014 min 0 1 -> 0
+ddmin015 min 0 2 -> 0
+ddmin016 min 1 -2 -> -2
+ddmin017 min 1 -1 -> -1
+ddmin018 min 1 0 -> 0
+ddmin019 min 1 1 -> 1
+ddmin020 min 1 2 -> 1
+ddmin021 min 2 -2 -> -2
+ddmin022 min 2 -1 -> -1
+ddmin023 min 2 0 -> 0
+ddmin025 min 2 1 -> 1
+ddmin026 min 2 2 -> 2
+
+-- extended zeros
+ddmin030 min 0 0 -> 0
+ddmin031 min 0 -0 -> -0
+ddmin032 min 0 -0.0 -> -0.0
+ddmin033 min 0 0.0 -> 0.0
+ddmin034 min -0 0 -> -0
+ddmin035 min -0 -0 -> -0
+ddmin036 min -0 -0.0 -> -0
+ddmin037 min -0 0.0 -> -0
+ddmin038 min 0.0 0 -> 0.0
+ddmin039 min 0.0 -0 -> -0
+ddmin040 min 0.0 -0.0 -> -0.0
+ddmin041 min 0.0 0.0 -> 0.0
+ddmin042 min -0.0 0 -> -0.0
+ddmin043 min -0.0 -0 -> -0
+ddmin044 min -0.0 -0.0 -> -0.0
+ddmin045 min -0.0 0.0 -> -0.0
+
+ddmin046 min 0E1 -0E1 -> -0E+1
+ddmin047 min -0E1 0E2 -> -0E+1
+ddmin048 min 0E2 0E1 -> 0E+1
+ddmin049 min 0E1 0E2 -> 0E+1
+ddmin050 min -0E3 -0E2 -> -0E+3
+ddmin051 min -0E2 -0E3 -> -0E+3
+
+-- Specials
+ddmin090 min Inf -Inf -> -Infinity
+ddmin091 min Inf -1000 -> -1000
+ddmin092 min Inf -1 -> -1
+ddmin093 min Inf -0 -> -0
+ddmin094 min Inf 0 -> 0
+ddmin095 min Inf 1 -> 1
+ddmin096 min Inf 1000 -> 1000
+ddmin097 min Inf Inf -> Infinity
+ddmin098 min -1000 Inf -> -1000
+ddmin099 min -Inf Inf -> -Infinity
+ddmin100 min -1 Inf -> -1
+ddmin101 min -0 Inf -> -0
+ddmin102 min 0 Inf -> 0
+ddmin103 min 1 Inf -> 1
+ddmin104 min 1000 Inf -> 1000
+ddmin105 min Inf Inf -> Infinity
+
+ddmin120 min -Inf -Inf -> -Infinity
+ddmin121 min -Inf -1000 -> -Infinity
+ddmin122 min -Inf -1 -> -Infinity
+ddmin123 min -Inf -0 -> -Infinity
+ddmin124 min -Inf 0 -> -Infinity
+ddmin125 min -Inf 1 -> -Infinity
+ddmin126 min -Inf 1000 -> -Infinity
+ddmin127 min -Inf Inf -> -Infinity
+ddmin128 min -Inf -Inf -> -Infinity
+ddmin129 min -1000 -Inf -> -Infinity
+ddmin130 min -1 -Inf -> -Infinity
+ddmin131 min -0 -Inf -> -Infinity
+ddmin132 min 0 -Inf -> -Infinity
+ddmin133 min 1 -Inf -> -Infinity
+ddmin134 min 1000 -Inf -> -Infinity
+ddmin135 min Inf -Inf -> -Infinity
+
+-- 2004.08.02 754r chooses number over NaN in mixed cases
+ddmin141 min NaN -Inf -> -Infinity
+ddmin142 min NaN -1000 -> -1000
+ddmin143 min NaN -1 -> -1
+ddmin144 min NaN -0 -> -0
+ddmin145 min NaN 0 -> 0
+ddmin146 min NaN 1 -> 1
+ddmin147 min NaN 1000 -> 1000
+ddmin148 min NaN Inf -> Infinity
+ddmin149 min NaN NaN -> NaN
+ddmin150 min -Inf NaN -> -Infinity
+ddmin151 min -1000 NaN -> -1000
+ddmin152 min -1 -NaN -> -1
+ddmin153 min -0 NaN -> -0
+ddmin154 min 0 -NaN -> 0
+ddmin155 min 1 NaN -> 1
+ddmin156 min 1000 NaN -> 1000
+ddmin157 min Inf NaN -> Infinity
+
+ddmin161 min sNaN -Inf -> NaN Invalid_operation
+ddmin162 min sNaN -1000 -> NaN Invalid_operation
+ddmin163 min sNaN -1 -> NaN Invalid_operation
+ddmin164 min sNaN -0 -> NaN Invalid_operation
+ddmin165 min -sNaN 0 -> -NaN Invalid_operation
+ddmin166 min -sNaN 1 -> -NaN Invalid_operation
+ddmin167 min sNaN 1000 -> NaN Invalid_operation
+ddmin168 min sNaN NaN -> NaN Invalid_operation
+ddmin169 min sNaN sNaN -> NaN Invalid_operation
+ddmin170 min NaN sNaN -> NaN Invalid_operation
+ddmin171 min -Inf sNaN -> NaN Invalid_operation
+ddmin172 min -1000 sNaN -> NaN Invalid_operation
+ddmin173 min -1 sNaN -> NaN Invalid_operation
+ddmin174 min -0 sNaN -> NaN Invalid_operation
+ddmin175 min 0 sNaN -> NaN Invalid_operation
+ddmin176 min 1 sNaN -> NaN Invalid_operation
+ddmin177 min 1000 sNaN -> NaN Invalid_operation
+ddmin178 min Inf sNaN -> NaN Invalid_operation
+ddmin179 min NaN sNaN -> NaN Invalid_operation
+
+-- propagating NaNs
+ddmin181 min NaN9 -Inf -> -Infinity
+ddmin182 min -NaN8 9990 -> 9990
+ddmin183 min NaN71 Inf -> Infinity
+
+ddmin184 min NaN1 NaN54 -> NaN1
+ddmin185 min NaN22 -NaN53 -> NaN22
+ddmin186 min -NaN3 NaN6 -> -NaN3
+ddmin187 min -NaN44 NaN7 -> -NaN44
+
+ddmin188 min -Inf NaN41 -> -Infinity
+ddmin189 min -9999 -NaN33 -> -9999
+ddmin190 min Inf NaN2 -> Infinity
+
+ddmin191 min sNaN99 -Inf -> NaN99 Invalid_operation
+ddmin192 min sNaN98 -11 -> NaN98 Invalid_operation
+ddmin193 min -sNaN97 NaN8 -> -NaN97 Invalid_operation
+ddmin194 min sNaN69 sNaN94 -> NaN69 Invalid_operation
+ddmin195 min NaN95 sNaN93 -> NaN93 Invalid_operation
+ddmin196 min -Inf sNaN92 -> NaN92 Invalid_operation
+ddmin197 min 088 sNaN91 -> NaN91 Invalid_operation
+ddmin198 min Inf -sNaN90 -> -NaN90 Invalid_operation
+ddmin199 min NaN sNaN86 -> NaN86 Invalid_operation
+
+-- old rounding checks
+ddmin221 min -12345678000 1 -> -12345678000
+ddmin222 min 1 -12345678000 -> -12345678000
+ddmin223 min -1234567800 1 -> -1234567800
+ddmin224 min 1 -1234567800 -> -1234567800
+ddmin225 min -1234567890 1 -> -1234567890
+ddmin226 min 1 -1234567890 -> -1234567890
+ddmin227 min -1234567891 1 -> -1234567891
+ddmin228 min 1 -1234567891 -> -1234567891
+ddmin229 min -12345678901 1 -> -12345678901
+ddmin230 min 1 -12345678901 -> -12345678901
+ddmin231 min -1234567896 1 -> -1234567896
+ddmin232 min 1 -1234567896 -> -1234567896
+ddmin233 min 1234567891 1 -> 1
+ddmin234 min 1 1234567891 -> 1
+ddmin235 min 12345678901 1 -> 1
+ddmin236 min 1 12345678901 -> 1
+ddmin237 min 1234567896 1 -> 1
+ddmin238 min 1 1234567896 -> 1
+
+-- from examples
+ddmin280 min '3' '2' -> '2'
+ddmin281 min '-10' '3' -> '-10'
+ddmin282 min '1.0' '1' -> '1.0'
+ddmin283 min '1' '1.0' -> '1.0'
+ddmin284 min '7' 'NaN' -> '7'
+
+-- expanded list from min/max 754r purple prose
+-- [explicit tests for exponent ordering]
+ddmin401 min Inf 1.1 -> 1.1
+ddmin402 min 1.1 1 -> 1
+ddmin403 min 1 1.0 -> 1.0
+ddmin404 min 1.0 0.1 -> 0.1
+ddmin405 min 0.1 0.10 -> 0.10
+ddmin406 min 0.10 0.100 -> 0.100
+ddmin407 min 0.10 0 -> 0
+ddmin408 min 0 0.0 -> 0.0
+ddmin409 min 0.0 -0 -> -0
+ddmin410 min 0.0 -0.0 -> -0.0
+ddmin411 min 0.00 -0.0 -> -0.0
+ddmin412 min 0.0 -0.00 -> -0.00
+ddmin413 min 0 -0.0 -> -0.0
+ddmin414 min 0 -0 -> -0
+ddmin415 min -0.0 -0 -> -0
+ddmin416 min -0 -0.100 -> -0.100
+ddmin417 min -0.100 -0.10 -> -0.10
+ddmin418 min -0.10 -0.1 -> -0.1
+ddmin419 min -0.1 -1.0 -> -1.0
+ddmin420 min -1.0 -1 -> -1
+ddmin421 min -1 -1.1 -> -1.1
+ddmin423 min -1.1 -Inf -> -Infinity
+-- same with operands reversed
+ddmin431 min 1.1 Inf -> 1.1
+ddmin432 min 1 1.1 -> 1
+ddmin433 min 1.0 1 -> 1.0
+ddmin434 min 0.1 1.0 -> 0.1
+ddmin435 min 0.10 0.1 -> 0.10
+ddmin436 min 0.100 0.10 -> 0.100
+ddmin437 min 0 0.10 -> 0
+ddmin438 min 0.0 0 -> 0.0
+ddmin439 min -0 0.0 -> -0
+ddmin440 min -0.0 0.0 -> -0.0
+ddmin441 min -0.0 0.00 -> -0.0
+ddmin442 min -0.00 0.0 -> -0.00
+ddmin443 min -0.0 0 -> -0.0
+ddmin444 min -0 0 -> -0
+ddmin445 min -0 -0.0 -> -0
+ddmin446 min -0.100 -0 -> -0.100
+ddmin447 min -0.10 -0.100 -> -0.10
+ddmin448 min -0.1 -0.10 -> -0.1
+ddmin449 min -1.0 -0.1 -> -1.0
+ddmin450 min -1 -1.0 -> -1
+ddmin451 min -1.1 -1 -> -1.1
+ddmin453 min -Inf -1.1 -> -Infinity
+-- largies
+ddmin460 min 1000 1E+3 -> 1000
+ddmin461 min 1E+3 1000 -> 1000
+ddmin462 min 1000 -1E+3 -> -1E+3
+ddmin463 min 1E+3 -384 -> -384
+ddmin464 min -384 1E+3 -> -384
+ddmin465 min -1E+3 1000 -> -1E+3
+ddmin466 min -384 -1E+3 -> -1E+3
+ddmin467 min -1E+3 -384 -> -1E+3
+
+-- misalignment traps for little-endian
+ddmin471 min 1.0 0.1 -> 0.1
+ddmin472 min 0.1 1.0 -> 0.1
+ddmin473 min 10.0 0.1 -> 0.1
+ddmin474 min 0.1 10.0 -> 0.1
+ddmin475 min 100 1.0 -> 1.0
+ddmin476 min 1.0 100 -> 1.0
+ddmin477 min 1000 10.0 -> 10.0
+ddmin478 min 10.0 1000 -> 10.0
+ddmin479 min 10000 100.0 -> 100.0
+ddmin480 min 100.0 10000 -> 100.0
+ddmin481 min 100000 1000.0 -> 1000.0
+ddmin482 min 1000.0 100000 -> 1000.0
+ddmin483 min 1000000 10000.0 -> 10000.0
+ddmin484 min 10000.0 1000000 -> 10000.0
+
+-- subnormals
+ddmin510 min 1.00E-383 0 -> 0
+ddmin511 min 0.1E-383 0 -> 0
+ddmin512 min 0.10E-383 0 -> 0
+ddmin513 min 0.100E-383 0 -> 0
+ddmin514 min 0.01E-383 0 -> 0
+ddmin515 min 0.999E-383 0 -> 0
+ddmin516 min 0.099E-383 0 -> 0
+ddmin517 min 0.009E-383 0 -> 0
+ddmin518 min 0.001E-383 0 -> 0
+ddmin519 min 0.0009E-383 0 -> 0
+ddmin520 min 0.0001E-383 0 -> 0
+
+ddmin530 min -1.00E-383 0 -> -1.00E-383
+ddmin531 min -0.1E-383 0 -> -1E-384 Subnormal
+ddmin532 min -0.10E-383 0 -> -1.0E-384 Subnormal
+ddmin533 min -0.100E-383 0 -> -1.00E-384 Subnormal
+ddmin534 min -0.01E-383 0 -> -1E-385 Subnormal
+ddmin535 min -0.999E-383 0 -> -9.99E-384 Subnormal
+ddmin536 min -0.099E-383 0 -> -9.9E-385 Subnormal
+ddmin537 min -0.009E-383 0 -> -9E-386 Subnormal
+ddmin538 min -0.001E-383 0 -> -1E-386 Subnormal
+ddmin539 min -0.0009E-383 0 -> -9E-387 Subnormal
+ddmin540 min -0.0001E-383 0 -> -1E-387 Subnormal
+
+
+-- Null tests
+ddmin900 min 10 # -> NaN Invalid_operation
+ddmin901 min # 10 -> NaN Invalid_operation
diff --git a/Lib/test/decimaltestdata/ddMinMag.decTest b/Lib/test/decimaltestdata/ddMinMag.decTest
new file mode 100644
index 0000000..cc5ccec0
--- /dev/null
+++ b/Lib/test/decimaltestdata/ddMinMag.decTest
@@ -0,0 +1,293 @@
+------------------------------------------------------------------------
+-- ddMinMag.decTest -- decDouble minnummag --
+-- Copyright (c) IBM Corporation, 1981, 2007. All rights reserved. --
+------------------------------------------------------------------------
+-- Please see the document "General Decimal Arithmetic Testcases" --
+-- at http://www2.hursley.ibm.com/decimal for the description of --
+-- these testcases. --
+-- --
+-- These testcases are experimental ('beta' versions), and they --
+-- may contain errors. They are offered on an as-is basis. In --
+-- particular, achieving the same results as the tests here is not --
+-- a guarantee that an implementation complies with any Standard --
+-- or specification. The tests are not exhaustive. --
+-- --
+-- Please send comments, suggestions, and corrections to the author: --
+-- Mike Cowlishaw, IBM Fellow --
+-- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK --
+-- mfc@uk.ibm.com --
+------------------------------------------------------------------------
+version: 2.56
+
+-- we assume that base comparison is tested in compare.decTest, so
+-- these mainly cover special cases and rounding
+precision: 16
+maxExponent: 384
+minExponent: -383
+extended: 1
+clamp: 1
+rounding: half_even
+
+-- sanity checks
+ddmng001 minmag -2 -2 -> -2
+ddmng002 minmag -2 -1 -> -1
+ddmng003 minmag -2 0 -> 0
+ddmng004 minmag -2 1 -> 1
+ddmng005 minmag -2 2 -> -2
+ddmng006 minmag -1 -2 -> -1
+ddmng007 minmag -1 -1 -> -1
+ddmng008 minmag -1 0 -> 0
+ddmng009 minmag -1 1 -> -1
+ddmng010 minmag -1 2 -> -1
+ddmng011 minmag 0 -2 -> 0
+ddmng012 minmag 0 -1 -> 0
+ddmng013 minmag 0 0 -> 0
+ddmng014 minmag 0 1 -> 0
+ddmng015 minmag 0 2 -> 0
+ddmng016 minmag 1 -2 -> 1
+ddmng017 minmag 1 -1 -> -1
+ddmng018 minmag 1 0 -> 0
+ddmng019 minmag 1 1 -> 1
+ddmng020 minmag 1 2 -> 1
+ddmng021 minmag 2 -2 -> -2
+ddmng022 minmag 2 -1 -> -1
+ddmng023 minmag 2 0 -> 0
+ddmng025 minmag 2 1 -> 1
+ddmng026 minmag 2 2 -> 2
+
+-- extended zeros
+ddmng030 minmag 0 0 -> 0
+ddmng031 minmag 0 -0 -> -0
+ddmng032 minmag 0 -0.0 -> -0.0
+ddmng033 minmag 0 0.0 -> 0.0
+ddmng034 minmag -0 0 -> -0
+ddmng035 minmag -0 -0 -> -0
+ddmng036 minmag -0 -0.0 -> -0
+ddmng037 minmag -0 0.0 -> -0
+ddmng038 minmag 0.0 0 -> 0.0
+ddmng039 minmag 0.0 -0 -> -0
+ddmng040 minmag 0.0 -0.0 -> -0.0
+ddmng041 minmag 0.0 0.0 -> 0.0
+ddmng042 minmag -0.0 0 -> -0.0
+ddmng043 minmag -0.0 -0 -> -0
+ddmng044 minmag -0.0 -0.0 -> -0.0
+ddmng045 minmag -0.0 0.0 -> -0.0
+
+ddmng046 minmag 0E1 -0E1 -> -0E+1
+ddmng047 minmag -0E1 0E2 -> -0E+1
+ddmng048 minmag 0E2 0E1 -> 0E+1
+ddmng049 minmag 0E1 0E2 -> 0E+1
+ddmng050 minmag -0E3 -0E2 -> -0E+3
+ddmng051 minmag -0E2 -0E3 -> -0E+3
+
+-- Specials
+ddmng090 minmag Inf -Inf -> -Infinity
+ddmng091 minmag Inf -1000 -> -1000
+ddmng092 minmag Inf -1 -> -1
+ddmng093 minmag Inf -0 -> -0
+ddmng094 minmag Inf 0 -> 0
+ddmng095 minmag Inf 1 -> 1
+ddmng096 minmag Inf 1000 -> 1000
+ddmng097 minmag Inf Inf -> Infinity
+ddmng098 minmag -1000 Inf -> -1000
+ddmng099 minmag -Inf Inf -> -Infinity
+ddmng100 minmag -1 Inf -> -1
+ddmng101 minmag -0 Inf -> -0
+ddmng102 minmag 0 Inf -> 0
+ddmng103 minmag 1 Inf -> 1
+ddmng104 minmag 1000 Inf -> 1000
+ddmng105 minmag Inf Inf -> Infinity
+
+ddmng120 minmag -Inf -Inf -> -Infinity
+ddmng121 minmag -Inf -1000 -> -1000
+ddmng122 minmag -Inf -1 -> -1
+ddmng123 minmag -Inf -0 -> -0
+ddmng124 minmag -Inf 0 -> 0
+ddmng125 minmag -Inf 1 -> 1
+ddmng126 minmag -Inf 1000 -> 1000
+ddmng127 minmag -Inf Inf -> -Infinity
+ddmng128 minmag -Inf -Inf -> -Infinity
+ddmng129 minmag -1000 -Inf -> -1000
+ddmng130 minmag -1 -Inf -> -1
+ddmng131 minmag -0 -Inf -> -0
+ddmng132 minmag 0 -Inf -> 0
+ddmng133 minmag 1 -Inf -> 1
+ddmng134 minmag 1000 -Inf -> 1000
+ddmng135 minmag Inf -Inf -> -Infinity
+
+-- 2004.08.02 754r chooses number over NaN in mixed cases
+ddmng141 minmag NaN -Inf -> -Infinity
+ddmng142 minmag NaN -1000 -> -1000
+ddmng143 minmag NaN -1 -> -1
+ddmng144 minmag NaN -0 -> -0
+ddmng145 minmag NaN 0 -> 0
+ddmng146 minmag NaN 1 -> 1
+ddmng147 minmag NaN 1000 -> 1000
+ddmng148 minmag NaN Inf -> Infinity
+ddmng149 minmag NaN NaN -> NaN
+ddmng150 minmag -Inf NaN -> -Infinity
+ddmng151 minmag -1000 NaN -> -1000
+ddmng152 minmag -1 -NaN -> -1
+ddmng153 minmag -0 NaN -> -0
+ddmng154 minmag 0 -NaN -> 0
+ddmng155 minmag 1 NaN -> 1
+ddmng156 minmag 1000 NaN -> 1000
+ddmng157 minmag Inf NaN -> Infinity
+
+ddmng161 minmag sNaN -Inf -> NaN Invalid_operation
+ddmng162 minmag sNaN -1000 -> NaN Invalid_operation
+ddmng163 minmag sNaN -1 -> NaN Invalid_operation
+ddmng164 minmag sNaN -0 -> NaN Invalid_operation
+ddmng165 minmag -sNaN 0 -> -NaN Invalid_operation
+ddmng166 minmag -sNaN 1 -> -NaN Invalid_operation
+ddmng167 minmag sNaN 1000 -> NaN Invalid_operation
+ddmng168 minmag sNaN NaN -> NaN Invalid_operation
+ddmng169 minmag sNaN sNaN -> NaN Invalid_operation
+ddmng170 minmag NaN sNaN -> NaN Invalid_operation
+ddmng171 minmag -Inf sNaN -> NaN Invalid_operation
+ddmng172 minmag -1000 sNaN -> NaN Invalid_operation
+ddmng173 minmag -1 sNaN -> NaN Invalid_operation
+ddmng174 minmag -0 sNaN -> NaN Invalid_operation
+ddmng175 minmag 0 sNaN -> NaN Invalid_operation
+ddmng176 minmag 1 sNaN -> NaN Invalid_operation
+ddmng177 minmag 1000 sNaN -> NaN Invalid_operation
+ddmng178 minmag Inf sNaN -> NaN Invalid_operation
+ddmng179 minmag NaN sNaN -> NaN Invalid_operation
+
+-- propagating NaNs
+ddmng181 minmag NaN9 -Inf -> -Infinity
+ddmng182 minmag -NaN8 9990 -> 9990
+ddmng183 minmag NaN71 Inf -> Infinity
+
+ddmng184 minmag NaN1 NaN54 -> NaN1
+ddmng185 minmag NaN22 -NaN53 -> NaN22
+ddmng186 minmag -NaN3 NaN6 -> -NaN3
+ddmng187 minmag -NaN44 NaN7 -> -NaN44
+
+ddmng188 minmag -Inf NaN41 -> -Infinity
+ddmng189 minmag -9999 -NaN33 -> -9999
+ddmng190 minmag Inf NaN2 -> Infinity
+
+ddmng191 minmag sNaN99 -Inf -> NaN99 Invalid_operation
+ddmng192 minmag sNaN98 -11 -> NaN98 Invalid_operation
+ddmng193 minmag -sNaN97 NaN8 -> -NaN97 Invalid_operation
+ddmng194 minmag sNaN69 sNaN94 -> NaN69 Invalid_operation
+ddmng195 minmag NaN95 sNaN93 -> NaN93 Invalid_operation
+ddmng196 minmag -Inf sNaN92 -> NaN92 Invalid_operation
+ddmng197 minmag 088 sNaN91 -> NaN91 Invalid_operation
+ddmng198 minmag Inf -sNaN90 -> -NaN90 Invalid_operation
+ddmng199 minmag NaN sNaN86 -> NaN86 Invalid_operation
+
+-- old rounding checks
+ddmng221 minmag -12345678000 1 -> 1
+ddmng222 minmag 1 -12345678000 -> 1
+ddmng223 minmag -1234567800 1 -> 1
+ddmng224 minmag 1 -1234567800 -> 1
+ddmng225 minmag -1234567890 1 -> 1
+ddmng226 minmag 1 -1234567890 -> 1
+ddmng227 minmag -1234567891 1 -> 1
+ddmng228 minmag 1 -1234567891 -> 1
+ddmng229 minmag -12345678901 1 -> 1
+ddmng230 minmag 1 -12345678901 -> 1
+ddmng231 minmag -1234567896 1 -> 1
+ddmng232 minmag 1 -1234567896 -> 1
+ddmng233 minmag 1234567891 1 -> 1
+ddmng234 minmag 1 1234567891 -> 1
+ddmng235 minmag 12345678901 1 -> 1
+ddmng236 minmag 1 12345678901 -> 1
+ddmng237 minmag 1234567896 1 -> 1
+ddmng238 minmag 1 1234567896 -> 1
+
+-- from examples
+ddmng280 minmag '3' '2' -> '2'
+ddmng281 minmag '-10' '3' -> '3'
+ddmng282 minmag '1.0' '1' -> '1.0'
+ddmng283 minmag '1' '1.0' -> '1.0'
+ddmng284 minmag '7' 'NaN' -> '7'
+
+-- expanded list from min/max 754r purple prose
+-- [explicit tests for exponent ordering]
+ddmng401 minmag Inf 1.1 -> 1.1
+ddmng402 minmag 1.1 1 -> 1
+ddmng403 minmag 1 1.0 -> 1.0
+ddmng404 minmag 1.0 0.1 -> 0.1
+ddmng405 minmag 0.1 0.10 -> 0.10
+ddmng406 minmag 0.10 0.100 -> 0.100
+ddmng407 minmag 0.10 0 -> 0
+ddmng408 minmag 0 0.0 -> 0.0
+ddmng409 minmag 0.0 -0 -> -0
+ddmng410 minmag 0.0 -0.0 -> -0.0
+ddmng411 minmag 0.00 -0.0 -> -0.0
+ddmng412 minmag 0.0 -0.00 -> -0.00
+ddmng413 minmag 0 -0.0 -> -0.0
+ddmng414 minmag 0 -0 -> -0
+ddmng415 minmag -0.0 -0 -> -0
+ddmng416 minmag -0 -0.100 -> -0
+ddmng417 minmag -0.100 -0.10 -> -0.10
+ddmng418 minmag -0.10 -0.1 -> -0.1
+ddmng419 minmag -0.1 -1.0 -> -0.1
+ddmng420 minmag -1.0 -1 -> -1
+ddmng421 minmag -1 -1.1 -> -1
+ddmng423 minmag -1.1 -Inf -> -1.1
+-- same with operands reversed
+ddmng431 minmag 1.1 Inf -> 1.1
+ddmng432 minmag 1 1.1 -> 1
+ddmng433 minmag 1.0 1 -> 1.0
+ddmng434 minmag 0.1 1.0 -> 0.1
+ddmng435 minmag 0.10 0.1 -> 0.10
+ddmng436 minmag 0.100 0.10 -> 0.100
+ddmng437 minmag 0 0.10 -> 0
+ddmng438 minmag 0.0 0 -> 0.0
+ddmng439 minmag -0 0.0 -> -0
+ddmng440 minmag -0.0 0.0 -> -0.0
+ddmng441 minmag -0.0 0.00 -> -0.0
+ddmng442 minmag -0.00 0.0 -> -0.00
+ddmng443 minmag -0.0 0 -> -0.0
+ddmng444 minmag -0 0 -> -0
+ddmng445 minmag -0 -0.0 -> -0
+ddmng446 minmag -0.100 -0 -> -0
+ddmng447 minmag -0.10 -0.100 -> -0.10
+ddmng448 minmag -0.1 -0.10 -> -0.1
+ddmng449 minmag -1.0 -0.1 -> -0.1
+ddmng450 minmag -1 -1.0 -> -1
+ddmng451 minmag -1.1 -1 -> -1
+ddmng453 minmag -Inf -1.1 -> -1.1
+-- largies
+ddmng460 minmag 1000 1E+3 -> 1000
+ddmng461 minmag 1E+3 1000 -> 1000
+ddmng462 minmag 1000 -1E+3 -> -1E+3
+ddmng463 minmag 1E+3 -384 -> -384
+ddmng464 minmag -384 1E+3 -> -384
+ddmng465 minmag -1E+3 1000 -> -1E+3
+ddmng466 minmag -384 -1E+3 -> -384
+ddmng467 minmag -1E+3 -384 -> -384
+
+-- subnormals
+ddmng510 minmag 1.00E-383 0 -> 0
+ddmng511 minmag 0.1E-383 0 -> 0
+ddmng512 minmag 0.10E-383 0 -> 0
+ddmng513 minmag 0.100E-383 0 -> 0
+ddmng514 minmag 0.01E-383 0 -> 0
+ddmng515 minmag 0.999E-383 0 -> 0
+ddmng516 minmag 0.099E-383 0 -> 0
+ddmng517 minmag 0.009E-383 0 -> 0
+ddmng518 minmag 0.001E-383 0 -> 0
+ddmng519 minmag 0.0009E-383 0 -> 0
+ddmng520 minmag 0.0001E-383 0 -> 0
+
+ddmng530 minmag -1.00E-383 0 -> 0
+ddmng531 minmag -0.1E-383 0 -> 0
+ddmng532 minmag -0.10E-383 0 -> 0
+ddmng533 minmag -0.100E-383 0 -> 0
+ddmng534 minmag -0.01E-383 0 -> 0
+ddmng535 minmag -0.999E-383 0 -> 0
+ddmng536 minmag -0.099E-383 0 -> 0
+ddmng537 minmag -0.009E-383 0 -> 0
+ddmng538 minmag -0.001E-383 0 -> 0
+ddmng539 minmag -0.0009E-383 0 -> 0
+ddmng540 minmag -0.0001E-383 0 -> 0
+
+
+-- Null tests
+ddmng900 minmag 10 # -> NaN Invalid_operation
+ddmng901 minmag # 10 -> NaN Invalid_operation
diff --git a/Lib/test/decimaltestdata/ddMinus.decTest b/Lib/test/decimaltestdata/ddMinus.decTest
new file mode 100644
index 0000000..9fe196b
--- /dev/null
+++ b/Lib/test/decimaltestdata/ddMinus.decTest
@@ -0,0 +1,88 @@
+------------------------------------------------------------------------
+-- ddMinus.decTest -- decDouble 0-x --
+-- Copyright (c) IBM Corporation, 1981, 2007. All rights reserved. --
+------------------------------------------------------------------------
+-- Please see the document "General Decimal Arithmetic Testcases" --
+-- at http://www2.hursley.ibm.com/decimal for the description of --
+-- these testcases. --
+-- --
+-- These testcases are experimental ('beta' versions), and they --
+-- may contain errors. They are offered on an as-is basis. In --
+-- particular, achieving the same results as the tests here is not --
+-- a guarantee that an implementation complies with any Standard --
+-- or specification. The tests are not exhaustive. --
+-- --
+-- Please send comments, suggestions, and corrections to the author: --
+-- Mike Cowlishaw, IBM Fellow --
+-- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK --
+-- mfc@uk.ibm.com --
+------------------------------------------------------------------------
+version: 2.56
+
+-- All operands and results are decDoubles.
+precision: 16
+maxExponent: 384
+minExponent: -383
+extended: 1
+clamp: 1
+rounding: half_even
+
+-- Sanity check
+ddmns001 minus +7.50 -> -7.50
+
+-- Infinities
+ddmns011 minus Infinity -> -Infinity
+ddmns012 minus -Infinity -> Infinity
+
+-- NaNs, 0 payload
+ddmns021 minus NaN -> NaN
+ddmns022 minus -NaN -> -NaN
+ddmns023 minus sNaN -> NaN Invalid_operation
+ddmns024 minus -sNaN -> -NaN Invalid_operation
+
+-- NaNs, non-0 payload
+ddmns031 minus NaN13 -> NaN13
+ddmns032 minus -NaN13 -> -NaN13
+ddmns033 minus sNaN13 -> NaN13 Invalid_operation
+ddmns034 minus -sNaN13 -> -NaN13 Invalid_operation
+ddmns035 minus NaN70 -> NaN70
+ddmns036 minus -NaN70 -> -NaN70
+ddmns037 minus sNaN101 -> NaN101 Invalid_operation
+ddmns038 minus -sNaN101 -> -NaN101 Invalid_operation
+
+-- finites
+ddmns101 minus 7 -> -7
+ddmns102 minus -7 -> 7
+ddmns103 minus 75 -> -75
+ddmns104 minus -75 -> 75
+ddmns105 minus 7.50 -> -7.50
+ddmns106 minus -7.50 -> 7.50
+ddmns107 minus 7.500 -> -7.500
+ddmns108 minus -7.500 -> 7.500
+
+-- zeros
+ddmns111 minus 0 -> 0
+ddmns112 minus -0 -> 0
+ddmns113 minus 0E+4 -> 0E+4
+ddmns114 minus -0E+4 -> 0E+4
+ddmns115 minus 0.0000 -> 0.0000
+ddmns116 minus -0.0000 -> 0.0000
+ddmns117 minus 0E-141 -> 0E-141
+ddmns118 minus -0E-141 -> 0E-141
+
+-- full coefficients, alternating bits
+ddmns121 minus 2682682682682682 -> -2682682682682682
+ddmns122 minus -2682682682682682 -> 2682682682682682
+ddmns123 minus 1341341341341341 -> -1341341341341341
+ddmns124 minus -1341341341341341 -> 1341341341341341
+
+-- Nmax, Nmin, Ntiny
+ddmns131 minus 9.999999999999999E+384 -> -9.999999999999999E+384
+ddmns132 minus 1E-383 -> -1E-383
+ddmns133 minus 1.000000000000000E-383 -> -1.000000000000000E-383
+ddmns134 minus 1E-398 -> -1E-398 Subnormal
+
+ddmns135 minus -1E-398 -> 1E-398 Subnormal
+ddmns136 minus -1.000000000000000E-383 -> 1.000000000000000E-383
+ddmns137 minus -1E-383 -> 1E-383
+ddmns138 minus -9.999999999999999E+384 -> 9.999999999999999E+384
diff --git a/Lib/test/decimaltestdata/ddMultiply.decTest b/Lib/test/decimaltestdata/ddMultiply.decTest
new file mode 100644
index 0000000..01e0ffe
--- /dev/null
+++ b/Lib/test/decimaltestdata/ddMultiply.decTest
@@ -0,0 +1,463 @@
+------------------------------------------------------------------------
+-- ddMultiply.decTest -- decDouble multiplication --
+-- Copyright (c) IBM Corporation, 1981, 2007. All rights reserved. --
+------------------------------------------------------------------------
+-- Please see the document "General Decimal Arithmetic Testcases" --
+-- at http://www2.hursley.ibm.com/decimal for the description of --
+-- these testcases. --
+-- --
+-- These testcases are experimental ('beta' versions), and they --
+-- may contain errors. They are offered on an as-is basis. In --
+-- particular, achieving the same results as the tests here is not --
+-- a guarantee that an implementation complies with any Standard --
+-- or specification. The tests are not exhaustive. --
+-- --
+-- Please send comments, suggestions, and corrections to the author: --
+-- Mike Cowlishaw, IBM Fellow --
+-- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK --
+-- mfc@uk.ibm.com --
+------------------------------------------------------------------------
+version: 2.56
+
+-- This set of tests are for decDoubles only; all arguments are
+-- representable in a decDouble
+precision: 16
+maxExponent: 384
+minExponent: -383
+extended: 1
+clamp: 1
+rounding: half_even
+
+-- sanity checks
+ddmul000 multiply 2 2 -> 4
+ddmul001 multiply 2 3 -> 6
+ddmul002 multiply 5 1 -> 5
+ddmul003 multiply 5 2 -> 10
+ddmul004 multiply 1.20 2 -> 2.40
+ddmul005 multiply 1.20 0 -> 0.00
+ddmul006 multiply 1.20 -2 -> -2.40
+ddmul007 multiply -1.20 2 -> -2.40
+ddmul008 multiply -1.20 0 -> -0.00
+ddmul009 multiply -1.20 -2 -> 2.40
+ddmul010 multiply 5.09 7.1 -> 36.139
+ddmul011 multiply 2.5 4 -> 10.0
+ddmul012 multiply 2.50 4 -> 10.00
+ddmul013 multiply 1.23456789 1.00000000 -> 1.234567890000000 Rounded
+ddmul015 multiply 2.50 4 -> 10.00
+ddmul016 multiply 9.999999999 9.999999999 -> 99.99999998000000 Inexact Rounded
+ddmul017 multiply 9.999999999 -9.999999999 -> -99.99999998000000 Inexact Rounded
+ddmul018 multiply -9.999999999 9.999999999 -> -99.99999998000000 Inexact Rounded
+ddmul019 multiply -9.999999999 -9.999999999 -> 99.99999998000000 Inexact Rounded
+
+-- zeros, etc.
+ddmul021 multiply 0 0 -> 0
+ddmul022 multiply 0 -0 -> -0
+ddmul023 multiply -0 0 -> -0
+ddmul024 multiply -0 -0 -> 0
+ddmul025 multiply -0.0 -0.0 -> 0.00
+ddmul026 multiply -0.0 -0.0 -> 0.00
+ddmul027 multiply -0.0 -0.0 -> 0.00
+ddmul028 multiply -0.0 -0.0 -> 0.00
+ddmul030 multiply 5.00 1E-3 -> 0.00500
+ddmul031 multiply 00.00 0.000 -> 0.00000
+ddmul032 multiply 00.00 0E-3 -> 0.00000 -- rhs is 0
+ddmul033 multiply 0E-3 00.00 -> 0.00000 -- lhs is 0
+ddmul034 multiply -5.00 1E-3 -> -0.00500
+ddmul035 multiply -00.00 0.000 -> -0.00000
+ddmul036 multiply -00.00 0E-3 -> -0.00000 -- rhs is 0
+ddmul037 multiply -0E-3 00.00 -> -0.00000 -- lhs is 0
+ddmul038 multiply 5.00 -1E-3 -> -0.00500
+ddmul039 multiply 00.00 -0.000 -> -0.00000
+ddmul040 multiply 00.00 -0E-3 -> -0.00000 -- rhs is 0
+ddmul041 multiply 0E-3 -00.00 -> -0.00000 -- lhs is 0
+ddmul042 multiply -5.00 -1E-3 -> 0.00500
+ddmul043 multiply -00.00 -0.000 -> 0.00000
+ddmul044 multiply -00.00 -0E-3 -> 0.00000 -- rhs is 0
+ddmul045 multiply -0E-3 -00.00 -> 0.00000 -- lhs is 0
+
+-- examples from decarith
+ddmul050 multiply 1.20 3 -> 3.60
+ddmul051 multiply 7 3 -> 21
+ddmul052 multiply 0.9 0.8 -> 0.72
+ddmul053 multiply 0.9 -0 -> -0.0
+ddmul054 multiply 654321 654321 -> 428135971041
+
+ddmul060 multiply 123.45 1e7 -> 1.2345E+9
+ddmul061 multiply 123.45 1e8 -> 1.2345E+10
+ddmul062 multiply 123.45 1e+9 -> 1.2345E+11
+ddmul063 multiply 123.45 1e10 -> 1.2345E+12
+ddmul064 multiply 123.45 1e11 -> 1.2345E+13
+ddmul065 multiply 123.45 1e12 -> 1.2345E+14
+ddmul066 multiply 123.45 1e13 -> 1.2345E+15
+
+
+-- test some intermediate lengths
+-- 1234567890123456
+ddmul080 multiply 0.1 1230123456456789 -> 123012345645678.9
+ddmul084 multiply 0.1 1230123456456789 -> 123012345645678.9
+ddmul090 multiply 1230123456456789 0.1 -> 123012345645678.9
+ddmul094 multiply 1230123456456789 0.1 -> 123012345645678.9
+
+-- test some more edge cases and carries
+ddmul101 multiply 9 9 -> 81
+ddmul102 multiply 9 90 -> 810
+ddmul103 multiply 9 900 -> 8100
+ddmul104 multiply 9 9000 -> 81000
+ddmul105 multiply 9 90000 -> 810000
+ddmul106 multiply 9 900000 -> 8100000
+ddmul107 multiply 9 9000000 -> 81000000
+ddmul108 multiply 9 90000000 -> 810000000
+ddmul109 multiply 9 900000000 -> 8100000000
+ddmul110 multiply 9 9000000000 -> 81000000000
+ddmul111 multiply 9 90000000000 -> 810000000000
+ddmul112 multiply 9 900000000000 -> 8100000000000
+ddmul113 multiply 9 9000000000000 -> 81000000000000
+ddmul114 multiply 9 90000000000000 -> 810000000000000
+ddmul115 multiply 9 900000000000000 -> 8100000000000000
+--ddmul116 multiply 9 9000000000000000 -> 81000000000000000
+--ddmul117 multiply 9 90000000000000000 -> 810000000000000000
+--ddmul118 multiply 9 900000000000000000 -> 8100000000000000000
+--ddmul119 multiply 9 9000000000000000000 -> 81000000000000000000
+--ddmul120 multiply 9 90000000000000000000 -> 810000000000000000000
+--ddmul121 multiply 9 900000000000000000000 -> 8100000000000000000000
+--ddmul122 multiply 9 9000000000000000000000 -> 81000000000000000000000
+--ddmul123 multiply 9 90000000000000000000000 -> 810000000000000000000000
+-- test some more edge cases without carries
+ddmul131 multiply 3 3 -> 9
+ddmul132 multiply 3 30 -> 90
+ddmul133 multiply 3 300 -> 900
+ddmul134 multiply 3 3000 -> 9000
+ddmul135 multiply 3 30000 -> 90000
+ddmul136 multiply 3 300000 -> 900000
+ddmul137 multiply 3 3000000 -> 9000000
+ddmul138 multiply 3 30000000 -> 90000000
+ddmul139 multiply 3 300000000 -> 900000000
+ddmul140 multiply 3 3000000000 -> 9000000000
+ddmul141 multiply 3 30000000000 -> 90000000000
+ddmul142 multiply 3 300000000000 -> 900000000000
+ddmul143 multiply 3 3000000000000 -> 9000000000000
+ddmul144 multiply 3 30000000000000 -> 90000000000000
+ddmul145 multiply 3 300000000000000 -> 900000000000000
+
+-- test some edge cases with exact rounding
+ddmul301 multiply 9 9 -> 81
+ddmul302 multiply 9 90 -> 810
+ddmul303 multiply 9 900 -> 8100
+ddmul304 multiply 9 9000 -> 81000
+ddmul305 multiply 9 90000 -> 810000
+ddmul306 multiply 9 900000 -> 8100000
+ddmul307 multiply 9 9000000 -> 81000000
+ddmul308 multiply 9 90000000 -> 810000000
+ddmul309 multiply 9 900000000 -> 8100000000
+ddmul310 multiply 9 9000000000 -> 81000000000
+ddmul311 multiply 9 90000000000 -> 810000000000
+ddmul312 multiply 9 900000000000 -> 8100000000000
+ddmul313 multiply 9 9000000000000 -> 81000000000000
+ddmul314 multiply 9 90000000000000 -> 810000000000000
+ddmul315 multiply 9 900000000000000 -> 8100000000000000
+ddmul316 multiply 9 9000000000000000 -> 8.100000000000000E+16 Rounded
+ddmul317 multiply 90 9000000000000000 -> 8.100000000000000E+17 Rounded
+ddmul318 multiply 900 9000000000000000 -> 8.100000000000000E+18 Rounded
+ddmul319 multiply 9000 9000000000000000 -> 8.100000000000000E+19 Rounded
+ddmul320 multiply 90000 9000000000000000 -> 8.100000000000000E+20 Rounded
+ddmul321 multiply 900000 9000000000000000 -> 8.100000000000000E+21 Rounded
+ddmul322 multiply 9000000 9000000000000000 -> 8.100000000000000E+22 Rounded
+ddmul323 multiply 90000000 9000000000000000 -> 8.100000000000000E+23 Rounded
+
+-- tryzeros cases
+ddmul504 multiply 0E-260 1000E-260 -> 0E-398 Clamped
+ddmul505 multiply 100E+260 0E+260 -> 0E+369 Clamped
+
+-- mixed with zeros
+ddmul541 multiply 0 -1 -> -0
+ddmul542 multiply -0 -1 -> 0
+ddmul543 multiply 0 1 -> 0
+ddmul544 multiply -0 1 -> -0
+ddmul545 multiply -1 0 -> -0
+ddmul546 multiply -1 -0 -> 0
+ddmul547 multiply 1 0 -> 0
+ddmul548 multiply 1 -0 -> -0
+
+ddmul551 multiply 0.0 -1 -> -0.0
+ddmul552 multiply -0.0 -1 -> 0.0
+ddmul553 multiply 0.0 1 -> 0.0
+ddmul554 multiply -0.0 1 -> -0.0
+ddmul555 multiply -1.0 0 -> -0.0
+ddmul556 multiply -1.0 -0 -> 0.0
+ddmul557 multiply 1.0 0 -> 0.0
+ddmul558 multiply 1.0 -0 -> -0.0
+
+ddmul561 multiply 0 -1.0 -> -0.0
+ddmul562 multiply -0 -1.0 -> 0.0
+ddmul563 multiply 0 1.0 -> 0.0
+ddmul564 multiply -0 1.0 -> -0.0
+ddmul565 multiply -1 0.0 -> -0.0
+ddmul566 multiply -1 -0.0 -> 0.0
+ddmul567 multiply 1 0.0 -> 0.0
+ddmul568 multiply 1 -0.0 -> -0.0
+
+ddmul571 multiply 0.0 -1.0 -> -0.00
+ddmul572 multiply -0.0 -1.0 -> 0.00
+ddmul573 multiply 0.0 1.0 -> 0.00
+ddmul574 multiply -0.0 1.0 -> -0.00
+ddmul575 multiply -1.0 0.0 -> -0.00
+ddmul576 multiply -1.0 -0.0 -> 0.00
+ddmul577 multiply 1.0 0.0 -> 0.00
+ddmul578 multiply 1.0 -0.0 -> -0.00
+
+
+-- Specials
+ddmul580 multiply Inf -Inf -> -Infinity
+ddmul581 multiply Inf -1000 -> -Infinity
+ddmul582 multiply Inf -1 -> -Infinity
+ddmul583 multiply Inf -0 -> NaN Invalid_operation
+ddmul584 multiply Inf 0 -> NaN Invalid_operation
+ddmul585 multiply Inf 1 -> Infinity
+ddmul586 multiply Inf 1000 -> Infinity
+ddmul587 multiply Inf Inf -> Infinity
+ddmul588 multiply -1000 Inf -> -Infinity
+ddmul589 multiply -Inf Inf -> -Infinity
+ddmul590 multiply -1 Inf -> -Infinity
+ddmul591 multiply -0 Inf -> NaN Invalid_operation
+ddmul592 multiply 0 Inf -> NaN Invalid_operation
+ddmul593 multiply 1 Inf -> Infinity
+ddmul594 multiply 1000 Inf -> Infinity
+ddmul595 multiply Inf Inf -> Infinity
+
+ddmul600 multiply -Inf -Inf -> Infinity
+ddmul601 multiply -Inf -1000 -> Infinity
+ddmul602 multiply -Inf -1 -> Infinity
+ddmul603 multiply -Inf -0 -> NaN Invalid_operation
+ddmul604 multiply -Inf 0 -> NaN Invalid_operation
+ddmul605 multiply -Inf 1 -> -Infinity
+ddmul606 multiply -Inf 1000 -> -Infinity
+ddmul607 multiply -Inf Inf -> -Infinity
+ddmul608 multiply -1000 Inf -> -Infinity
+ddmul609 multiply -Inf -Inf -> Infinity
+ddmul610 multiply -1 -Inf -> Infinity
+ddmul611 multiply -0 -Inf -> NaN Invalid_operation
+ddmul612 multiply 0 -Inf -> NaN Invalid_operation
+ddmul613 multiply 1 -Inf -> -Infinity
+ddmul614 multiply 1000 -Inf -> -Infinity
+ddmul615 multiply Inf -Inf -> -Infinity
+
+ddmul621 multiply NaN -Inf -> NaN
+ddmul622 multiply NaN -1000 -> NaN
+ddmul623 multiply NaN -1 -> NaN
+ddmul624 multiply NaN -0 -> NaN
+ddmul625 multiply NaN 0 -> NaN
+ddmul626 multiply NaN 1 -> NaN
+ddmul627 multiply NaN 1000 -> NaN
+ddmul628 multiply NaN Inf -> NaN
+ddmul629 multiply NaN NaN -> NaN
+ddmul630 multiply -Inf NaN -> NaN
+ddmul631 multiply -1000 NaN -> NaN
+ddmul632 multiply -1 NaN -> NaN
+ddmul633 multiply -0 NaN -> NaN
+ddmul634 multiply 0 NaN -> NaN
+ddmul635 multiply 1 NaN -> NaN
+ddmul636 multiply 1000 NaN -> NaN
+ddmul637 multiply Inf NaN -> NaN
+
+ddmul641 multiply sNaN -Inf -> NaN Invalid_operation
+ddmul642 multiply sNaN -1000 -> NaN Invalid_operation
+ddmul643 multiply sNaN -1 -> NaN Invalid_operation
+ddmul644 multiply sNaN -0 -> NaN Invalid_operation
+ddmul645 multiply sNaN 0 -> NaN Invalid_operation
+ddmul646 multiply sNaN 1 -> NaN Invalid_operation
+ddmul647 multiply sNaN 1000 -> NaN Invalid_operation
+ddmul648 multiply sNaN NaN -> NaN Invalid_operation
+ddmul649 multiply sNaN sNaN -> NaN Invalid_operation
+ddmul650 multiply NaN sNaN -> NaN Invalid_operation
+ddmul651 multiply -Inf sNaN -> NaN Invalid_operation
+ddmul652 multiply -1000 sNaN -> NaN Invalid_operation
+ddmul653 multiply -1 sNaN -> NaN Invalid_operation
+ddmul654 multiply -0 sNaN -> NaN Invalid_operation
+ddmul655 multiply 0 sNaN -> NaN Invalid_operation
+ddmul656 multiply 1 sNaN -> NaN Invalid_operation
+ddmul657 multiply 1000 sNaN -> NaN Invalid_operation
+ddmul658 multiply Inf sNaN -> NaN Invalid_operation
+ddmul659 multiply NaN sNaN -> NaN Invalid_operation
+
+-- propagating NaNs
+ddmul661 multiply NaN9 -Inf -> NaN9
+ddmul662 multiply NaN8 999 -> NaN8
+ddmul663 multiply NaN71 Inf -> NaN71
+ddmul664 multiply NaN6 NaN5 -> NaN6
+ddmul665 multiply -Inf NaN4 -> NaN4
+ddmul666 multiply -999 NaN33 -> NaN33
+ddmul667 multiply Inf NaN2 -> NaN2
+
+ddmul671 multiply sNaN99 -Inf -> NaN99 Invalid_operation
+ddmul672 multiply sNaN98 -11 -> NaN98 Invalid_operation
+ddmul673 multiply sNaN97 NaN -> NaN97 Invalid_operation
+ddmul674 multiply sNaN16 sNaN94 -> NaN16 Invalid_operation
+ddmul675 multiply NaN95 sNaN93 -> NaN93 Invalid_operation
+ddmul676 multiply -Inf sNaN92 -> NaN92 Invalid_operation
+ddmul677 multiply 088 sNaN91 -> NaN91 Invalid_operation
+ddmul678 multiply Inf sNaN90 -> NaN90 Invalid_operation
+ddmul679 multiply NaN sNaN89 -> NaN89 Invalid_operation
+
+ddmul681 multiply -NaN9 -Inf -> -NaN9
+ddmul682 multiply -NaN8 999 -> -NaN8
+ddmul683 multiply -NaN71 Inf -> -NaN71
+ddmul684 multiply -NaN6 -NaN5 -> -NaN6
+ddmul685 multiply -Inf -NaN4 -> -NaN4
+ddmul686 multiply -999 -NaN33 -> -NaN33
+ddmul687 multiply Inf -NaN2 -> -NaN2
+
+ddmul691 multiply -sNaN99 -Inf -> -NaN99 Invalid_operation
+ddmul692 multiply -sNaN98 -11 -> -NaN98 Invalid_operation
+ddmul693 multiply -sNaN97 NaN -> -NaN97 Invalid_operation
+ddmul694 multiply -sNaN16 -sNaN94 -> -NaN16 Invalid_operation
+ddmul695 multiply -NaN95 -sNaN93 -> -NaN93 Invalid_operation
+ddmul696 multiply -Inf -sNaN92 -> -NaN92 Invalid_operation
+ddmul697 multiply 088 -sNaN91 -> -NaN91 Invalid_operation
+ddmul698 multiply Inf -sNaN90 -> -NaN90 Invalid_operation
+ddmul699 multiply -NaN -sNaN89 -> -NaN89 Invalid_operation
+
+ddmul701 multiply -NaN -Inf -> -NaN
+ddmul702 multiply -NaN 999 -> -NaN
+ddmul703 multiply -NaN Inf -> -NaN
+ddmul704 multiply -NaN -NaN -> -NaN
+ddmul705 multiply -Inf -NaN0 -> -NaN
+ddmul706 multiply -999 -NaN -> -NaN
+ddmul707 multiply Inf -NaN -> -NaN
+
+ddmul711 multiply -sNaN -Inf -> -NaN Invalid_operation
+ddmul712 multiply -sNaN -11 -> -NaN Invalid_operation
+ddmul713 multiply -sNaN00 NaN -> -NaN Invalid_operation
+ddmul714 multiply -sNaN -sNaN -> -NaN Invalid_operation
+ddmul715 multiply -NaN -sNaN -> -NaN Invalid_operation
+ddmul716 multiply -Inf -sNaN -> -NaN Invalid_operation
+ddmul717 multiply 088 -sNaN -> -NaN Invalid_operation
+ddmul718 multiply Inf -sNaN -> -NaN Invalid_operation
+ddmul719 multiply -NaN -sNaN -> -NaN Invalid_operation
+
+-- overflow and underflow tests .. note subnormal results
+-- signs
+ddmul751 multiply 1e+277 1e+311 -> Infinity Overflow Inexact Rounded
+ddmul752 multiply 1e+277 -1e+311 -> -Infinity Overflow Inexact Rounded
+ddmul753 multiply -1e+277 1e+311 -> -Infinity Overflow Inexact Rounded
+ddmul754 multiply -1e+277 -1e+311 -> Infinity Overflow Inexact Rounded
+ddmul755 multiply 1e-277 1e-311 -> 0E-398 Underflow Subnormal Inexact Rounded Clamped
+ddmul756 multiply 1e-277 -1e-311 -> -0E-398 Underflow Subnormal Inexact Rounded Clamped
+ddmul757 multiply -1e-277 1e-311 -> -0E-398 Underflow Subnormal Inexact Rounded Clamped
+ddmul758 multiply -1e-277 -1e-311 -> 0E-398 Underflow Subnormal Inexact Rounded Clamped
+
+-- 'subnormal' boundary (all hard underflow or overflow in base arithemtic)
+ddmul760 multiply 1e-291 1e-101 -> 1E-392 Subnormal
+ddmul761 multiply 1e-291 1e-102 -> 1E-393 Subnormal
+ddmul762 multiply 1e-291 1e-103 -> 1E-394 Subnormal
+ddmul763 multiply 1e-291 1e-104 -> 1E-395 Subnormal
+ddmul764 multiply 1e-291 1e-105 -> 1E-396 Subnormal
+ddmul765 multiply 1e-291 1e-106 -> 1E-397 Subnormal
+ddmul766 multiply 1e-291 1e-107 -> 1E-398 Subnormal
+ddmul767 multiply 1e-291 1e-108 -> 0E-398 Underflow Subnormal Inexact Rounded Clamped
+ddmul768 multiply 1e-291 1e-109 -> 0E-398 Underflow Subnormal Inexact Rounded Clamped
+ddmul769 multiply 1e-291 1e-110 -> 0E-398 Underflow Subnormal Inexact Rounded Clamped
+-- [no equivalent of 'subnormal' for overflow]
+ddmul770 multiply 1e+60 1e+321 -> 1.000000000000E+381 Clamped
+ddmul771 multiply 1e+60 1e+322 -> 1.0000000000000E+382 Clamped
+ddmul772 multiply 1e+60 1e+323 -> 1.00000000000000E+383 Clamped
+ddmul773 multiply 1e+60 1e+324 -> 1.000000000000000E+384 Clamped
+ddmul774 multiply 1e+60 1e+325 -> Infinity Overflow Inexact Rounded
+ddmul775 multiply 1e+60 1e+326 -> Infinity Overflow Inexact Rounded
+ddmul776 multiply 1e+60 1e+327 -> Infinity Overflow Inexact Rounded
+ddmul777 multiply 1e+60 1e+328 -> Infinity Overflow Inexact Rounded
+ddmul778 multiply 1e+60 1e+329 -> Infinity Overflow Inexact Rounded
+ddmul779 multiply 1e+60 1e+330 -> Infinity Overflow Inexact Rounded
+
+ddmul801 multiply 1.0000E-394 1 -> 1.0000E-394 Subnormal
+ddmul802 multiply 1.000E-394 1e-1 -> 1.000E-395 Subnormal
+ddmul803 multiply 1.00E-394 1e-2 -> 1.00E-396 Subnormal
+ddmul804 multiply 1.0E-394 1e-3 -> 1.0E-397 Subnormal
+ddmul805 multiply 1.0E-394 1e-4 -> 1E-398 Subnormal Rounded
+ddmul806 multiply 1.3E-394 1e-4 -> 1E-398 Underflow Subnormal Inexact Rounded
+ddmul807 multiply 1.5E-394 1e-4 -> 2E-398 Underflow Subnormal Inexact Rounded
+ddmul808 multiply 1.7E-394 1e-4 -> 2E-398 Underflow Subnormal Inexact Rounded
+ddmul809 multiply 2.3E-394 1e-4 -> 2E-398 Underflow Subnormal Inexact Rounded
+ddmul810 multiply 2.5E-394 1e-4 -> 2E-398 Underflow Subnormal Inexact Rounded
+ddmul811 multiply 2.7E-394 1e-4 -> 3E-398 Underflow Subnormal Inexact Rounded
+ddmul812 multiply 1.49E-394 1e-4 -> 1E-398 Underflow Subnormal Inexact Rounded
+ddmul813 multiply 1.50E-394 1e-4 -> 2E-398 Underflow Subnormal Inexact Rounded
+ddmul814 multiply 1.51E-394 1e-4 -> 2E-398 Underflow Subnormal Inexact Rounded
+ddmul815 multiply 2.49E-394 1e-4 -> 2E-398 Underflow Subnormal Inexact Rounded
+ddmul816 multiply 2.50E-394 1e-4 -> 2E-398 Underflow Subnormal Inexact Rounded
+ddmul817 multiply 2.51E-394 1e-4 -> 3E-398 Underflow Subnormal Inexact Rounded
+
+ddmul818 multiply 1E-394 1e-4 -> 1E-398 Subnormal
+ddmul819 multiply 3E-394 1e-5 -> 0E-398 Underflow Subnormal Inexact Rounded Clamped
+ddmul820 multiply 5E-394 1e-5 -> 0E-398 Underflow Subnormal Inexact Rounded Clamped
+ddmul821 multiply 7E-394 1e-5 -> 1E-398 Underflow Subnormal Inexact Rounded
+ddmul822 multiply 9E-394 1e-5 -> 1E-398 Underflow Subnormal Inexact Rounded
+ddmul823 multiply 9.9E-394 1e-5 -> 1E-398 Underflow Subnormal Inexact Rounded
+
+ddmul824 multiply 1E-394 -1e-4 -> -1E-398 Subnormal
+ddmul825 multiply 3E-394 -1e-5 -> -0E-398 Underflow Subnormal Inexact Rounded Clamped
+ddmul826 multiply -5E-394 1e-5 -> -0E-398 Underflow Subnormal Inexact Rounded Clamped
+ddmul827 multiply 7E-394 -1e-5 -> -1E-398 Underflow Subnormal Inexact Rounded
+ddmul828 multiply -9E-394 1e-5 -> -1E-398 Underflow Subnormal Inexact Rounded
+ddmul829 multiply 9.9E-394 -1e-5 -> -1E-398 Underflow Subnormal Inexact Rounded
+ddmul830 multiply 3.0E-394 -1e-5 -> -0E-398 Underflow Subnormal Inexact Rounded Clamped
+
+ddmul831 multiply 1.0E-199 1e-200 -> 0E-398 Underflow Subnormal Inexact Rounded Clamped
+ddmul832 multiply 1.0E-199 1e-199 -> 1E-398 Subnormal Rounded
+ddmul833 multiply 1.0E-199 1e-198 -> 1.0E-397 Subnormal
+ddmul834 multiply 2.0E-199 2e-198 -> 4.0E-397 Subnormal
+ddmul835 multiply 4.0E-199 4e-198 -> 1.60E-396 Subnormal
+ddmul836 multiply 10.0E-199 10e-198 -> 1.000E-395 Subnormal
+ddmul837 multiply 30.0E-199 30e-198 -> 9.000E-395 Subnormal
+ddmul838 multiply 40.0E-199 40e-188 -> 1.6000E-384 Subnormal
+ddmul839 multiply 40.0E-199 40e-187 -> 1.6000E-383
+ddmul840 multiply 40.0E-199 40e-186 -> 1.6000E-382
+
+-- Long operand overflow may be a different path
+ddmul870 multiply 100 9.999E+383 -> Infinity Inexact Overflow Rounded
+ddmul871 multiply 100 -9.999E+383 -> -Infinity Inexact Overflow Rounded
+ddmul872 multiply 9.999E+383 100 -> Infinity Inexact Overflow Rounded
+ddmul873 multiply -9.999E+383 100 -> -Infinity Inexact Overflow Rounded
+
+-- check for double-rounded subnormals
+ddmul881 multiply 1.2347E-355 1.2347E-40 -> 1.524E-395 Inexact Rounded Subnormal Underflow
+ddmul882 multiply 1.234E-355 1.234E-40 -> 1.523E-395 Inexact Rounded Subnormal Underflow
+ddmul883 multiply 1.23E-355 1.23E-40 -> 1.513E-395 Inexact Rounded Subnormal Underflow
+ddmul884 multiply 1.2E-355 1.2E-40 -> 1.44E-395 Subnormal
+ddmul885 multiply 1.2E-355 1.2E-41 -> 1.44E-396 Subnormal
+ddmul886 multiply 1.2E-355 1.2E-42 -> 1.4E-397 Subnormal Inexact Rounded Underflow
+ddmul887 multiply 1.2E-355 1.3E-42 -> 1.6E-397 Subnormal Inexact Rounded Underflow
+ddmul888 multiply 1.3E-355 1.3E-42 -> 1.7E-397 Subnormal Inexact Rounded Underflow
+ddmul889 multiply 1.3E-355 1.3E-43 -> 2E-398 Subnormal Inexact Rounded Underflow
+ddmul890 multiply 1.3E-356 1.3E-43 -> 0E-398 Clamped Subnormal Inexact Rounded Underflow
+
+ddmul891 multiply 1.2345E-39 1.234E-355 -> 1.5234E-394 Inexact Rounded Subnormal Underflow
+ddmul892 multiply 1.23456E-39 1.234E-355 -> 1.5234E-394 Inexact Rounded Subnormal Underflow
+ddmul893 multiply 1.2345E-40 1.234E-355 -> 1.523E-395 Inexact Rounded Subnormal Underflow
+ddmul894 multiply 1.23456E-40 1.234E-355 -> 1.523E-395 Inexact Rounded Subnormal Underflow
+ddmul895 multiply 1.2345E-41 1.234E-355 -> 1.52E-396 Inexact Rounded Subnormal Underflow
+ddmul896 multiply 1.23456E-41 1.234E-355 -> 1.52E-396 Inexact Rounded Subnormal Underflow
+
+-- Now explore the case where we get a normal result with Underflow
+-- 1 234567890123456
+ddmul900 multiply 0.3000000000E-191 0.3000000000E-191 -> 9.00000000000000E-384 Subnormal Rounded
+ddmul901 multiply 0.3000000001E-191 0.3000000001E-191 -> 9.00000000600000E-384 Underflow Inexact Subnormal Rounded
+ddmul902 multiply 9.999999999999999E-383 0.0999999999999 -> 9.99999999999000E-384 Underflow Inexact Subnormal Rounded
+ddmul903 multiply 9.999999999999999E-383 0.09999999999999 -> 9.99999999999900E-384 Underflow Inexact Subnormal Rounded
+ddmul904 multiply 9.999999999999999E-383 0.099999999999999 -> 9.99999999999990E-384 Underflow Inexact Subnormal Rounded
+ddmul905 multiply 9.999999999999999E-383 0.0999999999999999 -> 9.99999999999999E-384 Underflow Inexact Subnormal Rounded
+-- prove operands are exact
+ddmul906 multiply 9.999999999999999E-383 1 -> 9.999999999999999E-383
+ddmul907 multiply 1 0.09999999999999999 -> 0.09999999999999999
+-- the next rounds to Nmin
+ddmul908 multiply 9.999999999999999E-383 0.09999999999999999 -> 1.000000000000000E-383 Underflow Inexact Subnormal Rounded
+
+-- hugest
+ddmul909 multiply 9999999999999999 9999999999999999 -> 9.999999999999998E+31 Inexact Rounded
+
+-- Null tests
+ddmul990 multiply 10 # -> NaN Invalid_operation
+ddmul991 multiply # 10 -> NaN Invalid_operation
+
+
+
+
diff --git a/Lib/test/decimaltestdata/ddNextMinus.decTest b/Lib/test/decimaltestdata/ddNextMinus.decTest
new file mode 100644
index 0000000..97c3b09
--- /dev/null
+++ b/Lib/test/decimaltestdata/ddNextMinus.decTest
@@ -0,0 +1,126 @@
+------------------------------------------------------------------------
+-- ddNextMinus.decTest -- decDouble next that is less [754r nextdown] --
+-- Copyright (c) IBM Corporation, 1981, 2007. All rights reserved. --
+------------------------------------------------------------------------
+-- Please see the document "General Decimal Arithmetic Testcases" --
+-- at http://www2.hursley.ibm.com/decimal for the description of --
+-- these testcases. --
+-- --
+-- These testcases are experimental ('beta' versions), and they --
+-- may contain errors. They are offered on an as-is basis. In --
+-- particular, achieving the same results as the tests here is not --
+-- a guarantee that an implementation complies with any Standard --
+-- or specification. The tests are not exhaustive. --
+-- --
+-- Please send comments, suggestions, and corrections to the author: --
+-- Mike Cowlishaw, IBM Fellow --
+-- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK --
+-- mfc@uk.ibm.com --
+------------------------------------------------------------------------
+version: 2.56
+
+-- All operands and results are decDoubles.
+precision: 16
+maxExponent: 384
+minExponent: -383
+extended: 1
+clamp: 1
+rounding: half_even
+
+ddnextm001 nextminus 0.9999999999999995 -> 0.9999999999999994
+ddnextm002 nextminus 0.9999999999999996 -> 0.9999999999999995
+ddnextm003 nextminus 0.9999999999999997 -> 0.9999999999999996
+ddnextm004 nextminus 0.9999999999999998 -> 0.9999999999999997
+ddnextm005 nextminus 0.9999999999999999 -> 0.9999999999999998
+ddnextm006 nextminus 1.000000000000000 -> 0.9999999999999999
+ddnextm007 nextminus 1.0 -> 0.9999999999999999
+ddnextm008 nextminus 1 -> 0.9999999999999999
+ddnextm009 nextminus 1.000000000000001 -> 1.000000000000000
+ddnextm010 nextminus 1.000000000000002 -> 1.000000000000001
+ddnextm011 nextminus 1.000000000000003 -> 1.000000000000002
+ddnextm012 nextminus 1.000000000000004 -> 1.000000000000003
+ddnextm013 nextminus 1.000000000000005 -> 1.000000000000004
+ddnextm014 nextminus 1.000000000000006 -> 1.000000000000005
+ddnextm015 nextminus 1.000000000000007 -> 1.000000000000006
+ddnextm016 nextminus 1.000000000000008 -> 1.000000000000007
+ddnextm017 nextminus 1.000000000000009 -> 1.000000000000008
+ddnextm018 nextminus 1.000000000000010 -> 1.000000000000009
+ddnextm019 nextminus 1.000000000000011 -> 1.000000000000010
+ddnextm020 nextminus 1.000000000000012 -> 1.000000000000011
+
+ddnextm021 nextminus -0.9999999999999995 -> -0.9999999999999996
+ddnextm022 nextminus -0.9999999999999996 -> -0.9999999999999997
+ddnextm023 nextminus -0.9999999999999997 -> -0.9999999999999998
+ddnextm024 nextminus -0.9999999999999998 -> -0.9999999999999999
+ddnextm025 nextminus -0.9999999999999999 -> -1.000000000000000
+ddnextm026 nextminus -1.000000000000000 -> -1.000000000000001
+ddnextm027 nextminus -1.0 -> -1.000000000000001
+ddnextm028 nextminus -1 -> -1.000000000000001
+ddnextm029 nextminus -1.000000000000001 -> -1.000000000000002
+ddnextm030 nextminus -1.000000000000002 -> -1.000000000000003
+ddnextm031 nextminus -1.000000000000003 -> -1.000000000000004
+ddnextm032 nextminus -1.000000000000004 -> -1.000000000000005
+ddnextm033 nextminus -1.000000000000005 -> -1.000000000000006
+ddnextm034 nextminus -1.000000000000006 -> -1.000000000000007
+ddnextm035 nextminus -1.000000000000007 -> -1.000000000000008
+ddnextm036 nextminus -1.000000000000008 -> -1.000000000000009
+ddnextm037 nextminus -1.000000000000009 -> -1.000000000000010
+ddnextm038 nextminus -1.000000000000010 -> -1.000000000000011
+ddnextm039 nextminus -1.000000000000011 -> -1.000000000000012
+
+-- ultra-tiny inputs
+ddnextm062 nextminus 1E-398 -> 0E-398
+ddnextm065 nextminus -1E-398 -> -2E-398
+
+-- Zeros
+ddnextm100 nextminus -0 -> -1E-398
+ddnextm101 nextminus 0 -> -1E-398
+ddnextm102 nextminus 0.00 -> -1E-398
+ddnextm103 nextminus -0.00 -> -1E-398
+ddnextm104 nextminus 0E-300 -> -1E-398
+ddnextm105 nextminus 0E+300 -> -1E-398
+ddnextm106 nextminus 0E+30000 -> -1E-398
+ddnextm107 nextminus -0E+30000 -> -1E-398
+
+-- specials
+ddnextm150 nextminus Inf -> 9.999999999999999E+384
+ddnextm151 nextminus -Inf -> -Infinity
+ddnextm152 nextminus NaN -> NaN
+ddnextm153 nextminus sNaN -> NaN Invalid_operation
+ddnextm154 nextminus NaN77 -> NaN77
+ddnextm155 nextminus sNaN88 -> NaN88 Invalid_operation
+ddnextm156 nextminus -NaN -> -NaN
+ddnextm157 nextminus -sNaN -> -NaN Invalid_operation
+ddnextm158 nextminus -NaN77 -> -NaN77
+ddnextm159 nextminus -sNaN88 -> -NaN88 Invalid_operation
+
+-- Nmax, Nmin, Ntiny, subnormals
+ddnextm170 nextminus 9.999999999999999E+384 -> 9.999999999999998E+384
+ddnextm171 nextminus 9.999999999999998E+384 -> 9.999999999999997E+384
+ddnextm172 nextminus 1E-383 -> 9.99999999999999E-384
+ddnextm173 nextminus 1.000000000000000E-383 -> 9.99999999999999E-384
+ddnextm174 nextminus 9E-398 -> 8E-398
+ddnextm175 nextminus 9.9E-397 -> 9.8E-397
+ddnextm176 nextminus 9.99999999999E-387 -> 9.99999999998E-387
+ddnextm177 nextminus 9.99999999999999E-384 -> 9.99999999999998E-384
+ddnextm178 nextminus 9.99999999999998E-384 -> 9.99999999999997E-384
+ddnextm179 nextminus 9.99999999999997E-384 -> 9.99999999999996E-384
+ddnextm180 nextminus 0E-398 -> -1E-398
+ddnextm181 nextminus 1E-398 -> 0E-398
+ddnextm182 nextminus 2E-398 -> 1E-398
+
+ddnextm183 nextminus -0E-398 -> -1E-398
+ddnextm184 nextminus -1E-398 -> -2E-398
+ddnextm185 nextminus -2E-398 -> -3E-398
+ddnextm186 nextminus -10E-398 -> -1.1E-397
+ddnextm187 nextminus -100E-398 -> -1.01E-396
+ddnextm188 nextminus -100000E-398 -> -1.00001E-393
+ddnextm189 nextminus -1.00000000000E-383 -> -1.000000000000001E-383
+ddnextm190 nextminus -1.000000000000000E-383 -> -1.000000000000001E-383
+ddnextm191 nextminus -1E-383 -> -1.000000000000001E-383
+ddnextm192 nextminus -9.999999999999998E+384 -> -9.999999999999999E+384
+ddnextm193 nextminus -9.999999999999999E+384 -> -Infinity
+
+-- Null tests
+ddnextm900 nextminus # -> NaN Invalid_operation
+
diff --git a/Lib/test/decimaltestdata/ddNextPlus.decTest b/Lib/test/decimaltestdata/ddNextPlus.decTest
new file mode 100644
index 0000000..d01f3c3
--- /dev/null
+++ b/Lib/test/decimaltestdata/ddNextPlus.decTest
@@ -0,0 +1,124 @@
+------------------------------------------------------------------------
+-- ddNextPlus.decTest -- decDouble next that is greater [754r nextup] --
+-- Copyright (c) IBM Corporation, 1981, 2007. All rights reserved. --
+------------------------------------------------------------------------
+-- Please see the document "General Decimal Arithmetic Testcases" --
+-- at http://www2.hursley.ibm.com/decimal for the description of --
+-- these testcases. --
+-- --
+-- These testcases are experimental ('beta' versions), and they --
+-- may contain errors. They are offered on an as-is basis. In --
+-- particular, achieving the same results as the tests here is not --
+-- a guarantee that an implementation complies with any Standard --
+-- or specification. The tests are not exhaustive. --
+-- --
+-- Please send comments, suggestions, and corrections to the author: --
+-- Mike Cowlishaw, IBM Fellow --
+-- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK --
+-- mfc@uk.ibm.com --
+------------------------------------------------------------------------
+version: 2.56
+
+-- All operands and results are decDoubles.
+precision: 16
+maxExponent: 384
+minExponent: -383
+extended: 1
+clamp: 1
+rounding: half_even
+
+ddnextp001 nextplus 0.9999999999999995 -> 0.9999999999999996
+ddnextp002 nextplus 0.9999999999999996 -> 0.9999999999999997
+ddnextp003 nextplus 0.9999999999999997 -> 0.9999999999999998
+ddnextp004 nextplus 0.9999999999999998 -> 0.9999999999999999
+ddnextp005 nextplus 0.9999999999999999 -> 1.000000000000000
+ddnextp006 nextplus 1.000000000000000 -> 1.000000000000001
+ddnextp007 nextplus 1.0 -> 1.000000000000001
+ddnextp008 nextplus 1 -> 1.000000000000001
+ddnextp009 nextplus 1.000000000000001 -> 1.000000000000002
+ddnextp010 nextplus 1.000000000000002 -> 1.000000000000003
+ddnextp011 nextplus 1.000000000000003 -> 1.000000000000004
+ddnextp012 nextplus 1.000000000000004 -> 1.000000000000005
+ddnextp013 nextplus 1.000000000000005 -> 1.000000000000006
+ddnextp014 nextplus 1.000000000000006 -> 1.000000000000007
+ddnextp015 nextplus 1.000000000000007 -> 1.000000000000008
+ddnextp016 nextplus 1.000000000000008 -> 1.000000000000009
+ddnextp017 nextplus 1.000000000000009 -> 1.000000000000010
+ddnextp018 nextplus 1.000000000000010 -> 1.000000000000011
+ddnextp019 nextplus 1.000000000000011 -> 1.000000000000012
+
+ddnextp021 nextplus -0.9999999999999995 -> -0.9999999999999994
+ddnextp022 nextplus -0.9999999999999996 -> -0.9999999999999995
+ddnextp023 nextplus -0.9999999999999997 -> -0.9999999999999996
+ddnextp024 nextplus -0.9999999999999998 -> -0.9999999999999997
+ddnextp025 nextplus -0.9999999999999999 -> -0.9999999999999998
+ddnextp026 nextplus -1.000000000000000 -> -0.9999999999999999
+ddnextp027 nextplus -1.0 -> -0.9999999999999999
+ddnextp028 nextplus -1 -> -0.9999999999999999
+ddnextp029 nextplus -1.000000000000001 -> -1.000000000000000
+ddnextp030 nextplus -1.000000000000002 -> -1.000000000000001
+ddnextp031 nextplus -1.000000000000003 -> -1.000000000000002
+ddnextp032 nextplus -1.000000000000004 -> -1.000000000000003
+ddnextp033 nextplus -1.000000000000005 -> -1.000000000000004
+ddnextp034 nextplus -1.000000000000006 -> -1.000000000000005
+ddnextp035 nextplus -1.000000000000007 -> -1.000000000000006
+ddnextp036 nextplus -1.000000000000008 -> -1.000000000000007
+ddnextp037 nextplus -1.000000000000009 -> -1.000000000000008
+ddnextp038 nextplus -1.000000000000010 -> -1.000000000000009
+ddnextp039 nextplus -1.000000000000011 -> -1.000000000000010
+ddnextp040 nextplus -1.000000000000012 -> -1.000000000000011
+
+-- Zeros
+ddnextp100 nextplus 0 -> 1E-398
+ddnextp101 nextplus 0.00 -> 1E-398
+ddnextp102 nextplus 0E-300 -> 1E-398
+ddnextp103 nextplus 0E+300 -> 1E-398
+ddnextp104 nextplus 0E+30000 -> 1E-398
+ddnextp105 nextplus -0 -> 1E-398
+ddnextp106 nextplus -0.00 -> 1E-398
+ddnextp107 nextplus -0E-300 -> 1E-398
+ddnextp108 nextplus -0E+300 -> 1E-398
+ddnextp109 nextplus -0E+30000 -> 1E-398
+
+-- specials
+ddnextp150 nextplus Inf -> Infinity
+ddnextp151 nextplus -Inf -> -9.999999999999999E+384
+ddnextp152 nextplus NaN -> NaN
+ddnextp153 nextplus sNaN -> NaN Invalid_operation
+ddnextp154 nextplus NaN77 -> NaN77
+ddnextp155 nextplus sNaN88 -> NaN88 Invalid_operation
+ddnextp156 nextplus -NaN -> -NaN
+ddnextp157 nextplus -sNaN -> -NaN Invalid_operation
+ddnextp158 nextplus -NaN77 -> -NaN77
+ddnextp159 nextplus -sNaN88 -> -NaN88 Invalid_operation
+
+-- Nmax, Nmin, Ntiny, subnormals
+ddnextp170 nextplus -9.999999999999999E+384 -> -9.999999999999998E+384
+ddnextp171 nextplus -9.999999999999998E+384 -> -9.999999999999997E+384
+ddnextp172 nextplus -1E-383 -> -9.99999999999999E-384
+ddnextp173 nextplus -1.000000000000000E-383 -> -9.99999999999999E-384
+ddnextp174 nextplus -9E-398 -> -8E-398
+ddnextp175 nextplus -9.9E-397 -> -9.8E-397
+ddnextp176 nextplus -9.99999999999E-387 -> -9.99999999998E-387
+ddnextp177 nextplus -9.99999999999999E-384 -> -9.99999999999998E-384
+ddnextp178 nextplus -9.99999999999998E-384 -> -9.99999999999997E-384
+ddnextp179 nextplus -9.99999999999997E-384 -> -9.99999999999996E-384
+ddnextp180 nextplus -0E-398 -> 1E-398
+ddnextp181 nextplus -1E-398 -> -0E-398
+ddnextp182 nextplus -2E-398 -> -1E-398
+
+ddnextp183 nextplus 0E-398 -> 1E-398
+ddnextp184 nextplus 1E-398 -> 2E-398
+ddnextp185 nextplus 2E-398 -> 3E-398
+ddnextp186 nextplus 10E-398 -> 1.1E-397
+ddnextp187 nextplus 100E-398 -> 1.01E-396
+ddnextp188 nextplus 100000E-398 -> 1.00001E-393
+ddnextp189 nextplus 1.00000000000E-383 -> 1.000000000000001E-383
+ddnextp190 nextplus 1.000000000000000E-383 -> 1.000000000000001E-383
+ddnextp191 nextplus 1E-383 -> 1.000000000000001E-383
+ddnextp192 nextplus 9.999999999999998E+384 -> 9.999999999999999E+384
+ddnextp193 nextplus 9.999999999999999E+384 -> Infinity
+
+-- Null tests
+ddnextp900 nextplus # -> NaN Invalid_operation
+
diff --git a/Lib/test/decimaltestdata/ddNextToward.decTest b/Lib/test/decimaltestdata/ddNextToward.decTest
new file mode 100644
index 0000000..e00751b
--- /dev/null
+++ b/Lib/test/decimaltestdata/ddNextToward.decTest
@@ -0,0 +1,374 @@
+------------------------------------------------------------------------
+-- ddNextToward.decTest -- decDouble next toward rhs [754r nextafter] --
+-- Copyright (c) IBM Corporation, 1981, 2007. All rights reserved. --
+------------------------------------------------------------------------
+-- Please see the document "General Decimal Arithmetic Testcases" --
+-- at http://www2.hursley.ibm.com/decimal for the description of --
+-- these testcases. --
+-- --
+-- These testcases are experimental ('beta' versions), and they --
+-- may contain errors. They are offered on an as-is basis. In --
+-- particular, achieving the same results as the tests here is not --
+-- a guarantee that an implementation complies with any Standard --
+-- or specification. The tests are not exhaustive. --
+-- --
+-- Please send comments, suggestions, and corrections to the author: --
+-- Mike Cowlishaw, IBM Fellow --
+-- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK --
+-- mfc@uk.ibm.com --
+------------------------------------------------------------------------
+version: 2.56
+
+-- All operands and results are decDoubles.
+precision: 16
+maxExponent: 384
+minExponent: -383
+extended: 1
+clamp: 1
+rounding: half_even
+
+-- Sanity check with a scattering of numerics
+ddnextt001 nexttoward 10 10 -> 10
+ddnextt002 nexttoward -10 -10 -> -10
+ddnextt003 nexttoward 1 10 -> 1.000000000000001
+ddnextt004 nexttoward 1 -10 -> 0.9999999999999999
+ddnextt005 nexttoward -1 10 -> -0.9999999999999999
+ddnextt006 nexttoward -1 -10 -> -1.000000000000001
+ddnextt007 nexttoward 0 10 -> 1E-398 Underflow Subnormal Inexact Rounded
+ddnextt008 nexttoward 0 -10 -> -1E-398 Underflow Subnormal Inexact Rounded
+ddnextt009 nexttoward 9.999999999999999E+384 +Infinity -> Infinity Overflow Inexact Rounded
+ddnextt010 nexttoward -9.999999999999999E+384 -Infinity -> -Infinity Overflow Inexact Rounded
+ddnextt011 nexttoward 9.999999999999999 10 -> 10.00000000000000
+ddnextt012 nexttoward 10 9.999999999999999 -> 9.999999999999999
+ddnextt013 nexttoward -9.999999999999999 -10 -> -10.00000000000000
+ddnextt014 nexttoward -10 -9.999999999999999 -> -9.999999999999999
+ddnextt015 nexttoward 9.999999999999998 10 -> 9.999999999999999
+ddnextt016 nexttoward 10 9.999999999999998 -> 9.999999999999999
+ddnextt017 nexttoward -9.999999999999998 -10 -> -9.999999999999999
+ddnextt018 nexttoward -10 -9.999999999999998 -> -9.999999999999999
+
+------- lhs=rhs
+-- finites
+ddnextt101 nexttoward 7 7 -> 7
+ddnextt102 nexttoward -7 -7 -> -7
+ddnextt103 nexttoward 75 75 -> 75
+ddnextt104 nexttoward -75 -75 -> -75
+ddnextt105 nexttoward 7.50 7.5 -> 7.50
+ddnextt106 nexttoward -7.50 -7.50 -> -7.50
+ddnextt107 nexttoward 7.500 7.5000 -> 7.500
+ddnextt108 nexttoward -7.500 -7.5 -> -7.500
+
+-- zeros
+ddnextt111 nexttoward 0 0 -> 0
+ddnextt112 nexttoward -0 -0 -> -0
+ddnextt113 nexttoward 0E+4 0 -> 0E+4
+ddnextt114 nexttoward -0E+4 -0 -> -0E+4
+ddnextt115 nexttoward 0.00000000000 0.000000000000 -> 0E-11
+ddnextt116 nexttoward -0.00000000000 -0.00 -> -0E-11
+ddnextt117 nexttoward 0E-141 0 -> 0E-141
+ddnextt118 nexttoward -0E-141 -000 -> -0E-141
+
+-- full coefficients, alternating bits
+ddnextt121 nexttoward 268268268 268268268 -> 268268268
+ddnextt122 nexttoward -268268268 -268268268 -> -268268268
+ddnextt123 nexttoward 134134134 134134134 -> 134134134
+ddnextt124 nexttoward -134134134 -134134134 -> -134134134
+
+-- Nmax, Nmin, Ntiny
+ddnextt131 nexttoward 9.999999999999999E+384 9.999999999999999E+384 -> 9.999999999999999E+384
+ddnextt132 nexttoward 1E-383 1E-383 -> 1E-383
+ddnextt133 nexttoward 1.000000000000000E-383 1.000000000000000E-383 -> 1.000000000000000E-383
+ddnextt134 nexttoward 1E-398 1E-398 -> 1E-398
+
+ddnextt135 nexttoward -1E-398 -1E-398 -> -1E-398
+ddnextt136 nexttoward -1.000000000000000E-383 -1.000000000000000E-383 -> -1.000000000000000E-383
+ddnextt137 nexttoward -1E-383 -1E-383 -> -1E-383
+ddnextt138 nexttoward -9.999999999999999E+384 -9.999999999999999E+384 -> -9.999999999999999E+384
+
+------- lhs<rhs
+ddnextt201 nexttoward 0.9999999999999995 Infinity -> 0.9999999999999996
+ddnextt202 nexttoward 0.9999999999999996 Infinity -> 0.9999999999999997
+ddnextt203 nexttoward 0.9999999999999997 Infinity -> 0.9999999999999998
+ddnextt204 nexttoward 0.9999999999999998 Infinity -> 0.9999999999999999
+ddnextt205 nexttoward 0.9999999999999999 Infinity -> 1.000000000000000
+ddnextt206 nexttoward 1.000000000000000 Infinity -> 1.000000000000001
+ddnextt207 nexttoward 1.0 Infinity -> 1.000000000000001
+ddnextt208 nexttoward 1 Infinity -> 1.000000000000001
+ddnextt209 nexttoward 1.000000000000001 Infinity -> 1.000000000000002
+ddnextt210 nexttoward 1.000000000000002 Infinity -> 1.000000000000003
+ddnextt211 nexttoward 1.000000000000003 Infinity -> 1.000000000000004
+ddnextt212 nexttoward 1.000000000000004 Infinity -> 1.000000000000005
+ddnextt213 nexttoward 1.000000000000005 Infinity -> 1.000000000000006
+ddnextt214 nexttoward 1.000000000000006 Infinity -> 1.000000000000007
+ddnextt215 nexttoward 1.000000000000007 Infinity -> 1.000000000000008
+ddnextt216 nexttoward 1.000000000000008 Infinity -> 1.000000000000009
+ddnextt217 nexttoward 1.000000000000009 Infinity -> 1.000000000000010
+ddnextt218 nexttoward 1.000000000000010 Infinity -> 1.000000000000011
+ddnextt219 nexttoward 1.000000000000011 Infinity -> 1.000000000000012
+
+ddnextt221 nexttoward -0.9999999999999995 Infinity -> -0.9999999999999994
+ddnextt222 nexttoward -0.9999999999999996 Infinity -> -0.9999999999999995
+ddnextt223 nexttoward -0.9999999999999997 Infinity -> -0.9999999999999996
+ddnextt224 nexttoward -0.9999999999999998 Infinity -> -0.9999999999999997
+ddnextt225 nexttoward -0.9999999999999999 Infinity -> -0.9999999999999998
+ddnextt226 nexttoward -1.000000000000000 Infinity -> -0.9999999999999999
+ddnextt227 nexttoward -1.0 Infinity -> -0.9999999999999999
+ddnextt228 nexttoward -1 Infinity -> -0.9999999999999999
+ddnextt229 nexttoward -1.000000000000001 Infinity -> -1.000000000000000
+ddnextt230 nexttoward -1.000000000000002 Infinity -> -1.000000000000001
+ddnextt231 nexttoward -1.000000000000003 Infinity -> -1.000000000000002
+ddnextt232 nexttoward -1.000000000000004 Infinity -> -1.000000000000003
+ddnextt233 nexttoward -1.000000000000005 Infinity -> -1.000000000000004
+ddnextt234 nexttoward -1.000000000000006 Infinity -> -1.000000000000005
+ddnextt235 nexttoward -1.000000000000007 Infinity -> -1.000000000000006
+ddnextt236 nexttoward -1.000000000000008 Infinity -> -1.000000000000007
+ddnextt237 nexttoward -1.000000000000009 Infinity -> -1.000000000000008
+ddnextt238 nexttoward -1.000000000000010 Infinity -> -1.000000000000009
+ddnextt239 nexttoward -1.000000000000011 Infinity -> -1.000000000000010
+ddnextt240 nexttoward -1.000000000000012 Infinity -> -1.000000000000011
+
+-- Zeros
+ddnextt300 nexttoward 0 Infinity -> 1E-398 Underflow Subnormal Inexact Rounded
+ddnextt301 nexttoward 0.00 Infinity -> 1E-398 Underflow Subnormal Inexact Rounded
+ddnextt302 nexttoward 0E-300 Infinity -> 1E-398 Underflow Subnormal Inexact Rounded
+ddnextt303 nexttoward 0E+300 Infinity -> 1E-398 Underflow Subnormal Inexact Rounded
+ddnextt304 nexttoward 0E+30000 Infinity -> 1E-398 Underflow Subnormal Inexact Rounded
+ddnextt305 nexttoward -0 Infinity -> 1E-398 Underflow Subnormal Inexact Rounded
+ddnextt306 nexttoward -0.00 Infinity -> 1E-398 Underflow Subnormal Inexact Rounded
+ddnextt307 nexttoward -0E-300 Infinity -> 1E-398 Underflow Subnormal Inexact Rounded
+ddnextt308 nexttoward -0E+300 Infinity -> 1E-398 Underflow Subnormal Inexact Rounded
+ddnextt309 nexttoward -0E+30000 Infinity -> 1E-398 Underflow Subnormal Inexact Rounded
+
+-- specials
+ddnextt350 nexttoward Inf Infinity -> Infinity
+ddnextt351 nexttoward -Inf Infinity -> -9.999999999999999E+384
+ddnextt352 nexttoward NaN Infinity -> NaN
+ddnextt353 nexttoward sNaN Infinity -> NaN Invalid_operation
+ddnextt354 nexttoward NaN77 Infinity -> NaN77
+ddnextt355 nexttoward sNaN88 Infinity -> NaN88 Invalid_operation
+ddnextt356 nexttoward -NaN Infinity -> -NaN
+ddnextt357 nexttoward -sNaN Infinity -> -NaN Invalid_operation
+ddnextt358 nexttoward -NaN77 Infinity -> -NaN77
+ddnextt359 nexttoward -sNaN88 Infinity -> -NaN88 Invalid_operation
+
+-- Nmax, Nmin, Ntiny, subnormals
+ddnextt370 nexttoward -9.999999999999999E+384 Infinity -> -9.999999999999998E+384
+ddnextt371 nexttoward -9.999999999999998E+384 Infinity -> -9.999999999999997E+384
+ddnextt372 nexttoward -1E-383 Infinity -> -9.99999999999999E-384 Underflow Subnormal Inexact Rounded
+ddnextt373 nexttoward -1.000000000000000E-383 Infinity -> -9.99999999999999E-384 Underflow Subnormal Inexact Rounded
+ddnextt374 nexttoward -9E-398 Infinity -> -8E-398 Underflow Subnormal Inexact Rounded
+ddnextt375 nexttoward -9.9E-397 Infinity -> -9.8E-397 Underflow Subnormal Inexact Rounded
+ddnextt376 nexttoward -9.99999999999E-387 Infinity -> -9.99999999998E-387 Underflow Subnormal Inexact Rounded
+ddnextt377 nexttoward -9.99999999999999E-384 Infinity -> -9.99999999999998E-384 Underflow Subnormal Inexact Rounded
+ddnextt378 nexttoward -9.99999999999998E-384 Infinity -> -9.99999999999997E-384 Underflow Subnormal Inexact Rounded
+ddnextt379 nexttoward -9.99999999999997E-384 Infinity -> -9.99999999999996E-384 Underflow Subnormal Inexact Rounded
+ddnextt380 nexttoward -0E-398 Infinity -> 1E-398 Underflow Subnormal Inexact Rounded
+ddnextt381 nexttoward -1E-398 Infinity -> -0E-398 Underflow Subnormal Inexact Rounded Clamped
+ddnextt382 nexttoward -2E-398 Infinity -> -1E-398 Underflow Subnormal Inexact Rounded
+
+ddnextt383 nexttoward 0E-398 Infinity -> 1E-398 Underflow Subnormal Inexact Rounded
+ddnextt384 nexttoward 1E-398 Infinity -> 2E-398 Underflow Subnormal Inexact Rounded
+ddnextt385 nexttoward 2E-398 Infinity -> 3E-398 Underflow Subnormal Inexact Rounded
+ddnextt386 nexttoward 10E-398 Infinity -> 1.1E-397 Underflow Subnormal Inexact Rounded
+ddnextt387 nexttoward 100E-398 Infinity -> 1.01E-396 Underflow Subnormal Inexact Rounded
+ddnextt388 nexttoward 100000E-398 Infinity -> 1.00001E-393 Underflow Subnormal Inexact Rounded
+ddnextt389 nexttoward 1.00000000000E-383 Infinity -> 1.000000000000001E-383
+ddnextt390 nexttoward 1.000000000000000E-383 Infinity -> 1.000000000000001E-383
+ddnextt391 nexttoward 1E-383 Infinity -> 1.000000000000001E-383
+ddnextt392 nexttoward 9.999999999999997E+384 Infinity -> 9.999999999999998E+384
+ddnextt393 nexttoward 9.999999999999998E+384 Infinity -> 9.999999999999999E+384
+ddnextt394 nexttoward 9.999999999999999E+384 Infinity -> Infinity Overflow Inexact Rounded
+
+------- lhs>rhs
+ddnextt401 nexttoward 0.9999999999999995 -Infinity -> 0.9999999999999994
+ddnextt402 nexttoward 0.9999999999999996 -Infinity -> 0.9999999999999995
+ddnextt403 nexttoward 0.9999999999999997 -Infinity -> 0.9999999999999996
+ddnextt404 nexttoward 0.9999999999999998 -Infinity -> 0.9999999999999997
+ddnextt405 nexttoward 0.9999999999999999 -Infinity -> 0.9999999999999998
+ddnextt406 nexttoward 1.000000000000000 -Infinity -> 0.9999999999999999
+ddnextt407 nexttoward 1.0 -Infinity -> 0.9999999999999999
+ddnextt408 nexttoward 1 -Infinity -> 0.9999999999999999
+ddnextt409 nexttoward 1.000000000000001 -Infinity -> 1.000000000000000
+ddnextt410 nexttoward 1.000000000000002 -Infinity -> 1.000000000000001
+ddnextt411 nexttoward 1.000000000000003 -Infinity -> 1.000000000000002
+ddnextt412 nexttoward 1.000000000000004 -Infinity -> 1.000000000000003
+ddnextt413 nexttoward 1.000000000000005 -Infinity -> 1.000000000000004
+ddnextt414 nexttoward 1.000000000000006 -Infinity -> 1.000000000000005
+ddnextt415 nexttoward 1.000000000000007 -Infinity -> 1.000000000000006
+ddnextt416 nexttoward 1.000000000000008 -Infinity -> 1.000000000000007
+ddnextt417 nexttoward 1.000000000000009 -Infinity -> 1.000000000000008
+ddnextt418 nexttoward 1.000000000000010 -Infinity -> 1.000000000000009
+ddnextt419 nexttoward 1.000000000000011 -Infinity -> 1.000000000000010
+ddnextt420 nexttoward 1.000000000000012 -Infinity -> 1.000000000000011
+
+ddnextt421 nexttoward -0.9999999999999995 -Infinity -> -0.9999999999999996
+ddnextt422 nexttoward -0.9999999999999996 -Infinity -> -0.9999999999999997
+ddnextt423 nexttoward -0.9999999999999997 -Infinity -> -0.9999999999999998
+ddnextt424 nexttoward -0.9999999999999998 -Infinity -> -0.9999999999999999
+ddnextt425 nexttoward -0.9999999999999999 -Infinity -> -1.000000000000000
+ddnextt426 nexttoward -1.000000000000000 -Infinity -> -1.000000000000001
+ddnextt427 nexttoward -1.0 -Infinity -> -1.000000000000001
+ddnextt428 nexttoward -1 -Infinity -> -1.000000000000001
+ddnextt429 nexttoward -1.000000000000001 -Infinity -> -1.000000000000002
+ddnextt430 nexttoward -1.000000000000002 -Infinity -> -1.000000000000003
+ddnextt431 nexttoward -1.000000000000003 -Infinity -> -1.000000000000004
+ddnextt432 nexttoward -1.000000000000004 -Infinity -> -1.000000000000005
+ddnextt433 nexttoward -1.000000000000005 -Infinity -> -1.000000000000006
+ddnextt434 nexttoward -1.000000000000006 -Infinity -> -1.000000000000007
+ddnextt435 nexttoward -1.000000000000007 -Infinity -> -1.000000000000008
+ddnextt436 nexttoward -1.000000000000008 -Infinity -> -1.000000000000009
+ddnextt437 nexttoward -1.000000000000009 -Infinity -> -1.000000000000010
+ddnextt438 nexttoward -1.000000000000010 -Infinity -> -1.000000000000011
+ddnextt439 nexttoward -1.000000000000011 -Infinity -> -1.000000000000012
+
+-- Zeros
+ddnextt500 nexttoward -0 -Infinity -> -1E-398 Underflow Subnormal Inexact Rounded
+ddnextt501 nexttoward 0 -Infinity -> -1E-398 Underflow Subnormal Inexact Rounded
+ddnextt502 nexttoward 0.00 -Infinity -> -1E-398 Underflow Subnormal Inexact Rounded
+ddnextt503 nexttoward -0.00 -Infinity -> -1E-398 Underflow Subnormal Inexact Rounded
+ddnextt504 nexttoward 0E-300 -Infinity -> -1E-398 Underflow Subnormal Inexact Rounded
+ddnextt505 nexttoward 0E+300 -Infinity -> -1E-398 Underflow Subnormal Inexact Rounded
+ddnextt506 nexttoward 0E+30000 -Infinity -> -1E-398 Underflow Subnormal Inexact Rounded
+ddnextt507 nexttoward -0E+30000 -Infinity -> -1E-398 Underflow Subnormal Inexact Rounded
+
+-- specials
+ddnextt550 nexttoward Inf -Infinity -> 9.999999999999999E+384
+ddnextt551 nexttoward -Inf -Infinity -> -Infinity
+ddnextt552 nexttoward NaN -Infinity -> NaN
+ddnextt553 nexttoward sNaN -Infinity -> NaN Invalid_operation
+ddnextt554 nexttoward NaN77 -Infinity -> NaN77
+ddnextt555 nexttoward sNaN88 -Infinity -> NaN88 Invalid_operation
+ddnextt556 nexttoward -NaN -Infinity -> -NaN
+ddnextt557 nexttoward -sNaN -Infinity -> -NaN Invalid_operation
+ddnextt558 nexttoward -NaN77 -Infinity -> -NaN77
+ddnextt559 nexttoward -sNaN88 -Infinity -> -NaN88 Invalid_operation
+
+-- Nmax, Nmin, Ntiny, subnormals
+ddnextt670 nexttoward 9.999999999999999E+384 -Infinity -> 9.999999999999998E+384
+ddnextt671 nexttoward 9.999999999999998E+384 -Infinity -> 9.999999999999997E+384
+ddnextt672 nexttoward 1E-383 -Infinity -> 9.99999999999999E-384 Underflow Subnormal Inexact Rounded
+ddnextt673 nexttoward 1.000000000000000E-383 -Infinity -> 9.99999999999999E-384 Underflow Subnormal Inexact Rounded
+ddnextt674 nexttoward 9E-398 -Infinity -> 8E-398 Underflow Subnormal Inexact Rounded
+ddnextt675 nexttoward 9.9E-397 -Infinity -> 9.8E-397 Underflow Subnormal Inexact Rounded
+ddnextt676 nexttoward 9.99999999999E-387 -Infinity -> 9.99999999998E-387 Underflow Subnormal Inexact Rounded
+ddnextt677 nexttoward 9.99999999999999E-384 -Infinity -> 9.99999999999998E-384 Underflow Subnormal Inexact Rounded
+ddnextt678 nexttoward 9.99999999999998E-384 -Infinity -> 9.99999999999997E-384 Underflow Subnormal Inexact Rounded
+ddnextt679 nexttoward 9.99999999999997E-384 -Infinity -> 9.99999999999996E-384 Underflow Subnormal Inexact Rounded
+ddnextt680 nexttoward 0E-398 -Infinity -> -1E-398 Underflow Subnormal Inexact Rounded
+ddnextt681 nexttoward 1E-398 -Infinity -> 0E-398 Underflow Subnormal Inexact Rounded Clamped
+ddnextt682 nexttoward 2E-398 -Infinity -> 1E-398 Underflow Subnormal Inexact Rounded
+
+ddnextt683 nexttoward -0E-398 -Infinity -> -1E-398 Underflow Subnormal Inexact Rounded
+ddnextt684 nexttoward -1E-398 -Infinity -> -2E-398 Underflow Subnormal Inexact Rounded
+ddnextt685 nexttoward -2E-398 -Infinity -> -3E-398 Underflow Subnormal Inexact Rounded
+ddnextt686 nexttoward -10E-398 -Infinity -> -1.1E-397 Underflow Subnormal Inexact Rounded
+ddnextt687 nexttoward -100E-398 -Infinity -> -1.01E-396 Underflow Subnormal Inexact Rounded
+ddnextt688 nexttoward -100000E-398 -Infinity -> -1.00001E-393 Underflow Subnormal Inexact Rounded
+ddnextt689 nexttoward -1.00000000000E-383 -Infinity -> -1.000000000000001E-383
+ddnextt690 nexttoward -1.000000000000000E-383 -Infinity -> -1.000000000000001E-383
+ddnextt691 nexttoward -1E-383 -Infinity -> -1.000000000000001E-383
+ddnextt692 nexttoward -9.999999999999998E+384 -Infinity -> -9.999999999999999E+384
+ddnextt693 nexttoward -9.999999999999999E+384 -Infinity -> -Infinity Overflow Inexact Rounded
+
+------- Specials
+ddnextt780 nexttoward -Inf -Inf -> -Infinity
+ddnextt781 nexttoward -Inf -1000 -> -9.999999999999999E+384
+ddnextt782 nexttoward -Inf -1 -> -9.999999999999999E+384
+ddnextt783 nexttoward -Inf -0 -> -9.999999999999999E+384
+ddnextt784 nexttoward -Inf 0 -> -9.999999999999999E+384
+ddnextt785 nexttoward -Inf 1 -> -9.999999999999999E+384
+ddnextt786 nexttoward -Inf 1000 -> -9.999999999999999E+384
+ddnextt787 nexttoward -1000 -Inf -> -1000.000000000001
+ddnextt788 nexttoward -Inf -Inf -> -Infinity
+ddnextt789 nexttoward -1 -Inf -> -1.000000000000001
+ddnextt790 nexttoward -0 -Inf -> -1E-398 Underflow Subnormal Inexact Rounded
+ddnextt791 nexttoward 0 -Inf -> -1E-398 Underflow Subnormal Inexact Rounded
+ddnextt792 nexttoward 1 -Inf -> 0.9999999999999999
+ddnextt793 nexttoward 1000 -Inf -> 999.9999999999999
+ddnextt794 nexttoward Inf -Inf -> 9.999999999999999E+384
+
+ddnextt800 nexttoward Inf -Inf -> 9.999999999999999E+384
+ddnextt801 nexttoward Inf -1000 -> 9.999999999999999E+384
+ddnextt802 nexttoward Inf -1 -> 9.999999999999999E+384
+ddnextt803 nexttoward Inf -0 -> 9.999999999999999E+384
+ddnextt804 nexttoward Inf 0 -> 9.999999999999999E+384
+ddnextt805 nexttoward Inf 1 -> 9.999999999999999E+384
+ddnextt806 nexttoward Inf 1000 -> 9.999999999999999E+384
+ddnextt807 nexttoward Inf Inf -> Infinity
+ddnextt808 nexttoward -1000 Inf -> -999.9999999999999
+ddnextt809 nexttoward -Inf Inf -> -9.999999999999999E+384
+ddnextt810 nexttoward -1 Inf -> -0.9999999999999999
+ddnextt811 nexttoward -0 Inf -> 1E-398 Underflow Subnormal Inexact Rounded
+ddnextt812 nexttoward 0 Inf -> 1E-398 Underflow Subnormal Inexact Rounded
+ddnextt813 nexttoward 1 Inf -> 1.000000000000001
+ddnextt814 nexttoward 1000 Inf -> 1000.000000000001
+ddnextt815 nexttoward Inf Inf -> Infinity
+
+ddnextt821 nexttoward NaN -Inf -> NaN
+ddnextt822 nexttoward NaN -1000 -> NaN
+ddnextt823 nexttoward NaN -1 -> NaN
+ddnextt824 nexttoward NaN -0 -> NaN
+ddnextt825 nexttoward NaN 0 -> NaN
+ddnextt826 nexttoward NaN 1 -> NaN
+ddnextt827 nexttoward NaN 1000 -> NaN
+ddnextt828 nexttoward NaN Inf -> NaN
+ddnextt829 nexttoward NaN NaN -> NaN
+ddnextt830 nexttoward -Inf NaN -> NaN
+ddnextt831 nexttoward -1000 NaN -> NaN
+ddnextt832 nexttoward -1 NaN -> NaN
+ddnextt833 nexttoward -0 NaN -> NaN
+ddnextt834 nexttoward 0 NaN -> NaN
+ddnextt835 nexttoward 1 NaN -> NaN
+ddnextt836 nexttoward 1000 NaN -> NaN
+ddnextt837 nexttoward Inf NaN -> NaN
+
+ddnextt841 nexttoward sNaN -Inf -> NaN Invalid_operation
+ddnextt842 nexttoward sNaN -1000 -> NaN Invalid_operation
+ddnextt843 nexttoward sNaN -1 -> NaN Invalid_operation
+ddnextt844 nexttoward sNaN -0 -> NaN Invalid_operation
+ddnextt845 nexttoward sNaN 0 -> NaN Invalid_operation
+ddnextt846 nexttoward sNaN 1 -> NaN Invalid_operation
+ddnextt847 nexttoward sNaN 1000 -> NaN Invalid_operation
+ddnextt848 nexttoward sNaN NaN -> NaN Invalid_operation
+ddnextt849 nexttoward sNaN sNaN -> NaN Invalid_operation
+ddnextt850 nexttoward NaN sNaN -> NaN Invalid_operation
+ddnextt851 nexttoward -Inf sNaN -> NaN Invalid_operation
+ddnextt852 nexttoward -1000 sNaN -> NaN Invalid_operation
+ddnextt853 nexttoward -1 sNaN -> NaN Invalid_operation
+ddnextt854 nexttoward -0 sNaN -> NaN Invalid_operation
+ddnextt855 nexttoward 0 sNaN -> NaN Invalid_operation
+ddnextt856 nexttoward 1 sNaN -> NaN Invalid_operation
+ddnextt857 nexttoward 1000 sNaN -> NaN Invalid_operation
+ddnextt858 nexttoward Inf sNaN -> NaN Invalid_operation
+ddnextt859 nexttoward NaN sNaN -> NaN Invalid_operation
+
+-- propagating NaNs
+ddnextt861 nexttoward NaN1 -Inf -> NaN1
+ddnextt862 nexttoward +NaN2 -1000 -> NaN2
+ddnextt863 nexttoward NaN3 1000 -> NaN3
+ddnextt864 nexttoward NaN4 Inf -> NaN4
+ddnextt865 nexttoward NaN5 +NaN6 -> NaN5
+ddnextt866 nexttoward -Inf NaN7 -> NaN7
+ddnextt867 nexttoward -1000 NaN8 -> NaN8
+ddnextt868 nexttoward 1000 NaN9 -> NaN9
+ddnextt869 nexttoward Inf +NaN10 -> NaN10
+ddnextt871 nexttoward sNaN11 -Inf -> NaN11 Invalid_operation
+ddnextt872 nexttoward sNaN12 -1000 -> NaN12 Invalid_operation
+ddnextt873 nexttoward sNaN13 1000 -> NaN13 Invalid_operation
+ddnextt874 nexttoward sNaN14 NaN17 -> NaN14 Invalid_operation
+ddnextt875 nexttoward sNaN15 sNaN18 -> NaN15 Invalid_operation
+ddnextt876 nexttoward NaN16 sNaN19 -> NaN19 Invalid_operation
+ddnextt877 nexttoward -Inf +sNaN20 -> NaN20 Invalid_operation
+ddnextt878 nexttoward -1000 sNaN21 -> NaN21 Invalid_operation
+ddnextt879 nexttoward 1000 sNaN22 -> NaN22 Invalid_operation
+ddnextt880 nexttoward Inf sNaN23 -> NaN23 Invalid_operation
+ddnextt881 nexttoward +NaN25 +sNaN24 -> NaN24 Invalid_operation
+ddnextt882 nexttoward -NaN26 NaN28 -> -NaN26
+ddnextt883 nexttoward -sNaN27 sNaN29 -> -NaN27 Invalid_operation
+ddnextt884 nexttoward 1000 -NaN30 -> -NaN30
+ddnextt885 nexttoward 1000 -sNaN31 -> -NaN31 Invalid_operation
+
+-- Null tests
+ddnextt900 nexttoward 1 # -> NaN Invalid_operation
+ddnextt901 nexttoward # 1 -> NaN Invalid_operation
+
diff --git a/Lib/test/decimaltestdata/ddOr.decTest b/Lib/test/decimaltestdata/ddOr.decTest
new file mode 100644
index 0000000..3a8cdd6
--- /dev/null
+++ b/Lib/test/decimaltestdata/ddOr.decTest
@@ -0,0 +1,292 @@
+------------------------------------------------------------------------
+-- ddOr.decTest -- digitwise logical OR for decDoubles --
+-- Copyright (c) IBM Corporation, 1981, 2007. All rights reserved. --
+------------------------------------------------------------------------
+-- Please see the document "General Decimal Arithmetic Testcases" --
+-- at http://www2.hursley.ibm.com/decimal for the description of --
+-- these testcases. --
+-- --
+-- These testcases are experimental ('beta' versions), and they --
+-- may contain errors. They are offered on an as-is basis. In --
+-- particular, achieving the same results as the tests here is not --
+-- a guarantee that an implementation complies with any Standard --
+-- or specification. The tests are not exhaustive. --
+-- --
+-- Please send comments, suggestions, and corrections to the author: --
+-- Mike Cowlishaw, IBM Fellow --
+-- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK --
+-- mfc@uk.ibm.com --
+------------------------------------------------------------------------
+version: 2.56
+
+precision: 16
+maxExponent: 384
+minExponent: -383
+extended: 1
+clamp: 1
+rounding: half_even
+
+-- Sanity check (truth table)
+ddor001 or 0 0 -> 0
+ddor002 or 0 1 -> 1
+ddor003 or 1 0 -> 1
+ddor004 or 1 1 -> 1
+ddor005 or 1100 1010 -> 1110
+-- and at msd and msd-1
+ddor006 or 0000000000000000 0000000000000000 -> 0
+ddor007 or 0000000000000000 1000000000000000 -> 1000000000000000
+ddor008 or 1000000000000000 0000000000000000 -> 1000000000000000
+ddor009 or 1000000000000000 1000000000000000 -> 1000000000000000
+ddor010 or 0000000000000000 0000000000000000 -> 0
+ddor011 or 0000000000000000 0100000000000000 -> 100000000000000
+ddor012 or 0100000000000000 0000000000000000 -> 100000000000000
+ddor013 or 0100000000000000 0100000000000000 -> 100000000000000
+
+-- Various lengths
+-- 1234567890123456 1234567890123456 1234567890123456
+ddor020 or 1111111111111111 1111111111111111 -> 1111111111111111
+ddor021 or 111111111111111 111111111111111 -> 111111111111111
+ddor022 or 11111111111111 11111111111111 -> 11111111111111
+ddor023 or 1111111111111 1111111111111 -> 1111111111111
+ddor024 or 111111111111 111111111111 -> 111111111111
+ddor025 or 11111111111 11111111111 -> 11111111111
+ddor026 or 1111111111 1111111111 -> 1111111111
+ddor027 or 111111111 111111111 -> 111111111
+ddor028 or 11111111 11111111 -> 11111111
+ddor029 or 1111111 1111111 -> 1111111
+ddor030 or 111111 111111 -> 111111
+ddor031 or 11111 11111 -> 11111
+ddor032 or 1111 1111 -> 1111
+ddor033 or 111 111 -> 111
+ddor034 or 11 11 -> 11
+ddor035 or 1 1 -> 1
+ddor036 or 0 0 -> 0
+
+ddor042 or 111111110000000 1111111110000000 -> 1111111110000000
+ddor043 or 11111110000000 1000000100000000 -> 1011111110000000
+ddor044 or 1111110000000 1000001000000000 -> 1001111110000000
+ddor045 or 111110000000 1000010000000000 -> 1000111110000000
+ddor046 or 11110000000 1000100000000000 -> 1000111110000000
+ddor047 or 1110000000 1001000000000000 -> 1001001110000000
+ddor048 or 110000000 1010000000000000 -> 1010000110000000
+ddor049 or 10000000 1100000000000000 -> 1100000010000000
+
+ddor090 or 011111111 111101111 -> 111111111
+ddor091 or 101111111 111101111 -> 111111111
+ddor092 or 110111111 111101111 -> 111111111
+ddor093 or 111011111 111101111 -> 111111111
+ddor094 or 111101111 111101111 -> 111101111
+ddor095 or 111110111 111101111 -> 111111111
+ddor096 or 111111011 111101111 -> 111111111
+ddor097 or 111111101 111101111 -> 111111111
+ddor098 or 111111110 111101111 -> 111111111
+
+ddor100 or 111101111 011111111 -> 111111111
+ddor101 or 111101111 101111111 -> 111111111
+ddor102 or 111101111 110111111 -> 111111111
+ddor103 or 111101111 111011111 -> 111111111
+ddor104 or 111101111 111101111 -> 111101111
+ddor105 or 111101111 111110111 -> 111111111
+ddor106 or 111101111 111111011 -> 111111111
+ddor107 or 111101111 111111101 -> 111111111
+ddor108 or 111101111 111111110 -> 111111111
+
+-- non-0/1 should not be accepted, nor should signs
+ddor220 or 111111112 111111111 -> NaN Invalid_operation
+ddor221 or 333333333 333333333 -> NaN Invalid_operation
+ddor222 or 555555555 555555555 -> NaN Invalid_operation
+ddor223 or 777777777 777777777 -> NaN Invalid_operation
+ddor224 or 999999999 999999999 -> NaN Invalid_operation
+ddor225 or 222222222 999999999 -> NaN Invalid_operation
+ddor226 or 444444444 999999999 -> NaN Invalid_operation
+ddor227 or 666666666 999999999 -> NaN Invalid_operation
+ddor228 or 888888888 999999999 -> NaN Invalid_operation
+ddor229 or 999999999 222222222 -> NaN Invalid_operation
+ddor230 or 999999999 444444444 -> NaN Invalid_operation
+ddor231 or 999999999 666666666 -> NaN Invalid_operation
+ddor232 or 999999999 888888888 -> NaN Invalid_operation
+-- a few randoms
+ddor240 or 567468689 -934981942 -> NaN Invalid_operation
+ddor241 or 567367689 934981942 -> NaN Invalid_operation
+ddor242 or -631917772 -706014634 -> NaN Invalid_operation
+ddor243 or -756253257 138579234 -> NaN Invalid_operation
+ddor244 or 835590149 567435400 -> NaN Invalid_operation
+-- test MSD
+ddor250 or 2000000000000000 1000000000000000 -> NaN Invalid_operation
+ddor251 or 7000000000000000 1000000000000000 -> NaN Invalid_operation
+ddor252 or 8000000000000000 1000000000000000 -> NaN Invalid_operation
+ddor253 or 9000000000000000 1000000000000000 -> NaN Invalid_operation
+ddor254 or 2000000000000000 0000000000000000 -> NaN Invalid_operation
+ddor255 or 7000000000000000 0000000000000000 -> NaN Invalid_operation
+ddor256 or 8000000000000000 0000000000000000 -> NaN Invalid_operation
+ddor257 or 9000000000000000 0000000000000000 -> NaN Invalid_operation
+ddor258 or 1000000000000000 2000000000000000 -> NaN Invalid_operation
+ddor259 or 1000000000000000 7000000000000000 -> NaN Invalid_operation
+ddor260 or 1000000000000000 8000000000000000 -> NaN Invalid_operation
+ddor261 or 1000000000000000 9000000000000000 -> NaN Invalid_operation
+ddor262 or 0000000000000000 2000000000000000 -> NaN Invalid_operation
+ddor263 or 0000000000000000 7000000000000000 -> NaN Invalid_operation
+ddor264 or 0000000000000000 8000000000000000 -> NaN Invalid_operation
+ddor265 or 0000000000000000 9000000000000000 -> NaN Invalid_operation
+-- test MSD-1
+ddor270 or 0200001000000000 1000100000000010 -> NaN Invalid_operation
+ddor271 or 0700000100000000 1000010000000100 -> NaN Invalid_operation
+ddor272 or 0800000010000000 1000001000001000 -> NaN Invalid_operation
+ddor273 or 0900000001000000 1000000100010000 -> NaN Invalid_operation
+ddor274 or 1000000000100000 0200000010100000 -> NaN Invalid_operation
+ddor275 or 1000000000010000 0700000001000000 -> NaN Invalid_operation
+ddor276 or 1000000000001000 0800000010100000 -> NaN Invalid_operation
+ddor277 or 1000000000000100 0900000000010000 -> NaN Invalid_operation
+-- test LSD
+ddor280 or 0010000000000002 1000000100000001 -> NaN Invalid_operation
+ddor281 or 0001000000000007 1000001000000011 -> NaN Invalid_operation
+ddor282 or 0000100000000008 1000010000000001 -> NaN Invalid_operation
+ddor283 or 0000010000000009 1000100000000001 -> NaN Invalid_operation
+ddor284 or 1000001000000000 0001000000000002 -> NaN Invalid_operation
+ddor285 or 1000000100000000 0010000000000007 -> NaN Invalid_operation
+ddor286 or 1000000010000000 0100000000000008 -> NaN Invalid_operation
+ddor287 or 1000000001000000 1000000000000009 -> NaN Invalid_operation
+-- test Middie
+ddor288 or 0010000020000000 1000001000000000 -> NaN Invalid_operation
+ddor289 or 0001000070000001 1000000100000000 -> NaN Invalid_operation
+ddor290 or 0000100080000010 1000000010000000 -> NaN Invalid_operation
+ddor291 or 0000010090000100 1000000001000000 -> NaN Invalid_operation
+ddor292 or 1000001000001000 0000000020100000 -> NaN Invalid_operation
+ddor293 or 1000000100010000 0000000070010000 -> NaN Invalid_operation
+ddor294 or 1000000010100000 0000000080001000 -> NaN Invalid_operation
+ddor295 or 1000000001000000 0000000090000100 -> NaN Invalid_operation
+-- signs
+ddor296 or -1000000001000000 -0000010000000100 -> NaN Invalid_operation
+ddor297 or -1000000001000000 0000000010000100 -> NaN Invalid_operation
+ddor298 or 1000000001000000 -0000001000000100 -> NaN Invalid_operation
+ddor299 or 1000000001000000 0000000011000100 -> 1000000011000100
+
+-- Nmax, Nmin, Ntiny-like
+ddor331 or 2 9.99999999E+199 -> NaN Invalid_operation
+ddor332 or 3 1E-199 -> NaN Invalid_operation
+ddor333 or 4 1.00000000E-199 -> NaN Invalid_operation
+ddor334 or 5 1E-100 -> NaN Invalid_operation
+ddor335 or 6 -1E-100 -> NaN Invalid_operation
+ddor336 or 7 -1.00000000E-199 -> NaN Invalid_operation
+ddor337 or 8 -1E-199 -> NaN Invalid_operation
+ddor338 or 9 -9.99999999E+199 -> NaN Invalid_operation
+ddor341 or 9.99999999E+299 -18 -> NaN Invalid_operation
+ddor342 or 1E-299 01 -> NaN Invalid_operation
+ddor343 or 1.00000000E-299 -18 -> NaN Invalid_operation
+ddor344 or 1E-100 18 -> NaN Invalid_operation
+ddor345 or -1E-100 -10 -> NaN Invalid_operation
+ddor346 or -1.00000000E-299 18 -> NaN Invalid_operation
+ddor347 or -1E-299 10 -> NaN Invalid_operation
+ddor348 or -9.99999999E+299 -18 -> NaN Invalid_operation
+
+-- A few other non-integers
+ddor361 or 1.0 1 -> NaN Invalid_operation
+ddor362 or 1E+1 1 -> NaN Invalid_operation
+ddor363 or 0.0 1 -> NaN Invalid_operation
+ddor364 or 0E+1 1 -> NaN Invalid_operation
+ddor365 or 9.9 1 -> NaN Invalid_operation
+ddor366 or 9E+1 1 -> NaN Invalid_operation
+ddor371 or 0 1.0 -> NaN Invalid_operation
+ddor372 or 0 1E+1 -> NaN Invalid_operation
+ddor373 or 0 0.0 -> NaN Invalid_operation
+ddor374 or 0 0E+1 -> NaN Invalid_operation
+ddor375 or 0 9.9 -> NaN Invalid_operation
+ddor376 or 0 9E+1 -> NaN Invalid_operation
+
+-- All Specials are in error
+ddor780 or -Inf -Inf -> NaN Invalid_operation
+ddor781 or -Inf -1000 -> NaN Invalid_operation
+ddor782 or -Inf -1 -> NaN Invalid_operation
+ddor783 or -Inf -0 -> NaN Invalid_operation
+ddor784 or -Inf 0 -> NaN Invalid_operation
+ddor785 or -Inf 1 -> NaN Invalid_operation
+ddor786 or -Inf 1000 -> NaN Invalid_operation
+ddor787 or -1000 -Inf -> NaN Invalid_operation
+ddor788 or -Inf -Inf -> NaN Invalid_operation
+ddor789 or -1 -Inf -> NaN Invalid_operation
+ddor790 or -0 -Inf -> NaN Invalid_operation
+ddor791 or 0 -Inf -> NaN Invalid_operation
+ddor792 or 1 -Inf -> NaN Invalid_operation
+ddor793 or 1000 -Inf -> NaN Invalid_operation
+ddor794 or Inf -Inf -> NaN Invalid_operation
+
+ddor800 or Inf -Inf -> NaN Invalid_operation
+ddor801 or Inf -1000 -> NaN Invalid_operation
+ddor802 or Inf -1 -> NaN Invalid_operation
+ddor803 or Inf -0 -> NaN Invalid_operation
+ddor804 or Inf 0 -> NaN Invalid_operation
+ddor805 or Inf 1 -> NaN Invalid_operation
+ddor806 or Inf 1000 -> NaN Invalid_operation
+ddor807 or Inf Inf -> NaN Invalid_operation
+ddor808 or -1000 Inf -> NaN Invalid_operation
+ddor809 or -Inf Inf -> NaN Invalid_operation
+ddor810 or -1 Inf -> NaN Invalid_operation
+ddor811 or -0 Inf -> NaN Invalid_operation
+ddor812 or 0 Inf -> NaN Invalid_operation
+ddor813 or 1 Inf -> NaN Invalid_operation
+ddor814 or 1000 Inf -> NaN Invalid_operation
+ddor815 or Inf Inf -> NaN Invalid_operation
+
+ddor821 or NaN -Inf -> NaN Invalid_operation
+ddor822 or NaN -1000 -> NaN Invalid_operation
+ddor823 or NaN -1 -> NaN Invalid_operation
+ddor824 or NaN -0 -> NaN Invalid_operation
+ddor825 or NaN 0 -> NaN Invalid_operation
+ddor826 or NaN 1 -> NaN Invalid_operation
+ddor827 or NaN 1000 -> NaN Invalid_operation
+ddor828 or NaN Inf -> NaN Invalid_operation
+ddor829 or NaN NaN -> NaN Invalid_operation
+ddor830 or -Inf NaN -> NaN Invalid_operation
+ddor831 or -1000 NaN -> NaN Invalid_operation
+ddor832 or -1 NaN -> NaN Invalid_operation
+ddor833 or -0 NaN -> NaN Invalid_operation
+ddor834 or 0 NaN -> NaN Invalid_operation
+ddor835 or 1 NaN -> NaN Invalid_operation
+ddor836 or 1000 NaN -> NaN Invalid_operation
+ddor837 or Inf NaN -> NaN Invalid_operation
+
+ddor841 or sNaN -Inf -> NaN Invalid_operation
+ddor842 or sNaN -1000 -> NaN Invalid_operation
+ddor843 or sNaN -1 -> NaN Invalid_operation
+ddor844 or sNaN -0 -> NaN Invalid_operation
+ddor845 or sNaN 0 -> NaN Invalid_operation
+ddor846 or sNaN 1 -> NaN Invalid_operation
+ddor847 or sNaN 1000 -> NaN Invalid_operation
+ddor848 or sNaN NaN -> NaN Invalid_operation
+ddor849 or sNaN sNaN -> NaN Invalid_operation
+ddor850 or NaN sNaN -> NaN Invalid_operation
+ddor851 or -Inf sNaN -> NaN Invalid_operation
+ddor852 or -1000 sNaN -> NaN Invalid_operation
+ddor853 or -1 sNaN -> NaN Invalid_operation
+ddor854 or -0 sNaN -> NaN Invalid_operation
+ddor855 or 0 sNaN -> NaN Invalid_operation
+ddor856 or 1 sNaN -> NaN Invalid_operation
+ddor857 or 1000 sNaN -> NaN Invalid_operation
+ddor858 or Inf sNaN -> NaN Invalid_operation
+ddor859 or NaN sNaN -> NaN Invalid_operation
+
+-- propagating NaNs
+ddor861 or NaN1 -Inf -> NaN Invalid_operation
+ddor862 or +NaN2 -1000 -> NaN Invalid_operation
+ddor863 or NaN3 1000 -> NaN Invalid_operation
+ddor864 or NaN4 Inf -> NaN Invalid_operation
+ddor865 or NaN5 +NaN6 -> NaN Invalid_operation
+ddor866 or -Inf NaN7 -> NaN Invalid_operation
+ddor867 or -1000 NaN8 -> NaN Invalid_operation
+ddor868 or 1000 NaN9 -> NaN Invalid_operation
+ddor869 or Inf +NaN10 -> NaN Invalid_operation
+ddor871 or sNaN11 -Inf -> NaN Invalid_operation
+ddor872 or sNaN12 -1000 -> NaN Invalid_operation
+ddor873 or sNaN13 1000 -> NaN Invalid_operation
+ddor874 or sNaN14 NaN17 -> NaN Invalid_operation
+ddor875 or sNaN15 sNaN18 -> NaN Invalid_operation
+ddor876 or NaN16 sNaN19 -> NaN Invalid_operation
+ddor877 or -Inf +sNaN20 -> NaN Invalid_operation
+ddor878 or -1000 sNaN21 -> NaN Invalid_operation
+ddor879 or 1000 sNaN22 -> NaN Invalid_operation
+ddor880 or Inf sNaN23 -> NaN Invalid_operation
+ddor881 or +NaN25 +sNaN24 -> NaN Invalid_operation
+ddor882 or -NaN26 NaN28 -> NaN Invalid_operation
+ddor883 or -sNaN27 sNaN29 -> NaN Invalid_operation
+ddor884 or 1000 -NaN30 -> NaN Invalid_operation
+ddor885 or 1000 -sNaN31 -> NaN Invalid_operation
diff --git a/Lib/test/decimaltestdata/ddPlus.decTest b/Lib/test/decimaltestdata/ddPlus.decTest
new file mode 100644
index 0000000..962a656
--- /dev/null
+++ b/Lib/test/decimaltestdata/ddPlus.decTest
@@ -0,0 +1,88 @@
+------------------------------------------------------------------------
+-- ddPlus.decTest -- decDouble 0+x --
+-- Copyright (c) IBM Corporation, 1981, 2007. All rights reserved. --
+------------------------------------------------------------------------
+-- Please see the document "General Decimal Arithmetic Testcases" --
+-- at http://www2.hursley.ibm.com/decimal for the description of --
+-- these testcases. --
+-- --
+-- These testcases are experimental ('beta' versions), and they --
+-- may contain errors. They are offered on an as-is basis. In --
+-- particular, achieving the same results as the tests here is not --
+-- a guarantee that an implementation complies with any Standard --
+-- or specification. The tests are not exhaustive. --
+-- --
+-- Please send comments, suggestions, and corrections to the author: --
+-- Mike Cowlishaw, IBM Fellow --
+-- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK --
+-- mfc@uk.ibm.com --
+------------------------------------------------------------------------
+version: 2.56
+
+-- All operands and results are decDoubles.
+precision: 16
+maxExponent: 384
+minExponent: -383
+extended: 1
+clamp: 1
+rounding: half_even
+
+-- Sanity check
+ddpls001 plus +7.50 -> 7.50
+
+-- Infinities
+ddpls011 plus Infinity -> Infinity
+ddpls012 plus -Infinity -> -Infinity
+
+-- NaNs, 0 payload
+ddpls021 plus NaN -> NaN
+ddpls022 plus -NaN -> -NaN
+ddpls023 plus sNaN -> NaN Invalid_operation
+ddpls024 plus -sNaN -> -NaN Invalid_operation
+
+-- NaNs, non-0 payload
+ddpls031 plus NaN13 -> NaN13
+ddpls032 plus -NaN13 -> -NaN13
+ddpls033 plus sNaN13 -> NaN13 Invalid_operation
+ddpls034 plus -sNaN13 -> -NaN13 Invalid_operation
+ddpls035 plus NaN70 -> NaN70
+ddpls036 plus -NaN70 -> -NaN70
+ddpls037 plus sNaN101 -> NaN101 Invalid_operation
+ddpls038 plus -sNaN101 -> -NaN101 Invalid_operation
+
+-- finites
+ddpls101 plus 7 -> 7
+ddpls102 plus -7 -> -7
+ddpls103 plus 75 -> 75
+ddpls104 plus -75 -> -75
+ddpls105 plus 7.50 -> 7.50
+ddpls106 plus -7.50 -> -7.50
+ddpls107 plus 7.500 -> 7.500
+ddpls108 plus -7.500 -> -7.500
+
+-- zeros
+ddpls111 plus 0 -> 0
+ddpls112 plus -0 -> 0
+ddpls113 plus 0E+4 -> 0E+4
+ddpls114 plus -0E+4 -> 0E+4
+ddpls115 plus 0.0000 -> 0.0000
+ddpls116 plus -0.0000 -> 0.0000
+ddpls117 plus 0E-141 -> 0E-141
+ddpls118 plus -0E-141 -> 0E-141
+
+-- full coefficients, alternating bits
+ddpls121 plus 2682682682682682 -> 2682682682682682
+ddpls122 plus -2682682682682682 -> -2682682682682682
+ddpls123 plus 1341341341341341 -> 1341341341341341
+ddpls124 plus -1341341341341341 -> -1341341341341341
+
+-- Nmax, Nmin, Ntiny
+ddpls131 plus 9.999999999999999E+384 -> 9.999999999999999E+384
+ddpls132 plus 1E-383 -> 1E-383
+ddpls133 plus 1.000000000000000E-383 -> 1.000000000000000E-383
+ddpls134 plus 1E-398 -> 1E-398 Subnormal
+
+ddpls135 plus -1E-398 -> -1E-398 Subnormal
+ddpls136 plus -1.000000000000000E-383 -> -1.000000000000000E-383
+ddpls137 plus -1E-383 -> -1E-383
+ddpls138 plus -9.999999999999999E+384 -> -9.999999999999999E+384
diff --git a/Lib/test/decimaltestdata/ddQuantize.decTest b/Lib/test/decimaltestdata/ddQuantize.decTest
new file mode 100644
index 0000000..234db92
--- /dev/null
+++ b/Lib/test/decimaltestdata/ddQuantize.decTest
@@ -0,0 +1,825 @@
+------------------------------------------------------------------------
+-- ddQuantize.decTest -- decDouble quantize operation --
+-- Copyright (c) IBM Corporation, 1981, 2007. All rights reserved. --
+------------------------------------------------------------------------
+-- Please see the document "General Decimal Arithmetic Testcases" --
+-- at http://www2.hursley.ibm.com/decimal for the description of --
+-- these testcases. --
+-- --
+-- These testcases are experimental ('beta' versions), and they --
+-- may contain errors. They are offered on an as-is basis. In --
+-- particular, achieving the same results as the tests here is not --
+-- a guarantee that an implementation complies with any Standard --
+-- or specification. The tests are not exhaustive. --
+-- --
+-- Please send comments, suggestions, and corrections to the author: --
+-- Mike Cowlishaw, IBM Fellow --
+-- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK --
+-- mfc@uk.ibm.com --
+------------------------------------------------------------------------
+version: 2.56
+
+-- Most of the tests here assume a "regular pattern", where the
+-- sign and coefficient are +1.
+-- 2004.03.15 Underflow for quantize is suppressed
+-- 2005.06.08 More extensive tests for 'does not fit'
+precision: 16
+maxExponent: 384
+minExponent: -383
+extended: 1
+clamp: 1
+rounding: half_even
+
+-- sanity checks
+ddqua001 quantize 0 1e0 -> 0
+ddqua002 quantize 1 1e0 -> 1
+ddqua003 quantize 0.1 1e+2 -> 0E+2 Inexact Rounded
+ddqua005 quantize 0.1 1e+1 -> 0E+1 Inexact Rounded
+ddqua006 quantize 0.1 1e0 -> 0 Inexact Rounded
+ddqua007 quantize 0.1 1e-1 -> 0.1
+ddqua008 quantize 0.1 1e-2 -> 0.10
+ddqua009 quantize 0.1 1e-3 -> 0.100
+ddqua010 quantize 0.9 1e+2 -> 0E+2 Inexact Rounded
+ddqua011 quantize 0.9 1e+1 -> 0E+1 Inexact Rounded
+ddqua012 quantize 0.9 1e+0 -> 1 Inexact Rounded
+ddqua013 quantize 0.9 1e-1 -> 0.9
+ddqua014 quantize 0.9 1e-2 -> 0.90
+ddqua015 quantize 0.9 1e-3 -> 0.900
+-- negatives
+ddqua021 quantize -0 1e0 -> -0
+ddqua022 quantize -1 1e0 -> -1
+ddqua023 quantize -0.1 1e+2 -> -0E+2 Inexact Rounded
+ddqua025 quantize -0.1 1e+1 -> -0E+1 Inexact Rounded
+ddqua026 quantize -0.1 1e0 -> -0 Inexact Rounded
+ddqua027 quantize -0.1 1e-1 -> -0.1
+ddqua028 quantize -0.1 1e-2 -> -0.10
+ddqua029 quantize -0.1 1e-3 -> -0.100
+ddqua030 quantize -0.9 1e+2 -> -0E+2 Inexact Rounded
+ddqua031 quantize -0.9 1e+1 -> -0E+1 Inexact Rounded
+ddqua032 quantize -0.9 1e+0 -> -1 Inexact Rounded
+ddqua033 quantize -0.9 1e-1 -> -0.9
+ddqua034 quantize -0.9 1e-2 -> -0.90
+ddqua035 quantize -0.9 1e-3 -> -0.900
+ddqua036 quantize -0.5 1e+2 -> -0E+2 Inexact Rounded
+ddqua037 quantize -0.5 1e+1 -> -0E+1 Inexact Rounded
+ddqua038 quantize -0.5 1e+0 -> -0 Inexact Rounded
+ddqua039 quantize -0.5 1e-1 -> -0.5
+ddqua040 quantize -0.5 1e-2 -> -0.50
+ddqua041 quantize -0.5 1e-3 -> -0.500
+ddqua042 quantize -0.9 1e+2 -> -0E+2 Inexact Rounded
+ddqua043 quantize -0.9 1e+1 -> -0E+1 Inexact Rounded
+ddqua044 quantize -0.9 1e+0 -> -1 Inexact Rounded
+ddqua045 quantize -0.9 1e-1 -> -0.9
+ddqua046 quantize -0.9 1e-2 -> -0.90
+ddqua047 quantize -0.9 1e-3 -> -0.900
+
+-- examples from Specification
+ddqua060 quantize 2.17 0.001 -> 2.170
+ddqua061 quantize 2.17 0.01 -> 2.17
+ddqua062 quantize 2.17 0.1 -> 2.2 Inexact Rounded
+ddqua063 quantize 2.17 1e+0 -> 2 Inexact Rounded
+ddqua064 quantize 2.17 1e+1 -> 0E+1 Inexact Rounded
+ddqua065 quantize -Inf Inf -> -Infinity
+ddqua066 quantize 2 Inf -> NaN Invalid_operation
+ddqua067 quantize -0.1 1 -> -0 Inexact Rounded
+ddqua068 quantize -0 1e+5 -> -0E+5
+ddqua069 quantize +123456789012345.6 1e-2 -> NaN Invalid_operation
+ddqua070 quantize -987654335236450.6 1e-2 -> NaN Invalid_operation
+ddqua071 quantize 217 1e-1 -> 217.0
+ddqua072 quantize 217 1e+0 -> 217
+ddqua073 quantize 217 1e+1 -> 2.2E+2 Inexact Rounded
+ddqua074 quantize 217 1e+2 -> 2E+2 Inexact Rounded
+
+-- general tests ..
+ddqua089 quantize 12 1e+4 -> 0E+4 Inexact Rounded
+ddqua090 quantize 12 1e+3 -> 0E+3 Inexact Rounded
+ddqua091 quantize 12 1e+2 -> 0E+2 Inexact Rounded
+ddqua092 quantize 12 1e+1 -> 1E+1 Inexact Rounded
+ddqua093 quantize 1.2345 1e-2 -> 1.23 Inexact Rounded
+ddqua094 quantize 1.2355 1e-2 -> 1.24 Inexact Rounded
+ddqua095 quantize 1.2345 1e-6 -> 1.234500
+ddqua096 quantize 9.9999 1e-2 -> 10.00 Inexact Rounded
+ddqua097 quantize 0.0001 1e-2 -> 0.00 Inexact Rounded
+ddqua098 quantize 0.001 1e-2 -> 0.00 Inexact Rounded
+ddqua099 quantize 0.009 1e-2 -> 0.01 Inexact Rounded
+ddqua100 quantize 92 1e+2 -> 1E+2 Inexact Rounded
+
+ddqua101 quantize -1 1e0 -> -1
+ddqua102 quantize -1 1e-1 -> -1.0
+ddqua103 quantize -1 1e-2 -> -1.00
+ddqua104 quantize 0 1e0 -> 0
+ddqua105 quantize 0 1e-1 -> 0.0
+ddqua106 quantize 0 1e-2 -> 0.00
+ddqua107 quantize 0.00 1e0 -> 0
+ddqua108 quantize 0 1e+1 -> 0E+1
+ddqua109 quantize 0 1e+2 -> 0E+2
+ddqua110 quantize +1 1e0 -> 1
+ddqua111 quantize +1 1e-1 -> 1.0
+ddqua112 quantize +1 1e-2 -> 1.00
+
+ddqua120 quantize 1.04 1e-3 -> 1.040
+ddqua121 quantize 1.04 1e-2 -> 1.04
+ddqua122 quantize 1.04 1e-1 -> 1.0 Inexact Rounded
+ddqua123 quantize 1.04 1e0 -> 1 Inexact Rounded
+ddqua124 quantize 1.05 1e-3 -> 1.050
+ddqua125 quantize 1.05 1e-2 -> 1.05
+ddqua126 quantize 1.05 1e-1 -> 1.0 Inexact Rounded
+ddqua131 quantize 1.05 1e0 -> 1 Inexact Rounded
+ddqua132 quantize 1.06 1e-3 -> 1.060
+ddqua133 quantize 1.06 1e-2 -> 1.06
+ddqua134 quantize 1.06 1e-1 -> 1.1 Inexact Rounded
+ddqua135 quantize 1.06 1e0 -> 1 Inexact Rounded
+
+ddqua140 quantize -10 1e-2 -> -10.00
+ddqua141 quantize +1 1e-2 -> 1.00
+ddqua142 quantize +10 1e-2 -> 10.00
+ddqua143 quantize 1E+17 1e-2 -> NaN Invalid_operation
+ddqua144 quantize 1E-17 1e-2 -> 0.00 Inexact Rounded
+ddqua145 quantize 1E-3 1e-2 -> 0.00 Inexact Rounded
+ddqua146 quantize 1E-2 1e-2 -> 0.01
+ddqua147 quantize 1E-1 1e-2 -> 0.10
+ddqua148 quantize 0E-17 1e-2 -> 0.00
+
+ddqua150 quantize 1.0600 1e-5 -> 1.06000
+ddqua151 quantize 1.0600 1e-4 -> 1.0600
+ddqua152 quantize 1.0600 1e-3 -> 1.060 Rounded
+ddqua153 quantize 1.0600 1e-2 -> 1.06 Rounded
+ddqua154 quantize 1.0600 1e-1 -> 1.1 Inexact Rounded
+ddqua155 quantize 1.0600 1e0 -> 1 Inexact Rounded
+
+-- a couple where rounding was different in base tests
+rounding: half_up
+ddqua157 quantize -0.5 1e+0 -> -1 Inexact Rounded
+ddqua158 quantize 1.05 1e-1 -> 1.1 Inexact Rounded
+ddqua159 quantize 1.06 1e0 -> 1 Inexact Rounded
+rounding: half_even
+
+-- base tests with non-1 coefficients
+ddqua161 quantize 0 -9e0 -> 0
+ddqua162 quantize 1 -7e0 -> 1
+ddqua163 quantize 0.1 -1e+2 -> 0E+2 Inexact Rounded
+ddqua165 quantize 0.1 0e+1 -> 0E+1 Inexact Rounded
+ddqua166 quantize 0.1 2e0 -> 0 Inexact Rounded
+ddqua167 quantize 0.1 3e-1 -> 0.1
+ddqua168 quantize 0.1 44e-2 -> 0.10
+ddqua169 quantize 0.1 555e-3 -> 0.100
+ddqua170 quantize 0.9 6666e+2 -> 0E+2 Inexact Rounded
+ddqua171 quantize 0.9 -777e+1 -> 0E+1 Inexact Rounded
+ddqua172 quantize 0.9 -88e+0 -> 1 Inexact Rounded
+ddqua173 quantize 0.9 -9e-1 -> 0.9
+ddqua174 quantize 0.9 0e-2 -> 0.90
+ddqua175 quantize 0.9 1.1e-3 -> 0.9000
+-- negatives
+ddqua181 quantize -0 1.1e0 -> -0.0
+ddqua182 quantize -1 -1e0 -> -1
+ddqua183 quantize -0.1 11e+2 -> -0E+2 Inexact Rounded
+ddqua185 quantize -0.1 111e+1 -> -0E+1 Inexact Rounded
+ddqua186 quantize -0.1 71e0 -> -0 Inexact Rounded
+ddqua187 quantize -0.1 -91e-1 -> -0.1
+ddqua188 quantize -0.1 -.1e-2 -> -0.100
+ddqua189 quantize -0.1 -1e-3 -> -0.100
+ddqua190 quantize -0.9 0e+2 -> -0E+2 Inexact Rounded
+ddqua191 quantize -0.9 -0e+1 -> -0E+1 Inexact Rounded
+ddqua192 quantize -0.9 -10e+0 -> -1 Inexact Rounded
+ddqua193 quantize -0.9 100e-1 -> -0.9
+ddqua194 quantize -0.9 999e-2 -> -0.90
+
+-- +ve exponents ..
+ddqua201 quantize -1 1e+0 -> -1
+ddqua202 quantize -1 1e+1 -> -0E+1 Inexact Rounded
+ddqua203 quantize -1 1e+2 -> -0E+2 Inexact Rounded
+ddqua204 quantize 0 1e+0 -> 0
+ddqua205 quantize 0 1e+1 -> 0E+1
+ddqua206 quantize 0 1e+2 -> 0E+2
+ddqua207 quantize +1 1e+0 -> 1
+ddqua208 quantize +1 1e+1 -> 0E+1 Inexact Rounded
+ddqua209 quantize +1 1e+2 -> 0E+2 Inexact Rounded
+
+ddqua220 quantize 1.04 1e+3 -> 0E+3 Inexact Rounded
+ddqua221 quantize 1.04 1e+2 -> 0E+2 Inexact Rounded
+ddqua222 quantize 1.04 1e+1 -> 0E+1 Inexact Rounded
+ddqua223 quantize 1.04 1e+0 -> 1 Inexact Rounded
+ddqua224 quantize 1.05 1e+3 -> 0E+3 Inexact Rounded
+ddqua225 quantize 1.05 1e+2 -> 0E+2 Inexact Rounded
+ddqua226 quantize 1.05 1e+1 -> 0E+1 Inexact Rounded
+ddqua227 quantize 1.05 1e+0 -> 1 Inexact Rounded
+ddqua228 quantize 1.05 1e+3 -> 0E+3 Inexact Rounded
+ddqua229 quantize 1.05 1e+2 -> 0E+2 Inexact Rounded
+ddqua230 quantize 1.05 1e+1 -> 0E+1 Inexact Rounded
+ddqua231 quantize 1.05 1e+0 -> 1 Inexact Rounded
+ddqua232 quantize 1.06 1e+3 -> 0E+3 Inexact Rounded
+ddqua233 quantize 1.06 1e+2 -> 0E+2 Inexact Rounded
+ddqua234 quantize 1.06 1e+1 -> 0E+1 Inexact Rounded
+ddqua235 quantize 1.06 1e+0 -> 1 Inexact Rounded
+
+ddqua240 quantize -10 1e+1 -> -1E+1 Rounded
+ddqua241 quantize +1 1e+1 -> 0E+1 Inexact Rounded
+ddqua242 quantize +10 1e+1 -> 1E+1 Rounded
+ddqua243 quantize 1E+1 1e+1 -> 1E+1 -- underneath this is E+1
+ddqua244 quantize 1E+2 1e+1 -> 1.0E+2 -- underneath this is E+1
+ddqua245 quantize 1E+3 1e+1 -> 1.00E+3 -- underneath this is E+1
+ddqua246 quantize 1E+4 1e+1 -> 1.000E+4 -- underneath this is E+1
+ddqua247 quantize 1E+5 1e+1 -> 1.0000E+5 -- underneath this is E+1
+ddqua248 quantize 1E+6 1e+1 -> 1.00000E+6 -- underneath this is E+1
+ddqua249 quantize 1E+7 1e+1 -> 1.000000E+7 -- underneath this is E+1
+ddqua250 quantize 1E+8 1e+1 -> 1.0000000E+8 -- underneath this is E+1
+ddqua251 quantize 1E+9 1e+1 -> 1.00000000E+9 -- underneath this is E+1
+-- next one tries to add 9 zeros
+ddqua252 quantize 1E+17 1e+1 -> NaN Invalid_operation
+ddqua253 quantize 1E-17 1e+1 -> 0E+1 Inexact Rounded
+ddqua254 quantize 1E-2 1e+1 -> 0E+1 Inexact Rounded
+ddqua255 quantize 0E-17 1e+1 -> 0E+1
+ddqua256 quantize -0E-17 1e+1 -> -0E+1
+ddqua257 quantize -0E-1 1e+1 -> -0E+1
+ddqua258 quantize -0 1e+1 -> -0E+1
+ddqua259 quantize -0E+1 1e+1 -> -0E+1
+
+ddqua260 quantize -10 1e+2 -> -0E+2 Inexact Rounded
+ddqua261 quantize +1 1e+2 -> 0E+2 Inexact Rounded
+ddqua262 quantize +10 1e+2 -> 0E+2 Inexact Rounded
+ddqua263 quantize 1E+1 1e+2 -> 0E+2 Inexact Rounded
+ddqua264 quantize 1E+2 1e+2 -> 1E+2
+ddqua265 quantize 1E+3 1e+2 -> 1.0E+3
+ddqua266 quantize 1E+4 1e+2 -> 1.00E+4
+ddqua267 quantize 1E+5 1e+2 -> 1.000E+5
+ddqua268 quantize 1E+6 1e+2 -> 1.0000E+6
+ddqua269 quantize 1E+7 1e+2 -> 1.00000E+7
+ddqua270 quantize 1E+8 1e+2 -> 1.000000E+8
+ddqua271 quantize 1E+9 1e+2 -> 1.0000000E+9
+ddqua272 quantize 1E+10 1e+2 -> 1.00000000E+10
+ddqua273 quantize 1E-10 1e+2 -> 0E+2 Inexact Rounded
+ddqua274 quantize 1E-2 1e+2 -> 0E+2 Inexact Rounded
+ddqua275 quantize 0E-10 1e+2 -> 0E+2
+
+ddqua280 quantize -10 1e+3 -> -0E+3 Inexact Rounded
+ddqua281 quantize +1 1e+3 -> 0E+3 Inexact Rounded
+ddqua282 quantize +10 1e+3 -> 0E+3 Inexact Rounded
+ddqua283 quantize 1E+1 1e+3 -> 0E+3 Inexact Rounded
+ddqua284 quantize 1E+2 1e+3 -> 0E+3 Inexact Rounded
+ddqua285 quantize 1E+3 1e+3 -> 1E+3
+ddqua286 quantize 1E+4 1e+3 -> 1.0E+4
+ddqua287 quantize 1E+5 1e+3 -> 1.00E+5
+ddqua288 quantize 1E+6 1e+3 -> 1.000E+6
+ddqua289 quantize 1E+7 1e+3 -> 1.0000E+7
+ddqua290 quantize 1E+8 1e+3 -> 1.00000E+8
+ddqua291 quantize 1E+9 1e+3 -> 1.000000E+9
+ddqua292 quantize 1E+10 1e+3 -> 1.0000000E+10
+ddqua293 quantize 1E-10 1e+3 -> 0E+3 Inexact Rounded
+ddqua294 quantize 1E-2 1e+3 -> 0E+3 Inexact Rounded
+ddqua295 quantize 0E-10 1e+3 -> 0E+3
+
+-- round up from below [sign wrong in JIT compiler once]
+ddqua300 quantize 0.0078 1e-5 -> 0.00780
+ddqua301 quantize 0.0078 1e-4 -> 0.0078
+ddqua302 quantize 0.0078 1e-3 -> 0.008 Inexact Rounded
+ddqua303 quantize 0.0078 1e-2 -> 0.01 Inexact Rounded
+ddqua304 quantize 0.0078 1e-1 -> 0.0 Inexact Rounded
+ddqua305 quantize 0.0078 1e0 -> 0 Inexact Rounded
+ddqua306 quantize 0.0078 1e+1 -> 0E+1 Inexact Rounded
+ddqua307 quantize 0.0078 1e+2 -> 0E+2 Inexact Rounded
+
+ddqua310 quantize -0.0078 1e-5 -> -0.00780
+ddqua311 quantize -0.0078 1e-4 -> -0.0078
+ddqua312 quantize -0.0078 1e-3 -> -0.008 Inexact Rounded
+ddqua313 quantize -0.0078 1e-2 -> -0.01 Inexact Rounded
+ddqua314 quantize -0.0078 1e-1 -> -0.0 Inexact Rounded
+ddqua315 quantize -0.0078 1e0 -> -0 Inexact Rounded
+ddqua316 quantize -0.0078 1e+1 -> -0E+1 Inexact Rounded
+ddqua317 quantize -0.0078 1e+2 -> -0E+2 Inexact Rounded
+
+ddqua320 quantize 0.078 1e-5 -> 0.07800
+ddqua321 quantize 0.078 1e-4 -> 0.0780
+ddqua322 quantize 0.078 1e-3 -> 0.078
+ddqua323 quantize 0.078 1e-2 -> 0.08 Inexact Rounded
+ddqua324 quantize 0.078 1e-1 -> 0.1 Inexact Rounded
+ddqua325 quantize 0.078 1e0 -> 0 Inexact Rounded
+ddqua326 quantize 0.078 1e+1 -> 0E+1 Inexact Rounded
+ddqua327 quantize 0.078 1e+2 -> 0E+2 Inexact Rounded
+
+ddqua330 quantize -0.078 1e-5 -> -0.07800
+ddqua331 quantize -0.078 1e-4 -> -0.0780
+ddqua332 quantize -0.078 1e-3 -> -0.078
+ddqua333 quantize -0.078 1e-2 -> -0.08 Inexact Rounded
+ddqua334 quantize -0.078 1e-1 -> -0.1 Inexact Rounded
+ddqua335 quantize -0.078 1e0 -> -0 Inexact Rounded
+ddqua336 quantize -0.078 1e+1 -> -0E+1 Inexact Rounded
+ddqua337 quantize -0.078 1e+2 -> -0E+2 Inexact Rounded
+
+ddqua340 quantize 0.78 1e-5 -> 0.78000
+ddqua341 quantize 0.78 1e-4 -> 0.7800
+ddqua342 quantize 0.78 1e-3 -> 0.780
+ddqua343 quantize 0.78 1e-2 -> 0.78
+ddqua344 quantize 0.78 1e-1 -> 0.8 Inexact Rounded
+ddqua345 quantize 0.78 1e0 -> 1 Inexact Rounded
+ddqua346 quantize 0.78 1e+1 -> 0E+1 Inexact Rounded
+ddqua347 quantize 0.78 1e+2 -> 0E+2 Inexact Rounded
+
+ddqua350 quantize -0.78 1e-5 -> -0.78000
+ddqua351 quantize -0.78 1e-4 -> -0.7800
+ddqua352 quantize -0.78 1e-3 -> -0.780
+ddqua353 quantize -0.78 1e-2 -> -0.78
+ddqua354 quantize -0.78 1e-1 -> -0.8 Inexact Rounded
+ddqua355 quantize -0.78 1e0 -> -1 Inexact Rounded
+ddqua356 quantize -0.78 1e+1 -> -0E+1 Inexact Rounded
+ddqua357 quantize -0.78 1e+2 -> -0E+2 Inexact Rounded
+
+ddqua360 quantize 7.8 1e-5 -> 7.80000
+ddqua361 quantize 7.8 1e-4 -> 7.8000
+ddqua362 quantize 7.8 1e-3 -> 7.800
+ddqua363 quantize 7.8 1e-2 -> 7.80
+ddqua364 quantize 7.8 1e-1 -> 7.8
+ddqua365 quantize 7.8 1e0 -> 8 Inexact Rounded
+ddqua366 quantize 7.8 1e+1 -> 1E+1 Inexact Rounded
+ddqua367 quantize 7.8 1e+2 -> 0E+2 Inexact Rounded
+ddqua368 quantize 7.8 1e+3 -> 0E+3 Inexact Rounded
+
+ddqua370 quantize -7.8 1e-5 -> -7.80000
+ddqua371 quantize -7.8 1e-4 -> -7.8000
+ddqua372 quantize -7.8 1e-3 -> -7.800
+ddqua373 quantize -7.8 1e-2 -> -7.80
+ddqua374 quantize -7.8 1e-1 -> -7.8
+ddqua375 quantize -7.8 1e0 -> -8 Inexact Rounded
+ddqua376 quantize -7.8 1e+1 -> -1E+1 Inexact Rounded
+ddqua377 quantize -7.8 1e+2 -> -0E+2 Inexact Rounded
+ddqua378 quantize -7.8 1e+3 -> -0E+3 Inexact Rounded
+
+-- some individuals
+ddqua380 quantize 1234567352364.506 1e-2 -> 1234567352364.51 Inexact Rounded
+ddqua381 quantize 12345673523645.06 1e-2 -> 12345673523645.06
+ddqua382 quantize 123456735236450.6 1e-2 -> NaN Invalid_operation
+ddqua383 quantize 1234567352364506 1e-2 -> NaN Invalid_operation
+ddqua384 quantize -1234567352364.506 1e-2 -> -1234567352364.51 Inexact Rounded
+ddqua385 quantize -12345673523645.06 1e-2 -> -12345673523645.06
+ddqua386 quantize -123456735236450.6 1e-2 -> NaN Invalid_operation
+ddqua387 quantize -1234567352364506 1e-2 -> NaN Invalid_operation
+
+rounding: down
+ddqua389 quantize 123456735236450.6 1e-2 -> NaN Invalid_operation
+-- ? should that one instead have been:
+-- ddqua389 quantize 123456735236450.6 1e-2 -> NaN Invalid_operation
+rounding: half_up
+
+-- and a few more from e-mail discussions
+ddqua391 quantize 12345678912.34567 1e-3 -> 12345678912.346 Inexact Rounded
+ddqua392 quantize 123456789123.4567 1e-3 -> 123456789123.457 Inexact Rounded
+ddqua393 quantize 1234567891234.567 1e-3 -> 1234567891234.567
+ddqua394 quantize 12345678912345.67 1e-3 -> NaN Invalid_operation
+ddqua395 quantize 123456789123456.7 1e-3 -> NaN Invalid_operation
+ddqua396 quantize 1234567891234567. 1e-3 -> NaN Invalid_operation
+
+-- some 9999 round-up cases
+ddqua400 quantize 9.999 1e-5 -> 9.99900
+ddqua401 quantize 9.999 1e-4 -> 9.9990
+ddqua402 quantize 9.999 1e-3 -> 9.999
+ddqua403 quantize 9.999 1e-2 -> 10.00 Inexact Rounded
+ddqua404 quantize 9.999 1e-1 -> 10.0 Inexact Rounded
+ddqua405 quantize 9.999 1e0 -> 10 Inexact Rounded
+ddqua406 quantize 9.999 1e1 -> 1E+1 Inexact Rounded
+ddqua407 quantize 9.999 1e2 -> 0E+2 Inexact Rounded
+
+ddqua410 quantize 0.999 1e-5 -> 0.99900
+ddqua411 quantize 0.999 1e-4 -> 0.9990
+ddqua412 quantize 0.999 1e-3 -> 0.999
+ddqua413 quantize 0.999 1e-2 -> 1.00 Inexact Rounded
+ddqua414 quantize 0.999 1e-1 -> 1.0 Inexact Rounded
+ddqua415 quantize 0.999 1e0 -> 1 Inexact Rounded
+ddqua416 quantize 0.999 1e1 -> 0E+1 Inexact Rounded
+
+ddqua420 quantize 0.0999 1e-5 -> 0.09990
+ddqua421 quantize 0.0999 1e-4 -> 0.0999
+ddqua422 quantize 0.0999 1e-3 -> 0.100 Inexact Rounded
+ddqua423 quantize 0.0999 1e-2 -> 0.10 Inexact Rounded
+ddqua424 quantize 0.0999 1e-1 -> 0.1 Inexact Rounded
+ddqua425 quantize 0.0999 1e0 -> 0 Inexact Rounded
+ddqua426 quantize 0.0999 1e1 -> 0E+1 Inexact Rounded
+
+ddqua430 quantize 0.00999 1e-5 -> 0.00999
+ddqua431 quantize 0.00999 1e-4 -> 0.0100 Inexact Rounded
+ddqua432 quantize 0.00999 1e-3 -> 0.010 Inexact Rounded
+ddqua433 quantize 0.00999 1e-2 -> 0.01 Inexact Rounded
+ddqua434 quantize 0.00999 1e-1 -> 0.0 Inexact Rounded
+ddqua435 quantize 0.00999 1e0 -> 0 Inexact Rounded
+ddqua436 quantize 0.00999 1e1 -> 0E+1 Inexact Rounded
+
+ddqua440 quantize 0.000999 1e-5 -> 0.00100 Inexact Rounded
+ddqua441 quantize 0.000999 1e-4 -> 0.0010 Inexact Rounded
+ddqua442 quantize 0.000999 1e-3 -> 0.001 Inexact Rounded
+ddqua443 quantize 0.000999 1e-2 -> 0.00 Inexact Rounded
+ddqua444 quantize 0.000999 1e-1 -> 0.0 Inexact Rounded
+ddqua445 quantize 0.000999 1e0 -> 0 Inexact Rounded
+ddqua446 quantize 0.000999 1e1 -> 0E+1 Inexact Rounded
+
+ddqua1001 quantize 0.000 0.001 -> 0.000
+ddqua1002 quantize 0.001 0.001 -> 0.001
+ddqua1003 quantize 0.0012 0.001 -> 0.001 Inexact Rounded
+ddqua1004 quantize 0.0018 0.001 -> 0.002 Inexact Rounded
+ddqua1005 quantize 0.501 0.001 -> 0.501
+ddqua1006 quantize 0.5012 0.001 -> 0.501 Inexact Rounded
+ddqua1007 quantize 0.5018 0.001 -> 0.502 Inexact Rounded
+ddqua1008 quantize 0.999 0.001 -> 0.999
+
+ddqua481 quantize 12345678000 1e+3 -> 1.2345678E+10 Rounded
+ddqua482 quantize 1234567800 1e+1 -> 1.23456780E+9 Rounded
+ddqua483 quantize 1234567890 1e+1 -> 1.23456789E+9 Rounded
+ddqua484 quantize 1234567891 1e+1 -> 1.23456789E+9 Inexact Rounded
+ddqua485 quantize 12345678901 1e+2 -> 1.23456789E+10 Inexact Rounded
+ddqua486 quantize 1234567896 1e+1 -> 1.23456790E+9 Inexact Rounded
+-- a potential double-round
+ddqua487 quantize 1234.987643 1e-4 -> 1234.9876 Inexact Rounded
+ddqua488 quantize 1234.987647 1e-4 -> 1234.9876 Inexact Rounded
+
+ddqua491 quantize 12345678000 1e+3 -> 1.2345678E+10 Rounded
+ddqua492 quantize 1234567800 1e+1 -> 1.23456780E+9 Rounded
+ddqua493 quantize 1234567890 1e+1 -> 1.23456789E+9 Rounded
+ddqua494 quantize 1234567891 1e+1 -> 1.23456789E+9 Inexact Rounded
+ddqua495 quantize 12345678901 1e+2 -> 1.23456789E+10 Inexact Rounded
+ddqua496 quantize 1234567896 1e+1 -> 1.23456790E+9 Inexact Rounded
+ddqua497 quantize 1234.987643 1e-4 -> 1234.9876 Inexact Rounded
+ddqua498 quantize 1234.987647 1e-4 -> 1234.9876 Inexact Rounded
+
+-- Zeros
+ddqua500 quantize 0 1e1 -> 0E+1
+ddqua501 quantize 0 1e0 -> 0
+ddqua502 quantize 0 1e-1 -> 0.0
+ddqua503 quantize 0.0 1e-1 -> 0.0
+ddqua504 quantize 0.0 1e0 -> 0
+ddqua505 quantize 0.0 1e+1 -> 0E+1
+ddqua506 quantize 0E+1 1e-1 -> 0.0
+ddqua507 quantize 0E+1 1e0 -> 0
+ddqua508 quantize 0E+1 1e+1 -> 0E+1
+ddqua509 quantize -0 1e1 -> -0E+1
+ddqua510 quantize -0 1e0 -> -0
+ddqua511 quantize -0 1e-1 -> -0.0
+ddqua512 quantize -0.0 1e-1 -> -0.0
+ddqua513 quantize -0.0 1e0 -> -0
+ddqua514 quantize -0.0 1e+1 -> -0E+1
+ddqua515 quantize -0E+1 1e-1 -> -0.0
+ddqua516 quantize -0E+1 1e0 -> -0
+ddqua517 quantize -0E+1 1e+1 -> -0E+1
+
+-- Suspicious RHS values
+ddqua520 quantize 1.234 1e359 -> 0E+359 Inexact Rounded
+ddqua521 quantize 123.456 1e359 -> 0E+359 Inexact Rounded
+ddqua522 quantize 1.234 1e359 -> 0E+359 Inexact Rounded
+ddqua523 quantize 123.456 1e359 -> 0E+359 Inexact Rounded
+-- next four are "won't fit" overfl
+ddqua526 quantize 1.234 1e-299 -> NaN Invalid_operation
+ddqua527 quantize 123.456 1e-299 -> NaN Invalid_operation
+ddqua528 quantize 1.234 1e-299 -> NaN Invalid_operation
+ddqua529 quantize 123.456 1e-299 -> NaN Invalid_operation
+
+ddqua532 quantize 1.234E+299 1e299 -> 1E+299 Inexact Rounded
+ddqua533 quantize 1.234E+298 1e299 -> 0E+299 Inexact Rounded
+ddqua534 quantize 1.234 1e299 -> 0E+299 Inexact Rounded
+ddqua537 quantize 0 1e-299 -> 0E-299
+-- next two are "won't fit" overflows
+ddqua538 quantize 1.234 1e-299 -> NaN Invalid_operation
+ddqua539 quantize 1.234 1e-300 -> NaN Invalid_operation
+-- [more below]
+
+-- Specials
+ddqua580 quantize Inf -Inf -> Infinity
+ddqua581 quantize Inf 1e-299 -> NaN Invalid_operation
+ddqua582 quantize Inf 1e-1 -> NaN Invalid_operation
+ddqua583 quantize Inf 1e0 -> NaN Invalid_operation
+ddqua584 quantize Inf 1e1 -> NaN Invalid_operation
+ddqua585 quantize Inf 1e299 -> NaN Invalid_operation
+ddqua586 quantize Inf Inf -> Infinity
+ddqua587 quantize -1000 Inf -> NaN Invalid_operation
+ddqua588 quantize -Inf Inf -> -Infinity
+ddqua589 quantize -1 Inf -> NaN Invalid_operation
+ddqua590 quantize 0 Inf -> NaN Invalid_operation
+ddqua591 quantize 1 Inf -> NaN Invalid_operation
+ddqua592 quantize 1000 Inf -> NaN Invalid_operation
+ddqua593 quantize Inf Inf -> Infinity
+ddqua594 quantize Inf 1e-0 -> NaN Invalid_operation
+ddqua595 quantize -0 Inf -> NaN Invalid_operation
+
+ddqua600 quantize -Inf -Inf -> -Infinity
+ddqua601 quantize -Inf 1e-299 -> NaN Invalid_operation
+ddqua602 quantize -Inf 1e-1 -> NaN Invalid_operation
+ddqua603 quantize -Inf 1e0 -> NaN Invalid_operation
+ddqua604 quantize -Inf 1e1 -> NaN Invalid_operation
+ddqua605 quantize -Inf 1e299 -> NaN Invalid_operation
+ddqua606 quantize -Inf Inf -> -Infinity
+ddqua607 quantize -1000 Inf -> NaN Invalid_operation
+ddqua608 quantize -Inf -Inf -> -Infinity
+ddqua609 quantize -1 -Inf -> NaN Invalid_operation
+ddqua610 quantize 0 -Inf -> NaN Invalid_operation
+ddqua611 quantize 1 -Inf -> NaN Invalid_operation
+ddqua612 quantize 1000 -Inf -> NaN Invalid_operation
+ddqua613 quantize Inf -Inf -> Infinity
+ddqua614 quantize -Inf 1e-0 -> NaN Invalid_operation
+ddqua615 quantize -0 -Inf -> NaN Invalid_operation
+
+ddqua621 quantize NaN -Inf -> NaN
+ddqua622 quantize NaN 1e-299 -> NaN
+ddqua623 quantize NaN 1e-1 -> NaN
+ddqua624 quantize NaN 1e0 -> NaN
+ddqua625 quantize NaN 1e1 -> NaN
+ddqua626 quantize NaN 1e299 -> NaN
+ddqua627 quantize NaN Inf -> NaN
+ddqua628 quantize NaN NaN -> NaN
+ddqua629 quantize -Inf NaN -> NaN
+ddqua630 quantize -1000 NaN -> NaN
+ddqua631 quantize -1 NaN -> NaN
+ddqua632 quantize 0 NaN -> NaN
+ddqua633 quantize 1 NaN -> NaN
+ddqua634 quantize 1000 NaN -> NaN
+ddqua635 quantize Inf NaN -> NaN
+ddqua636 quantize NaN 1e-0 -> NaN
+ddqua637 quantize -0 NaN -> NaN
+
+ddqua641 quantize sNaN -Inf -> NaN Invalid_operation
+ddqua642 quantize sNaN 1e-299 -> NaN Invalid_operation
+ddqua643 quantize sNaN 1e-1 -> NaN Invalid_operation
+ddqua644 quantize sNaN 1e0 -> NaN Invalid_operation
+ddqua645 quantize sNaN 1e1 -> NaN Invalid_operation
+ddqua646 quantize sNaN 1e299 -> NaN Invalid_operation
+ddqua647 quantize sNaN NaN -> NaN Invalid_operation
+ddqua648 quantize sNaN sNaN -> NaN Invalid_operation
+ddqua649 quantize NaN sNaN -> NaN Invalid_operation
+ddqua650 quantize -Inf sNaN -> NaN Invalid_operation
+ddqua651 quantize -1000 sNaN -> NaN Invalid_operation
+ddqua652 quantize -1 sNaN -> NaN Invalid_operation
+ddqua653 quantize 0 sNaN -> NaN Invalid_operation
+ddqua654 quantize 1 sNaN -> NaN Invalid_operation
+ddqua655 quantize 1000 sNaN -> NaN Invalid_operation
+ddqua656 quantize Inf sNaN -> NaN Invalid_operation
+ddqua657 quantize NaN sNaN -> NaN Invalid_operation
+ddqua658 quantize sNaN 1e-0 -> NaN Invalid_operation
+ddqua659 quantize -0 sNaN -> NaN Invalid_operation
+
+-- propagating NaNs
+ddqua661 quantize NaN9 -Inf -> NaN9
+ddqua662 quantize NaN8 919 -> NaN8
+ddqua663 quantize NaN71 Inf -> NaN71
+ddqua664 quantize NaN6 NaN5 -> NaN6
+ddqua665 quantize -Inf NaN4 -> NaN4
+ddqua666 quantize -919 NaN31 -> NaN31
+ddqua667 quantize Inf NaN2 -> NaN2
+
+ddqua671 quantize sNaN99 -Inf -> NaN99 Invalid_operation
+ddqua672 quantize sNaN98 -11 -> NaN98 Invalid_operation
+ddqua673 quantize sNaN97 NaN -> NaN97 Invalid_operation
+ddqua674 quantize sNaN16 sNaN94 -> NaN16 Invalid_operation
+ddqua675 quantize NaN95 sNaN93 -> NaN93 Invalid_operation
+ddqua676 quantize -Inf sNaN92 -> NaN92 Invalid_operation
+ddqua677 quantize 088 sNaN91 -> NaN91 Invalid_operation
+ddqua678 quantize Inf sNaN90 -> NaN90 Invalid_operation
+ddqua679 quantize NaN sNaN88 -> NaN88 Invalid_operation
+
+ddqua681 quantize -NaN9 -Inf -> -NaN9
+ddqua682 quantize -NaN8 919 -> -NaN8
+ddqua683 quantize -NaN71 Inf -> -NaN71
+ddqua684 quantize -NaN6 -NaN5 -> -NaN6
+ddqua685 quantize -Inf -NaN4 -> -NaN4
+ddqua686 quantize -919 -NaN31 -> -NaN31
+ddqua687 quantize Inf -NaN2 -> -NaN2
+
+ddqua691 quantize -sNaN99 -Inf -> -NaN99 Invalid_operation
+ddqua692 quantize -sNaN98 -11 -> -NaN98 Invalid_operation
+ddqua693 quantize -sNaN97 NaN -> -NaN97 Invalid_operation
+ddqua694 quantize -sNaN16 sNaN94 -> -NaN16 Invalid_operation
+ddqua695 quantize -NaN95 -sNaN93 -> -NaN93 Invalid_operation
+ddqua696 quantize -Inf -sNaN92 -> -NaN92 Invalid_operation
+ddqua697 quantize 088 -sNaN91 -> -NaN91 Invalid_operation
+ddqua698 quantize Inf -sNaN90 -> -NaN90 Invalid_operation
+ddqua699 quantize NaN -sNaN88 -> -NaN88 Invalid_operation
+
+-- subnormals and underflow
+ddqua710 quantize 1.00E-383 1e-383 -> 1E-383 Rounded
+ddqua711 quantize 0.1E-383 2e-384 -> 1E-384 Subnormal
+ddqua712 quantize 0.10E-383 3e-384 -> 1E-384 Subnormal Rounded
+ddqua713 quantize 0.100E-383 4e-384 -> 1E-384 Subnormal Rounded
+ddqua714 quantize 0.01E-383 5e-385 -> 1E-385 Subnormal
+-- next is rounded to Emin
+ddqua715 quantize 0.999E-383 1e-383 -> 1E-383 Inexact Rounded
+ddqua716 quantize 0.099E-383 10e-384 -> 1E-384 Inexact Rounded Subnormal
+
+ddqua717 quantize 0.009E-383 1e-385 -> 1E-385 Inexact Rounded Subnormal
+ddqua718 quantize 0.001E-383 1e-385 -> 0E-385 Inexact Rounded
+ddqua719 quantize 0.0009E-383 1e-385 -> 0E-385 Inexact Rounded
+ddqua720 quantize 0.0001E-383 1e-385 -> 0E-385 Inexact Rounded
+
+ddqua730 quantize -1.00E-383 1e-383 -> -1E-383 Rounded
+ddqua731 quantize -0.1E-383 1e-383 -> -0E-383 Rounded Inexact
+ddqua732 quantize -0.10E-383 1e-383 -> -0E-383 Rounded Inexact
+ddqua733 quantize -0.100E-383 1e-383 -> -0E-383 Rounded Inexact
+ddqua734 quantize -0.01E-383 1e-383 -> -0E-383 Inexact Rounded
+-- next is rounded to Emin
+ddqua735 quantize -0.999E-383 90e-383 -> -1E-383 Inexact Rounded
+ddqua736 quantize -0.099E-383 -1e-383 -> -0E-383 Inexact Rounded
+ddqua737 quantize -0.009E-383 -1e-383 -> -0E-383 Inexact Rounded
+ddqua738 quantize -0.001E-383 -0e-383 -> -0E-383 Inexact Rounded
+ddqua739 quantize -0.0001E-383 0e-383 -> -0E-383 Inexact Rounded
+
+ddqua740 quantize -1.00E-383 1e-384 -> -1.0E-383 Rounded
+ddqua741 quantize -0.1E-383 1e-384 -> -1E-384 Subnormal
+ddqua742 quantize -0.10E-383 1e-384 -> -1E-384 Subnormal Rounded
+ddqua743 quantize -0.100E-383 1e-384 -> -1E-384 Subnormal Rounded
+ddqua744 quantize -0.01E-383 1e-384 -> -0E-384 Inexact Rounded
+-- next is rounded to Emin
+ddqua745 quantize -0.999E-383 1e-384 -> -1.0E-383 Inexact Rounded
+ddqua746 quantize -0.099E-383 1e-384 -> -1E-384 Inexact Rounded Subnormal
+ddqua747 quantize -0.009E-383 1e-384 -> -0E-384 Inexact Rounded
+ddqua748 quantize -0.001E-383 1e-384 -> -0E-384 Inexact Rounded
+ddqua749 quantize -0.0001E-383 1e-384 -> -0E-384 Inexact Rounded
+
+ddqua750 quantize -1.00E-383 1e-385 -> -1.00E-383
+ddqua751 quantize -0.1E-383 1e-385 -> -1.0E-384 Subnormal
+ddqua752 quantize -0.10E-383 1e-385 -> -1.0E-384 Subnormal
+ddqua753 quantize -0.100E-383 1e-385 -> -1.0E-384 Subnormal Rounded
+ddqua754 quantize -0.01E-383 1e-385 -> -1E-385 Subnormal
+-- next is rounded to Emin
+ddqua755 quantize -0.999E-383 1e-385 -> -1.00E-383 Inexact Rounded
+ddqua756 quantize -0.099E-383 1e-385 -> -1.0E-384 Inexact Rounded Subnormal
+ddqua757 quantize -0.009E-383 1e-385 -> -1E-385 Inexact Rounded Subnormal
+ddqua758 quantize -0.001E-383 1e-385 -> -0E-385 Inexact Rounded
+ddqua759 quantize -0.0001E-383 1e-385 -> -0E-385 Inexact Rounded
+
+ddqua760 quantize -1.00E-383 1e-386 -> -1.000E-383
+ddqua761 quantize -0.1E-383 1e-386 -> -1.00E-384 Subnormal
+ddqua762 quantize -0.10E-383 1e-386 -> -1.00E-384 Subnormal
+ddqua763 quantize -0.100E-383 1e-386 -> -1.00E-384 Subnormal
+ddqua764 quantize -0.01E-383 1e-386 -> -1.0E-385 Subnormal
+ddqua765 quantize -0.999E-383 1e-386 -> -9.99E-384 Subnormal
+ddqua766 quantize -0.099E-383 1e-386 -> -9.9E-385 Subnormal
+ddqua767 quantize -0.009E-383 1e-386 -> -9E-386 Subnormal
+ddqua768 quantize -0.001E-383 1e-386 -> -1E-386 Subnormal
+ddqua769 quantize -0.0001E-383 1e-386 -> -0E-386 Inexact Rounded
+
+-- More from Fung Lee
+ddqua1021 quantize 8.666666666666000E+384 1.000000000000000E+384 -> 8.666666666666000E+384
+ddqua1022 quantize -8.666666666666000E+384 1.000000000000000E+384 -> -8.666666666666000E+384
+ddqua1027 quantize 8.666666666666000E+323 1E+31 -> NaN Invalid_operation
+ddqua1030 quantize 8.66666666E+3 1E+3 -> 9E+3 Inexact Rounded
+
+-- Int and uInt32 edge values for testing conversions
+ddqua1040 quantize -2147483646 0 -> -2147483646
+ddqua1041 quantize -2147483647 0 -> -2147483647
+ddqua1042 quantize -2147483648 0 -> -2147483648
+ddqua1043 quantize -2147483649 0 -> -2147483649
+ddqua1044 quantize 2147483646 0 -> 2147483646
+ddqua1045 quantize 2147483647 0 -> 2147483647
+ddqua1046 quantize 2147483648 0 -> 2147483648
+ddqua1047 quantize 2147483649 0 -> 2147483649
+ddqua1048 quantize 4294967294 0 -> 4294967294
+ddqua1049 quantize 4294967295 0 -> 4294967295
+ddqua1050 quantize 4294967296 0 -> 4294967296
+ddqua1051 quantize 4294967297 0 -> 4294967297
+
+-- Rounding swathe
+rounding: half_even
+ddqua1100 quantize 1.2300 1.00 -> 1.23 Rounded
+ddqua1101 quantize 1.2301 1.00 -> 1.23 Inexact Rounded
+ddqua1102 quantize 1.2310 1.00 -> 1.23 Inexact Rounded
+ddqua1103 quantize 1.2350 1.00 -> 1.24 Inexact Rounded
+ddqua1104 quantize 1.2351 1.00 -> 1.24 Inexact Rounded
+ddqua1105 quantize 1.2450 1.00 -> 1.24 Inexact Rounded
+ddqua1106 quantize 1.2451 1.00 -> 1.25 Inexact Rounded
+ddqua1107 quantize 1.2360 1.00 -> 1.24 Inexact Rounded
+ddqua1108 quantize 1.2370 1.00 -> 1.24 Inexact Rounded
+ddqua1109 quantize 1.2399 1.00 -> 1.24 Inexact Rounded
+
+rounding: half_up
+ddqua1200 quantize 1.2300 1.00 -> 1.23 Rounded
+ddqua1201 quantize 1.2301 1.00 -> 1.23 Inexact Rounded
+ddqua1202 quantize 1.2310 1.00 -> 1.23 Inexact Rounded
+ddqua1203 quantize 1.2350 1.00 -> 1.24 Inexact Rounded
+ddqua1204 quantize 1.2351 1.00 -> 1.24 Inexact Rounded
+ddqua1205 quantize 1.2450 1.00 -> 1.25 Inexact Rounded
+ddqua1206 quantize 1.2451 1.00 -> 1.25 Inexact Rounded
+ddqua1207 quantize 1.2360 1.00 -> 1.24 Inexact Rounded
+ddqua1208 quantize 1.2370 1.00 -> 1.24 Inexact Rounded
+ddqua1209 quantize 1.2399 1.00 -> 1.24 Inexact Rounded
+
+rounding: half_down
+ddqua1300 quantize 1.2300 1.00 -> 1.23 Rounded
+ddqua1301 quantize 1.2301 1.00 -> 1.23 Inexact Rounded
+ddqua1302 quantize 1.2310 1.00 -> 1.23 Inexact Rounded
+ddqua1303 quantize 1.2350 1.00 -> 1.23 Inexact Rounded
+ddqua1304 quantize 1.2351 1.00 -> 1.24 Inexact Rounded
+ddqua1305 quantize 1.2450 1.00 -> 1.24 Inexact Rounded
+ddqua1306 quantize 1.2451 1.00 -> 1.25 Inexact Rounded
+ddqua1307 quantize 1.2360 1.00 -> 1.24 Inexact Rounded
+ddqua1308 quantize 1.2370 1.00 -> 1.24 Inexact Rounded
+ddqua1309 quantize 1.2399 1.00 -> 1.24 Inexact Rounded
+
+rounding: up
+ddqua1400 quantize 1.2300 1.00 -> 1.23 Rounded
+ddqua1401 quantize 1.2301 1.00 -> 1.24 Inexact Rounded
+ddqua1402 quantize 1.2310 1.00 -> 1.24 Inexact Rounded
+ddqua1403 quantize 1.2350 1.00 -> 1.24 Inexact Rounded
+ddqua1404 quantize 1.2351 1.00 -> 1.24 Inexact Rounded
+ddqua1405 quantize 1.2450 1.00 -> 1.25 Inexact Rounded
+ddqua1406 quantize 1.2451 1.00 -> 1.25 Inexact Rounded
+ddqua1407 quantize 1.2360 1.00 -> 1.24 Inexact Rounded
+ddqua1408 quantize 1.2370 1.00 -> 1.24 Inexact Rounded
+ddqua1409 quantize 1.2399 1.00 -> 1.24 Inexact Rounded
+ddqua1411 quantize -1.2399 1.00 -> -1.24 Inexact Rounded
+
+rounding: down
+ddqua1500 quantize 1.2300 1.00 -> 1.23 Rounded
+ddqua1501 quantize 1.2301 1.00 -> 1.23 Inexact Rounded
+ddqua1502 quantize 1.2310 1.00 -> 1.23 Inexact Rounded
+ddqua1503 quantize 1.2350 1.00 -> 1.23 Inexact Rounded
+ddqua1504 quantize 1.2351 1.00 -> 1.23 Inexact Rounded
+ddqua1505 quantize 1.2450 1.00 -> 1.24 Inexact Rounded
+ddqua1506 quantize 1.2451 1.00 -> 1.24 Inexact Rounded
+ddqua1507 quantize 1.2360 1.00 -> 1.23 Inexact Rounded
+ddqua1508 quantize 1.2370 1.00 -> 1.23 Inexact Rounded
+ddqua1509 quantize 1.2399 1.00 -> 1.23 Inexact Rounded
+ddqua1511 quantize -1.2399 1.00 -> -1.23 Inexact Rounded
+
+rounding: ceiling
+ddqua1600 quantize 1.2300 1.00 -> 1.23 Rounded
+ddqua1601 quantize 1.2301 1.00 -> 1.24 Inexact Rounded
+ddqua1602 quantize 1.2310 1.00 -> 1.24 Inexact Rounded
+ddqua1603 quantize 1.2350 1.00 -> 1.24 Inexact Rounded
+ddqua1604 quantize 1.2351 1.00 -> 1.24 Inexact Rounded
+ddqua1605 quantize 1.2450 1.00 -> 1.25 Inexact Rounded
+ddqua1606 quantize 1.2451 1.00 -> 1.25 Inexact Rounded
+ddqua1607 quantize 1.2360 1.00 -> 1.24 Inexact Rounded
+ddqua1608 quantize 1.2370 1.00 -> 1.24 Inexact Rounded
+ddqua1609 quantize 1.2399 1.00 -> 1.24 Inexact Rounded
+ddqua1611 quantize -1.2399 1.00 -> -1.23 Inexact Rounded
+
+rounding: floor
+ddqua1700 quantize 1.2300 1.00 -> 1.23 Rounded
+ddqua1701 quantize 1.2301 1.00 -> 1.23 Inexact Rounded
+ddqua1702 quantize 1.2310 1.00 -> 1.23 Inexact Rounded
+ddqua1703 quantize 1.2350 1.00 -> 1.23 Inexact Rounded
+ddqua1704 quantize 1.2351 1.00 -> 1.23 Inexact Rounded
+ddqua1705 quantize 1.2450 1.00 -> 1.24 Inexact Rounded
+ddqua1706 quantize 1.2451 1.00 -> 1.24 Inexact Rounded
+ddqua1707 quantize 1.2360 1.00 -> 1.23 Inexact Rounded
+ddqua1708 quantize 1.2370 1.00 -> 1.23 Inexact Rounded
+ddqua1709 quantize 1.2399 1.00 -> 1.23 Inexact Rounded
+ddqua1711 quantize -1.2399 1.00 -> -1.24 Inexact Rounded
+
+rounding: 05up
+ddqua1800 quantize 1.2000 1.00 -> 1.20 Rounded
+ddqua1801 quantize 1.2001 1.00 -> 1.21 Inexact Rounded
+ddqua1802 quantize 1.2010 1.00 -> 1.21 Inexact Rounded
+ddqua1803 quantize 1.2050 1.00 -> 1.21 Inexact Rounded
+ddqua1804 quantize 1.2051 1.00 -> 1.21 Inexact Rounded
+ddqua1807 quantize 1.2060 1.00 -> 1.21 Inexact Rounded
+ddqua1808 quantize 1.2070 1.00 -> 1.21 Inexact Rounded
+ddqua1809 quantize 1.2099 1.00 -> 1.21 Inexact Rounded
+ddqua1811 quantize -1.2099 1.00 -> -1.21 Inexact Rounded
+
+ddqua1900 quantize 1.2100 1.00 -> 1.21 Rounded
+ddqua1901 quantize 1.2101 1.00 -> 1.21 Inexact Rounded
+ddqua1902 quantize 1.2110 1.00 -> 1.21 Inexact Rounded
+ddqua1903 quantize 1.2150 1.00 -> 1.21 Inexact Rounded
+ddqua1904 quantize 1.2151 1.00 -> 1.21 Inexact Rounded
+ddqua1907 quantize 1.2160 1.00 -> 1.21 Inexact Rounded
+ddqua1908 quantize 1.2170 1.00 -> 1.21 Inexact Rounded
+ddqua1909 quantize 1.2199 1.00 -> 1.21 Inexact Rounded
+ddqua1911 quantize -1.2199 1.00 -> -1.21 Inexact Rounded
+
+ddqua2000 quantize 1.2400 1.00 -> 1.24 Rounded
+ddqua2001 quantize 1.2401 1.00 -> 1.24 Inexact Rounded
+ddqua2002 quantize 1.2410 1.00 -> 1.24 Inexact Rounded
+ddqua2003 quantize 1.2450 1.00 -> 1.24 Inexact Rounded
+ddqua2004 quantize 1.2451 1.00 -> 1.24 Inexact Rounded
+ddqua2007 quantize 1.2460 1.00 -> 1.24 Inexact Rounded
+ddqua2008 quantize 1.2470 1.00 -> 1.24 Inexact Rounded
+ddqua2009 quantize 1.2499 1.00 -> 1.24 Inexact Rounded
+ddqua2011 quantize -1.2499 1.00 -> -1.24 Inexact Rounded
+
+ddqua2100 quantize 1.2500 1.00 -> 1.25 Rounded
+ddqua2101 quantize 1.2501 1.00 -> 1.26 Inexact Rounded
+ddqua2102 quantize 1.2510 1.00 -> 1.26 Inexact Rounded
+ddqua2103 quantize 1.2550 1.00 -> 1.26 Inexact Rounded
+ddqua2104 quantize 1.2551 1.00 -> 1.26 Inexact Rounded
+ddqua2107 quantize 1.2560 1.00 -> 1.26 Inexact Rounded
+ddqua2108 quantize 1.2570 1.00 -> 1.26 Inexact Rounded
+ddqua2109 quantize 1.2599 1.00 -> 1.26 Inexact Rounded
+ddqua2111 quantize -1.2599 1.00 -> -1.26 Inexact Rounded
+
+ddqua2200 quantize 1.2600 1.00 -> 1.26 Rounded
+ddqua2201 quantize 1.2601 1.00 -> 1.26 Inexact Rounded
+ddqua2202 quantize 1.2610 1.00 -> 1.26 Inexact Rounded
+ddqua2203 quantize 1.2650 1.00 -> 1.26 Inexact Rounded
+ddqua2204 quantize 1.2651 1.00 -> 1.26 Inexact Rounded
+ddqua2207 quantize 1.2660 1.00 -> 1.26 Inexact Rounded
+ddqua2208 quantize 1.2670 1.00 -> 1.26 Inexact Rounded
+ddqua2209 quantize 1.2699 1.00 -> 1.26 Inexact Rounded
+ddqua2211 quantize -1.2699 1.00 -> -1.26 Inexact Rounded
+
+ddqua2300 quantize 1.2900 1.00 -> 1.29 Rounded
+ddqua2301 quantize 1.2901 1.00 -> 1.29 Inexact Rounded
+ddqua2302 quantize 1.2910 1.00 -> 1.29 Inexact Rounded
+ddqua2303 quantize 1.2950 1.00 -> 1.29 Inexact Rounded
+ddqua2304 quantize 1.2951 1.00 -> 1.29 Inexact Rounded
+ddqua2307 quantize 1.2960 1.00 -> 1.29 Inexact Rounded
+ddqua2308 quantize 1.2970 1.00 -> 1.29 Inexact Rounded
+ddqua2309 quantize 1.2999 1.00 -> 1.29 Inexact Rounded
+ddqua2311 quantize -1.2999 1.00 -> -1.29 Inexact Rounded
+
+-- Null tests
+rounding: half_even
+ddqua998 quantize 10 # -> NaN Invalid_operation
+ddqua999 quantize # 1e10 -> NaN Invalid_operation
diff --git a/Lib/test/decimaltestdata/ddReduce.decTest b/Lib/test/decimaltestdata/ddReduce.decTest
new file mode 100644
index 0000000..71c82e1
--- /dev/null
+++ b/Lib/test/decimaltestdata/ddReduce.decTest
@@ -0,0 +1,182 @@
+------------------------------------------------------------------------
+-- ddReduce.decTest -- remove trailing zeros from a decDouble --
+-- Copyright (c) IBM Corporation, 2003, 2007. All rights reserved. --
+------------------------------------------------------------------------
+-- Please see the document "General Decimal Arithmetic Testcases" --
+-- at http://www2.hursley.ibm.com/decimal for the description of --
+-- these testcases. --
+-- --
+-- These testcases are experimental ('beta' versions), and they --
+-- may contain errors. They are offered on an as-is basis. In --
+-- particular, achieving the same results as the tests here is not --
+-- a guarantee that an implementation complies with any Standard --
+-- or specification. The tests are not exhaustive. --
+-- --
+-- Please send comments, suggestions, and corrections to the author: --
+-- Mike Cowlishaw, IBM Fellow --
+-- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK --
+-- mfc@uk.ibm.com --
+------------------------------------------------------------------------
+version: 2.56
+
+precision: 16
+maxExponent: 384
+minExponent: -383
+extended: 1
+clamp: 1
+rounding: half_even
+
+ddred001 reduce '1' -> '1'
+ddred002 reduce '-1' -> '-1'
+ddred003 reduce '1.00' -> '1'
+ddred004 reduce '-1.00' -> '-1'
+ddred005 reduce '0' -> '0'
+ddred006 reduce '0.00' -> '0'
+ddred007 reduce '00.0' -> '0'
+ddred008 reduce '00.00' -> '0'
+ddred009 reduce '00' -> '0'
+ddred010 reduce '0E+1' -> '0'
+ddred011 reduce '0E+5' -> '0'
+
+ddred012 reduce '-2' -> '-2'
+ddred013 reduce '2' -> '2'
+ddred014 reduce '-2.00' -> '-2'
+ddred015 reduce '2.00' -> '2'
+ddred016 reduce '-0' -> '-0'
+ddred017 reduce '-0.00' -> '-0'
+ddred018 reduce '-00.0' -> '-0'
+ddred019 reduce '-00.00' -> '-0'
+ddred020 reduce '-00' -> '-0'
+ddred021 reduce '-0E+5' -> '-0'
+ddred022 reduce '-0E+1' -> '-0'
+
+ddred030 reduce '+0.1' -> '0.1'
+ddred031 reduce '-0.1' -> '-0.1'
+ddred032 reduce '+0.01' -> '0.01'
+ddred033 reduce '-0.01' -> '-0.01'
+ddred034 reduce '+0.001' -> '0.001'
+ddred035 reduce '-0.001' -> '-0.001'
+ddred036 reduce '+0.000001' -> '0.000001'
+ddred037 reduce '-0.000001' -> '-0.000001'
+ddred038 reduce '+0.000000000001' -> '1E-12'
+ddred039 reduce '-0.000000000001' -> '-1E-12'
+
+ddred041 reduce 1.1 -> 1.1
+ddred042 reduce 1.10 -> 1.1
+ddred043 reduce 1.100 -> 1.1
+ddred044 reduce 1.110 -> 1.11
+ddred045 reduce -1.1 -> -1.1
+ddred046 reduce -1.10 -> -1.1
+ddred047 reduce -1.100 -> -1.1
+ddred048 reduce -1.110 -> -1.11
+ddred049 reduce 9.9 -> 9.9
+ddred050 reduce 9.90 -> 9.9
+ddred051 reduce 9.900 -> 9.9
+ddred052 reduce 9.990 -> 9.99
+ddred053 reduce -9.9 -> -9.9
+ddred054 reduce -9.90 -> -9.9
+ddred055 reduce -9.900 -> -9.9
+ddred056 reduce -9.990 -> -9.99
+
+-- some trailing fractional zeros with zeros in units
+ddred060 reduce 10.0 -> 1E+1
+ddred061 reduce 10.00 -> 1E+1
+ddred062 reduce 100.0 -> 1E+2
+ddred063 reduce 100.00 -> 1E+2
+ddred064 reduce 1.1000E+3 -> 1.1E+3
+ddred065 reduce 1.10000E+3 -> 1.1E+3
+ddred066 reduce -10.0 -> -1E+1
+ddred067 reduce -10.00 -> -1E+1
+ddred068 reduce -100.0 -> -1E+2
+ddred069 reduce -100.00 -> -1E+2
+ddred070 reduce -1.1000E+3 -> -1.1E+3
+ddred071 reduce -1.10000E+3 -> -1.1E+3
+
+-- some insignificant trailing zeros with positive exponent
+ddred080 reduce 10E+1 -> 1E+2
+ddred081 reduce 100E+1 -> 1E+3
+ddred082 reduce 1.0E+2 -> 1E+2
+ddred083 reduce 1.0E+3 -> 1E+3
+ddred084 reduce 1.1E+3 -> 1.1E+3
+ddred085 reduce 1.00E+3 -> 1E+3
+ddred086 reduce 1.10E+3 -> 1.1E+3
+ddred087 reduce -10E+1 -> -1E+2
+ddred088 reduce -100E+1 -> -1E+3
+ddred089 reduce -1.0E+2 -> -1E+2
+ddred090 reduce -1.0E+3 -> -1E+3
+ddred091 reduce -1.1E+3 -> -1.1E+3
+ddred092 reduce -1.00E+3 -> -1E+3
+ddred093 reduce -1.10E+3 -> -1.1E+3
+
+-- some significant trailing zeros, were we to be trimming
+ddred100 reduce 11 -> 11
+ddred101 reduce 10 -> 1E+1
+ddred102 reduce 10. -> 1E+1
+ddred103 reduce 1.1E+1 -> 11
+ddred104 reduce 1.0E+1 -> 1E+1
+ddred105 reduce 1.10E+2 -> 1.1E+2
+ddred106 reduce 1.00E+2 -> 1E+2
+ddred107 reduce 1.100E+3 -> 1.1E+3
+ddred108 reduce 1.000E+3 -> 1E+3
+ddred109 reduce 1.000000E+6 -> 1E+6
+ddred110 reduce -11 -> -11
+ddred111 reduce -10 -> -1E+1
+ddred112 reduce -10. -> -1E+1
+ddred113 reduce -1.1E+1 -> -11
+ddred114 reduce -1.0E+1 -> -1E+1
+ddred115 reduce -1.10E+2 -> -1.1E+2
+ddred116 reduce -1.00E+2 -> -1E+2
+ddred117 reduce -1.100E+3 -> -1.1E+3
+ddred118 reduce -1.000E+3 -> -1E+3
+ddred119 reduce -1.00000E+5 -> -1E+5
+ddred120 reduce -1.000000E+6 -> -1E+6
+ddred121 reduce -10.00000E+6 -> -1E+7
+ddred122 reduce -100.0000E+6 -> -1E+8
+ddred123 reduce -1000.000E+6 -> -1E+9
+ddred124 reduce -10000.00E+6 -> -1E+10
+ddred125 reduce -100000.0E+6 -> -1E+11
+ddred126 reduce -1000000.E+6 -> -1E+12
+
+-- examples from decArith
+ddred140 reduce '2.1' -> '2.1'
+ddred141 reduce '-2.0' -> '-2'
+ddred142 reduce '1.200' -> '1.2'
+ddred143 reduce '-120' -> '-1.2E+2'
+ddred144 reduce '120.00' -> '1.2E+2'
+ddred145 reduce '0.00' -> '0'
+
+-- Nmax, Nmin, Ntiny
+-- note origami effect on some of these
+ddred151 reduce 9.999999999999999E+384 -> 9.999999999999999E+384
+ddred152 reduce 9.999999000000000E+380 -> 9.99999900000E+380
+ddred153 reduce 9.999999999990000E+384 -> 9.999999999990000E+384
+ddred154 reduce 1E-383 -> 1E-383
+ddred155 reduce 1.000000000000000E-383 -> 1E-383
+ddred156 reduce 2.000E-395 -> 2E-395 Subnormal
+ddred157 reduce 1E-398 -> 1E-398 Subnormal
+
+ddred161 reduce -1E-398 -> -1E-398 Subnormal
+ddred162 reduce -2.000E-395 -> -2E-395 Subnormal
+ddred163 reduce -1.000000000000000E-383 -> -1E-383
+ddred164 reduce -1E-383 -> -1E-383
+ddred165 reduce -9.999999000000000E+380 -> -9.99999900000E+380
+ddred166 reduce -9.999999999990000E+384 -> -9.999999999990000E+384
+ddred167 reduce -9.999999999999990E+384 -> -9.999999999999990E+384
+ddred168 reduce -9.999999999999999E+384 -> -9.999999999999999E+384
+ddred169 reduce -9.999999999999990E+384 -> -9.999999999999990E+384
+
+
+-- specials (reduce does not affect payload)
+ddred820 reduce 'Inf' -> 'Infinity'
+ddred821 reduce '-Inf' -> '-Infinity'
+ddred822 reduce NaN -> NaN
+ddred823 reduce sNaN -> NaN Invalid_operation
+ddred824 reduce NaN101 -> NaN101
+ddred825 reduce sNaN010 -> NaN10 Invalid_operation
+ddred827 reduce -NaN -> -NaN
+ddred828 reduce -sNaN -> -NaN Invalid_operation
+ddred829 reduce -NaN101 -> -NaN101
+ddred830 reduce -sNaN010 -> -NaN10 Invalid_operation
+
+-- Null test
+ddred900 reduce # -> NaN Invalid_operation
diff --git a/Lib/test/decimaltestdata/ddRemainder.decTest b/Lib/test/decimaltestdata/ddRemainder.decTest
new file mode 100644
index 0000000..c7ea762
--- /dev/null
+++ b/Lib/test/decimaltestdata/ddRemainder.decTest
@@ -0,0 +1,587 @@
+------------------------------------------------------------------------
+-- ddRemainder.decTest -- decDouble remainder --
+-- Copyright (c) IBM Corporation, 1981, 2007. All rights reserved. --
+------------------------------------------------------------------------
+-- Please see the document "General Decimal Arithmetic Testcases" --
+-- at http://www2.hursley.ibm.com/decimal for the description of --
+-- these testcases. --
+-- --
+-- These testcases are experimental ('beta' versions), and they --
+-- may contain errors. They are offered on an as-is basis. In --
+-- particular, achieving the same results as the tests here is not --
+-- a guarantee that an implementation complies with any Standard --
+-- or specification. The tests are not exhaustive. --
+-- --
+-- Please send comments, suggestions, and corrections to the author: --
+-- Mike Cowlishaw, IBM Fellow --
+-- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK --
+-- mfc@uk.ibm.com --
+------------------------------------------------------------------------
+version: 2.56
+
+precision: 16
+maxExponent: 384
+minExponent: -383
+extended: 1
+clamp: 1
+rounding: half_even
+
+-- sanity checks (as base, above)
+ddrem001 remainder 1 1 -> 0
+ddrem002 remainder 2 1 -> 0
+ddrem003 remainder 1 2 -> 1
+ddrem004 remainder 2 2 -> 0
+ddrem005 remainder 0 1 -> 0
+ddrem006 remainder 0 2 -> 0
+ddrem007 remainder 1 3 -> 1
+ddrem008 remainder 2 3 -> 2
+ddrem009 remainder 3 3 -> 0
+
+ddrem010 remainder 2.4 1 -> 0.4
+ddrem011 remainder 2.4 -1 -> 0.4
+ddrem012 remainder -2.4 1 -> -0.4
+ddrem013 remainder -2.4 -1 -> -0.4
+ddrem014 remainder 2.40 1 -> 0.40
+ddrem015 remainder 2.400 1 -> 0.400
+ddrem016 remainder 2.4 2 -> 0.4
+ddrem017 remainder 2.400 2 -> 0.400
+ddrem018 remainder 2. 2 -> 0
+ddrem019 remainder 20 20 -> 0
+
+ddrem020 remainder 187 187 -> 0
+ddrem021 remainder 5 2 -> 1
+ddrem022 remainder 5 2.0 -> 1.0
+ddrem023 remainder 5 2.000 -> 1.000
+ddrem024 remainder 5 0.200 -> 0.000
+ddrem025 remainder 5 0.200 -> 0.000
+
+ddrem030 remainder 1 2 -> 1
+ddrem031 remainder 1 4 -> 1
+ddrem032 remainder 1 8 -> 1
+
+ddrem033 remainder 1 16 -> 1
+ddrem034 remainder 1 32 -> 1
+ddrem035 remainder 1 64 -> 1
+ddrem040 remainder 1 -2 -> 1
+ddrem041 remainder 1 -4 -> 1
+ddrem042 remainder 1 -8 -> 1
+ddrem043 remainder 1 -16 -> 1
+ddrem044 remainder 1 -32 -> 1
+ddrem045 remainder 1 -64 -> 1
+ddrem050 remainder -1 2 -> -1
+ddrem051 remainder -1 4 -> -1
+ddrem052 remainder -1 8 -> -1
+ddrem053 remainder -1 16 -> -1
+ddrem054 remainder -1 32 -> -1
+ddrem055 remainder -1 64 -> -1
+ddrem060 remainder -1 -2 -> -1
+ddrem061 remainder -1 -4 -> -1
+ddrem062 remainder -1 -8 -> -1
+ddrem063 remainder -1 -16 -> -1
+ddrem064 remainder -1 -32 -> -1
+ddrem065 remainder -1 -64 -> -1
+
+ddrem066 remainder 999999999 1 -> 0
+ddrem067 remainder 999999999.4 1 -> 0.4
+ddrem068 remainder 999999999.5 1 -> 0.5
+ddrem069 remainder 999999999.9 1 -> 0.9
+ddrem070 remainder 999999999.999 1 -> 0.999
+ddrem071 remainder 999999.999999 1 -> 0.999999
+ddrem072 remainder 9 1 -> 0
+ddrem073 remainder 9999999999999999 1 -> 0
+ddrem074 remainder 9999999999999999 2 -> 1
+ddrem075 remainder 9999999999999999 3 -> 0
+ddrem076 remainder 9999999999999999 4 -> 3
+
+ddrem080 remainder 0. 1 -> 0
+ddrem081 remainder .0 1 -> 0.0
+ddrem082 remainder 0.00 1 -> 0.00
+ddrem083 remainder 0.00E+9 1 -> 0
+ddrem084 remainder 0.00E+3 1 -> 0
+ddrem085 remainder 0.00E+2 1 -> 0
+ddrem086 remainder 0.00E+1 1 -> 0.0
+ddrem087 remainder 0.00E+0 1 -> 0.00
+ddrem088 remainder 0.00E-0 1 -> 0.00
+ddrem089 remainder 0.00E-1 1 -> 0.000
+ddrem090 remainder 0.00E-2 1 -> 0.0000
+ddrem091 remainder 0.00E-3 1 -> 0.00000
+ddrem092 remainder 0.00E-4 1 -> 0.000000
+ddrem093 remainder 0.00E-5 1 -> 0E-7
+ddrem094 remainder 0.00E-6 1 -> 0E-8
+ddrem095 remainder 0.0000E-50 1 -> 0E-54
+
+-- Various flavours of remainder by 0
+ddrem101 remainder 0 0 -> NaN Division_undefined
+ddrem102 remainder 0 -0 -> NaN Division_undefined
+ddrem103 remainder -0 0 -> NaN Division_undefined
+ddrem104 remainder -0 -0 -> NaN Division_undefined
+ddrem105 remainder 0.0E5 0 -> NaN Division_undefined
+ddrem106 remainder 0.000 0 -> NaN Division_undefined
+-- [Some think this next group should be Division_by_zero exception, but
+-- IEEE 854 is explicit that it is Invalid operation .. for
+-- remainder-near, anyway]
+ddrem107 remainder 0.0001 0 -> NaN Invalid_operation
+ddrem108 remainder 0.01 0 -> NaN Invalid_operation
+ddrem109 remainder 0.1 0 -> NaN Invalid_operation
+ddrem110 remainder 1 0 -> NaN Invalid_operation
+ddrem111 remainder 1 0.0 -> NaN Invalid_operation
+ddrem112 remainder 10 0.0 -> NaN Invalid_operation
+ddrem113 remainder 1E+100 0.0 -> NaN Invalid_operation
+ddrem114 remainder 1E+380 0 -> NaN Invalid_operation
+ddrem115 remainder 0.0001 -0 -> NaN Invalid_operation
+ddrem116 remainder 0.01 -0 -> NaN Invalid_operation
+ddrem119 remainder 0.1 -0 -> NaN Invalid_operation
+ddrem120 remainder 1 -0 -> NaN Invalid_operation
+ddrem121 remainder 1 -0.0 -> NaN Invalid_operation
+ddrem122 remainder 10 -0.0 -> NaN Invalid_operation
+ddrem123 remainder 1E+100 -0.0 -> NaN Invalid_operation
+ddrem124 remainder 1E+384 -0 -> NaN Invalid_operation
+-- and zeros on left
+ddrem130 remainder 0 1 -> 0
+ddrem131 remainder 0 -1 -> 0
+ddrem132 remainder 0.0 1 -> 0.0
+ddrem133 remainder 0.0 -1 -> 0.0
+ddrem134 remainder -0 1 -> -0
+ddrem135 remainder -0 -1 -> -0
+ddrem136 remainder -0.0 1 -> -0.0
+ddrem137 remainder -0.0 -1 -> -0.0
+
+-- 0.5ers
+ddrem143 remainder 0.5 2 -> 0.5
+ddrem144 remainder 0.5 2.1 -> 0.5
+ddrem145 remainder 0.5 2.01 -> 0.50
+ddrem146 remainder 0.5 2.001 -> 0.500
+ddrem147 remainder 0.50 2 -> 0.50
+ddrem148 remainder 0.50 2.01 -> 0.50
+ddrem149 remainder 0.50 2.001 -> 0.500
+
+-- steadies
+ddrem150 remainder 1 1 -> 0
+ddrem151 remainder 1 2 -> 1
+ddrem152 remainder 1 3 -> 1
+ddrem153 remainder 1 4 -> 1
+ddrem154 remainder 1 5 -> 1
+ddrem155 remainder 1 6 -> 1
+ddrem156 remainder 1 7 -> 1
+ddrem157 remainder 1 8 -> 1
+ddrem158 remainder 1 9 -> 1
+ddrem159 remainder 1 10 -> 1
+ddrem160 remainder 1 1 -> 0
+ddrem161 remainder 2 1 -> 0
+ddrem162 remainder 3 1 -> 0
+ddrem163 remainder 4 1 -> 0
+ddrem164 remainder 5 1 -> 0
+ddrem165 remainder 6 1 -> 0
+ddrem166 remainder 7 1 -> 0
+ddrem167 remainder 8 1 -> 0
+ddrem168 remainder 9 1 -> 0
+ddrem169 remainder 10 1 -> 0
+
+-- some differences from remainderNear
+ddrem171 remainder 0.4 1.020 -> 0.400
+ddrem172 remainder 0.50 1.020 -> 0.500
+ddrem173 remainder 0.51 1.020 -> 0.510
+ddrem174 remainder 0.52 1.020 -> 0.520
+ddrem175 remainder 0.6 1.020 -> 0.600
+
+-- More flavours of remainder by 0
+ddrem201 remainder 0 0 -> NaN Division_undefined
+ddrem202 remainder 0.0E5 0 -> NaN Division_undefined
+ddrem203 remainder 0.000 0 -> NaN Division_undefined
+ddrem204 remainder 0.0001 0 -> NaN Invalid_operation
+ddrem205 remainder 0.01 0 -> NaN Invalid_operation
+ddrem206 remainder 0.1 0 -> NaN Invalid_operation
+ddrem207 remainder 1 0 -> NaN Invalid_operation
+ddrem208 remainder 1 0.0 -> NaN Invalid_operation
+ddrem209 remainder 10 0.0 -> NaN Invalid_operation
+ddrem210 remainder 1E+100 0.0 -> NaN Invalid_operation
+ddrem211 remainder 1E+380 0 -> NaN Invalid_operation
+
+-- some differences from remainderNear
+ddrem231 remainder -0.4 1.020 -> -0.400
+ddrem232 remainder -0.50 1.020 -> -0.500
+ddrem233 remainder -0.51 1.020 -> -0.510
+ddrem234 remainder -0.52 1.020 -> -0.520
+ddrem235 remainder -0.6 1.020 -> -0.600
+
+-- high Xs
+ddrem240 remainder 1E+2 1.00 -> 0.00
+
+-- ddrem3xx are from DiagBigDecimal
+ddrem301 remainder 1 3 -> 1
+ddrem302 remainder 5 5 -> 0
+ddrem303 remainder 13 10 -> 3
+ddrem304 remainder 13 50 -> 13
+ddrem305 remainder 13 100 -> 13
+ddrem306 remainder 13 1000 -> 13
+ddrem307 remainder .13 1 -> 0.13
+ddrem308 remainder 0.133 1 -> 0.133
+ddrem309 remainder 0.1033 1 -> 0.1033
+ddrem310 remainder 1.033 1 -> 0.033
+ddrem311 remainder 10.33 1 -> 0.33
+ddrem312 remainder 10.33 10 -> 0.33
+ddrem313 remainder 103.3 1 -> 0.3
+ddrem314 remainder 133 10 -> 3
+ddrem315 remainder 1033 10 -> 3
+ddrem316 remainder 1033 50 -> 33
+ddrem317 remainder 101.0 3 -> 2.0
+ddrem318 remainder 102.0 3 -> 0.0
+ddrem319 remainder 103.0 3 -> 1.0
+ddrem320 remainder 2.40 1 -> 0.40
+ddrem321 remainder 2.400 1 -> 0.400
+ddrem322 remainder 2.4 1 -> 0.4
+ddrem323 remainder 2.4 2 -> 0.4
+ddrem324 remainder 2.400 2 -> 0.400
+ddrem325 remainder 1 0.3 -> 0.1
+ddrem326 remainder 1 0.30 -> 0.10
+ddrem327 remainder 1 0.300 -> 0.100
+ddrem328 remainder 1 0.3000 -> 0.1000
+ddrem329 remainder 1.0 0.3 -> 0.1
+ddrem330 remainder 1.00 0.3 -> 0.10
+ddrem331 remainder 1.000 0.3 -> 0.100
+ddrem332 remainder 1.0000 0.3 -> 0.1000
+ddrem333 remainder 0.5 2 -> 0.5
+ddrem334 remainder 0.5 2.1 -> 0.5
+ddrem335 remainder 0.5 2.01 -> 0.50
+ddrem336 remainder 0.5 2.001 -> 0.500
+ddrem337 remainder 0.50 2 -> 0.50
+ddrem338 remainder 0.50 2.01 -> 0.50
+ddrem339 remainder 0.50 2.001 -> 0.500
+
+ddrem340 remainder 0.5 0.5000001 -> 0.5000000
+ddrem341 remainder 0.5 0.50000001 -> 0.50000000
+ddrem342 remainder 0.5 0.500000001 -> 0.500000000
+ddrem343 remainder 0.5 0.5000000001 -> 0.5000000000
+ddrem344 remainder 0.5 0.50000000001 -> 0.50000000000
+ddrem345 remainder 0.5 0.4999999 -> 1E-7
+ddrem346 remainder 0.5 0.49999999 -> 1E-8
+ddrem347 remainder 0.5 0.499999999 -> 1E-9
+ddrem348 remainder 0.5 0.4999999999 -> 1E-10
+ddrem349 remainder 0.5 0.49999999999 -> 1E-11
+ddrem350 remainder 0.5 0.499999999999 -> 1E-12
+
+ddrem351 remainder 0.03 7 -> 0.03
+ddrem352 remainder 5 2 -> 1
+ddrem353 remainder 4.1 2 -> 0.1
+ddrem354 remainder 4.01 2 -> 0.01
+ddrem355 remainder 4.001 2 -> 0.001
+ddrem356 remainder 4.0001 2 -> 0.0001
+ddrem357 remainder 4.00001 2 -> 0.00001
+ddrem358 remainder 4.000001 2 -> 0.000001
+ddrem359 remainder 4.0000001 2 -> 1E-7
+
+ddrem360 remainder 1.2 0.7345 -> 0.4655
+ddrem361 remainder 0.8 12 -> 0.8
+ddrem362 remainder 0.8 0.2 -> 0.0
+ddrem363 remainder 0.8 0.3 -> 0.2
+ddrem364 remainder 0.800 12 -> 0.800
+ddrem365 remainder 0.800 1.7 -> 0.800
+ddrem366 remainder 2.400 2 -> 0.400
+
+ddrem371 remainder 2.400 2 -> 0.400
+
+ddrem381 remainder 12345 1 -> 0
+ddrem382 remainder 12345 1.0001 -> 0.7657
+ddrem383 remainder 12345 1.001 -> 0.668
+ddrem384 remainder 12345 1.01 -> 0.78
+ddrem385 remainder 12345 1.1 -> 0.8
+ddrem386 remainder 12355 4 -> 3
+ddrem387 remainder 12345 4 -> 1
+ddrem388 remainder 12355 4.0001 -> 2.6912
+ddrem389 remainder 12345 4.0001 -> 0.6914
+ddrem390 remainder 12345 4.9 -> 1.9
+ddrem391 remainder 12345 4.99 -> 4.73
+ddrem392 remainder 12345 4.999 -> 2.469
+ddrem393 remainder 12345 4.9999 -> 0.2469
+ddrem394 remainder 12345 5 -> 0
+ddrem395 remainder 12345 5.0001 -> 4.7532
+ddrem396 remainder 12345 5.001 -> 2.532
+ddrem397 remainder 12345 5.01 -> 0.36
+ddrem398 remainder 12345 5.1 -> 3.0
+
+-- the nasty division-by-1 cases
+ddrem401 remainder 0.5 1 -> 0.5
+ddrem402 remainder 0.55 1 -> 0.55
+ddrem403 remainder 0.555 1 -> 0.555
+ddrem404 remainder 0.5555 1 -> 0.5555
+ddrem405 remainder 0.55555 1 -> 0.55555
+ddrem406 remainder 0.555555 1 -> 0.555555
+ddrem407 remainder 0.5555555 1 -> 0.5555555
+ddrem408 remainder 0.55555555 1 -> 0.55555555
+ddrem409 remainder 0.555555555 1 -> 0.555555555
+
+-- folddowns
+ddrem421 remainder 1E+384 1 -> NaN Division_impossible
+ddrem422 remainder 1E+384 1E+383 -> 0E+369 Clamped
+ddrem423 remainder 1E+384 2E+383 -> 0E+369 Clamped
+ddrem424 remainder 1E+384 3E+383 -> 1.00000000000000E+383 Clamped
+ddrem425 remainder 1E+384 4E+383 -> 2.00000000000000E+383 Clamped
+ddrem426 remainder 1E+384 5E+383 -> 0E+369 Clamped
+ddrem427 remainder 1E+384 6E+383 -> 4.00000000000000E+383 Clamped
+ddrem428 remainder 1E+384 7E+383 -> 3.00000000000000E+383 Clamped
+ddrem429 remainder 1E+384 8E+383 -> 2.00000000000000E+383 Clamped
+ddrem430 remainder 1E+384 9E+383 -> 1.00000000000000E+383 Clamped
+-- tinies
+ddrem431 remainder 1E-397 1E-398 -> 0E-398
+ddrem432 remainder 1E-397 2E-398 -> 0E-398
+ddrem433 remainder 1E-397 3E-398 -> 1E-398 Subnormal
+ddrem434 remainder 1E-397 4E-398 -> 2E-398 Subnormal
+ddrem435 remainder 1E-397 5E-398 -> 0E-398
+ddrem436 remainder 1E-397 6E-398 -> 4E-398 Subnormal
+ddrem437 remainder 1E-397 7E-398 -> 3E-398 Subnormal
+ddrem438 remainder 1E-397 8E-398 -> 2E-398 Subnormal
+ddrem439 remainder 1E-397 9E-398 -> 1E-398 Subnormal
+ddrem440 remainder 1E-397 10E-398 -> 0E-398
+ddrem441 remainder 1E-397 11E-398 -> 1.0E-397 Subnormal
+ddrem442 remainder 100E-397 11E-398 -> 1.0E-397 Subnormal
+ddrem443 remainder 100E-397 20E-398 -> 0E-398
+ddrem444 remainder 100E-397 21E-398 -> 1.3E-397 Subnormal
+ddrem445 remainder 100E-397 30E-398 -> 1.0E-397 Subnormal
+
+-- zero signs
+ddrem650 remainder 1 1 -> 0
+ddrem651 remainder -1 1 -> -0
+ddrem652 remainder 1 -1 -> 0
+ddrem653 remainder -1 -1 -> -0
+ddrem654 remainder 0 1 -> 0
+ddrem655 remainder -0 1 -> -0
+ddrem656 remainder 0 -1 -> 0
+ddrem657 remainder -0 -1 -> -0
+ddrem658 remainder 0.00 1 -> 0.00
+ddrem659 remainder -0.00 1 -> -0.00
+
+-- Specials
+ddrem680 remainder Inf -Inf -> NaN Invalid_operation
+ddrem681 remainder Inf -1000 -> NaN Invalid_operation
+ddrem682 remainder Inf -1 -> NaN Invalid_operation
+ddrem683 remainder Inf 0 -> NaN Invalid_operation
+ddrem684 remainder Inf -0 -> NaN Invalid_operation
+ddrem685 remainder Inf 1 -> NaN Invalid_operation
+ddrem686 remainder Inf 1000 -> NaN Invalid_operation
+ddrem687 remainder Inf Inf -> NaN Invalid_operation
+ddrem688 remainder -1000 Inf -> -1000
+ddrem689 remainder -Inf Inf -> NaN Invalid_operation
+ddrem691 remainder -1 Inf -> -1
+ddrem692 remainder 0 Inf -> 0
+ddrem693 remainder -0 Inf -> -0
+ddrem694 remainder 1 Inf -> 1
+ddrem695 remainder 1000 Inf -> 1000
+ddrem696 remainder Inf Inf -> NaN Invalid_operation
+
+ddrem700 remainder -Inf -Inf -> NaN Invalid_operation
+ddrem701 remainder -Inf -1000 -> NaN Invalid_operation
+ddrem702 remainder -Inf -1 -> NaN Invalid_operation
+ddrem703 remainder -Inf -0 -> NaN Invalid_operation
+ddrem704 remainder -Inf 0 -> NaN Invalid_operation
+ddrem705 remainder -Inf 1 -> NaN Invalid_operation
+ddrem706 remainder -Inf 1000 -> NaN Invalid_operation
+ddrem707 remainder -Inf Inf -> NaN Invalid_operation
+ddrem708 remainder -Inf -Inf -> NaN Invalid_operation
+ddrem709 remainder -1000 Inf -> -1000
+ddrem710 remainder -1 -Inf -> -1
+ddrem711 remainder -0 -Inf -> -0
+ddrem712 remainder 0 -Inf -> 0
+ddrem713 remainder 1 -Inf -> 1
+ddrem714 remainder 1000 -Inf -> 1000
+ddrem715 remainder Inf -Inf -> NaN Invalid_operation
+
+ddrem721 remainder NaN -Inf -> NaN
+ddrem722 remainder NaN -1000 -> NaN
+ddrem723 remainder NaN -1 -> NaN
+ddrem724 remainder NaN -0 -> NaN
+ddrem725 remainder -NaN 0 -> -NaN
+ddrem726 remainder NaN 1 -> NaN
+ddrem727 remainder NaN 1000 -> NaN
+ddrem728 remainder NaN Inf -> NaN
+ddrem729 remainder NaN -NaN -> NaN
+ddrem730 remainder -Inf NaN -> NaN
+ddrem731 remainder -1000 NaN -> NaN
+ddrem732 remainder -1 NaN -> NaN
+ddrem733 remainder -0 -NaN -> -NaN
+ddrem734 remainder 0 NaN -> NaN
+ddrem735 remainder 1 -NaN -> -NaN
+ddrem736 remainder 1000 NaN -> NaN
+ddrem737 remainder Inf NaN -> NaN
+
+ddrem741 remainder sNaN -Inf -> NaN Invalid_operation
+ddrem742 remainder sNaN -1000 -> NaN Invalid_operation
+ddrem743 remainder -sNaN -1 -> -NaN Invalid_operation
+ddrem744 remainder sNaN -0 -> NaN Invalid_operation
+ddrem745 remainder sNaN 0 -> NaN Invalid_operation
+ddrem746 remainder sNaN 1 -> NaN Invalid_operation
+ddrem747 remainder sNaN 1000 -> NaN Invalid_operation
+ddrem749 remainder sNaN NaN -> NaN Invalid_operation
+ddrem750 remainder sNaN sNaN -> NaN Invalid_operation
+ddrem751 remainder NaN sNaN -> NaN Invalid_operation
+ddrem752 remainder -Inf sNaN -> NaN Invalid_operation
+ddrem753 remainder -1000 sNaN -> NaN Invalid_operation
+ddrem754 remainder -1 sNaN -> NaN Invalid_operation
+ddrem755 remainder -0 sNaN -> NaN Invalid_operation
+ddrem756 remainder 0 sNaN -> NaN Invalid_operation
+ddrem757 remainder 1 sNaN -> NaN Invalid_operation
+ddrem758 remainder 1000 sNaN -> NaN Invalid_operation
+ddrem759 remainder Inf -sNaN -> -NaN Invalid_operation
+
+-- propaging NaNs
+ddrem760 remainder NaN1 NaN7 -> NaN1
+ddrem761 remainder sNaN2 NaN8 -> NaN2 Invalid_operation
+ddrem762 remainder NaN3 sNaN9 -> NaN9 Invalid_operation
+ddrem763 remainder sNaN4 sNaN10 -> NaN4 Invalid_operation
+ddrem764 remainder 15 NaN11 -> NaN11
+ddrem765 remainder NaN6 NaN12 -> NaN6
+ddrem766 remainder Inf NaN13 -> NaN13
+ddrem767 remainder NaN14 -Inf -> NaN14
+ddrem768 remainder 0 NaN15 -> NaN15
+ddrem769 remainder NaN16 -0 -> NaN16
+
+-- edge cases of impossible
+ddrem770 remainder 1234567890123456 10 -> 6
+ddrem771 remainder 1234567890123456 1 -> 0
+ddrem772 remainder 1234567890123456 0.1 -> NaN Division_impossible
+ddrem773 remainder 1234567890123456 0.01 -> NaN Division_impossible
+
+-- long operand checks
+ddrem801 remainder 12345678000 100 -> 0
+ddrem802 remainder 1 12345678000 -> 1
+ddrem803 remainder 1234567800 10 -> 0
+ddrem804 remainder 1 1234567800 -> 1
+ddrem805 remainder 1234567890 10 -> 0
+ddrem806 remainder 1 1234567890 -> 1
+ddrem807 remainder 1234567891 10 -> 1
+ddrem808 remainder 1 1234567891 -> 1
+ddrem809 remainder 12345678901 100 -> 1
+ddrem810 remainder 1 12345678901 -> 1
+ddrem811 remainder 1234567896 10 -> 6
+ddrem812 remainder 1 1234567896 -> 1
+
+ddrem821 remainder 12345678000 100 -> 0
+ddrem822 remainder 1 12345678000 -> 1
+ddrem823 remainder 1234567800 10 -> 0
+ddrem824 remainder 1 1234567800 -> 1
+ddrem825 remainder 1234567890 10 -> 0
+ddrem826 remainder 1 1234567890 -> 1
+ddrem827 remainder 1234567891 10 -> 1
+ddrem828 remainder 1 1234567891 -> 1
+ddrem829 remainder 12345678901 100 -> 1
+ddrem830 remainder 1 12345678901 -> 1
+ddrem831 remainder 1234567896 10 -> 6
+ddrem832 remainder 1 1234567896 -> 1
+
+-- from divideint
+ddrem840 remainder 100000000.0 1 -> 0.0
+ddrem841 remainder 100000000.4 1 -> 0.4
+ddrem842 remainder 100000000.5 1 -> 0.5
+ddrem843 remainder 100000000.9 1 -> 0.9
+ddrem844 remainder 100000000.999 1 -> 0.999
+ddrem850 remainder 100000003 5 -> 3
+ddrem851 remainder 10000003 5 -> 3
+ddrem852 remainder 1000003 5 -> 3
+ddrem853 remainder 100003 5 -> 3
+ddrem854 remainder 10003 5 -> 3
+ddrem855 remainder 1003 5 -> 3
+ddrem856 remainder 103 5 -> 3
+ddrem857 remainder 13 5 -> 3
+ddrem858 remainder 1 5 -> 1
+
+-- Vladimir's cases 1234567890123456
+ddrem860 remainder 123.0e1 1000000000000000 -> 1230
+ddrem861 remainder 1230 1000000000000000 -> 1230
+ddrem862 remainder 12.3e2 1000000000000000 -> 1230
+ddrem863 remainder 1.23e3 1000000000000000 -> 1230
+ddrem864 remainder 123e1 1000000000000000 -> 1230
+ddrem870 remainder 123e1 1000000000000000 -> 1230
+ddrem871 remainder 123e1 100000000000000 -> 1230
+ddrem872 remainder 123e1 10000000000000 -> 1230
+ddrem873 remainder 123e1 1000000000000 -> 1230
+ddrem874 remainder 123e1 100000000000 -> 1230
+ddrem875 remainder 123e1 10000000000 -> 1230
+ddrem876 remainder 123e1 1000000000 -> 1230
+ddrem877 remainder 123e1 100000000 -> 1230
+ddrem878 remainder 1230 100000000 -> 1230
+ddrem879 remainder 123e1 10000000 -> 1230
+ddrem880 remainder 123e1 1000000 -> 1230
+ddrem881 remainder 123e1 100000 -> 1230
+ddrem882 remainder 123e1 10000 -> 1230
+ddrem883 remainder 123e1 1000 -> 230
+ddrem884 remainder 123e1 100 -> 30
+ddrem885 remainder 123e1 10 -> 0
+ddrem886 remainder 123e1 1 -> 0
+
+ddrem890 remainder 123e1 2000000000000000 -> 1230
+ddrem891 remainder 123e1 200000000000000 -> 1230
+ddrem892 remainder 123e1 20000000000000 -> 1230
+ddrem893 remainder 123e1 2000000000000 -> 1230
+ddrem894 remainder 123e1 200000000000 -> 1230
+ddrem895 remainder 123e1 20000000000 -> 1230
+ddrem896 remainder 123e1 2000000000 -> 1230
+ddrem897 remainder 123e1 200000000 -> 1230
+ddrem899 remainder 123e1 20000000 -> 1230
+ddrem900 remainder 123e1 2000000 -> 1230
+ddrem901 remainder 123e1 200000 -> 1230
+ddrem902 remainder 123e1 20000 -> 1230
+ddrem903 remainder 123e1 2000 -> 1230
+ddrem904 remainder 123e1 200 -> 30
+ddrem905 remainder 123e1 20 -> 10
+ddrem906 remainder 123e1 2 -> 0
+
+ddrem910 remainder 123e1 5000000000000000 -> 1230
+ddrem911 remainder 123e1 500000000000000 -> 1230
+ddrem912 remainder 123e1 50000000000000 -> 1230
+ddrem913 remainder 123e1 5000000000000 -> 1230
+ddrem914 remainder 123e1 500000000000 -> 1230
+ddrem915 remainder 123e1 50000000000 -> 1230
+ddrem916 remainder 123e1 5000000000 -> 1230
+ddrem917 remainder 123e1 500000000 -> 1230
+ddrem919 remainder 123e1 50000000 -> 1230
+ddrem920 remainder 123e1 5000000 -> 1230
+ddrem921 remainder 123e1 500000 -> 1230
+ddrem922 remainder 123e1 50000 -> 1230
+ddrem923 remainder 123e1 5000 -> 1230
+ddrem924 remainder 123e1 500 -> 230
+ddrem925 remainder 123e1 50 -> 30
+ddrem926 remainder 123e1 5 -> 0
+
+ddrem930 remainder 123e1 9000000000000000 -> 1230
+ddrem931 remainder 123e1 900000000000000 -> 1230
+ddrem932 remainder 123e1 90000000000000 -> 1230
+ddrem933 remainder 123e1 9000000000000 -> 1230
+ddrem934 remainder 123e1 900000000000 -> 1230
+ddrem935 remainder 123e1 90000000000 -> 1230
+ddrem936 remainder 123e1 9000000000 -> 1230
+ddrem937 remainder 123e1 900000000 -> 1230
+ddrem939 remainder 123e1 90000000 -> 1230
+ddrem940 remainder 123e1 9000000 -> 1230
+ddrem941 remainder 123e1 900000 -> 1230
+ddrem942 remainder 123e1 90000 -> 1230
+ddrem943 remainder 123e1 9000 -> 1230
+ddrem944 remainder 123e1 900 -> 330
+ddrem945 remainder 123e1 90 -> 60
+ddrem946 remainder 123e1 9 -> 6
+
+ddrem950 remainder 123e1 1000000000000000 -> 1230
+ddrem961 remainder 123e1 2999999999999999 -> 1230
+ddrem962 remainder 123e1 3999999999999999 -> 1230
+ddrem963 remainder 123e1 4999999999999999 -> 1230
+ddrem964 remainder 123e1 5999999999999999 -> 1230
+ddrem965 remainder 123e1 6999999999999999 -> 1230
+ddrem966 remainder 123e1 7999999999999999 -> 1230
+ddrem967 remainder 123e1 8999999999999999 -> 1230
+ddrem968 remainder 123e1 9999999999999999 -> 1230
+ddrem969 remainder 123e1 9876543210987654 -> 1230
+
+ddrem980 remainder 123e1 1000E299 -> 1.23E+3 -- 123E+1 internally
+
+-- overflow and underflow tests [from divide]
+ddrem1051 remainder 1e+277 1e-311 -> NaN Division_impossible
+ddrem1052 remainder 1e+277 -1e-311 -> NaN Division_impossible
+ddrem1053 remainder -1e+277 1e-311 -> NaN Division_impossible
+ddrem1054 remainder -1e+277 -1e-311 -> NaN Division_impossible
+ddrem1055 remainder 1e-277 1e+311 -> 1E-277
+ddrem1056 remainder 1e-277 -1e+311 -> 1E-277
+ddrem1057 remainder -1e-277 1e+311 -> -1E-277
+ddrem1058 remainder -1e-277 -1e+311 -> -1E-277
+
+-- Null tests
+ddrem1000 remainder 10 # -> NaN Invalid_operation
+ddrem1001 remainder # 10 -> NaN Invalid_operation
+
diff --git a/Lib/test/decimaltestdata/ddRemainderNear.decTest b/Lib/test/decimaltestdata/ddRemainderNear.decTest
new file mode 100644
index 0000000..1f3bafd
--- /dev/null
+++ b/Lib/test/decimaltestdata/ddRemainderNear.decTest
@@ -0,0 +1,615 @@
+------------------------------------------------------------------------
+-- ddRemainderNear.decTest -- decDouble remainder-near --
+-- Copyright (c) IBM Corporation, 1981, 2007. All rights reserved. --
+------------------------------------------------------------------------
+-- Please see the document "General Decimal Arithmetic Testcases" --
+-- at http://www2.hursley.ibm.com/decimal for the description of --
+-- these testcases. --
+-- --
+-- These testcases are experimental ('beta' versions), and they --
+-- may contain errors. They are offered on an as-is basis. In --
+-- particular, achieving the same results as the tests here is not --
+-- a guarantee that an implementation complies with any Standard --
+-- or specification. The tests are not exhaustive. --
+-- --
+-- Please send comments, suggestions, and corrections to the author: --
+-- Mike Cowlishaw, IBM Fellow --
+-- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK --
+-- mfc@uk.ibm.com --
+------------------------------------------------------------------------
+version: 2.56
+
+precision: 16
+maxExponent: 384
+minExponent: -383
+extended: 1
+clamp: 1
+rounding: half_even
+
+-- sanity checks (as base, above)
+ddrmn001 remaindernear 1 1 -> 0
+ddrmn002 remaindernear 2 1 -> 0
+ddrmn003 remaindernear 1 2 -> 1
+ddrmn004 remaindernear 2 2 -> 0
+ddrmn005 remaindernear 0 1 -> 0
+ddrmn006 remaindernear 0 2 -> 0
+ddrmn007 remaindernear 1 3 -> 1
+ddrmn008 remaindernear 2 3 -> -1
+ddrmn009 remaindernear 3 3 -> 0
+
+ddrmn010 remaindernear 2.4 1 -> 0.4
+ddrmn011 remaindernear 2.4 -1 -> 0.4
+ddrmn012 remaindernear -2.4 1 -> -0.4
+ddrmn013 remaindernear -2.4 -1 -> -0.4
+ddrmn014 remaindernear 2.40 1 -> 0.40
+ddrmn015 remaindernear 2.400 1 -> 0.400
+ddrmn016 remaindernear 2.4 2 -> 0.4
+ddrmn017 remaindernear 2.400 2 -> 0.400
+ddrmn018 remaindernear 2. 2 -> 0
+ddrmn019 remaindernear 20 20 -> 0
+
+ddrmn020 remaindernear 187 187 -> 0
+ddrmn021 remaindernear 5 2 -> 1
+ddrmn022 remaindernear 5 2.0 -> 1.0
+ddrmn023 remaindernear 5 2.000 -> 1.000
+ddrmn024 remaindernear 5 0.200 -> 0.000
+ddrmn025 remaindernear 5 0.200 -> 0.000
+
+ddrmn030 remaindernear 1 2 -> 1
+ddrmn031 remaindernear 1 4 -> 1
+ddrmn032 remaindernear 1 8 -> 1
+
+ddrmn033 remaindernear 1 16 -> 1
+ddrmn034 remaindernear 1 32 -> 1
+ddrmn035 remaindernear 1 64 -> 1
+ddrmn040 remaindernear 1 -2 -> 1
+ddrmn041 remaindernear 1 -4 -> 1
+ddrmn042 remaindernear 1 -8 -> 1
+ddrmn043 remaindernear 1 -16 -> 1
+ddrmn044 remaindernear 1 -32 -> 1
+ddrmn045 remaindernear 1 -64 -> 1
+ddrmn050 remaindernear -1 2 -> -1
+ddrmn051 remaindernear -1 4 -> -1
+ddrmn052 remaindernear -1 8 -> -1
+ddrmn053 remaindernear -1 16 -> -1
+ddrmn054 remaindernear -1 32 -> -1
+ddrmn055 remaindernear -1 64 -> -1
+ddrmn060 remaindernear -1 -2 -> -1
+ddrmn061 remaindernear -1 -4 -> -1
+ddrmn062 remaindernear -1 -8 -> -1
+ddrmn063 remaindernear -1 -16 -> -1
+ddrmn064 remaindernear -1 -32 -> -1
+ddrmn065 remaindernear -1 -64 -> -1
+
+ddrmn066 remaindernear 9.9 1 -> -0.1
+ddrmn067 remaindernear 99.7 1 -> -0.3
+ddrmn068 remaindernear 999999999 1 -> 0
+ddrmn069 remaindernear 999999999.4 1 -> 0.4
+ddrmn070 remaindernear 999999999.5 1 -> -0.5
+ddrmn071 remaindernear 999999999.9 1 -> -0.1
+ddrmn072 remaindernear 999999999.999 1 -> -0.001
+ddrmn073 remaindernear 999999.999999 1 -> -0.000001
+ddrmn074 remaindernear 9 1 -> 0
+ddrmn075 remaindernear 9999999999999999 1 -> 0
+ddrmn076 remaindernear 9999999999999999 2 -> -1
+ddrmn077 remaindernear 9999999999999999 3 -> 0
+ddrmn078 remaindernear 9999999999999999 4 -> -1
+
+ddrmn080 remaindernear 0. 1 -> 0
+ddrmn081 remaindernear .0 1 -> 0.0
+ddrmn082 remaindernear 0.00 1 -> 0.00
+ddrmn083 remaindernear 0.00E+9 1 -> 0
+ddrmn084 remaindernear 0.00E+3 1 -> 0
+ddrmn085 remaindernear 0.00E+2 1 -> 0
+ddrmn086 remaindernear 0.00E+1 1 -> 0.0
+ddrmn087 remaindernear 0.00E+0 1 -> 0.00
+ddrmn088 remaindernear 0.00E-0 1 -> 0.00
+ddrmn089 remaindernear 0.00E-1 1 -> 0.000
+ddrmn090 remaindernear 0.00E-2 1 -> 0.0000
+ddrmn091 remaindernear 0.00E-3 1 -> 0.00000
+ddrmn092 remaindernear 0.00E-4 1 -> 0.000000
+ddrmn093 remaindernear 0.00E-5 1 -> 0E-7
+ddrmn094 remaindernear 0.00E-6 1 -> 0E-8
+ddrmn095 remaindernear 0.0000E-50 1 -> 0E-54
+
+-- Various flavours of remaindernear by 0
+ddrmn101 remaindernear 0 0 -> NaN Division_undefined
+ddrmn102 remaindernear 0 -0 -> NaN Division_undefined
+ddrmn103 remaindernear -0 0 -> NaN Division_undefined
+ddrmn104 remaindernear -0 -0 -> NaN Division_undefined
+ddrmn105 remaindernear 0.0E5 0 -> NaN Division_undefined
+ddrmn106 remaindernear 0.000 0 -> NaN Division_undefined
+-- [Some think this next group should be Division_by_zero exception, but
+-- IEEE 854 is explicit that it is Invalid operation .. for
+-- remainder-near, anyway]
+ddrmn107 remaindernear 0.0001 0 -> NaN Invalid_operation
+ddrmn108 remaindernear 0.01 0 -> NaN Invalid_operation
+ddrmn109 remaindernear 0.1 0 -> NaN Invalid_operation
+ddrmn110 remaindernear 1 0 -> NaN Invalid_operation
+ddrmn111 remaindernear 1 0.0 -> NaN Invalid_operation
+ddrmn112 remaindernear 10 0.0 -> NaN Invalid_operation
+ddrmn113 remaindernear 1E+100 0.0 -> NaN Invalid_operation
+ddrmn114 remaindernear 1E+380 0 -> NaN Invalid_operation
+ddrmn115 remaindernear 0.0001 -0 -> NaN Invalid_operation
+ddrmn116 remaindernear 0.01 -0 -> NaN Invalid_operation
+ddrmn119 remaindernear 0.1 -0 -> NaN Invalid_operation
+ddrmn120 remaindernear 1 -0 -> NaN Invalid_operation
+ddrmn121 remaindernear 1 -0.0 -> NaN Invalid_operation
+ddrmn122 remaindernear 10 -0.0 -> NaN Invalid_operation
+ddrmn123 remaindernear 1E+100 -0.0 -> NaN Invalid_operation
+ddrmn124 remaindernear 1E+384 -0 -> NaN Invalid_operation
+-- and zeros on left
+ddrmn130 remaindernear 0 1 -> 0
+ddrmn131 remaindernear 0 -1 -> 0
+ddrmn132 remaindernear 0.0 1 -> 0.0
+ddrmn133 remaindernear 0.0 -1 -> 0.0
+ddrmn134 remaindernear -0 1 -> -0
+ddrmn135 remaindernear -0 -1 -> -0
+ddrmn136 remaindernear -0.0 1 -> -0.0
+ddrmn137 remaindernear -0.0 -1 -> -0.0
+
+-- 0.5ers
+ddrmn143 remaindernear 0.5 2 -> 0.5
+ddrmn144 remaindernear 0.5 2.1 -> 0.5
+ddrmn145 remaindernear 0.5 2.01 -> 0.50
+ddrmn146 remaindernear 0.5 2.001 -> 0.500
+ddrmn147 remaindernear 0.50 2 -> 0.50
+ddrmn148 remaindernear 0.50 2.01 -> 0.50
+ddrmn149 remaindernear 0.50 2.001 -> 0.500
+
+-- steadies
+ddrmn150 remaindernear 1 1 -> 0
+ddrmn151 remaindernear 1 2 -> 1
+ddrmn152 remaindernear 1 3 -> 1
+ddrmn153 remaindernear 1 4 -> 1
+ddrmn154 remaindernear 1 5 -> 1
+ddrmn155 remaindernear 1 6 -> 1
+ddrmn156 remaindernear 1 7 -> 1
+ddrmn157 remaindernear 1 8 -> 1
+ddrmn158 remaindernear 1 9 -> 1
+ddrmn159 remaindernear 1 10 -> 1
+ddrmn160 remaindernear 1 1 -> 0
+ddrmn161 remaindernear 2 1 -> 0
+ddrmn162 remaindernear 3 1 -> 0
+ddrmn163 remaindernear 4 1 -> 0
+ddrmn164 remaindernear 5 1 -> 0
+ddrmn165 remaindernear 6 1 -> 0
+ddrmn166 remaindernear 7 1 -> 0
+ddrmn167 remaindernear 8 1 -> 0
+ddrmn168 remaindernear 9 1 -> 0
+ddrmn169 remaindernear 10 1 -> 0
+
+-- some differences from remainder
+ddrmn171 remaindernear 0.4 1.020 -> 0.400
+ddrmn172 remaindernear 0.50 1.020 -> 0.500
+ddrmn173 remaindernear 0.51 1.020 -> 0.510
+ddrmn174 remaindernear 0.52 1.020 -> -0.500
+ddrmn175 remaindernear 0.6 1.020 -> -0.420
+
+-- More flavours of remaindernear by 0
+ddrmn201 remaindernear 0 0 -> NaN Division_undefined
+ddrmn202 remaindernear 0.0E5 0 -> NaN Division_undefined
+ddrmn203 remaindernear 0.000 0 -> NaN Division_undefined
+ddrmn204 remaindernear 0.0001 0 -> NaN Invalid_operation
+ddrmn205 remaindernear 0.01 0 -> NaN Invalid_operation
+ddrmn206 remaindernear 0.1 0 -> NaN Invalid_operation
+ddrmn207 remaindernear 1 0 -> NaN Invalid_operation
+ddrmn208 remaindernear 1 0.0 -> NaN Invalid_operation
+ddrmn209 remaindernear 10 0.0 -> NaN Invalid_operation
+ddrmn210 remaindernear 1E+100 0.0 -> NaN Invalid_operation
+ddrmn211 remaindernear 1E+380 0 -> NaN Invalid_operation
+
+-- tests from the extended specification
+ddrmn221 remaindernear 2.1 3 -> -0.9
+ddrmn222 remaindernear 10 6 -> -2
+ddrmn223 remaindernear 10 3 -> 1
+ddrmn224 remaindernear -10 3 -> -1
+ddrmn225 remaindernear 10.2 1 -> 0.2
+ddrmn226 remaindernear 10 0.3 -> 0.1
+ddrmn227 remaindernear 3.6 1.3 -> -0.3
+
+-- some differences from remainder
+ddrmn231 remaindernear -0.4 1.020 -> -0.400
+ddrmn232 remaindernear -0.50 1.020 -> -0.500
+ddrmn233 remaindernear -0.51 1.020 -> -0.510
+ddrmn234 remaindernear -0.52 1.020 -> 0.500
+ddrmn235 remaindernear -0.6 1.020 -> 0.420
+
+-- high Xs
+ddrmn240 remaindernear 1E+2 1.00 -> 0.00
+
+-- ddrmn3xx are from DiagBigDecimal
+ddrmn301 remaindernear 1 3 -> 1
+ddrmn302 remaindernear 5 5 -> 0
+ddrmn303 remaindernear 13 10 -> 3
+ddrmn304 remaindernear 13 50 -> 13
+ddrmn305 remaindernear 13 100 -> 13
+ddrmn306 remaindernear 13 1000 -> 13
+ddrmn307 remaindernear .13 1 -> 0.13
+ddrmn308 remaindernear 0.133 1 -> 0.133
+ddrmn309 remaindernear 0.1033 1 -> 0.1033
+ddrmn310 remaindernear 1.033 1 -> 0.033
+ddrmn311 remaindernear 10.33 1 -> 0.33
+ddrmn312 remaindernear 10.33 10 -> 0.33
+ddrmn313 remaindernear 103.3 1 -> 0.3
+ddrmn314 remaindernear 133 10 -> 3
+ddrmn315 remaindernear 1033 10 -> 3
+ddrmn316 remaindernear 1033 50 -> -17
+ddrmn317 remaindernear 101.0 3 -> -1.0
+ddrmn318 remaindernear 102.0 3 -> 0.0
+ddrmn319 remaindernear 103.0 3 -> 1.0
+ddrmn320 remaindernear 2.40 1 -> 0.40
+ddrmn321 remaindernear 2.400 1 -> 0.400
+ddrmn322 remaindernear 2.4 1 -> 0.4
+ddrmn323 remaindernear 2.4 2 -> 0.4
+ddrmn324 remaindernear 2.400 2 -> 0.400
+ddrmn325 remaindernear 1 0.3 -> 0.1
+ddrmn326 remaindernear 1 0.30 -> 0.10
+ddrmn327 remaindernear 1 0.300 -> 0.100
+ddrmn328 remaindernear 1 0.3000 -> 0.1000
+ddrmn329 remaindernear 1.0 0.3 -> 0.1
+ddrmn330 remaindernear 1.00 0.3 -> 0.10
+ddrmn331 remaindernear 1.000 0.3 -> 0.100
+ddrmn332 remaindernear 1.0000 0.3 -> 0.1000
+ddrmn333 remaindernear 0.5 2 -> 0.5
+ddrmn334 remaindernear 0.5 2.1 -> 0.5
+ddrmn335 remaindernear 0.5 2.01 -> 0.50
+ddrmn336 remaindernear 0.5 2.001 -> 0.500
+ddrmn337 remaindernear 0.50 2 -> 0.50
+ddrmn338 remaindernear 0.50 2.01 -> 0.50
+ddrmn339 remaindernear 0.50 2.001 -> 0.500
+
+ddrmn340 remaindernear 0.5 0.5000001 -> -1E-7
+ddrmn341 remaindernear 0.5 0.50000001 -> -1E-8
+ddrmn342 remaindernear 0.5 0.500000001 -> -1E-9
+ddrmn343 remaindernear 0.5 0.5000000001 -> -1E-10
+ddrmn344 remaindernear 0.5 0.50000000001 -> -1E-11
+ddrmn345 remaindernear 0.5 0.4999999 -> 1E-7
+ddrmn346 remaindernear 0.5 0.49999999 -> 1E-8
+ddrmn347 remaindernear 0.5 0.499999999 -> 1E-9
+ddrmn348 remaindernear 0.5 0.4999999999 -> 1E-10
+ddrmn349 remaindernear 0.5 0.49999999999 -> 1E-11
+ddrmn350 remaindernear 0.5 0.499999999999 -> 1E-12
+
+ddrmn351 remaindernear 0.03 7 -> 0.03
+ddrmn352 remaindernear 5 2 -> 1
+ddrmn353 remaindernear 4.1 2 -> 0.1
+ddrmn354 remaindernear 4.01 2 -> 0.01
+ddrmn355 remaindernear 4.001 2 -> 0.001
+ddrmn356 remaindernear 4.0001 2 -> 0.0001
+ddrmn357 remaindernear 4.00001 2 -> 0.00001
+ddrmn358 remaindernear 4.000001 2 -> 0.000001
+ddrmn359 remaindernear 4.0000001 2 -> 1E-7
+
+ddrmn360 remaindernear 1.2 0.7345 -> -0.2690
+ddrmn361 remaindernear 0.8 12 -> 0.8
+ddrmn362 remaindernear 0.8 0.2 -> 0.0
+ddrmn363 remaindernear 0.8 0.3 -> -0.1
+ddrmn364 remaindernear 0.800 12 -> 0.800
+ddrmn365 remaindernear 0.800 1.7 -> 0.800
+ddrmn366 remaindernear 2.400 2 -> 0.400
+
+-- round to even
+ddrmn371 remaindernear 121 2 -> 1
+ddrmn372 remaindernear 122 2 -> 0
+ddrmn373 remaindernear 123 2 -> -1
+ddrmn374 remaindernear 124 2 -> 0
+ddrmn375 remaindernear 125 2 -> 1
+ddrmn376 remaindernear 126 2 -> 0
+ddrmn377 remaindernear 127 2 -> -1
+
+ddrmn381 remaindernear 12345 1 -> 0
+ddrmn382 remaindernear 12345 1.0001 -> -0.2344
+ddrmn383 remaindernear 12345 1.001 -> -0.333
+ddrmn384 remaindernear 12345 1.01 -> -0.23
+ddrmn385 remaindernear 12345 1.1 -> -0.3
+ddrmn386 remaindernear 12355 4 -> -1
+ddrmn387 remaindernear 12345 4 -> 1
+ddrmn388 remaindernear 12355 4.0001 -> -1.3089
+ddrmn389 remaindernear 12345 4.0001 -> 0.6914
+ddrmn390 remaindernear 12345 4.9 -> 1.9
+ddrmn391 remaindernear 12345 4.99 -> -0.26
+ddrmn392 remaindernear 12345 4.999 -> 2.469
+ddrmn393 remaindernear 12345 4.9999 -> 0.2469
+ddrmn394 remaindernear 12345 5 -> 0
+ddrmn395 remaindernear 12345 5.0001 -> -0.2469
+ddrmn396 remaindernear 12345 5.001 -> -2.469
+ddrmn397 remaindernear 12345 5.01 -> 0.36
+ddrmn398 remaindernear 12345 5.1 -> -2.1
+
+-- the nasty division-by-1 cases
+ddrmn401 remaindernear 0.4 1 -> 0.4
+ddrmn402 remaindernear 0.45 1 -> 0.45
+ddrmn403 remaindernear 0.455 1 -> 0.455
+ddrmn404 remaindernear 0.4555 1 -> 0.4555
+ddrmn405 remaindernear 0.45555 1 -> 0.45555
+ddrmn406 remaindernear 0.455555 1 -> 0.455555
+ddrmn407 remaindernear 0.4555555 1 -> 0.4555555
+ddrmn408 remaindernear 0.45555555 1 -> 0.45555555
+ddrmn409 remaindernear 0.455555555 1 -> 0.455555555
+-- with spill... [412 exercises sticktab loop]
+ddrmn411 remaindernear 0.5 1 -> 0.5
+ddrmn412 remaindernear 0.55 1 -> -0.45
+ddrmn413 remaindernear 0.555 1 -> -0.445
+ddrmn414 remaindernear 0.5555 1 -> -0.4445
+ddrmn415 remaindernear 0.55555 1 -> -0.44445
+ddrmn416 remaindernear 0.555555 1 -> -0.444445
+ddrmn417 remaindernear 0.5555555 1 -> -0.4444445
+ddrmn418 remaindernear 0.55555555 1 -> -0.44444445
+ddrmn419 remaindernear 0.555555555 1 -> -0.444444445
+
+-- folddowns
+ddrmn421 remaindernear 1E+384 1 -> NaN Division_impossible
+ddrmn422 remaindernear 1E+384 1E+383 -> 0E+369 Clamped
+ddrmn423 remaindernear 1E+384 2E+383 -> 0E+369 Clamped
+ddrmn424 remaindernear 1E+384 3E+383 -> 1.00000000000000E+383 Clamped
+ddrmn425 remaindernear 1E+384 4E+383 -> 2.00000000000000E+383 Clamped
+ddrmn426 remaindernear 1E+384 5E+383 -> 0E+369 Clamped
+ddrmn427 remaindernear 1E+384 6E+383 -> -2.00000000000000E+383 Clamped
+ddrmn428 remaindernear 1E+384 7E+383 -> 3.00000000000000E+383 Clamped
+ddrmn429 remaindernear 1E+384 8E+383 -> 2.00000000000000E+383 Clamped
+ddrmn430 remaindernear 1E+384 9E+383 -> 1.00000000000000E+383 Clamped
+-- tinies
+ddrmn431 remaindernear 1E-397 1E-398 -> 0E-398
+ddrmn432 remaindernear 1E-397 2E-398 -> 0E-398
+ddrmn433 remaindernear 1E-397 3E-398 -> 1E-398 Subnormal
+ddrmn434 remaindernear 1E-397 4E-398 -> 2E-398 Subnormal
+ddrmn435 remaindernear 1E-397 5E-398 -> 0E-398
+ddrmn436 remaindernear 1E-397 6E-398 -> -2E-398 Subnormal
+ddrmn437 remaindernear 1E-397 7E-398 -> 3E-398 Subnormal
+ddrmn438 remaindernear 1E-397 8E-398 -> 2E-398 Subnormal
+ddrmn439 remaindernear 1E-397 9E-398 -> 1E-398 Subnormal
+ddrmn440 remaindernear 1E-397 10E-398 -> 0E-398
+ddrmn441 remaindernear 1E-397 11E-398 -> -1E-398 Subnormal
+ddrmn442 remaindernear 100E-397 11E-398 -> -1E-398 Subnormal
+ddrmn443 remaindernear 100E-397 20E-398 -> 0E-398
+ddrmn444 remaindernear 100E-397 21E-398 -> -8E-398 Subnormal
+ddrmn445 remaindernear 100E-397 30E-398 -> 1.0E-397 Subnormal
+
+-- zero signs
+ddrmn650 remaindernear 1 1 -> 0
+ddrmn651 remaindernear -1 1 -> -0
+ddrmn652 remaindernear 1 -1 -> 0
+ddrmn653 remaindernear -1 -1 -> -0
+ddrmn654 remaindernear 0 1 -> 0
+ddrmn655 remaindernear -0 1 -> -0
+ddrmn656 remaindernear 0 -1 -> 0
+ddrmn657 remaindernear -0 -1 -> -0
+ddrmn658 remaindernear 0.00 1 -> 0.00
+ddrmn659 remaindernear -0.00 1 -> -0.00
+
+-- Specials
+ddrmn680 remaindernear Inf -Inf -> NaN Invalid_operation
+ddrmn681 remaindernear Inf -1000 -> NaN Invalid_operation
+ddrmn682 remaindernear Inf -1 -> NaN Invalid_operation
+ddrmn683 remaindernear Inf 0 -> NaN Invalid_operation
+ddrmn684 remaindernear Inf -0 -> NaN Invalid_operation
+ddrmn685 remaindernear Inf 1 -> NaN Invalid_operation
+ddrmn686 remaindernear Inf 1000 -> NaN Invalid_operation
+ddrmn687 remaindernear Inf Inf -> NaN Invalid_operation
+ddrmn688 remaindernear -1000 Inf -> -1000
+ddrmn689 remaindernear -Inf Inf -> NaN Invalid_operation
+ddrmn691 remaindernear -1 Inf -> -1
+ddrmn692 remaindernear 0 Inf -> 0
+ddrmn693 remaindernear -0 Inf -> -0
+ddrmn694 remaindernear 1 Inf -> 1
+ddrmn695 remaindernear 1000 Inf -> 1000
+ddrmn696 remaindernear Inf Inf -> NaN Invalid_operation
+
+ddrmn700 remaindernear -Inf -Inf -> NaN Invalid_operation
+ddrmn701 remaindernear -Inf -1000 -> NaN Invalid_operation
+ddrmn702 remaindernear -Inf -1 -> NaN Invalid_operation
+ddrmn703 remaindernear -Inf -0 -> NaN Invalid_operation
+ddrmn704 remaindernear -Inf 0 -> NaN Invalid_operation
+ddrmn705 remaindernear -Inf 1 -> NaN Invalid_operation
+ddrmn706 remaindernear -Inf 1000 -> NaN Invalid_operation
+ddrmn707 remaindernear -Inf Inf -> NaN Invalid_operation
+ddrmn708 remaindernear -Inf -Inf -> NaN Invalid_operation
+ddrmn709 remaindernear -1000 Inf -> -1000
+ddrmn710 remaindernear -1 -Inf -> -1
+ddrmn711 remaindernear -0 -Inf -> -0
+ddrmn712 remaindernear 0 -Inf -> 0
+ddrmn713 remaindernear 1 -Inf -> 1
+ddrmn714 remaindernear 1000 -Inf -> 1000
+ddrmn715 remaindernear Inf -Inf -> NaN Invalid_operation
+
+ddrmn721 remaindernear NaN -Inf -> NaN
+ddrmn722 remaindernear NaN -1000 -> NaN
+ddrmn723 remaindernear NaN -1 -> NaN
+ddrmn724 remaindernear NaN -0 -> NaN
+ddrmn725 remaindernear -NaN 0 -> -NaN
+ddrmn726 remaindernear NaN 1 -> NaN
+ddrmn727 remaindernear NaN 1000 -> NaN
+ddrmn728 remaindernear NaN Inf -> NaN
+ddrmn729 remaindernear NaN -NaN -> NaN
+ddrmn730 remaindernear -Inf NaN -> NaN
+ddrmn731 remaindernear -1000 NaN -> NaN
+ddrmn732 remaindernear -1 NaN -> NaN
+ddrmn733 remaindernear -0 -NaN -> -NaN
+ddrmn734 remaindernear 0 NaN -> NaN
+ddrmn735 remaindernear 1 -NaN -> -NaN
+ddrmn736 remaindernear 1000 NaN -> NaN
+ddrmn737 remaindernear Inf NaN -> NaN
+
+ddrmn741 remaindernear sNaN -Inf -> NaN Invalid_operation
+ddrmn742 remaindernear sNaN -1000 -> NaN Invalid_operation
+ddrmn743 remaindernear -sNaN -1 -> -NaN Invalid_operation
+ddrmn744 remaindernear sNaN -0 -> NaN Invalid_operation
+ddrmn745 remaindernear sNaN 0 -> NaN Invalid_operation
+ddrmn746 remaindernear sNaN 1 -> NaN Invalid_operation
+ddrmn747 remaindernear sNaN 1000 -> NaN Invalid_operation
+ddrmn749 remaindernear sNaN NaN -> NaN Invalid_operation
+ddrmn750 remaindernear sNaN sNaN -> NaN Invalid_operation
+ddrmn751 remaindernear NaN sNaN -> NaN Invalid_operation
+ddrmn752 remaindernear -Inf sNaN -> NaN Invalid_operation
+ddrmn753 remaindernear -1000 sNaN -> NaN Invalid_operation
+ddrmn754 remaindernear -1 sNaN -> NaN Invalid_operation
+ddrmn755 remaindernear -0 sNaN -> NaN Invalid_operation
+ddrmn756 remaindernear 0 sNaN -> NaN Invalid_operation
+ddrmn757 remaindernear 1 sNaN -> NaN Invalid_operation
+ddrmn758 remaindernear 1000 sNaN -> NaN Invalid_operation
+ddrmn759 remaindernear Inf -sNaN -> -NaN Invalid_operation
+
+-- propaging NaNs
+ddrmn760 remaindernear NaN1 NaN7 -> NaN1
+ddrmn761 remaindernear sNaN2 NaN8 -> NaN2 Invalid_operation
+ddrmn762 remaindernear NaN3 sNaN9 -> NaN9 Invalid_operation
+ddrmn763 remaindernear sNaN4 sNaN10 -> NaN4 Invalid_operation
+ddrmn764 remaindernear 15 NaN11 -> NaN11
+ddrmn765 remaindernear NaN6 NaN12 -> NaN6
+ddrmn766 remaindernear Inf NaN13 -> NaN13
+ddrmn767 remaindernear NaN14 -Inf -> NaN14
+ddrmn768 remaindernear 0 NaN15 -> NaN15
+ddrmn769 remaindernear NaN16 -0 -> NaN16
+
+-- edge cases of impossible
+ddrmn770 remaindernear 1234567890123456 10 -> -4
+ddrmn771 remaindernear 1234567890123456 1 -> 0
+ddrmn772 remaindernear 1234567890123456 0.1 -> NaN Division_impossible
+ddrmn773 remaindernear 1234567890123456 0.01 -> NaN Division_impossible
+
+-- long operand checks
+ddrmn801 remaindernear 12345678000 100 -> 0
+ddrmn802 remaindernear 1 12345678000 -> 1
+ddrmn803 remaindernear 1234567800 10 -> 0
+ddrmn804 remaindernear 1 1234567800 -> 1
+ddrmn805 remaindernear 1234567890 10 -> 0
+ddrmn806 remaindernear 1 1234567890 -> 1
+ddrmn807 remaindernear 1234567891 10 -> 1
+ddrmn808 remaindernear 1 1234567891 -> 1
+ddrmn809 remaindernear 12345678901 100 -> 1
+ddrmn810 remaindernear 1 12345678901 -> 1
+ddrmn811 remaindernear 1234567896 10 -> -4
+ddrmn812 remaindernear 1 1234567896 -> 1
+
+ddrmn821 remaindernear 12345678000 100 -> 0
+ddrmn822 remaindernear 1 12345678000 -> 1
+ddrmn823 remaindernear 1234567800 10 -> 0
+ddrmn824 remaindernear 1 1234567800 -> 1
+ddrmn825 remaindernear 1234567890 10 -> 0
+ddrmn826 remaindernear 1 1234567890 -> 1
+ddrmn827 remaindernear 1234567891 10 -> 1
+ddrmn828 remaindernear 1 1234567891 -> 1
+ddrmn829 remaindernear 12345678901 100 -> 1
+ddrmn830 remaindernear 1 12345678901 -> 1
+ddrmn831 remaindernear 1234567896 10 -> -4
+ddrmn832 remaindernear 1 1234567896 -> 1
+
+-- from divideint
+ddrmn840 remaindernear 100000000.0 1 -> 0.0
+ddrmn841 remaindernear 100000000.4 1 -> 0.4
+ddrmn842 remaindernear 100000000.5 1 -> 0.5
+ddrmn843 remaindernear 100000000.9 1 -> -0.1
+ddrmn844 remaindernear 100000000.999 1 -> -0.001
+ddrmn850 remaindernear 100000003 5 -> -2
+ddrmn851 remaindernear 10000003 5 -> -2
+ddrmn852 remaindernear 1000003 5 -> -2
+ddrmn853 remaindernear 100003 5 -> -2
+ddrmn854 remaindernear 10003 5 -> -2
+ddrmn855 remaindernear 1003 5 -> -2
+ddrmn856 remaindernear 103 5 -> -2
+ddrmn857 remaindernear 13 5 -> -2
+ddrmn858 remaindernear 1 5 -> 1
+
+-- Vladimir's cases 1234567890123456
+ddrmn860 remaindernear 123.0e1 1000000000000000 -> 1230
+ddrmn861 remaindernear 1230 1000000000000000 -> 1230
+ddrmn862 remaindernear 12.3e2 1000000000000000 -> 1230
+ddrmn863 remaindernear 1.23e3 1000000000000000 -> 1230
+ddrmn864 remaindernear 123e1 1000000000000000 -> 1230
+ddrmn870 remaindernear 123e1 1000000000000000 -> 1230
+ddrmn871 remaindernear 123e1 100000000000000 -> 1230
+ddrmn872 remaindernear 123e1 10000000000000 -> 1230
+ddrmn873 remaindernear 123e1 1000000000000 -> 1230
+ddrmn874 remaindernear 123e1 100000000000 -> 1230
+ddrmn875 remaindernear 123e1 10000000000 -> 1230
+ddrmn876 remaindernear 123e1 1000000000 -> 1230
+ddrmn877 remaindernear 123e1 100000000 -> 1230
+ddrmn878 remaindernear 1230 100000000 -> 1230
+ddrmn879 remaindernear 123e1 10000000 -> 1230
+ddrmn880 remaindernear 123e1 1000000 -> 1230
+ddrmn881 remaindernear 123e1 100000 -> 1230
+ddrmn882 remaindernear 123e1 10000 -> 1230
+ddrmn883 remaindernear 123e1 1000 -> 230
+ddrmn884 remaindernear 123e1 100 -> 30
+ddrmn885 remaindernear 123e1 10 -> 0
+ddrmn886 remaindernear 123e1 1 -> 0
+
+ddrmn890 remaindernear 123e1 2000000000000000 -> 1230
+ddrmn891 remaindernear 123e1 200000000000000 -> 1230
+ddrmn892 remaindernear 123e1 20000000000000 -> 1230
+ddrmn893 remaindernear 123e1 2000000000000 -> 1230
+ddrmn894 remaindernear 123e1 200000000000 -> 1230
+ddrmn895 remaindernear 123e1 20000000000 -> 1230
+ddrmn896 remaindernear 123e1 2000000000 -> 1230
+ddrmn897 remaindernear 123e1 200000000 -> 1230
+ddrmn899 remaindernear 123e1 20000000 -> 1230
+ddrmn900 remaindernear 123e1 2000000 -> 1230
+ddrmn901 remaindernear 123e1 200000 -> 1230
+ddrmn902 remaindernear 123e1 20000 -> 1230
+ddrmn903 remaindernear 123e1 2000 -> -770
+ddrmn904 remaindernear 123e1 200 -> 30
+ddrmn905 remaindernear 123e1 20 -> -10
+ddrmn906 remaindernear 123e1 2 -> 0
+
+ddrmn910 remaindernear 123e1 5000000000000000 -> 1230
+ddrmn911 remaindernear 123e1 500000000000000 -> 1230
+ddrmn912 remaindernear 123e1 50000000000000 -> 1230
+ddrmn913 remaindernear 123e1 5000000000000 -> 1230
+ddrmn914 remaindernear 123e1 500000000000 -> 1230
+ddrmn915 remaindernear 123e1 50000000000 -> 1230
+ddrmn916 remaindernear 123e1 5000000000 -> 1230
+ddrmn917 remaindernear 123e1 500000000 -> 1230
+ddrmn919 remaindernear 123e1 50000000 -> 1230
+ddrmn920 remaindernear 123e1 5000000 -> 1230
+ddrmn921 remaindernear 123e1 500000 -> 1230
+ddrmn922 remaindernear 123e1 50000 -> 1230
+ddrmn923 remaindernear 123e1 5000 -> 1230
+ddrmn924 remaindernear 123e1 500 -> 230
+ddrmn925 remaindernear 123e1 50 -> -20
+ddrmn926 remaindernear 123e1 5 -> 0
+
+ddrmn930 remaindernear 123e1 9000000000000000 -> 1230
+ddrmn931 remaindernear 123e1 900000000000000 -> 1230
+ddrmn932 remaindernear 123e1 90000000000000 -> 1230
+ddrmn933 remaindernear 123e1 9000000000000 -> 1230
+ddrmn934 remaindernear 123e1 900000000000 -> 1230
+ddrmn935 remaindernear 123e1 90000000000 -> 1230
+ddrmn936 remaindernear 123e1 9000000000 -> 1230
+ddrmn937 remaindernear 123e1 900000000 -> 1230
+ddrmn939 remaindernear 123e1 90000000 -> 1230
+ddrmn940 remaindernear 123e1 9000000 -> 1230
+ddrmn941 remaindernear 123e1 900000 -> 1230
+ddrmn942 remaindernear 123e1 90000 -> 1230
+ddrmn943 remaindernear 123e1 9000 -> 1230
+ddrmn944 remaindernear 123e1 900 -> 330
+ddrmn945 remaindernear 123e1 90 -> -30
+ddrmn946 remaindernear 123e1 9 -> -3
+
+ddrmn950 remaindernear 123e1 1000000000000000 -> 1230
+ddrmn961 remaindernear 123e1 2999999999999999 -> 1230
+ddrmn962 remaindernear 123e1 3999999999999999 -> 1230
+ddrmn963 remaindernear 123e1 4999999999999999 -> 1230
+ddrmn964 remaindernear 123e1 5999999999999999 -> 1230
+ddrmn965 remaindernear 123e1 6999999999999999 -> 1230
+ddrmn966 remaindernear 123e1 7999999999999999 -> 1230
+ddrmn967 remaindernear 123e1 8999999999999999 -> 1230
+ddrmn968 remaindernear 123e1 9999999999999999 -> 1230
+ddrmn969 remaindernear 123e1 9876543210987654 -> 1230
+
+ddrmn980 remaindernear 123e1 1000E299 -> 1.23E+3 -- 123E+1 internally
+
+-- overflow and underflow tests [from divide]
+ddrmn1051 remaindernear 1e+277 1e-311 -> NaN Division_impossible
+ddrmn1052 remaindernear 1e+277 -1e-311 -> NaN Division_impossible
+ddrmn1053 remaindernear -1e+277 1e-311 -> NaN Division_impossible
+ddrmn1054 remaindernear -1e+277 -1e-311 -> NaN Division_impossible
+ddrmn1055 remaindernear 1e-277 1e+311 -> 1E-277
+ddrmn1056 remaindernear 1e-277 -1e+311 -> 1E-277
+ddrmn1057 remaindernear -1e-277 1e+311 -> -1E-277
+ddrmn1058 remaindernear -1e-277 -1e+311 -> -1E-277
+
+-- Null tests
+ddrmn1000 remaindernear 10 # -> NaN Invalid_operation
+ddrmn1001 remaindernear # 10 -> NaN Invalid_operation
+
diff --git a/Lib/test/decimaltestdata/ddRotate.decTest b/Lib/test/decimaltestdata/ddRotate.decTest
new file mode 100644
index 0000000..473f2f6
--- /dev/null
+++ b/Lib/test/decimaltestdata/ddRotate.decTest
@@ -0,0 +1,262 @@
+------------------------------------------------------------------------
+-- ddRotate.decTest -- rotate a decDouble coefficient left or right --
+-- Copyright (c) IBM Corporation, 1981, 2007. All rights reserved. --
+------------------------------------------------------------------------
+-- Please see the document "General Decimal Arithmetic Testcases" --
+-- at http://www2.hursley.ibm.com/decimal for the description of --
+-- these testcases. --
+-- --
+-- These testcases are experimental ('beta' versions), and they --
+-- may contain errors. They are offered on an as-is basis. In --
+-- particular, achieving the same results as the tests here is not --
+-- a guarantee that an implementation complies with any Standard --
+-- or specification. The tests are not exhaustive. --
+-- --
+-- Please send comments, suggestions, and corrections to the author: --
+-- Mike Cowlishaw, IBM Fellow --
+-- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK --
+-- mfc@uk.ibm.com --
+------------------------------------------------------------------------
+version: 2.56
+
+precision: 16
+maxExponent: 384
+minExponent: -383
+extended: 1
+clamp: 1
+rounding: half_even
+
+-- Sanity check
+ddrot001 rotate 0 0 -> 0
+ddrot002 rotate 0 2 -> 0
+ddrot003 rotate 1 2 -> 100
+ddrot004 rotate 1 15 -> 1000000000000000
+ddrot005 rotate 1 16 -> 1
+ddrot006 rotate 1 -1 -> 1000000000000000
+ddrot007 rotate 0 -2 -> 0
+ddrot008 rotate 1234567890123456 -1 -> 6123456789012345
+ddrot009 rotate 1234567890123456 -15 -> 2345678901234561
+ddrot010 rotate 1234567890123456 -16 -> 1234567890123456
+ddrot011 rotate 9934567890123456 -15 -> 9345678901234569
+ddrot012 rotate 9934567890123456 -16 -> 9934567890123456
+
+-- rhs must be an integer
+ddrot015 rotate 1 1.5 -> NaN Invalid_operation
+ddrot016 rotate 1 1.0 -> NaN Invalid_operation
+ddrot017 rotate 1 0.1 -> NaN Invalid_operation
+ddrot018 rotate 1 0.0 -> NaN Invalid_operation
+ddrot019 rotate 1 1E+1 -> NaN Invalid_operation
+ddrot020 rotate 1 1E+99 -> NaN Invalid_operation
+ddrot021 rotate 1 Inf -> NaN Invalid_operation
+ddrot022 rotate 1 -Inf -> NaN Invalid_operation
+-- and |rhs| <= precision
+ddrot025 rotate 1 -1000 -> NaN Invalid_operation
+ddrot026 rotate 1 -17 -> NaN Invalid_operation
+ddrot027 rotate 1 17 -> NaN Invalid_operation
+ddrot028 rotate 1 1000 -> NaN Invalid_operation
+
+-- full pattern
+ddrot030 rotate 1234567890123456 -16 -> 1234567890123456
+ddrot031 rotate 1234567890123456 -15 -> 2345678901234561
+ddrot032 rotate 1234567890123456 -14 -> 3456789012345612
+ddrot033 rotate 1234567890123456 -13 -> 4567890123456123
+ddrot034 rotate 1234567890123456 -12 -> 5678901234561234
+ddrot035 rotate 1234567890123456 -11 -> 6789012345612345
+ddrot036 rotate 1234567890123456 -10 -> 7890123456123456
+ddrot037 rotate 1234567890123456 -9 -> 8901234561234567
+ddrot038 rotate 1234567890123456 -8 -> 9012345612345678
+ddrot039 rotate 1234567890123456 -7 -> 123456123456789
+ddrot040 rotate 1234567890123456 -6 -> 1234561234567890
+ddrot041 rotate 1234567890123456 -5 -> 2345612345678901
+ddrot042 rotate 1234567890123456 -4 -> 3456123456789012
+ddrot043 rotate 1234567890123456 -3 -> 4561234567890123
+ddrot044 rotate 1234567890123456 -2 -> 5612345678901234
+ddrot045 rotate 1234567890123456 -1 -> 6123456789012345
+ddrot046 rotate 1234567890123456 -0 -> 1234567890123456
+
+ddrot047 rotate 1234567890123456 +0 -> 1234567890123456
+ddrot048 rotate 1234567890123456 +1 -> 2345678901234561
+ddrot049 rotate 1234567890123456 +2 -> 3456789012345612
+ddrot050 rotate 1234567890123456 +3 -> 4567890123456123
+ddrot051 rotate 1234567890123456 +4 -> 5678901234561234
+ddrot052 rotate 1234567890123456 +5 -> 6789012345612345
+ddrot053 rotate 1234567890123456 +6 -> 7890123456123456
+ddrot054 rotate 1234567890123456 +7 -> 8901234561234567
+ddrot055 rotate 1234567890123456 +8 -> 9012345612345678
+ddrot056 rotate 1234567890123456 +9 -> 123456123456789
+ddrot057 rotate 1234567890123456 +10 -> 1234561234567890
+ddrot058 rotate 1234567890123456 +11 -> 2345612345678901
+ddrot059 rotate 1234567890123456 +12 -> 3456123456789012
+ddrot060 rotate 1234567890123456 +13 -> 4561234567890123
+ddrot061 rotate 1234567890123456 +14 -> 5612345678901234
+ddrot062 rotate 1234567890123456 +15 -> 6123456789012345
+ddrot063 rotate 1234567890123456 +16 -> 1234567890123456
+
+-- zeros
+ddrot070 rotate 0E-10 +9 -> 0E-10
+ddrot071 rotate 0E-10 -9 -> 0E-10
+ddrot072 rotate 0.000 +9 -> 0.000
+ddrot073 rotate 0.000 -9 -> 0.000
+ddrot074 rotate 0E+10 +9 -> 0E+10
+ddrot075 rotate 0E+10 -9 -> 0E+10
+ddrot076 rotate -0E-10 +9 -> -0E-10
+ddrot077 rotate -0E-10 -9 -> -0E-10
+ddrot078 rotate -0.000 +9 -> -0.000
+ddrot079 rotate -0.000 -9 -> -0.000
+ddrot080 rotate -0E+10 +9 -> -0E+10
+ddrot081 rotate -0E+10 -9 -> -0E+10
+
+-- Nmax, Nmin, Ntiny
+ddrot141 rotate 9.999999999999999E+384 -1 -> 9.999999999999999E+384
+ddrot142 rotate 9.999999999999999E+384 -15 -> 9.999999999999999E+384
+ddrot143 rotate 9.999999999999999E+384 1 -> 9.999999999999999E+384
+ddrot144 rotate 9.999999999999999E+384 15 -> 9.999999999999999E+384
+ddrot145 rotate 1E-383 -1 -> 1.000000000000000E-368
+ddrot146 rotate 1E-383 -15 -> 1.0E-382
+ddrot147 rotate 1E-383 1 -> 1.0E-382
+ddrot148 rotate 1E-383 15 -> 1.000000000000000E-368
+ddrot151 rotate 1.000000000000000E-383 -1 -> 1.00000000000000E-384
+ddrot152 rotate 1.000000000000000E-383 -15 -> 1E-398
+ddrot153 rotate 1.000000000000000E-383 1 -> 1E-398
+ddrot154 rotate 1.000000000000000E-383 15 -> 1.00000000000000E-384
+ddrot155 rotate 9.000000000000000E-383 -1 -> 9.00000000000000E-384
+ddrot156 rotate 9.000000000000000E-383 -15 -> 9E-398
+ddrot157 rotate 9.000000000000000E-383 1 -> 9E-398
+ddrot158 rotate 9.000000000000000E-383 15 -> 9.00000000000000E-384
+ddrot160 rotate 1E-398 -1 -> 1.000000000000000E-383
+ddrot161 rotate 1E-398 -15 -> 1.0E-397
+ddrot162 rotate 1E-398 1 -> 1.0E-397
+ddrot163 rotate 1E-398 15 -> 1.000000000000000E-383
+-- negatives
+ddrot171 rotate -9.999999999999999E+384 -1 -> -9.999999999999999E+384
+ddrot172 rotate -9.999999999999999E+384 -15 -> -9.999999999999999E+384
+ddrot173 rotate -9.999999999999999E+384 1 -> -9.999999999999999E+384
+ddrot174 rotate -9.999999999999999E+384 15 -> -9.999999999999999E+384
+ddrot175 rotate -1E-383 -1 -> -1.000000000000000E-368
+ddrot176 rotate -1E-383 -15 -> -1.0E-382
+ddrot177 rotate -1E-383 1 -> -1.0E-382
+ddrot178 rotate -1E-383 15 -> -1.000000000000000E-368
+ddrot181 rotate -1.000000000000000E-383 -1 -> -1.00000000000000E-384
+ddrot182 rotate -1.000000000000000E-383 -15 -> -1E-398
+ddrot183 rotate -1.000000000000000E-383 1 -> -1E-398
+ddrot184 rotate -1.000000000000000E-383 15 -> -1.00000000000000E-384
+ddrot185 rotate -9.000000000000000E-383 -1 -> -9.00000000000000E-384
+ddrot186 rotate -9.000000000000000E-383 -15 -> -9E-398
+ddrot187 rotate -9.000000000000000E-383 1 -> -9E-398
+ddrot188 rotate -9.000000000000000E-383 15 -> -9.00000000000000E-384
+ddrot190 rotate -1E-398 -1 -> -1.000000000000000E-383
+ddrot191 rotate -1E-398 -15 -> -1.0E-397
+ddrot192 rotate -1E-398 1 -> -1.0E-397
+ddrot193 rotate -1E-398 15 -> -1.000000000000000E-383
+
+-- more negatives (of sanities)
+ddrot201 rotate -0 0 -> -0
+ddrot202 rotate -0 2 -> -0
+ddrot203 rotate -1 2 -> -100
+ddrot204 rotate -1 15 -> -1000000000000000
+ddrot205 rotate -1 16 -> -1
+ddrot206 rotate -1 -1 -> -1000000000000000
+ddrot207 rotate -0 -2 -> -0
+ddrot208 rotate -1234567890123456 -1 -> -6123456789012345
+ddrot209 rotate -1234567890123456 -15 -> -2345678901234561
+ddrot210 rotate -1234567890123456 -16 -> -1234567890123456
+ddrot211 rotate -9934567890123456 -15 -> -9345678901234569
+ddrot212 rotate -9934567890123456 -16 -> -9934567890123456
+
+
+-- Specials; NaNs are handled as usual
+ddrot781 rotate -Inf -8 -> -Infinity
+ddrot782 rotate -Inf -1 -> -Infinity
+ddrot783 rotate -Inf -0 -> -Infinity
+ddrot784 rotate -Inf 0 -> -Infinity
+ddrot785 rotate -Inf 1 -> -Infinity
+ddrot786 rotate -Inf 8 -> -Infinity
+ddrot787 rotate -1000 -Inf -> NaN Invalid_operation
+ddrot788 rotate -Inf -Inf -> NaN Invalid_operation
+ddrot789 rotate -1 -Inf -> NaN Invalid_operation
+ddrot790 rotate -0 -Inf -> NaN Invalid_operation
+ddrot791 rotate 0 -Inf -> NaN Invalid_operation
+ddrot792 rotate 1 -Inf -> NaN Invalid_operation
+ddrot793 rotate 1000 -Inf -> NaN Invalid_operation
+ddrot794 rotate Inf -Inf -> NaN Invalid_operation
+
+ddrot800 rotate Inf -Inf -> NaN Invalid_operation
+ddrot801 rotate Inf -8 -> Infinity
+ddrot802 rotate Inf -1 -> Infinity
+ddrot803 rotate Inf -0 -> Infinity
+ddrot804 rotate Inf 0 -> Infinity
+ddrot805 rotate Inf 1 -> Infinity
+ddrot806 rotate Inf 8 -> Infinity
+ddrot807 rotate Inf Inf -> NaN Invalid_operation
+ddrot808 rotate -1000 Inf -> NaN Invalid_operation
+ddrot809 rotate -Inf Inf -> NaN Invalid_operation
+ddrot810 rotate -1 Inf -> NaN Invalid_operation
+ddrot811 rotate -0 Inf -> NaN Invalid_operation
+ddrot812 rotate 0 Inf -> NaN Invalid_operation
+ddrot813 rotate 1 Inf -> NaN Invalid_operation
+ddrot814 rotate 1000 Inf -> NaN Invalid_operation
+ddrot815 rotate Inf Inf -> NaN Invalid_operation
+
+ddrot821 rotate NaN -Inf -> NaN
+ddrot822 rotate NaN -1000 -> NaN
+ddrot823 rotate NaN -1 -> NaN
+ddrot824 rotate NaN -0 -> NaN
+ddrot825 rotate NaN 0 -> NaN
+ddrot826 rotate NaN 1 -> NaN
+ddrot827 rotate NaN 1000 -> NaN
+ddrot828 rotate NaN Inf -> NaN
+ddrot829 rotate NaN NaN -> NaN
+ddrot830 rotate -Inf NaN -> NaN
+ddrot831 rotate -1000 NaN -> NaN
+ddrot832 rotate -1 NaN -> NaN
+ddrot833 rotate -0 NaN -> NaN
+ddrot834 rotate 0 NaN -> NaN
+ddrot835 rotate 1 NaN -> NaN
+ddrot836 rotate 1000 NaN -> NaN
+ddrot837 rotate Inf NaN -> NaN
+
+ddrot841 rotate sNaN -Inf -> NaN Invalid_operation
+ddrot842 rotate sNaN -1000 -> NaN Invalid_operation
+ddrot843 rotate sNaN -1 -> NaN Invalid_operation
+ddrot844 rotate sNaN -0 -> NaN Invalid_operation
+ddrot845 rotate sNaN 0 -> NaN Invalid_operation
+ddrot846 rotate sNaN 1 -> NaN Invalid_operation
+ddrot847 rotate sNaN 1000 -> NaN Invalid_operation
+ddrot848 rotate sNaN NaN -> NaN Invalid_operation
+ddrot849 rotate sNaN sNaN -> NaN Invalid_operation
+ddrot850 rotate NaN sNaN -> NaN Invalid_operation
+ddrot851 rotate -Inf sNaN -> NaN Invalid_operation
+ddrot852 rotate -1000 sNaN -> NaN Invalid_operation
+ddrot853 rotate -1 sNaN -> NaN Invalid_operation
+ddrot854 rotate -0 sNaN -> NaN Invalid_operation
+ddrot855 rotate 0 sNaN -> NaN Invalid_operation
+ddrot856 rotate 1 sNaN -> NaN Invalid_operation
+ddrot857 rotate 1000 sNaN -> NaN Invalid_operation
+ddrot858 rotate Inf sNaN -> NaN Invalid_operation
+ddrot859 rotate NaN sNaN -> NaN Invalid_operation
+
+-- propagating NaNs
+ddrot861 rotate NaN1 -Inf -> NaN1
+ddrot862 rotate +NaN2 -1000 -> NaN2
+ddrot863 rotate NaN3 1000 -> NaN3
+ddrot864 rotate NaN4 Inf -> NaN4
+ddrot865 rotate NaN5 +NaN6 -> NaN5
+ddrot866 rotate -Inf NaN7 -> NaN7
+ddrot867 rotate -1000 NaN8 -> NaN8
+ddrot868 rotate 1000 NaN9 -> NaN9
+ddrot869 rotate Inf +NaN10 -> NaN10
+ddrot871 rotate sNaN11 -Inf -> NaN11 Invalid_operation
+ddrot872 rotate sNaN12 -1000 -> NaN12 Invalid_operation
+ddrot873 rotate sNaN13 1000 -> NaN13 Invalid_operation
+ddrot874 rotate sNaN14 NaN17 -> NaN14 Invalid_operation
+ddrot875 rotate sNaN15 sNaN18 -> NaN15 Invalid_operation
+ddrot876 rotate NaN16 sNaN19 -> NaN19 Invalid_operation
+ddrot877 rotate -Inf +sNaN20 -> NaN20 Invalid_operation
+ddrot878 rotate -1000 sNaN21 -> NaN21 Invalid_operation
+ddrot879 rotate 1000 sNaN22 -> NaN22 Invalid_operation
+ddrot880 rotate Inf sNaN23 -> NaN23 Invalid_operation
+ddrot881 rotate +NaN25 +sNaN24 -> NaN24 Invalid_operation
+ddrot882 rotate -NaN26 NaN28 -> -NaN26
+ddrot883 rotate -sNaN27 sNaN29 -> -NaN27 Invalid_operation
+ddrot884 rotate 1000 -NaN30 -> -NaN30
+ddrot885 rotate 1000 -sNaN31 -> -NaN31 Invalid_operation
diff --git a/Lib/test/decimaltestdata/ddSameQuantum.decTest b/Lib/test/decimaltestdata/ddSameQuantum.decTest
new file mode 100644
index 0000000..a396cd1
--- /dev/null
+++ b/Lib/test/decimaltestdata/ddSameQuantum.decTest
@@ -0,0 +1,389 @@
+------------------------------------------------------------------------
+-- ddSameQuantum.decTest -- check decDouble quantums match --
+-- Copyright (c) IBM Corporation, 2001, 2007. All rights reserved. --
+------------------------------------------------------------------------
+-- Please see the document "General Decimal Arithmetic Testcases" --
+-- at http://www2.hursley.ibm.com/decimal for the description of --
+-- these testcases. --
+-- --
+-- These testcases are experimental ('beta' versions), and they --
+-- may contain errors. They are offered on an as-is basis. In --
+-- particular, achieving the same results as the tests here is not --
+-- a guarantee that an implementation complies with any Standard --
+-- or specification. The tests are not exhaustive. --
+-- --
+-- Please send comments, suggestions, and corrections to the author: --
+-- Mike Cowlishaw, IBM Fellow --
+-- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK --
+-- mfc@uk.ibm.com --
+------------------------------------------------------------------------
+version: 2.56
+
+-- All operands and results are decDoubles.
+precision: 16
+maxExponent: 384
+minExponent: -383
+extended: 1
+clamp: 1
+rounding: half_even
+
+ddsamq001 samequantum 0 0 -> 1
+ddsamq002 samequantum 0 1 -> 1
+ddsamq003 samequantum 1 0 -> 1
+ddsamq004 samequantum 1 1 -> 1
+
+ddsamq011 samequantum 10 1E+1 -> 0
+ddsamq012 samequantum 10E+1 10E+1 -> 1
+ddsamq013 samequantum 100 10E+1 -> 0
+ddsamq014 samequantum 100 1E+2 -> 0
+ddsamq015 samequantum 0.1 1E-2 -> 0
+ddsamq016 samequantum 0.1 1E-1 -> 1
+ddsamq017 samequantum 0.1 1E-0 -> 0
+ddsamq018 samequantum 999 999 -> 1
+ddsamq019 samequantum 999E-1 99.9 -> 1
+ddsamq020 samequantum 111E-1 22.2 -> 1
+ddsamq021 samequantum 111E-1 1234.2 -> 1
+
+-- zeros
+ddsamq030 samequantum 0.0 1.1 -> 1
+ddsamq031 samequantum 0.0 1.11 -> 0
+ddsamq032 samequantum 0.0 0 -> 0
+ddsamq033 samequantum 0.0 0.0 -> 1
+ddsamq034 samequantum 0.0 0.00 -> 0
+ddsamq035 samequantum 0E+1 0E+0 -> 0
+ddsamq036 samequantum 0E+1 0E+1 -> 1
+ddsamq037 samequantum 0E+1 0E+2 -> 0
+ddsamq038 samequantum 0E-17 0E-16 -> 0
+ddsamq039 samequantum 0E-17 0E-17 -> 1
+ddsamq040 samequantum 0E-17 0E-18 -> 0
+ddsamq041 samequantum 0E-17 0.0E-15 -> 0
+ddsamq042 samequantum 0E-17 0.0E-16 -> 1
+ddsamq043 samequantum 0E-17 0.0E-17 -> 0
+ddsamq044 samequantum -0E-17 0.0E-16 -> 1
+ddsamq045 samequantum 0E-17 -0.0E-17 -> 0
+ddsamq046 samequantum 0E-17 -0.0E-16 -> 1
+ddsamq047 samequantum -0E-17 0.0E-17 -> 0
+ddsamq048 samequantum -0E-17 -0.0E-16 -> 1
+ddsamq049 samequantum -0E-17 -0.0E-17 -> 0
+
+-- Nmax, Nmin, Ntiny
+ddsamq051 samequantum 9.999999999999999E+384 9.999999999999999E+384 -> 1
+ddsamq052 samequantum 1E-383 1E-383 -> 1
+ddsamq053 samequantum 1.000000000000000E-383 1.000000000000000E-383 -> 1
+ddsamq054 samequantum 1E-398 1E-398 -> 1
+ddsamq055 samequantum 9.999999999999999E+384 9.999999999999999E+384 -> 1
+ddsamq056 samequantum 1E-383 1E-383 -> 1
+ddsamq057 samequantum 1.000000000000000E-383 1.000000000000000E-383 -> 1
+ddsamq058 samequantum 1E-398 1E-398 -> 1
+
+ddsamq061 samequantum -1E-398 -1E-398 -> 1
+ddsamq062 samequantum -1.000000000000000E-383 -1.000000000000000E-383 -> 1
+ddsamq063 samequantum -1E-383 -1E-383 -> 1
+ddsamq064 samequantum -9.999999999999999E+384 -9.999999999999999E+384 -> 1
+ddsamq065 samequantum -1E-398 -1E-398 -> 1
+ddsamq066 samequantum -1.000000000000000E-383 -1.000000000000000E-383 -> 1
+ddsamq067 samequantum -1E-383 -1E-383 -> 1
+ddsamq068 samequantum -9.999999999999999E+384 -9.999999999999999E+384 -> 1
+
+ddsamq071 samequantum -4E-398 -1E-398 -> 1
+ddsamq072 samequantum -4.000000000000000E-383 -1.000040000000000E-383 -> 1
+ddsamq073 samequantum -4E-383 -1E-383 -> 1
+ddsamq074 samequantum -4.999999999999999E+384 -9.999999999949999E+384 -> 1
+ddsamq075 samequantum -4E-398 -1E-398 -> 1
+ddsamq076 samequantum -4.000000000000000E-383 -1.004000000000000E-383 -> 1
+ddsamq077 samequantum -4E-383 -1E-383 -> 1
+ddsamq078 samequantum -4.999999999999999E+384 -9.949999999999999E+384 -> 1
+
+ddsamq081 samequantum -4E-397 -1E-398 -> 0
+ddsamq082 samequantum -4.000000000000000E-383 -1.000040000000000E-336 -> 0
+ddsamq083 samequantum -4E-346 -1E-383 -> 0
+ddsamq084 samequantum -4.999999999999999E+384 -9.999499999999999E+336 -> 0
+ddsamq085 samequantum -4E-397 -1E-398 -> 0
+ddsamq086 samequantum -4.000000000000000E-383 -1.004000000000000E-336 -> 0
+ddsamq087 samequantum -4E-346 -1E-383 -> 0
+ddsamq088 samequantum -4.999999999999999E+384 -9.949999999999999E+336 -> 0
+
+-- specials & combinations
+ddsamq0110 samequantum -Inf -Inf -> 1
+ddsamq0111 samequantum -Inf Inf -> 1
+ddsamq0112 samequantum -Inf NaN -> 0
+ddsamq0113 samequantum -Inf -7E+3 -> 0
+ddsamq0114 samequantum -Inf -7 -> 0
+ddsamq0115 samequantum -Inf -7E-3 -> 0
+ddsamq0116 samequantum -Inf -0E-3 -> 0
+ddsamq0117 samequantum -Inf -0 -> 0
+ddsamq0118 samequantum -Inf -0E+3 -> 0
+ddsamq0119 samequantum -Inf 0E-3 -> 0
+ddsamq0120 samequantum -Inf 0 -> 0
+ddsamq0121 samequantum -Inf 0E+3 -> 0
+ddsamq0122 samequantum -Inf 7E-3 -> 0
+ddsamq0123 samequantum -Inf 7 -> 0
+ddsamq0124 samequantum -Inf 7E+3 -> 0
+ddsamq0125 samequantum -Inf sNaN -> 0
+
+ddsamq0210 samequantum Inf -Inf -> 1
+ddsamq0211 samequantum Inf Inf -> 1
+ddsamq0212 samequantum Inf NaN -> 0
+ddsamq0213 samequantum Inf -7E+3 -> 0
+ddsamq0214 samequantum Inf -7 -> 0
+ddsamq0215 samequantum Inf -7E-3 -> 0
+ddsamq0216 samequantum Inf -0E-3 -> 0
+ddsamq0217 samequantum Inf -0 -> 0
+ddsamq0218 samequantum Inf -0E+3 -> 0
+ddsamq0219 samequantum Inf 0E-3 -> 0
+ddsamq0220 samequantum Inf 0 -> 0
+ddsamq0221 samequantum Inf 0E+3 -> 0
+ddsamq0222 samequantum Inf 7E-3 -> 0
+ddsamq0223 samequantum Inf 7 -> 0
+ddsamq0224 samequantum Inf 7E+3 -> 0
+ddsamq0225 samequantum Inf sNaN -> 0
+
+ddsamq0310 samequantum NaN -Inf -> 0
+ddsamq0311 samequantum NaN Inf -> 0
+ddsamq0312 samequantum NaN NaN -> 1
+ddsamq0313 samequantum NaN -7E+3 -> 0
+ddsamq0314 samequantum NaN -7 -> 0
+ddsamq0315 samequantum NaN -7E-3 -> 0
+ddsamq0316 samequantum NaN -0E-3 -> 0
+ddsamq0317 samequantum NaN -0 -> 0
+ddsamq0318 samequantum NaN -0E+3 -> 0
+ddsamq0319 samequantum NaN 0E-3 -> 0
+ddsamq0320 samequantum NaN 0 -> 0
+ddsamq0321 samequantum NaN 0E+3 -> 0
+ddsamq0322 samequantum NaN 7E-3 -> 0
+ddsamq0323 samequantum NaN 7 -> 0
+ddsamq0324 samequantum NaN 7E+3 -> 0
+ddsamq0325 samequantum NaN sNaN -> 1
+
+ddsamq0410 samequantum -7E+3 -Inf -> 0
+ddsamq0411 samequantum -7E+3 Inf -> 0
+ddsamq0412 samequantum -7E+3 NaN -> 0
+ddsamq0413 samequantum -7E+3 -7E+3 -> 1
+ddsamq0414 samequantum -7E+3 -7 -> 0
+ddsamq0415 samequantum -7E+3 -7E-3 -> 0
+ddsamq0416 samequantum -7E+3 -0E-3 -> 0
+ddsamq0417 samequantum -7E+3 -0 -> 0
+ddsamq0418 samequantum -7E+3 -0E+3 -> 1
+ddsamq0419 samequantum -7E+3 0E-3 -> 0
+ddsamq0420 samequantum -7E+3 0 -> 0
+ddsamq0421 samequantum -7E+3 0E+3 -> 1
+ddsamq0422 samequantum -7E+3 7E-3 -> 0
+ddsamq0423 samequantum -7E+3 7 -> 0
+ddsamq0424 samequantum -7E+3 7E+3 -> 1
+ddsamq0425 samequantum -7E+3 sNaN -> 0
+
+ddsamq0510 samequantum -7 -Inf -> 0
+ddsamq0511 samequantum -7 Inf -> 0
+ddsamq0512 samequantum -7 NaN -> 0
+ddsamq0513 samequantum -7 -7E+3 -> 0
+ddsamq0514 samequantum -7 -7 -> 1
+ddsamq0515 samequantum -7 -7E-3 -> 0
+ddsamq0516 samequantum -7 -0E-3 -> 0
+ddsamq0517 samequantum -7 -0 -> 1
+ddsamq0518 samequantum -7 -0E+3 -> 0
+ddsamq0519 samequantum -7 0E-3 -> 0
+ddsamq0520 samequantum -7 0 -> 1
+ddsamq0521 samequantum -7 0E+3 -> 0
+ddsamq0522 samequantum -7 7E-3 -> 0
+ddsamq0523 samequantum -7 7 -> 1
+ddsamq0524 samequantum -7 7E+3 -> 0
+ddsamq0525 samequantum -7 sNaN -> 0
+
+ddsamq0610 samequantum -7E-3 -Inf -> 0
+ddsamq0611 samequantum -7E-3 Inf -> 0
+ddsamq0612 samequantum -7E-3 NaN -> 0
+ddsamq0613 samequantum -7E-3 -7E+3 -> 0
+ddsamq0614 samequantum -7E-3 -7 -> 0
+ddsamq0615 samequantum -7E-3 -7E-3 -> 1
+ddsamq0616 samequantum -7E-3 -0E-3 -> 1
+ddsamq0617 samequantum -7E-3 -0 -> 0
+ddsamq0618 samequantum -7E-3 -0E+3 -> 0
+ddsamq0619 samequantum -7E-3 0E-3 -> 1
+ddsamq0620 samequantum -7E-3 0 -> 0
+ddsamq0621 samequantum -7E-3 0E+3 -> 0
+ddsamq0622 samequantum -7E-3 7E-3 -> 1
+ddsamq0623 samequantum -7E-3 7 -> 0
+ddsamq0624 samequantum -7E-3 7E+3 -> 0
+ddsamq0625 samequantum -7E-3 sNaN -> 0
+
+ddsamq0710 samequantum -0E-3 -Inf -> 0
+ddsamq0711 samequantum -0E-3 Inf -> 0
+ddsamq0712 samequantum -0E-3 NaN -> 0
+ddsamq0713 samequantum -0E-3 -7E+3 -> 0
+ddsamq0714 samequantum -0E-3 -7 -> 0
+ddsamq0715 samequantum -0E-3 -7E-3 -> 1
+ddsamq0716 samequantum -0E-3 -0E-3 -> 1
+ddsamq0717 samequantum -0E-3 -0 -> 0
+ddsamq0718 samequantum -0E-3 -0E+3 -> 0
+ddsamq0719 samequantum -0E-3 0E-3 -> 1
+ddsamq0720 samequantum -0E-3 0 -> 0
+ddsamq0721 samequantum -0E-3 0E+3 -> 0
+ddsamq0722 samequantum -0E-3 7E-3 -> 1
+ddsamq0723 samequantum -0E-3 7 -> 0
+ddsamq0724 samequantum -0E-3 7E+3 -> 0
+ddsamq0725 samequantum -0E-3 sNaN -> 0
+
+ddsamq0810 samequantum -0 -Inf -> 0
+ddsamq0811 samequantum -0 Inf -> 0
+ddsamq0812 samequantum -0 NaN -> 0
+ddsamq0813 samequantum -0 -7E+3 -> 0
+ddsamq0814 samequantum -0 -7 -> 1
+ddsamq0815 samequantum -0 -7E-3 -> 0
+ddsamq0816 samequantum -0 -0E-3 -> 0
+ddsamq0817 samequantum -0 -0 -> 1
+ddsamq0818 samequantum -0 -0E+3 -> 0
+ddsamq0819 samequantum -0 0E-3 -> 0
+ddsamq0820 samequantum -0 0 -> 1
+ddsamq0821 samequantum -0 0E+3 -> 0
+ddsamq0822 samequantum -0 7E-3 -> 0
+ddsamq0823 samequantum -0 7 -> 1
+ddsamq0824 samequantum -0 7E+3 -> 0
+ddsamq0825 samequantum -0 sNaN -> 0
+
+ddsamq0910 samequantum -0E+3 -Inf -> 0
+ddsamq0911 samequantum -0E+3 Inf -> 0
+ddsamq0912 samequantum -0E+3 NaN -> 0
+ddsamq0913 samequantum -0E+3 -7E+3 -> 1
+ddsamq0914 samequantum -0E+3 -7 -> 0
+ddsamq0915 samequantum -0E+3 -7E-3 -> 0
+ddsamq0916 samequantum -0E+3 -0E-3 -> 0
+ddsamq0917 samequantum -0E+3 -0 -> 0
+ddsamq0918 samequantum -0E+3 -0E+3 -> 1
+ddsamq0919 samequantum -0E+3 0E-3 -> 0
+ddsamq0920 samequantum -0E+3 0 -> 0
+ddsamq0921 samequantum -0E+3 0E+3 -> 1
+ddsamq0922 samequantum -0E+3 7E-3 -> 0
+ddsamq0923 samequantum -0E+3 7 -> 0
+ddsamq0924 samequantum -0E+3 7E+3 -> 1
+ddsamq0925 samequantum -0E+3 sNaN -> 0
+
+ddsamq1110 samequantum 0E-3 -Inf -> 0
+ddsamq1111 samequantum 0E-3 Inf -> 0
+ddsamq1112 samequantum 0E-3 NaN -> 0
+ddsamq1113 samequantum 0E-3 -7E+3 -> 0
+ddsamq1114 samequantum 0E-3 -7 -> 0
+ddsamq1115 samequantum 0E-3 -7E-3 -> 1
+ddsamq1116 samequantum 0E-3 -0E-3 -> 1
+ddsamq1117 samequantum 0E-3 -0 -> 0
+ddsamq1118 samequantum 0E-3 -0E+3 -> 0
+ddsamq1119 samequantum 0E-3 0E-3 -> 1
+ddsamq1120 samequantum 0E-3 0 -> 0
+ddsamq1121 samequantum 0E-3 0E+3 -> 0
+ddsamq1122 samequantum 0E-3 7E-3 -> 1
+ddsamq1123 samequantum 0E-3 7 -> 0
+ddsamq1124 samequantum 0E-3 7E+3 -> 0
+ddsamq1125 samequantum 0E-3 sNaN -> 0
+
+ddsamq1210 samequantum 0 -Inf -> 0
+ddsamq1211 samequantum 0 Inf -> 0
+ddsamq1212 samequantum 0 NaN -> 0
+ddsamq1213 samequantum 0 -7E+3 -> 0
+ddsamq1214 samequantum 0 -7 -> 1
+ddsamq1215 samequantum 0 -7E-3 -> 0
+ddsamq1216 samequantum 0 -0E-3 -> 0
+ddsamq1217 samequantum 0 -0 -> 1
+ddsamq1218 samequantum 0 -0E+3 -> 0
+ddsamq1219 samequantum 0 0E-3 -> 0
+ddsamq1220 samequantum 0 0 -> 1
+ddsamq1221 samequantum 0 0E+3 -> 0
+ddsamq1222 samequantum 0 7E-3 -> 0
+ddsamq1223 samequantum 0 7 -> 1
+ddsamq1224 samequantum 0 7E+3 -> 0
+ddsamq1225 samequantum 0 sNaN -> 0
+
+ddsamq1310 samequantum 0E+3 -Inf -> 0
+ddsamq1311 samequantum 0E+3 Inf -> 0
+ddsamq1312 samequantum 0E+3 NaN -> 0
+ddsamq1313 samequantum 0E+3 -7E+3 -> 1
+ddsamq1314 samequantum 0E+3 -7 -> 0
+ddsamq1315 samequantum 0E+3 -7E-3 -> 0
+ddsamq1316 samequantum 0E+3 -0E-3 -> 0
+ddsamq1317 samequantum 0E+3 -0 -> 0
+ddsamq1318 samequantum 0E+3 -0E+3 -> 1
+ddsamq1319 samequantum 0E+3 0E-3 -> 0
+ddsamq1320 samequantum 0E+3 0 -> 0
+ddsamq1321 samequantum 0E+3 0E+3 -> 1
+ddsamq1322 samequantum 0E+3 7E-3 -> 0
+ddsamq1323 samequantum 0E+3 7 -> 0
+ddsamq1324 samequantum 0E+3 7E+3 -> 1
+ddsamq1325 samequantum 0E+3 sNaN -> 0
+
+ddsamq1410 samequantum 7E-3 -Inf -> 0
+ddsamq1411 samequantum 7E-3 Inf -> 0
+ddsamq1412 samequantum 7E-3 NaN -> 0
+ddsamq1413 samequantum 7E-3 -7E+3 -> 0
+ddsamq1414 samequantum 7E-3 -7 -> 0
+ddsamq1415 samequantum 7E-3 -7E-3 -> 1
+ddsamq1416 samequantum 7E-3 -0E-3 -> 1
+ddsamq1417 samequantum 7E-3 -0 -> 0
+ddsamq1418 samequantum 7E-3 -0E+3 -> 0
+ddsamq1419 samequantum 7E-3 0E-3 -> 1
+ddsamq1420 samequantum 7E-3 0 -> 0
+ddsamq1421 samequantum 7E-3 0E+3 -> 0
+ddsamq1422 samequantum 7E-3 7E-3 -> 1
+ddsamq1423 samequantum 7E-3 7 -> 0
+ddsamq1424 samequantum 7E-3 7E+3 -> 0
+ddsamq1425 samequantum 7E-3 sNaN -> 0
+
+ddsamq1510 samequantum 7 -Inf -> 0
+ddsamq1511 samequantum 7 Inf -> 0
+ddsamq1512 samequantum 7 NaN -> 0
+ddsamq1513 samequantum 7 -7E+3 -> 0
+ddsamq1514 samequantum 7 -7 -> 1
+ddsamq1515 samequantum 7 -7E-3 -> 0
+ddsamq1516 samequantum 7 -0E-3 -> 0
+ddsamq1517 samequantum 7 -0 -> 1
+ddsamq1518 samequantum 7 -0E+3 -> 0
+ddsamq1519 samequantum 7 0E-3 -> 0
+ddsamq1520 samequantum 7 0 -> 1
+ddsamq1521 samequantum 7 0E+3 -> 0
+ddsamq1522 samequantum 7 7E-3 -> 0
+ddsamq1523 samequantum 7 7 -> 1
+ddsamq1524 samequantum 7 7E+3 -> 0
+ddsamq1525 samequantum 7 sNaN -> 0
+
+ddsamq1610 samequantum 7E+3 -Inf -> 0
+ddsamq1611 samequantum 7E+3 Inf -> 0
+ddsamq1612 samequantum 7E+3 NaN -> 0
+ddsamq1613 samequantum 7E+3 -7E+3 -> 1
+ddsamq1614 samequantum 7E+3 -7 -> 0
+ddsamq1615 samequantum 7E+3 -7E-3 -> 0
+ddsamq1616 samequantum 7E+3 -0E-3 -> 0
+ddsamq1617 samequantum 7E+3 -0 -> 0
+ddsamq1618 samequantum 7E+3 -0E+3 -> 1
+ddsamq1619 samequantum 7E+3 0E-3 -> 0
+ddsamq1620 samequantum 7E+3 0 -> 0
+ddsamq1621 samequantum 7E+3 0E+3 -> 1
+ddsamq1622 samequantum 7E+3 7E-3 -> 0
+ddsamq1623 samequantum 7E+3 7 -> 0
+ddsamq1624 samequantum 7E+3 7E+3 -> 1
+ddsamq1625 samequantum 7E+3 sNaN -> 0
+
+ddsamq1710 samequantum sNaN -Inf -> 0
+ddsamq1711 samequantum sNaN Inf -> 0
+ddsamq1712 samequantum sNaN NaN -> 1
+ddsamq1713 samequantum sNaN -7E+3 -> 0
+ddsamq1714 samequantum sNaN -7 -> 0
+ddsamq1715 samequantum sNaN -7E-3 -> 0
+ddsamq1716 samequantum sNaN -0E-3 -> 0
+ddsamq1717 samequantum sNaN -0 -> 0
+ddsamq1718 samequantum sNaN -0E+3 -> 0
+ddsamq1719 samequantum sNaN 0E-3 -> 0
+ddsamq1720 samequantum sNaN 0 -> 0
+ddsamq1721 samequantum sNaN 0E+3 -> 0
+ddsamq1722 samequantum sNaN 7E-3 -> 0
+ddsamq1723 samequantum sNaN 7 -> 0
+ddsamq1724 samequantum sNaN 7E+3 -> 0
+ddsamq1725 samequantum sNaN sNaN -> 1
+-- noisy NaNs
+ddsamq1730 samequantum sNaN3 sNaN3 -> 1
+ddsamq1731 samequantum sNaN3 sNaN4 -> 1
+ddsamq1732 samequantum NaN3 NaN3 -> 1
+ddsamq1733 samequantum NaN3 NaN4 -> 1
+ddsamq1734 samequantum sNaN3 3 -> 0
+ddsamq1735 samequantum NaN3 3 -> 0
+ddsamq1736 samequantum 4 sNaN4 -> 0
+ddsamq1737 samequantum 3 NaN3 -> 0
+ddsamq1738 samequantum Inf sNaN4 -> 0
+ddsamq1739 samequantum -Inf NaN3 -> 0
+
diff --git a/Lib/test/decimaltestdata/ddScaleB.decTest b/Lib/test/decimaltestdata/ddScaleB.decTest
new file mode 100644
index 0000000..4091f86
--- /dev/null
+++ b/Lib/test/decimaltestdata/ddScaleB.decTest
@@ -0,0 +1,243 @@
+------------------------------------------------------------------------
+-- ddScalebB.decTest -- scale a decDouble by powers of 10 --
+-- Copyright (c) IBM Corporation, 1981, 2007. All rights reserved. --
+------------------------------------------------------------------------
+-- Please see the document "General Decimal Arithmetic Testcases" --
+-- at http://www2.hursley.ibm.com/decimal for the description of --
+-- these testcases. --
+-- --
+-- These testcases are experimental ('beta' versions), and they --
+-- may contain errors. They are offered on an as-is basis. In --
+-- particular, achieving the same results as the tests here is not --
+-- a guarantee that an implementation complies with any Standard --
+-- or specification. The tests are not exhaustive. --
+-- --
+-- Please send comments, suggestions, and corrections to the author: --
+-- Mike Cowlishaw, IBM Fellow --
+-- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK --
+-- mfc@uk.ibm.com --
+------------------------------------------------------------------------
+version: 2.56
+
+precision: 16
+maxExponent: 384
+minExponent: -383
+extended: 1
+clamp: 1
+rounding: half_even
+
+-- Max |rhs| is 2*(384+16) = 800
+
+-- Sanity checks
+ddscb001 scaleb 7.50 10 -> 7.50E+10
+ddscb002 scaleb 7.50 3 -> 7.50E+3
+ddscb003 scaleb 7.50 2 -> 750
+ddscb004 scaleb 7.50 1 -> 75.0
+ddscb005 scaleb 7.50 0 -> 7.50
+ddscb006 scaleb 7.50 -1 -> 0.750
+ddscb007 scaleb 7.50 -2 -> 0.0750
+ddscb008 scaleb 7.50 -10 -> 7.50E-10
+ddscb009 scaleb -7.50 3 -> -7.50E+3
+ddscb010 scaleb -7.50 2 -> -750
+ddscb011 scaleb -7.50 1 -> -75.0
+ddscb012 scaleb -7.50 0 -> -7.50
+ddscb013 scaleb -7.50 -1 -> -0.750
+
+-- Infinities
+ddscb014 scaleb Infinity 1 -> Infinity
+ddscb015 scaleb -Infinity 2 -> -Infinity
+ddscb016 scaleb Infinity -1 -> Infinity
+ddscb017 scaleb -Infinity -2 -> -Infinity
+
+-- Next two are somewhat undefined in 754r; treat as non-integer
+ddscb018 scaleb 10 Infinity -> NaN Invalid_operation
+ddscb019 scaleb 10 -Infinity -> NaN Invalid_operation
+
+-- NaNs are undefined in 754r; assume usual processing
+-- NaNs, 0 payload
+ddscb021 scaleb NaN 1 -> NaN
+ddscb022 scaleb -NaN -1 -> -NaN
+ddscb023 scaleb sNaN 1 -> NaN Invalid_operation
+ddscb024 scaleb -sNaN 1 -> -NaN Invalid_operation
+ddscb025 scaleb 4 NaN -> NaN
+ddscb026 scaleb -Inf -NaN -> -NaN
+ddscb027 scaleb 4 sNaN -> NaN Invalid_operation
+ddscb028 scaleb Inf -sNaN -> -NaN Invalid_operation
+
+-- non-integer RHS
+ddscb030 scaleb 1.23 1 -> 12.3
+ddscb031 scaleb 1.23 1.00 -> NaN Invalid_operation
+ddscb032 scaleb 1.23 1.1 -> NaN Invalid_operation
+ddscb033 scaleb 1.23 1.01 -> NaN Invalid_operation
+ddscb034 scaleb 1.23 0.01 -> NaN Invalid_operation
+ddscb035 scaleb 1.23 0.11 -> NaN Invalid_operation
+ddscb036 scaleb 1.23 0.999999999 -> NaN Invalid_operation
+ddscb037 scaleb 1.23 -1 -> 0.123
+ddscb038 scaleb 1.23 -1.00 -> NaN Invalid_operation
+ddscb039 scaleb 1.23 -1.1 -> NaN Invalid_operation
+ddscb040 scaleb 1.23 -1.01 -> NaN Invalid_operation
+ddscb041 scaleb 1.23 -0.01 -> NaN Invalid_operation
+ddscb042 scaleb 1.23 -0.11 -> NaN Invalid_operation
+ddscb043 scaleb 1.23 -0.999999999 -> NaN Invalid_operation
+ddscb044 scaleb 1.23 0.1 -> NaN Invalid_operation
+ddscb045 scaleb 1.23 1E+1 -> NaN Invalid_operation
+ddscb046 scaleb 1.23 1.1234E+6 -> NaN Invalid_operation
+ddscb047 scaleb 1.23 1.123E+4 -> NaN Invalid_operation
+
+-- out-of range RHS
+ddscb120 scaleb 1.23 799 -> Infinity Overflow Inexact Rounded
+ddscb121 scaleb 1.23 800 -> Infinity Overflow Inexact Rounded
+ddscb122 scaleb 1.23 801 -> NaN Invalid_operation
+ddscb123 scaleb 1.23 802 -> NaN Invalid_operation
+ddscb124 scaleb 1.23 -799 -> 0E-398 Underflow Subnormal Inexact Rounded Clamped
+ddscb125 scaleb 1.23 -800 -> 0E-398 Underflow Subnormal Inexact Rounded Clamped
+ddscb126 scaleb 1.23 -801 -> NaN Invalid_operation
+ddscb127 scaleb 1.23 -802 -> NaN Invalid_operation
+
+-- NaNs, non-0 payload
+-- propagating NaNs
+ddscb861 scaleb NaN01 -Inf -> NaN1
+ddscb862 scaleb -NaN02 -1000 -> -NaN2
+ddscb863 scaleb NaN03 1000 -> NaN3
+ddscb864 scaleb NaN04 Inf -> NaN4
+ddscb865 scaleb NaN05 NaN61 -> NaN5
+ddscb866 scaleb -Inf -NaN71 -> -NaN71
+ddscb867 scaleb -1000 NaN81 -> NaN81
+ddscb868 scaleb 1000 NaN91 -> NaN91
+ddscb869 scaleb Inf NaN101 -> NaN101
+ddscb871 scaleb sNaN011 -Inf -> NaN11 Invalid_operation
+ddscb872 scaleb sNaN012 -1000 -> NaN12 Invalid_operation
+ddscb873 scaleb -sNaN013 1000 -> -NaN13 Invalid_operation
+ddscb874 scaleb sNaN014 NaN171 -> NaN14 Invalid_operation
+ddscb875 scaleb sNaN015 sNaN181 -> NaN15 Invalid_operation
+ddscb876 scaleb NaN016 sNaN191 -> NaN191 Invalid_operation
+ddscb877 scaleb -Inf sNaN201 -> NaN201 Invalid_operation
+ddscb878 scaleb -1000 sNaN211 -> NaN211 Invalid_operation
+ddscb879 scaleb 1000 -sNaN221 -> -NaN221 Invalid_operation
+ddscb880 scaleb Inf sNaN231 -> NaN231 Invalid_operation
+ddscb881 scaleb NaN025 sNaN241 -> NaN241 Invalid_operation
+
+-- finites
+ddscb051 scaleb 7 -2 -> 0.07
+ddscb052 scaleb -7 -2 -> -0.07
+ddscb053 scaleb 75 -2 -> 0.75
+ddscb054 scaleb -75 -2 -> -0.75
+ddscb055 scaleb 7.50 -2 -> 0.0750
+ddscb056 scaleb -7.50 -2 -> -0.0750
+ddscb057 scaleb 7.500 -2 -> 0.07500
+ddscb058 scaleb -7.500 -2 -> -0.07500
+ddscb061 scaleb 7 -1 -> 0.7
+ddscb062 scaleb -7 -1 -> -0.7
+ddscb063 scaleb 75 -1 -> 7.5
+ddscb064 scaleb -75 -1 -> -7.5
+ddscb065 scaleb 7.50 -1 -> 0.750
+ddscb066 scaleb -7.50 -1 -> -0.750
+ddscb067 scaleb 7.500 -1 -> 0.7500
+ddscb068 scaleb -7.500 -1 -> -0.7500
+ddscb071 scaleb 7 0 -> 7
+ddscb072 scaleb -7 0 -> -7
+ddscb073 scaleb 75 0 -> 75
+ddscb074 scaleb -75 0 -> -75
+ddscb075 scaleb 7.50 0 -> 7.50
+ddscb076 scaleb -7.50 0 -> -7.50
+ddscb077 scaleb 7.500 0 -> 7.500
+ddscb078 scaleb -7.500 0 -> -7.500
+ddscb081 scaleb 7 1 -> 7E+1
+ddscb082 scaleb -7 1 -> -7E+1
+ddscb083 scaleb 75 1 -> 7.5E+2
+ddscb084 scaleb -75 1 -> -7.5E+2
+ddscb085 scaleb 7.50 1 -> 75.0
+ddscb086 scaleb -7.50 1 -> -75.0
+ddscb087 scaleb 7.500 1 -> 75.00
+ddscb088 scaleb -7.500 1 -> -75.00
+ddscb091 scaleb 7 2 -> 7E+2
+ddscb092 scaleb -7 2 -> -7E+2
+ddscb093 scaleb 75 2 -> 7.5E+3
+ddscb094 scaleb -75 2 -> -7.5E+3
+ddscb095 scaleb 7.50 2 -> 750
+ddscb096 scaleb -7.50 2 -> -750
+ddscb097 scaleb 7.500 2 -> 750.0
+ddscb098 scaleb -7.500 2 -> -750.0
+
+-- zeros
+ddscb111 scaleb 0 1 -> 0E+1
+ddscb112 scaleb -0 2 -> -0E+2
+ddscb113 scaleb 0E+4 3 -> 0E+7
+ddscb114 scaleb -0E+4 4 -> -0E+8
+ddscb115 scaleb 0.0000 5 -> 0E+1
+ddscb116 scaleb -0.0000 6 -> -0E+2
+ddscb117 scaleb 0E-141 7 -> 0E-134
+ddscb118 scaleb -0E-141 8 -> -0E-133
+
+-- Nmax, Nmin, Ntiny
+ddscb132 scaleb 9.999999999999999E+384 +384 -> Infinity Overflow Inexact Rounded
+ddscb133 scaleb 9.999999999999999E+384 +10 -> Infinity Overflow Inexact Rounded
+ddscb134 scaleb 9.999999999999999E+384 +1 -> Infinity Overflow Inexact Rounded
+ddscb135 scaleb 9.999999999999999E+384 0 -> 9.999999999999999E+384
+ddscb136 scaleb 9.999999999999999E+384 -1 -> 9.999999999999999E+383
+ddscb137 scaleb 1E-383 +1 -> 1E-382
+ddscb138 scaleb 1E-383 -0 -> 1E-383
+ddscb139 scaleb 1E-383 -1 -> 1E-384 Subnormal
+ddscb140 scaleb 1.000000000000000E-383 +1 -> 1.000000000000000E-382
+ddscb141 scaleb 1.000000000000000E-383 0 -> 1.000000000000000E-383
+ddscb142 scaleb 1.000000000000000E-383 -1 -> 1.00000000000000E-384 Subnormal Rounded
+ddscb143 scaleb 1E-398 +1 -> 1E-397 Subnormal
+ddscb144 scaleb 1E-398 -0 -> 1E-398 Subnormal
+ddscb145 scaleb 1E-398 -1 -> 0E-398 Underflow Subnormal Inexact Rounded Clamped
+
+ddscb150 scaleb -1E-398 +1 -> -1E-397 Subnormal
+ddscb151 scaleb -1E-398 -0 -> -1E-398 Subnormal
+ddscb152 scaleb -1E-398 -1 -> -0E-398 Underflow Subnormal Inexact Rounded Clamped
+ddscb153 scaleb -1.000000000000000E-383 +1 -> -1.000000000000000E-382
+ddscb154 scaleb -1.000000000000000E-383 +0 -> -1.000000000000000E-383
+ddscb155 scaleb -1.000000000000000E-383 -1 -> -1.00000000000000E-384 Subnormal Rounded
+ddscb156 scaleb -1E-383 +1 -> -1E-382
+ddscb157 scaleb -1E-383 -0 -> -1E-383
+ddscb158 scaleb -1E-383 -1 -> -1E-384 Subnormal
+ddscb159 scaleb -9.999999999999999E+384 +1 -> -Infinity Overflow Inexact Rounded
+ddscb160 scaleb -9.999999999999999E+384 +0 -> -9.999999999999999E+384
+ddscb161 scaleb -9.999999999999999E+384 -1 -> -9.999999999999999E+383
+ddscb162 scaleb -9E+384 +1 -> -Infinity Overflow Inexact Rounded
+ddscb163 scaleb -1E+384 +1 -> -Infinity Overflow Inexact Rounded
+
+-- some Origami
+-- (these check that overflow is being done correctly)
+ddscb171 scaleb 1000E+365 +1 -> 1.000E+369
+ddscb172 scaleb 1000E+366 +1 -> 1.000E+370
+ddscb173 scaleb 1000E+367 +1 -> 1.000E+371
+ddscb174 scaleb 1000E+368 +1 -> 1.000E+372
+ddscb175 scaleb 1000E+369 +1 -> 1.0000E+373 Clamped
+ddscb176 scaleb 1000E+370 +1 -> 1.00000E+374 Clamped
+ddscb177 scaleb 1000E+371 +1 -> 1.000000E+375 Clamped
+ddscb178 scaleb 1000E+372 +1 -> 1.0000000E+376 Clamped
+ddscb179 scaleb 1000E+373 +1 -> 1.00000000E+377 Clamped
+ddscb180 scaleb 1000E+374 +1 -> 1.000000000E+378 Clamped
+ddscb181 scaleb 1000E+375 +1 -> 1.0000000000E+379 Clamped
+ddscb182 scaleb 1000E+376 +1 -> 1.00000000000E+380 Clamped
+ddscb183 scaleb 1000E+377 +1 -> 1.000000000000E+381 Clamped
+ddscb184 scaleb 1000E+378 +1 -> 1.0000000000000E+382 Clamped
+ddscb185 scaleb 1000E+379 +1 -> 1.00000000000000E+383 Clamped
+ddscb186 scaleb 1000E+380 +1 -> 1.000000000000000E+384 Clamped
+ddscb187 scaleb 1000E+381 +1 -> Infinity Overflow Inexact Rounded
+
+-- and a few more subnormal truncations
+-- (these check that underflow is being done correctly)
+ddscb201 scaleb 1.000000000000000E-383 0 -> 1.000000000000000E-383
+ddscb202 scaleb 1.000000000000000E-383 -1 -> 1.00000000000000E-384 Subnormal Rounded
+ddscb203 scaleb 1.000000000000000E-383 -2 -> 1.0000000000000E-385 Subnormal Rounded
+ddscb204 scaleb 1.000000000000000E-383 -3 -> 1.000000000000E-386 Subnormal Rounded
+ddscb205 scaleb 1.000000000000000E-383 -4 -> 1.00000000000E-387 Subnormal Rounded
+ddscb206 scaleb 1.000000000000000E-383 -5 -> 1.0000000000E-388 Subnormal Rounded
+ddscb207 scaleb 1.000000000000000E-383 -6 -> 1.000000000E-389 Subnormal Rounded
+ddscb208 scaleb 1.000000000000000E-383 -7 -> 1.00000000E-390 Subnormal Rounded
+ddscb209 scaleb 1.000000000000000E-383 -8 -> 1.0000000E-391 Subnormal Rounded
+ddscb210 scaleb 1.000000000000000E-383 -9 -> 1.000000E-392 Subnormal Rounded
+ddscb211 scaleb 1.000000000000000E-383 -10 -> 1.00000E-393 Subnormal Rounded
+ddscb212 scaleb 1.000000000000000E-383 -11 -> 1.0000E-394 Subnormal Rounded
+ddscb213 scaleb 1.000000000000000E-383 -12 -> 1.000E-395 Subnormal Rounded
+ddscb214 scaleb 1.000000000000000E-383 -13 -> 1.00E-396 Subnormal Rounded
+ddscb215 scaleb 1.000000000000000E-383 -14 -> 1.0E-397 Subnormal Rounded
+ddscb216 scaleb 1.000000000000000E-383 -15 -> 1E-398 Subnormal Rounded
+ddscb217 scaleb 1.000000000000000E-383 -16 -> 0E-398 Underflow Subnormal Inexact Rounded Clamped
+ddscb218 scaleb 1.000000000000000E-383 -17 -> 0E-398 Underflow Subnormal Inexact Rounded Clamped
+
diff --git a/Lib/test/decimaltestdata/ddShift.decTest b/Lib/test/decimaltestdata/ddShift.decTest
new file mode 100644
index 0000000..2cbe06a
--- /dev/null
+++ b/Lib/test/decimaltestdata/ddShift.decTest
@@ -0,0 +1,262 @@
+------------------------------------------------------------------------
+-- ddShift.decTest -- shift decDouble coefficient left or right --
+-- Copyright (c) IBM Corporation, 1981, 2007. All rights reserved. --
+------------------------------------------------------------------------
+-- Please see the document "General Decimal Arithmetic Testcases" --
+-- at http://www2.hursley.ibm.com/decimal for the description of --
+-- these testcases. --
+-- --
+-- These testcases are experimental ('beta' versions), and they --
+-- may contain errors. They are offered on an as-is basis. In --
+-- particular, achieving the same results as the tests here is not --
+-- a guarantee that an implementation complies with any Standard --
+-- or specification. The tests are not exhaustive. --
+-- --
+-- Please send comments, suggestions, and corrections to the author: --
+-- Mike Cowlishaw, IBM Fellow --
+-- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK --
+-- mfc@uk.ibm.com --
+------------------------------------------------------------------------
+version: 2.56
+
+precision: 16
+maxExponent: 384
+minExponent: -383
+extended: 1
+clamp: 1
+rounding: half_even
+
+-- Sanity check
+ddshi001 shift 0 0 -> 0
+ddshi002 shift 0 2 -> 0
+ddshi003 shift 1 2 -> 100
+ddshi004 shift 1 15 -> 1000000000000000
+ddshi005 shift 1 16 -> 0
+ddshi006 shift 1 -1 -> 0
+ddshi007 shift 0 -2 -> 0
+ddshi008 shift 1234567890123456 -1 -> 123456789012345
+ddshi009 shift 1234567890123456 -15 -> 1
+ddshi010 shift 1234567890123456 -16 -> 0
+ddshi011 shift 9934567890123456 -15 -> 9
+ddshi012 shift 9934567890123456 -16 -> 0
+
+-- rhs must be an integer
+ddshi015 shift 1 1.5 -> NaN Invalid_operation
+ddshi016 shift 1 1.0 -> NaN Invalid_operation
+ddshi017 shift 1 0.1 -> NaN Invalid_operation
+ddshi018 shift 1 0.0 -> NaN Invalid_operation
+ddshi019 shift 1 1E+1 -> NaN Invalid_operation
+ddshi020 shift 1 1E+99 -> NaN Invalid_operation
+ddshi021 shift 1 Inf -> NaN Invalid_operation
+ddshi022 shift 1 -Inf -> NaN Invalid_operation
+-- and |rhs| <= precision
+ddshi025 shift 1 -1000 -> NaN Invalid_operation
+ddshi026 shift 1 -17 -> NaN Invalid_operation
+ddshi027 shift 1 17 -> NaN Invalid_operation
+ddshi028 shift 1 1000 -> NaN Invalid_operation
+
+-- full shifting pattern
+ddshi030 shift 1234567890123456 -16 -> 0
+ddshi031 shift 1234567890123456 -15 -> 1
+ddshi032 shift 1234567890123456 -14 -> 12
+ddshi033 shift 1234567890123456 -13 -> 123
+ddshi034 shift 1234567890123456 -12 -> 1234
+ddshi035 shift 1234567890123456 -11 -> 12345
+ddshi036 shift 1234567890123456 -10 -> 123456
+ddshi037 shift 1234567890123456 -9 -> 1234567
+ddshi038 shift 1234567890123456 -8 -> 12345678
+ddshi039 shift 1234567890123456 -7 -> 123456789
+ddshi040 shift 1234567890123456 -6 -> 1234567890
+ddshi041 shift 1234567890123456 -5 -> 12345678901
+ddshi042 shift 1234567890123456 -4 -> 123456789012
+ddshi043 shift 1234567890123456 -3 -> 1234567890123
+ddshi044 shift 1234567890123456 -2 -> 12345678901234
+ddshi045 shift 1234567890123456 -1 -> 123456789012345
+ddshi046 shift 1234567890123456 -0 -> 1234567890123456
+
+ddshi047 shift 1234567890123456 +0 -> 1234567890123456
+ddshi048 shift 1234567890123456 +1 -> 2345678901234560
+ddshi049 shift 1234567890123456 +2 -> 3456789012345600
+ddshi050 shift 1234567890123456 +3 -> 4567890123456000
+ddshi051 shift 1234567890123456 +4 -> 5678901234560000
+ddshi052 shift 1234567890123456 +5 -> 6789012345600000
+ddshi053 shift 1234567890123456 +6 -> 7890123456000000
+ddshi054 shift 1234567890123456 +7 -> 8901234560000000
+ddshi055 shift 1234567890123456 +8 -> 9012345600000000
+ddshi056 shift 1234567890123456 +9 -> 123456000000000
+ddshi057 shift 1234567890123456 +10 -> 1234560000000000
+ddshi058 shift 1234567890123456 +11 -> 2345600000000000
+ddshi059 shift 1234567890123456 +12 -> 3456000000000000
+ddshi060 shift 1234567890123456 +13 -> 4560000000000000
+ddshi061 shift 1234567890123456 +14 -> 5600000000000000
+ddshi062 shift 1234567890123456 +15 -> 6000000000000000
+ddshi063 shift 1234567890123456 +16 -> 0
+
+-- zeros
+ddshi070 shift 0E-10 +9 -> 0E-10
+ddshi071 shift 0E-10 -9 -> 0E-10
+ddshi072 shift 0.000 +9 -> 0.000
+ddshi073 shift 0.000 -9 -> 0.000
+ddshi074 shift 0E+10 +9 -> 0E+10
+ddshi075 shift 0E+10 -9 -> 0E+10
+ddshi076 shift -0E-10 +9 -> -0E-10
+ddshi077 shift -0E-10 -9 -> -0E-10
+ddshi078 shift -0.000 +9 -> -0.000
+ddshi079 shift -0.000 -9 -> -0.000
+ddshi080 shift -0E+10 +9 -> -0E+10
+ddshi081 shift -0E+10 -9 -> -0E+10
+
+-- Nmax, Nmin, Ntiny
+ddshi141 shift 9.999999999999999E+384 -1 -> 9.99999999999999E+383
+ddshi142 shift 9.999999999999999E+384 -15 -> 9E+369
+ddshi143 shift 9.999999999999999E+384 1 -> 9.999999999999990E+384
+ddshi144 shift 9.999999999999999E+384 15 -> 9.000000000000000E+384
+ddshi145 shift 1E-383 -1 -> 0E-383
+ddshi146 shift 1E-383 -15 -> 0E-383
+ddshi147 shift 1E-383 1 -> 1.0E-382
+ddshi148 shift 1E-383 15 -> 1.000000000000000E-368
+ddshi151 shift 1.000000000000000E-383 -1 -> 1.00000000000000E-384
+ddshi152 shift 1.000000000000000E-383 -15 -> 1E-398
+ddshi153 shift 1.000000000000000E-383 1 -> 0E-398
+ddshi154 shift 1.000000000000000E-383 15 -> 0E-398
+ddshi155 shift 9.000000000000000E-383 -1 -> 9.00000000000000E-384
+ddshi156 shift 9.000000000000000E-383 -15 -> 9E-398
+ddshi157 shift 9.000000000000000E-383 1 -> 0E-398
+ddshi158 shift 9.000000000000000E-383 15 -> 0E-398
+ddshi160 shift 1E-398 -1 -> 0E-398
+ddshi161 shift 1E-398 -15 -> 0E-398
+ddshi162 shift 1E-398 1 -> 1.0E-397
+ddshi163 shift 1E-398 15 -> 1.000000000000000E-383
+-- negatives
+ddshi171 shift -9.999999999999999E+384 -1 -> -9.99999999999999E+383
+ddshi172 shift -9.999999999999999E+384 -15 -> -9E+369
+ddshi173 shift -9.999999999999999E+384 1 -> -9.999999999999990E+384
+ddshi174 shift -9.999999999999999E+384 15 -> -9.000000000000000E+384
+ddshi175 shift -1E-383 -1 -> -0E-383
+ddshi176 shift -1E-383 -15 -> -0E-383
+ddshi177 shift -1E-383 1 -> -1.0E-382
+ddshi178 shift -1E-383 15 -> -1.000000000000000E-368
+ddshi181 shift -1.000000000000000E-383 -1 -> -1.00000000000000E-384
+ddshi182 shift -1.000000000000000E-383 -15 -> -1E-398
+ddshi183 shift -1.000000000000000E-383 1 -> -0E-398
+ddshi184 shift -1.000000000000000E-383 15 -> -0E-398
+ddshi185 shift -9.000000000000000E-383 -1 -> -9.00000000000000E-384
+ddshi186 shift -9.000000000000000E-383 -15 -> -9E-398
+ddshi187 shift -9.000000000000000E-383 1 -> -0E-398
+ddshi188 shift -9.000000000000000E-383 15 -> -0E-398
+ddshi190 shift -1E-398 -1 -> -0E-398
+ddshi191 shift -1E-398 -15 -> -0E-398
+ddshi192 shift -1E-398 1 -> -1.0E-397
+ddshi193 shift -1E-398 15 -> -1.000000000000000E-383
+
+-- more negatives (of sanities)
+ddshi201 shift -0 0 -> -0
+ddshi202 shift -0 2 -> -0
+ddshi203 shift -1 2 -> -100
+ddshi204 shift -1 15 -> -1000000000000000
+ddshi205 shift -1 16 -> -0
+ddshi206 shift -1 -1 -> -0
+ddshi207 shift -0 -2 -> -0
+ddshi208 shift -1234567890123456 -1 -> -123456789012345
+ddshi209 shift -1234567890123456 -15 -> -1
+ddshi210 shift -1234567890123456 -16 -> -0
+ddshi211 shift -9934567890123456 -15 -> -9
+ddshi212 shift -9934567890123456 -16 -> -0
+
+
+-- Specials; NaNs are handled as usual
+ddshi781 shift -Inf -8 -> -Infinity
+ddshi782 shift -Inf -1 -> -Infinity
+ddshi783 shift -Inf -0 -> -Infinity
+ddshi784 shift -Inf 0 -> -Infinity
+ddshi785 shift -Inf 1 -> -Infinity
+ddshi786 shift -Inf 8 -> -Infinity
+ddshi787 shift -1000 -Inf -> NaN Invalid_operation
+ddshi788 shift -Inf -Inf -> NaN Invalid_operation
+ddshi789 shift -1 -Inf -> NaN Invalid_operation
+ddshi790 shift -0 -Inf -> NaN Invalid_operation
+ddshi791 shift 0 -Inf -> NaN Invalid_operation
+ddshi792 shift 1 -Inf -> NaN Invalid_operation
+ddshi793 shift 1000 -Inf -> NaN Invalid_operation
+ddshi794 shift Inf -Inf -> NaN Invalid_operation
+
+ddshi800 shift Inf -Inf -> NaN Invalid_operation
+ddshi801 shift Inf -8 -> Infinity
+ddshi802 shift Inf -1 -> Infinity
+ddshi803 shift Inf -0 -> Infinity
+ddshi804 shift Inf 0 -> Infinity
+ddshi805 shift Inf 1 -> Infinity
+ddshi806 shift Inf 8 -> Infinity
+ddshi807 shift Inf Inf -> NaN Invalid_operation
+ddshi808 shift -1000 Inf -> NaN Invalid_operation
+ddshi809 shift -Inf Inf -> NaN Invalid_operation
+ddshi810 shift -1 Inf -> NaN Invalid_operation
+ddshi811 shift -0 Inf -> NaN Invalid_operation
+ddshi812 shift 0 Inf -> NaN Invalid_operation
+ddshi813 shift 1 Inf -> NaN Invalid_operation
+ddshi814 shift 1000 Inf -> NaN Invalid_operation
+ddshi815 shift Inf Inf -> NaN Invalid_operation
+
+ddshi821 shift NaN -Inf -> NaN
+ddshi822 shift NaN -1000 -> NaN
+ddshi823 shift NaN -1 -> NaN
+ddshi824 shift NaN -0 -> NaN
+ddshi825 shift NaN 0 -> NaN
+ddshi826 shift NaN 1 -> NaN
+ddshi827 shift NaN 1000 -> NaN
+ddshi828 shift NaN Inf -> NaN
+ddshi829 shift NaN NaN -> NaN
+ddshi830 shift -Inf NaN -> NaN
+ddshi831 shift -1000 NaN -> NaN
+ddshi832 shift -1 NaN -> NaN
+ddshi833 shift -0 NaN -> NaN
+ddshi834 shift 0 NaN -> NaN
+ddshi835 shift 1 NaN -> NaN
+ddshi836 shift 1000 NaN -> NaN
+ddshi837 shift Inf NaN -> NaN
+
+ddshi841 shift sNaN -Inf -> NaN Invalid_operation
+ddshi842 shift sNaN -1000 -> NaN Invalid_operation
+ddshi843 shift sNaN -1 -> NaN Invalid_operation
+ddshi844 shift sNaN -0 -> NaN Invalid_operation
+ddshi845 shift sNaN 0 -> NaN Invalid_operation
+ddshi846 shift sNaN 1 -> NaN Invalid_operation
+ddshi847 shift sNaN 1000 -> NaN Invalid_operation
+ddshi848 shift sNaN NaN -> NaN Invalid_operation
+ddshi849 shift sNaN sNaN -> NaN Invalid_operation
+ddshi850 shift NaN sNaN -> NaN Invalid_operation
+ddshi851 shift -Inf sNaN -> NaN Invalid_operation
+ddshi852 shift -1000 sNaN -> NaN Invalid_operation
+ddshi853 shift -1 sNaN -> NaN Invalid_operation
+ddshi854 shift -0 sNaN -> NaN Invalid_operation
+ddshi855 shift 0 sNaN -> NaN Invalid_operation
+ddshi856 shift 1 sNaN -> NaN Invalid_operation
+ddshi857 shift 1000 sNaN -> NaN Invalid_operation
+ddshi858 shift Inf sNaN -> NaN Invalid_operation
+ddshi859 shift NaN sNaN -> NaN Invalid_operation
+
+-- propagating NaNs
+ddshi861 shift NaN1 -Inf -> NaN1
+ddshi862 shift +NaN2 -1000 -> NaN2
+ddshi863 shift NaN3 1000 -> NaN3
+ddshi864 shift NaN4 Inf -> NaN4
+ddshi865 shift NaN5 +NaN6 -> NaN5
+ddshi866 shift -Inf NaN7 -> NaN7
+ddshi867 shift -1000 NaN8 -> NaN8
+ddshi868 shift 1000 NaN9 -> NaN9
+ddshi869 shift Inf +NaN10 -> NaN10
+ddshi871 shift sNaN11 -Inf -> NaN11 Invalid_operation
+ddshi872 shift sNaN12 -1000 -> NaN12 Invalid_operation
+ddshi873 shift sNaN13 1000 -> NaN13 Invalid_operation
+ddshi874 shift sNaN14 NaN17 -> NaN14 Invalid_operation
+ddshi875 shift sNaN15 sNaN18 -> NaN15 Invalid_operation
+ddshi876 shift NaN16 sNaN19 -> NaN19 Invalid_operation
+ddshi877 shift -Inf +sNaN20 -> NaN20 Invalid_operation
+ddshi878 shift -1000 sNaN21 -> NaN21 Invalid_operation
+ddshi879 shift 1000 sNaN22 -> NaN22 Invalid_operation
+ddshi880 shift Inf sNaN23 -> NaN23 Invalid_operation
+ddshi881 shift +NaN25 +sNaN24 -> NaN24 Invalid_operation
+ddshi882 shift -NaN26 NaN28 -> -NaN26
+ddshi883 shift -sNaN27 sNaN29 -> -NaN27 Invalid_operation
+ddshi884 shift 1000 -NaN30 -> -NaN30
+ddshi885 shift 1000 -sNaN31 -> -NaN31 Invalid_operation
diff --git a/Lib/test/decimaltestdata/ddSubtract.decTest b/Lib/test/decimaltestdata/ddSubtract.decTest
new file mode 100644
index 0000000..89895e9
--- /dev/null
+++ b/Lib/test/decimaltestdata/ddSubtract.decTest
@@ -0,0 +1,629 @@
+------------------------------------------------------------------------
+-- ddSubtract.decTest -- decDouble subtraction --
+-- Copyright (c) IBM Corporation, 1981, 2007. All rights reserved. --
+------------------------------------------------------------------------
+-- Please see the document "General Decimal Arithmetic Testcases" --
+-- at http://www2.hursley.ibm.com/decimal for the description of --
+-- these testcases. --
+-- --
+-- These testcases are experimental ('beta' versions), and they --
+-- may contain errors. They are offered on an as-is basis. In --
+-- particular, achieving the same results as the tests here is not --
+-- a guarantee that an implementation complies with any Standard --
+-- or specification. The tests are not exhaustive. --
+-- --
+-- Please send comments, suggestions, and corrections to the author: --
+-- Mike Cowlishaw, IBM Fellow --
+-- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK --
+-- mfc@uk.ibm.com --
+------------------------------------------------------------------------
+version: 2.56
+
+-- This set of tests are for decDoubles only; all arguments are
+-- representable in a decDouble
+precision: 16
+maxExponent: 384
+minExponent: -383
+extended: 1
+clamp: 1
+rounding: half_even
+
+-- [first group are 'quick confidence check']
+ddsub001 subtract 0 0 -> '0'
+ddsub002 subtract 1 1 -> '0'
+ddsub003 subtract 1 2 -> '-1'
+ddsub004 subtract 2 1 -> '1'
+ddsub005 subtract 2 2 -> '0'
+ddsub006 subtract 3 2 -> '1'
+ddsub007 subtract 2 3 -> '-1'
+
+ddsub011 subtract -0 0 -> '-0'
+ddsub012 subtract -1 1 -> '-2'
+ddsub013 subtract -1 2 -> '-3'
+ddsub014 subtract -2 1 -> '-3'
+ddsub015 subtract -2 2 -> '-4'
+ddsub016 subtract -3 2 -> '-5'
+ddsub017 subtract -2 3 -> '-5'
+
+ddsub021 subtract 0 -0 -> '0'
+ddsub022 subtract 1 -1 -> '2'
+ddsub023 subtract 1 -2 -> '3'
+ddsub024 subtract 2 -1 -> '3'
+ddsub025 subtract 2 -2 -> '4'
+ddsub026 subtract 3 -2 -> '5'
+ddsub027 subtract 2 -3 -> '5'
+
+ddsub030 subtract 11 1 -> 10
+ddsub031 subtract 10 1 -> 9
+ddsub032 subtract 9 1 -> 8
+ddsub033 subtract 1 1 -> 0
+ddsub034 subtract 0 1 -> -1
+ddsub035 subtract -1 1 -> -2
+ddsub036 subtract -9 1 -> -10
+ddsub037 subtract -10 1 -> -11
+ddsub038 subtract -11 1 -> -12
+
+ddsub040 subtract '5.75' '3.3' -> '2.45'
+ddsub041 subtract '5' '-3' -> '8'
+ddsub042 subtract '-5' '-3' -> '-2'
+ddsub043 subtract '-7' '2.5' -> '-9.5'
+ddsub044 subtract '0.7' '0.3' -> '0.4'
+ddsub045 subtract '1.3' '0.3' -> '1.0'
+ddsub046 subtract '1.25' '1.25' -> '0.00'
+
+ddsub050 subtract '1.23456789' '1.00000000' -> '0.23456789'
+ddsub051 subtract '1.23456789' '1.00000089' -> '0.23456700'
+
+ddsub060 subtract '70' '10000e+16' -> '-1.000000000000000E+20' Inexact Rounded
+ddsub061 subtract '700' '10000e+16' -> '-1.000000000000000E+20' Inexact Rounded
+ddsub062 subtract '7000' '10000e+16' -> '-9.999999999999999E+19' Inexact Rounded
+ddsub063 subtract '70000' '10000e+16' -> '-9.999999999999993E+19' Rounded
+ddsub064 subtract '700000' '10000e+16' -> '-9.999999999999930E+19' Rounded
+ -- symmetry:
+ddsub065 subtract '10000e+16' '70' -> '1.000000000000000E+20' Inexact Rounded
+ddsub066 subtract '10000e+16' '700' -> '1.000000000000000E+20' Inexact Rounded
+ddsub067 subtract '10000e+16' '7000' -> '9.999999999999999E+19' Inexact Rounded
+ddsub068 subtract '10000e+16' '70000' -> '9.999999999999993E+19' Rounded
+ddsub069 subtract '10000e+16' '700000' -> '9.999999999999930E+19' Rounded
+
+ -- some of the next group are really constructor tests
+ddsub090 subtract '00.0' '0.0' -> '0.0'
+ddsub091 subtract '00.0' '0.00' -> '0.00'
+ddsub092 subtract '0.00' '00.0' -> '0.00'
+ddsub093 subtract '00.0' '0.00' -> '0.00'
+ddsub094 subtract '0.00' '00.0' -> '0.00'
+ddsub095 subtract '3' '.3' -> '2.7'
+ddsub096 subtract '3.' '.3' -> '2.7'
+ddsub097 subtract '3.0' '.3' -> '2.7'
+ddsub098 subtract '3.00' '.3' -> '2.70'
+ddsub099 subtract '3' '3' -> '0'
+ddsub100 subtract '3' '+3' -> '0'
+ddsub101 subtract '3' '-3' -> '6'
+ddsub102 subtract '3' '0.3' -> '2.7'
+ddsub103 subtract '3.' '0.3' -> '2.7'
+ddsub104 subtract '3.0' '0.3' -> '2.7'
+ddsub105 subtract '3.00' '0.3' -> '2.70'
+ddsub106 subtract '3' '3.0' -> '0.0'
+ddsub107 subtract '3' '+3.0' -> '0.0'
+ddsub108 subtract '3' '-3.0' -> '6.0'
+
+-- the above all from add; massaged and extended. Now some new ones...
+-- [particularly important for comparisons]
+-- NB: -xE-8 below were non-exponents pre-ANSI X3-274, and -1E-7 or 0E-7
+-- with input rounding.
+ddsub120 subtract '10.23456784' '10.23456789' -> '-5E-8'
+ddsub121 subtract '10.23456785' '10.23456789' -> '-4E-8'
+ddsub122 subtract '10.23456786' '10.23456789' -> '-3E-8'
+ddsub123 subtract '10.23456787' '10.23456789' -> '-2E-8'
+ddsub124 subtract '10.23456788' '10.23456789' -> '-1E-8'
+ddsub125 subtract '10.23456789' '10.23456789' -> '0E-8'
+ddsub126 subtract '10.23456790' '10.23456789' -> '1E-8'
+ddsub127 subtract '10.23456791' '10.23456789' -> '2E-8'
+ddsub128 subtract '10.23456792' '10.23456789' -> '3E-8'
+ddsub129 subtract '10.23456793' '10.23456789' -> '4E-8'
+ddsub130 subtract '10.23456794' '10.23456789' -> '5E-8'
+ddsub131 subtract '10.23456781' '10.23456786' -> '-5E-8'
+ddsub132 subtract '10.23456782' '10.23456786' -> '-4E-8'
+ddsub133 subtract '10.23456783' '10.23456786' -> '-3E-8'
+ddsub134 subtract '10.23456784' '10.23456786' -> '-2E-8'
+ddsub135 subtract '10.23456785' '10.23456786' -> '-1E-8'
+ddsub136 subtract '10.23456786' '10.23456786' -> '0E-8'
+ddsub137 subtract '10.23456787' '10.23456786' -> '1E-8'
+ddsub138 subtract '10.23456788' '10.23456786' -> '2E-8'
+ddsub139 subtract '10.23456789' '10.23456786' -> '3E-8'
+ddsub140 subtract '10.23456790' '10.23456786' -> '4E-8'
+ddsub141 subtract '10.23456791' '10.23456786' -> '5E-8'
+ddsub142 subtract '1' '0.999999999' -> '1E-9'
+ddsub143 subtract '0.999999999' '1' -> '-1E-9'
+ddsub144 subtract '-10.23456780' '-10.23456786' -> '6E-8'
+ddsub145 subtract '-10.23456790' '-10.23456786' -> '-4E-8'
+ddsub146 subtract '-10.23456791' '-10.23456786' -> '-5E-8'
+
+-- additional scaled arithmetic tests [0.97 problem]
+ddsub160 subtract '0' '.1' -> '-0.1'
+ddsub161 subtract '00' '.97983' -> '-0.97983'
+ddsub162 subtract '0' '.9' -> '-0.9'
+ddsub163 subtract '0' '0.102' -> '-0.102'
+ddsub164 subtract '0' '.4' -> '-0.4'
+ddsub165 subtract '0' '.307' -> '-0.307'
+ddsub166 subtract '0' '.43822' -> '-0.43822'
+ddsub167 subtract '0' '.911' -> '-0.911'
+ddsub168 subtract '.0' '.02' -> '-0.02'
+ddsub169 subtract '00' '.392' -> '-0.392'
+ddsub170 subtract '0' '.26' -> '-0.26'
+ddsub171 subtract '0' '0.51' -> '-0.51'
+ddsub172 subtract '0' '.2234' -> '-0.2234'
+ddsub173 subtract '0' '.2' -> '-0.2'
+ddsub174 subtract '.0' '.0008' -> '-0.0008'
+-- 0. on left
+ddsub180 subtract '0.0' '-.1' -> '0.1'
+ddsub181 subtract '0.00' '-.97983' -> '0.97983'
+ddsub182 subtract '0.0' '-.9' -> '0.9'
+ddsub183 subtract '0.0' '-0.102' -> '0.102'
+ddsub184 subtract '0.0' '-.4' -> '0.4'
+ddsub185 subtract '0.0' '-.307' -> '0.307'
+ddsub186 subtract '0.0' '-.43822' -> '0.43822'
+ddsub187 subtract '0.0' '-.911' -> '0.911'
+ddsub188 subtract '0.0' '-.02' -> '0.02'
+ddsub189 subtract '0.00' '-.392' -> '0.392'
+ddsub190 subtract '0.0' '-.26' -> '0.26'
+ddsub191 subtract '0.0' '-0.51' -> '0.51'
+ddsub192 subtract '0.0' '-.2234' -> '0.2234'
+ddsub193 subtract '0.0' '-.2' -> '0.2'
+ddsub194 subtract '0.0' '-.0008' -> '0.0008'
+-- negatives of same
+ddsub200 subtract '0' '-.1' -> '0.1'
+ddsub201 subtract '00' '-.97983' -> '0.97983'
+ddsub202 subtract '0' '-.9' -> '0.9'
+ddsub203 subtract '0' '-0.102' -> '0.102'
+ddsub204 subtract '0' '-.4' -> '0.4'
+ddsub205 subtract '0' '-.307' -> '0.307'
+ddsub206 subtract '0' '-.43822' -> '0.43822'
+ddsub207 subtract '0' '-.911' -> '0.911'
+ddsub208 subtract '.0' '-.02' -> '0.02'
+ddsub209 subtract '00' '-.392' -> '0.392'
+ddsub210 subtract '0' '-.26' -> '0.26'
+ddsub211 subtract '0' '-0.51' -> '0.51'
+ddsub212 subtract '0' '-.2234' -> '0.2234'
+ddsub213 subtract '0' '-.2' -> '0.2'
+ddsub214 subtract '.0' '-.0008' -> '0.0008'
+
+-- more fixed, LHS swaps [really the same as testcases under add]
+ddsub220 subtract '-56267E-12' 0 -> '-5.6267E-8'
+ddsub221 subtract '-56267E-11' 0 -> '-5.6267E-7'
+ddsub222 subtract '-56267E-10' 0 -> '-0.0000056267'
+ddsub223 subtract '-56267E-9' 0 -> '-0.000056267'
+ddsub224 subtract '-56267E-8' 0 -> '-0.00056267'
+ddsub225 subtract '-56267E-7' 0 -> '-0.0056267'
+ddsub226 subtract '-56267E-6' 0 -> '-0.056267'
+ddsub227 subtract '-56267E-5' 0 -> '-0.56267'
+ddsub228 subtract '-56267E-2' 0 -> '-562.67'
+ddsub229 subtract '-56267E-1' 0 -> '-5626.7'
+ddsub230 subtract '-56267E-0' 0 -> '-56267'
+-- symmetry ...
+ddsub240 subtract 0 '-56267E-12' -> '5.6267E-8'
+ddsub241 subtract 0 '-56267E-11' -> '5.6267E-7'
+ddsub242 subtract 0 '-56267E-10' -> '0.0000056267'
+ddsub243 subtract 0 '-56267E-9' -> '0.000056267'
+ddsub244 subtract 0 '-56267E-8' -> '0.00056267'
+ddsub245 subtract 0 '-56267E-7' -> '0.0056267'
+ddsub246 subtract 0 '-56267E-6' -> '0.056267'
+ddsub247 subtract 0 '-56267E-5' -> '0.56267'
+ddsub248 subtract 0 '-56267E-2' -> '562.67'
+ddsub249 subtract 0 '-56267E-1' -> '5626.7'
+ddsub250 subtract 0 '-56267E-0' -> '56267'
+
+-- now some more from the 'new' add
+ddsub301 subtract '1.23456789' '1.00000000' -> '0.23456789'
+ddsub302 subtract '1.23456789' '1.00000011' -> '0.23456778'
+
+-- some carrying effects
+ddsub321 subtract '0.9998' '0.0000' -> '0.9998'
+ddsub322 subtract '0.9998' '0.0001' -> '0.9997'
+ddsub323 subtract '0.9998' '0.0002' -> '0.9996'
+ddsub324 subtract '0.9998' '0.0003' -> '0.9995'
+ddsub325 subtract '0.9998' '-0.0000' -> '0.9998'
+ddsub326 subtract '0.9998' '-0.0001' -> '0.9999'
+ddsub327 subtract '0.9998' '-0.0002' -> '1.0000'
+ddsub328 subtract '0.9998' '-0.0003' -> '1.0001'
+
+-- internal boundaries
+ddsub346 subtract '10000e+9' '7' -> '9999999999993'
+ddsub347 subtract '10000e+9' '70' -> '9999999999930'
+ddsub348 subtract '10000e+9' '700' -> '9999999999300'
+ddsub349 subtract '10000e+9' '7000' -> '9999999993000'
+ddsub350 subtract '10000e+9' '70000' -> '9999999930000'
+ddsub351 subtract '10000e+9' '700000' -> '9999999300000'
+ddsub352 subtract '7' '10000e+9' -> '-9999999999993'
+ddsub353 subtract '70' '10000e+9' -> '-9999999999930'
+ddsub354 subtract '700' '10000e+9' -> '-9999999999300'
+ddsub355 subtract '7000' '10000e+9' -> '-9999999993000'
+ddsub356 subtract '70000' '10000e+9' -> '-9999999930000'
+ddsub357 subtract '700000' '10000e+9' -> '-9999999300000'
+
+-- zero preservation
+ddsub361 subtract 1 '0.0001' -> '0.9999'
+ddsub362 subtract 1 '0.00001' -> '0.99999'
+ddsub363 subtract 1 '0.000001' -> '0.999999'
+ddsub364 subtract 1 '0.0000000000000001' -> '0.9999999999999999'
+ddsub365 subtract 1 '0.00000000000000001' -> '1.000000000000000' Inexact Rounded
+ddsub366 subtract 1 '0.000000000000000001' -> '1.000000000000000' Inexact Rounded
+
+-- some funny zeros [in case of bad signum]
+ddsub370 subtract 1 0 -> 1
+ddsub371 subtract 1 0. -> 1
+ddsub372 subtract 1 .0 -> 1.0
+ddsub373 subtract 1 0.0 -> 1.0
+ddsub374 subtract 0 1 -> -1
+ddsub375 subtract 0. 1 -> -1
+ddsub376 subtract .0 1 -> -1.0
+ddsub377 subtract 0.0 1 -> -1.0
+
+-- leading 0 digit before round
+ddsub910 subtract -103519362 -51897955.3 -> -51621406.7
+ddsub911 subtract 159579.444 89827.5229 -> 69751.9211
+
+ddsub920 subtract 333.0000000123456 33.00000001234566 -> 299.9999999999999 Inexact Rounded
+ddsub921 subtract 333.0000000123456 33.00000001234565 -> 300.0000000000000 Inexact Rounded
+ddsub922 subtract 133.0000000123456 33.00000001234565 -> 99.99999999999995
+ddsub923 subtract 133.0000000123456 33.00000001234564 -> 99.99999999999996
+ddsub924 subtract 133.0000000123456 33.00000001234540 -> 100.0000000000002 Rounded
+ddsub925 subtract 133.0000000123456 43.00000001234560 -> 90.00000000000000
+ddsub926 subtract 133.0000000123456 43.00000001234561 -> 89.99999999999999
+ddsub927 subtract 133.0000000123456 43.00000001234566 -> 89.99999999999994
+ddsub928 subtract 101.0000000123456 91.00000001234566 -> 9.99999999999994
+ddsub929 subtract 101.0000000123456 99.00000001234566 -> 1.99999999999994
+
+-- more LHS swaps [were fixed]
+ddsub390 subtract '-56267E-10' 0 -> '-0.0000056267'
+ddsub391 subtract '-56267E-6' 0 -> '-0.056267'
+ddsub392 subtract '-56267E-5' 0 -> '-0.56267'
+ddsub393 subtract '-56267E-4' 0 -> '-5.6267'
+ddsub394 subtract '-56267E-3' 0 -> '-56.267'
+ddsub395 subtract '-56267E-2' 0 -> '-562.67'
+ddsub396 subtract '-56267E-1' 0 -> '-5626.7'
+ddsub397 subtract '-56267E-0' 0 -> '-56267'
+ddsub398 subtract '-5E-10' 0 -> '-5E-10'
+ddsub399 subtract '-5E-7' 0 -> '-5E-7'
+ddsub400 subtract '-5E-6' 0 -> '-0.000005'
+ddsub401 subtract '-5E-5' 0 -> '-0.00005'
+ddsub402 subtract '-5E-4' 0 -> '-0.0005'
+ddsub403 subtract '-5E-1' 0 -> '-0.5'
+ddsub404 subtract '-5E0' 0 -> '-5'
+ddsub405 subtract '-5E1' 0 -> '-50'
+ddsub406 subtract '-5E5' 0 -> '-500000'
+ddsub407 subtract '-5E15' 0 -> '-5000000000000000'
+ddsub408 subtract '-5E16' 0 -> '-5.000000000000000E+16' Rounded
+ddsub409 subtract '-5E17' 0 -> '-5.000000000000000E+17' Rounded
+ddsub410 subtract '-5E18' 0 -> '-5.000000000000000E+18' Rounded
+ddsub411 subtract '-5E100' 0 -> '-5.000000000000000E+100' Rounded
+
+-- more RHS swaps [were fixed]
+ddsub420 subtract 0 '-56267E-10' -> '0.0000056267'
+ddsub421 subtract 0 '-56267E-6' -> '0.056267'
+ddsub422 subtract 0 '-56267E-5' -> '0.56267'
+ddsub423 subtract 0 '-56267E-4' -> '5.6267'
+ddsub424 subtract 0 '-56267E-3' -> '56.267'
+ddsub425 subtract 0 '-56267E-2' -> '562.67'
+ddsub426 subtract 0 '-56267E-1' -> '5626.7'
+ddsub427 subtract 0 '-56267E-0' -> '56267'
+ddsub428 subtract 0 '-5E-10' -> '5E-10'
+ddsub429 subtract 0 '-5E-7' -> '5E-7'
+ddsub430 subtract 0 '-5E-6' -> '0.000005'
+ddsub431 subtract 0 '-5E-5' -> '0.00005'
+ddsub432 subtract 0 '-5E-4' -> '0.0005'
+ddsub433 subtract 0 '-5E-1' -> '0.5'
+ddsub434 subtract 0 '-5E0' -> '5'
+ddsub435 subtract 0 '-5E1' -> '50'
+ddsub436 subtract 0 '-5E5' -> '500000'
+ddsub437 subtract 0 '-5E15' -> '5000000000000000'
+ddsub438 subtract 0 '-5E16' -> '5.000000000000000E+16' Rounded
+ddsub439 subtract 0 '-5E17' -> '5.000000000000000E+17' Rounded
+ddsub440 subtract 0 '-5E18' -> '5.000000000000000E+18' Rounded
+ddsub441 subtract 0 '-5E100' -> '5.000000000000000E+100' Rounded
+
+
+-- try borderline precision, with carries, etc.
+ddsub461 subtract '1E+16' '1' -> '9999999999999999'
+ddsub462 subtract '1E+12' '-1.111' -> '1000000000001.111'
+ddsub463 subtract '1.111' '-1E+12' -> '1000000000001.111'
+ddsub464 subtract '-1' '-1E+16' -> '9999999999999999'
+ddsub465 subtract '7E+15' '1' -> '6999999999999999'
+ddsub466 subtract '7E+12' '-1.111' -> '7000000000001.111'
+ddsub467 subtract '1.111' '-7E+12' -> '7000000000001.111'
+ddsub468 subtract '-1' '-7E+15' -> '6999999999999999'
+
+-- 1234567890123456 1234567890123456 1 23456789012345
+ddsub470 subtract '0.4444444444444444' '-0.5555555555555563' -> '1.000000000000001' Inexact Rounded
+ddsub471 subtract '0.4444444444444444' '-0.5555555555555562' -> '1.000000000000001' Inexact Rounded
+ddsub472 subtract '0.4444444444444444' '-0.5555555555555561' -> '1.000000000000000' Inexact Rounded
+ddsub473 subtract '0.4444444444444444' '-0.5555555555555560' -> '1.000000000000000' Inexact Rounded
+ddsub474 subtract '0.4444444444444444' '-0.5555555555555559' -> '1.000000000000000' Inexact Rounded
+ddsub475 subtract '0.4444444444444444' '-0.5555555555555558' -> '1.000000000000000' Inexact Rounded
+ddsub476 subtract '0.4444444444444444' '-0.5555555555555557' -> '1.000000000000000' Inexact Rounded
+ddsub477 subtract '0.4444444444444444' '-0.5555555555555556' -> '1.000000000000000' Rounded
+ddsub478 subtract '0.4444444444444444' '-0.5555555555555555' -> '0.9999999999999999'
+ddsub479 subtract '0.4444444444444444' '-0.5555555555555554' -> '0.9999999999999998'
+ddsub480 subtract '0.4444444444444444' '-0.5555555555555553' -> '0.9999999999999997'
+ddsub481 subtract '0.4444444444444444' '-0.5555555555555552' -> '0.9999999999999996'
+ddsub482 subtract '0.4444444444444444' '-0.5555555555555551' -> '0.9999999999999995'
+ddsub483 subtract '0.4444444444444444' '-0.5555555555555550' -> '0.9999999999999994'
+
+-- and some more, including residue effects and different roundings
+rounding: half_up
+ddsub500 subtract '1231234567456789' 0 -> '1231234567456789'
+ddsub501 subtract '1231234567456789' 0.000000001 -> '1231234567456789' Inexact Rounded
+ddsub502 subtract '1231234567456789' 0.000001 -> '1231234567456789' Inexact Rounded
+ddsub503 subtract '1231234567456789' 0.1 -> '1231234567456789' Inexact Rounded
+ddsub504 subtract '1231234567456789' 0.4 -> '1231234567456789' Inexact Rounded
+ddsub505 subtract '1231234567456789' 0.49 -> '1231234567456789' Inexact Rounded
+ddsub506 subtract '1231234567456789' 0.499999 -> '1231234567456789' Inexact Rounded
+ddsub507 subtract '1231234567456789' 0.499999999 -> '1231234567456789' Inexact Rounded
+ddsub508 subtract '1231234567456789' 0.5 -> '1231234567456789' Inexact Rounded
+ddsub509 subtract '1231234567456789' 0.500000001 -> '1231234567456788' Inexact Rounded
+ddsub510 subtract '1231234567456789' 0.500001 -> '1231234567456788' Inexact Rounded
+ddsub511 subtract '1231234567456789' 0.51 -> '1231234567456788' Inexact Rounded
+ddsub512 subtract '1231234567456789' 0.6 -> '1231234567456788' Inexact Rounded
+ddsub513 subtract '1231234567456789' 0.9 -> '1231234567456788' Inexact Rounded
+ddsub514 subtract '1231234567456789' 0.99999 -> '1231234567456788' Inexact Rounded
+ddsub515 subtract '1231234567456789' 0.999999999 -> '1231234567456788' Inexact Rounded
+ddsub516 subtract '1231234567456789' 1 -> '1231234567456788'
+ddsub517 subtract '1231234567456789' 1.000000001 -> '1231234567456788' Inexact Rounded
+ddsub518 subtract '1231234567456789' 1.00001 -> '1231234567456788' Inexact Rounded
+ddsub519 subtract '1231234567456789' 1.1 -> '1231234567456788' Inexact Rounded
+
+rounding: half_even
+ddsub520 subtract '1231234567456789' 0 -> '1231234567456789'
+ddsub521 subtract '1231234567456789' 0.000000001 -> '1231234567456789' Inexact Rounded
+ddsub522 subtract '1231234567456789' 0.000001 -> '1231234567456789' Inexact Rounded
+ddsub523 subtract '1231234567456789' 0.1 -> '1231234567456789' Inexact Rounded
+ddsub524 subtract '1231234567456789' 0.4 -> '1231234567456789' Inexact Rounded
+ddsub525 subtract '1231234567456789' 0.49 -> '1231234567456789' Inexact Rounded
+ddsub526 subtract '1231234567456789' 0.499999 -> '1231234567456789' Inexact Rounded
+ddsub527 subtract '1231234567456789' 0.499999999 -> '1231234567456789' Inexact Rounded
+ddsub528 subtract '1231234567456789' 0.5 -> '1231234567456788' Inexact Rounded
+ddsub529 subtract '1231234567456789' 0.500000001 -> '1231234567456788' Inexact Rounded
+ddsub530 subtract '1231234567456789' 0.500001 -> '1231234567456788' Inexact Rounded
+ddsub531 subtract '1231234567456789' 0.51 -> '1231234567456788' Inexact Rounded
+ddsub532 subtract '1231234567456789' 0.6 -> '1231234567456788' Inexact Rounded
+ddsub533 subtract '1231234567456789' 0.9 -> '1231234567456788' Inexact Rounded
+ddsub534 subtract '1231234567456789' 0.99999 -> '1231234567456788' Inexact Rounded
+ddsub535 subtract '1231234567456789' 0.999999999 -> '1231234567456788' Inexact Rounded
+ddsub536 subtract '1231234567456789' 1 -> '1231234567456788'
+ddsub537 subtract '1231234567456789' 1.00000001 -> '1231234567456788' Inexact Rounded
+ddsub538 subtract '1231234567456789' 1.00001 -> '1231234567456788' Inexact Rounded
+ddsub539 subtract '1231234567456789' 1.1 -> '1231234567456788' Inexact Rounded
+-- critical few with even bottom digit...
+ddsub540 subtract '1231234567456788' 0.499999999 -> '1231234567456788' Inexact Rounded
+ddsub541 subtract '1231234567456788' 0.5 -> '1231234567456788' Inexact Rounded
+ddsub542 subtract '1231234567456788' 0.500000001 -> '1231234567456787' Inexact Rounded
+
+rounding: down
+ddsub550 subtract '1231234567456789' 0 -> '1231234567456789'
+ddsub551 subtract '1231234567456789' 0.000000001 -> '1231234567456788' Inexact Rounded
+ddsub552 subtract '1231234567456789' 0.000001 -> '1231234567456788' Inexact Rounded
+ddsub553 subtract '1231234567456789' 0.1 -> '1231234567456788' Inexact Rounded
+ddsub554 subtract '1231234567456789' 0.4 -> '1231234567456788' Inexact Rounded
+ddsub555 subtract '1231234567456789' 0.49 -> '1231234567456788' Inexact Rounded
+ddsub556 subtract '1231234567456789' 0.499999 -> '1231234567456788' Inexact Rounded
+ddsub557 subtract '1231234567456789' 0.499999999 -> '1231234567456788' Inexact Rounded
+ddsub558 subtract '1231234567456789' 0.5 -> '1231234567456788' Inexact Rounded
+ddsub559 subtract '1231234567456789' 0.500000001 -> '1231234567456788' Inexact Rounded
+ddsub560 subtract '1231234567456789' 0.500001 -> '1231234567456788' Inexact Rounded
+ddsub561 subtract '1231234567456789' 0.51 -> '1231234567456788' Inexact Rounded
+ddsub562 subtract '1231234567456789' 0.6 -> '1231234567456788' Inexact Rounded
+ddsub563 subtract '1231234567456789' 0.9 -> '1231234567456788' Inexact Rounded
+ddsub564 subtract '1231234567456789' 0.99999 -> '1231234567456788' Inexact Rounded
+ddsub565 subtract '1231234567456789' 0.999999999 -> '1231234567456788' Inexact Rounded
+ddsub566 subtract '1231234567456789' 1 -> '1231234567456788'
+ddsub567 subtract '1231234567456789' 1.00000001 -> '1231234567456787' Inexact Rounded
+ddsub568 subtract '1231234567456789' 1.00001 -> '1231234567456787' Inexact Rounded
+ddsub569 subtract '1231234567456789' 1.1 -> '1231234567456787' Inexact Rounded
+
+-- symmetry...
+rounding: half_up
+ddsub600 subtract 0 '1231234567456789' -> '-1231234567456789'
+ddsub601 subtract 0.000000001 '1231234567456789' -> '-1231234567456789' Inexact Rounded
+ddsub602 subtract 0.000001 '1231234567456789' -> '-1231234567456789' Inexact Rounded
+ddsub603 subtract 0.1 '1231234567456789' -> '-1231234567456789' Inexact Rounded
+ddsub604 subtract 0.4 '1231234567456789' -> '-1231234567456789' Inexact Rounded
+ddsub605 subtract 0.49 '1231234567456789' -> '-1231234567456789' Inexact Rounded
+ddsub606 subtract 0.499999 '1231234567456789' -> '-1231234567456789' Inexact Rounded
+ddsub607 subtract 0.499999999 '1231234567456789' -> '-1231234567456789' Inexact Rounded
+ddsub608 subtract 0.5 '1231234567456789' -> '-1231234567456789' Inexact Rounded
+ddsub609 subtract 0.500000001 '1231234567456789' -> '-1231234567456788' Inexact Rounded
+ddsub610 subtract 0.500001 '1231234567456789' -> '-1231234567456788' Inexact Rounded
+ddsub611 subtract 0.51 '1231234567456789' -> '-1231234567456788' Inexact Rounded
+ddsub612 subtract 0.6 '1231234567456789' -> '-1231234567456788' Inexact Rounded
+ddsub613 subtract 0.9 '1231234567456789' -> '-1231234567456788' Inexact Rounded
+ddsub614 subtract 0.99999 '1231234567456789' -> '-1231234567456788' Inexact Rounded
+ddsub615 subtract 0.999999999 '1231234567456789' -> '-1231234567456788' Inexact Rounded
+ddsub616 subtract 1 '1231234567456789' -> '-1231234567456788'
+ddsub617 subtract 1.000000001 '1231234567456789' -> '-1231234567456788' Inexact Rounded
+ddsub618 subtract 1.00001 '1231234567456789' -> '-1231234567456788' Inexact Rounded
+ddsub619 subtract 1.1 '1231234567456789' -> '-1231234567456788' Inexact Rounded
+
+rounding: half_even
+ddsub620 subtract 0 '1231234567456789' -> '-1231234567456789'
+ddsub621 subtract 0.000000001 '1231234567456789' -> '-1231234567456789' Inexact Rounded
+ddsub622 subtract 0.000001 '1231234567456789' -> '-1231234567456789' Inexact Rounded
+ddsub623 subtract 0.1 '1231234567456789' -> '-1231234567456789' Inexact Rounded
+ddsub624 subtract 0.4 '1231234567456789' -> '-1231234567456789' Inexact Rounded
+ddsub625 subtract 0.49 '1231234567456789' -> '-1231234567456789' Inexact Rounded
+ddsub626 subtract 0.499999 '1231234567456789' -> '-1231234567456789' Inexact Rounded
+ddsub627 subtract 0.499999999 '1231234567456789' -> '-1231234567456789' Inexact Rounded
+ddsub628 subtract 0.5 '1231234567456789' -> '-1231234567456788' Inexact Rounded
+ddsub629 subtract 0.500000001 '1231234567456789' -> '-1231234567456788' Inexact Rounded
+ddsub630 subtract 0.500001 '1231234567456789' -> '-1231234567456788' Inexact Rounded
+ddsub631 subtract 0.51 '1231234567456789' -> '-1231234567456788' Inexact Rounded
+ddsub632 subtract 0.6 '1231234567456789' -> '-1231234567456788' Inexact Rounded
+ddsub633 subtract 0.9 '1231234567456789' -> '-1231234567456788' Inexact Rounded
+ddsub634 subtract 0.99999 '1231234567456789' -> '-1231234567456788' Inexact Rounded
+ddsub635 subtract 0.999999999 '1231234567456789' -> '-1231234567456788' Inexact Rounded
+ddsub636 subtract 1 '1231234567456789' -> '-1231234567456788'
+ddsub637 subtract 1.00000001 '1231234567456789' -> '-1231234567456788' Inexact Rounded
+ddsub638 subtract 1.00001 '1231234567456789' -> '-1231234567456788' Inexact Rounded
+ddsub639 subtract 1.1 '1231234567456789' -> '-1231234567456788' Inexact Rounded
+-- critical few with even bottom digit...
+ddsub640 subtract 0.499999999 '1231234567456788' -> '-1231234567456788' Inexact Rounded
+ddsub641 subtract 0.5 '1231234567456788' -> '-1231234567456788' Inexact Rounded
+ddsub642 subtract 0.500000001 '1231234567456788' -> '-1231234567456787' Inexact Rounded
+
+rounding: down
+ddsub650 subtract 0 '1231234567456789' -> '-1231234567456789'
+ddsub651 subtract 0.000000001 '1231234567456789' -> '-1231234567456788' Inexact Rounded
+ddsub652 subtract 0.000001 '1231234567456789' -> '-1231234567456788' Inexact Rounded
+ddsub653 subtract 0.1 '1231234567456789' -> '-1231234567456788' Inexact Rounded
+ddsub654 subtract 0.4 '1231234567456789' -> '-1231234567456788' Inexact Rounded
+ddsub655 subtract 0.49 '1231234567456789' -> '-1231234567456788' Inexact Rounded
+ddsub656 subtract 0.499999 '1231234567456789' -> '-1231234567456788' Inexact Rounded
+ddsub657 subtract 0.499999999 '1231234567456789' -> '-1231234567456788' Inexact Rounded
+ddsub658 subtract 0.5 '1231234567456789' -> '-1231234567456788' Inexact Rounded
+ddsub659 subtract 0.500000001 '1231234567456789' -> '-1231234567456788' Inexact Rounded
+ddsub660 subtract 0.500001 '1231234567456789' -> '-1231234567456788' Inexact Rounded
+ddsub661 subtract 0.51 '1231234567456789' -> '-1231234567456788' Inexact Rounded
+ddsub662 subtract 0.6 '1231234567456789' -> '-1231234567456788' Inexact Rounded
+ddsub663 subtract 0.9 '1231234567456789' -> '-1231234567456788' Inexact Rounded
+ddsub664 subtract 0.99999 '1231234567456789' -> '-1231234567456788' Inexact Rounded
+ddsub665 subtract 0.999999999 '1231234567456789' -> '-1231234567456788' Inexact Rounded
+ddsub666 subtract 1 '1231234567456789' -> '-1231234567456788'
+ddsub667 subtract 1.00000001 '1231234567456789' -> '-1231234567456787' Inexact Rounded
+ddsub668 subtract 1.00001 '1231234567456789' -> '-1231234567456787' Inexact Rounded
+ddsub669 subtract 1.1 '1231234567456789' -> '-1231234567456787' Inexact Rounded
+
+
+-- lots of leading zeros in intermediate result, and showing effects of
+-- input rounding would have affected the following
+rounding: half_up
+ddsub670 subtract '1234567456789' '1234567456788.1' -> 0.9
+ddsub671 subtract '1234567456789' '1234567456788.9' -> 0.1
+ddsub672 subtract '1234567456789' '1234567456789.1' -> -0.1
+ddsub673 subtract '1234567456789' '1234567456789.5' -> -0.5
+ddsub674 subtract '1234567456789' '1234567456789.9' -> -0.9
+
+rounding: half_even
+ddsub680 subtract '1234567456789' '1234567456788.1' -> 0.9
+ddsub681 subtract '1234567456789' '1234567456788.9' -> 0.1
+ddsub682 subtract '1234567456789' '1234567456789.1' -> -0.1
+ddsub683 subtract '1234567456789' '1234567456789.5' -> -0.5
+ddsub684 subtract '1234567456789' '1234567456789.9' -> -0.9
+
+ddsub685 subtract '1234567456788' '1234567456787.1' -> 0.9
+ddsub686 subtract '1234567456788' '1234567456787.9' -> 0.1
+ddsub687 subtract '1234567456788' '1234567456788.1' -> -0.1
+ddsub688 subtract '1234567456788' '1234567456788.5' -> -0.5
+ddsub689 subtract '1234567456788' '1234567456788.9' -> -0.9
+
+rounding: down
+ddsub690 subtract '1234567456789' '1234567456788.1' -> 0.9
+ddsub691 subtract '1234567456789' '1234567456788.9' -> 0.1
+ddsub692 subtract '1234567456789' '1234567456789.1' -> -0.1
+ddsub693 subtract '1234567456789' '1234567456789.5' -> -0.5
+ddsub694 subtract '1234567456789' '1234567456789.9' -> -0.9
+
+-- Specials
+ddsub780 subtract -Inf Inf -> -Infinity
+ddsub781 subtract -Inf 1000 -> -Infinity
+ddsub782 subtract -Inf 1 -> -Infinity
+ddsub783 subtract -Inf -0 -> -Infinity
+ddsub784 subtract -Inf -1 -> -Infinity
+ddsub785 subtract -Inf -1000 -> -Infinity
+ddsub787 subtract -1000 Inf -> -Infinity
+ddsub788 subtract -Inf Inf -> -Infinity
+ddsub789 subtract -1 Inf -> -Infinity
+ddsub790 subtract 0 Inf -> -Infinity
+ddsub791 subtract 1 Inf -> -Infinity
+ddsub792 subtract 1000 Inf -> -Infinity
+
+ddsub800 subtract Inf Inf -> NaN Invalid_operation
+ddsub801 subtract Inf 1000 -> Infinity
+ddsub802 subtract Inf 1 -> Infinity
+ddsub803 subtract Inf 0 -> Infinity
+ddsub804 subtract Inf -0 -> Infinity
+ddsub805 subtract Inf -1 -> Infinity
+ddsub806 subtract Inf -1000 -> Infinity
+ddsub807 subtract Inf -Inf -> Infinity
+ddsub808 subtract -1000 -Inf -> Infinity
+ddsub809 subtract -Inf -Inf -> NaN Invalid_operation
+ddsub810 subtract -1 -Inf -> Infinity
+ddsub811 subtract -0 -Inf -> Infinity
+ddsub812 subtract 0 -Inf -> Infinity
+ddsub813 subtract 1 -Inf -> Infinity
+ddsub814 subtract 1000 -Inf -> Infinity
+ddsub815 subtract Inf -Inf -> Infinity
+
+ddsub821 subtract NaN Inf -> NaN
+ddsub822 subtract -NaN 1000 -> -NaN
+ddsub823 subtract NaN 1 -> NaN
+ddsub824 subtract NaN 0 -> NaN
+ddsub825 subtract NaN -0 -> NaN
+ddsub826 subtract NaN -1 -> NaN
+ddsub827 subtract NaN -1000 -> NaN
+ddsub828 subtract NaN -Inf -> NaN
+ddsub829 subtract -NaN NaN -> -NaN
+ddsub830 subtract -Inf NaN -> NaN
+ddsub831 subtract -1000 NaN -> NaN
+ddsub832 subtract -1 NaN -> NaN
+ddsub833 subtract -0 NaN -> NaN
+ddsub834 subtract 0 NaN -> NaN
+ddsub835 subtract 1 NaN -> NaN
+ddsub836 subtract 1000 -NaN -> -NaN
+ddsub837 subtract Inf NaN -> NaN
+
+ddsub841 subtract sNaN Inf -> NaN Invalid_operation
+ddsub842 subtract -sNaN 1000 -> -NaN Invalid_operation
+ddsub843 subtract sNaN 1 -> NaN Invalid_operation
+ddsub844 subtract sNaN 0 -> NaN Invalid_operation
+ddsub845 subtract sNaN -0 -> NaN Invalid_operation
+ddsub846 subtract sNaN -1 -> NaN Invalid_operation
+ddsub847 subtract sNaN -1000 -> NaN Invalid_operation
+ddsub848 subtract sNaN NaN -> NaN Invalid_operation
+ddsub849 subtract sNaN sNaN -> NaN Invalid_operation
+ddsub850 subtract NaN sNaN -> NaN Invalid_operation
+ddsub851 subtract -Inf -sNaN -> -NaN Invalid_operation
+ddsub852 subtract -1000 sNaN -> NaN Invalid_operation
+ddsub853 subtract -1 sNaN -> NaN Invalid_operation
+ddsub854 subtract -0 sNaN -> NaN Invalid_operation
+ddsub855 subtract 0 sNaN -> NaN Invalid_operation
+ddsub856 subtract 1 sNaN -> NaN Invalid_operation
+ddsub857 subtract 1000 sNaN -> NaN Invalid_operation
+ddsub858 subtract Inf sNaN -> NaN Invalid_operation
+ddsub859 subtract NaN sNaN -> NaN Invalid_operation
+
+-- propagating NaNs
+ddsub861 subtract NaN01 -Inf -> NaN1
+ddsub862 subtract -NaN02 -1000 -> -NaN2
+ddsub863 subtract NaN03 1000 -> NaN3
+ddsub864 subtract NaN04 Inf -> NaN4
+ddsub865 subtract NaN05 NaN61 -> NaN5
+ddsub866 subtract -Inf -NaN71 -> -NaN71
+ddsub867 subtract -1000 NaN81 -> NaN81
+ddsub868 subtract 1000 NaN91 -> NaN91
+ddsub869 subtract Inf NaN101 -> NaN101
+ddsub871 subtract sNaN011 -Inf -> NaN11 Invalid_operation
+ddsub872 subtract sNaN012 -1000 -> NaN12 Invalid_operation
+ddsub873 subtract -sNaN013 1000 -> -NaN13 Invalid_operation
+ddsub874 subtract sNaN014 NaN171 -> NaN14 Invalid_operation
+ddsub875 subtract sNaN015 sNaN181 -> NaN15 Invalid_operation
+ddsub876 subtract NaN016 sNaN191 -> NaN191 Invalid_operation
+ddsub877 subtract -Inf sNaN201 -> NaN201 Invalid_operation
+ddsub878 subtract -1000 sNaN211 -> NaN211 Invalid_operation
+ddsub879 subtract 1000 -sNaN221 -> -NaN221 Invalid_operation
+ddsub880 subtract Inf sNaN231 -> NaN231 Invalid_operation
+ddsub881 subtract NaN025 sNaN241 -> NaN241 Invalid_operation
+
+-- edge case spills
+ddsub901 subtract 2.E-3 1.002 -> -1.000
+ddsub902 subtract 2.0E-3 1.002 -> -1.0000
+ddsub903 subtract 2.00E-3 1.0020 -> -1.00000
+ddsub904 subtract 2.000E-3 1.00200 -> -1.000000
+ddsub905 subtract 2.0000E-3 1.002000 -> -1.0000000
+ddsub906 subtract 2.00000E-3 1.0020000 -> -1.00000000
+ddsub907 subtract 2.000000E-3 1.00200000 -> -1.000000000
+ddsub908 subtract 2.0000000E-3 1.002000000 -> -1.0000000000
+
+-- subnormals and overflows covered under Add
+
+-- Null tests
+ddsub9990 subtract 10 # -> NaN Invalid_operation
+ddsub9991 subtract # 10 -> NaN Invalid_operation
diff --git a/Lib/test/decimaltestdata/ddToIntegral.decTest b/Lib/test/decimaltestdata/ddToIntegral.decTest
new file mode 100644
index 0000000..1e3e573
--- /dev/null
+++ b/Lib/test/decimaltestdata/ddToIntegral.decTest
@@ -0,0 +1,257 @@
+------------------------------------------------------------------------
+-- ddToIntegral.decTest -- round Double to integral value --
+-- Copyright (c) IBM Corporation, 2001, 2007. All rights reserved. --
+------------------------------------------------------------------------
+-- Please see the document "General Decimal Arithmetic Testcases" --
+-- at http://www2.hursley.ibm.com/decimal for the description of --
+-- these testcases. --
+-- --
+-- These testcases are experimental ('beta' versions), and they --
+-- may contain errors. They are offered on an as-is basis. In --
+-- particular, achieving the same results as the tests here is not --
+-- a guarantee that an implementation complies with any Standard --
+-- or specification. The tests are not exhaustive. --
+-- --
+-- Please send comments, suggestions, and corrections to the author: --
+-- Mike Cowlishaw, IBM Fellow --
+-- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK --
+-- mfc@uk.ibm.com --
+------------------------------------------------------------------------
+version: 2.56
+
+-- This set of tests tests the extended specification 'round-to-integral
+-- value-exact' operations (from IEEE 854, later modified in 754r).
+-- All non-zero results are defined as being those from either copy or
+-- quantize, so those are assumed to have been tested extensively
+-- elsewhere; the tests here are for integrity, rounding mode, etc.
+-- Also, it is assumed the test harness will use these tests for both
+-- ToIntegralExact (which does set Inexact) and the fixed-name
+-- functions (which do not set Inexact).
+
+-- Note that decNumber implements an earlier definition of toIntegral
+-- which never sets Inexact; the decTest operator for that is called
+-- 'tointegral' instead of 'tointegralx'.
+
+precision: 16
+maxExponent: 384
+minExponent: -383
+extended: 1
+clamp: 1
+rounding: half_even
+
+ddintx001 tointegralx 0 -> 0
+ddintx002 tointegralx 0.0 -> 0
+ddintx003 tointegralx 0.1 -> 0 Inexact Rounded
+ddintx004 tointegralx 0.2 -> 0 Inexact Rounded
+ddintx005 tointegralx 0.3 -> 0 Inexact Rounded
+ddintx006 tointegralx 0.4 -> 0 Inexact Rounded
+ddintx007 tointegralx 0.5 -> 0 Inexact Rounded
+ddintx008 tointegralx 0.6 -> 1 Inexact Rounded
+ddintx009 tointegralx 0.7 -> 1 Inexact Rounded
+ddintx010 tointegralx 0.8 -> 1 Inexact Rounded
+ddintx011 tointegralx 0.9 -> 1 Inexact Rounded
+ddintx012 tointegralx 1 -> 1
+ddintx013 tointegralx 1.0 -> 1 Rounded
+ddintx014 tointegralx 1.1 -> 1 Inexact Rounded
+ddintx015 tointegralx 1.2 -> 1 Inexact Rounded
+ddintx016 tointegralx 1.3 -> 1 Inexact Rounded
+ddintx017 tointegralx 1.4 -> 1 Inexact Rounded
+ddintx018 tointegralx 1.5 -> 2 Inexact Rounded
+ddintx019 tointegralx 1.6 -> 2 Inexact Rounded
+ddintx020 tointegralx 1.7 -> 2 Inexact Rounded
+ddintx021 tointegralx 1.8 -> 2 Inexact Rounded
+ddintx022 tointegralx 1.9 -> 2 Inexact Rounded
+-- negatives
+ddintx031 tointegralx -0 -> -0
+ddintx032 tointegralx -0.0 -> -0
+ddintx033 tointegralx -0.1 -> -0 Inexact Rounded
+ddintx034 tointegralx -0.2 -> -0 Inexact Rounded
+ddintx035 tointegralx -0.3 -> -0 Inexact Rounded
+ddintx036 tointegralx -0.4 -> -0 Inexact Rounded
+ddintx037 tointegralx -0.5 -> -0 Inexact Rounded
+ddintx038 tointegralx -0.6 -> -1 Inexact Rounded
+ddintx039 tointegralx -0.7 -> -1 Inexact Rounded
+ddintx040 tointegralx -0.8 -> -1 Inexact Rounded
+ddintx041 tointegralx -0.9 -> -1 Inexact Rounded
+ddintx042 tointegralx -1 -> -1
+ddintx043 tointegralx -1.0 -> -1 Rounded
+ddintx044 tointegralx -1.1 -> -1 Inexact Rounded
+ddintx045 tointegralx -1.2 -> -1 Inexact Rounded
+ddintx046 tointegralx -1.3 -> -1 Inexact Rounded
+ddintx047 tointegralx -1.4 -> -1 Inexact Rounded
+ddintx048 tointegralx -1.5 -> -2 Inexact Rounded
+ddintx049 tointegralx -1.6 -> -2 Inexact Rounded
+ddintx050 tointegralx -1.7 -> -2 Inexact Rounded
+ddintx051 tointegralx -1.8 -> -2 Inexact Rounded
+ddintx052 tointegralx -1.9 -> -2 Inexact Rounded
+-- next two would be NaN using quantize(x, 0)
+ddintx053 tointegralx 10E+60 -> 1.0E+61
+ddintx054 tointegralx -10E+60 -> -1.0E+61
+
+-- numbers around precision
+ddintx060 tointegralx '56267E-17' -> '0' Inexact Rounded
+ddintx061 tointegralx '56267E-5' -> '1' Inexact Rounded
+ddintx062 tointegralx '56267E-2' -> '563' Inexact Rounded
+ddintx063 tointegralx '56267E-1' -> '5627' Inexact Rounded
+ddintx065 tointegralx '56267E-0' -> '56267'
+ddintx066 tointegralx '56267E+0' -> '56267'
+ddintx067 tointegralx '56267E+1' -> '5.6267E+5'
+ddintx068 tointegralx '56267E+9' -> '5.6267E+13'
+ddintx069 tointegralx '56267E+10' -> '5.6267E+14'
+ddintx070 tointegralx '56267E+11' -> '5.6267E+15'
+ddintx071 tointegralx '56267E+12' -> '5.6267E+16'
+ddintx072 tointegralx '56267E+13' -> '5.6267E+17'
+ddintx073 tointegralx '1.23E+96' -> '1.23E+96'
+ddintx074 tointegralx '1.23E+384' -> #47fd300000000000 Clamped
+
+ddintx080 tointegralx '-56267E-10' -> '-0' Inexact Rounded
+ddintx081 tointegralx '-56267E-5' -> '-1' Inexact Rounded
+ddintx082 tointegralx '-56267E-2' -> '-563' Inexact Rounded
+ddintx083 tointegralx '-56267E-1' -> '-5627' Inexact Rounded
+ddintx085 tointegralx '-56267E-0' -> '-56267'
+ddintx086 tointegralx '-56267E+0' -> '-56267'
+ddintx087 tointegralx '-56267E+1' -> '-5.6267E+5'
+ddintx088 tointegralx '-56267E+9' -> '-5.6267E+13'
+ddintx089 tointegralx '-56267E+10' -> '-5.6267E+14'
+ddintx090 tointegralx '-56267E+11' -> '-5.6267E+15'
+ddintx091 tointegralx '-56267E+12' -> '-5.6267E+16'
+ddintx092 tointegralx '-56267E+13' -> '-5.6267E+17'
+ddintx093 tointegralx '-1.23E+96' -> '-1.23E+96'
+ddintx094 tointegralx '-1.23E+384' -> #c7fd300000000000 Clamped
+
+-- subnormal inputs
+ddintx100 tointegralx 1E-299 -> 0 Inexact Rounded
+ddintx101 tointegralx 0.1E-299 -> 0 Inexact Rounded
+ddintx102 tointegralx 0.01E-299 -> 0 Inexact Rounded
+ddintx103 tointegralx 0E-299 -> 0
+
+-- specials and zeros
+ddintx120 tointegralx 'Inf' -> Infinity
+ddintx121 tointegralx '-Inf' -> -Infinity
+ddintx122 tointegralx NaN -> NaN
+ddintx123 tointegralx sNaN -> NaN Invalid_operation
+ddintx124 tointegralx 0 -> 0
+ddintx125 tointegralx -0 -> -0
+ddintx126 tointegralx 0.000 -> 0
+ddintx127 tointegralx 0.00 -> 0
+ddintx128 tointegralx 0.0 -> 0
+ddintx129 tointegralx 0 -> 0
+ddintx130 tointegralx 0E-3 -> 0
+ddintx131 tointegralx 0E-2 -> 0
+ddintx132 tointegralx 0E-1 -> 0
+ddintx133 tointegralx 0E-0 -> 0
+ddintx134 tointegralx 0E+1 -> 0E+1
+ddintx135 tointegralx 0E+2 -> 0E+2
+ddintx136 tointegralx 0E+3 -> 0E+3
+ddintx137 tointegralx 0E+4 -> 0E+4
+ddintx138 tointegralx 0E+5 -> 0E+5
+ddintx139 tointegralx -0.000 -> -0
+ddintx140 tointegralx -0.00 -> -0
+ddintx141 tointegralx -0.0 -> -0
+ddintx142 tointegralx -0 -> -0
+ddintx143 tointegralx -0E-3 -> -0
+ddintx144 tointegralx -0E-2 -> -0
+ddintx145 tointegralx -0E-1 -> -0
+ddintx146 tointegralx -0E-0 -> -0
+ddintx147 tointegralx -0E+1 -> -0E+1
+ddintx148 tointegralx -0E+2 -> -0E+2
+ddintx149 tointegralx -0E+3 -> -0E+3
+ddintx150 tointegralx -0E+4 -> -0E+4
+ddintx151 tointegralx -0E+5 -> -0E+5
+-- propagating NaNs
+ddintx152 tointegralx NaN808 -> NaN808
+ddintx153 tointegralx sNaN080 -> NaN80 Invalid_operation
+ddintx154 tointegralx -NaN808 -> -NaN808
+ddintx155 tointegralx -sNaN080 -> -NaN80 Invalid_operation
+ddintx156 tointegralx -NaN -> -NaN
+ddintx157 tointegralx -sNaN -> -NaN Invalid_operation
+
+-- examples
+rounding: half_up
+ddintx200 tointegralx 2.1 -> 2 Inexact Rounded
+ddintx201 tointegralx 100 -> 100
+ddintx202 tointegralx 100.0 -> 100 Rounded
+ddintx203 tointegralx 101.5 -> 102 Inexact Rounded
+ddintx204 tointegralx -101.5 -> -102 Inexact Rounded
+ddintx205 tointegralx 10E+5 -> 1.0E+6
+ddintx206 tointegralx 7.89E+77 -> 7.89E+77
+ddintx207 tointegralx -Inf -> -Infinity
+
+
+-- all rounding modes
+rounding: half_even
+ddintx210 tointegralx 55.5 -> 56 Inexact Rounded
+ddintx211 tointegralx 56.5 -> 56 Inexact Rounded
+ddintx212 tointegralx 57.5 -> 58 Inexact Rounded
+ddintx213 tointegralx -55.5 -> -56 Inexact Rounded
+ddintx214 tointegralx -56.5 -> -56 Inexact Rounded
+ddintx215 tointegralx -57.5 -> -58 Inexact Rounded
+
+rounding: half_up
+
+ddintx220 tointegralx 55.5 -> 56 Inexact Rounded
+ddintx221 tointegralx 56.5 -> 57 Inexact Rounded
+ddintx222 tointegralx 57.5 -> 58 Inexact Rounded
+ddintx223 tointegralx -55.5 -> -56 Inexact Rounded
+ddintx224 tointegralx -56.5 -> -57 Inexact Rounded
+ddintx225 tointegralx -57.5 -> -58 Inexact Rounded
+
+rounding: half_down
+
+ddintx230 tointegralx 55.5 -> 55 Inexact Rounded
+ddintx231 tointegralx 56.5 -> 56 Inexact Rounded
+ddintx232 tointegralx 57.5 -> 57 Inexact Rounded
+ddintx233 tointegralx -55.5 -> -55 Inexact Rounded
+ddintx234 tointegralx -56.5 -> -56 Inexact Rounded
+ddintx235 tointegralx -57.5 -> -57 Inexact Rounded
+
+rounding: up
+
+ddintx240 tointegralx 55.3 -> 56 Inexact Rounded
+ddintx241 tointegralx 56.3 -> 57 Inexact Rounded
+ddintx242 tointegralx 57.3 -> 58 Inexact Rounded
+ddintx243 tointegralx -55.3 -> -56 Inexact Rounded
+ddintx244 tointegralx -56.3 -> -57 Inexact Rounded
+ddintx245 tointegralx -57.3 -> -58 Inexact Rounded
+
+rounding: down
+
+ddintx250 tointegralx 55.7 -> 55 Inexact Rounded
+ddintx251 tointegralx 56.7 -> 56 Inexact Rounded
+ddintx252 tointegralx 57.7 -> 57 Inexact Rounded
+ddintx253 tointegralx -55.7 -> -55 Inexact Rounded
+ddintx254 tointegralx -56.7 -> -56 Inexact Rounded
+ddintx255 tointegralx -57.7 -> -57 Inexact Rounded
+
+rounding: ceiling
+
+ddintx260 tointegralx 55.3 -> 56 Inexact Rounded
+ddintx261 tointegralx 56.3 -> 57 Inexact Rounded
+ddintx262 tointegralx 57.3 -> 58 Inexact Rounded
+ddintx263 tointegralx -55.3 -> -55 Inexact Rounded
+ddintx264 tointegralx -56.3 -> -56 Inexact Rounded
+ddintx265 tointegralx -57.3 -> -57 Inexact Rounded
+
+rounding: floor
+
+ddintx270 tointegralx 55.7 -> 55 Inexact Rounded
+ddintx271 tointegralx 56.7 -> 56 Inexact Rounded
+ddintx272 tointegralx 57.7 -> 57 Inexact Rounded
+ddintx273 tointegralx -55.7 -> -56 Inexact Rounded
+ddintx274 tointegralx -56.7 -> -57 Inexact Rounded
+ddintx275 tointegralx -57.7 -> -58 Inexact Rounded
+
+-- Int and uInt32 edge values for testing conversions
+ddintx300 tointegralx -2147483646 -> -2147483646
+ddintx301 tointegralx -2147483647 -> -2147483647
+ddintx302 tointegralx -2147483648 -> -2147483648
+ddintx303 tointegralx -2147483649 -> -2147483649
+ddintx304 tointegralx 2147483646 -> 2147483646
+ddintx305 tointegralx 2147483647 -> 2147483647
+ddintx306 tointegralx 2147483648 -> 2147483648
+ddintx307 tointegralx 2147483649 -> 2147483649
+ddintx308 tointegralx 4294967294 -> 4294967294
+ddintx309 tointegralx 4294967295 -> 4294967295
+ddintx310 tointegralx 4294967296 -> 4294967296
+ddintx311 tointegralx 4294967297 -> 4294967297
+
diff --git a/Lib/test/decimaltestdata/ddXor.decTest b/Lib/test/decimaltestdata/ddXor.decTest
new file mode 100644
index 0000000..783fc2b
--- /dev/null
+++ b/Lib/test/decimaltestdata/ddXor.decTest
@@ -0,0 +1,337 @@
+------------------------------------------------------------------------
+-- ddXor.decTest -- digitwise logical XOR for decDoubles --
+-- Copyright (c) IBM Corporation, 1981, 2007. All rights reserved. --
+------------------------------------------------------------------------
+-- Please see the document "General Decimal Arithmetic Testcases" --
+-- at http://www2.hursley.ibm.com/decimal for the description of --
+-- these testcases. --
+-- --
+-- These testcases are experimental ('beta' versions), and they --
+-- may contain errors. They are offered on an as-is basis. In --
+-- particular, achieving the same results as the tests here is not --
+-- a guarantee that an implementation complies with any Standard --
+-- or specification. The tests are not exhaustive. --
+-- --
+-- Please send comments, suggestions, and corrections to the author: --
+-- Mike Cowlishaw, IBM Fellow --
+-- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK --
+-- mfc@uk.ibm.com --
+------------------------------------------------------------------------
+version: 2.56
+
+precision: 16
+maxExponent: 384
+minExponent: -383
+extended: 1
+clamp: 1
+rounding: half_even
+
+-- Sanity check (truth table)
+ddxor001 xor 0 0 -> 0
+ddxor002 xor 0 1 -> 1
+ddxor003 xor 1 0 -> 1
+ddxor004 xor 1 1 -> 0
+ddxor005 xor 1100 1010 -> 110
+-- and at msd and msd-1
+ddxor006 xor 0000000000000000 0000000000000000 -> 0
+ddxor007 xor 0000000000000000 1000000000000000 -> 1000000000000000
+ddxor008 xor 1000000000000000 0000000000000000 -> 1000000000000000
+ddxor009 xor 1000000000000000 1000000000000000 -> 0
+ddxor010 xor 0000000000000000 0000000000000000 -> 0
+ddxor011 xor 0000000000000000 0100000000000000 -> 100000000000000
+ddxor012 xor 0100000000000000 0000000000000000 -> 100000000000000
+ddxor013 xor 0100000000000000 0100000000000000 -> 0
+
+-- Various lengths
+-- 1234567890123456 1234567890123456 1234567890123456
+ddxor021 xor 1111111110000000 1111111110000000 -> 0
+ddxor022 xor 111111110000000 111111110000000 -> 0
+ddxor023 xor 11111110000000 11111110000000 -> 0
+ddxor024 xor 1111110000000 1111110000000 -> 0
+ddxor025 xor 111110000000 111110000000 -> 0
+ddxor026 xor 11110000000 11110000000 -> 0
+ddxor027 xor 1110000000 1110000000 -> 0
+ddxor028 xor 110000000 110000000 -> 0
+ddxor029 xor 10000000 10000000 -> 0
+ddxor030 xor 1000000 1000000 -> 0
+ddxor031 xor 100000 100000 -> 0
+ddxor032 xor 10000 10000 -> 0
+ddxor033 xor 1000 1000 -> 0
+ddxor034 xor 100 100 -> 0
+ddxor035 xor 10 10 -> 0
+ddxor036 xor 1 1 -> 0
+
+ddxor040 xor 111111111 111111111111 -> 111000000000
+ddxor041 xor 11111111 111111111111 -> 111100000000
+ddxor042 xor 11111111 111111111 -> 100000000
+ddxor043 xor 1111111 100000010 -> 101111101
+ddxor044 xor 111111 100000100 -> 100111011
+ddxor045 xor 11111 100001000 -> 100010111
+ddxor046 xor 1111 100010000 -> 100011111
+ddxor047 xor 111 100100000 -> 100100111
+ddxor048 xor 11 101000000 -> 101000011
+ddxor049 xor 1 110000000 -> 110000001
+
+ddxor050 xor 1111111111 1 -> 1111111110
+ddxor051 xor 111111111 1 -> 111111110
+ddxor052 xor 11111111 1 -> 11111110
+ddxor053 xor 1111111 1 -> 1111110
+ddxor054 xor 111111 1 -> 111110
+ddxor055 xor 11111 1 -> 11110
+ddxor056 xor 1111 1 -> 1110
+ddxor057 xor 111 1 -> 110
+ddxor058 xor 11 1 -> 10
+ddxor059 xor 1 1 -> 0
+
+ddxor060 xor 1111111111 0 -> 1111111111
+ddxor061 xor 111111111 0 -> 111111111
+ddxor062 xor 11111111 0 -> 11111111
+ddxor063 xor 1111111 0 -> 1111111
+ddxor064 xor 111111 0 -> 111111
+ddxor065 xor 11111 0 -> 11111
+ddxor066 xor 1111 0 -> 1111
+ddxor067 xor 111 0 -> 111
+ddxor068 xor 11 0 -> 11
+ddxor069 xor 1 0 -> 1
+
+ddxor070 xor 1 1111111111 -> 1111111110
+ddxor071 xor 1 111111111 -> 111111110
+ddxor072 xor 1 11111111 -> 11111110
+ddxor073 xor 1 1111111 -> 1111110
+ddxor074 xor 1 111111 -> 111110
+ddxor075 xor 1 11111 -> 11110
+ddxor076 xor 1 1111 -> 1110
+ddxor077 xor 1 111 -> 110
+ddxor078 xor 1 11 -> 10
+ddxor079 xor 1 1 -> 0
+
+ddxor080 xor 0 1111111111 -> 1111111111
+ddxor081 xor 0 111111111 -> 111111111
+ddxor082 xor 0 11111111 -> 11111111
+ddxor083 xor 0 1111111 -> 1111111
+ddxor084 xor 0 111111 -> 111111
+ddxor085 xor 0 11111 -> 11111
+ddxor086 xor 0 1111 -> 1111
+ddxor087 xor 0 111 -> 111
+ddxor088 xor 0 11 -> 11
+ddxor089 xor 0 1 -> 1
+
+ddxor090 xor 011111111 111101111 -> 100010000
+ddxor091 xor 101111111 111101111 -> 10010000
+ddxor092 xor 110111111 111101111 -> 1010000
+ddxor093 xor 111011111 111101111 -> 110000
+ddxor094 xor 111101111 111101111 -> 0
+ddxor095 xor 111110111 111101111 -> 11000
+ddxor096 xor 111111011 111101111 -> 10100
+ddxor097 xor 111111101 111101111 -> 10010
+ddxor098 xor 111111110 111101111 -> 10001
+
+ddxor100 xor 111101111 011111111 -> 100010000
+ddxor101 xor 111101111 101111111 -> 10010000
+ddxor102 xor 111101111 110111111 -> 1010000
+ddxor103 xor 111101111 111011111 -> 110000
+ddxor104 xor 111101111 111101111 -> 0
+ddxor105 xor 111101111 111110111 -> 11000
+ddxor106 xor 111101111 111111011 -> 10100
+ddxor107 xor 111101111 111111101 -> 10010
+ddxor108 xor 111101111 111111110 -> 10001
+
+-- non-0/1 should not be accepted, nor should signs
+ddxor220 xor 111111112 111111111 -> NaN Invalid_operation
+ddxor221 xor 333333333 333333333 -> NaN Invalid_operation
+ddxor222 xor 555555555 555555555 -> NaN Invalid_operation
+ddxor223 xor 777777777 777777777 -> NaN Invalid_operation
+ddxor224 xor 999999999 999999999 -> NaN Invalid_operation
+ddxor225 xor 222222222 999999999 -> NaN Invalid_operation
+ddxor226 xor 444444444 999999999 -> NaN Invalid_operation
+ddxor227 xor 666666666 999999999 -> NaN Invalid_operation
+ddxor228 xor 888888888 999999999 -> NaN Invalid_operation
+ddxor229 xor 999999999 222222222 -> NaN Invalid_operation
+ddxor230 xor 999999999 444444444 -> NaN Invalid_operation
+ddxor231 xor 999999999 666666666 -> NaN Invalid_operation
+ddxor232 xor 999999999 888888888 -> NaN Invalid_operation
+-- a few randoms
+ddxor240 xor 567468689 -934981942 -> NaN Invalid_operation
+ddxor241 xor 567367689 934981942 -> NaN Invalid_operation
+ddxor242 xor -631917772 -706014634 -> NaN Invalid_operation
+ddxor243 xor -756253257 138579234 -> NaN Invalid_operation
+ddxor244 xor 835590149 567435400 -> NaN Invalid_operation
+-- test MSD
+ddxor250 xor 2000000000000000 1000000000000000 -> NaN Invalid_operation
+ddxor251 xor 7000000000000000 1000000000000000 -> NaN Invalid_operation
+ddxor252 xor 8000000000000000 1000000000000000 -> NaN Invalid_operation
+ddxor253 xor 9000000000000000 1000000000000000 -> NaN Invalid_operation
+ddxor254 xor 2000000000000000 0000000000000000 -> NaN Invalid_operation
+ddxor255 xor 7000000000000000 0000000000000000 -> NaN Invalid_operation
+ddxor256 xor 8000000000000000 0000000000000000 -> NaN Invalid_operation
+ddxor257 xor 9000000000000000 0000000000000000 -> NaN Invalid_operation
+ddxor258 xor 1000000000000000 2000000000000000 -> NaN Invalid_operation
+ddxor259 xor 1000000000000000 7000000000000000 -> NaN Invalid_operation
+ddxor260 xor 1000000000000000 8000000000000000 -> NaN Invalid_operation
+ddxor261 xor 1000000000000000 9000000000000000 -> NaN Invalid_operation
+ddxor262 xor 0000000000000000 2000000000000000 -> NaN Invalid_operation
+ddxor263 xor 0000000000000000 7000000000000000 -> NaN Invalid_operation
+ddxor264 xor 0000000000000000 8000000000000000 -> NaN Invalid_operation
+ddxor265 xor 0000000000000000 9000000000000000 -> NaN Invalid_operation
+-- test MSD-1
+ddxor270 xor 0200001000000000 1000100000000010 -> NaN Invalid_operation
+ddxor271 xor 0700000100000000 1000010000000100 -> NaN Invalid_operation
+ddxor272 xor 0800000010000000 1000001000001000 -> NaN Invalid_operation
+ddxor273 xor 0900000001000000 1000000100010000 -> NaN Invalid_operation
+ddxor274 xor 1000000000100000 0200000010100000 -> NaN Invalid_operation
+ddxor275 xor 1000000000010000 0700000001000000 -> NaN Invalid_operation
+ddxor276 xor 1000000000001000 0800000010100000 -> NaN Invalid_operation
+ddxor277 xor 1000000000000100 0900000000010000 -> NaN Invalid_operation
+-- test LSD
+ddxor280 xor 0010000000000002 1000000100000001 -> NaN Invalid_operation
+ddxor281 xor 0001000000000007 1000001000000011 -> NaN Invalid_operation
+ddxor282 xor 0000100000000008 1000010000000001 -> NaN Invalid_operation
+ddxor283 xor 0000010000000009 1000100000000001 -> NaN Invalid_operation
+ddxor284 xor 1000001000000000 0001000000000002 -> NaN Invalid_operation
+ddxor285 xor 1000000100000000 0010000000000007 -> NaN Invalid_operation
+ddxor286 xor 1000000010000000 0100000000000008 -> NaN Invalid_operation
+ddxor287 xor 1000000001000000 1000000000000009 -> NaN Invalid_operation
+-- test Middie
+ddxor288 xor 0010000020000000 1000001000000000 -> NaN Invalid_operation
+ddxor289 xor 0001000070000001 1000000100000000 -> NaN Invalid_operation
+ddxor290 xor 0000100080000010 1000000010000000 -> NaN Invalid_operation
+ddxor291 xor 0000010090000100 1000000001000000 -> NaN Invalid_operation
+ddxor292 xor 1000001000001000 0000000020100000 -> NaN Invalid_operation
+ddxor293 xor 1000000100010000 0000000070010000 -> NaN Invalid_operation
+ddxor294 xor 1000000010100000 0000000080001000 -> NaN Invalid_operation
+ddxor295 xor 1000000001000000 0000000090000100 -> NaN Invalid_operation
+-- signs
+ddxor296 xor -1000000001000000 -0000010000000100 -> NaN Invalid_operation
+ddxor297 xor -1000000001000000 0000000010000100 -> NaN Invalid_operation
+ddxor298 xor 1000000001000000 -0000001000000100 -> NaN Invalid_operation
+ddxor299 xor 1000000001000000 0000000011000100 -> 1000000010000100
+
+-- Nmax, Nmin, Ntiny-like
+ddxor331 xor 2 9.99999999E+299 -> NaN Invalid_operation
+ddxor332 xor 3 1E-299 -> NaN Invalid_operation
+ddxor333 xor 4 1.00000000E-299 -> NaN Invalid_operation
+ddxor334 xor 5 1E-200 -> NaN Invalid_operation
+ddxor335 xor 6 -1E-200 -> NaN Invalid_operation
+ddxor336 xor 7 -1.00000000E-299 -> NaN Invalid_operation
+ddxor337 xor 8 -1E-299 -> NaN Invalid_operation
+ddxor338 xor 9 -9.99999999E+299 -> NaN Invalid_operation
+ddxor341 xor 9.99999999E+299 -18 -> NaN Invalid_operation
+ddxor342 xor 1E-299 01 -> NaN Invalid_operation
+ddxor343 xor 1.00000000E-299 -18 -> NaN Invalid_operation
+ddxor344 xor 1E-208 18 -> NaN Invalid_operation
+ddxor345 xor -1E-207 -10 -> NaN Invalid_operation
+ddxor346 xor -1.00000000E-299 18 -> NaN Invalid_operation
+ddxor347 xor -1E-299 10 -> NaN Invalid_operation
+ddxor348 xor -9.99999999E+299 -18 -> NaN Invalid_operation
+
+-- A few other non-integers
+ddxor361 xor 1.0 1 -> NaN Invalid_operation
+ddxor362 xor 1E+1 1 -> NaN Invalid_operation
+ddxor363 xor 0.0 1 -> NaN Invalid_operation
+ddxor364 xor 0E+1 1 -> NaN Invalid_operation
+ddxor365 xor 9.9 1 -> NaN Invalid_operation
+ddxor366 xor 9E+1 1 -> NaN Invalid_operation
+ddxor371 xor 0 1.0 -> NaN Invalid_operation
+ddxor372 xor 0 1E+1 -> NaN Invalid_operation
+ddxor373 xor 0 0.0 -> NaN Invalid_operation
+ddxor374 xor 0 0E+1 -> NaN Invalid_operation
+ddxor375 xor 0 9.9 -> NaN Invalid_operation
+ddxor376 xor 0 9E+1 -> NaN Invalid_operation
+
+-- All Specials are in error
+ddxor780 xor -Inf -Inf -> NaN Invalid_operation
+ddxor781 xor -Inf -1000 -> NaN Invalid_operation
+ddxor782 xor -Inf -1 -> NaN Invalid_operation
+ddxor783 xor -Inf -0 -> NaN Invalid_operation
+ddxor784 xor -Inf 0 -> NaN Invalid_operation
+ddxor785 xor -Inf 1 -> NaN Invalid_operation
+ddxor786 xor -Inf 1000 -> NaN Invalid_operation
+ddxor787 xor -1000 -Inf -> NaN Invalid_operation
+ddxor788 xor -Inf -Inf -> NaN Invalid_operation
+ddxor789 xor -1 -Inf -> NaN Invalid_operation
+ddxor790 xor -0 -Inf -> NaN Invalid_operation
+ddxor791 xor 0 -Inf -> NaN Invalid_operation
+ddxor792 xor 1 -Inf -> NaN Invalid_operation
+ddxor793 xor 1000 -Inf -> NaN Invalid_operation
+ddxor794 xor Inf -Inf -> NaN Invalid_operation
+
+ddxor800 xor Inf -Inf -> NaN Invalid_operation
+ddxor801 xor Inf -1000 -> NaN Invalid_operation
+ddxor802 xor Inf -1 -> NaN Invalid_operation
+ddxor803 xor Inf -0 -> NaN Invalid_operation
+ddxor804 xor Inf 0 -> NaN Invalid_operation
+ddxor805 xor Inf 1 -> NaN Invalid_operation
+ddxor806 xor Inf 1000 -> NaN Invalid_operation
+ddxor807 xor Inf Inf -> NaN Invalid_operation
+ddxor808 xor -1000 Inf -> NaN Invalid_operation
+ddxor809 xor -Inf Inf -> NaN Invalid_operation
+ddxor810 xor -1 Inf -> NaN Invalid_operation
+ddxor811 xor -0 Inf -> NaN Invalid_operation
+ddxor812 xor 0 Inf -> NaN Invalid_operation
+ddxor813 xor 1 Inf -> NaN Invalid_operation
+ddxor814 xor 1000 Inf -> NaN Invalid_operation
+ddxor815 xor Inf Inf -> NaN Invalid_operation
+
+ddxor821 xor NaN -Inf -> NaN Invalid_operation
+ddxor822 xor NaN -1000 -> NaN Invalid_operation
+ddxor823 xor NaN -1 -> NaN Invalid_operation
+ddxor824 xor NaN -0 -> NaN Invalid_operation
+ddxor825 xor NaN 0 -> NaN Invalid_operation
+ddxor826 xor NaN 1 -> NaN Invalid_operation
+ddxor827 xor NaN 1000 -> NaN Invalid_operation
+ddxor828 xor NaN Inf -> NaN Invalid_operation
+ddxor829 xor NaN NaN -> NaN Invalid_operation
+ddxor830 xor -Inf NaN -> NaN Invalid_operation
+ddxor831 xor -1000 NaN -> NaN Invalid_operation
+ddxor832 xor -1 NaN -> NaN Invalid_operation
+ddxor833 xor -0 NaN -> NaN Invalid_operation
+ddxor834 xor 0 NaN -> NaN Invalid_operation
+ddxor835 xor 1 NaN -> NaN Invalid_operation
+ddxor836 xor 1000 NaN -> NaN Invalid_operation
+ddxor837 xor Inf NaN -> NaN Invalid_operation
+
+ddxor841 xor sNaN -Inf -> NaN Invalid_operation
+ddxor842 xor sNaN -1000 -> NaN Invalid_operation
+ddxor843 xor sNaN -1 -> NaN Invalid_operation
+ddxor844 xor sNaN -0 -> NaN Invalid_operation
+ddxor845 xor sNaN 0 -> NaN Invalid_operation
+ddxor846 xor sNaN 1 -> NaN Invalid_operation
+ddxor847 xor sNaN 1000 -> NaN Invalid_operation
+ddxor848 xor sNaN NaN -> NaN Invalid_operation
+ddxor849 xor sNaN sNaN -> NaN Invalid_operation
+ddxor850 xor NaN sNaN -> NaN Invalid_operation
+ddxor851 xor -Inf sNaN -> NaN Invalid_operation
+ddxor852 xor -1000 sNaN -> NaN Invalid_operation
+ddxor853 xor -1 sNaN -> NaN Invalid_operation
+ddxor854 xor -0 sNaN -> NaN Invalid_operation
+ddxor855 xor 0 sNaN -> NaN Invalid_operation
+ddxor856 xor 1 sNaN -> NaN Invalid_operation
+ddxor857 xor 1000 sNaN -> NaN Invalid_operation
+ddxor858 xor Inf sNaN -> NaN Invalid_operation
+ddxor859 xor NaN sNaN -> NaN Invalid_operation
+
+-- propagating NaNs
+ddxor861 xor NaN1 -Inf -> NaN Invalid_operation
+ddxor862 xor +NaN2 -1000 -> NaN Invalid_operation
+ddxor863 xor NaN3 1000 -> NaN Invalid_operation
+ddxor864 xor NaN4 Inf -> NaN Invalid_operation
+ddxor865 xor NaN5 +NaN6 -> NaN Invalid_operation
+ddxor866 xor -Inf NaN7 -> NaN Invalid_operation
+ddxor867 xor -1000 NaN8 -> NaN Invalid_operation
+ddxor868 xor 1000 NaN9 -> NaN Invalid_operation
+ddxor869 xor Inf +NaN10 -> NaN Invalid_operation
+ddxor871 xor sNaN11 -Inf -> NaN Invalid_operation
+ddxor872 xor sNaN12 -1000 -> NaN Invalid_operation
+ddxor873 xor sNaN13 1000 -> NaN Invalid_operation
+ddxor874 xor sNaN14 NaN17 -> NaN Invalid_operation
+ddxor875 xor sNaN15 sNaN18 -> NaN Invalid_operation
+ddxor876 xor NaN16 sNaN19 -> NaN Invalid_operation
+ddxor877 xor -Inf +sNaN20 -> NaN Invalid_operation
+ddxor878 xor -1000 sNaN21 -> NaN Invalid_operation
+ddxor879 xor 1000 sNaN22 -> NaN Invalid_operation
+ddxor880 xor Inf sNaN23 -> NaN Invalid_operation
+ddxor881 xor +NaN25 +sNaN24 -> NaN Invalid_operation
+ddxor882 xor -NaN26 NaN28 -> NaN Invalid_operation
+ddxor883 xor -sNaN27 sNaN29 -> NaN Invalid_operation
+ddxor884 xor 1000 -NaN30 -> NaN Invalid_operation
+ddxor885 xor 1000 -sNaN31 -> NaN Invalid_operation
diff --git a/Lib/test/decimaltestdata/decDouble.decTest b/Lib/test/decimaltestdata/decDouble.decTest
new file mode 100644
index 0000000..d5205b7
--- /dev/null
+++ b/Lib/test/decimaltestdata/decDouble.decTest
@@ -0,0 +1,65 @@
+------------------------------------------------------------------------
+-- decDouble.decTest -- run all decDouble decimal arithmetic tests --
+-- Copyright (c) IBM Corporation, 1981, 2007. All rights reserved. --
+------------------------------------------------------------------------
+-- Please see the document "General Decimal Arithmetic Testcases" --
+-- at http://www2.hursley.ibm.com/decimal for the description of --
+-- these testcases. --
+-- --
+-- These testcases are experimental ('beta' versions), and they --
+-- may contain errors. They are offered on an as-is basis. In --
+-- particular, achieving the same results as the tests here is not --
+-- a guarantee that an implementation complies with any Standard --
+-- or specification. The tests are not exhaustive. --
+-- --
+-- Please send comments, suggestions, and corrections to the author: --
+-- Mike Cowlishaw, IBM Fellow --
+-- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK --
+-- mfc@uk.ibm.com --
+------------------------------------------------------------------------
+version: 2.56
+
+-- decDouble tests
+dectest: ddAbs
+dectest: ddAdd
+dectest: ddAnd
+dectest: ddBase
+dectest: ddCanonical
+dectest: ddClass
+dectest: ddCompare
+dectest: ddCompareSig
+dectest: ddCompareTotal
+dectest: ddCompareTotalMag
+dectest: ddCopy
+dectest: ddCopyAbs
+dectest: ddCopyNegate
+dectest: ddCopySign
+dectest: ddDivide
+dectest: ddDivideInt
+dectest: ddEncode
+dectest: ddFMA
+dectest: ddInvert
+dectest: ddLogB
+dectest: ddMax
+dectest: ddMaxMag
+dectest: ddMin
+dectest: ddMinMag
+dectest: ddMinus
+dectest: ddMultiply
+dectest: ddNextMinus
+dectest: ddNextPlus
+dectest: ddNextToward
+dectest: ddOr
+dectest: ddPlus
+dectest: ddQuantize
+dectest: ddReduce
+dectest: ddRemainder
+dectest: ddRemainderNear
+dectest: ddRotate
+dectest: ddSameQuantum
+dectest: ddScaleB
+dectest: ddShift
+dectest: ddSubtract
+dectest: ddToIntegral
+dectest: ddXor
+
diff --git a/Lib/test/decimaltestdata/decQuad.decTest b/Lib/test/decimaltestdata/decQuad.decTest
new file mode 100644
index 0000000..4d10069
--- /dev/null
+++ b/Lib/test/decimaltestdata/decQuad.decTest
@@ -0,0 +1,65 @@
+------------------------------------------------------------------------
+-- decQuad.decTest -- run all decQuad decimal arithmetic tests --
+-- Copyright (c) IBM Corporation, 1981, 2007. All rights reserved. --
+------------------------------------------------------------------------
+-- Please see the document "General Decimal Arithmetic Testcases" --
+-- at http://www2.hursley.ibm.com/decimal for the description of --
+-- these testcases. --
+-- --
+-- These testcases are experimental ('beta' versions), and they --
+-- may contain errors. They are offered on an as-is basis. In --
+-- particular, achieving the same results as the tests here is not --
+-- a guarantee that an implementation complies with any Standard --
+-- or specification. The tests are not exhaustive. --
+-- --
+-- Please send comments, suggestions, and corrections to the author: --
+-- Mike Cowlishaw, IBM Fellow --
+-- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK --
+-- mfc@uk.ibm.com --
+------------------------------------------------------------------------
+version: 2.56
+
+-- decQuad tests
+dectest: dqAbs
+dectest: dqAdd
+dectest: dqAnd
+dectest: dqBase
+dectest: dqCanonical
+dectest: dqClass
+dectest: dqCompare
+dectest: dqCompareSig
+dectest: dqCompareTotal
+dectest: dqCompareTotalMag
+dectest: dqCopy
+dectest: dqCopyAbs
+dectest: dqCopyNegate
+dectest: dqCopySign
+dectest: dqDivide
+dectest: dqDivideInt
+dectest: dqEncode
+dectest: dqFMA
+dectest: dqInvert
+dectest: dqLogB
+dectest: dqMax
+dectest: dqMaxMag
+dectest: dqMin
+dectest: dqMinMag
+dectest: dqMinus
+dectest: dqMultiply
+dectest: dqNextMinus
+dectest: dqNextPlus
+dectest: dqNextToward
+dectest: dqOr
+dectest: dqPlus
+dectest: dqQuantize
+dectest: dqReduce
+dectest: dqRemainder
+dectest: dqRemainderNear
+dectest: dqRotate
+dectest: dqSameQuantum
+dectest: dqScaleB
+dectest: dqShift
+dectest: dqSubtract
+dectest: dqToIntegral
+dectest: dqXor
+
diff --git a/Lib/test/decimaltestdata/decSingle.decTest b/Lib/test/decimaltestdata/decSingle.decTest
new file mode 100644
index 0000000..c661fe4
--- /dev/null
+++ b/Lib/test/decimaltestdata/decSingle.decTest
@@ -0,0 +1,25 @@
+------------------------------------------------------------------------
+-- decSingle.decTest -- run all decSingle decimal arithmetic tests --
+-- Copyright (c) IBM Corporation, 1981, 2007. All rights reserved. --
+------------------------------------------------------------------------
+-- Please see the document "General Decimal Arithmetic Testcases" --
+-- at http://www2.hursley.ibm.com/decimal for the description of --
+-- these testcases. --
+-- --
+-- These testcases are experimental ('beta' versions), and they --
+-- may contain errors. They are offered on an as-is basis. In --
+-- particular, achieving the same results as the tests here is not --
+-- a guarantee that an implementation complies with any Standard --
+-- or specification. The tests are not exhaustive. --
+-- --
+-- Please send comments, suggestions, and corrections to the author: --
+-- Mike Cowlishaw, IBM Fellow --
+-- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK --
+-- mfc@uk.ibm.com --
+------------------------------------------------------------------------
+version: 2.56
+
+-- decSingle tests
+dectest: dsBase
+dectest: dsEncode
+
diff --git a/Lib/test/decimaltestdata/decimal128.decTest b/Lib/test/decimaltestdata/decimal128.decTest
deleted file mode 100644
index 3cc9d06..0000000
--- a/Lib/test/decimaltestdata/decimal128.decTest
+++ /dev/null
@@ -1,441 +0,0 @@
-------------------------------------------------------------------------
--- decimal128.decTest -- decimal sixteen-byte format testcases --
--- Copyright (c) IBM Corporation, 2000, 2003. All rights reserved. --
-------------------------------------------------------------------------
--- Please see the document "General Decimal Arithmetic Testcases" --
--- at http://www2.hursley.ibm.com/decimal for the description of --
--- these testcases. --
--- --
--- These testcases are experimental ('beta' versions), and they --
--- may contain errors. They are offered on an as-is basis. In --
--- particular, achieving the same results as the tests here is not --
--- a guarantee that an implementation complies with any Standard --
--- or specification. The tests are not exhaustive. --
--- --
--- Please send comments, suggestions, and corrections to the author: --
--- Mike Cowlishaw, IBM Fellow --
--- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK --
--- mfc@uk.ibm.com --
-------------------------------------------------------------------------
-version: 2.39
-
--- This set of tests is for the sixteen-byte concrete representation.
--- Its characteristics are:
---
--- 1 bit sign
--- 5 bits combination field
--- 12 bits exponent continuation
--- 110 bits coefficient continuation
---
--- Total exponent length 14 bits
--- Total coefficient length 114 bits (34 digits)
---
--- Elimit = 12287 (maximum encoded exponent)
--- Emax = 6144 (largest exponent value)
--- Emin = -6143 (smallest exponent value)
--- bias = 6176 (subtracted from encoded exponent) = -Etiny
-
-extended: 1
-precision: 34
-rounding: half_up
-maxExponent: 6144
-minExponent: -6143
-
--- General testcases
--- (mostly derived from the Strawman 4 document and examples)
-decg001 apply #A20780000000000000000000000003D0 -> -7.50
-decg002 apply -7.50 -> #A20780000000000000000000000003D0
-
--- Normality
-decf010 apply 1234567890123456789012345678901234 -> #2608134b9c1e28e56f3c127177823534
-decf011 apply 1234567890123456789012345678901234.0 -> #2608134b9c1e28e56f3c127177823534 Rounded
-decf012 apply 1234567890123456789012345678901234.1 -> #2608134b9c1e28e56f3c127177823534 Rounded Inexact
-decf013 apply -1234567890123456789012345678901234 -> #a608134b9c1e28e56f3c127177823534
-decf014 apply -1234567890123456789012345678901234.0 -> #a608134b9c1e28e56f3c127177823534 Rounded
-decf015 apply -1234567890123456789012345678901234.1 -> #a608134b9c1e28e56f3c127177823534 Rounded Inexact
-
-
--- Nmax and similar
-decf022 apply 9.999999999999999999999999999999999E+6144 -> #77ffcff3fcff3fcff3fcff3fcff3fcff
-decf023 apply #77ffcff3fcff3fcff3fcff3fcff3fcff -> 9.999999999999999999999999999999999E+6144
-decf024 apply 1.234567890123456789012345678901234E+6144 -> #47ffd34b9c1e28e56f3c127177823534
-decf025 apply #47ffd34b9c1e28e56f3c127177823534 -> 1.234567890123456789012345678901234E+6144
--- fold-downs (more below)
-decf030 apply 1.23E+6144 -> #47ffd300000000000000000000000000 Clamped
-decf031 apply #47ffd300000000000000000000000000 -> 1.230000000000000000000000000000000E+6144
-decf032 apply 1E+6144 -> #47ffc000000000000000000000000000 Clamped
-decf033 apply #47ffc000000000000000000000000000 -> 1.000000000000000000000000000000000E+6144
-
--- overflows
-maxExponent: 9999 -- set high so conversion causes the overflow
-minExponent: -9999
-decf040 apply 10E+6144 -> #78000000000000000000000000000000 Overflow Rounded Inexact
-decf041 apply 1.000000000000000E+6145 -> #78000000000000000000000000000000 Overflow Rounded Inexact
-maxExponent: 6144
-minExponent: -6143
-
-decf051 apply 12345 -> #220800000000000000000000000049c5
-decf052 apply #220800000000000000000000000049c5 -> 12345
-decf053 apply 1234 -> #22080000000000000000000000000534
-decf054 apply #22080000000000000000000000000534 -> 1234
-decf055 apply 123 -> #220800000000000000000000000000a3
-decf056 apply #220800000000000000000000000000a3 -> 123
-decf057 apply 12 -> #22080000000000000000000000000012
-decf058 apply #22080000000000000000000000000012 -> 12
-decf059 apply 1 -> #22080000000000000000000000000001
-decf060 apply #22080000000000000000000000000001 -> 1
-decf061 apply 1.23 -> #220780000000000000000000000000a3
-decf062 apply #220780000000000000000000000000a3 -> 1.23
-decf063 apply 123.45 -> #220780000000000000000000000049c5
-decf064 apply #220780000000000000000000000049c5 -> 123.45
-
--- Nmin and below
-decf071 apply 1E-6143 -> #00084000000000000000000000000001
-decf072 apply #00084000000000000000000000000001 -> 1E-6143
-decf073 apply 1.000000000000000000000000000000000E-6143 -> #04000000000000000000000000000000
-decf074 apply #04000000000000000000000000000000 -> 1.000000000000000000000000000000000E-6143
-decf075 apply 1.000000000000000000000000000000001E-6143 -> #04000000000000000000000000000001
-decf076 apply #04000000000000000000000000000001 -> 1.000000000000000000000000000000001E-6143
-
-decf077 apply 0.100000000000000000000000000000000E-6143 -> #00000800000000000000000000000000 Subnormal
-decf078 apply #00000800000000000000000000000000 -> 1.00000000000000000000000000000000E-6144 Subnormal
-decf079 apply 0.000000000000000000000000000000010E-6143 -> #00000000000000000000000000000010 Subnormal
-decf080 apply #00000000000000000000000000000010 -> 1.0E-6175 Subnormal
-decf081 apply 0.00000000000000000000000000000001E-6143 -> #00004000000000000000000000000001 Subnormal
-decf082 apply #00004000000000000000000000000001 -> 1E-6175 Subnormal
-decf083 apply 0.000000000000000000000000000000001E-6143 -> #00000000000000000000000000000001 Subnormal
-decf084 apply #00000000000000000000000000000001 -> 1E-6176 Subnormal
-
--- underflows
-decf090 apply 1e-6176 -> #00000000000000000000000000000001 Subnormal
-decf091 apply 1.9e-6176 -> #00000000000000000000000000000002 Subnormal Underflow Inexact Rounded
-decf092 apply 1.1e-6176 -> #00000000000000000000000000000001 Subnormal Underflow Inexact Rounded
-decf093 apply 1.00000000001e-6176 -> #00000000000000000000000000000001 Subnormal Underflow Inexact Rounded
-decf094 apply 1.00000000000001e-6176 -> #00000000000000000000000000000001 Subnormal Underflow Inexact Rounded
-decf095 apply 1.000000000000001e-6176 -> #00000000000000000000000000000001 Subnormal Underflow Inexact Rounded
-decf096 apply 0.1e-6176 -> #00000000000000000000000000000000 Subnormal Underflow Inexact Rounded
-decf097 apply 0.00000000001e-6176 -> #00000000000000000000000000000000 Subnormal Underflow Inexact Rounded
-decf098 apply 0.00000000000001e-6176 -> #00000000000000000000000000000000 Subnormal Underflow Inexact Rounded
-decf099 apply 0.000000000000001e-6176 -> #00000000000000000000000000000000 Subnormal Underflow Inexact Rounded
-decf100 apply 999999999999999999999999999999999e-6176 -> #00000ff3fcff3fcff3fcff3fcff3fcff Subnormal
-
--- same again, negatives
--- Nmax and similar
-decf122 apply -9.999999999999999999999999999999999E+6144 -> #f7ffcff3fcff3fcff3fcff3fcff3fcff
-decf123 apply #f7ffcff3fcff3fcff3fcff3fcff3fcff -> -9.999999999999999999999999999999999E+6144
-decf124 apply -1.234567890123456789012345678901234E+6144 -> #c7ffd34b9c1e28e56f3c127177823534
-decf125 apply #c7ffd34b9c1e28e56f3c127177823534 -> -1.234567890123456789012345678901234E+6144
--- fold-downs (more below)
-decf130 apply -1.23E+6144 -> #c7ffd300000000000000000000000000 Clamped
-decf131 apply #c7ffd300000000000000000000000000 -> -1.230000000000000000000000000000000E+6144
-decf132 apply -1E+6144 -> #c7ffc000000000000000000000000000 Clamped
-decf133 apply #c7ffc000000000000000000000000000 -> -1.000000000000000000000000000000000E+6144
-
--- overflows
-maxExponent: 9999 -- set high so conversion causes the overflow
-minExponent: -9999
-decf140 apply -10E+6144 -> #f8000000000000000000000000000000 Overflow Rounded Inexact
-decf141 apply -1.000000000000000E+6145 -> #f8000000000000000000000000000000 Overflow Rounded Inexact
-maxExponent: 6144
-minExponent: -6143
-
-decf151 apply -12345 -> #a20800000000000000000000000049c5
-decf152 apply #a20800000000000000000000000049c5 -> -12345
-decf153 apply -1234 -> #a2080000000000000000000000000534
-decf154 apply #a2080000000000000000000000000534 -> -1234
-decf155 apply -123 -> #a20800000000000000000000000000a3
-decf156 apply #a20800000000000000000000000000a3 -> -123
-decf157 apply -12 -> #a2080000000000000000000000000012
-decf158 apply #a2080000000000000000000000000012 -> -12
-decf159 apply -1 -> #a2080000000000000000000000000001
-decf160 apply #a2080000000000000000000000000001 -> -1
-decf161 apply -1.23 -> #a20780000000000000000000000000a3
-decf162 apply #a20780000000000000000000000000a3 -> -1.23
-decf163 apply -123.45 -> #a20780000000000000000000000049c5
-decf164 apply #a20780000000000000000000000049c5 -> -123.45
-
--- Nmin and below
-decf171 apply -1E-6143 -> #80084000000000000000000000000001
-decf172 apply #80084000000000000000000000000001 -> -1E-6143
-decf173 apply -1.000000000000000000000000000000000E-6143 -> #84000000000000000000000000000000
-decf174 apply #84000000000000000000000000000000 -> -1.000000000000000000000000000000000E-6143
-decf175 apply -1.000000000000000000000000000000001E-6143 -> #84000000000000000000000000000001
-decf176 apply #84000000000000000000000000000001 -> -1.000000000000000000000000000000001E-6143
-
-decf177 apply -0.100000000000000000000000000000000E-6143 -> #80000800000000000000000000000000 Subnormal
-decf178 apply #80000800000000000000000000000000 -> -1.00000000000000000000000000000000E-6144 Subnormal
-decf179 apply -0.000000000000000000000000000000010E-6143 -> #80000000000000000000000000000010 Subnormal
-decf180 apply #80000000000000000000000000000010 -> -1.0E-6175 Subnormal
-decf181 apply -0.00000000000000000000000000000001E-6143 -> #80004000000000000000000000000001 Subnormal
-decf182 apply #80004000000000000000000000000001 -> -1E-6175 Subnormal
-decf183 apply -0.000000000000000000000000000000001E-6143 -> #80000000000000000000000000000001 Subnormal
-decf184 apply #80000000000000000000000000000001 -> -1E-6176 Subnormal
-
--- underflows
-decf190 apply -1e-6176 -> #80000000000000000000000000000001 Subnormal
-decf191 apply -1.9e-6176 -> #80000000000000000000000000000002 Subnormal Underflow Inexact Rounded
-decf192 apply -1.1e-6176 -> #80000000000000000000000000000001 Subnormal Underflow Inexact Rounded
-decf193 apply -1.00000000001e-6176 -> #80000000000000000000000000000001 Subnormal Underflow Inexact Rounded
-decf194 apply -1.00000000000001e-6176 -> #80000000000000000000000000000001 Subnormal Underflow Inexact Rounded
-decf195 apply -1.000000000000001e-6176 -> #80000000000000000000000000000001 Subnormal Underflow Inexact Rounded
-decf196 apply -0.1e-6176 -> #80000000000000000000000000000000 Subnormal Underflow Inexact Rounded
-decf197 apply -0.00000000001e-6176 -> #80000000000000000000000000000000 Subnormal Underflow Inexact Rounded
-decf198 apply -0.00000000000001e-6176 -> #80000000000000000000000000000000 Subnormal Underflow Inexact Rounded
-decf199 apply -0.000000000000001e-6176 -> #80000000000000000000000000000000 Subnormal Underflow Inexact Rounded
-decf200 apply -999999999999999999999999999999999e-6176 -> #80000ff3fcff3fcff3fcff3fcff3fcff Subnormal
-
--- zeros
-decf400 apply 0E-8000 -> #00000000000000000000000000000000 Clamped
-decf401 apply 0E-6177 -> #00000000000000000000000000000000 Clamped
-decf402 apply 0E-6176 -> #00000000000000000000000000000000
-decf403 apply #00000000000000000000000000000000 -> 0E-6176
-decf404 apply 0.000000000000000000000000000000000E-6143 -> #00000000000000000000000000000000
-decf405 apply #00000000000000000000000000000000 -> 0E-6176
-decf406 apply 0E-2 -> #22078000000000000000000000000000
-decf407 apply #22078000000000000000000000000000 -> 0.00
-decf408 apply 0 -> #22080000000000000000000000000000
-decf409 apply #22080000000000000000000000000000 -> 0
-decf410 apply 0E+3 -> #2208c000000000000000000000000000
-decf411 apply #2208c000000000000000000000000000 -> 0E+3
-decf412 apply 0E+6111 -> #43ffc000000000000000000000000000
-decf413 apply #43ffc000000000000000000000000000 -> 0E+6111
--- clamped zeros...
-decf414 apply 0E+6112 -> #43ffc000000000000000000000000000 Clamped
-decf415 apply #43ffc000000000000000000000000000 -> 0E+6111
-decf416 apply 0E+6144 -> #43ffc000000000000000000000000000 Clamped
-decf417 apply #43ffc000000000000000000000000000 -> 0E+6111
-decf418 apply 0E+8000 -> #43ffc000000000000000000000000000 Clamped
-decf419 apply #43ffc000000000000000000000000000 -> 0E+6111
-
--- negative zeros
-decf420 apply -0E-8000 -> #80000000000000000000000000000000 Clamped
-decf421 apply -0E-6177 -> #80000000000000000000000000000000 Clamped
-decf422 apply -0E-6176 -> #80000000000000000000000000000000
-decf423 apply #80000000000000000000000000000000 -> -0E-6176
-decf424 apply -0.000000000000000000000000000000000E-6143 -> #80000000000000000000000000000000
-decf425 apply #80000000000000000000000000000000 -> -0E-6176
-decf426 apply -0E-2 -> #a2078000000000000000000000000000
-decf427 apply #a2078000000000000000000000000000 -> -0.00
-decf428 apply -0 -> #a2080000000000000000000000000000
-decf429 apply #a2080000000000000000000000000000 -> -0
-decf430 apply -0E+3 -> #a208c000000000000000000000000000
-decf431 apply #a208c000000000000000000000000000 -> -0E+3
-decf432 apply -0E+6111 -> #c3ffc000000000000000000000000000
-decf433 apply #c3ffc000000000000000000000000000 -> -0E+6111
--- clamped zeros...
-decf434 apply -0E+6112 -> #c3ffc000000000000000000000000000 Clamped
-decf435 apply #c3ffc000000000000000000000000000 -> -0E+6111
-decf436 apply -0E+6144 -> #c3ffc000000000000000000000000000 Clamped
-decf437 apply #c3ffc000000000000000000000000000 -> -0E+6111
-decf438 apply -0E+8000 -> #c3ffc000000000000000000000000000 Clamped
-decf439 apply #c3ffc000000000000000000000000000 -> -0E+6111
-
--- Specials
-decf500 apply Infinity -> #78000000000000000000000000000000
-decf501 apply #78787878787878787878787878787878 -> #78000000000000000000000000000000
-decf502 apply #78000000000000000000000000000000 -> Infinity
-decf503 apply #79797979797979797979797979797979 -> #78000000000000000000000000000000
-decf504 apply #79000000000000000000000000000000 -> Infinity
-decf505 apply #7a7a7a7a7a7a7a7a7a7a7a7a7a7a7a7a -> #78000000000000000000000000000000
-decf506 apply #7a000000000000000000000000000000 -> Infinity
-decf507 apply #7b7b7b7b7b7b7b7b7b7b7b7b7b7b7b7b -> #78000000000000000000000000000000
-decf508 apply #7b000000000000000000000000000000 -> Infinity
-
-decf509 apply NaN -> #7c000000000000000000000000000000
-decf510 apply #7c7c7c7c7c7c7c7c7c7c7c7c7c7c7c7c -> #7c003c7c7c7c7c7c7c7c7c7c7c7c7c7c
-decf511 apply #7c000000000000000000000000000000 -> NaN
-decf512 apply #7d7d7d7d7d7d7d7d7d7d7d7d7d7d7d7d -> #7c003d7d7d7d7d7d7d7d7d7d7d7d7d7d
-decf513 apply #7d000000000000000000000000000000 -> NaN
-decf514 apply #7e7e7e7e7e7e7e7e7e7e7e7e7e7e7e7e -> #7e003e7e7c7e7e7e7e7c7e7e7e7e7c7e
-decf515 apply #7e000000000000000000000000000000 -> sNaN
-decf516 apply #7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f -> #7e003f7f7c7f7f7f7f7c7f7f7f7f7c7f
-decf517 apply #7f000000000000000000000000000000 -> sNaN
-decf518 apply #7fffffffffffffffffffffffffffffff -> sNaN999999999999999999999999999999999
-decf519 apply #7fffffffffffffffffffffffffffffff -> #7e000ff3fcff3fcff3fcff3fcff3fcff
-
-decf520 apply -Infinity -> #f8000000000000000000000000000000
-decf521 apply #f8787878787878787878787878787878 -> #f8000000000000000000000000000000
-decf522 apply #f8000000000000000000000000000000 -> -Infinity
-decf523 apply #f9797979797979797979797979797979 -> #f8000000000000000000000000000000
-decf524 apply #f9000000000000000000000000000000 -> -Infinity
-decf525 apply #fa7a7a7a7a7a7a7a7a7a7a7a7a7a7a7a -> #f8000000000000000000000000000000
-decf526 apply #fa000000000000000000000000000000 -> -Infinity
-decf527 apply #fb7b7b7b7b7b7b7b7b7b7b7b7b7b7b7b -> #f8000000000000000000000000000000
-decf528 apply #fb000000000000000000000000000000 -> -Infinity
-
-decf529 apply -NaN -> #fc000000000000000000000000000000
-decf530 apply #fc7c7c7c7c7c7c7c7c7c7c7c7c7c7c7c -> #fc003c7c7c7c7c7c7c7c7c7c7c7c7c7c
-decf531 apply #fc000000000000000000000000000000 -> -NaN
-decf532 apply #fd7d7d7d7d7d7d7d7d7d7d7d7d7d7d7d -> #fc003d7d7d7d7d7d7d7d7d7d7d7d7d7d
-decf533 apply #fd000000000000000000000000000000 -> -NaN
-decf534 apply #fe7e7e7e7e7e7e7e7e7e7e7e7e7e7e7e -> #fe003e7e7c7e7e7e7e7c7e7e7e7e7c7e
-decf535 apply #fe000000000000000000000000000000 -> -sNaN
-decf536 apply #ff7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f -> #fe003f7f7c7f7f7f7f7c7f7f7f7f7c7f
-decf537 apply #ff000000000000000000000000000000 -> -sNaN
-decf538 apply #ffffffffffffffffffffffffffffffff -> -sNaN999999999999999999999999999999999
-decf539 apply #ffffffffffffffffffffffffffffffff -> #fe000ff3fcff3fcff3fcff3fcff3fcff
-
-decf540 apply NaN -> #7c000000000000000000000000000000
-decf541 apply NaN0 -> #7c000000000000000000000000000000
-decf542 apply NaN1 -> #7c000000000000000000000000000001
-decf543 apply NaN12 -> #7c000000000000000000000000000012
-decf544 apply NaN79 -> #7c000000000000000000000000000079
-decf545 apply NaN12345 -> #7c0000000000000000000000000049c5
-decf546 apply NaN123456 -> #7c000000000000000000000000028e56
-decf547 apply NaN799799 -> #7c0000000000000000000000000f7fdf
-decf548 apply NaN799799799799799799799799799799799 -> #7c003dff7fdff7fdff7fdff7fdff7fdf
-decf549 apply NaN999999999999999999999999999999999 -> #7c000ff3fcff3fcff3fcff3fcff3fcff
-decf550 apply NaN1234567890123456789012345678901234 -> #7c000000000000000000000000000000 -- too many digits
-
--- fold-down full sequence
-decf600 apply 1E+6145 -> #78000000000000000000000000000000 Overflow Inexact Rounded
-decf601 apply 1E+6144 -> #47ffc000000000000000000000000000 Clamped
-decf602 apply #47ffc000000000000000000000000000 -> 1.000000000000000000000000000000000E+6144
-decf603 apply 1E+6143 -> #43ffc800000000000000000000000000 Clamped
-decf604 apply #43ffc800000000000000000000000000 -> 1.00000000000000000000000000000000E+6143
-decf605 apply 1E+6142 -> #43ffc100000000000000000000000000 Clamped
-decf606 apply #43ffc100000000000000000000000000 -> 1.0000000000000000000000000000000E+6142
-decf607 apply 1E+6141 -> #43ffc010000000000000000000000000 Clamped
-decf608 apply #43ffc010000000000000000000000000 -> 1.000000000000000000000000000000E+6141
-decf609 apply 1E+6140 -> #43ffc002000000000000000000000000 Clamped
-decf610 apply #43ffc002000000000000000000000000 -> 1.00000000000000000000000000000E+6140
-decf611 apply 1E+6139 -> #43ffc000400000000000000000000000 Clamped
-decf612 apply #43ffc000400000000000000000000000 -> 1.0000000000000000000000000000E+6139
-decf613 apply 1E+6138 -> #43ffc000040000000000000000000000 Clamped
-decf614 apply #43ffc000040000000000000000000000 -> 1.000000000000000000000000000E+6138
-decf615 apply 1E+6137 -> #43ffc000008000000000000000000000 Clamped
-decf616 apply #43ffc000008000000000000000000000 -> 1.00000000000000000000000000E+6137
-decf617 apply 1E+6136 -> #43ffc000001000000000000000000000 Clamped
-decf618 apply #43ffc000001000000000000000000000 -> 1.0000000000000000000000000E+6136
-decf619 apply 1E+6135 -> #43ffc000000100000000000000000000 Clamped
-decf620 apply #43ffc000000100000000000000000000 -> 1.000000000000000000000000E+6135
-decf621 apply 1E+6134 -> #43ffc000000020000000000000000000 Clamped
-decf622 apply #43ffc000000020000000000000000000 -> 1.00000000000000000000000E+6134
-decf623 apply 1E+6133 -> #43ffc000000004000000000000000000 Clamped
-decf624 apply #43ffc000000004000000000000000000 -> 1.0000000000000000000000E+6133
-decf625 apply 1E+6132 -> #43ffc000000000400000000000000000 Clamped
-decf626 apply #43ffc000000000400000000000000000 -> 1.000000000000000000000E+6132
-decf627 apply 1E+6131 -> #43ffc000000000080000000000000000 Clamped
-decf628 apply #43ffc000000000080000000000000000 -> 1.00000000000000000000E+6131
-decf629 apply 1E+6130 -> #43ffc000000000010000000000000000 Clamped
-decf630 apply #43ffc000000000010000000000000000 -> 1.0000000000000000000E+6130
-decf631 apply 1E+6129 -> #43ffc000000000001000000000000000 Clamped
-decf632 apply #43ffc000000000001000000000000000 -> 1.000000000000000000E+6129
-decf633 apply 1E+6128 -> #43ffc000000000000200000000000000 Clamped
-decf634 apply #43ffc000000000000200000000000000 -> 1.00000000000000000E+6128
-decf635 apply 1E+6127 -> #43ffc000000000000040000000000000 Clamped
-decf636 apply #43ffc000000000000040000000000000 -> 1.0000000000000000E+6127
-decf637 apply 1E+6126 -> #43ffc000000000000004000000000000 Clamped
-decf638 apply #43ffc000000000000004000000000000 -> 1.000000000000000E+6126
-decf639 apply 1E+6125 -> #43ffc000000000000000800000000000 Clamped
-decf640 apply #43ffc000000000000000800000000000 -> 1.00000000000000E+6125
-decf641 apply 1E+6124 -> #43ffc000000000000000100000000000 Clamped
-decf642 apply #43ffc000000000000000100000000000 -> 1.0000000000000E+6124
-decf643 apply 1E+6123 -> #43ffc000000000000000010000000000 Clamped
-decf644 apply #43ffc000000000000000010000000000 -> 1.000000000000E+6123
-decf645 apply 1E+6122 -> #43ffc000000000000000002000000000 Clamped
-decf646 apply #43ffc000000000000000002000000000 -> 1.00000000000E+6122
-decf647 apply 1E+6121 -> #43ffc000000000000000000400000000 Clamped
-decf648 apply #43ffc000000000000000000400000000 -> 1.0000000000E+6121
-decf649 apply 1E+6120 -> #43ffc000000000000000000040000000 Clamped
-decf650 apply #43ffc000000000000000000040000000 -> 1.000000000E+6120
-decf651 apply 1E+6119 -> #43ffc000000000000000000008000000 Clamped
-decf652 apply #43ffc000000000000000000008000000 -> 1.00000000E+6119
-decf653 apply 1E+6118 -> #43ffc000000000000000000001000000 Clamped
-decf654 apply #43ffc000000000000000000001000000 -> 1.0000000E+6118
-decf655 apply 1E+6117 -> #43ffc000000000000000000000100000 Clamped
-decf656 apply #43ffc000000000000000000000100000 -> 1.000000E+6117
-decf657 apply 1E+6116 -> #43ffc000000000000000000000020000 Clamped
-decf658 apply #43ffc000000000000000000000020000 -> 1.00000E+6116
-decf659 apply 1E+6115 -> #43ffc000000000000000000000004000 Clamped
-decf660 apply #43ffc000000000000000000000004000 -> 1.0000E+6115
-decf661 apply 1E+6114 -> #43ffc000000000000000000000000400 Clamped
-decf662 apply #43ffc000000000000000000000000400 -> 1.000E+6114
-decf663 apply 1E+6113 -> #43ffc000000000000000000000000080 Clamped
-decf664 apply #43ffc000000000000000000000000080 -> 1.00E+6113
-decf665 apply 1E+6112 -> #43ffc000000000000000000000000010 Clamped
-decf666 apply #43ffc000000000000000000000000010 -> 1.0E+6112
-decf667 apply 1E+6111 -> #43ffc000000000000000000000000001
-decf668 apply #43ffc000000000000000000000000001 -> 1E+6111
-decf669 apply 1E+6110 -> #43ff8000000000000000000000000001
-decf670 apply #43ff8000000000000000000000000001 -> 1E+6110
-
--- Selected DPD codes
-decf700 apply #22080000000000000000000000000000 -> 0
-decf701 apply #22080000000000000000000000000009 -> 9
-decf702 apply #22080000000000000000000000000010 -> 10
-decf703 apply #22080000000000000000000000000019 -> 19
-decf704 apply #22080000000000000000000000000020 -> 20
-decf705 apply #22080000000000000000000000000029 -> 29
-decf706 apply #22080000000000000000000000000030 -> 30
-decf707 apply #22080000000000000000000000000039 -> 39
-decf708 apply #22080000000000000000000000000040 -> 40
-decf709 apply #22080000000000000000000000000049 -> 49
-decf710 apply #22080000000000000000000000000050 -> 50
-decf711 apply #22080000000000000000000000000059 -> 59
-decf712 apply #22080000000000000000000000000060 -> 60
-decf713 apply #22080000000000000000000000000069 -> 69
-decf714 apply #22080000000000000000000000000070 -> 70
-decf715 apply #22080000000000000000000000000071 -> 71
-decf716 apply #22080000000000000000000000000072 -> 72
-decf717 apply #22080000000000000000000000000073 -> 73
-decf718 apply #22080000000000000000000000000074 -> 74
-decf719 apply #22080000000000000000000000000075 -> 75
-decf720 apply #22080000000000000000000000000076 -> 76
-decf721 apply #22080000000000000000000000000077 -> 77
-decf722 apply #22080000000000000000000000000078 -> 78
-decf723 apply #22080000000000000000000000000079 -> 79
-
-decf730 apply #2208000000000000000000000000029e -> 994
-decf731 apply #2208000000000000000000000000029f -> 995
-decf732 apply #220800000000000000000000000002a0 -> 520
-decf733 apply #220800000000000000000000000002a1 -> 521
-
--- DPD: one of each of the huffman groups
-decf740 apply #220800000000000000000000000003f7 -> 777
-decf741 apply #220800000000000000000000000003f8 -> 778
-decf742 apply #220800000000000000000000000003eb -> 787
-decf743 apply #2208000000000000000000000000037d -> 877
-decf744 apply #2208000000000000000000000000039f -> 997
-decf745 apply #220800000000000000000000000003bf -> 979
-decf746 apply #220800000000000000000000000003df -> 799
-decf747 apply #2208000000000000000000000000006e -> 888
-
-
--- DPD all-highs cases (includes the 24 redundant codes)
-decf750 apply #2208000000000000000000000000006e -> 888
-decf751 apply #2208000000000000000000000000016e -> 888
-decf752 apply #2208000000000000000000000000026e -> 888
-decf753 apply #2208000000000000000000000000036e -> 888
-decf754 apply #2208000000000000000000000000006f -> 889
-decf755 apply #2208000000000000000000000000016f -> 889
-decf756 apply #2208000000000000000000000000026f -> 889
-decf757 apply #2208000000000000000000000000036f -> 889
-
-decf760 apply #2208000000000000000000000000007e -> 898
-decf761 apply #2208000000000000000000000000017e -> 898
-decf762 apply #2208000000000000000000000000027e -> 898
-decf763 apply #2208000000000000000000000000037e -> 898
-decf764 apply #2208000000000000000000000000007f -> 899
-decf765 apply #2208000000000000000000000000017f -> 899
-decf766 apply #2208000000000000000000000000027f -> 899
-decf767 apply #2208000000000000000000000000037f -> 899
-
-decf770 apply #220800000000000000000000000000ee -> 988
-decf771 apply #220800000000000000000000000001ee -> 988
-decf772 apply #220800000000000000000000000002ee -> 988
-decf773 apply #220800000000000000000000000003ee -> 988
-decf774 apply #220800000000000000000000000000ef -> 989
-decf775 apply #220800000000000000000000000001ef -> 989
-decf776 apply #220800000000000000000000000002ef -> 989
-decf777 apply #220800000000000000000000000003ef -> 989
-
-decf780 apply #220800000000000000000000000000fe -> 998
-decf781 apply #220800000000000000000000000001fe -> 998
-decf782 apply #220800000000000000000000000002fe -> 998
-decf783 apply #220800000000000000000000000003fe -> 998
-decf784 apply #220800000000000000000000000000ff -> 999
-decf785 apply #220800000000000000000000000001ff -> 999
-decf786 apply #220800000000000000000000000002ff -> 999
-decf787 apply #220800000000000000000000000003ff -> 999
-
diff --git a/Lib/test/decimaltestdata/decimal32.decTest b/Lib/test/decimaltestdata/decimal32.decTest
deleted file mode 100644
index faf1cf4..0000000
--- a/Lib/test/decimaltestdata/decimal32.decTest
+++ /dev/null
@@ -1,385 +0,0 @@
-------------------------------------------------------------------------
--- decimal32.decTest -- decimal four-byte format testcases --
--- Copyright (c) IBM Corporation, 2000, 2003. All rights reserved. --
-------------------------------------------------------------------------
--- Please see the document "General Decimal Arithmetic Testcases" --
--- at http://www2.hursley.ibm.com/decimal for the description of --
--- these testcases. --
--- --
--- These testcases are experimental ('beta' versions), and they --
--- may contain errors. They are offered on an as-is basis. In --
--- particular, achieving the same results as the tests here is not --
--- a guarantee that an implementation complies with any Standard --
--- or specification. The tests are not exhaustive. --
--- --
--- Please send comments, suggestions, and corrections to the author: --
--- Mike Cowlishaw, IBM Fellow --
--- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK --
--- mfc@uk.ibm.com --
-------------------------------------------------------------------------
-version: 2.39
-
--- This set of tests is for the four-byte concrete representation.
--- Its characteristics are:
---
--- 1 bit sign
--- 5 bits combination field
--- 6 bits exponent continuation
--- 20 bits coefficient continuation
---
--- Total exponent length 8 bits
--- Total coefficient length 24 bits (7 digits)
---
--- Elimit = 191 (maximum encoded exponent)
--- Emax = 96 (largest exponent value)
--- Emin = -95 (smallest exponent value)
--- bias = 101 (subtracted from encoded exponent) = -Etiny
-
-extended: 1
-precision: 7
-rounding: half_up
-maxExponent: 96
-minExponent: -95
-
--- General testcases
--- (mostly derived from the Strawman 4 document and examples)
-decd001 apply #A23003D0 -> -7.50
-decd002 apply -7.50 -> #A23003D0
-
--- Normality
-decd010 apply 1234567 -> #2654d2e7
-decd011 apply 1234567.0 -> #2654d2e7 Rounded
-decd012 apply 1234567.1 -> #2654d2e7 Rounded Inexact
-decd013 apply -1234567 -> #a654d2e7
-decd014 apply -1234567.0 -> #a654d2e7 Rounded
-decd015 apply -1234567.1 -> #a654d2e7 Rounded Inexact
-
-
--- Nmax and similar
-decd022 apply 9.999999E+96 -> #77f3fcff
-decd023 apply #77f3fcff -> 9.999999E+96
-decd024 apply 1.234567E+96 -> #47f4d2e7
-decd025 apply #47f4d2e7 -> 1.234567E+96
--- fold-downs (more below)
-decd030 apply 1.23E+96 -> #47f4c000 Clamped
-decd031 apply #47f4c000 -> 1.230000E+96
-decd032 apply 1E+96 -> #47f00000 Clamped
-decd033 apply #47f00000 -> 1.000000E+96
-
--- overflows
-maxExponent: 999 -- set high so conversion causes the overflow
-minExponent: -999
-decd040 apply 10E+96 -> #78000000 Overflow Rounded Inexact
-decd041 apply 1.000000E+97 -> #78000000 Overflow Rounded Inexact
-maxExponent: 96
-minExponent: -95
-
-decd051 apply 12345 -> #225049c5
-decd052 apply #225049c5 -> 12345
-decd053 apply 1234 -> #22500534
-decd054 apply #22500534 -> 1234
-decd055 apply 123 -> #225000a3
-decd056 apply #225000a3 -> 123
-decd057 apply 12 -> #22500012
-decd058 apply #22500012 -> 12
-decd059 apply 1 -> #22500001
-decd060 apply #22500001 -> 1
-decd061 apply 1.23 -> #223000a3
-decd062 apply #223000a3 -> 1.23
-decd063 apply 123.45 -> #223049c5
-decd064 apply #223049c5 -> 123.45
-
--- Nmin and below
-decd071 apply 1E-95 -> #00600001
-decd072 apply #00600001 -> 1E-95
-decd073 apply 1.000000E-95 -> #04000000
-decd074 apply #04000000 -> 1.000000E-95
-decd075 apply 1.000001E-95 -> #04000001
-decd076 apply #04000001 -> 1.000001E-95
-
-decd077 apply 0.100000E-95 -> #00020000 Subnormal
-decd07x apply 1.00000E-96 -> 1.00000E-96 Subnormal
-decd078 apply #00020000 -> 1.00000E-96 Subnormal
-decd079 apply 0.000010E-95 -> #00000010 Subnormal
-decd080 apply #00000010 -> 1.0E-100 Subnormal
-decd081 apply 0.000001E-95 -> #00000001 Subnormal
-decd082 apply #00000001 -> 1E-101 Subnormal
-decd083 apply 1e-101 -> #00000001 Subnormal
-decd084 apply #00000001 -> 1E-101 Subnormal
-decd08x apply 1e-101 -> 1E-101 Subnormal
-
--- underflows
-decd090 apply 1e-101 -> #00000001 Subnormal
-decd091 apply 1.9e-101 -> #00000002 Subnormal Underflow Inexact Rounded
-decd092 apply 1.1e-101 -> #00000001 Subnormal Underflow Inexact Rounded
-decd093 apply 1.001e-101 -> #00000001 Subnormal Underflow Inexact Rounded
-decd094 apply 1.000001e-101 -> #00000001 Subnormal Underflow Inexact Rounded
-decd095 apply 1.0000001e-101 -> #00000001 Subnormal Underflow Inexact Rounded
-decd096 apply 0.1e-101 -> #00000000 Subnormal Underflow Inexact Rounded
-decd097 apply 0.001e-101 -> #00000000 Subnormal Underflow Inexact Rounded
-decd098 apply 0.000001e-101 -> #00000000 Subnormal Underflow Inexact Rounded
-decd099 apply 0.0000001e-101 -> #00000000 Subnormal Underflow Inexact Rounded
-
--- same again, negatives --
-
--- Nmax and similar
-decd122 apply -9.999999E+96 -> #f7f3fcff
-decd123 apply #f7f3fcff -> -9.999999E+96
-decd124 apply -1.234567E+96 -> #c7f4d2e7
-decd125 apply #c7f4d2e7 -> -1.234567E+96
--- fold-downs (more below)
-decd130 apply -1.23E+96 -> #c7f4c000 Clamped
-decd131 apply #c7f4c000 -> -1.230000E+96
-decd132 apply -1E+96 -> #c7f00000 Clamped
-decd133 apply #c7f00000 -> -1.000000E+96
-
--- overflows
-maxExponent: 999 -- set high so conversion causes the overflow
-minExponent: -999
-decd140 apply -10E+96 -> #f8000000 Overflow Rounded Inexact
-decd141 apply -1.000000E+97 -> #f8000000 Overflow Rounded Inexact
-maxExponent: 96
-minExponent: -95
-
-decd151 apply -12345 -> #a25049c5
-decd152 apply #a25049c5 -> -12345
-decd153 apply -1234 -> #a2500534
-decd154 apply #a2500534 -> -1234
-decd155 apply -123 -> #a25000a3
-decd156 apply #a25000a3 -> -123
-decd157 apply -12 -> #a2500012
-decd158 apply #a2500012 -> -12
-decd159 apply -1 -> #a2500001
-decd160 apply #a2500001 -> -1
-decd161 apply -1.23 -> #a23000a3
-decd162 apply #a23000a3 -> -1.23
-decd163 apply -123.45 -> #a23049c5
-decd164 apply #a23049c5 -> -123.45
-
--- Nmin and below
-decd171 apply -1E-95 -> #80600001
-decd172 apply #80600001 -> -1E-95
-decd173 apply -1.000000E-95 -> #84000000
-decd174 apply #84000000 -> -1.000000E-95
-decd175 apply -1.000001E-95 -> #84000001
-decd176 apply #84000001 -> -1.000001E-95
-
-decd177 apply -0.100000E-95 -> #80020000 Subnormal
-decd178 apply #80020000 -> -1.00000E-96 Subnormal
-decd179 apply -0.000010E-95 -> #80000010 Subnormal
-decd180 apply #80000010 -> -1.0E-100 Subnormal
-decd181 apply -0.000001E-95 -> #80000001 Subnormal
-decd182 apply #80000001 -> -1E-101 Subnormal
-decd183 apply -1e-101 -> #80000001 Subnormal
-decd184 apply #80000001 -> -1E-101 Subnormal
-
--- underflows
-decd190 apply -1e-101 -> #80000001 Subnormal
-decd191 apply -1.9e-101 -> #80000002 Subnormal Underflow Inexact Rounded
-decd192 apply -1.1e-101 -> #80000001 Subnormal Underflow Inexact Rounded
-decd193 apply -1.001e-101 -> #80000001 Subnormal Underflow Inexact Rounded
-decd194 apply -1.000001e-101 -> #80000001 Subnormal Underflow Inexact Rounded
-decd195 apply -1.0000001e-101 -> #80000001 Subnormal Underflow Inexact Rounded
-decd196 apply -0.1e-101 -> #80000000 Subnormal Underflow Inexact Rounded
-decd197 apply -0.001e-101 -> #80000000 Subnormal Underflow Inexact Rounded
-decd198 apply -0.000001e-101 -> #80000000 Subnormal Underflow Inexact Rounded
-decd199 apply -0.0000001e-101 -> #80000000 Subnormal Underflow Inexact Rounded
-
--- zeros
-decd400 apply 0E-400 -> #00000000 Clamped
-decd401 apply 0E-101 -> #00000000
-decd402 apply #00000000 -> 0E-101
-decd403 apply 0.000000E-95 -> #00000000
-decd404 apply #00000000 -> 0E-101
-decd405 apply 0E-2 -> #22300000
-decd406 apply #22300000 -> 0.00
-decd407 apply 0 -> #22500000
-decd408 apply #22500000 -> 0
-decd409 apply 0E+3 -> #22800000
-decd410 apply #22800000 -> 0E+3
-decd411 apply 0E+90 -> #43f00000
-decd412 apply #43f00000 -> 0E+90
--- clamped zeros...
-decd413 apply 0E+91 -> #43f00000 Clamped
-decd414 apply #43f00000 -> 0E+90
-decd415 apply 0E+96 -> #43f00000 Clamped
-decd416 apply #43f00000 -> 0E+90
-decd417 apply 0E+400 -> #43f00000 Clamped
-decd418 apply #43f00000 -> 0E+90
-
--- negative zeros
-decd420 apply -0E-400 -> #80000000 Clamped
-decd421 apply -0E-101 -> #80000000
-decd422 apply #80000000 -> -0E-101
-decd423 apply -0.000000E-95 -> #80000000
-decd424 apply #80000000 -> -0E-101
-decd425 apply -0E-2 -> #a2300000
-decd426 apply #a2300000 -> -0.00
-decd427 apply -0 -> #a2500000
-decd428 apply #a2500000 -> -0
-decd429 apply -0E+3 -> #a2800000
-decd430 apply #a2800000 -> -0E+3
-decd431 apply -0E+90 -> #c3f00000
-decd432 apply #c3f00000 -> -0E+90
--- clamped zeros...
-decd433 apply -0E+91 -> #c3f00000 Clamped
-decd434 apply #c3f00000 -> -0E+90
-decd435 apply -0E+96 -> #c3f00000 Clamped
-decd436 apply #c3f00000 -> -0E+90
-decd437 apply -0E+400 -> #c3f00000 Clamped
-decd438 apply #c3f00000 -> -0E+90
-
--- Specials
-decd500 apply Infinity -> #78000000
-decd501 apply #78787878 -> #78000000
-decd502 apply #78000000 -> Infinity
-decd503 apply #79797979 -> #78000000
-decd504 apply #79000000 -> Infinity
-decd505 apply #7a7a7a7a -> #78000000
-decd506 apply #7a000000 -> Infinity
-decd507 apply #7b7b7b7b -> #78000000
-decd508 apply #7b000000 -> Infinity
-decd509 apply #7c7c7c7c -> #7c0c7c7c
-
-decd510 apply NaN -> #7c000000
-decd511 apply #7c000000 -> NaN
-decd512 apply #7d7d7d7d -> #7c0d7d7d
-decd513 apply #7d000000 -> NaN
-decd514 apply #7e7e7e7e -> #7e0e7c7e
-decd515 apply #7e000000 -> sNaN
-decd516 apply #7f7f7f7f -> #7e0f7c7f
-decd517 apply #7f000000 -> sNaN
-decd518 apply #7fffffff -> sNaN999999
-decd519 apply #7fffffff -> #7e03fcff
-
-decd520 apply -Infinity -> #f8000000
-decd521 apply #f8787878 -> #f8000000
-decd522 apply #f8000000 -> -Infinity
-decd523 apply #f9797979 -> #f8000000
-decd524 apply #f9000000 -> -Infinity
-decd525 apply #fa7a7a7a -> #f8000000
-decd526 apply #fa000000 -> -Infinity
-decd527 apply #fb7b7b7b -> #f8000000
-decd528 apply #fb000000 -> -Infinity
-
-decd529 apply -NaN -> #fc000000
-decd530 apply #fc7c7c7c -> #fc0c7c7c
-decd531 apply #fc000000 -> -NaN
-decd532 apply #fd7d7d7d -> #fc0d7d7d
-decd533 apply #fd000000 -> -NaN
-decd534 apply #fe7e7e7e -> #fe0e7c7e
-decd535 apply #fe000000 -> -sNaN
-decd536 apply #ff7f7f7f -> #fe0f7c7f
-decd537 apply #ff000000 -> -sNaN
-decd538 apply #ffffffff -> -sNaN999999
-decd539 apply #ffffffff -> #fe03fcff
-
--- diagnostic NaNs
-decd540 apply NaN -> #7c000000
-decd541 apply NaN0 -> #7c000000
-decd542 apply NaN1 -> #7c000001
-decd543 apply NaN12 -> #7c000012
-decd544 apply NaN79 -> #7c000079
-decd545 apply NaN12345 -> #7c0049c5
-decd546 apply NaN123456 -> #7c028e56
-decd547 apply NaN799799 -> #7c0f7fdf
-decd548 apply NaN999999 -> #7c03fcff
-decd549 apply NaN1234567 -> #7c000000 -- too many digits
-
-
--- fold-down full sequence
-decd601 apply 1E+96 -> #47f00000 Clamped
-decd602 apply #47f00000 -> 1.000000E+96
-decd603 apply 1E+95 -> #43f20000 Clamped
-decd604 apply #43f20000 -> 1.00000E+95
-decd605 apply 1E+94 -> #43f04000 Clamped
-decd606 apply #43f04000 -> 1.0000E+94
-decd607 apply 1E+93 -> #43f00400 Clamped
-decd608 apply #43f00400 -> 1.000E+93
-decd609 apply 1E+92 -> #43f00080 Clamped
-decd610 apply #43f00080 -> 1.00E+92
-decd611 apply 1E+91 -> #43f00010 Clamped
-decd612 apply #43f00010 -> 1.0E+91
-decd613 apply 1E+90 -> #43f00001
-decd614 apply #43f00001 -> 1E+90
-
-
--- Selected DPD codes
-decd700 apply #22500000 -> 0
-decd701 apply #22500009 -> 9
-decd702 apply #22500010 -> 10
-decd703 apply #22500019 -> 19
-decd704 apply #22500020 -> 20
-decd705 apply #22500029 -> 29
-decd706 apply #22500030 -> 30
-decd707 apply #22500039 -> 39
-decd708 apply #22500040 -> 40
-decd709 apply #22500049 -> 49
-decd710 apply #22500050 -> 50
-decd711 apply #22500059 -> 59
-decd712 apply #22500060 -> 60
-decd713 apply #22500069 -> 69
-decd714 apply #22500070 -> 70
-decd715 apply #22500071 -> 71
-decd716 apply #22500072 -> 72
-decd717 apply #22500073 -> 73
-decd718 apply #22500074 -> 74
-decd719 apply #22500075 -> 75
-decd720 apply #22500076 -> 76
-decd721 apply #22500077 -> 77
-decd722 apply #22500078 -> 78
-decd723 apply #22500079 -> 79
-
-decd730 apply #2250029e -> 994
-decd731 apply #2250029f -> 995
-decd732 apply #225002a0 -> 520
-decd733 apply #225002a1 -> 521
-
--- DPD: one of each of the huffman groups
-decd740 apply #225003f7 -> 777
-decd741 apply #225003f8 -> 778
-decd742 apply #225003eb -> 787
-decd743 apply #2250037d -> 877
-decd744 apply #2250039f -> 997
-decd745 apply #225003bf -> 979
-decd746 apply #225003df -> 799
-decd747 apply #2250006e -> 888
-
-
--- DPD all-highs cases (includes the 24 redundant codes)
-decd750 apply #2250006e -> 888
-decd751 apply #2250016e -> 888
-decd752 apply #2250026e -> 888
-decd753 apply #2250036e -> 888
-decd754 apply #2250006f -> 889
-decd755 apply #2250016f -> 889
-decd756 apply #2250026f -> 889
-decd757 apply #2250036f -> 889
-
-decd760 apply #2250007e -> 898
-decd761 apply #2250017e -> 898
-decd762 apply #2250027e -> 898
-decd763 apply #2250037e -> 898
-decd764 apply #2250007f -> 899
-decd765 apply #2250017f -> 899
-decd766 apply #2250027f -> 899
-decd767 apply #2250037f -> 899
-
-decd770 apply #225000ee -> 988
-decd771 apply #225001ee -> 988
-decd772 apply #225002ee -> 988
-decd773 apply #225003ee -> 988
-decd774 apply #225000ef -> 989
-decd775 apply #225001ef -> 989
-decd776 apply #225002ef -> 989
-decd777 apply #225003ef -> 989
-
-decd780 apply #225000fe -> 998
-decd781 apply #225001fe -> 998
-decd782 apply #225002fe -> 998
-decd783 apply #225003fe -> 998
-decd784 apply #225000ff -> 999
-decd785 apply #225001ff -> 999
-decd786 apply #225002ff -> 999
-decd787 apply #225003ff -> 999
-
diff --git a/Lib/test/decimaltestdata/decimal64.decTest b/Lib/test/decimaltestdata/decimal64.decTest
deleted file mode 100644
index a254167..0000000
--- a/Lib/test/decimaltestdata/decimal64.decTest
+++ /dev/null
@@ -1,444 +0,0 @@
-------------------------------------------------------------------------
--- decimal64.decTest -- decimal eight-byte format testcases --
--- Copyright (c) IBM Corporation, 2000, 2003. All rights reserved. --
-------------------------------------------------------------------------
--- Please see the document "General Decimal Arithmetic Testcases" --
--- at http://www2.hursley.ibm.com/decimal for the description of --
--- these testcases. --
--- --
--- These testcases are experimental ('beta' versions), and they --
--- may contain errors. They are offered on an as-is basis. In --
--- particular, achieving the same results as the tests here is not --
--- a guarantee that an implementation complies with any Standard --
--- or specification. The tests are not exhaustive. --
--- --
--- Please send comments, suggestions, and corrections to the author: --
--- Mike Cowlishaw, IBM Fellow --
--- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK --
--- mfc@uk.ibm.com --
-------------------------------------------------------------------------
-version: 2.39
-
--- This set of tests is for the eight-byte concrete representation.
--- Its characteristics are:
---
--- 1 bit sign
--- 5 bits combination field
--- 8 bits exponent continuation
--- 50 bits coefficient continuation
---
--- Total exponent length 10 bits
--- Total coefficient length 54 bits (16 digits)
---
--- Elimit = 767 (maximum encoded exponent)
--- Emax = 384 (largest exponent value)
--- Emin = -383 (smallest exponent value)
--- bias = 398 (subtracted from encoded exponent) = -Etiny
-
-extended: 1
-precision: 16
-rounding: half_up
-maxExponent: 384
-minExponent: -383
-
--- General testcases
--- (mostly derived from the Strawman 4 document and examples)
-dece001 apply #A2300000000003D0 -> -7.50
-dece002 apply -7.50 -> #A2300000000003D0
-
--- Normality
-dece010 apply 1234567890123456 -> #263934b9c1e28e56
-dece011 apply 1234567890123456.0 -> #263934b9c1e28e56 Rounded
-dece012 apply 1234567890123456.1 -> #263934b9c1e28e56 Rounded Inexact
-dece013 apply -1234567890123456 -> #a63934b9c1e28e56
-dece014 apply -1234567890123456.0 -> #a63934b9c1e28e56 Rounded
-dece015 apply -1234567890123456.1 -> #a63934b9c1e28e56 Rounded Inexact
-
-
--- Nmax and similar
-dece022 apply 9.999999999999999E+384 -> #77fcff3fcff3fcff
-dece023 apply #77fcff3fcff3fcff -> 9.999999999999999E+384
-dece024 apply 1.234567890123456E+384 -> #47fd34b9c1e28e56
-dece025 apply #47fd34b9c1e28e56 -> 1.234567890123456E+384
--- fold-downs (more below)
-dece030 apply 1.23E+384 -> #47fd300000000000 Clamped
-dece031 apply #47fd300000000000 -> 1.230000000000000E+384
-dece032 apply 1E+384 -> #47fc000000000000 Clamped
-dece033 apply #47fc000000000000 -> 1.000000000000000E+384
-
--- overflows
-maxExponent: 999 -- set high so conversion causes the overflow
-minExponent: -999
-dece040 apply 10E+384 -> #7800000000000000 Overflow Rounded Inexact
-dece041 apply 1.000000000000000E+385 -> #7800000000000000 Overflow Rounded Inexact
-maxExponent: 384
-minExponent: -383
-
-dece051 apply 12345 -> #22380000000049c5
-dece052 apply #22380000000049c5 -> 12345
-dece053 apply 1234 -> #2238000000000534
-dece054 apply #2238000000000534 -> 1234
-dece055 apply 123 -> #22380000000000a3
-dece056 apply #22380000000000a3 -> 123
-dece057 apply 12 -> #2238000000000012
-dece058 apply #2238000000000012 -> 12
-dece059 apply 1 -> #2238000000000001
-dece060 apply #2238000000000001 -> 1
-dece061 apply 1.23 -> #22300000000000a3
-dece062 apply #22300000000000a3 -> 1.23
-dece063 apply 123.45 -> #22300000000049c5
-dece064 apply #22300000000049c5 -> 123.45
-
--- Nmin and below
-dece071 apply 1E-383 -> #003c000000000001
-dece072 apply #003c000000000001 -> 1E-383
-dece073 apply 1.000000000000000E-383 -> #0400000000000000
-dece074 apply #0400000000000000 -> 1.000000000000000E-383
-dece075 apply 1.000000000000001E-383 -> #0400000000000001
-dece076 apply #0400000000000001 -> 1.000000000000001E-383
-
-dece077 apply 0.100000000000000E-383 -> #0000800000000000 Subnormal
-dece078 apply #0000800000000000 -> 1.00000000000000E-384 Subnormal
-dece079 apply 0.000000000000010E-383 -> #0000000000000010 Subnormal
-dece080 apply #0000000000000010 -> 1.0E-397 Subnormal
-dece081 apply 0.00000000000001E-383 -> #0004000000000001 Subnormal
-dece082 apply #0004000000000001 -> 1E-397 Subnormal
-dece083 apply 0.000000000000001E-383 -> #0000000000000001 Subnormal
-dece084 apply #0000000000000001 -> 1E-398 Subnormal
-
--- underflows
-dece090 apply 1e-398 -> #0000000000000001 Subnormal
-dece091 apply 1.9e-398 -> #0000000000000002 Subnormal Underflow Inexact Rounded
-dece092 apply 1.1e-398 -> #0000000000000001 Subnormal Underflow Inexact Rounded
-dece093 apply 1.00000000001e-398 -> #0000000000000001 Subnormal Underflow Inexact Rounded
-dece094 apply 1.00000000000001e-398 -> #0000000000000001 Subnormal Underflow Inexact Rounded
-dece095 apply 1.000000000000001e-398 -> #0000000000000001 Subnormal Underflow Inexact Rounded
-dece096 apply 0.1e-398 -> #0000000000000000 Subnormal Underflow Inexact Rounded
-dece097 apply 0.00000000001e-398 -> #0000000000000000 Subnormal Underflow Inexact Rounded
-dece098 apply 0.00000000000001e-398 -> #0000000000000000 Subnormal Underflow Inexact Rounded
-dece099 apply 0.000000000000001e-398 -> #0000000000000000 Subnormal Underflow Inexact Rounded
-
--- Same again, negatives
--- Nmax and similar
-dece122 apply -9.999999999999999E+384 -> #f7fcff3fcff3fcff
-dece123 apply #f7fcff3fcff3fcff -> -9.999999999999999E+384
-dece124 apply -1.234567890123456E+384 -> #c7fd34b9c1e28e56
-dece125 apply #c7fd34b9c1e28e56 -> -1.234567890123456E+384
--- fold-downs (more below)
-dece130 apply -1.23E+384 -> #c7fd300000000000 Clamped
-dece131 apply #c7fd300000000000 -> -1.230000000000000E+384
-dece132 apply -1E+384 -> #c7fc000000000000 Clamped
-dece133 apply #c7fc000000000000 -> -1.000000000000000E+384
-
--- overflows
-maxExponent: 999 -- set high so conversion causes the overflow
-minExponent: -999
-dece140 apply -10E+384 -> #f800000000000000 Overflow Rounded Inexact
-dece141 apply -1.000000000000000E+385 -> #f800000000000000 Overflow Rounded Inexact
-maxExponent: 384
-minExponent: -383
-
-dece151 apply -12345 -> #a2380000000049c5
-dece152 apply #a2380000000049c5 -> -12345
-dece153 apply -1234 -> #a238000000000534
-dece154 apply #a238000000000534 -> -1234
-dece155 apply -123 -> #a2380000000000a3
-dece156 apply #a2380000000000a3 -> -123
-dece157 apply -12 -> #a238000000000012
-dece158 apply #a238000000000012 -> -12
-dece159 apply -1 -> #a238000000000001
-dece160 apply #a238000000000001 -> -1
-dece161 apply -1.23 -> #a2300000000000a3
-dece162 apply #a2300000000000a3 -> -1.23
-dece163 apply -123.45 -> #a2300000000049c5
-dece164 apply #a2300000000049c5 -> -123.45
-
--- Nmin and below
-dece171 apply -1E-383 -> #803c000000000001
-dece172 apply #803c000000000001 -> -1E-383
-dece173 apply -1.000000000000000E-383 -> #8400000000000000
-dece174 apply #8400000000000000 -> -1.000000000000000E-383
-dece175 apply -1.000000000000001E-383 -> #8400000000000001
-dece176 apply #8400000000000001 -> -1.000000000000001E-383
-
-dece177 apply -0.100000000000000E-383 -> #8000800000000000 Subnormal
-dece178 apply #8000800000000000 -> -1.00000000000000E-384 Subnormal
-dece179 apply -0.000000000000010E-383 -> #8000000000000010 Subnormal
-dece180 apply #8000000000000010 -> -1.0E-397 Subnormal
-dece181 apply -0.00000000000001E-383 -> #8004000000000001 Subnormal
-dece182 apply #8004000000000001 -> -1E-397 Subnormal
-dece183 apply -0.000000000000001E-383 -> #8000000000000001 Subnormal
-dece184 apply #8000000000000001 -> -1E-398 Subnormal
-
--- underflows
-dece189 apply -1e-398 -> #8000000000000001 Subnormal
-dece190 apply -1.0e-398 -> #8000000000000001 Subnormal Rounded
-dece191 apply -1.9e-398 -> #8000000000000002 Subnormal Underflow Inexact Rounded
-dece192 apply -1.1e-398 -> #8000000000000001 Subnormal Underflow Inexact Rounded
-dece193 apply -1.00000000001e-398 -> #8000000000000001 Subnormal Underflow Inexact Rounded
-dece194 apply -1.00000000000001e-398 -> #8000000000000001 Subnormal Underflow Inexact Rounded
-dece195 apply -1.000000000000001e-398 -> #8000000000000001 Subnormal Underflow Inexact Rounded
-dece196 apply -0.1e-398 -> #8000000000000000 Subnormal Underflow Inexact Rounded
-dece197 apply -0.00000000001e-398 -> #8000000000000000 Subnormal Underflow Inexact Rounded
-dece198 apply -0.00000000000001e-398 -> #8000000000000000 Subnormal Underflow Inexact Rounded
-dece199 apply -0.000000000000001e-398 -> #8000000000000000 Subnormal Underflow Inexact Rounded
-
--- zeros
-dece401 apply 0E-500 -> #0000000000000000 Clamped
-dece402 apply 0E-400 -> #0000000000000000 Clamped
-dece403 apply 0E-398 -> #0000000000000000
-dece404 apply #0000000000000000 -> 0E-398
-dece405 apply 0.000000000000000E-383 -> #0000000000000000
-dece406 apply #0000000000000000 -> 0E-398
-dece407 apply 0E-2 -> #2230000000000000
-dece408 apply #2230000000000000 -> 0.00
-dece409 apply 0 -> #2238000000000000
-dece410 apply #2238000000000000 -> 0
-dece411 apply 0E+3 -> #2244000000000000
-dece412 apply #2244000000000000 -> 0E+3
-dece413 apply 0E+369 -> #43fc000000000000
-dece414 apply #43fc000000000000 -> 0E+369
--- clamped zeros...
-dece415 apply 0E+370 -> #43fc000000000000 Clamped
-dece416 apply #43fc000000000000 -> 0E+369
-dece417 apply 0E+384 -> #43fc000000000000 Clamped
-dece418 apply #43fc000000000000 -> 0E+369
-dece419 apply 0E+400 -> #43fc000000000000 Clamped
-dece420 apply #43fc000000000000 -> 0E+369
-dece421 apply 0E+500 -> #43fc000000000000 Clamped
-dece422 apply #43fc000000000000 -> 0E+369
-
--- negative zeros
-dece431 apply -0E-400 -> #8000000000000000 Clamped
-dece432 apply -0E-400 -> #8000000000000000 Clamped
-dece433 apply -0E-398 -> #8000000000000000
-dece434 apply #8000000000000000 -> -0E-398
-dece435 apply -0.000000000000000E-383 -> #8000000000000000
-dece436 apply #8000000000000000 -> -0E-398
-dece437 apply -0E-2 -> #a230000000000000
-dece438 apply #a230000000000000 -> -0.00
-dece439 apply -0 -> #a238000000000000
-dece440 apply #a238000000000000 -> -0
-dece441 apply -0E+3 -> #a244000000000000
-dece442 apply #a244000000000000 -> -0E+3
-dece443 apply -0E+369 -> #c3fc000000000000
-dece444 apply #c3fc000000000000 -> -0E+369
--- clamped zeros...
-dece445 apply -0E+370 -> #c3fc000000000000 Clamped
-dece446 apply #c3fc000000000000 -> -0E+369
-dece447 apply -0E+384 -> #c3fc000000000000 Clamped
-dece448 apply #c3fc000000000000 -> -0E+369
-dece449 apply -0E+400 -> #c3fc000000000000 Clamped
-dece450 apply #c3fc000000000000 -> -0E+369
-dece451 apply -0E+500 -> #c3fc000000000000 Clamped
-dece452 apply #c3fc000000000000 -> -0E+369
-
--- Specials
-dece500 apply Infinity -> #7800000000000000
-dece501 apply #7878787878787878 -> #7800000000000000
-dece502 apply #7800000000000000 -> Infinity
-dece503 apply #7979797979797979 -> #7800000000000000
-dece504 apply #7900000000000000 -> Infinity
-dece505 apply #7a7a7a7a7a7a7a7a -> #7800000000000000
-dece506 apply #7a00000000000000 -> Infinity
-dece507 apply #7b7b7b7b7b7b7b7b -> #7800000000000000
-dece508 apply #7b00000000000000 -> Infinity
-
-dece509 apply NaN -> #7c00000000000000
-dece510 apply #7c7c7c7c7c7c7c7c -> #7c007c7c7c7c7c7c
-dece511 apply #7c00000000000000 -> NaN
-dece512 apply #7d7d7d7d7d7d7d7d -> #7c017d7d7d7d7d7d
-dece513 apply #7d00000000000000 -> NaN
-dece514 apply #7e7e7e7e7e7e7e7e -> #7e007e7e7e7e7c7e
-dece515 apply #7e00000000000000 -> sNaN
-dece516 apply #7f7f7f7f7f7f7f7f -> #7e007f7f7f7f7c7f
-dece517 apply #7f00000000000000 -> sNaN
-dece518 apply #7fffffffffffffff -> sNaN999999999999999
-dece519 apply #7fffffffffffffff -> #7e00ff3fcff3fcff
-
-dece520 apply -Infinity -> #f800000000000000
-dece521 apply #f878787878787878 -> #f800000000000000
-dece522 apply #f800000000000000 -> -Infinity
-dece523 apply #f979797979797979 -> #f800000000000000
-dece524 apply #f900000000000000 -> -Infinity
-dece525 apply #fa7a7a7a7a7a7a7a -> #f800000000000000
-dece526 apply #fa00000000000000 -> -Infinity
-dece527 apply #fb7b7b7b7b7b7b7b -> #f800000000000000
-dece528 apply #fb00000000000000 -> -Infinity
-
-dece529 apply -NaN -> #fc00000000000000
-dece530 apply #fc7c7c7c7c7c7c7c -> #fc007c7c7c7c7c7c
-dece531 apply #fc00000000000000 -> -NaN
-dece532 apply #fd7d7d7d7d7d7d7d -> #fc017d7d7d7d7d7d
-dece533 apply #fd00000000000000 -> -NaN
-dece534 apply #fe7e7e7e7e7e7e7e -> #fe007e7e7e7e7c7e
-dece535 apply #fe00000000000000 -> -sNaN
-dece536 apply #ff7f7f7f7f7f7f7f -> #fe007f7f7f7f7c7f
-dece537 apply #ff00000000000000 -> -sNaN
-dece538 apply #ffffffffffffffff -> -sNaN999999999999999
-dece539 apply #ffffffffffffffff -> #fe00ff3fcff3fcff
-
--- diagnostic NaNs
-dece540 apply NaN -> #7c00000000000000
-dece541 apply NaN0 -> #7c00000000000000
-dece542 apply NaN1 -> #7c00000000000001
-dece543 apply NaN12 -> #7c00000000000012
-dece544 apply NaN79 -> #7c00000000000079
-dece545 apply NaN12345 -> #7c000000000049c5
-dece546 apply NaN123456 -> #7c00000000028e56
-dece547 apply NaN799799 -> #7c000000000f7fdf
-dece548 apply NaN799799799799799 -> #7c03dff7fdff7fdf
-dece549 apply NaN999999999999999 -> #7c00ff3fcff3fcff
-dece550 apply NaN1234567890123456 -> #7c00000000000000 -- too many digits
-
--- fold-down full sequence
-dece601 apply 1E+384 -> #47fc000000000000 Clamped
-dece602 apply #47fc000000000000 -> 1.000000000000000E+384
-dece603 apply 1E+383 -> #43fc800000000000 Clamped
-dece604 apply #43fc800000000000 -> 1.00000000000000E+383
-dece605 apply 1E+382 -> #43fc100000000000 Clamped
-dece606 apply #43fc100000000000 -> 1.0000000000000E+382
-dece607 apply 1E+381 -> #43fc010000000000 Clamped
-dece608 apply #43fc010000000000 -> 1.000000000000E+381
-dece609 apply 1E+380 -> #43fc002000000000 Clamped
-dece610 apply #43fc002000000000 -> 1.00000000000E+380
-dece611 apply 1E+379 -> #43fc000400000000 Clamped
-dece612 apply #43fc000400000000 -> 1.0000000000E+379
-dece613 apply 1E+378 -> #43fc000040000000 Clamped
-dece614 apply #43fc000040000000 -> 1.000000000E+378
-dece615 apply 1E+377 -> #43fc000008000000 Clamped
-dece616 apply #43fc000008000000 -> 1.00000000E+377
-dece617 apply 1E+376 -> #43fc000001000000 Clamped
-dece618 apply #43fc000001000000 -> 1.0000000E+376
-dece619 apply 1E+375 -> #43fc000000100000 Clamped
-dece620 apply #43fc000000100000 -> 1.000000E+375
-dece621 apply 1E+374 -> #43fc000000020000 Clamped
-dece622 apply #43fc000000020000 -> 1.00000E+374
-dece623 apply 1E+373 -> #43fc000000004000 Clamped
-dece624 apply #43fc000000004000 -> 1.0000E+373
-dece625 apply 1E+372 -> #43fc000000000400 Clamped
-dece626 apply #43fc000000000400 -> 1.000E+372
-dece627 apply 1E+371 -> #43fc000000000080 Clamped
-dece628 apply #43fc000000000080 -> 1.00E+371
-dece629 apply 1E+370 -> #43fc000000000010 Clamped
-dece630 apply #43fc000000000010 -> 1.0E+370
-dece631 apply 1E+369 -> #43fc000000000001
-dece632 apply #43fc000000000001 -> 1E+369
-dece633 apply 1E+368 -> #43f8000000000001
-dece634 apply #43f8000000000001 -> 1E+368
--- same with 9s
-dece641 apply 9E+384 -> #77fc000000000000 Clamped
-dece642 apply #77fc000000000000 -> 9.000000000000000E+384
-dece643 apply 9E+383 -> #43fc8c0000000000 Clamped
-dece644 apply #43fc8c0000000000 -> 9.00000000000000E+383
-dece645 apply 9E+382 -> #43fc1a0000000000 Clamped
-dece646 apply #43fc1a0000000000 -> 9.0000000000000E+382
-dece647 apply 9E+381 -> #43fc090000000000 Clamped
-dece648 apply #43fc090000000000 -> 9.000000000000E+381
-dece649 apply 9E+380 -> #43fc002300000000 Clamped
-dece650 apply #43fc002300000000 -> 9.00000000000E+380
-dece651 apply 9E+379 -> #43fc000680000000 Clamped
-dece652 apply #43fc000680000000 -> 9.0000000000E+379
-dece653 apply 9E+378 -> #43fc000240000000 Clamped
-dece654 apply #43fc000240000000 -> 9.000000000E+378
-dece655 apply 9E+377 -> #43fc000008c00000 Clamped
-dece656 apply #43fc000008c00000 -> 9.00000000E+377
-dece657 apply 9E+376 -> #43fc000001a00000 Clamped
-dece658 apply #43fc000001a00000 -> 9.0000000E+376
-dece659 apply 9E+375 -> #43fc000000900000 Clamped
-dece660 apply #43fc000000900000 -> 9.000000E+375
-dece661 apply 9E+374 -> #43fc000000023000 Clamped
-dece662 apply #43fc000000023000 -> 9.00000E+374
-dece663 apply 9E+373 -> #43fc000000006800 Clamped
-dece664 apply #43fc000000006800 -> 9.0000E+373
-dece665 apply 9E+372 -> #43fc000000002400 Clamped
-dece666 apply #43fc000000002400 -> 9.000E+372
-dece667 apply 9E+371 -> #43fc00000000008c Clamped
-dece668 apply #43fc00000000008c -> 9.00E+371
-dece669 apply 9E+370 -> #43fc00000000001a Clamped
-dece670 apply #43fc00000000001a -> 9.0E+370
-dece671 apply 9E+369 -> #43fc000000000009
-dece672 apply #43fc000000000009 -> 9E+369
-dece673 apply 9E+368 -> #43f8000000000009
-dece674 apply #43f8000000000009 -> 9E+368
-
-
--- Selected DPD codes
-dece700 apply #2238000000000000 -> 0
-dece701 apply #2238000000000009 -> 9
-dece702 apply #2238000000000010 -> 10
-dece703 apply #2238000000000019 -> 19
-dece704 apply #2238000000000020 -> 20
-dece705 apply #2238000000000029 -> 29
-dece706 apply #2238000000000030 -> 30
-dece707 apply #2238000000000039 -> 39
-dece708 apply #2238000000000040 -> 40
-dece709 apply #2238000000000049 -> 49
-dece710 apply #2238000000000050 -> 50
-dece711 apply #2238000000000059 -> 59
-dece712 apply #2238000000000060 -> 60
-dece713 apply #2238000000000069 -> 69
-dece714 apply #2238000000000070 -> 70
-dece715 apply #2238000000000071 -> 71
-dece716 apply #2238000000000072 -> 72
-dece717 apply #2238000000000073 -> 73
-dece718 apply #2238000000000074 -> 74
-dece719 apply #2238000000000075 -> 75
-dece720 apply #2238000000000076 -> 76
-dece721 apply #2238000000000077 -> 77
-dece722 apply #2238000000000078 -> 78
-dece723 apply #2238000000000079 -> 79
-
-dece730 apply #223800000000029e -> 994
-dece731 apply #223800000000029f -> 995
-dece732 apply #22380000000002a0 -> 520
-dece733 apply #22380000000002a1 -> 521
-
--- DPD: one of each of the huffman groups
-dece740 apply #22380000000003f7 -> 777
-dece741 apply #22380000000003f8 -> 778
-dece742 apply #22380000000003eb -> 787
-dece743 apply #223800000000037d -> 877
-dece744 apply #223800000000039f -> 997
-dece745 apply #22380000000003bf -> 979
-dece746 apply #22380000000003df -> 799
-dece747 apply #223800000000006e -> 888
-
-
--- DPD all-highs cases (includes the 24 redundant codes)
-dece750 apply #223800000000006e -> 888
-dece751 apply #223800000000016e -> 888
-dece752 apply #223800000000026e -> 888
-dece753 apply #223800000000036e -> 888
-dece754 apply #223800000000006f -> 889
-dece755 apply #223800000000016f -> 889
-dece756 apply #223800000000026f -> 889
-dece757 apply #223800000000036f -> 889
-
-dece760 apply #223800000000007e -> 898
-dece761 apply #223800000000017e -> 898
-dece762 apply #223800000000027e -> 898
-dece763 apply #223800000000037e -> 898
-dece764 apply #223800000000007f -> 899
-dece765 apply #223800000000017f -> 899
-dece766 apply #223800000000027f -> 899
-dece767 apply #223800000000037f -> 899
-
-dece770 apply #22380000000000ee -> 988
-dece771 apply #22380000000001ee -> 988
-dece772 apply #22380000000002ee -> 988
-dece773 apply #22380000000003ee -> 988
-dece774 apply #22380000000000ef -> 989
-dece775 apply #22380000000001ef -> 989
-dece776 apply #22380000000002ef -> 989
-dece777 apply #22380000000003ef -> 989
-
-dece780 apply #22380000000000fe -> 998
-dece781 apply #22380000000001fe -> 998
-dece782 apply #22380000000002fe -> 998
-dece783 apply #22380000000003fe -> 998
-dece784 apply #22380000000000ff -> 999
-dece785 apply #22380000000001ff -> 999
-dece786 apply #22380000000002ff -> 999
-dece787 apply #22380000000003ff -> 999
-
diff --git a/Lib/test/decimaltestdata/divide.decTest b/Lib/test/decimaltestdata/divide.decTest
index 437d82a..1cb82b4 100644
--- a/Lib/test/decimaltestdata/divide.decTest
+++ b/Lib/test/decimaltestdata/divide.decTest
@@ -1,6 +1,6 @@
------------------------------------------------------------------------
-- divide.decTest -- decimal division --
--- Copyright (c) IBM Corporation, 1981, 2004. All rights reserved. --
+-- Copyright (c) IBM Corporation, 1981, 2007. All rights reserved. --
------------------------------------------------------------------------
-- Please see the document "General Decimal Arithmetic Testcases" --
-- at http://www2.hursley.ibm.com/decimal for the description of --
@@ -17,7 +17,7 @@
-- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK --
-- mfc@uk.ibm.com --
------------------------------------------------------------------------
-version: 2.39
+version: 2.56
extended: 1
precision: 9
@@ -47,41 +47,45 @@ divx017 divide 2.400 2 -> 1.200
divx018 divide 2. 2 -> 1
divx019 divide 20 20 -> 1
-divx020 divide 187 187 -> 1
-divx021 divide 5 2 -> 2.5
-divx022 divide 5 2.0 -> 2.5
-divx023 divide 5 2.000 -> 2.5
-divx024 divide 5 0.20 -> 25
-divx025 divide 5 0.200 -> 25
-divx026 divide 10 1 -> 10
-divx027 divide 100 1 -> 100
-divx028 divide 1000 1 -> 1000
-divx029 divide 1000 100 -> 10
-
-divx030 divide 1 2 -> 0.5
-divx031 divide 1 4 -> 0.25
-divx032 divide 1 8 -> 0.125
-divx033 divide 1 16 -> 0.0625
-divx034 divide 1 32 -> 0.03125
-divx035 divide 1 64 -> 0.015625
-divx040 divide 1 -2 -> -0.5
-divx041 divide 1 -4 -> -0.25
-divx042 divide 1 -8 -> -0.125
-divx043 divide 1 -16 -> -0.0625
-divx044 divide 1 -32 -> -0.03125
-divx045 divide 1 -64 -> -0.015625
-divx050 divide -1 2 -> -0.5
-divx051 divide -1 4 -> -0.25
-divx052 divide -1 8 -> -0.125
-divx053 divide -1 16 -> -0.0625
-divx054 divide -1 32 -> -0.03125
-divx055 divide -1 64 -> -0.015625
-divx060 divide -1 -2 -> 0.5
-divx061 divide -1 -4 -> 0.25
-divx062 divide -1 -8 -> 0.125
-divx063 divide -1 -16 -> 0.0625
-divx064 divide -1 -32 -> 0.03125
-divx065 divide -1 -64 -> 0.015625
+divx020 divide 187 187 -> 1
+divx021 divide 5 2 -> 2.5
+divx022 divide 50 20 -> 2.5
+divx023 divide 500 200 -> 2.5
+divx024 divide 50.0 20.0 -> 2.5
+divx025 divide 5.00 2.00 -> 2.5
+divx026 divide 5 2.0 -> 2.5
+divx027 divide 5 2.000 -> 2.5
+divx028 divide 5 0.20 -> 25
+divx029 divide 5 0.200 -> 25
+divx030 divide 10 1 -> 10
+divx031 divide 100 1 -> 100
+divx032 divide 1000 1 -> 1000
+divx033 divide 1000 100 -> 10
+
+divx035 divide 1 2 -> 0.5
+divx036 divide 1 4 -> 0.25
+divx037 divide 1 8 -> 0.125
+divx038 divide 1 16 -> 0.0625
+divx039 divide 1 32 -> 0.03125
+divx040 divide 1 64 -> 0.015625
+divx041 divide 1 -2 -> -0.5
+divx042 divide 1 -4 -> -0.25
+divx043 divide 1 -8 -> -0.125
+divx044 divide 1 -16 -> -0.0625
+divx045 divide 1 -32 -> -0.03125
+divx046 divide 1 -64 -> -0.015625
+divx047 divide -1 2 -> -0.5
+divx048 divide -1 4 -> -0.25
+divx049 divide -1 8 -> -0.125
+divx050 divide -1 16 -> -0.0625
+divx051 divide -1 32 -> -0.03125
+divx052 divide -1 64 -> -0.015625
+divx053 divide -1 -2 -> 0.5
+divx054 divide -1 -4 -> 0.25
+divx055 divide -1 -8 -> 0.125
+divx056 divide -1 -16 -> 0.0625
+divx057 divide -1 -32 -> 0.03125
+divx058 divide -1 -64 -> 0.015625
divx070 divide 999999999 1 -> 999999999
divx071 divide 999999999.4 1 -> 999999999 Inexact Rounded
@@ -763,9 +767,9 @@ divx963 divide 1e-600000000 1e+400000004 -> 1E-1000000004 Subnormal
divx964 divide 1e-600000000 1e+400000005 -> 1E-1000000005 Subnormal
divx965 divide 1e-600000000 1e+400000006 -> 1E-1000000006 Subnormal
divx966 divide 1e-600000000 1e+400000007 -> 1E-1000000007 Subnormal
-divx967 divide 1e-600000000 1e+400000008 -> 0E-1000000007 Underflow Subnormal Inexact Rounded
-divx968 divide 1e-600000000 1e+400000009 -> 0E-1000000007 Underflow Subnormal Inexact Rounded
-divx969 divide 1e-600000000 1e+400000010 -> 0E-1000000007 Underflow Subnormal Inexact Rounded
+divx967 divide 1e-600000000 1e+400000008 -> 0E-1000000007 Underflow Subnormal Inexact Rounded Clamped
+divx968 divide 1e-600000000 1e+400000009 -> 0E-1000000007 Underflow Subnormal Inexact Rounded Clamped
+divx969 divide 1e-600000000 1e+400000010 -> 0E-1000000007 Underflow Subnormal Inexact Rounded Clamped
-- [no equivalent of 'subnormal' for overflow]
divx970 divide 1e+600000000 1e-400000001 -> Infinity Overflow Inexact Rounded
divx971 divide 1e+600000000 1e-400000002 -> Infinity Overflow Inexact Rounded
@@ -779,10 +783,10 @@ divx978 divide 1e+600000000 1e-400000009 -> Infinity Overflow Inexact Rounded
divx979 divide 1e+600000000 1e-400000010 -> Infinity Overflow Inexact Rounded
-- Sign after overflow and underflow
-divx980 divide 1e-600000000 1e+400000009 -> 0E-1000000007 Underflow Subnormal Inexact Rounded
-divx981 divide 1e-600000000 -1e+400000009 -> -0E-1000000007 Underflow Subnormal Inexact Rounded
-divx982 divide -1e-600000000 1e+400000009 -> -0E-1000000007 Underflow Subnormal Inexact Rounded
-divx983 divide -1e-600000000 -1e+400000009 -> 0E-1000000007 Underflow Subnormal Inexact Rounded
+divx980 divide 1e-600000000 1e+400000009 -> 0E-1000000007 Underflow Subnormal Inexact Rounded Clamped
+divx981 divide 1e-600000000 -1e+400000009 -> -0E-1000000007 Underflow Subnormal Inexact Rounded Clamped
+divx982 divide -1e-600000000 1e+400000009 -> -0E-1000000007 Underflow Subnormal Inexact Rounded Clamped
+divx983 divide -1e-600000000 -1e+400000009 -> 0E-1000000007 Underflow Subnormal Inexact Rounded Clamped
divx984 divide 1e+600000000 1e-400000009 -> Infinity Overflow Inexact Rounded
divx985 divide 1e+600000000 -1e-400000009 -> -Infinity Overflow Inexact Rounded
divx986 divide -1e+600000000 1e-400000009 -> -Infinity Overflow Inexact Rounded
@@ -812,6 +816,38 @@ minExponent: -6143
-- 1.465811965811965811965811965811965811966E+7000
divx1010 divide 343E6000 234E-1000 -> Infinity Overflow Inexact Rounded
+precision: 34
+rounding: half_up
+maxExponent: 6144
+minExponent: -6143
+
+-- Examples from SQL proposal (Krishna Kulkarni)
+precision: 7
+divx1021 divide 1E0 1E0 -> 1
+divx1022 divide 1E0 2E0 -> 0.5
+divx1023 divide 1E0 3E0 -> 0.3333333 Inexact Rounded
+divx1024 divide 100E-2 1000E-3 -> 1
+divx1025 divide 24E-1 2E0 -> 1.2
+divx1026 divide 2400E-3 2E0 -> 1.200
+divx1027 divide 5E0 2E0 -> 2.5
+divx1028 divide 5E0 20E-1 -> 2.5
+divx1029 divide 5E0 2000E-3 -> 2.5
+divx1030 divide 5E0 2E-1 -> 25
+divx1031 divide 5E0 20E-2 -> 25
+divx1032 divide 480E-2 3E0 -> 1.60
+divx1033 divide 47E-1 2E0 -> 2.35
+
+-- ECMAScript bad examples
+rounding: half_down
+precision: 7
+divx1050 divide 5 9 -> 0.5555556 Inexact Rounded
+rounding: half_even
+divx1051 divide 5 11 -> 0.4545455 Inexact Rounded
+
+-- payload decapitate
+precision: 5
+divx1055 divide sNaN987654321 1 -> NaN54321 Invalid_operation
+
-- Null tests
divx9998 divide 10 # -> NaN Invalid_operation
divx9999 divide # 10 -> NaN Invalid_operation
diff --git a/Lib/test/decimaltestdata/divideint.decTest b/Lib/test/decimaltestdata/divideint.decTest
index 7c31297..dfa17ca 100644
--- a/Lib/test/decimaltestdata/divideint.decTest
+++ b/Lib/test/decimaltestdata/divideint.decTest
@@ -1,6 +1,6 @@
------------------------------------------------------------------------
-- divideint.decTest -- decimal integer division --
--- Copyright (c) IBM Corporation, 1981, 2004. All rights reserved. --
+-- Copyright (c) IBM Corporation, 1981, 2007. All rights reserved. --
------------------------------------------------------------------------
-- Please see the document "General Decimal Arithmetic Testcases" --
-- at http://www2.hursley.ibm.com/decimal for the description of --
@@ -17,7 +17,7 @@
-- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK --
-- mfc@uk.ibm.com --
------------------------------------------------------------------------
-version: 2.39
+version: 2.56
extended: 1
precision: 9
@@ -234,6 +234,22 @@ dvix286 divideint 0.1 999e-999999997 -> NaN Division_impossible
dvix287 divideint 0.1 9999e-999999997 -> NaN Division_impossible
dvix288 divideint 0.1 99999e-999999997 -> NaN Division_impossible
+-- GD edge cases: lhs smaller than rhs but more digits
+dvix301 divideint 0.9 2 -> 0
+dvix302 divideint 0.9 2.0 -> 0
+dvix303 divideint 0.9 2.1 -> 0
+dvix304 divideint 0.9 2.00 -> 0
+dvix305 divideint 0.9 2.01 -> 0
+dvix306 divideint 0.12 1 -> 0
+dvix307 divideint 0.12 1.0 -> 0
+dvix308 divideint 0.12 1.00 -> 0
+dvix309 divideint 0.12 1.0 -> 0
+dvix310 divideint 0.12 1.00 -> 0
+dvix311 divideint 0.12 2 -> 0
+dvix312 divideint 0.12 2.0 -> 0
+dvix313 divideint 0.12 2.1 -> 0
+dvix314 divideint 0.12 2.00 -> 0
+dvix315 divideint 0.12 2.01 -> 0
-- overflow and underflow tests [from divide]
maxexponent: 999999999
diff --git a/Lib/test/decimaltestdata/dqAbs.decTest b/Lib/test/decimaltestdata/dqAbs.decTest
new file mode 100644
index 0000000..01d1f30
--- /dev/null
+++ b/Lib/test/decimaltestdata/dqAbs.decTest
@@ -0,0 +1,126 @@
+------------------------------------------------------------------------
+-- dqAbs.decTest -- decQuad absolute value, heeding sNaN --
+-- Copyright (c) IBM Corporation, 1981, 2007. All rights reserved. --
+------------------------------------------------------------------------
+-- Please see the document "General Decimal Arithmetic Testcases" --
+-- at http://www2.hursley.ibm.com/decimal for the description of --
+-- these testcases. --
+-- --
+-- These testcases are experimental ('beta' versions), and they --
+-- may contain errors. They are offered on an as-is basis. In --
+-- particular, achieving the same results as the tests here is not --
+-- a guarantee that an implementation complies with any Standard --
+-- or specification. The tests are not exhaustive. --
+-- --
+-- Please send comments, suggestions, and corrections to the author: --
+-- Mike Cowlishaw, IBM Fellow --
+-- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK --
+-- mfc@uk.ibm.com --
+------------------------------------------------------------------------
+version: 2.56
+
+extended: 1
+clamp: 1
+precision: 34
+maxExponent: 6144
+minExponent: -6143
+rounding: half_even
+
+dqabs001 abs '1' -> '1'
+dqabs002 abs '-1' -> '1'
+dqabs003 abs '1.00' -> '1.00'
+dqabs004 abs '-1.00' -> '1.00'
+dqabs005 abs '0' -> '0'
+dqabs006 abs '0.00' -> '0.00'
+dqabs007 abs '00.0' -> '0.0'
+dqabs008 abs '00.00' -> '0.00'
+dqabs009 abs '00' -> '0'
+
+dqabs010 abs '-2' -> '2'
+dqabs011 abs '2' -> '2'
+dqabs012 abs '-2.00' -> '2.00'
+dqabs013 abs '2.00' -> '2.00'
+dqabs014 abs '-0' -> '0'
+dqabs015 abs '-0.00' -> '0.00'
+dqabs016 abs '-00.0' -> '0.0'
+dqabs017 abs '-00.00' -> '0.00'
+dqabs018 abs '-00' -> '0'
+
+dqabs020 abs '-2000000' -> '2000000'
+dqabs021 abs '2000000' -> '2000000'
+
+dqabs030 abs '+0.1' -> '0.1'
+dqabs031 abs '-0.1' -> '0.1'
+dqabs032 abs '+0.01' -> '0.01'
+dqabs033 abs '-0.01' -> '0.01'
+dqabs034 abs '+0.001' -> '0.001'
+dqabs035 abs '-0.001' -> '0.001'
+dqabs036 abs '+0.000001' -> '0.000001'
+dqabs037 abs '-0.000001' -> '0.000001'
+dqabs038 abs '+0.000000000001' -> '1E-12'
+dqabs039 abs '-0.000000000001' -> '1E-12'
+
+-- examples from decArith
+dqabs040 abs '2.1' -> '2.1'
+dqabs041 abs '-100' -> '100'
+dqabs042 abs '101.5' -> '101.5'
+dqabs043 abs '-101.5' -> '101.5'
+
+-- more fixed, potential LHS swaps/overlays if done by subtract 0
+dqabs060 abs '-56267E-10' -> '0.0000056267'
+dqabs061 abs '-56267E-5' -> '0.56267'
+dqabs062 abs '-56267E-2' -> '562.67'
+dqabs063 abs '-56267E-1' -> '5626.7'
+dqabs065 abs '-56267E-0' -> '56267'
+
+-- subnormals and underflow
+
+-- long operand tests
+dqabs321 abs 1234567890123456 -> 1234567890123456
+dqabs322 abs 12345678000 -> 12345678000
+dqabs323 abs 1234567800 -> 1234567800
+dqabs324 abs 1234567890 -> 1234567890
+dqabs325 abs 1234567891 -> 1234567891
+dqabs326 abs 12345678901 -> 12345678901
+dqabs327 abs 1234567896 -> 1234567896
+
+-- zeros
+dqabs111 abs 0 -> 0
+dqabs112 abs -0 -> 0
+dqabs113 abs 0E+6 -> 0E+6
+dqabs114 abs -0E+6 -> 0E+6
+dqabs115 abs 0.0000 -> 0.0000
+dqabs116 abs -0.0000 -> 0.0000
+dqabs117 abs 0E-141 -> 0E-141
+dqabs118 abs -0E-141 -> 0E-141
+
+-- full coefficients, alternating bits
+dqabs121 abs 2682682682682682682682682682682682 -> 2682682682682682682682682682682682
+dqabs122 abs -2682682682682682682682682682682682 -> 2682682682682682682682682682682682
+dqabs123 abs 1341341341341341341341341341341341 -> 1341341341341341341341341341341341
+dqabs124 abs -1341341341341341341341341341341341 -> 1341341341341341341341341341341341
+
+-- Nmax, Nmin, Ntiny
+dqabs131 abs 9.999999999999999999999999999999999E+6144 -> 9.999999999999999999999999999999999E+6144
+dqabs132 abs 1E-6143 -> 1E-6143
+dqabs133 abs 1.000000000000000000000000000000000E-6143 -> 1.000000000000000000000000000000000E-6143
+dqabs134 abs 1E-6176 -> 1E-6176 Subnormal
+
+dqabs135 abs -1E-6176 -> 1E-6176 Subnormal
+dqabs136 abs -1.000000000000000000000000000000000E-6143 -> 1.000000000000000000000000000000000E-6143
+dqabs137 abs -1E-6143 -> 1E-6143
+dqabs138 abs -9.999999999999999999999999999999999E+6144 -> 9.999999999999999999999999999999999E+6144
+
+-- specials
+dqabs520 abs 'Inf' -> 'Infinity'
+dqabs521 abs '-Inf' -> 'Infinity'
+dqabs522 abs NaN -> NaN
+dqabs523 abs sNaN -> NaN Invalid_operation
+dqabs524 abs NaN22 -> NaN22
+dqabs525 abs sNaN33 -> NaN33 Invalid_operation
+dqabs526 abs -NaN22 -> -NaN22
+dqabs527 abs -sNaN33 -> -NaN33 Invalid_operation
+
+-- Null tests
+dqabs900 abs # -> NaN Invalid_operation
+
diff --git a/Lib/test/decimaltestdata/dqAdd.decTest b/Lib/test/decimaltestdata/dqAdd.decTest
new file mode 100644
index 0000000..72238d3
--- /dev/null
+++ b/Lib/test/decimaltestdata/dqAdd.decTest
@@ -0,0 +1,1157 @@
+------------------------------------------------------------------------
+-- dqAdd.decTest -- decQuad addition --
+-- Copyright (c) IBM Corporation, 1981, 2007. All rights reserved. --
+------------------------------------------------------------------------
+-- Please see the document "General Decimal Arithmetic Testcases" --
+-- at http://www2.hursley.ibm.com/decimal for the description of --
+-- these testcases. --
+-- --
+-- These testcases are experimental ('beta' versions), and they --
+-- may contain errors. They are offered on an as-is basis. In --
+-- particular, achieving the same results as the tests here is not --
+-- a guarantee that an implementation complies with any Standard --
+-- or specification. The tests are not exhaustive. --
+-- --
+-- Please send comments, suggestions, and corrections to the author: --
+-- Mike Cowlishaw, IBM Fellow --
+-- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK --
+-- mfc@uk.ibm.com --
+------------------------------------------------------------------------
+version: 2.56
+
+-- This set of tests are for decQuads only; all arguments are
+-- representable in a decQuad
+extended: 1
+clamp: 1
+precision: 34
+maxExponent: 6144
+minExponent: -6143
+rounding: half_even
+
+-- [first group are 'quick confidence check']
+dqadd001 add 1 1 -> 2
+dqadd002 add 2 3 -> 5
+dqadd003 add '5.75' '3.3' -> 9.05
+dqadd004 add '5' '-3' -> 2
+dqadd005 add '-5' '-3' -> -8
+dqadd006 add '-7' '2.5' -> -4.5
+dqadd007 add '0.7' '0.3' -> 1.0
+dqadd008 add '1.25' '1.25' -> 2.50
+dqadd009 add '1.23456789' '1.00000000' -> '2.23456789'
+dqadd010 add '1.23456789' '1.00000011' -> '2.23456800'
+
+-- 1234567890123456 1234567890123456
+dqadd011 add '0.4444444444444444444444444444444446' '0.5555555555555555555555555555555555' -> '1.000000000000000000000000000000000' Inexact Rounded
+dqadd012 add '0.4444444444444444444444444444444445' '0.5555555555555555555555555555555555' -> '1.000000000000000000000000000000000' Rounded
+dqadd013 add '0.4444444444444444444444444444444444' '0.5555555555555555555555555555555555' -> '0.9999999999999999999999999999999999'
+dqadd014 add '4444444444444444444444444444444444' '0.49' -> '4444444444444444444444444444444444' Inexact Rounded
+dqadd015 add '4444444444444444444444444444444444' '0.499' -> '4444444444444444444444444444444444' Inexact Rounded
+dqadd016 add '4444444444444444444444444444444444' '0.4999' -> '4444444444444444444444444444444444' Inexact Rounded
+dqadd017 add '4444444444444444444444444444444444' '0.5000' -> '4444444444444444444444444444444444' Inexact Rounded
+dqadd018 add '4444444444444444444444444444444444' '0.5001' -> '4444444444444444444444444444444445' Inexact Rounded
+dqadd019 add '4444444444444444444444444444444444' '0.501' -> '4444444444444444444444444444444445' Inexact Rounded
+dqadd020 add '4444444444444444444444444444444444' '0.51' -> '4444444444444444444444444444444445' Inexact Rounded
+
+dqadd021 add 0 1 -> 1
+dqadd022 add 1 1 -> 2
+dqadd023 add 2 1 -> 3
+dqadd024 add 3 1 -> 4
+dqadd025 add 4 1 -> 5
+dqadd026 add 5 1 -> 6
+dqadd027 add 6 1 -> 7
+dqadd028 add 7 1 -> 8
+dqadd029 add 8 1 -> 9
+dqadd030 add 9 1 -> 10
+
+-- some carrying effects
+dqadd031 add '0.9998' '0.0000' -> '0.9998'
+dqadd032 add '0.9998' '0.0001' -> '0.9999'
+dqadd033 add '0.9998' '0.0002' -> '1.0000'
+dqadd034 add '0.9998' '0.0003' -> '1.0001'
+
+dqadd035 add '70' '10000e+34' -> '1.000000000000000000000000000000000E+38' Inexact Rounded
+dqadd036 add '700' '10000e+34' -> '1.000000000000000000000000000000000E+38' Inexact Rounded
+dqadd037 add '7000' '10000e+34' -> '1.000000000000000000000000000000000E+38' Inexact Rounded
+dqadd038 add '70000' '10000e+34' -> '1.000000000000000000000000000000001E+38' Inexact Rounded
+dqadd039 add '700000' '10000e+34' -> '1.000000000000000000000000000000007E+38' Rounded
+
+-- symmetry:
+dqadd040 add '10000e+34' '70' -> '1.000000000000000000000000000000000E+38' Inexact Rounded
+dqadd041 add '10000e+34' '700' -> '1.000000000000000000000000000000000E+38' Inexact Rounded
+dqadd042 add '10000e+34' '7000' -> '1.000000000000000000000000000000000E+38' Inexact Rounded
+dqadd044 add '10000e+34' '70000' -> '1.000000000000000000000000000000001E+38' Inexact Rounded
+dqadd045 add '10000e+34' '700000' -> '1.000000000000000000000000000000007E+38' Rounded
+
+-- same, without rounding
+dqadd046 add '10000e+9' '7' -> '10000000000007'
+dqadd047 add '10000e+9' '70' -> '10000000000070'
+dqadd048 add '10000e+9' '700' -> '10000000000700'
+dqadd049 add '10000e+9' '7000' -> '10000000007000'
+dqadd050 add '10000e+9' '70000' -> '10000000070000'
+dqadd051 add '10000e+9' '700000' -> '10000000700000'
+dqadd052 add '10000e+9' '7000000' -> '10000007000000'
+
+-- examples from decarith
+dqadd053 add '12' '7.00' -> '19.00'
+dqadd054 add '1.3' '-1.07' -> '0.23'
+dqadd055 add '1.3' '-1.30' -> '0.00'
+dqadd056 add '1.3' '-2.07' -> '-0.77'
+dqadd057 add '1E+2' '1E+4' -> '1.01E+4'
+
+-- leading zero preservation
+dqadd061 add 1 '0.0001' -> '1.0001'
+dqadd062 add 1 '0.00001' -> '1.00001'
+dqadd063 add 1 '0.000001' -> '1.000001'
+dqadd064 add 1 '0.0000001' -> '1.0000001'
+dqadd065 add 1 '0.00000001' -> '1.00000001'
+
+-- some funny zeros [in case of bad signum]
+dqadd070 add 1 0 -> 1
+dqadd071 add 1 0. -> 1
+dqadd072 add 1 .0 -> 1.0
+dqadd073 add 1 0.0 -> 1.0
+dqadd074 add 1 0.00 -> 1.00
+dqadd075 add 0 1 -> 1
+dqadd076 add 0. 1 -> 1
+dqadd077 add .0 1 -> 1.0
+dqadd078 add 0.0 1 -> 1.0
+dqadd079 add 0.00 1 -> 1.00
+
+-- some carries
+dqadd080 add 999999998 1 -> 999999999
+dqadd081 add 999999999 1 -> 1000000000
+dqadd082 add 99999999 1 -> 100000000
+dqadd083 add 9999999 1 -> 10000000
+dqadd084 add 999999 1 -> 1000000
+dqadd085 add 99999 1 -> 100000
+dqadd086 add 9999 1 -> 10000
+dqadd087 add 999 1 -> 1000
+dqadd088 add 99 1 -> 100
+dqadd089 add 9 1 -> 10
+
+
+-- more LHS swaps
+dqadd090 add '-56267E-10' 0 -> '-0.0000056267'
+dqadd091 add '-56267E-6' 0 -> '-0.056267'
+dqadd092 add '-56267E-5' 0 -> '-0.56267'
+dqadd093 add '-56267E-4' 0 -> '-5.6267'
+dqadd094 add '-56267E-3' 0 -> '-56.267'
+dqadd095 add '-56267E-2' 0 -> '-562.67'
+dqadd096 add '-56267E-1' 0 -> '-5626.7'
+dqadd097 add '-56267E-0' 0 -> '-56267'
+dqadd098 add '-5E-10' 0 -> '-5E-10'
+dqadd099 add '-5E-7' 0 -> '-5E-7'
+dqadd100 add '-5E-6' 0 -> '-0.000005'
+dqadd101 add '-5E-5' 0 -> '-0.00005'
+dqadd102 add '-5E-4' 0 -> '-0.0005'
+dqadd103 add '-5E-1' 0 -> '-0.5'
+dqadd104 add '-5E0' 0 -> '-5'
+dqadd105 add '-5E1' 0 -> '-50'
+dqadd106 add '-5E5' 0 -> '-500000'
+dqadd107 add '-5E33' 0 -> '-5000000000000000000000000000000000'
+dqadd108 add '-5E34' 0 -> '-5.000000000000000000000000000000000E+34' Rounded
+dqadd109 add '-5E35' 0 -> '-5.000000000000000000000000000000000E+35' Rounded
+dqadd110 add '-5E36' 0 -> '-5.000000000000000000000000000000000E+36' Rounded
+dqadd111 add '-5E100' 0 -> '-5.000000000000000000000000000000000E+100' Rounded
+
+-- more RHS swaps
+dqadd113 add 0 '-56267E-10' -> '-0.0000056267'
+dqadd114 add 0 '-56267E-6' -> '-0.056267'
+dqadd116 add 0 '-56267E-5' -> '-0.56267'
+dqadd117 add 0 '-56267E-4' -> '-5.6267'
+dqadd119 add 0 '-56267E-3' -> '-56.267'
+dqadd120 add 0 '-56267E-2' -> '-562.67'
+dqadd121 add 0 '-56267E-1' -> '-5626.7'
+dqadd122 add 0 '-56267E-0' -> '-56267'
+dqadd123 add 0 '-5E-10' -> '-5E-10'
+dqadd124 add 0 '-5E-7' -> '-5E-7'
+dqadd125 add 0 '-5E-6' -> '-0.000005'
+dqadd126 add 0 '-5E-5' -> '-0.00005'
+dqadd127 add 0 '-5E-4' -> '-0.0005'
+dqadd128 add 0 '-5E-1' -> '-0.5'
+dqadd129 add 0 '-5E0' -> '-5'
+dqadd130 add 0 '-5E1' -> '-50'
+dqadd131 add 0 '-5E5' -> '-500000'
+dqadd132 add 0 '-5E33' -> '-5000000000000000000000000000000000'
+dqadd133 add 0 '-5E34' -> '-5.000000000000000000000000000000000E+34' Rounded
+dqadd134 add 0 '-5E35' -> '-5.000000000000000000000000000000000E+35' Rounded
+dqadd135 add 0 '-5E36' -> '-5.000000000000000000000000000000000E+36' Rounded
+dqadd136 add 0 '-5E100' -> '-5.000000000000000000000000000000000E+100' Rounded
+
+-- related
+dqadd137 add 1 '0E-39' -> '1.000000000000000000000000000000000' Rounded
+dqadd138 add -1 '0E-39' -> '-1.000000000000000000000000000000000' Rounded
+dqadd139 add '0E-39' 1 -> '1.000000000000000000000000000000000' Rounded
+dqadd140 add '0E-39' -1 -> '-1.000000000000000000000000000000000' Rounded
+dqadd141 add 1E+29 0.0000 -> '100000000000000000000000000000.0000'
+dqadd142 add 1E+29 0.00000 -> '100000000000000000000000000000.0000' Rounded
+dqadd143 add 0.000 1E+30 -> '1000000000000000000000000000000.000'
+dqadd144 add 0.0000 1E+30 -> '1000000000000000000000000000000.000' Rounded
+
+-- [some of the next group are really constructor tests]
+dqadd146 add '00.0' 0 -> '0.0'
+dqadd147 add '0.00' 0 -> '0.00'
+dqadd148 add 0 '0.00' -> '0.00'
+dqadd149 add 0 '00.0' -> '0.0'
+dqadd150 add '00.0' '0.00' -> '0.00'
+dqadd151 add '0.00' '00.0' -> '0.00'
+dqadd152 add '3' '.3' -> '3.3'
+dqadd153 add '3.' '.3' -> '3.3'
+dqadd154 add '3.0' '.3' -> '3.3'
+dqadd155 add '3.00' '.3' -> '3.30'
+dqadd156 add '3' '3' -> '6'
+dqadd157 add '3' '+3' -> '6'
+dqadd158 add '3' '-3' -> '0'
+dqadd159 add '0.3' '-0.3' -> '0.0'
+dqadd160 add '0.03' '-0.03' -> '0.00'
+
+-- try borderline precision, with carries, etc.
+dqadd161 add '1E+12' '-1' -> '999999999999'
+dqadd162 add '1E+12' '1.11' -> '1000000000001.11'
+dqadd163 add '1.11' '1E+12' -> '1000000000001.11'
+dqadd164 add '-1' '1E+12' -> '999999999999'
+dqadd165 add '7E+12' '-1' -> '6999999999999'
+dqadd166 add '7E+12' '1.11' -> '7000000000001.11'
+dqadd167 add '1.11' '7E+12' -> '7000000000001.11'
+dqadd168 add '-1' '7E+12' -> '6999999999999'
+
+rounding: half_up
+dqadd170 add '4.444444444444444444444444444444444' '0.5555555555555555555555555555555567' -> '5.000000000000000000000000000000001' Inexact Rounded
+dqadd171 add '4.444444444444444444444444444444444' '0.5555555555555555555555555555555566' -> '5.000000000000000000000000000000001' Inexact Rounded
+dqadd172 add '4.444444444444444444444444444444444' '0.5555555555555555555555555555555565' -> '5.000000000000000000000000000000001' Inexact Rounded
+dqadd173 add '4.444444444444444444444444444444444' '0.5555555555555555555555555555555564' -> '5.000000000000000000000000000000000' Inexact Rounded
+dqadd174 add '4.444444444444444444444444444444444' '0.5555555555555555555555555555555553' -> '4.999999999999999999999999999999999' Inexact Rounded
+dqadd175 add '4.444444444444444444444444444444444' '0.5555555555555555555555555555555552' -> '4.999999999999999999999999999999999' Inexact Rounded
+dqadd176 add '4.444444444444444444444444444444444' '0.5555555555555555555555555555555551' -> '4.999999999999999999999999999999999' Inexact Rounded
+dqadd177 add '4.444444444444444444444444444444444' '0.5555555555555555555555555555555550' -> '4.999999999999999999999999999999999' Rounded
+dqadd178 add '4.444444444444444444444444444444444' '0.5555555555555555555555555555555545' -> '4.999999999999999999999999999999999' Inexact Rounded
+dqadd179 add '4.444444444444444444444444444444444' '0.5555555555555555555555555555555544' -> '4.999999999999999999999999999999998' Inexact Rounded
+dqadd180 add '4.444444444444444444444444444444444' '0.5555555555555555555555555555555543' -> '4.999999999999999999999999999999998' Inexact Rounded
+dqadd181 add '4.444444444444444444444444444444444' '0.5555555555555555555555555555555542' -> '4.999999999999999999999999999999998' Inexact Rounded
+dqadd182 add '4.444444444444444444444444444444444' '0.5555555555555555555555555555555541' -> '4.999999999999999999999999999999998' Inexact Rounded
+dqadd183 add '4.444444444444444444444444444444444' '0.5555555555555555555555555555555540' -> '4.999999999999999999999999999999998' Rounded
+
+-- and some more, including residue effects and different roundings
+rounding: half_up
+dqadd200 add '1231234567890123456784560123456789' 0 -> '1231234567890123456784560123456789'
+dqadd201 add '1231234567890123456784560123456789' 0.000000001 -> '1231234567890123456784560123456789' Inexact Rounded
+dqadd202 add '1231234567890123456784560123456789' 0.000001 -> '1231234567890123456784560123456789' Inexact Rounded
+dqadd203 add '1231234567890123456784560123456789' 0.1 -> '1231234567890123456784560123456789' Inexact Rounded
+dqadd204 add '1231234567890123456784560123456789' 0.4 -> '1231234567890123456784560123456789' Inexact Rounded
+dqadd205 add '1231234567890123456784560123456789' 0.49 -> '1231234567890123456784560123456789' Inexact Rounded
+dqadd206 add '1231234567890123456784560123456789' 0.499999 -> '1231234567890123456784560123456789' Inexact Rounded
+dqadd207 add '1231234567890123456784560123456789' 0.499999999 -> '1231234567890123456784560123456789' Inexact Rounded
+dqadd208 add '1231234567890123456784560123456789' 0.5 -> '1231234567890123456784560123456790' Inexact Rounded
+dqadd209 add '1231234567890123456784560123456789' 0.500000001 -> '1231234567890123456784560123456790' Inexact Rounded
+dqadd210 add '1231234567890123456784560123456789' 0.500001 -> '1231234567890123456784560123456790' Inexact Rounded
+dqadd211 add '1231234567890123456784560123456789' 0.51 -> '1231234567890123456784560123456790' Inexact Rounded
+dqadd212 add '1231234567890123456784560123456789' 0.6 -> '1231234567890123456784560123456790' Inexact Rounded
+dqadd213 add '1231234567890123456784560123456789' 0.9 -> '1231234567890123456784560123456790' Inexact Rounded
+dqadd214 add '1231234567890123456784560123456789' 0.99999 -> '1231234567890123456784560123456790' Inexact Rounded
+dqadd215 add '1231234567890123456784560123456789' 0.999999999 -> '1231234567890123456784560123456790' Inexact Rounded
+dqadd216 add '1231234567890123456784560123456789' 1 -> '1231234567890123456784560123456790'
+dqadd217 add '1231234567890123456784560123456789' 1.000000001 -> '1231234567890123456784560123456790' Inexact Rounded
+dqadd218 add '1231234567890123456784560123456789' 1.00001 -> '1231234567890123456784560123456790' Inexact Rounded
+dqadd219 add '1231234567890123456784560123456789' 1.1 -> '1231234567890123456784560123456790' Inexact Rounded
+
+rounding: half_even
+dqadd220 add '1231234567890123456784560123456789' 0 -> '1231234567890123456784560123456789'
+dqadd221 add '1231234567890123456784560123456789' 0.000000001 -> '1231234567890123456784560123456789' Inexact Rounded
+dqadd222 add '1231234567890123456784560123456789' 0.000001 -> '1231234567890123456784560123456789' Inexact Rounded
+dqadd223 add '1231234567890123456784560123456789' 0.1 -> '1231234567890123456784560123456789' Inexact Rounded
+dqadd224 add '1231234567890123456784560123456789' 0.4 -> '1231234567890123456784560123456789' Inexact Rounded
+dqadd225 add '1231234567890123456784560123456789' 0.49 -> '1231234567890123456784560123456789' Inexact Rounded
+dqadd226 add '1231234567890123456784560123456789' 0.499999 -> '1231234567890123456784560123456789' Inexact Rounded
+dqadd227 add '1231234567890123456784560123456789' 0.499999999 -> '1231234567890123456784560123456789' Inexact Rounded
+dqadd228 add '1231234567890123456784560123456789' 0.5 -> '1231234567890123456784560123456790' Inexact Rounded
+dqadd229 add '1231234567890123456784560123456789' 0.500000001 -> '1231234567890123456784560123456790' Inexact Rounded
+dqadd230 add '1231234567890123456784560123456789' 0.500001 -> '1231234567890123456784560123456790' Inexact Rounded
+dqadd231 add '1231234567890123456784560123456789' 0.51 -> '1231234567890123456784560123456790' Inexact Rounded
+dqadd232 add '1231234567890123456784560123456789' 0.6 -> '1231234567890123456784560123456790' Inexact Rounded
+dqadd233 add '1231234567890123456784560123456789' 0.9 -> '1231234567890123456784560123456790' Inexact Rounded
+dqadd234 add '1231234567890123456784560123456789' 0.99999 -> '1231234567890123456784560123456790' Inexact Rounded
+dqadd235 add '1231234567890123456784560123456789' 0.999999999 -> '1231234567890123456784560123456790' Inexact Rounded
+dqadd236 add '1231234567890123456784560123456789' 1 -> '1231234567890123456784560123456790'
+dqadd237 add '1231234567890123456784560123456789' 1.00000001 -> '1231234567890123456784560123456790' Inexact Rounded
+dqadd238 add '1231234567890123456784560123456789' 1.00001 -> '1231234567890123456784560123456790' Inexact Rounded
+dqadd239 add '1231234567890123456784560123456789' 1.1 -> '1231234567890123456784560123456790' Inexact Rounded
+-- critical few with even bottom digit...
+dqadd240 add '1231234567890123456784560123456788' 0.499999999 -> '1231234567890123456784560123456788' Inexact Rounded
+dqadd241 add '1231234567890123456784560123456788' 0.5 -> '1231234567890123456784560123456788' Inexact Rounded
+dqadd242 add '1231234567890123456784560123456788' 0.500000001 -> '1231234567890123456784560123456789' Inexact Rounded
+
+rounding: down
+dqadd250 add '1231234567890123456784560123456789' 0 -> '1231234567890123456784560123456789'
+dqadd251 add '1231234567890123456784560123456789' 0.000000001 -> '1231234567890123456784560123456789' Inexact Rounded
+dqadd252 add '1231234567890123456784560123456789' 0.000001 -> '1231234567890123456784560123456789' Inexact Rounded
+dqadd253 add '1231234567890123456784560123456789' 0.1 -> '1231234567890123456784560123456789' Inexact Rounded
+dqadd254 add '1231234567890123456784560123456789' 0.4 -> '1231234567890123456784560123456789' Inexact Rounded
+dqadd255 add '1231234567890123456784560123456789' 0.49 -> '1231234567890123456784560123456789' Inexact Rounded
+dqadd256 add '1231234567890123456784560123456789' 0.499999 -> '1231234567890123456784560123456789' Inexact Rounded
+dqadd257 add '1231234567890123456784560123456789' 0.499999999 -> '1231234567890123456784560123456789' Inexact Rounded
+dqadd258 add '1231234567890123456784560123456789' 0.5 -> '1231234567890123456784560123456789' Inexact Rounded
+dqadd259 add '1231234567890123456784560123456789' 0.500000001 -> '1231234567890123456784560123456789' Inexact Rounded
+dqadd260 add '1231234567890123456784560123456789' 0.500001 -> '1231234567890123456784560123456789' Inexact Rounded
+dqadd261 add '1231234567890123456784560123456789' 0.51 -> '1231234567890123456784560123456789' Inexact Rounded
+dqadd262 add '1231234567890123456784560123456789' 0.6 -> '1231234567890123456784560123456789' Inexact Rounded
+dqadd263 add '1231234567890123456784560123456789' 0.9 -> '1231234567890123456784560123456789' Inexact Rounded
+dqadd264 add '1231234567890123456784560123456789' 0.99999 -> '1231234567890123456784560123456789' Inexact Rounded
+dqadd265 add '1231234567890123456784560123456789' 0.999999999 -> '1231234567890123456784560123456789' Inexact Rounded
+dqadd266 add '1231234567890123456784560123456789' 1 -> '1231234567890123456784560123456790'
+dqadd267 add '1231234567890123456784560123456789' 1.00000001 -> '1231234567890123456784560123456790' Inexact Rounded
+dqadd268 add '1231234567890123456784560123456789' 1.00001 -> '1231234567890123456784560123456790' Inexact Rounded
+dqadd269 add '1231234567890123456784560123456789' 1.1 -> '1231234567890123456784560123456790' Inexact Rounded
+
+-- 1 in last place tests
+rounding: half_up
+dqadd301 add -1 1 -> 0
+dqadd302 add 0 1 -> 1
+dqadd303 add 1 1 -> 2
+dqadd304 add 12 1 -> 13
+dqadd305 add 98 1 -> 99
+dqadd306 add 99 1 -> 100
+dqadd307 add 100 1 -> 101
+dqadd308 add 101 1 -> 102
+dqadd309 add -1 -1 -> -2
+dqadd310 add 0 -1 -> -1
+dqadd311 add 1 -1 -> 0
+dqadd312 add 12 -1 -> 11
+dqadd313 add 98 -1 -> 97
+dqadd314 add 99 -1 -> 98
+dqadd315 add 100 -1 -> 99
+dqadd316 add 101 -1 -> 100
+
+dqadd321 add -0.01 0.01 -> 0.00
+dqadd322 add 0.00 0.01 -> 0.01
+dqadd323 add 0.01 0.01 -> 0.02
+dqadd324 add 0.12 0.01 -> 0.13
+dqadd325 add 0.98 0.01 -> 0.99
+dqadd326 add 0.99 0.01 -> 1.00
+dqadd327 add 1.00 0.01 -> 1.01
+dqadd328 add 1.01 0.01 -> 1.02
+dqadd329 add -0.01 -0.01 -> -0.02
+dqadd330 add 0.00 -0.01 -> -0.01
+dqadd331 add 0.01 -0.01 -> 0.00
+dqadd332 add 0.12 -0.01 -> 0.11
+dqadd333 add 0.98 -0.01 -> 0.97
+dqadd334 add 0.99 -0.01 -> 0.98
+dqadd335 add 1.00 -0.01 -> 0.99
+dqadd336 add 1.01 -0.01 -> 1.00
+
+-- some more cases where adding 0 affects the coefficient
+dqadd340 add 1E+3 0 -> 1000
+dqadd341 add 1E+33 0 -> 1000000000000000000000000000000000
+dqadd342 add 1E+34 0 -> 1.000000000000000000000000000000000E+34 Rounded
+dqadd343 add 1E+35 0 -> 1.000000000000000000000000000000000E+35 Rounded
+-- which simply follow from these cases ...
+dqadd344 add 1E+3 1 -> 1001
+dqadd345 add 1E+33 1 -> 1000000000000000000000000000000001
+dqadd346 add 1E+34 1 -> 1.000000000000000000000000000000000E+34 Inexact Rounded
+dqadd347 add 1E+35 1 -> 1.000000000000000000000000000000000E+35 Inexact Rounded
+dqadd348 add 1E+3 7 -> 1007
+dqadd349 add 1E+33 7 -> 1000000000000000000000000000000007
+dqadd350 add 1E+34 7 -> 1.000000000000000000000000000000001E+34 Inexact Rounded
+dqadd351 add 1E+35 7 -> 1.000000000000000000000000000000000E+35 Inexact Rounded
+
+-- tryzeros cases
+rounding: half_up
+dqadd360 add 0E+50 10000E+1 -> 1.0000E+5
+dqadd361 add 0E-50 10000E+1 -> 100000.0000000000000000000000000000 Rounded
+dqadd362 add 10000E+1 0E-50 -> 100000.0000000000000000000000000000 Rounded
+dqadd363 add 10000E+1 10000E-50 -> 100000.0000000000000000000000000000 Rounded Inexact
+dqadd364 add 9.999999999999999999999999999999999E+6144 -9.999999999999999999999999999999999E+6144 -> 0E+6111
+-- 1 234567890123456789012345678901234
+
+-- a curiosity from JSR 13 testing
+rounding: half_down
+dqadd370 add 999999999999999999999999999999999 815 -> 1000000000000000000000000000000814
+dqadd371 add 9999999999999999999999999999999999 815 -> 1.000000000000000000000000000000081E+34 Rounded Inexact
+rounding: half_up
+dqadd372 add 999999999999999999999999999999999 815 -> 1000000000000000000000000000000814
+dqadd373 add 9999999999999999999999999999999999 815 -> 1.000000000000000000000000000000081E+34 Rounded Inexact
+rounding: half_even
+dqadd374 add 999999999999999999999999999999999 815 -> 1000000000000000000000000000000814
+dqadd375 add 9999999999999999999999999999999999 815 -> 1.000000000000000000000000000000081E+34 Rounded Inexact
+
+-- ulp replacement tests
+dqadd400 add 1 77e-32 -> 1.00000000000000000000000000000077
+dqadd401 add 1 77e-33 -> 1.000000000000000000000000000000077
+dqadd402 add 1 77e-34 -> 1.000000000000000000000000000000008 Inexact Rounded
+dqadd403 add 1 77e-35 -> 1.000000000000000000000000000000001 Inexact Rounded
+dqadd404 add 1 77e-36 -> 1.000000000000000000000000000000000 Inexact Rounded
+dqadd405 add 1 77e-37 -> 1.000000000000000000000000000000000 Inexact Rounded
+dqadd406 add 1 77e-299 -> 1.000000000000000000000000000000000 Inexact Rounded
+
+dqadd410 add 10 77e-32 -> 10.00000000000000000000000000000077
+dqadd411 add 10 77e-33 -> 10.00000000000000000000000000000008 Inexact Rounded
+dqadd412 add 10 77e-34 -> 10.00000000000000000000000000000001 Inexact Rounded
+dqadd413 add 10 77e-35 -> 10.00000000000000000000000000000000 Inexact Rounded
+dqadd414 add 10 77e-36 -> 10.00000000000000000000000000000000 Inexact Rounded
+dqadd415 add 10 77e-37 -> 10.00000000000000000000000000000000 Inexact Rounded
+dqadd416 add 10 77e-299 -> 10.00000000000000000000000000000000 Inexact Rounded
+
+dqadd420 add 77e-32 1 -> 1.00000000000000000000000000000077
+dqadd421 add 77e-33 1 -> 1.000000000000000000000000000000077
+dqadd422 add 77e-34 1 -> 1.000000000000000000000000000000008 Inexact Rounded
+dqadd423 add 77e-35 1 -> 1.000000000000000000000000000000001 Inexact Rounded
+dqadd424 add 77e-36 1 -> 1.000000000000000000000000000000000 Inexact Rounded
+dqadd425 add 77e-37 1 -> 1.000000000000000000000000000000000 Inexact Rounded
+dqadd426 add 77e-299 1 -> 1.000000000000000000000000000000000 Inexact Rounded
+
+dqadd430 add 77e-32 10 -> 10.00000000000000000000000000000077
+dqadd431 add 77e-33 10 -> 10.00000000000000000000000000000008 Inexact Rounded
+dqadd432 add 77e-34 10 -> 10.00000000000000000000000000000001 Inexact Rounded
+dqadd433 add 77e-35 10 -> 10.00000000000000000000000000000000 Inexact Rounded
+dqadd434 add 77e-36 10 -> 10.00000000000000000000000000000000 Inexact Rounded
+dqadd435 add 77e-37 10 -> 10.00000000000000000000000000000000 Inexact Rounded
+dqadd436 add 77e-299 10 -> 10.00000000000000000000000000000000 Inexact Rounded
+
+-- negative ulps
+dqadd6440 add 1 -77e-32 -> 0.99999999999999999999999999999923
+dqadd6441 add 1 -77e-33 -> 0.999999999999999999999999999999923
+dqadd6442 add 1 -77e-34 -> 0.9999999999999999999999999999999923
+dqadd6443 add 1 -77e-35 -> 0.9999999999999999999999999999999992 Inexact Rounded
+dqadd6444 add 1 -77e-36 -> 0.9999999999999999999999999999999999 Inexact Rounded
+dqadd6445 add 1 -77e-37 -> 1.000000000000000000000000000000000 Inexact Rounded
+dqadd6446 add 1 -77e-99 -> 1.000000000000000000000000000000000 Inexact Rounded
+
+dqadd6450 add 10 -77e-32 -> 9.99999999999999999999999999999923
+dqadd6451 add 10 -77e-33 -> 9.999999999999999999999999999999923
+dqadd6452 add 10 -77e-34 -> 9.999999999999999999999999999999992 Inexact Rounded
+dqadd6453 add 10 -77e-35 -> 9.999999999999999999999999999999999 Inexact Rounded
+dqadd6454 add 10 -77e-36 -> 10.00000000000000000000000000000000 Inexact Rounded
+dqadd6455 add 10 -77e-37 -> 10.00000000000000000000000000000000 Inexact Rounded
+dqadd6456 add 10 -77e-99 -> 10.00000000000000000000000000000000 Inexact Rounded
+
+dqadd6460 add -77e-32 1 -> 0.99999999999999999999999999999923
+dqadd6461 add -77e-33 1 -> 0.999999999999999999999999999999923
+dqadd6462 add -77e-34 1 -> 0.9999999999999999999999999999999923
+dqadd6463 add -77e-35 1 -> 0.9999999999999999999999999999999992 Inexact Rounded
+dqadd6464 add -77e-36 1 -> 0.9999999999999999999999999999999999 Inexact Rounded
+dqadd6465 add -77e-37 1 -> 1.000000000000000000000000000000000 Inexact Rounded
+dqadd6466 add -77e-99 1 -> 1.000000000000000000000000000000000 Inexact Rounded
+
+dqadd6470 add -77e-32 10 -> 9.99999999999999999999999999999923
+dqadd6471 add -77e-33 10 -> 9.999999999999999999999999999999923
+dqadd6472 add -77e-34 10 -> 9.999999999999999999999999999999992 Inexact Rounded
+dqadd6473 add -77e-35 10 -> 9.999999999999999999999999999999999 Inexact Rounded
+dqadd6474 add -77e-36 10 -> 10.00000000000000000000000000000000 Inexact Rounded
+dqadd6475 add -77e-37 10 -> 10.00000000000000000000000000000000 Inexact Rounded
+dqadd6476 add -77e-99 10 -> 10.00000000000000000000000000000000 Inexact Rounded
+
+-- negative ulps
+dqadd6480 add -1 77e-32 -> -0.99999999999999999999999999999923
+dqadd6481 add -1 77e-33 -> -0.999999999999999999999999999999923
+dqadd6482 add -1 77e-34 -> -0.9999999999999999999999999999999923
+dqadd6483 add -1 77e-35 -> -0.9999999999999999999999999999999992 Inexact Rounded
+dqadd6484 add -1 77e-36 -> -0.9999999999999999999999999999999999 Inexact Rounded
+dqadd6485 add -1 77e-37 -> -1.000000000000000000000000000000000 Inexact Rounded
+dqadd6486 add -1 77e-99 -> -1.000000000000000000000000000000000 Inexact Rounded
+
+dqadd6490 add -10 77e-32 -> -9.99999999999999999999999999999923
+dqadd6491 add -10 77e-33 -> -9.999999999999999999999999999999923
+dqadd6492 add -10 77e-34 -> -9.999999999999999999999999999999992 Inexact Rounded
+dqadd6493 add -10 77e-35 -> -9.999999999999999999999999999999999 Inexact Rounded
+dqadd6494 add -10 77e-36 -> -10.00000000000000000000000000000000 Inexact Rounded
+dqadd6495 add -10 77e-37 -> -10.00000000000000000000000000000000 Inexact Rounded
+dqadd6496 add -10 77e-99 -> -10.00000000000000000000000000000000 Inexact Rounded
+
+dqadd6500 add 77e-32 -1 -> -0.99999999999999999999999999999923
+dqadd6501 add 77e-33 -1 -> -0.999999999999999999999999999999923
+dqadd6502 add 77e-34 -1 -> -0.9999999999999999999999999999999923
+dqadd6503 add 77e-35 -1 -> -0.9999999999999999999999999999999992 Inexact Rounded
+dqadd6504 add 77e-36 -1 -> -0.9999999999999999999999999999999999 Inexact Rounded
+dqadd6505 add 77e-37 -1 -> -1.000000000000000000000000000000000 Inexact Rounded
+dqadd6506 add 77e-99 -1 -> -1.000000000000000000000000000000000 Inexact Rounded
+
+dqadd6510 add 77e-32 -10 -> -9.99999999999999999999999999999923
+dqadd6511 add 77e-33 -10 -> -9.999999999999999999999999999999923
+dqadd6512 add 77e-34 -10 -> -9.999999999999999999999999999999992 Inexact Rounded
+dqadd6513 add 77e-35 -10 -> -9.999999999999999999999999999999999 Inexact Rounded
+dqadd6514 add 77e-36 -10 -> -10.00000000000000000000000000000000 Inexact Rounded
+dqadd6515 add 77e-37 -10 -> -10.00000000000000000000000000000000 Inexact Rounded
+dqadd6516 add 77e-99 -10 -> -10.00000000000000000000000000000000 Inexact Rounded
+
+-- and some more residue effects and different roundings
+rounding: half_up
+dqadd6540 add '9876543219876543216543210123456789' 0 -> '9876543219876543216543210123456789'
+dqadd6541 add '9876543219876543216543210123456789' 0.000000001 -> '9876543219876543216543210123456789' Inexact Rounded
+dqadd6542 add '9876543219876543216543210123456789' 0.000001 -> '9876543219876543216543210123456789' Inexact Rounded
+dqadd6543 add '9876543219876543216543210123456789' 0.1 -> '9876543219876543216543210123456789' Inexact Rounded
+dqadd6544 add '9876543219876543216543210123456789' 0.4 -> '9876543219876543216543210123456789' Inexact Rounded
+dqadd6545 add '9876543219876543216543210123456789' 0.49 -> '9876543219876543216543210123456789' Inexact Rounded
+dqadd6546 add '9876543219876543216543210123456789' 0.499999 -> '9876543219876543216543210123456789' Inexact Rounded
+dqadd6547 add '9876543219876543216543210123456789' 0.499999999 -> '9876543219876543216543210123456789' Inexact Rounded
+dqadd6548 add '9876543219876543216543210123456789' 0.5 -> '9876543219876543216543210123456790' Inexact Rounded
+dqadd6549 add '9876543219876543216543210123456789' 0.500000001 -> '9876543219876543216543210123456790' Inexact Rounded
+dqadd6550 add '9876543219876543216543210123456789' 0.500001 -> '9876543219876543216543210123456790' Inexact Rounded
+dqadd6551 add '9876543219876543216543210123456789' 0.51 -> '9876543219876543216543210123456790' Inexact Rounded
+dqadd6552 add '9876543219876543216543210123456789' 0.6 -> '9876543219876543216543210123456790' Inexact Rounded
+dqadd6553 add '9876543219876543216543210123456789' 0.9 -> '9876543219876543216543210123456790' Inexact Rounded
+dqadd6554 add '9876543219876543216543210123456789' 0.99999 -> '9876543219876543216543210123456790' Inexact Rounded
+dqadd6555 add '9876543219876543216543210123456789' 0.999999999 -> '9876543219876543216543210123456790' Inexact Rounded
+dqadd6556 add '9876543219876543216543210123456789' 1 -> '9876543219876543216543210123456790'
+dqadd6557 add '9876543219876543216543210123456789' 1.000000001 -> '9876543219876543216543210123456790' Inexact Rounded
+dqadd6558 add '9876543219876543216543210123456789' 1.00001 -> '9876543219876543216543210123456790' Inexact Rounded
+dqadd6559 add '9876543219876543216543210123456789' 1.1 -> '9876543219876543216543210123456790' Inexact Rounded
+
+rounding: half_even
+dqadd6560 add '9876543219876543216543210123456789' 0 -> '9876543219876543216543210123456789'
+dqadd6561 add '9876543219876543216543210123456789' 0.000000001 -> '9876543219876543216543210123456789' Inexact Rounded
+dqadd6562 add '9876543219876543216543210123456789' 0.000001 -> '9876543219876543216543210123456789' Inexact Rounded
+dqadd6563 add '9876543219876543216543210123456789' 0.1 -> '9876543219876543216543210123456789' Inexact Rounded
+dqadd6564 add '9876543219876543216543210123456789' 0.4 -> '9876543219876543216543210123456789' Inexact Rounded
+dqadd6565 add '9876543219876543216543210123456789' 0.49 -> '9876543219876543216543210123456789' Inexact Rounded
+dqadd6566 add '9876543219876543216543210123456789' 0.499999 -> '9876543219876543216543210123456789' Inexact Rounded
+dqadd6567 add '9876543219876543216543210123456789' 0.499999999 -> '9876543219876543216543210123456789' Inexact Rounded
+dqadd6568 add '9876543219876543216543210123456789' 0.5 -> '9876543219876543216543210123456790' Inexact Rounded
+dqadd6569 add '9876543219876543216543210123456789' 0.500000001 -> '9876543219876543216543210123456790' Inexact Rounded
+dqadd6570 add '9876543219876543216543210123456789' 0.500001 -> '9876543219876543216543210123456790' Inexact Rounded
+dqadd6571 add '9876543219876543216543210123456789' 0.51 -> '9876543219876543216543210123456790' Inexact Rounded
+dqadd6572 add '9876543219876543216543210123456789' 0.6 -> '9876543219876543216543210123456790' Inexact Rounded
+dqadd6573 add '9876543219876543216543210123456789' 0.9 -> '9876543219876543216543210123456790' Inexact Rounded
+dqadd6574 add '9876543219876543216543210123456789' 0.99999 -> '9876543219876543216543210123456790' Inexact Rounded
+dqadd6575 add '9876543219876543216543210123456789' 0.999999999 -> '9876543219876543216543210123456790' Inexact Rounded
+dqadd6576 add '9876543219876543216543210123456789' 1 -> '9876543219876543216543210123456790'
+dqadd6577 add '9876543219876543216543210123456789' 1.00000001 -> '9876543219876543216543210123456790' Inexact Rounded
+dqadd6578 add '9876543219876543216543210123456789' 1.00001 -> '9876543219876543216543210123456790' Inexact Rounded
+dqadd6579 add '9876543219876543216543210123456789' 1.1 -> '9876543219876543216543210123456790' Inexact Rounded
+
+-- critical few with even bottom digit...
+dqadd7540 add '9876543219876543216543210123456788' 0.499999999 -> '9876543219876543216543210123456788' Inexact Rounded
+dqadd7541 add '9876543219876543216543210123456788' 0.5 -> '9876543219876543216543210123456788' Inexact Rounded
+dqadd7542 add '9876543219876543216543210123456788' 0.500000001 -> '9876543219876543216543210123456789' Inexact Rounded
+
+rounding: down
+dqadd7550 add '9876543219876543216543210123456789' 0 -> '9876543219876543216543210123456789'
+dqadd7551 add '9876543219876543216543210123456789' 0.000000001 -> '9876543219876543216543210123456789' Inexact Rounded
+dqadd7552 add '9876543219876543216543210123456789' 0.000001 -> '9876543219876543216543210123456789' Inexact Rounded
+dqadd7553 add '9876543219876543216543210123456789' 0.1 -> '9876543219876543216543210123456789' Inexact Rounded
+dqadd7554 add '9876543219876543216543210123456789' 0.4 -> '9876543219876543216543210123456789' Inexact Rounded
+dqadd7555 add '9876543219876543216543210123456789' 0.49 -> '9876543219876543216543210123456789' Inexact Rounded
+dqadd7556 add '9876543219876543216543210123456789' 0.499999 -> '9876543219876543216543210123456789' Inexact Rounded
+dqadd7557 add '9876543219876543216543210123456789' 0.499999999 -> '9876543219876543216543210123456789' Inexact Rounded
+dqadd7558 add '9876543219876543216543210123456789' 0.5 -> '9876543219876543216543210123456789' Inexact Rounded
+dqadd7559 add '9876543219876543216543210123456789' 0.500000001 -> '9876543219876543216543210123456789' Inexact Rounded
+dqadd7560 add '9876543219876543216543210123456789' 0.500001 -> '9876543219876543216543210123456789' Inexact Rounded
+dqadd7561 add '9876543219876543216543210123456789' 0.51 -> '9876543219876543216543210123456789' Inexact Rounded
+dqadd7562 add '9876543219876543216543210123456789' 0.6 -> '9876543219876543216543210123456789' Inexact Rounded
+dqadd7563 add '9876543219876543216543210123456789' 0.9 -> '9876543219876543216543210123456789' Inexact Rounded
+dqadd7564 add '9876543219876543216543210123456789' 0.99999 -> '9876543219876543216543210123456789' Inexact Rounded
+dqadd7565 add '9876543219876543216543210123456789' 0.999999999 -> '9876543219876543216543210123456789' Inexact Rounded
+dqadd7566 add '9876543219876543216543210123456789' 1 -> '9876543219876543216543210123456790'
+dqadd7567 add '9876543219876543216543210123456789' 1.00000001 -> '9876543219876543216543210123456790' Inexact Rounded
+dqadd7568 add '9876543219876543216543210123456789' 1.00001 -> '9876543219876543216543210123456790' Inexact Rounded
+dqadd7569 add '9876543219876543216543210123456789' 1.1 -> '9876543219876543216543210123456790' Inexact Rounded
+
+-- more zeros, etc.
+rounding: half_even
+
+dqadd7701 add 5.00 1.00E-3 -> 5.00100
+dqadd7702 add 00.00 0.000 -> 0.000
+dqadd7703 add 00.00 0E-3 -> 0.000
+dqadd7704 add 0E-3 00.00 -> 0.000
+
+dqadd7710 add 0E+3 00.00 -> 0.00
+dqadd7711 add 0E+3 00.0 -> 0.0
+dqadd7712 add 0E+3 00. -> 0
+dqadd7713 add 0E+3 00.E+1 -> 0E+1
+dqadd7714 add 0E+3 00.E+2 -> 0E+2
+dqadd7715 add 0E+3 00.E+3 -> 0E+3
+dqadd7716 add 0E+3 00.E+4 -> 0E+3
+dqadd7717 add 0E+3 00.E+5 -> 0E+3
+dqadd7718 add 0E+3 -00.0 -> 0.0
+dqadd7719 add 0E+3 -00. -> 0
+dqadd7731 add 0E+3 -00.E+1 -> 0E+1
+
+dqadd7720 add 00.00 0E+3 -> 0.00
+dqadd7721 add 00.0 0E+3 -> 0.0
+dqadd7722 add 00. 0E+3 -> 0
+dqadd7723 add 00.E+1 0E+3 -> 0E+1
+dqadd7724 add 00.E+2 0E+3 -> 0E+2
+dqadd7725 add 00.E+3 0E+3 -> 0E+3
+dqadd7726 add 00.E+4 0E+3 -> 0E+3
+dqadd7727 add 00.E+5 0E+3 -> 0E+3
+dqadd7728 add -00.00 0E+3 -> 0.00
+dqadd7729 add -00.0 0E+3 -> 0.0
+dqadd7730 add -00. 0E+3 -> 0
+
+dqadd7732 add 0 0 -> 0
+dqadd7733 add 0 -0 -> 0
+dqadd7734 add -0 0 -> 0
+dqadd7735 add -0 -0 -> -0 -- IEEE 854 special case
+
+dqadd7736 add 1 -1 -> 0
+dqadd7737 add -1 -1 -> -2
+dqadd7738 add 1 1 -> 2
+dqadd7739 add -1 1 -> 0
+
+dqadd7741 add 0 -1 -> -1
+dqadd7742 add -0 -1 -> -1
+dqadd7743 add 0 1 -> 1
+dqadd7744 add -0 1 -> 1
+dqadd7745 add -1 0 -> -1
+dqadd7746 add -1 -0 -> -1
+dqadd7747 add 1 0 -> 1
+dqadd7748 add 1 -0 -> 1
+
+dqadd7751 add 0.0 -1 -> -1.0
+dqadd7752 add -0.0 -1 -> -1.0
+dqadd7753 add 0.0 1 -> 1.0
+dqadd7754 add -0.0 1 -> 1.0
+dqadd7755 add -1.0 0 -> -1.0
+dqadd7756 add -1.0 -0 -> -1.0
+dqadd7757 add 1.0 0 -> 1.0
+dqadd7758 add 1.0 -0 -> 1.0
+
+dqadd7761 add 0 -1.0 -> -1.0
+dqadd7762 add -0 -1.0 -> -1.0
+dqadd7763 add 0 1.0 -> 1.0
+dqadd7764 add -0 1.0 -> 1.0
+dqadd7765 add -1 0.0 -> -1.0
+dqadd7766 add -1 -0.0 -> -1.0
+dqadd7767 add 1 0.0 -> 1.0
+dqadd7768 add 1 -0.0 -> 1.0
+
+dqadd7771 add 0.0 -1.0 -> -1.0
+dqadd7772 add -0.0 -1.0 -> -1.0
+dqadd7773 add 0.0 1.0 -> 1.0
+dqadd7774 add -0.0 1.0 -> 1.0
+dqadd7775 add -1.0 0.0 -> -1.0
+dqadd7776 add -1.0 -0.0 -> -1.0
+dqadd7777 add 1.0 0.0 -> 1.0
+dqadd7778 add 1.0 -0.0 -> 1.0
+
+-- Specials
+dqadd7780 add -Inf -Inf -> -Infinity
+dqadd7781 add -Inf -1000 -> -Infinity
+dqadd7782 add -Inf -1 -> -Infinity
+dqadd7783 add -Inf -0 -> -Infinity
+dqadd7784 add -Inf 0 -> -Infinity
+dqadd7785 add -Inf 1 -> -Infinity
+dqadd7786 add -Inf 1000 -> -Infinity
+dqadd7787 add -1000 -Inf -> -Infinity
+dqadd7788 add -Inf -Inf -> -Infinity
+dqadd7789 add -1 -Inf -> -Infinity
+dqadd7790 add -0 -Inf -> -Infinity
+dqadd7791 add 0 -Inf -> -Infinity
+dqadd7792 add 1 -Inf -> -Infinity
+dqadd7793 add 1000 -Inf -> -Infinity
+dqadd7794 add Inf -Inf -> NaN Invalid_operation
+
+dqadd7800 add Inf -Inf -> NaN Invalid_operation
+dqadd7801 add Inf -1000 -> Infinity
+dqadd7802 add Inf -1 -> Infinity
+dqadd7803 add Inf -0 -> Infinity
+dqadd7804 add Inf 0 -> Infinity
+dqadd7805 add Inf 1 -> Infinity
+dqadd7806 add Inf 1000 -> Infinity
+dqadd7807 add Inf Inf -> Infinity
+dqadd7808 add -1000 Inf -> Infinity
+dqadd7809 add -Inf Inf -> NaN Invalid_operation
+dqadd7810 add -1 Inf -> Infinity
+dqadd7811 add -0 Inf -> Infinity
+dqadd7812 add 0 Inf -> Infinity
+dqadd7813 add 1 Inf -> Infinity
+dqadd7814 add 1000 Inf -> Infinity
+dqadd7815 add Inf Inf -> Infinity
+
+dqadd7821 add NaN -Inf -> NaN
+dqadd7822 add NaN -1000 -> NaN
+dqadd7823 add NaN -1 -> NaN
+dqadd7824 add NaN -0 -> NaN
+dqadd7825 add NaN 0 -> NaN
+dqadd7826 add NaN 1 -> NaN
+dqadd7827 add NaN 1000 -> NaN
+dqadd7828 add NaN Inf -> NaN
+dqadd7829 add NaN NaN -> NaN
+dqadd7830 add -Inf NaN -> NaN
+dqadd7831 add -1000 NaN -> NaN
+dqadd7832 add -1 NaN -> NaN
+dqadd7833 add -0 NaN -> NaN
+dqadd7834 add 0 NaN -> NaN
+dqadd7835 add 1 NaN -> NaN
+dqadd7836 add 1000 NaN -> NaN
+dqadd7837 add Inf NaN -> NaN
+
+dqadd7841 add sNaN -Inf -> NaN Invalid_operation
+dqadd7842 add sNaN -1000 -> NaN Invalid_operation
+dqadd7843 add sNaN -1 -> NaN Invalid_operation
+dqadd7844 add sNaN -0 -> NaN Invalid_operation
+dqadd7845 add sNaN 0 -> NaN Invalid_operation
+dqadd7846 add sNaN 1 -> NaN Invalid_operation
+dqadd7847 add sNaN 1000 -> NaN Invalid_operation
+dqadd7848 add sNaN NaN -> NaN Invalid_operation
+dqadd7849 add sNaN sNaN -> NaN Invalid_operation
+dqadd7850 add NaN sNaN -> NaN Invalid_operation
+dqadd7851 add -Inf sNaN -> NaN Invalid_operation
+dqadd7852 add -1000 sNaN -> NaN Invalid_operation
+dqadd7853 add -1 sNaN -> NaN Invalid_operation
+dqadd7854 add -0 sNaN -> NaN Invalid_operation
+dqadd7855 add 0 sNaN -> NaN Invalid_operation
+dqadd7856 add 1 sNaN -> NaN Invalid_operation
+dqadd7857 add 1000 sNaN -> NaN Invalid_operation
+dqadd7858 add Inf sNaN -> NaN Invalid_operation
+dqadd7859 add NaN sNaN -> NaN Invalid_operation
+
+-- propagating NaNs
+dqadd7861 add NaN1 -Inf -> NaN1
+dqadd7862 add +NaN2 -1000 -> NaN2
+dqadd7863 add NaN3 1000 -> NaN3
+dqadd7864 add NaN4 Inf -> NaN4
+dqadd7865 add NaN5 +NaN6 -> NaN5
+dqadd7866 add -Inf NaN7 -> NaN7
+dqadd7867 add -1000 NaN8 -> NaN8
+dqadd7868 add 1000 NaN9 -> NaN9
+dqadd7869 add Inf +NaN10 -> NaN10
+dqadd7871 add sNaN11 -Inf -> NaN11 Invalid_operation
+dqadd7872 add sNaN12 -1000 -> NaN12 Invalid_operation
+dqadd7873 add sNaN13 1000 -> NaN13 Invalid_operation
+dqadd7874 add sNaN14 NaN17 -> NaN14 Invalid_operation
+dqadd7875 add sNaN15 sNaN18 -> NaN15 Invalid_operation
+dqadd7876 add NaN16 sNaN19 -> NaN19 Invalid_operation
+dqadd7877 add -Inf +sNaN20 -> NaN20 Invalid_operation
+dqadd7878 add -1000 sNaN21 -> NaN21 Invalid_operation
+dqadd7879 add 1000 sNaN22 -> NaN22 Invalid_operation
+dqadd7880 add Inf sNaN23 -> NaN23 Invalid_operation
+dqadd7881 add +NaN25 +sNaN24 -> NaN24 Invalid_operation
+dqadd7882 add -NaN26 NaN28 -> -NaN26
+dqadd7883 add -sNaN27 sNaN29 -> -NaN27 Invalid_operation
+dqadd7884 add 1000 -NaN30 -> -NaN30
+dqadd7885 add 1000 -sNaN31 -> -NaN31 Invalid_operation
+
+-- Here we explore near the boundary of rounding a subnormal to Nmin
+dqadd7575 add 1E-6143 -1E-6176 -> 9.99999999999999999999999999999999E-6144 Subnormal
+dqadd7576 add -1E-6143 +1E-6176 -> -9.99999999999999999999999999999999E-6144 Subnormal
+
+-- check overflow edge case
+-- 1234567890123456
+dqadd7972 apply 9.999999999999999999999999999999999E+6144 -> 9.999999999999999999999999999999999E+6144
+dqadd7973 add 9.999999999999999999999999999999999E+6144 1 -> 9.999999999999999999999999999999999E+6144 Inexact Rounded
+dqadd7974 add 9999999999999999999999999999999999E+6111 1 -> 9.999999999999999999999999999999999E+6144 Inexact Rounded
+dqadd7975 add 9999999999999999999999999999999999E+6111 1E+6111 -> Infinity Overflow Inexact Rounded
+dqadd7976 add 9999999999999999999999999999999999E+6111 9E+6110 -> Infinity Overflow Inexact Rounded
+dqadd7977 add 9999999999999999999999999999999999E+6111 8E+6110 -> Infinity Overflow Inexact Rounded
+dqadd7978 add 9999999999999999999999999999999999E+6111 7E+6110 -> Infinity Overflow Inexact Rounded
+dqadd7979 add 9999999999999999999999999999999999E+6111 6E+6110 -> Infinity Overflow Inexact Rounded
+dqadd7980 add 9999999999999999999999999999999999E+6111 5E+6110 -> Infinity Overflow Inexact Rounded
+dqadd7981 add 9999999999999999999999999999999999E+6111 4E+6110 -> 9.999999999999999999999999999999999E+6144 Inexact Rounded
+dqadd7982 add 9999999999999999999999999999999999E+6111 3E+6110 -> 9.999999999999999999999999999999999E+6144 Inexact Rounded
+dqadd7983 add 9999999999999999999999999999999999E+6111 2E+6110 -> 9.999999999999999999999999999999999E+6144 Inexact Rounded
+dqadd7984 add 9999999999999999999999999999999999E+6111 1E+6110 -> 9.999999999999999999999999999999999E+6144 Inexact Rounded
+
+dqadd7985 apply -9.999999999999999999999999999999999E+6144 -> -9.999999999999999999999999999999999E+6144
+dqadd7986 add -9.999999999999999999999999999999999E+6144 -1 -> -9.999999999999999999999999999999999E+6144 Inexact Rounded
+dqadd7987 add -9999999999999999999999999999999999E+6111 -1 -> -9.999999999999999999999999999999999E+6144 Inexact Rounded
+dqadd7988 add -9999999999999999999999999999999999E+6111 -1E+6111 -> -Infinity Overflow Inexact Rounded
+dqadd7989 add -9999999999999999999999999999999999E+6111 -9E+6110 -> -Infinity Overflow Inexact Rounded
+dqadd7990 add -9999999999999999999999999999999999E+6111 -8E+6110 -> -Infinity Overflow Inexact Rounded
+dqadd7991 add -9999999999999999999999999999999999E+6111 -7E+6110 -> -Infinity Overflow Inexact Rounded
+dqadd7992 add -9999999999999999999999999999999999E+6111 -6E+6110 -> -Infinity Overflow Inexact Rounded
+dqadd7993 add -9999999999999999999999999999999999E+6111 -5E+6110 -> -Infinity Overflow Inexact Rounded
+dqadd7994 add -9999999999999999999999999999999999E+6111 -4E+6110 -> -9.999999999999999999999999999999999E+6144 Inexact Rounded
+dqadd7995 add -9999999999999999999999999999999999E+6111 -3E+6110 -> -9.999999999999999999999999999999999E+6144 Inexact Rounded
+dqadd7996 add -9999999999999999999999999999999999E+6111 -2E+6110 -> -9.999999999999999999999999999999999E+6144 Inexact Rounded
+dqadd7997 add -9999999999999999999999999999999999E+6111 -1E+6110 -> -9.999999999999999999999999999999999E+6144 Inexact Rounded
+
+-- And for round down full and subnormal results
+rounding: down
+dqadd71100 add 1e+2 -1e-6143 -> 99.99999999999999999999999999999999 Rounded Inexact
+dqadd71101 add 1e+1 -1e-6143 -> 9.999999999999999999999999999999999 Rounded Inexact
+dqadd71103 add +1 -1e-6143 -> 0.9999999999999999999999999999999999 Rounded Inexact
+dqadd71104 add 1e-1 -1e-6143 -> 0.09999999999999999999999999999999999 Rounded Inexact
+dqadd71105 add 1e-2 -1e-6143 -> 0.009999999999999999999999999999999999 Rounded Inexact
+dqadd71106 add 1e-3 -1e-6143 -> 0.0009999999999999999999999999999999999 Rounded Inexact
+dqadd71107 add 1e-4 -1e-6143 -> 0.00009999999999999999999999999999999999 Rounded Inexact
+dqadd71108 add 1e-5 -1e-6143 -> 0.000009999999999999999999999999999999999 Rounded Inexact
+dqadd71109 add 1e-6 -1e-6143 -> 9.999999999999999999999999999999999E-7 Rounded Inexact
+
+rounding: ceiling
+dqadd71110 add -1e+2 +1e-6143 -> -99.99999999999999999999999999999999 Rounded Inexact
+dqadd71111 add -1e+1 +1e-6143 -> -9.999999999999999999999999999999999 Rounded Inexact
+dqadd71113 add -1 +1e-6143 -> -0.9999999999999999999999999999999999 Rounded Inexact
+dqadd71114 add -1e-1 +1e-6143 -> -0.09999999999999999999999999999999999 Rounded Inexact
+dqadd71115 add -1e-2 +1e-6143 -> -0.009999999999999999999999999999999999 Rounded Inexact
+dqadd71116 add -1e-3 +1e-6143 -> -0.0009999999999999999999999999999999999 Rounded Inexact
+dqadd71117 add -1e-4 +1e-6143 -> -0.00009999999999999999999999999999999999 Rounded Inexact
+dqadd71118 add -1e-5 +1e-6143 -> -0.000009999999999999999999999999999999999 Rounded Inexact
+dqadd71119 add -1e-6 +1e-6143 -> -9.999999999999999999999999999999999E-7 Rounded Inexact
+
+-- tests based on Gunnar Degnbol's edge case
+rounding: half_even
+
+dqadd71300 add 1E34 -0.5 -> 1.000000000000000000000000000000000E+34 Inexact Rounded
+dqadd71310 add 1E34 -0.51 -> 9999999999999999999999999999999999 Inexact Rounded
+dqadd71311 add 1E34 -0.501 -> 9999999999999999999999999999999999 Inexact Rounded
+dqadd71312 add 1E34 -0.5001 -> 9999999999999999999999999999999999 Inexact Rounded
+dqadd71313 add 1E34 -0.50001 -> 9999999999999999999999999999999999 Inexact Rounded
+dqadd71314 add 1E34 -0.500001 -> 9999999999999999999999999999999999 Inexact Rounded
+dqadd71315 add 1E34 -0.5000001 -> 9999999999999999999999999999999999 Inexact Rounded
+dqadd71316 add 1E34 -0.50000001 -> 9999999999999999999999999999999999 Inexact Rounded
+dqadd71317 add 1E34 -0.500000001 -> 9999999999999999999999999999999999 Inexact Rounded
+dqadd71318 add 1E34 -0.5000000001 -> 9999999999999999999999999999999999 Inexact Rounded
+dqadd71319 add 1E34 -0.50000000001 -> 9999999999999999999999999999999999 Inexact Rounded
+dqadd71320 add 1E34 -0.500000000001 -> 9999999999999999999999999999999999 Inexact Rounded
+dqadd71321 add 1E34 -0.5000000000001 -> 9999999999999999999999999999999999 Inexact Rounded
+dqadd71322 add 1E34 -0.50000000000001 -> 9999999999999999999999999999999999 Inexact Rounded
+dqadd71323 add 1E34 -0.500000000000001 -> 9999999999999999999999999999999999 Inexact Rounded
+dqadd71324 add 1E34 -0.5000000000000001 -> 9999999999999999999999999999999999 Inexact Rounded
+dqadd71325 add 1E34 -0.5000000000000000 -> 1.000000000000000000000000000000000E+34 Inexact Rounded
+dqadd71326 add 1E34 -0.500000000000000 -> 1.000000000000000000000000000000000E+34 Inexact Rounded
+dqadd71327 add 1E34 -0.50000000000000 -> 1.000000000000000000000000000000000E+34 Inexact Rounded
+dqadd71328 add 1E34 -0.5000000000000 -> 1.000000000000000000000000000000000E+34 Inexact Rounded
+dqadd71329 add 1E34 -0.500000000000 -> 1.000000000000000000000000000000000E+34 Inexact Rounded
+dqadd71330 add 1E34 -0.50000000000 -> 1.000000000000000000000000000000000E+34 Inexact Rounded
+dqadd71331 add 1E34 -0.5000000000 -> 1.000000000000000000000000000000000E+34 Inexact Rounded
+dqadd71332 add 1E34 -0.500000000 -> 1.000000000000000000000000000000000E+34 Inexact Rounded
+dqadd71333 add 1E34 -0.50000000 -> 1.000000000000000000000000000000000E+34 Inexact Rounded
+dqadd71334 add 1E34 -0.5000000 -> 1.000000000000000000000000000000000E+34 Inexact Rounded
+dqadd71335 add 1E34 -0.500000 -> 1.000000000000000000000000000000000E+34 Inexact Rounded
+dqadd71336 add 1E34 -0.50000 -> 1.000000000000000000000000000000000E+34 Inexact Rounded
+dqadd71337 add 1E34 -0.5000 -> 1.000000000000000000000000000000000E+34 Inexact Rounded
+dqadd71338 add 1E34 -0.500 -> 1.000000000000000000000000000000000E+34 Inexact Rounded
+dqadd71339 add 1E34 -0.50 -> 1.000000000000000000000000000000000E+34 Inexact Rounded
+
+dqadd71340 add 1E34 -5000000.000010001 -> 9999999999999999999999999995000000 Inexact Rounded
+dqadd71341 add 1E34 -5000000.000000001 -> 9999999999999999999999999995000000 Inexact Rounded
+
+dqadd71349 add 9999999999999999999999999999999999 0.4 -> 9999999999999999999999999999999999 Inexact Rounded
+dqadd71350 add 9999999999999999999999999999999999 0.49 -> 9999999999999999999999999999999999 Inexact Rounded
+dqadd71351 add 9999999999999999999999999999999999 0.499 -> 9999999999999999999999999999999999 Inexact Rounded
+dqadd71352 add 9999999999999999999999999999999999 0.4999 -> 9999999999999999999999999999999999 Inexact Rounded
+dqadd71353 add 9999999999999999999999999999999999 0.49999 -> 9999999999999999999999999999999999 Inexact Rounded
+dqadd71354 add 9999999999999999999999999999999999 0.499999 -> 9999999999999999999999999999999999 Inexact Rounded
+dqadd71355 add 9999999999999999999999999999999999 0.4999999 -> 9999999999999999999999999999999999 Inexact Rounded
+dqadd71356 add 9999999999999999999999999999999999 0.49999999 -> 9999999999999999999999999999999999 Inexact Rounded
+dqadd71357 add 9999999999999999999999999999999999 0.499999999 -> 9999999999999999999999999999999999 Inexact Rounded
+dqadd71358 add 9999999999999999999999999999999999 0.4999999999 -> 9999999999999999999999999999999999 Inexact Rounded
+dqadd71359 add 9999999999999999999999999999999999 0.49999999999 -> 9999999999999999999999999999999999 Inexact Rounded
+dqadd71360 add 9999999999999999999999999999999999 0.499999999999 -> 9999999999999999999999999999999999 Inexact Rounded
+dqadd71361 add 9999999999999999999999999999999999 0.4999999999999 -> 9999999999999999999999999999999999 Inexact Rounded
+dqadd71362 add 9999999999999999999999999999999999 0.49999999999999 -> 9999999999999999999999999999999999 Inexact Rounded
+dqadd71363 add 9999999999999999999999999999999999 0.499999999999999 -> 9999999999999999999999999999999999 Inexact Rounded
+dqadd71364 add 9999999999999999999999999999999999 0.4999999999999999 -> 9999999999999999999999999999999999 Inexact Rounded
+dqadd71365 add 9999999999999999999999999999999999 0.5000000000000000 -> 1.000000000000000000000000000000000E+34 Inexact Rounded
+dqadd71367 add 9999999999999999999999999999999999 0.500000000000000 -> 1.000000000000000000000000000000000E+34 Inexact Rounded
+dqadd71368 add 9999999999999999999999999999999999 0.50000000000000 -> 1.000000000000000000000000000000000E+34 Inexact Rounded
+dqadd71369 add 9999999999999999999999999999999999 0.5000000000000 -> 1.000000000000000000000000000000000E+34 Inexact Rounded
+dqadd71370 add 9999999999999999999999999999999999 0.500000000000 -> 1.000000000000000000000000000000000E+34 Inexact Rounded
+dqadd71371 add 9999999999999999999999999999999999 0.50000000000 -> 1.000000000000000000000000000000000E+34 Inexact Rounded
+dqadd71372 add 9999999999999999999999999999999999 0.5000000000 -> 1.000000000000000000000000000000000E+34 Inexact Rounded
+dqadd71373 add 9999999999999999999999999999999999 0.500000000 -> 1.000000000000000000000000000000000E+34 Inexact Rounded
+dqadd71374 add 9999999999999999999999999999999999 0.50000000 -> 1.000000000000000000000000000000000E+34 Inexact Rounded
+dqadd71375 add 9999999999999999999999999999999999 0.5000000 -> 1.000000000000000000000000000000000E+34 Inexact Rounded
+dqadd71376 add 9999999999999999999999999999999999 0.500000 -> 1.000000000000000000000000000000000E+34 Inexact Rounded
+dqadd71377 add 9999999999999999999999999999999999 0.50000 -> 1.000000000000000000000000000000000E+34 Inexact Rounded
+dqadd71378 add 9999999999999999999999999999999999 0.5000 -> 1.000000000000000000000000000000000E+34 Inexact Rounded
+dqadd71379 add 9999999999999999999999999999999999 0.500 -> 1.000000000000000000000000000000000E+34 Inexact Rounded
+dqadd71380 add 9999999999999999999999999999999999 0.50 -> 1.000000000000000000000000000000000E+34 Inexact Rounded
+dqadd71381 add 9999999999999999999999999999999999 0.5 -> 1.000000000000000000000000000000000E+34 Inexact Rounded
+dqadd71382 add 9999999999999999999999999999999999 0.5000000000000001 -> 1.000000000000000000000000000000000E+34 Inexact Rounded
+dqadd71383 add 9999999999999999999999999999999999 0.500000000000001 -> 1.000000000000000000000000000000000E+34 Inexact Rounded
+dqadd71384 add 9999999999999999999999999999999999 0.50000000000001 -> 1.000000000000000000000000000000000E+34 Inexact Rounded
+dqadd71385 add 9999999999999999999999999999999999 0.5000000000001 -> 1.000000000000000000000000000000000E+34 Inexact Rounded
+dqadd71386 add 9999999999999999999999999999999999 0.500000000001 -> 1.000000000000000000000000000000000E+34 Inexact Rounded
+dqadd71387 add 9999999999999999999999999999999999 0.50000000001 -> 1.000000000000000000000000000000000E+34 Inexact Rounded
+dqadd71388 add 9999999999999999999999999999999999 0.5000000001 -> 1.000000000000000000000000000000000E+34 Inexact Rounded
+dqadd71389 add 9999999999999999999999999999999999 0.500000001 -> 1.000000000000000000000000000000000E+34 Inexact Rounded
+dqadd71390 add 9999999999999999999999999999999999 0.50000001 -> 1.000000000000000000000000000000000E+34 Inexact Rounded
+dqadd71391 add 9999999999999999999999999999999999 0.5000001 -> 1.000000000000000000000000000000000E+34 Inexact Rounded
+dqadd71392 add 9999999999999999999999999999999999 0.500001 -> 1.000000000000000000000000000000000E+34 Inexact Rounded
+dqadd71393 add 9999999999999999999999999999999999 0.50001 -> 1.000000000000000000000000000000000E+34 Inexact Rounded
+dqadd71394 add 9999999999999999999999999999999999 0.5001 -> 1.000000000000000000000000000000000E+34 Inexact Rounded
+dqadd71395 add 9999999999999999999999999999999999 0.501 -> 1.000000000000000000000000000000000E+34 Inexact Rounded
+dqadd71396 add 9999999999999999999999999999999999 0.51 -> 1.000000000000000000000000000000000E+34 Inexact Rounded
+
+-- More GD edge cases, where difference between the unadjusted
+-- exponents is larger than the maximum precision and one side is 0
+dqadd71420 add 0 1.123456789987654321123456789012345 -> 1.123456789987654321123456789012345
+dqadd71421 add 0 1.123456789987654321123456789012345E-1 -> 0.1123456789987654321123456789012345
+dqadd71422 add 0 1.123456789987654321123456789012345E-2 -> 0.01123456789987654321123456789012345
+dqadd71423 add 0 1.123456789987654321123456789012345E-3 -> 0.001123456789987654321123456789012345
+dqadd71424 add 0 1.123456789987654321123456789012345E-4 -> 0.0001123456789987654321123456789012345
+dqadd71425 add 0 1.123456789987654321123456789012345E-5 -> 0.00001123456789987654321123456789012345
+dqadd71426 add 0 1.123456789987654321123456789012345E-6 -> 0.000001123456789987654321123456789012345
+dqadd71427 add 0 1.123456789987654321123456789012345E-7 -> 1.123456789987654321123456789012345E-7
+dqadd71428 add 0 1.123456789987654321123456789012345E-8 -> 1.123456789987654321123456789012345E-8
+dqadd71429 add 0 1.123456789987654321123456789012345E-9 -> 1.123456789987654321123456789012345E-9
+dqadd71430 add 0 1.123456789987654321123456789012345E-10 -> 1.123456789987654321123456789012345E-10
+dqadd71431 add 0 1.123456789987654321123456789012345E-11 -> 1.123456789987654321123456789012345E-11
+dqadd71432 add 0 1.123456789987654321123456789012345E-12 -> 1.123456789987654321123456789012345E-12
+dqadd71433 add 0 1.123456789987654321123456789012345E-13 -> 1.123456789987654321123456789012345E-13
+dqadd71434 add 0 1.123456789987654321123456789012345E-14 -> 1.123456789987654321123456789012345E-14
+dqadd71435 add 0 1.123456789987654321123456789012345E-15 -> 1.123456789987654321123456789012345E-15
+dqadd71436 add 0 1.123456789987654321123456789012345E-16 -> 1.123456789987654321123456789012345E-16
+dqadd71437 add 0 1.123456789987654321123456789012345E-17 -> 1.123456789987654321123456789012345E-17
+dqadd71438 add 0 1.123456789987654321123456789012345E-18 -> 1.123456789987654321123456789012345E-18
+dqadd71439 add 0 1.123456789987654321123456789012345E-19 -> 1.123456789987654321123456789012345E-19
+dqadd71440 add 0 1.123456789987654321123456789012345E-20 -> 1.123456789987654321123456789012345E-20
+dqadd71441 add 0 1.123456789987654321123456789012345E-21 -> 1.123456789987654321123456789012345E-21
+dqadd71442 add 0 1.123456789987654321123456789012345E-22 -> 1.123456789987654321123456789012345E-22
+dqadd71443 add 0 1.123456789987654321123456789012345E-23 -> 1.123456789987654321123456789012345E-23
+dqadd71444 add 0 1.123456789987654321123456789012345E-24 -> 1.123456789987654321123456789012345E-24
+dqadd71445 add 0 1.123456789987654321123456789012345E-25 -> 1.123456789987654321123456789012345E-25
+dqadd71446 add 0 1.123456789987654321123456789012345E-26 -> 1.123456789987654321123456789012345E-26
+dqadd71447 add 0 1.123456789987654321123456789012345E-27 -> 1.123456789987654321123456789012345E-27
+dqadd71448 add 0 1.123456789987654321123456789012345E-28 -> 1.123456789987654321123456789012345E-28
+dqadd71449 add 0 1.123456789987654321123456789012345E-29 -> 1.123456789987654321123456789012345E-29
+dqadd71450 add 0 1.123456789987654321123456789012345E-30 -> 1.123456789987654321123456789012345E-30
+dqadd71451 add 0 1.123456789987654321123456789012345E-31 -> 1.123456789987654321123456789012345E-31
+dqadd71452 add 0 1.123456789987654321123456789012345E-32 -> 1.123456789987654321123456789012345E-32
+dqadd71453 add 0 1.123456789987654321123456789012345E-33 -> 1.123456789987654321123456789012345E-33
+dqadd71454 add 0 1.123456789987654321123456789012345E-34 -> 1.123456789987654321123456789012345E-34
+dqadd71455 add 0 1.123456789987654321123456789012345E-35 -> 1.123456789987654321123456789012345E-35
+dqadd71456 add 0 1.123456789987654321123456789012345E-36 -> 1.123456789987654321123456789012345E-36
+
+-- same, reversed 0
+dqadd71460 add 1.123456789987654321123456789012345 0 -> 1.123456789987654321123456789012345
+dqadd71461 add 1.123456789987654321123456789012345E-1 0 -> 0.1123456789987654321123456789012345
+dqadd71462 add 1.123456789987654321123456789012345E-2 0 -> 0.01123456789987654321123456789012345
+dqadd71463 add 1.123456789987654321123456789012345E-3 0 -> 0.001123456789987654321123456789012345
+dqadd71464 add 1.123456789987654321123456789012345E-4 0 -> 0.0001123456789987654321123456789012345
+dqadd71465 add 1.123456789987654321123456789012345E-5 0 -> 0.00001123456789987654321123456789012345
+dqadd71466 add 1.123456789987654321123456789012345E-6 0 -> 0.000001123456789987654321123456789012345
+dqadd71467 add 1.123456789987654321123456789012345E-7 0 -> 1.123456789987654321123456789012345E-7
+dqadd71468 add 1.123456789987654321123456789012345E-8 0 -> 1.123456789987654321123456789012345E-8
+dqadd71469 add 1.123456789987654321123456789012345E-9 0 -> 1.123456789987654321123456789012345E-9
+dqadd71470 add 1.123456789987654321123456789012345E-10 0 -> 1.123456789987654321123456789012345E-10
+dqadd71471 add 1.123456789987654321123456789012345E-11 0 -> 1.123456789987654321123456789012345E-11
+dqadd71472 add 1.123456789987654321123456789012345E-12 0 -> 1.123456789987654321123456789012345E-12
+dqadd71473 add 1.123456789987654321123456789012345E-13 0 -> 1.123456789987654321123456789012345E-13
+dqadd71474 add 1.123456789987654321123456789012345E-14 0 -> 1.123456789987654321123456789012345E-14
+dqadd71475 add 1.123456789987654321123456789012345E-15 0 -> 1.123456789987654321123456789012345E-15
+dqadd71476 add 1.123456789987654321123456789012345E-16 0 -> 1.123456789987654321123456789012345E-16
+dqadd71477 add 1.123456789987654321123456789012345E-17 0 -> 1.123456789987654321123456789012345E-17
+dqadd71478 add 1.123456789987654321123456789012345E-18 0 -> 1.123456789987654321123456789012345E-18
+dqadd71479 add 1.123456789987654321123456789012345E-19 0 -> 1.123456789987654321123456789012345E-19
+dqadd71480 add 1.123456789987654321123456789012345E-20 0 -> 1.123456789987654321123456789012345E-20
+dqadd71481 add 1.123456789987654321123456789012345E-21 0 -> 1.123456789987654321123456789012345E-21
+dqadd71482 add 1.123456789987654321123456789012345E-22 0 -> 1.123456789987654321123456789012345E-22
+dqadd71483 add 1.123456789987654321123456789012345E-23 0 -> 1.123456789987654321123456789012345E-23
+dqadd71484 add 1.123456789987654321123456789012345E-24 0 -> 1.123456789987654321123456789012345E-24
+dqadd71485 add 1.123456789987654321123456789012345E-25 0 -> 1.123456789987654321123456789012345E-25
+dqadd71486 add 1.123456789987654321123456789012345E-26 0 -> 1.123456789987654321123456789012345E-26
+dqadd71487 add 1.123456789987654321123456789012345E-27 0 -> 1.123456789987654321123456789012345E-27
+dqadd71488 add 1.123456789987654321123456789012345E-28 0 -> 1.123456789987654321123456789012345E-28
+dqadd71489 add 1.123456789987654321123456789012345E-29 0 -> 1.123456789987654321123456789012345E-29
+dqadd71490 add 1.123456789987654321123456789012345E-30 0 -> 1.123456789987654321123456789012345E-30
+dqadd71491 add 1.123456789987654321123456789012345E-31 0 -> 1.123456789987654321123456789012345E-31
+dqadd71492 add 1.123456789987654321123456789012345E-32 0 -> 1.123456789987654321123456789012345E-32
+dqadd71493 add 1.123456789987654321123456789012345E-33 0 -> 1.123456789987654321123456789012345E-33
+dqadd71494 add 1.123456789987654321123456789012345E-34 0 -> 1.123456789987654321123456789012345E-34
+dqadd71495 add 1.123456789987654321123456789012345E-35 0 -> 1.123456789987654321123456789012345E-35
+dqadd71496 add 1.123456789987654321123456789012345E-36 0 -> 1.123456789987654321123456789012345E-36
+
+-- same, Es on the 0
+dqadd71500 add 1.123456789987654321123456789012345 0E-0 -> 1.123456789987654321123456789012345
+dqadd71501 add 1.123456789987654321123456789012345 0E-1 -> 1.123456789987654321123456789012345
+dqadd71502 add 1.123456789987654321123456789012345 0E-2 -> 1.123456789987654321123456789012345
+dqadd71503 add 1.123456789987654321123456789012345 0E-3 -> 1.123456789987654321123456789012345
+dqadd71504 add 1.123456789987654321123456789012345 0E-4 -> 1.123456789987654321123456789012345
+dqadd71505 add 1.123456789987654321123456789012345 0E-5 -> 1.123456789987654321123456789012345
+dqadd71506 add 1.123456789987654321123456789012345 0E-6 -> 1.123456789987654321123456789012345
+dqadd71507 add 1.123456789987654321123456789012345 0E-7 -> 1.123456789987654321123456789012345
+dqadd71508 add 1.123456789987654321123456789012345 0E-8 -> 1.123456789987654321123456789012345
+dqadd71509 add 1.123456789987654321123456789012345 0E-9 -> 1.123456789987654321123456789012345
+dqadd71510 add 1.123456789987654321123456789012345 0E-10 -> 1.123456789987654321123456789012345
+dqadd71511 add 1.123456789987654321123456789012345 0E-11 -> 1.123456789987654321123456789012345
+dqadd71512 add 1.123456789987654321123456789012345 0E-12 -> 1.123456789987654321123456789012345
+dqadd71513 add 1.123456789987654321123456789012345 0E-13 -> 1.123456789987654321123456789012345
+dqadd71514 add 1.123456789987654321123456789012345 0E-14 -> 1.123456789987654321123456789012345
+dqadd71515 add 1.123456789987654321123456789012345 0E-15 -> 1.123456789987654321123456789012345
+dqadd71516 add 1.123456789987654321123456789012345 0E-16 -> 1.123456789987654321123456789012345
+dqadd71517 add 1.123456789987654321123456789012345 0E-17 -> 1.123456789987654321123456789012345
+dqadd71518 add 1.123456789987654321123456789012345 0E-18 -> 1.123456789987654321123456789012345
+dqadd71519 add 1.123456789987654321123456789012345 0E-19 -> 1.123456789987654321123456789012345
+dqadd71520 add 1.123456789987654321123456789012345 0E-20 -> 1.123456789987654321123456789012345
+dqadd71521 add 1.123456789987654321123456789012345 0E-21 -> 1.123456789987654321123456789012345
+dqadd71522 add 1.123456789987654321123456789012345 0E-22 -> 1.123456789987654321123456789012345
+dqadd71523 add 1.123456789987654321123456789012345 0E-23 -> 1.123456789987654321123456789012345
+dqadd71524 add 1.123456789987654321123456789012345 0E-24 -> 1.123456789987654321123456789012345
+dqadd71525 add 1.123456789987654321123456789012345 0E-25 -> 1.123456789987654321123456789012345
+dqadd71526 add 1.123456789987654321123456789012345 0E-26 -> 1.123456789987654321123456789012345
+dqadd71527 add 1.123456789987654321123456789012345 0E-27 -> 1.123456789987654321123456789012345
+dqadd71528 add 1.123456789987654321123456789012345 0E-28 -> 1.123456789987654321123456789012345
+dqadd71529 add 1.123456789987654321123456789012345 0E-29 -> 1.123456789987654321123456789012345
+dqadd71530 add 1.123456789987654321123456789012345 0E-30 -> 1.123456789987654321123456789012345
+dqadd71531 add 1.123456789987654321123456789012345 0E-31 -> 1.123456789987654321123456789012345
+dqadd71532 add 1.123456789987654321123456789012345 0E-32 -> 1.123456789987654321123456789012345
+dqadd71533 add 1.123456789987654321123456789012345 0E-33 -> 1.123456789987654321123456789012345
+-- next four flag Rounded because the 0 extends the result
+dqadd71534 add 1.123456789987654321123456789012345 0E-34 -> 1.123456789987654321123456789012345 Rounded
+dqadd71535 add 1.123456789987654321123456789012345 0E-35 -> 1.123456789987654321123456789012345 Rounded
+dqadd71536 add 1.123456789987654321123456789012345 0E-36 -> 1.123456789987654321123456789012345 Rounded
+dqadd71537 add 1.123456789987654321123456789012345 0E-37 -> 1.123456789987654321123456789012345 Rounded
+
+-- sum of two opposite-sign operands is exactly 0 and floor => -0
+rounding: half_up
+-- exact zeros from zeros
+dqadd71600 add 0 0E-19 -> 0E-19
+dqadd71601 add -0 0E-19 -> 0E-19
+dqadd71602 add 0 -0E-19 -> 0E-19
+dqadd71603 add -0 -0E-19 -> -0E-19
+-- exact zeros from non-zeros
+dqadd71611 add -11 11 -> 0
+dqadd71612 add 11 -11 -> 0
+
+rounding: half_down
+-- exact zeros from zeros
+dqadd71620 add 0 0E-19 -> 0E-19
+dqadd71621 add -0 0E-19 -> 0E-19
+dqadd71622 add 0 -0E-19 -> 0E-19
+dqadd71623 add -0 -0E-19 -> -0E-19
+-- exact zeros from non-zeros
+dqadd71631 add -11 11 -> 0
+dqadd71632 add 11 -11 -> 0
+
+rounding: half_even
+-- exact zeros from zeros
+dqadd71640 add 0 0E-19 -> 0E-19
+dqadd71641 add -0 0E-19 -> 0E-19
+dqadd71642 add 0 -0E-19 -> 0E-19
+dqadd71643 add -0 -0E-19 -> -0E-19
+-- exact zeros from non-zeros
+dqadd71651 add -11 11 -> 0
+dqadd71652 add 11 -11 -> 0
+
+rounding: up
+-- exact zeros from zeros
+dqadd71660 add 0 0E-19 -> 0E-19
+dqadd71661 add -0 0E-19 -> 0E-19
+dqadd71662 add 0 -0E-19 -> 0E-19
+dqadd71663 add -0 -0E-19 -> -0E-19
+-- exact zeros from non-zeros
+dqadd71671 add -11 11 -> 0
+dqadd71672 add 11 -11 -> 0
+
+rounding: down
+-- exact zeros from zeros
+dqadd71680 add 0 0E-19 -> 0E-19
+dqadd71681 add -0 0E-19 -> 0E-19
+dqadd71682 add 0 -0E-19 -> 0E-19
+dqadd71683 add -0 -0E-19 -> -0E-19
+-- exact zeros from non-zeros
+dqadd71691 add -11 11 -> 0
+dqadd71692 add 11 -11 -> 0
+
+rounding: ceiling
+-- exact zeros from zeros
+dqadd71700 add 0 0E-19 -> 0E-19
+dqadd71701 add -0 0E-19 -> 0E-19
+dqadd71702 add 0 -0E-19 -> 0E-19
+dqadd71703 add -0 -0E-19 -> -0E-19
+-- exact zeros from non-zeros
+dqadd71711 add -11 11 -> 0
+dqadd71712 add 11 -11 -> 0
+
+-- and the extra-special ugly case; unusual minuses marked by -- *
+rounding: floor
+-- exact zeros from zeros
+dqadd71720 add 0 0E-19 -> 0E-19
+dqadd71721 add -0 0E-19 -> -0E-19 -- *
+dqadd71722 add 0 -0E-19 -> -0E-19 -- *
+dqadd71723 add -0 -0E-19 -> -0E-19
+-- exact zeros from non-zeros
+dqadd71731 add -11 11 -> -0 -- *
+dqadd71732 add 11 -11 -> -0 -- *
+
+-- Examples from SQL proposal (Krishna Kulkarni)
+dqadd71741 add 130E-2 120E-2 -> 2.50
+dqadd71742 add 130E-2 12E-1 -> 2.50
+dqadd71743 add 130E-2 1E0 -> 2.30
+dqadd71744 add 1E2 1E4 -> 1.01E+4
+dqadd71745 add 130E-2 -120E-2 -> 0.10
+dqadd71746 add 130E-2 -12E-1 -> 0.10
+dqadd71747 add 130E-2 -1E0 -> 0.30
+dqadd71748 add 1E2 -1E4 -> -9.9E+3
+
+-- Gappy coefficients; check residue handling even with full coefficient gap
+rounding: half_even
+
+dqadd75001 add 1239876543211234567894567890123456 1 -> 1239876543211234567894567890123457
+dqadd75002 add 1239876543211234567894567890123456 0.6 -> 1239876543211234567894567890123457 Inexact Rounded
+dqadd75003 add 1239876543211234567894567890123456 0.06 -> 1239876543211234567894567890123456 Inexact Rounded
+dqadd75004 add 1239876543211234567894567890123456 6E-3 -> 1239876543211234567894567890123456 Inexact Rounded
+dqadd75005 add 1239876543211234567894567890123456 6E-4 -> 1239876543211234567894567890123456 Inexact Rounded
+dqadd75006 add 1239876543211234567894567890123456 6E-5 -> 1239876543211234567894567890123456 Inexact Rounded
+dqadd75007 add 1239876543211234567894567890123456 6E-6 -> 1239876543211234567894567890123456 Inexact Rounded
+dqadd75008 add 1239876543211234567894567890123456 6E-7 -> 1239876543211234567894567890123456 Inexact Rounded
+dqadd75009 add 1239876543211234567894567890123456 6E-8 -> 1239876543211234567894567890123456 Inexact Rounded
+dqadd75010 add 1239876543211234567894567890123456 6E-9 -> 1239876543211234567894567890123456 Inexact Rounded
+dqadd75011 add 1239876543211234567894567890123456 6E-10 -> 1239876543211234567894567890123456 Inexact Rounded
+dqadd75012 add 1239876543211234567894567890123456 6E-11 -> 1239876543211234567894567890123456 Inexact Rounded
+dqadd75013 add 1239876543211234567894567890123456 6E-12 -> 1239876543211234567894567890123456 Inexact Rounded
+dqadd75014 add 1239876543211234567894567890123456 6E-13 -> 1239876543211234567894567890123456 Inexact Rounded
+dqadd75015 add 1239876543211234567894567890123456 6E-14 -> 1239876543211234567894567890123456 Inexact Rounded
+dqadd75016 add 1239876543211234567894567890123456 6E-15 -> 1239876543211234567894567890123456 Inexact Rounded
+dqadd75017 add 1239876543211234567894567890123456 6E-16 -> 1239876543211234567894567890123456 Inexact Rounded
+dqadd75018 add 1239876543211234567894567890123456 6E-17 -> 1239876543211234567894567890123456 Inexact Rounded
+dqadd75019 add 1239876543211234567894567890123456 6E-18 -> 1239876543211234567894567890123456 Inexact Rounded
+dqadd75020 add 1239876543211234567894567890123456 6E-19 -> 1239876543211234567894567890123456 Inexact Rounded
+dqadd75021 add 1239876543211234567894567890123456 6E-20 -> 1239876543211234567894567890123456 Inexact Rounded
+
+-- widening second argument at gap
+dqadd75030 add 12398765432112345678945678 1 -> 12398765432112345678945679
+dqadd75031 add 12398765432112345678945678 0.1 -> 12398765432112345678945678.1
+dqadd75032 add 12398765432112345678945678 0.12 -> 12398765432112345678945678.12
+dqadd75033 add 12398765432112345678945678 0.123 -> 12398765432112345678945678.123
+dqadd75034 add 12398765432112345678945678 0.1234 -> 12398765432112345678945678.1234
+dqadd75035 add 12398765432112345678945678 0.12345 -> 12398765432112345678945678.12345
+dqadd75036 add 12398765432112345678945678 0.123456 -> 12398765432112345678945678.123456
+dqadd75037 add 12398765432112345678945678 0.1234567 -> 12398765432112345678945678.1234567
+dqadd75038 add 12398765432112345678945678 0.12345678 -> 12398765432112345678945678.12345678
+dqadd75039 add 12398765432112345678945678 0.123456789 -> 12398765432112345678945678.12345679 Inexact Rounded
+dqadd75040 add 12398765432112345678945678 0.123456785 -> 12398765432112345678945678.12345678 Inexact Rounded
+dqadd75041 add 12398765432112345678945678 0.1234567850 -> 12398765432112345678945678.12345678 Inexact Rounded
+dqadd75042 add 12398765432112345678945678 0.1234567851 -> 12398765432112345678945678.12345679 Inexact Rounded
+dqadd75043 add 12398765432112345678945678 0.12345678501 -> 12398765432112345678945678.12345679 Inexact Rounded
+dqadd75044 add 12398765432112345678945678 0.123456785001 -> 12398765432112345678945678.12345679 Inexact Rounded
+dqadd75045 add 12398765432112345678945678 0.1234567850001 -> 12398765432112345678945678.12345679 Inexact Rounded
+dqadd75046 add 12398765432112345678945678 0.12345678500001 -> 12398765432112345678945678.12345679 Inexact Rounded
+dqadd75047 add 12398765432112345678945678 0.123456785000001 -> 12398765432112345678945678.12345679 Inexact Rounded
+dqadd75048 add 12398765432112345678945678 0.1234567850000001 -> 12398765432112345678945678.12345679 Inexact Rounded
+dqadd75049 add 12398765432112345678945678 0.1234567850000000 -> 12398765432112345678945678.12345678 Inexact Rounded
+-- 90123456
+rounding: half_even
+dqadd75050 add 12398765432112345678945678 0.0234567750000000 -> 12398765432112345678945678.02345678 Inexact Rounded
+dqadd75051 add 12398765432112345678945678 0.0034567750000000 -> 12398765432112345678945678.00345678 Inexact Rounded
+dqadd75052 add 12398765432112345678945678 0.0004567750000000 -> 12398765432112345678945678.00045678 Inexact Rounded
+dqadd75053 add 12398765432112345678945678 0.0000567750000000 -> 12398765432112345678945678.00005678 Inexact Rounded
+dqadd75054 add 12398765432112345678945678 0.0000067750000000 -> 12398765432112345678945678.00000678 Inexact Rounded
+dqadd75055 add 12398765432112345678945678 0.0000007750000000 -> 12398765432112345678945678.00000078 Inexact Rounded
+dqadd75056 add 12398765432112345678945678 0.0000000750000000 -> 12398765432112345678945678.00000008 Inexact Rounded
+dqadd75057 add 12398765432112345678945678 0.0000000050000000 -> 12398765432112345678945678.00000000 Inexact Rounded
+dqadd75060 add 12398765432112345678945678 0.0234567750000001 -> 12398765432112345678945678.02345678 Inexact Rounded
+dqadd75061 add 12398765432112345678945678 0.0034567750000001 -> 12398765432112345678945678.00345678 Inexact Rounded
+dqadd75062 add 12398765432112345678945678 0.0004567750000001 -> 12398765432112345678945678.00045678 Inexact Rounded
+dqadd75063 add 12398765432112345678945678 0.0000567750000001 -> 12398765432112345678945678.00005678 Inexact Rounded
+dqadd75064 add 12398765432112345678945678 0.0000067750000001 -> 12398765432112345678945678.00000678 Inexact Rounded
+dqadd75065 add 12398765432112345678945678 0.0000007750000001 -> 12398765432112345678945678.00000078 Inexact Rounded
+dqadd75066 add 12398765432112345678945678 0.0000000750000001 -> 12398765432112345678945678.00000008 Inexact Rounded
+dqadd75067 add 12398765432112345678945678 0.0000000050000001 -> 12398765432112345678945678.00000001 Inexact Rounded
+-- far-out residues (full coefficient gap is 16+15 digits)
+rounding: up
+dqadd75070 add 12398765432112345678945678 1E-8 -> 12398765432112345678945678.00000001
+dqadd75071 add 12398765432112345678945678 1E-9 -> 12398765432112345678945678.00000001 Inexact Rounded
+dqadd75072 add 12398765432112345678945678 1E-10 -> 12398765432112345678945678.00000001 Inexact Rounded
+dqadd75073 add 12398765432112345678945678 1E-11 -> 12398765432112345678945678.00000001 Inexact Rounded
+dqadd75074 add 12398765432112345678945678 1E-12 -> 12398765432112345678945678.00000001 Inexact Rounded
+dqadd75075 add 12398765432112345678945678 1E-13 -> 12398765432112345678945678.00000001 Inexact Rounded
+dqadd75076 add 12398765432112345678945678 1E-14 -> 12398765432112345678945678.00000001 Inexact Rounded
+dqadd75077 add 12398765432112345678945678 1E-15 -> 12398765432112345678945678.00000001 Inexact Rounded
+dqadd75078 add 12398765432112345678945678 1E-16 -> 12398765432112345678945678.00000001 Inexact Rounded
+dqadd75079 add 12398765432112345678945678 1E-17 -> 12398765432112345678945678.00000001 Inexact Rounded
+dqadd75080 add 12398765432112345678945678 1E-18 -> 12398765432112345678945678.00000001 Inexact Rounded
+dqadd75081 add 12398765432112345678945678 1E-19 -> 12398765432112345678945678.00000001 Inexact Rounded
+dqadd75082 add 12398765432112345678945678 1E-20 -> 12398765432112345678945678.00000001 Inexact Rounded
+dqadd75083 add 12398765432112345678945678 1E-25 -> 12398765432112345678945678.00000001 Inexact Rounded
+dqadd75084 add 12398765432112345678945678 1E-30 -> 12398765432112345678945678.00000001 Inexact Rounded
+dqadd75085 add 12398765432112345678945678 1E-31 -> 12398765432112345678945678.00000001 Inexact Rounded
+dqadd75086 add 12398765432112345678945678 1E-32 -> 12398765432112345678945678.00000001 Inexact Rounded
+dqadd75087 add 12398765432112345678945678 1E-33 -> 12398765432112345678945678.00000001 Inexact Rounded
+dqadd75088 add 12398765432112345678945678 1E-34 -> 12398765432112345678945678.00000001 Inexact Rounded
+dqadd75089 add 12398765432112345678945678 1E-35 -> 12398765432112345678945678.00000001 Inexact Rounded
+
+-- Null tests
+dqadd9990 add 10 # -> NaN Invalid_operation
+dqadd9991 add # 10 -> NaN Invalid_operation
diff --git a/Lib/test/decimaltestdata/dqAnd.decTest b/Lib/test/decimaltestdata/dqAnd.decTest
new file mode 100644
index 0000000..be3fb34
--- /dev/null
+++ b/Lib/test/decimaltestdata/dqAnd.decTest
@@ -0,0 +1,420 @@
+------------------------------------------------------------------------
+-- dqAnd.decTest -- digitwise logical AND for decQuads --
+-- Copyright (c) IBM Corporation, 1981, 2007. All rights reserved. --
+------------------------------------------------------------------------
+-- Please see the document "General Decimal Arithmetic Testcases" --
+-- at http://www2.hursley.ibm.com/decimal for the description of --
+-- these testcases. --
+-- --
+-- These testcases are experimental ('beta' versions), and they --
+-- may contain errors. They are offered on an as-is basis. In --
+-- particular, achieving the same results as the tests here is not --
+-- a guarantee that an implementation complies with any Standard --
+-- or specification. The tests are not exhaustive. --
+-- --
+-- Please send comments, suggestions, and corrections to the author: --
+-- Mike Cowlishaw, IBM Fellow --
+-- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK --
+-- mfc@uk.ibm.com --
+------------------------------------------------------------------------
+version: 2.56
+
+extended: 1
+clamp: 1
+precision: 34
+maxExponent: 6144
+minExponent: -6143
+rounding: half_even
+
+-- Sanity check (truth table)
+dqand001 and 0 0 -> 0
+dqand002 and 0 1 -> 0
+dqand003 and 1 0 -> 0
+dqand004 and 1 1 -> 1
+dqand005 and 1100 1010 -> 1000
+-- and at msd and msd-1
+-- 1234567890123456789012345678901234
+dqand006 and 0000000000000000000000000000000000 0000000000000000000000000000000000 -> 0
+dqand007 and 0000000000000000000000000000000000 1000000000000000000000000000000000 -> 0
+dqand008 and 1000000000000000000000000000000000 0000000000000000000000000000000000 -> 0
+dqand009 and 1000000000000000000000000000000000 1000000000000000000000000000000000 -> 1000000000000000000000000000000000
+dqand010 and 0000000000000000000000000000000000 0000000000000000000000000000000000 -> 0
+dqand011 and 0000000000000000000000000000000000 0100000000000000000000000000000000 -> 0
+dqand012 and 0100000000000000000000000000000000 0000000000000000000000000000000000 -> 0
+dqand013 and 0100000000000000000000000000000000 0100000000000000000000000000000000 -> 100000000000000000000000000000000
+
+-- Various lengths
+-- 1234567890123456789012345678901234
+
+dqand601 and 0111111111111111111111111111111111 1111111111111111111111111111111111 -> 111111111111111111111111111111111
+dqand602 and 1011111111111111111111111111111111 1111111111111111111111111111111111 -> 1011111111111111111111111111111111
+dqand603 and 1101111111111111111111111111111111 1111111111111111111111111111111111 -> 1101111111111111111111111111111111
+dqand604 and 1110111111111111111111111111111111 1111111111111111111111111111111111 -> 1110111111111111111111111111111111
+dqand605 and 1111011111111111111111111111111111 1111111111111111111111111111111111 -> 1111011111111111111111111111111111
+dqand606 and 1111101111111111111111111111111111 1111111111111111111111111111111111 -> 1111101111111111111111111111111111
+dqand607 and 1111110111111111111111111111111111 1111111111111111111111111111111111 -> 1111110111111111111111111111111111
+dqand608 and 1111111011111111111111111111111111 1111111111111111111111111111111111 -> 1111111011111111111111111111111111
+dqand609 and 1111111101111111111111111111111111 1111111111111111111111111111111111 -> 1111111101111111111111111111111111
+dqand610 and 1111111110111111111111111111111111 1111111111111111111111111111111111 -> 1111111110111111111111111111111111
+dqand611 and 1111111111011111111111111111111111 1111111111111111111111111111111111 -> 1111111111011111111111111111111111
+dqand612 and 1111111111101111111111111111111111 1111111111111111111111111111111111 -> 1111111111101111111111111111111111
+dqand613 and 1111111111110111111111111111111111 1111111111111111111111111111111111 -> 1111111111110111111111111111111111
+dqand614 and 1111111111111011111111111111111111 1111111111111111111111111111111111 -> 1111111111111011111111111111111111
+dqand615 and 1111111111111101111111111111111111 1111111111111111111111111111111111 -> 1111111111111101111111111111111111
+dqand616 and 1111111111111110111111111111111111 1111111111111111111111111111111111 -> 1111111111111110111111111111111111
+dqand617 and 1111111111111111011111111111111111 1111111111111111111111111111111111 -> 1111111111111111011111111111111111
+dqand618 and 1111111111111111101111111111111111 1111111111111111111111111111111111 -> 1111111111111111101111111111111111
+dqand619 and 1111111111111111110111111111111111 1111111111111111111111111111111111 -> 1111111111111111110111111111111111
+dqand620 and 1111111111111111111011111111111111 1111111111111111111111111111111111 -> 1111111111111111111011111111111111
+dqand621 and 1111111111111111111101111111111111 1111111111111111111111111111111111 -> 1111111111111111111101111111111111
+dqand622 and 1111111111111111111110111111111111 1111111111111111111111111111111111 -> 1111111111111111111110111111111111
+dqand623 and 1111111111111111111111011111111111 1111111111111111111111111111111111 -> 1111111111111111111111011111111111
+dqand624 and 1111111111111111111111101111111111 1111111111111111111111111111111111 -> 1111111111111111111111101111111111
+dqand625 and 1111111111111111111111110111111111 1111111111111111111111111111111111 -> 1111111111111111111111110111111111
+dqand626 and 1111111111111111111111111011111111 1111111111111111111111111111111111 -> 1111111111111111111111111011111111
+dqand627 and 1111111111111111111111111101111111 1111111111111111111111111111111111 -> 1111111111111111111111111101111111
+dqand628 and 1111111111111111111111111110111111 1111111111111111111111111111111111 -> 1111111111111111111111111110111111
+dqand629 and 1111111111111111111111111111011111 1111111111111111111111111111111111 -> 1111111111111111111111111111011111
+dqand630 and 1111111111111111111111111111101111 1111111111111111111111111111111111 -> 1111111111111111111111111111101111
+dqand631 and 1111111111111111111111111111110111 1111111111111111111111111111111111 -> 1111111111111111111111111111110111
+dqand632 and 1111111111111111111111111111111011 1111111111111111111111111111111111 -> 1111111111111111111111111111111011
+dqand633 and 1111111111111111111111111111111101 1111111111111111111111111111111111 -> 1111111111111111111111111111111101
+dqand634 and 1111111111111111111111111111111110 1111111111111111111111111111111111 -> 1111111111111111111111111111111110
+
+dqand641 and 1111111111111111111111111111111111 0111111111111111111111111111111111 -> 111111111111111111111111111111111
+dqand642 and 1111111111111111111111111111111111 1011111111111111111111111111111111 -> 1011111111111111111111111111111111
+dqand643 and 1111111111111111111111111111111111 1101111111111111111111111111111111 -> 1101111111111111111111111111111111
+dqand644 and 1111111111111111111111111111111111 1110111111111111111111111111111111 -> 1110111111111111111111111111111111
+dqand645 and 1111111111111111111111111111111111 1111011111111111111111111111111111 -> 1111011111111111111111111111111111
+dqand646 and 1111111111111111111111111111111111 1111101111111111111111111111111111 -> 1111101111111111111111111111111111
+dqand647 and 1111111111111111111111111111111111 1111110111111111111111111111111111 -> 1111110111111111111111111111111111
+dqand648 and 1111111111111111111111111111111111 1111111011111111111111111111111111 -> 1111111011111111111111111111111111
+dqand649 and 1111111111111111111111111111111111 1111111101111111111111111111111111 -> 1111111101111111111111111111111111
+dqand650 and 1111111111111111111111111111111111 1111111110111111111111111111111111 -> 1111111110111111111111111111111111
+dqand651 and 1111111111111111111111111111111111 1111111111011111111111111111111111 -> 1111111111011111111111111111111111
+dqand652 and 1111111111111111111111111111111111 1111111111101111111111111111111111 -> 1111111111101111111111111111111111
+dqand653 and 1111111111111111111111111111111111 1111111111110111111111111111111111 -> 1111111111110111111111111111111111
+dqand654 and 1111111111111111111111111111111111 1111111111111011111111111111111111 -> 1111111111111011111111111111111111
+dqand655 and 1111111111111111111111111111111111 1111111111111101111111111111111111 -> 1111111111111101111111111111111111
+dqand656 and 1111111111111111111111111111111111 1111111111111110111111111111111111 -> 1111111111111110111111111111111111
+dqand657 and 1111111111111111111111111111111111 1111111111111111011111111111111111 -> 1111111111111111011111111111111111
+dqand658 and 1111111111111111111111111111111111 1111111111111111101111111111111111 -> 1111111111111111101111111111111111
+dqand659 and 1111111111111111111111111111111111 1111111111111111110111111111111111 -> 1111111111111111110111111111111111
+dqand660 and 1111111111111111111111111111111111 1111111111111111111011111111111111 -> 1111111111111111111011111111111111
+dqand661 and 1111111111111111111111111111111111 1111111111111111111101111111111111 -> 1111111111111111111101111111111111
+dqand662 and 1111111111111111111111111111111111 1111111111111111111110111111111111 -> 1111111111111111111110111111111111
+dqand663 and 1111111111111111111111111111111111 1111111111111111111111011111111111 -> 1111111111111111111111011111111111
+dqand664 and 1111111111111111111111111111111111 1111111111111111111111101111111111 -> 1111111111111111111111101111111111
+dqand665 and 1111111111111111111111111111111111 1111111111111111111111110111111111 -> 1111111111111111111111110111111111
+dqand666 and 1111111111111111111111111111111111 1111111111111111111111111011111111 -> 1111111111111111111111111011111111
+dqand667 and 1111111111111111111111111111111111 1111111111111111111111111101111111 -> 1111111111111111111111111101111111
+dqand668 and 1111111111111111111111111111111111 1111111111111111111111111110111111 -> 1111111111111111111111111110111111
+dqand669 and 1111111111111111111111111111111111 1111111111111111111111111111011111 -> 1111111111111111111111111111011111
+dqand670 and 1111111111111111111111111111111111 1111111111111111111111111111101111 -> 1111111111111111111111111111101111
+dqand671 and 1111111111111111111111111111111111 1111111111111111111111111111110111 -> 1111111111111111111111111111110111
+dqand672 and 1111111111111111111111111111111111 1111111111111111111111111111111011 -> 1111111111111111111111111111111011
+dqand673 and 1111111111111111111111111111111111 1111111111111111111111111111111101 -> 1111111111111111111111111111111101
+dqand674 and 1111111111111111111111111111111111 1111111111111111111111111111111110 -> 1111111111111111111111111111111110
+dqand675 and 0111111111111111111111111111111111 1111111111111111111111111111111110 -> 111111111111111111111111111111110
+dqand676 and 1111111111111111111111111111111111 1111111111111111111111111111111110 -> 1111111111111111111111111111111110
+
+dqand021 and 1111111111111111 1111111111111111 -> 1111111111111111
+dqand024 and 1111111111111111 111111111111111 -> 111111111111111
+dqand025 and 1111111111111111 11111111111111 -> 11111111111111
+dqand026 and 1111111111111111 1111111111111 -> 1111111111111
+dqand027 and 1111111111111111 111111111111 -> 111111111111
+dqand028 and 1111111111111111 11111111111 -> 11111111111
+dqand029 and 1111111111111111 1111111111 -> 1111111111
+dqand030 and 1111111111111111 111111111 -> 111111111
+dqand031 and 1111111111111111 11111111 -> 11111111
+dqand032 and 1111111111111111 1111111 -> 1111111
+dqand033 and 1111111111111111 111111 -> 111111
+dqand034 and 1111111111111111 11111 -> 11111
+dqand035 and 1111111111111111 1111 -> 1111
+dqand036 and 1111111111111111 111 -> 111
+dqand037 and 1111111111111111 11 -> 11
+dqand038 and 1111111111111111 1 -> 1
+dqand039 and 1111111111111111 0 -> 0
+
+dqand040 and 1111111111111111 1111111111111111 -> 1111111111111111
+dqand041 and 111111111111111 1111111111111111 -> 111111111111111
+dqand042 and 111111111111111 1111111111111111 -> 111111111111111
+dqand043 and 11111111111111 1111111111111111 -> 11111111111111
+dqand044 and 1111111111111 1111111111111111 -> 1111111111111
+dqand045 and 111111111111 1111111111111111 -> 111111111111
+dqand046 and 11111111111 1111111111111111 -> 11111111111
+dqand047 and 1111111111 1111111111111111 -> 1111111111
+dqand048 and 111111111 1111111111111111 -> 111111111
+dqand049 and 11111111 1111111111111111 -> 11111111
+dqand050 and 1111111 1111111111111111 -> 1111111
+dqand051 and 111111 1111111111111111 -> 111111
+dqand052 and 11111 1111111111111111 -> 11111
+dqand053 and 1111 1111111111111111 -> 1111
+dqand054 and 111 1111111111111111 -> 111
+dqand055 and 11 1111111111111111 -> 11
+dqand056 and 1 1111111111111111 -> 1
+dqand057 and 0 1111111111111111 -> 0
+
+dqand150 and 1111111111 1 -> 1
+dqand151 and 111111111 1 -> 1
+dqand152 and 11111111 1 -> 1
+dqand153 and 1111111 1 -> 1
+dqand154 and 111111 1 -> 1
+dqand155 and 11111 1 -> 1
+dqand156 and 1111 1 -> 1
+dqand157 and 111 1 -> 1
+dqand158 and 11 1 -> 1
+dqand159 and 1 1 -> 1
+
+dqand160 and 1111111111 0 -> 0
+dqand161 and 111111111 0 -> 0
+dqand162 and 11111111 0 -> 0
+dqand163 and 1111111 0 -> 0
+dqand164 and 111111 0 -> 0
+dqand165 and 11111 0 -> 0
+dqand166 and 1111 0 -> 0
+dqand167 and 111 0 -> 0
+dqand168 and 11 0 -> 0
+dqand169 and 1 0 -> 0
+
+dqand170 and 1 1111111111 -> 1
+dqand171 and 1 111111111 -> 1
+dqand172 and 1 11111111 -> 1
+dqand173 and 1 1111111 -> 1
+dqand174 and 1 111111 -> 1
+dqand175 and 1 11111 -> 1
+dqand176 and 1 1111 -> 1
+dqand177 and 1 111 -> 1
+dqand178 and 1 11 -> 1
+dqand179 and 1 1 -> 1
+
+dqand180 and 0 1111111111 -> 0
+dqand181 and 0 111111111 -> 0
+dqand182 and 0 11111111 -> 0
+dqand183 and 0 1111111 -> 0
+dqand184 and 0 111111 -> 0
+dqand185 and 0 11111 -> 0
+dqand186 and 0 1111 -> 0
+dqand187 and 0 111 -> 0
+dqand188 and 0 11 -> 0
+dqand189 and 0 1 -> 0
+
+dqand090 and 011111111 111111111 -> 11111111
+dqand091 and 101111111 111111111 -> 101111111
+dqand092 and 110111111 111111111 -> 110111111
+dqand093 and 111011111 111111111 -> 111011111
+dqand094 and 111101111 111111111 -> 111101111
+dqand095 and 111110111 111111111 -> 111110111
+dqand096 and 111111011 111111111 -> 111111011
+dqand097 and 111111101 111111111 -> 111111101
+dqand098 and 111111110 111111111 -> 111111110
+
+dqand100 and 111111111 011111111 -> 11111111
+dqand101 and 111111111 101111111 -> 101111111
+dqand102 and 111111111 110111111 -> 110111111
+dqand103 and 111111111 111011111 -> 111011111
+dqand104 and 111111111 111101111 -> 111101111
+dqand105 and 111111111 111110111 -> 111110111
+dqand106 and 111111111 111111011 -> 111111011
+dqand107 and 111111111 111111101 -> 111111101
+dqand108 and 111111111 111111110 -> 111111110
+
+-- non-0/1 should not be accepted, nor should signs
+dqand220 and 111111112 111111111 -> NaN Invalid_operation
+dqand221 and 333333333 333333333 -> NaN Invalid_operation
+dqand222 and 555555555 555555555 -> NaN Invalid_operation
+dqand223 and 777777777 777777777 -> NaN Invalid_operation
+dqand224 and 999999999 999999999 -> NaN Invalid_operation
+dqand225 and 222222222 999999999 -> NaN Invalid_operation
+dqand226 and 444444444 999999999 -> NaN Invalid_operation
+dqand227 and 666666666 999999999 -> NaN Invalid_operation
+dqand228 and 888888888 999999999 -> NaN Invalid_operation
+dqand229 and 999999999 222222222 -> NaN Invalid_operation
+dqand230 and 999999999 444444444 -> NaN Invalid_operation
+dqand231 and 999999999 666666666 -> NaN Invalid_operation
+dqand232 and 999999999 888888888 -> NaN Invalid_operation
+-- a few randoms
+dqand240 and 567468689 -934981942 -> NaN Invalid_operation
+dqand241 and 567367689 934981942 -> NaN Invalid_operation
+dqand242 and -631917772 -706014634 -> NaN Invalid_operation
+dqand243 and -756253257 138579234 -> NaN Invalid_operation
+dqand244 and 835590149 567435400 -> NaN Invalid_operation
+-- test MSD
+dqand250 and 2000000111000111000111000000000000 1000000111000111000111000000000000 -> NaN Invalid_operation
+dqand251 and 7000000111000111000111000000000000 1000000111000111000111000000000000 -> NaN Invalid_operation
+dqand252 and 8000000111000111000111000000000000 1000000111000111000111000000000000 -> NaN Invalid_operation
+dqand253 and 9000000111000111000111000000000000 1000000111000111000111000000000000 -> NaN Invalid_operation
+dqand254 and 2000000111000111000111000000000000 0000000111000111000111000000000000 -> NaN Invalid_operation
+dqand255 and 7000000111000111000111000000000000 0000000111000111000111000000000000 -> NaN Invalid_operation
+dqand256 and 8000000111000111000111000000000000 0000000111000111000111000000000000 -> NaN Invalid_operation
+dqand257 and 9000000111000111000111000000000000 0000000111000111000111000000000000 -> NaN Invalid_operation
+dqand258 and 1000000111000111000111000000000000 2000000111000111000111000000000000 -> NaN Invalid_operation
+dqand259 and 1000000111000111000111000000000000 7000000111000111000111000000000000 -> NaN Invalid_operation
+dqand260 and 1000000111000111000111000000000000 8000000111000111000111000000000000 -> NaN Invalid_operation
+dqand261 and 1000000111000111000111000000000000 9000000111000111000111000000000000 -> NaN Invalid_operation
+dqand262 and 0000000111000111000111000000000000 2000000111000111000111000000000000 -> NaN Invalid_operation
+dqand263 and 0000000111000111000111000000000000 7000000111000111000111000000000000 -> NaN Invalid_operation
+dqand264 and 0000000111000111000111000000000000 8000000111000111000111000000000000 -> NaN Invalid_operation
+dqand265 and 0000000111000111000111000000000000 9000000111000111000111000000000000 -> NaN Invalid_operation
+-- test MSD-1
+dqand270 and 0200000111000111000111001000000000 1000000111000111000111100000000010 -> NaN Invalid_operation
+dqand271 and 0700000111000111000111000100000000 1000000111000111000111010000000100 -> NaN Invalid_operation
+dqand272 and 0800000111000111000111000010000000 1000000111000111000111001000001000 -> NaN Invalid_operation
+dqand273 and 0900000111000111000111000001000000 1000000111000111000111000100010000 -> NaN Invalid_operation
+dqand274 and 1000000111000111000111000000100000 0200000111000111000111000010100000 -> NaN Invalid_operation
+dqand275 and 1000000111000111000111000000010000 0700000111000111000111000001000000 -> NaN Invalid_operation
+dqand276 and 1000000111000111000111000000001000 0800000111000111000111000010100000 -> NaN Invalid_operation
+dqand277 and 1000000111000111000111000000000100 0900000111000111000111000000010000 -> NaN Invalid_operation
+-- test LSD
+dqand280 and 0010000111000111000111000000000002 1000000111000111000111000100000001 -> NaN Invalid_operation
+dqand281 and 0001000111000111000111000000000007 1000000111000111000111001000000011 -> NaN Invalid_operation
+dqand282 and 0000000111000111000111100000000008 1000000111000111000111010000000001 -> NaN Invalid_operation
+dqand283 and 0000000111000111000111010000000009 1000000111000111000111100000000001 -> NaN Invalid_operation
+dqand284 and 1000000111000111000111001000000000 0001000111000111000111000000000002 -> NaN Invalid_operation
+dqand285 and 1000000111000111000111000100000000 0010000111000111000111000000000007 -> NaN Invalid_operation
+dqand286 and 1000000111000111000111000010000000 0100000111000111000111000000000008 -> NaN Invalid_operation
+dqand287 and 1000000111000111000111000001000000 1000000111000111000111000000000009 -> NaN Invalid_operation
+-- test Middie
+dqand288 and 0010000111000111000111000020000000 1000000111000111000111001000000000 -> NaN Invalid_operation
+dqand289 and 0001000111000111000111000070000001 1000000111000111000111000100000000 -> NaN Invalid_operation
+dqand290 and 0000000111000111000111100080000010 1000000111000111000111000010000000 -> NaN Invalid_operation
+dqand291 and 0000000111000111000111010090000100 1000000111000111000111000001000000 -> NaN Invalid_operation
+dqand292 and 1000000111000111000111001000001000 0000000111000111000111000020100000 -> NaN Invalid_operation
+dqand293 and 1000000111000111000111000100010000 0000000111000111000111000070010000 -> NaN Invalid_operation
+dqand294 and 1000000111000111000111000010100000 0000000111000111000111000080001000 -> NaN Invalid_operation
+dqand295 and 1000000111000111000111000001000000 0000000111000111000111000090000100 -> NaN Invalid_operation
+-- signs
+dqand296 and -1000000111000111000111000001000000 -0000001110001110001110010000000100 -> NaN Invalid_operation
+dqand297 and -1000000111000111000111000001000000 0000001110001110001110000010000100 -> NaN Invalid_operation
+dqand298 and 1000000111000111000111000001000000 -0000001110001110001110001000000100 -> NaN Invalid_operation
+dqand299 and 1000000111000111000111000001000000 0000001110001110001110000011000100 -> 110000110000110000001000000
+
+-- Nmax, Nmin, Ntiny-like
+dqand331 and 2 9.99999999E+999 -> NaN Invalid_operation
+dqand332 and 3 1E-999 -> NaN Invalid_operation
+dqand333 and 4 1.00000000E-999 -> NaN Invalid_operation
+dqand334 and 5 1E-900 -> NaN Invalid_operation
+dqand335 and 6 -1E-900 -> NaN Invalid_operation
+dqand336 and 7 -1.00000000E-999 -> NaN Invalid_operation
+dqand337 and 8 -1E-999 -> NaN Invalid_operation
+dqand338 and 9 -9.99999999E+999 -> NaN Invalid_operation
+dqand341 and 9.99999999E+999 -18 -> NaN Invalid_operation
+dqand342 and 1E-999 01 -> NaN Invalid_operation
+dqand343 and 1.00000000E-999 -18 -> NaN Invalid_operation
+dqand344 and 1E-900 18 -> NaN Invalid_operation
+dqand345 and -1E-900 -10 -> NaN Invalid_operation
+dqand346 and -1.00000000E-999 18 -> NaN Invalid_operation
+dqand347 and -1E-999 10 -> NaN Invalid_operation
+dqand348 and -9.99999999E+999 -18 -> NaN Invalid_operation
+
+-- A few other non-integers
+dqand361 and 1.0 1 -> NaN Invalid_operation
+dqand362 and 1E+1 1 -> NaN Invalid_operation
+dqand363 and 0.0 1 -> NaN Invalid_operation
+dqand364 and 0E+1 1 -> NaN Invalid_operation
+dqand365 and 9.9 1 -> NaN Invalid_operation
+dqand366 and 9E+1 1 -> NaN Invalid_operation
+dqand371 and 0 1.0 -> NaN Invalid_operation
+dqand372 and 0 1E+1 -> NaN Invalid_operation
+dqand373 and 0 0.0 -> NaN Invalid_operation
+dqand374 and 0 0E+1 -> NaN Invalid_operation
+dqand375 and 0 9.9 -> NaN Invalid_operation
+dqand376 and 0 9E+1 -> NaN Invalid_operation
+
+-- All Specials are in error
+dqand780 and -Inf -Inf -> NaN Invalid_operation
+dqand781 and -Inf -1000 -> NaN Invalid_operation
+dqand782 and -Inf -1 -> NaN Invalid_operation
+dqand783 and -Inf -0 -> NaN Invalid_operation
+dqand784 and -Inf 0 -> NaN Invalid_operation
+dqand785 and -Inf 1 -> NaN Invalid_operation
+dqand786 and -Inf 1000 -> NaN Invalid_operation
+dqand787 and -1000 -Inf -> NaN Invalid_operation
+dqand788 and -Inf -Inf -> NaN Invalid_operation
+dqand789 and -1 -Inf -> NaN Invalid_operation
+dqand790 and -0 -Inf -> NaN Invalid_operation
+dqand791 and 0 -Inf -> NaN Invalid_operation
+dqand792 and 1 -Inf -> NaN Invalid_operation
+dqand793 and 1000 -Inf -> NaN Invalid_operation
+dqand794 and Inf -Inf -> NaN Invalid_operation
+
+dqand800 and Inf -Inf -> NaN Invalid_operation
+dqand801 and Inf -1000 -> NaN Invalid_operation
+dqand802 and Inf -1 -> NaN Invalid_operation
+dqand803 and Inf -0 -> NaN Invalid_operation
+dqand804 and Inf 0 -> NaN Invalid_operation
+dqand805 and Inf 1 -> NaN Invalid_operation
+dqand806 and Inf 1000 -> NaN Invalid_operation
+dqand807 and Inf Inf -> NaN Invalid_operation
+dqand808 and -1000 Inf -> NaN Invalid_operation
+dqand809 and -Inf Inf -> NaN Invalid_operation
+dqand810 and -1 Inf -> NaN Invalid_operation
+dqand811 and -0 Inf -> NaN Invalid_operation
+dqand812 and 0 Inf -> NaN Invalid_operation
+dqand813 and 1 Inf -> NaN Invalid_operation
+dqand814 and 1000 Inf -> NaN Invalid_operation
+dqand815 and Inf Inf -> NaN Invalid_operation
+
+dqand821 and NaN -Inf -> NaN Invalid_operation
+dqand822 and NaN -1000 -> NaN Invalid_operation
+dqand823 and NaN -1 -> NaN Invalid_operation
+dqand824 and NaN -0 -> NaN Invalid_operation
+dqand825 and NaN 0 -> NaN Invalid_operation
+dqand826 and NaN 1 -> NaN Invalid_operation
+dqand827 and NaN 1000 -> NaN Invalid_operation
+dqand828 and NaN Inf -> NaN Invalid_operation
+dqand829 and NaN NaN -> NaN Invalid_operation
+dqand830 and -Inf NaN -> NaN Invalid_operation
+dqand831 and -1000 NaN -> NaN Invalid_operation
+dqand832 and -1 NaN -> NaN Invalid_operation
+dqand833 and -0 NaN -> NaN Invalid_operation
+dqand834 and 0 NaN -> NaN Invalid_operation
+dqand835 and 1 NaN -> NaN Invalid_operation
+dqand836 and 1000 NaN -> NaN Invalid_operation
+dqand837 and Inf NaN -> NaN Invalid_operation
+
+dqand841 and sNaN -Inf -> NaN Invalid_operation
+dqand842 and sNaN -1000 -> NaN Invalid_operation
+dqand843 and sNaN -1 -> NaN Invalid_operation
+dqand844 and sNaN -0 -> NaN Invalid_operation
+dqand845 and sNaN 0 -> NaN Invalid_operation
+dqand846 and sNaN 1 -> NaN Invalid_operation
+dqand847 and sNaN 1000 -> NaN Invalid_operation
+dqand848 and sNaN NaN -> NaN Invalid_operation
+dqand849 and sNaN sNaN -> NaN Invalid_operation
+dqand850 and NaN sNaN -> NaN Invalid_operation
+dqand851 and -Inf sNaN -> NaN Invalid_operation
+dqand852 and -1000 sNaN -> NaN Invalid_operation
+dqand853 and -1 sNaN -> NaN Invalid_operation
+dqand854 and -0 sNaN -> NaN Invalid_operation
+dqand855 and 0 sNaN -> NaN Invalid_operation
+dqand856 and 1 sNaN -> NaN Invalid_operation
+dqand857 and 1000 sNaN -> NaN Invalid_operation
+dqand858 and Inf sNaN -> NaN Invalid_operation
+dqand859 and NaN sNaN -> NaN Invalid_operation
+
+-- propagating NaNs
+dqand861 and NaN1 -Inf -> NaN Invalid_operation
+dqand862 and +NaN2 -1000 -> NaN Invalid_operation
+dqand863 and NaN3 1000 -> NaN Invalid_operation
+dqand864 and NaN4 Inf -> NaN Invalid_operation
+dqand865 and NaN5 +NaN6 -> NaN Invalid_operation
+dqand866 and -Inf NaN7 -> NaN Invalid_operation
+dqand867 and -1000 NaN8 -> NaN Invalid_operation
+dqand868 and 1000 NaN9 -> NaN Invalid_operation
+dqand869 and Inf +NaN10 -> NaN Invalid_operation
+dqand871 and sNaN11 -Inf -> NaN Invalid_operation
+dqand872 and sNaN12 -1000 -> NaN Invalid_operation
+dqand873 and sNaN13 1000 -> NaN Invalid_operation
+dqand874 and sNaN14 NaN17 -> NaN Invalid_operation
+dqand875 and sNaN15 sNaN18 -> NaN Invalid_operation
+dqand876 and NaN16 sNaN19 -> NaN Invalid_operation
+dqand877 and -Inf +sNaN20 -> NaN Invalid_operation
+dqand878 and -1000 sNaN21 -> NaN Invalid_operation
+dqand879 and 1000 sNaN22 -> NaN Invalid_operation
+dqand880 and Inf sNaN23 -> NaN Invalid_operation
+dqand881 and +NaN25 +sNaN24 -> NaN Invalid_operation
+dqand882 and -NaN26 NaN28 -> NaN Invalid_operation
+dqand883 and -sNaN27 sNaN29 -> NaN Invalid_operation
+dqand884 and 1000 -NaN30 -> NaN Invalid_operation
+dqand885 and 1000 -sNaN31 -> NaN Invalid_operation
diff --git a/Lib/test/decimaltestdata/dqBase.decTest b/Lib/test/decimaltestdata/dqBase.decTest
new file mode 100644
index 0000000..6cf2f7f
--- /dev/null
+++ b/Lib/test/decimaltestdata/dqBase.decTest
@@ -0,0 +1,1081 @@
+------------------------------------------------------------------------
+-- dqBase.decTest -- base decQuad <--> string conversions --
+-- Copyright (c) IBM Corporation, 1981, 2007. All rights reserved. --
+------------------------------------------------------------------------
+-- Please see the document "General Decimal Arithmetic Testcases" --
+-- at http://www2.hursley.ibm.com/decimal for the description of --
+-- these testcases. --
+-- --
+-- These testcases are experimental ('beta' versions), and they --
+-- may contain errors. They are offered on an as-is basis. In --
+-- particular, achieving the same results as the tests here is not --
+-- a guarantee that an implementation complies with any Standard --
+-- or specification. The tests are not exhaustive. --
+-- --
+-- Please send comments, suggestions, and corrections to the author: --
+-- Mike Cowlishaw, IBM Fellow --
+-- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK --
+-- mfc@uk.ibm.com --
+------------------------------------------------------------------------
+version: 2.56
+
+-- This file tests base conversions from string to a decimal number
+-- and back to a string (in Scientific form)
+
+-- Note that unlike other operations the operand is subject to rounding
+-- to conform to emax and precision settings (that is, numbers will
+-- conform to rules and exponent will be in permitted range). The
+-- 'left hand side', therefore, may have numbers that cannot be
+-- represented in a decQuad. Some testcases go to the limit of the
+-- next-wider format, and hence these testcases may also be used to
+-- test narrowing and widening operations.
+
+extended: 1
+clamp: 1
+precision: 34
+maxExponent: 6144
+minExponent: -6143
+rounding: half_even
+
+dqbas001 toSci 0 -> 0
+dqbas002 toSci 1 -> 1
+dqbas003 toSci 1.0 -> 1.0
+dqbas004 toSci 1.00 -> 1.00
+dqbas005 toSci 10 -> 10
+dqbas006 toSci 1000 -> 1000
+dqbas007 toSci 10.0 -> 10.0
+dqbas008 toSci 10.1 -> 10.1
+dqbas009 toSci 10.4 -> 10.4
+dqbas010 toSci 10.5 -> 10.5
+dqbas011 toSci 10.6 -> 10.6
+dqbas012 toSci 10.9 -> 10.9
+dqbas013 toSci 11.0 -> 11.0
+dqbas014 toSci 1.234 -> 1.234
+dqbas015 toSci 0.123 -> 0.123
+dqbas016 toSci 0.012 -> 0.012
+dqbas017 toSci -0 -> -0
+dqbas018 toSci -0.0 -> -0.0
+dqbas019 toSci -00.00 -> -0.00
+
+dqbas021 toSci -1 -> -1
+dqbas022 toSci -1.0 -> -1.0
+dqbas023 toSci -0.1 -> -0.1
+dqbas024 toSci -9.1 -> -9.1
+dqbas025 toSci -9.11 -> -9.11
+dqbas026 toSci -9.119 -> -9.119
+dqbas027 toSci -9.999 -> -9.999
+
+dqbas030 toSci '123456789.123456' -> '123456789.123456'
+dqbas031 toSci '123456789.000000' -> '123456789.000000'
+dqbas032 toSci '123456789123456' -> '123456789123456'
+dqbas033 toSci '0.0000123456789' -> '0.0000123456789'
+dqbas034 toSci '0.00000123456789' -> '0.00000123456789'
+dqbas035 toSci '0.000000123456789' -> '1.23456789E-7'
+dqbas036 toSci '0.0000000123456789' -> '1.23456789E-8'
+
+dqbas037 toSci '0.123456789012344' -> '0.123456789012344'
+dqbas038 toSci '0.123456789012345' -> '0.123456789012345'
+
+-- test finite bounds (Negs of, then 0, Ntiny, Nmin, other, Nmax)
+dqbsn001 toSci -9.999999999999999999999999999999999E+6144 -> -9.999999999999999999999999999999999E+6144
+dqbsn002 toSci -1E-6143 -> -1E-6143
+dqbsn003 toSci -1E-6176 -> -1E-6176 Subnormal
+dqbsn004 toSci -0 -> -0
+dqbsn005 toSci +0 -> 0
+dqbsn006 toSci +1E-6176 -> 1E-6176 Subnormal
+dqbsn007 toSci +1E-6143 -> 1E-6143
+dqbsn008 toSci +9.999999999999999999999999999999999E+6144 -> 9.999999999999999999999999999999999E+6144
+
+-- String [many more examples are implicitly tested elsewhere]
+-- strings without E cannot generate E in result
+dqbas040 toSci "12" -> '12'
+dqbas041 toSci "-76" -> '-76'
+dqbas042 toSci "12.76" -> '12.76'
+dqbas043 toSci "+12.76" -> '12.76'
+dqbas044 toSci "012.76" -> '12.76'
+dqbas045 toSci "+0.003" -> '0.003'
+dqbas046 toSci "17." -> '17'
+dqbas047 toSci ".5" -> '0.5'
+dqbas048 toSci "044" -> '44'
+dqbas049 toSci "0044" -> '44'
+dqbas050 toSci "0.0005" -> '0.0005'
+dqbas051 toSci "00.00005" -> '0.00005'
+dqbas052 toSci "0.000005" -> '0.000005'
+dqbas053 toSci "0.0000050" -> '0.0000050'
+dqbas054 toSci "0.0000005" -> '5E-7'
+dqbas055 toSci "0.00000005" -> '5E-8'
+dqbas056 toSci "12345678.543210" -> '12345678.543210'
+dqbas057 toSci "2345678.543210" -> '2345678.543210'
+dqbas058 toSci "345678.543210" -> '345678.543210'
+dqbas059 toSci "0345678.54321" -> '345678.54321'
+dqbas060 toSci "345678.5432" -> '345678.5432'
+dqbas061 toSci "+345678.5432" -> '345678.5432'
+dqbas062 toSci "+0345678.5432" -> '345678.5432'
+dqbas063 toSci "+00345678.5432" -> '345678.5432'
+dqbas064 toSci "-345678.5432" -> '-345678.5432'
+dqbas065 toSci "-0345678.5432" -> '-345678.5432'
+dqbas066 toSci "-00345678.5432" -> '-345678.5432'
+-- examples
+dqbas067 toSci "5E-6" -> '0.000005'
+dqbas068 toSci "50E-7" -> '0.0000050'
+dqbas069 toSci "5E-7" -> '5E-7'
+
+-- [No exotics as no Unicode]
+
+-- rounded with dots in all (including edge) places
+dqbas071 toSci .1234567891234567890123456780123456123 -> 0.1234567891234567890123456780123456 Inexact Rounded
+dqbas072 toSci 1.234567891234567890123456780123456123 -> 1.234567891234567890123456780123456 Inexact Rounded
+dqbas073 toSci 12.34567891234567890123456780123456123 -> 12.34567891234567890123456780123456 Inexact Rounded
+dqbas074 toSci 123.4567891234567890123456780123456123 -> 123.4567891234567890123456780123456 Inexact Rounded
+dqbas075 toSci 1234.567891234567890123456780123456123 -> 1234.567891234567890123456780123456 Inexact Rounded
+dqbas076 toSci 12345.67891234567890123456780123456123 -> 12345.67891234567890123456780123456 Inexact Rounded
+dqbas077 toSci 123456.7891234567890123456780123456123 -> 123456.7891234567890123456780123456 Inexact Rounded
+dqbas078 toSci 1234567.891234567890123456780123456123 -> 1234567.891234567890123456780123456 Inexact Rounded
+dqbas079 toSci 12345678.91234567890123456780123456123 -> 12345678.91234567890123456780123456 Inexact Rounded
+dqbas080 toSci 123456789.1234567890123456780123456123 -> 123456789.1234567890123456780123456 Inexact Rounded
+dqbas081 toSci 1234567891.234567890123456780123456123 -> 1234567891.234567890123456780123456 Inexact Rounded
+dqbas082 toSci 12345678912.34567890123456780123456123 -> 12345678912.34567890123456780123456 Inexact Rounded
+dqbas083 toSci 123456789123.4567890123456780123456123 -> 123456789123.4567890123456780123456 Inexact Rounded
+dqbas084 toSci 1234567891234.567890123456780123456123 -> 1234567891234.567890123456780123456 Inexact Rounded
+dqbas085 toSci 12345678912345.67890123456780123456123 -> 12345678912345.67890123456780123456 Inexact Rounded
+dqbas086 toSci 123456789123456.7890123456780123456123 -> 123456789123456.7890123456780123456 Inexact Rounded
+dqbas087 toSci 1234567891234567.890123456780123456123 -> 1234567891234567.890123456780123456 Inexact Rounded
+dqbas088 toSci 12345678912345678.90123456780123456123 -> 12345678912345678.90123456780123456 Inexact Rounded
+dqbas089 toSci 123456789123456789.0123456780123456123 -> 123456789123456789.0123456780123456 Inexact Rounded
+dqbas090 toSci 1234567891234567890.123456780123456123 -> 1234567891234567890.123456780123456 Inexact Rounded
+dqbas091 toSci 12345678912345678901.23456780123456123 -> 12345678912345678901.23456780123456 Inexact Rounded
+dqbas092 toSci 123456789123456789012.3456780123456123 -> 123456789123456789012.3456780123456 Inexact Rounded
+dqbas093 toSci 1234567891234567890123.456780123456123 -> 1234567891234567890123.456780123456 Inexact Rounded
+dqbas094 toSci 12345678912345678901234.56780123456123 -> 12345678912345678901234.56780123456 Inexact Rounded
+dqbas095 toSci 123456789123456789012345.6780123456123 -> 123456789123456789012345.6780123456 Inexact Rounded
+dqbas096 toSci 1234567891234567890123456.780123456123 -> 1234567891234567890123456.780123456 Inexact Rounded
+dqbas097 toSci 12345678912345678901234567.80123456123 -> 12345678912345678901234567.80123456 Inexact Rounded
+dqbas098 toSci 123456789123456789012345678.0123456123 -> 123456789123456789012345678.0123456 Inexact Rounded
+dqbas099 toSci 1234567891234567890123456780.123456123 -> 1234567891234567890123456780.123456 Inexact Rounded
+dqbas100 toSci 12345678912345678901234567801.23456123 -> 12345678912345678901234567801.23456 Inexact Rounded
+dqbas101 toSci 123456789123456789012345678012.3456123 -> 123456789123456789012345678012.3456 Inexact Rounded
+dqbas102 toSci 1234567891234567890123456780123.456123 -> 1234567891234567890123456780123.456 Inexact Rounded
+dqbas103 toSci 12345678912345678901234567801234.56123 -> 12345678912345678901234567801234.56 Inexact Rounded
+dqbas104 toSci 123456789123456789012345678012345.6123 -> 123456789123456789012345678012345.6 Inexact Rounded
+dqbas105 toSci 1234567891234567890123456780123456.123 -> 1234567891234567890123456780123456 Inexact Rounded
+dqbas106 toSci 12345678912345678901234567801234561.23 -> 1.234567891234567890123456780123456E+34 Inexact Rounded
+dqbas107 toSci 123456789123456789012345678012345612.3 -> 1.234567891234567890123456780123456E+35 Inexact Rounded
+dqbas108 toSci 1234567891234567890123456780123456123. -> 1.234567891234567890123456780123456E+36 Inexact Rounded
+-- 123456789012345678
+
+-- Numbers with E
+dqbas130 toSci "0.000E-1" -> '0.0000'
+dqbas131 toSci "0.000E-2" -> '0.00000'
+dqbas132 toSci "0.000E-3" -> '0.000000'
+dqbas133 toSci "0.000E-4" -> '0E-7'
+dqbas134 toSci "0.00E-2" -> '0.0000'
+dqbas135 toSci "0.00E-3" -> '0.00000'
+dqbas136 toSci "0.00E-4" -> '0.000000'
+dqbas137 toSci "0.00E-5" -> '0E-7'
+dqbas138 toSci "+0E+9" -> '0E+9'
+dqbas139 toSci "-0E+9" -> '-0E+9'
+dqbas140 toSci "1E+9" -> '1E+9'
+dqbas141 toSci "1e+09" -> '1E+9'
+dqbas142 toSci "1E+90" -> '1E+90'
+dqbas143 toSci "+1E+009" -> '1E+9'
+dqbas144 toSci "0E+9" -> '0E+9'
+dqbas145 toSci "1E+9" -> '1E+9'
+dqbas146 toSci "1E+09" -> '1E+9'
+dqbas147 toSci "1e+90" -> '1E+90'
+dqbas148 toSci "1E+009" -> '1E+9'
+dqbas149 toSci "000E+9" -> '0E+9'
+dqbas150 toSci "1E9" -> '1E+9'
+dqbas151 toSci "1e09" -> '1E+9'
+dqbas152 toSci "1E90" -> '1E+90'
+dqbas153 toSci "1E009" -> '1E+9'
+dqbas154 toSci "0E9" -> '0E+9'
+dqbas155 toSci "0.000e+0" -> '0.000'
+dqbas156 toSci "0.000E-1" -> '0.0000'
+dqbas157 toSci "4E+9" -> '4E+9'
+dqbas158 toSci "44E+9" -> '4.4E+10'
+dqbas159 toSci "0.73e-7" -> '7.3E-8'
+dqbas160 toSci "00E+9" -> '0E+9'
+dqbas161 toSci "00E-9" -> '0E-9'
+dqbas162 toSci "10E+9" -> '1.0E+10'
+dqbas163 toSci "10E+09" -> '1.0E+10'
+dqbas164 toSci "10e+90" -> '1.0E+91'
+dqbas165 toSci "10E+009" -> '1.0E+10'
+dqbas166 toSci "100e+9" -> '1.00E+11'
+dqbas167 toSci "100e+09" -> '1.00E+11'
+dqbas168 toSci "100E+90" -> '1.00E+92'
+dqbas169 toSci "100e+009" -> '1.00E+11'
+
+dqbas170 toSci "1.265" -> '1.265'
+dqbas171 toSci "1.265E-20" -> '1.265E-20'
+dqbas172 toSci "1.265E-8" -> '1.265E-8'
+dqbas173 toSci "1.265E-4" -> '0.0001265'
+dqbas174 toSci "1.265E-3" -> '0.001265'
+dqbas175 toSci "1.265E-2" -> '0.01265'
+dqbas176 toSci "1.265E-1" -> '0.1265'
+dqbas177 toSci "1.265E-0" -> '1.265'
+dqbas178 toSci "1.265E+1" -> '12.65'
+dqbas179 toSci "1.265E+2" -> '126.5'
+dqbas180 toSci "1.265E+3" -> '1265'
+dqbas181 toSci "1.265E+4" -> '1.265E+4'
+dqbas182 toSci "1.265E+8" -> '1.265E+8'
+dqbas183 toSci "1.265E+20" -> '1.265E+20'
+
+dqbas190 toSci "12.65" -> '12.65'
+dqbas191 toSci "12.65E-20" -> '1.265E-19'
+dqbas192 toSci "12.65E-8" -> '1.265E-7'
+dqbas193 toSci "12.65E-4" -> '0.001265'
+dqbas194 toSci "12.65E-3" -> '0.01265'
+dqbas195 toSci "12.65E-2" -> '0.1265'
+dqbas196 toSci "12.65E-1" -> '1.265'
+dqbas197 toSci "12.65E-0" -> '12.65'
+dqbas198 toSci "12.65E+1" -> '126.5'
+dqbas199 toSci "12.65E+2" -> '1265'
+dqbas200 toSci "12.65E+3" -> '1.265E+4'
+dqbas201 toSci "12.65E+4" -> '1.265E+5'
+dqbas202 toSci "12.65E+8" -> '1.265E+9'
+dqbas203 toSci "12.65E+20" -> '1.265E+21'
+
+dqbas210 toSci "126.5" -> '126.5'
+dqbas211 toSci "126.5E-20" -> '1.265E-18'
+dqbas212 toSci "126.5E-8" -> '0.000001265'
+dqbas213 toSci "126.5E-4" -> '0.01265'
+dqbas214 toSci "126.5E-3" -> '0.1265'
+dqbas215 toSci "126.5E-2" -> '1.265'
+dqbas216 toSci "126.5E-1" -> '12.65'
+dqbas217 toSci "126.5E-0" -> '126.5'
+dqbas218 toSci "126.5E+1" -> '1265'
+dqbas219 toSci "126.5E+2" -> '1.265E+4'
+dqbas220 toSci "126.5E+3" -> '1.265E+5'
+dqbas221 toSci "126.5E+4" -> '1.265E+6'
+dqbas222 toSci "126.5E+8" -> '1.265E+10'
+dqbas223 toSci "126.5E+20" -> '1.265E+22'
+
+dqbas230 toSci "1265" -> '1265'
+dqbas231 toSci "1265E-20" -> '1.265E-17'
+dqbas232 toSci "1265E-8" -> '0.00001265'
+dqbas233 toSci "1265E-4" -> '0.1265'
+dqbas234 toSci "1265E-3" -> '1.265'
+dqbas235 toSci "1265E-2" -> '12.65'
+dqbas236 toSci "1265E-1" -> '126.5'
+dqbas237 toSci "1265E-0" -> '1265'
+dqbas238 toSci "1265E+1" -> '1.265E+4'
+dqbas239 toSci "1265E+2" -> '1.265E+5'
+dqbas240 toSci "1265E+3" -> '1.265E+6'
+dqbas241 toSci "1265E+4" -> '1.265E+7'
+dqbas242 toSci "1265E+8" -> '1.265E+11'
+dqbas243 toSci "1265E+20" -> '1.265E+23'
+
+dqbas250 toSci "0.1265" -> '0.1265'
+dqbas251 toSci "0.1265E-20" -> '1.265E-21'
+dqbas252 toSci "0.1265E-8" -> '1.265E-9'
+dqbas253 toSci "0.1265E-4" -> '0.00001265'
+dqbas254 toSci "0.1265E-3" -> '0.0001265'
+dqbas255 toSci "0.1265E-2" -> '0.001265'
+dqbas256 toSci "0.1265E-1" -> '0.01265'
+dqbas257 toSci "0.1265E-0" -> '0.1265'
+dqbas258 toSci "0.1265E+1" -> '1.265'
+dqbas259 toSci "0.1265E+2" -> '12.65'
+dqbas260 toSci "0.1265E+3" -> '126.5'
+dqbas261 toSci "0.1265E+4" -> '1265'
+dqbas262 toSci "0.1265E+8" -> '1.265E+7'
+dqbas263 toSci "0.1265E+20" -> '1.265E+19'
+
+-- some more negative zeros [systematic tests below]
+dqbas290 toSci "-0.000E-1" -> '-0.0000'
+dqbas291 toSci "-0.000E-2" -> '-0.00000'
+dqbas292 toSci "-0.000E-3" -> '-0.000000'
+dqbas293 toSci "-0.000E-4" -> '-0E-7'
+dqbas294 toSci "-0.00E-2" -> '-0.0000'
+dqbas295 toSci "-0.00E-3" -> '-0.00000'
+dqbas296 toSci "-0.0E-2" -> '-0.000'
+dqbas297 toSci "-0.0E-3" -> '-0.0000'
+dqbas298 toSci "-0E-2" -> '-0.00'
+dqbas299 toSci "-0E-3" -> '-0.000'
+
+-- Engineering notation tests
+dqbas301 toSci 10e12 -> 1.0E+13
+dqbas302 toEng 10e12 -> 10E+12
+dqbas303 toSci 10e11 -> 1.0E+12
+dqbas304 toEng 10e11 -> 1.0E+12
+dqbas305 toSci 10e10 -> 1.0E+11
+dqbas306 toEng 10e10 -> 100E+9
+dqbas307 toSci 10e9 -> 1.0E+10
+dqbas308 toEng 10e9 -> 10E+9
+dqbas309 toSci 10e8 -> 1.0E+9
+dqbas310 toEng 10e8 -> 1.0E+9
+dqbas311 toSci 10e7 -> 1.0E+8
+dqbas312 toEng 10e7 -> 100E+6
+dqbas313 toSci 10e6 -> 1.0E+7
+dqbas314 toEng 10e6 -> 10E+6
+dqbas315 toSci 10e5 -> 1.0E+6
+dqbas316 toEng 10e5 -> 1.0E+6
+dqbas317 toSci 10e4 -> 1.0E+5
+dqbas318 toEng 10e4 -> 100E+3
+dqbas319 toSci 10e3 -> 1.0E+4
+dqbas320 toEng 10e3 -> 10E+3
+dqbas321 toSci 10e2 -> 1.0E+3
+dqbas322 toEng 10e2 -> 1.0E+3
+dqbas323 toSci 10e1 -> 1.0E+2
+dqbas324 toEng 10e1 -> 100
+dqbas325 toSci 10e0 -> 10
+dqbas326 toEng 10e0 -> 10
+dqbas327 toSci 10e-1 -> 1.0
+dqbas328 toEng 10e-1 -> 1.0
+dqbas329 toSci 10e-2 -> 0.10
+dqbas330 toEng 10e-2 -> 0.10
+dqbas331 toSci 10e-3 -> 0.010
+dqbas332 toEng 10e-3 -> 0.010
+dqbas333 toSci 10e-4 -> 0.0010
+dqbas334 toEng 10e-4 -> 0.0010
+dqbas335 toSci 10e-5 -> 0.00010
+dqbas336 toEng 10e-5 -> 0.00010
+dqbas337 toSci 10e-6 -> 0.000010
+dqbas338 toEng 10e-6 -> 0.000010
+dqbas339 toSci 10e-7 -> 0.0000010
+dqbas340 toEng 10e-7 -> 0.0000010
+dqbas341 toSci 10e-8 -> 1.0E-7
+dqbas342 toEng 10e-8 -> 100E-9
+dqbas343 toSci 10e-9 -> 1.0E-8
+dqbas344 toEng 10e-9 -> 10E-9
+dqbas345 toSci 10e-10 -> 1.0E-9
+dqbas346 toEng 10e-10 -> 1.0E-9
+dqbas347 toSci 10e-11 -> 1.0E-10
+dqbas348 toEng 10e-11 -> 100E-12
+dqbas349 toSci 10e-12 -> 1.0E-11
+dqbas350 toEng 10e-12 -> 10E-12
+dqbas351 toSci 10e-13 -> 1.0E-12
+dqbas352 toEng 10e-13 -> 1.0E-12
+
+dqbas361 toSci 7E12 -> 7E+12
+dqbas362 toEng 7E12 -> 7E+12
+dqbas363 toSci 7E11 -> 7E+11
+dqbas364 toEng 7E11 -> 700E+9
+dqbas365 toSci 7E10 -> 7E+10
+dqbas366 toEng 7E10 -> 70E+9
+dqbas367 toSci 7E9 -> 7E+9
+dqbas368 toEng 7E9 -> 7E+9
+dqbas369 toSci 7E8 -> 7E+8
+dqbas370 toEng 7E8 -> 700E+6
+dqbas371 toSci 7E7 -> 7E+7
+dqbas372 toEng 7E7 -> 70E+6
+dqbas373 toSci 7E6 -> 7E+6
+dqbas374 toEng 7E6 -> 7E+6
+dqbas375 toSci 7E5 -> 7E+5
+dqbas376 toEng 7E5 -> 700E+3
+dqbas377 toSci 7E4 -> 7E+4
+dqbas378 toEng 7E4 -> 70E+3
+dqbas379 toSci 7E3 -> 7E+3
+dqbas380 toEng 7E3 -> 7E+3
+dqbas381 toSci 7E2 -> 7E+2
+dqbas382 toEng 7E2 -> 700
+dqbas383 toSci 7E1 -> 7E+1
+dqbas384 toEng 7E1 -> 70
+dqbas385 toSci 7E0 -> 7
+dqbas386 toEng 7E0 -> 7
+dqbas387 toSci 7E-1 -> 0.7
+dqbas388 toEng 7E-1 -> 0.7
+dqbas389 toSci 7E-2 -> 0.07
+dqbas390 toEng 7E-2 -> 0.07
+dqbas391 toSci 7E-3 -> 0.007
+dqbas392 toEng 7E-3 -> 0.007
+dqbas393 toSci 7E-4 -> 0.0007
+dqbas394 toEng 7E-4 -> 0.0007
+dqbas395 toSci 7E-5 -> 0.00007
+dqbas396 toEng 7E-5 -> 0.00007
+dqbas397 toSci 7E-6 -> 0.000007
+dqbas398 toEng 7E-6 -> 0.000007
+dqbas399 toSci 7E-7 -> 7E-7
+dqbas400 toEng 7E-7 -> 700E-9
+dqbas401 toSci 7E-8 -> 7E-8
+dqbas402 toEng 7E-8 -> 70E-9
+dqbas403 toSci 7E-9 -> 7E-9
+dqbas404 toEng 7E-9 -> 7E-9
+dqbas405 toSci 7E-10 -> 7E-10
+dqbas406 toEng 7E-10 -> 700E-12
+dqbas407 toSci 7E-11 -> 7E-11
+dqbas408 toEng 7E-11 -> 70E-12
+dqbas409 toSci 7E-12 -> 7E-12
+dqbas410 toEng 7E-12 -> 7E-12
+dqbas411 toSci 7E-13 -> 7E-13
+dqbas412 toEng 7E-13 -> 700E-15
+
+-- Exacts remain exact up to precision ..
+dqbas420 toSci 100 -> 100
+dqbas422 toSci 1000 -> 1000
+dqbas424 toSci 999.9 -> 999.9
+dqbas426 toSci 1000.0 -> 1000.0
+dqbas428 toSci 1000.1 -> 1000.1
+dqbas430 toSci 10000 -> 10000
+dqbas432 toSci 1000000000000000000000000000000 -> 1000000000000000000000000000000
+dqbas434 toSci 10000000000000000000000000000000 -> 10000000000000000000000000000000
+dqbas436 toSci 100000000000000000000000000000000 -> 100000000000000000000000000000000
+dqbas438 toSci 1000000000000000000000000000000000 -> 1000000000000000000000000000000000
+dqbas440 toSci 10000000000000000000000000000000000 -> 1.000000000000000000000000000000000E+34 Rounded
+dqbas442 toSci 10000000000000000000000000000000000 -> 1.000000000000000000000000000000000E+34 Rounded
+dqbas444 toSci 10000000000000000000000000000000003 -> 1.000000000000000000000000000000000E+34 Rounded Inexact
+dqbas446 toSci 10000000000000000000000000000000005 -> 1.000000000000000000000000000000000E+34 Rounded Inexact
+dqbas448 toSci 100000000000000000000000000000000050 -> 1.000000000000000000000000000000000E+35 Rounded Inexact
+dqbas450 toSci 10000000000000000000000000000000009 -> 1.000000000000000000000000000000001E+34 Rounded Inexact
+dqbas452 toSci 100000000000000000000000000000000000 -> 1.000000000000000000000000000000000E+35 Rounded
+dqbas454 toSci 100000000000000000000000000000000003 -> 1.000000000000000000000000000000000E+35 Rounded Inexact
+dqbas456 toSci 100000000000000000000000000000000005 -> 1.000000000000000000000000000000000E+35 Rounded Inexact
+dqbas458 toSci 100000000000000000000000000000000009 -> 1.000000000000000000000000000000000E+35 Rounded Inexact
+dqbas460 toSci 1000000000000000000000000000000000000 -> 1.000000000000000000000000000000000E+36 Rounded
+dqbas462 toSci 1000000000000000000000000000000000300 -> 1.000000000000000000000000000000000E+36 Rounded Inexact
+dqbas464 toSci 1000000000000000000000000000000000500 -> 1.000000000000000000000000000000000E+36 Rounded Inexact
+dqbas466 toSci 1000000000000000000000000000000000900 -> 1.000000000000000000000000000000001E+36 Rounded Inexact
+dqbas468 toSci 10000000000000000000000000000000000000 -> 1.000000000000000000000000000000000E+37 Rounded
+dqbas470 toSci 10000000000000000000000000000000003000 -> 1.000000000000000000000000000000000E+37 Rounded Inexact
+dqbas472 toSci 10000000000000000000000000000000005000 -> 1.000000000000000000000000000000000E+37 Rounded Inexact
+dqbas474 toSci 10000000000000000000000000000000009000 -> 1.000000000000000000000000000000001E+37 Rounded Inexact
+
+-- check rounding modes heeded
+rounding: ceiling
+dqbsr401 toSci 1.1111111111111111111111111111123450 -> 1.111111111111111111111111111112345 Rounded
+dqbsr402 toSci 1.11111111111111111111111111111234549 -> 1.111111111111111111111111111112346 Rounded Inexact
+dqbsr403 toSci 1.11111111111111111111111111111234550 -> 1.111111111111111111111111111112346 Rounded Inexact
+dqbsr404 toSci 1.11111111111111111111111111111234551 -> 1.111111111111111111111111111112346 Rounded Inexact
+rounding: up
+dqbsr405 toSci 1.1111111111111111111111111111123450 -> 1.111111111111111111111111111112345 Rounded
+dqbsr406 toSci 1.11111111111111111111111111111234549 -> 1.111111111111111111111111111112346 Rounded Inexact
+dqbsr407 toSci 1.11111111111111111111111111111234550 -> 1.111111111111111111111111111112346 Rounded Inexact
+dqbsr408 toSci 1.11111111111111111111111111111234551 -> 1.111111111111111111111111111112346 Rounded Inexact
+rounding: floor
+dqbsr410 toSci 1.1111111111111111111111111111123450 -> 1.111111111111111111111111111112345 Rounded
+dqbsr411 toSci 1.11111111111111111111111111111234549 -> 1.111111111111111111111111111112345 Rounded Inexact
+dqbsr412 toSci 1.11111111111111111111111111111234550 -> 1.111111111111111111111111111112345 Rounded Inexact
+dqbsr413 toSci 1.11111111111111111111111111111234551 -> 1.111111111111111111111111111112345 Rounded Inexact
+rounding: half_down
+dqbsr415 toSci 1.1111111111111111111111111111123450 -> 1.111111111111111111111111111112345 Rounded
+dqbsr416 toSci 1.11111111111111111111111111111234549 -> 1.111111111111111111111111111112345 Rounded Inexact
+dqbsr417 toSci 1.11111111111111111111111111111234550 -> 1.111111111111111111111111111112345 Rounded Inexact
+dqbsr418 toSci 1.11111111111111111111111111111234650 -> 1.111111111111111111111111111112346 Rounded Inexact
+dqbsr419 toSci 1.11111111111111111111111111111234551 -> 1.111111111111111111111111111112346 Rounded Inexact
+rounding: half_even
+dqbsr421 toSci 1.1111111111111111111111111111123450 -> 1.111111111111111111111111111112345 Rounded
+dqbsr422 toSci 1.11111111111111111111111111111234549 -> 1.111111111111111111111111111112345 Rounded Inexact
+dqbsr423 toSci 1.11111111111111111111111111111234550 -> 1.111111111111111111111111111112346 Rounded Inexact
+dqbsr424 toSci 1.11111111111111111111111111111234650 -> 1.111111111111111111111111111112346 Rounded Inexact
+dqbsr425 toSci 1.11111111111111111111111111111234551 -> 1.111111111111111111111111111112346 Rounded Inexact
+rounding: down
+dqbsr426 toSci 1.1111111111111111111111111111123450 -> 1.111111111111111111111111111112345 Rounded
+dqbsr427 toSci 1.11111111111111111111111111111234549 -> 1.111111111111111111111111111112345 Rounded Inexact
+dqbsr428 toSci 1.11111111111111111111111111111234550 -> 1.111111111111111111111111111112345 Rounded Inexact
+dqbsr429 toSci 1.11111111111111111111111111111234551 -> 1.111111111111111111111111111112345 Rounded Inexact
+rounding: half_up
+dqbsr431 toSci 1.1111111111111111111111111111123450 -> 1.111111111111111111111111111112345 Rounded
+dqbsr432 toSci 1.11111111111111111111111111111234549 -> 1.111111111111111111111111111112345 Rounded Inexact
+dqbsr433 toSci 1.11111111111111111111111111111234550 -> 1.111111111111111111111111111112346 Rounded Inexact
+dqbsr434 toSci 1.11111111111111111111111111111234650 -> 1.111111111111111111111111111112347 Rounded Inexact
+dqbsr435 toSci 1.11111111111111111111111111111234551 -> 1.111111111111111111111111111112346 Rounded Inexact
+-- negatives
+rounding: ceiling
+dqbsr501 toSci -1.1111111111111111111111111111123450 -> -1.111111111111111111111111111112345 Rounded
+dqbsr502 toSci -1.11111111111111111111111111111234549 -> -1.111111111111111111111111111112345 Rounded Inexact
+dqbsr503 toSci -1.11111111111111111111111111111234550 -> -1.111111111111111111111111111112345 Rounded Inexact
+dqbsr504 toSci -1.11111111111111111111111111111234551 -> -1.111111111111111111111111111112345 Rounded Inexact
+rounding: up
+dqbsr505 toSci -1.1111111111111111111111111111123450 -> -1.111111111111111111111111111112345 Rounded
+dqbsr506 toSci -1.11111111111111111111111111111234549 -> -1.111111111111111111111111111112346 Rounded Inexact
+dqbsr507 toSci -1.11111111111111111111111111111234550 -> -1.111111111111111111111111111112346 Rounded Inexact
+dqbsr508 toSci -1.11111111111111111111111111111234551 -> -1.111111111111111111111111111112346 Rounded Inexact
+rounding: floor
+dqbsr510 toSci -1.1111111111111111111111111111123450 -> -1.111111111111111111111111111112345 Rounded
+dqbsr511 toSci -1.11111111111111111111111111111234549 -> -1.111111111111111111111111111112346 Rounded Inexact
+dqbsr512 toSci -1.11111111111111111111111111111234550 -> -1.111111111111111111111111111112346 Rounded Inexact
+dqbsr513 toSci -1.11111111111111111111111111111234551 -> -1.111111111111111111111111111112346 Rounded Inexact
+rounding: half_down
+dqbsr515 toSci -1.1111111111111111111111111111123450 -> -1.111111111111111111111111111112345 Rounded
+dqbsr516 toSci -1.11111111111111111111111111111234549 -> -1.111111111111111111111111111112345 Rounded Inexact
+dqbsr517 toSci -1.11111111111111111111111111111234550 -> -1.111111111111111111111111111112345 Rounded Inexact
+dqbsr518 toSci -1.11111111111111111111111111111234650 -> -1.111111111111111111111111111112346 Rounded Inexact
+dqbsr519 toSci -1.11111111111111111111111111111234551 -> -1.111111111111111111111111111112346 Rounded Inexact
+rounding: half_even
+dqbsr521 toSci -1.1111111111111111111111111111123450 -> -1.111111111111111111111111111112345 Rounded
+dqbsr522 toSci -1.11111111111111111111111111111234549 -> -1.111111111111111111111111111112345 Rounded Inexact
+dqbsr523 toSci -1.11111111111111111111111111111234550 -> -1.111111111111111111111111111112346 Rounded Inexact
+dqbsr524 toSci -1.11111111111111111111111111111234650 -> -1.111111111111111111111111111112346 Rounded Inexact
+dqbsr525 toSci -1.11111111111111111111111111111234551 -> -1.111111111111111111111111111112346 Rounded Inexact
+rounding: down
+dqbsr526 toSci -1.1111111111111111111111111111123450 -> -1.111111111111111111111111111112345 Rounded
+dqbsr527 toSci -1.11111111111111111111111111111234549 -> -1.111111111111111111111111111112345 Rounded Inexact
+dqbsr528 toSci -1.11111111111111111111111111111234550 -> -1.111111111111111111111111111112345 Rounded Inexact
+dqbsr529 toSci -1.11111111111111111111111111111234551 -> -1.111111111111111111111111111112345 Rounded Inexact
+rounding: half_up
+dqbsr531 toSci -1.1111111111111111111111111111123450 -> -1.111111111111111111111111111112345 Rounded
+dqbsr532 toSci -1.11111111111111111111111111111234549 -> -1.111111111111111111111111111112345 Rounded Inexact
+dqbsr533 toSci -1.11111111111111111111111111111234550 -> -1.111111111111111111111111111112346 Rounded Inexact
+dqbsr534 toSci -1.11111111111111111111111111111234650 -> -1.111111111111111111111111111112347 Rounded Inexact
+dqbsr535 toSci -1.11111111111111111111111111111234551 -> -1.111111111111111111111111111112346 Rounded Inexact
+
+rounding: half_even
+
+-- The 'baddies' tests from DiagBigDecimal, plus some new ones
+dqbas500 toSci '1..2' -> NaN Conversion_syntax
+dqbas501 toSci '.' -> NaN Conversion_syntax
+dqbas502 toSci '..' -> NaN Conversion_syntax
+dqbas503 toSci '++1' -> NaN Conversion_syntax
+dqbas504 toSci '--1' -> NaN Conversion_syntax
+dqbas505 toSci '-+1' -> NaN Conversion_syntax
+dqbas506 toSci '+-1' -> NaN Conversion_syntax
+dqbas507 toSci '12e' -> NaN Conversion_syntax
+dqbas508 toSci '12e++' -> NaN Conversion_syntax
+dqbas509 toSci '12f4' -> NaN Conversion_syntax
+dqbas510 toSci ' +1' -> NaN Conversion_syntax
+dqbas511 toSci '+ 1' -> NaN Conversion_syntax
+dqbas512 toSci '12 ' -> NaN Conversion_syntax
+dqbas513 toSci ' + 1' -> NaN Conversion_syntax
+dqbas514 toSci ' - 1 ' -> NaN Conversion_syntax
+dqbas515 toSci 'x' -> NaN Conversion_syntax
+dqbas516 toSci '-1-' -> NaN Conversion_syntax
+dqbas517 toSci '12-' -> NaN Conversion_syntax
+dqbas518 toSci '3+' -> NaN Conversion_syntax
+dqbas519 toSci '' -> NaN Conversion_syntax
+dqbas520 toSci '1e-' -> NaN Conversion_syntax
+dqbas521 toSci '7e99999a' -> NaN Conversion_syntax
+dqbas522 toSci '7e123567890x' -> NaN Conversion_syntax
+dqbas523 toSci '7e12356789012x' -> NaN Conversion_syntax
+dqbas524 toSci '' -> NaN Conversion_syntax
+dqbas525 toSci 'e100' -> NaN Conversion_syntax
+dqbas526 toSci '\u0e5a' -> NaN Conversion_syntax
+dqbas527 toSci '\u0b65' -> NaN Conversion_syntax
+dqbas528 toSci '123,65' -> NaN Conversion_syntax
+dqbas529 toSci '1.34.5' -> NaN Conversion_syntax
+dqbas530 toSci '.123.5' -> NaN Conversion_syntax
+dqbas531 toSci '01.35.' -> NaN Conversion_syntax
+dqbas532 toSci '01.35-' -> NaN Conversion_syntax
+dqbas533 toSci '0000..' -> NaN Conversion_syntax
+dqbas534 toSci '.0000.' -> NaN Conversion_syntax
+dqbas535 toSci '00..00' -> NaN Conversion_syntax
+dqbas536 toSci '111e*123' -> NaN Conversion_syntax
+dqbas537 toSci '111e123-' -> NaN Conversion_syntax
+dqbas538 toSci '111e+12+' -> NaN Conversion_syntax
+dqbas539 toSci '111e1-3-' -> NaN Conversion_syntax
+dqbas540 toSci '111e1*23' -> NaN Conversion_syntax
+dqbas541 toSci '111e1e+3' -> NaN Conversion_syntax
+dqbas542 toSci '1e1.0' -> NaN Conversion_syntax
+dqbas543 toSci '1e123e' -> NaN Conversion_syntax
+dqbas544 toSci 'ten' -> NaN Conversion_syntax
+dqbas545 toSci 'ONE' -> NaN Conversion_syntax
+dqbas546 toSci '1e.1' -> NaN Conversion_syntax
+dqbas547 toSci '1e1.' -> NaN Conversion_syntax
+dqbas548 toSci '1ee' -> NaN Conversion_syntax
+dqbas549 toSci 'e+1' -> NaN Conversion_syntax
+dqbas550 toSci '1.23.4' -> NaN Conversion_syntax
+dqbas551 toSci '1.2.1' -> NaN Conversion_syntax
+dqbas552 toSci '1E+1.2' -> NaN Conversion_syntax
+dqbas553 toSci '1E+1.2.3' -> NaN Conversion_syntax
+dqbas554 toSci '1E++1' -> NaN Conversion_syntax
+dqbas555 toSci '1E--1' -> NaN Conversion_syntax
+dqbas556 toSci '1E+-1' -> NaN Conversion_syntax
+dqbas557 toSci '1E-+1' -> NaN Conversion_syntax
+dqbas558 toSci '1E''1' -> NaN Conversion_syntax
+dqbas559 toSci "1E""1" -> NaN Conversion_syntax
+dqbas560 toSci "1E""""" -> NaN Conversion_syntax
+-- Near-specials
+dqbas561 toSci "qNaN" -> NaN Conversion_syntax
+dqbas562 toSci "NaNq" -> NaN Conversion_syntax
+dqbas563 toSci "NaNs" -> NaN Conversion_syntax
+dqbas564 toSci "Infi" -> NaN Conversion_syntax
+dqbas565 toSci "Infin" -> NaN Conversion_syntax
+dqbas566 toSci "Infini" -> NaN Conversion_syntax
+dqbas567 toSci "Infinit" -> NaN Conversion_syntax
+dqbas568 toSci "-Infinit" -> NaN Conversion_syntax
+dqbas569 toSci "0Inf" -> NaN Conversion_syntax
+dqbas570 toSci "9Inf" -> NaN Conversion_syntax
+dqbas571 toSci "-0Inf" -> NaN Conversion_syntax
+dqbas572 toSci "-9Inf" -> NaN Conversion_syntax
+dqbas573 toSci "-sNa" -> NaN Conversion_syntax
+dqbas574 toSci "xNaN" -> NaN Conversion_syntax
+dqbas575 toSci "0sNaN" -> NaN Conversion_syntax
+
+-- some baddies with dots and Es and dots and specials
+dqbas576 toSci 'e+1' -> NaN Conversion_syntax
+dqbas577 toSci '.e+1' -> NaN Conversion_syntax
+dqbas578 toSci '+.e+1' -> NaN Conversion_syntax
+dqbas579 toSci '-.e+' -> NaN Conversion_syntax
+dqbas580 toSci '-.e' -> NaN Conversion_syntax
+dqbas581 toSci 'E+1' -> NaN Conversion_syntax
+dqbas582 toSci '.E+1' -> NaN Conversion_syntax
+dqbas583 toSci '+.E+1' -> NaN Conversion_syntax
+dqbas584 toSci '-.E+' -> NaN Conversion_syntax
+dqbas585 toSci '-.E' -> NaN Conversion_syntax
+
+dqbas586 toSci '.NaN' -> NaN Conversion_syntax
+dqbas587 toSci '-.NaN' -> NaN Conversion_syntax
+dqbas588 toSci '+.sNaN' -> NaN Conversion_syntax
+dqbas589 toSci '+.Inf' -> NaN Conversion_syntax
+dqbas590 toSci '.Infinity' -> NaN Conversion_syntax
+
+-- Zeros
+dqbas601 toSci 0.000000000 -> 0E-9
+dqbas602 toSci 0.00000000 -> 0E-8
+dqbas603 toSci 0.0000000 -> 0E-7
+dqbas604 toSci 0.000000 -> 0.000000
+dqbas605 toSci 0.00000 -> 0.00000
+dqbas606 toSci 0.0000 -> 0.0000
+dqbas607 toSci 0.000 -> 0.000
+dqbas608 toSci 0.00 -> 0.00
+dqbas609 toSci 0.0 -> 0.0
+dqbas610 toSci .0 -> 0.0
+dqbas611 toSci 0. -> 0
+dqbas612 toSci -.0 -> -0.0
+dqbas613 toSci -0. -> -0
+dqbas614 toSci -0.0 -> -0.0
+dqbas615 toSci -0.00 -> -0.00
+dqbas616 toSci -0.000 -> -0.000
+dqbas617 toSci -0.0000 -> -0.0000
+dqbas618 toSci -0.00000 -> -0.00000
+dqbas619 toSci -0.000000 -> -0.000000
+dqbas620 toSci -0.0000000 -> -0E-7
+dqbas621 toSci -0.00000000 -> -0E-8
+dqbas622 toSci -0.000000000 -> -0E-9
+
+dqbas630 toSci 0.00E+0 -> 0.00
+dqbas631 toSci 0.00E+1 -> 0.0
+dqbas632 toSci 0.00E+2 -> 0
+dqbas633 toSci 0.00E+3 -> 0E+1
+dqbas634 toSci 0.00E+4 -> 0E+2
+dqbas635 toSci 0.00E+5 -> 0E+3
+dqbas636 toSci 0.00E+6 -> 0E+4
+dqbas637 toSci 0.00E+7 -> 0E+5
+dqbas638 toSci 0.00E+8 -> 0E+6
+dqbas639 toSci 0.00E+9 -> 0E+7
+
+dqbas640 toSci 0.0E+0 -> 0.0
+dqbas641 toSci 0.0E+1 -> 0
+dqbas642 toSci 0.0E+2 -> 0E+1
+dqbas643 toSci 0.0E+3 -> 0E+2
+dqbas644 toSci 0.0E+4 -> 0E+3
+dqbas645 toSci 0.0E+5 -> 0E+4
+dqbas646 toSci 0.0E+6 -> 0E+5
+dqbas647 toSci 0.0E+7 -> 0E+6
+dqbas648 toSci 0.0E+8 -> 0E+7
+dqbas649 toSci 0.0E+9 -> 0E+8
+
+dqbas650 toSci 0E+0 -> 0
+dqbas651 toSci 0E+1 -> 0E+1
+dqbas652 toSci 0E+2 -> 0E+2
+dqbas653 toSci 0E+3 -> 0E+3
+dqbas654 toSci 0E+4 -> 0E+4
+dqbas655 toSci 0E+5 -> 0E+5
+dqbas656 toSci 0E+6 -> 0E+6
+dqbas657 toSci 0E+7 -> 0E+7
+dqbas658 toSci 0E+8 -> 0E+8
+dqbas659 toSci 0E+9 -> 0E+9
+
+dqbas660 toSci 0.0E-0 -> 0.0
+dqbas661 toSci 0.0E-1 -> 0.00
+dqbas662 toSci 0.0E-2 -> 0.000
+dqbas663 toSci 0.0E-3 -> 0.0000
+dqbas664 toSci 0.0E-4 -> 0.00000
+dqbas665 toSci 0.0E-5 -> 0.000000
+dqbas666 toSci 0.0E-6 -> 0E-7
+dqbas667 toSci 0.0E-7 -> 0E-8
+dqbas668 toSci 0.0E-8 -> 0E-9
+dqbas669 toSci 0.0E-9 -> 0E-10
+
+dqbas670 toSci 0.00E-0 -> 0.00
+dqbas671 toSci 0.00E-1 -> 0.000
+dqbas672 toSci 0.00E-2 -> 0.0000
+dqbas673 toSci 0.00E-3 -> 0.00000
+dqbas674 toSci 0.00E-4 -> 0.000000
+dqbas675 toSci 0.00E-5 -> 0E-7
+dqbas676 toSci 0.00E-6 -> 0E-8
+dqbas677 toSci 0.00E-7 -> 0E-9
+dqbas678 toSci 0.00E-8 -> 0E-10
+dqbas679 toSci 0.00E-9 -> 0E-11
+
+dqbas680 toSci 000000. -> 0
+dqbas681 toSci 00000. -> 0
+dqbas682 toSci 0000. -> 0
+dqbas683 toSci 000. -> 0
+dqbas684 toSci 00. -> 0
+dqbas685 toSci 0. -> 0
+dqbas686 toSci +00000. -> 0
+dqbas687 toSci -00000. -> -0
+dqbas688 toSci +0. -> 0
+dqbas689 toSci -0. -> -0
+
+-- Specials
+dqbas700 toSci "NaN" -> NaN
+dqbas701 toSci "nan" -> NaN
+dqbas702 toSci "nAn" -> NaN
+dqbas703 toSci "NAN" -> NaN
+dqbas704 toSci "+NaN" -> NaN
+dqbas705 toSci "+nan" -> NaN
+dqbas706 toSci "+nAn" -> NaN
+dqbas707 toSci "+NAN" -> NaN
+dqbas708 toSci "-NaN" -> -NaN
+dqbas709 toSci "-nan" -> -NaN
+dqbas710 toSci "-nAn" -> -NaN
+dqbas711 toSci "-NAN" -> -NaN
+dqbas712 toSci 'NaN0' -> NaN
+dqbas713 toSci 'NaN1' -> NaN1
+dqbas714 toSci 'NaN12' -> NaN12
+dqbas715 toSci 'NaN123' -> NaN123
+dqbas716 toSci 'NaN1234' -> NaN1234
+dqbas717 toSci 'NaN01' -> NaN1
+dqbas718 toSci 'NaN012' -> NaN12
+dqbas719 toSci 'NaN0123' -> NaN123
+dqbas720 toSci 'NaN01234' -> NaN1234
+dqbas721 toSci 'NaN001' -> NaN1
+dqbas722 toSci 'NaN0012' -> NaN12
+dqbas723 toSci 'NaN00123' -> NaN123
+dqbas724 toSci 'NaN001234' -> NaN1234
+dqbas725 toSci 'NaN1234567890123456781234567890123456' -> NaN Conversion_syntax
+dqbas726 toSci 'NaN123e+1' -> NaN Conversion_syntax
+dqbas727 toSci 'NaN12.45' -> NaN Conversion_syntax
+dqbas728 toSci 'NaN-12' -> NaN Conversion_syntax
+dqbas729 toSci 'NaN+12' -> NaN Conversion_syntax
+
+dqbas730 toSci "sNaN" -> sNaN
+dqbas731 toSci "snan" -> sNaN
+dqbas732 toSci "SnAn" -> sNaN
+dqbas733 toSci "SNAN" -> sNaN
+dqbas734 toSci "+sNaN" -> sNaN
+dqbas735 toSci "+snan" -> sNaN
+dqbas736 toSci "+SnAn" -> sNaN
+dqbas737 toSci "+SNAN" -> sNaN
+dqbas738 toSci "-sNaN" -> -sNaN
+dqbas739 toSci "-snan" -> -sNaN
+dqbas740 toSci "-SnAn" -> -sNaN
+dqbas741 toSci "-SNAN" -> -sNaN
+dqbas742 toSci 'sNaN0000' -> sNaN
+dqbas743 toSci 'sNaN7' -> sNaN7
+dqbas744 toSci 'sNaN007234' -> sNaN7234
+dqbas745 toSci 'sNaN1234567890123456787234561234567890' -> NaN Conversion_syntax
+dqbas746 toSci 'sNaN72.45' -> NaN Conversion_syntax
+dqbas747 toSci 'sNaN-72' -> NaN Conversion_syntax
+
+dqbas748 toSci "Inf" -> Infinity
+dqbas749 toSci "inf" -> Infinity
+dqbas750 toSci "iNf" -> Infinity
+dqbas751 toSci "INF" -> Infinity
+dqbas752 toSci "+Inf" -> Infinity
+dqbas753 toSci "+inf" -> Infinity
+dqbas754 toSci "+iNf" -> Infinity
+dqbas755 toSci "+INF" -> Infinity
+dqbas756 toSci "-Inf" -> -Infinity
+dqbas757 toSci "-inf" -> -Infinity
+dqbas758 toSci "-iNf" -> -Infinity
+dqbas759 toSci "-INF" -> -Infinity
+
+dqbas760 toSci "Infinity" -> Infinity
+dqbas761 toSci "infinity" -> Infinity
+dqbas762 toSci "iNfInItY" -> Infinity
+dqbas763 toSci "INFINITY" -> Infinity
+dqbas764 toSci "+Infinity" -> Infinity
+dqbas765 toSci "+infinity" -> Infinity
+dqbas766 toSci "+iNfInItY" -> Infinity
+dqbas767 toSci "+INFINITY" -> Infinity
+dqbas768 toSci "-Infinity" -> -Infinity
+dqbas769 toSci "-infinity" -> -Infinity
+dqbas770 toSci "-iNfInItY" -> -Infinity
+dqbas771 toSci "-INFINITY" -> -Infinity
+
+-- Specials and zeros for toEng
+dqbast772 toEng "NaN" -> NaN
+dqbast773 toEng "-Infinity" -> -Infinity
+dqbast774 toEng "-sNaN" -> -sNaN
+dqbast775 toEng "-NaN" -> -NaN
+dqbast776 toEng "+Infinity" -> Infinity
+dqbast778 toEng "+sNaN" -> sNaN
+dqbast779 toEng "+NaN" -> NaN
+dqbast780 toEng "INFINITY" -> Infinity
+dqbast781 toEng "SNAN" -> sNaN
+dqbast782 toEng "NAN" -> NaN
+dqbast783 toEng "infinity" -> Infinity
+dqbast784 toEng "snan" -> sNaN
+dqbast785 toEng "nan" -> NaN
+dqbast786 toEng "InFINITY" -> Infinity
+dqbast787 toEng "SnAN" -> sNaN
+dqbast788 toEng "nAN" -> NaN
+dqbast789 toEng "iNfinity" -> Infinity
+dqbast790 toEng "sNan" -> sNaN
+dqbast791 toEng "Nan" -> NaN
+dqbast792 toEng "Infinity" -> Infinity
+dqbast793 toEng "sNaN" -> sNaN
+
+-- Zero toEng, etc.
+dqbast800 toEng 0e+1 -> "0.00E+3" -- doc example
+
+dqbast801 toEng 0.000000000 -> 0E-9
+dqbast802 toEng 0.00000000 -> 0.00E-6
+dqbast803 toEng 0.0000000 -> 0.0E-6
+dqbast804 toEng 0.000000 -> 0.000000
+dqbast805 toEng 0.00000 -> 0.00000
+dqbast806 toEng 0.0000 -> 0.0000
+dqbast807 toEng 0.000 -> 0.000
+dqbast808 toEng 0.00 -> 0.00
+dqbast809 toEng 0.0 -> 0.0
+dqbast810 toEng .0 -> 0.0
+dqbast811 toEng 0. -> 0
+dqbast812 toEng -.0 -> -0.0
+dqbast813 toEng -0. -> -0
+dqbast814 toEng -0.0 -> -0.0
+dqbast815 toEng -0.00 -> -0.00
+dqbast816 toEng -0.000 -> -0.000
+dqbast817 toEng -0.0000 -> -0.0000
+dqbast818 toEng -0.00000 -> -0.00000
+dqbast819 toEng -0.000000 -> -0.000000
+dqbast820 toEng -0.0000000 -> -0.0E-6
+dqbast821 toEng -0.00000000 -> -0.00E-6
+dqbast822 toEng -0.000000000 -> -0E-9
+
+dqbast830 toEng 0.00E+0 -> 0.00
+dqbast831 toEng 0.00E+1 -> 0.0
+dqbast832 toEng 0.00E+2 -> 0
+dqbast833 toEng 0.00E+3 -> 0.00E+3
+dqbast834 toEng 0.00E+4 -> 0.0E+3
+dqbast835 toEng 0.00E+5 -> 0E+3
+dqbast836 toEng 0.00E+6 -> 0.00E+6
+dqbast837 toEng 0.00E+7 -> 0.0E+6
+dqbast838 toEng 0.00E+8 -> 0E+6
+dqbast839 toEng 0.00E+9 -> 0.00E+9
+
+dqbast840 toEng 0.0E+0 -> 0.0
+dqbast841 toEng 0.0E+1 -> 0
+dqbast842 toEng 0.0E+2 -> 0.00E+3
+dqbast843 toEng 0.0E+3 -> 0.0E+3
+dqbast844 toEng 0.0E+4 -> 0E+3
+dqbast845 toEng 0.0E+5 -> 0.00E+6
+dqbast846 toEng 0.0E+6 -> 0.0E+6
+dqbast847 toEng 0.0E+7 -> 0E+6
+dqbast848 toEng 0.0E+8 -> 0.00E+9
+dqbast849 toEng 0.0E+9 -> 0.0E+9
+
+dqbast850 toEng 0E+0 -> 0
+dqbast851 toEng 0E+1 -> 0.00E+3
+dqbast852 toEng 0E+2 -> 0.0E+3
+dqbast853 toEng 0E+3 -> 0E+3
+dqbast854 toEng 0E+4 -> 0.00E+6
+dqbast855 toEng 0E+5 -> 0.0E+6
+dqbast856 toEng 0E+6 -> 0E+6
+dqbast857 toEng 0E+7 -> 0.00E+9
+dqbast858 toEng 0E+8 -> 0.0E+9
+dqbast859 toEng 0E+9 -> 0E+9
+
+dqbast860 toEng 0.0E-0 -> 0.0
+dqbast861 toEng 0.0E-1 -> 0.00
+dqbast862 toEng 0.0E-2 -> 0.000
+dqbast863 toEng 0.0E-3 -> 0.0000
+dqbast864 toEng 0.0E-4 -> 0.00000
+dqbast865 toEng 0.0E-5 -> 0.000000
+dqbast866 toEng 0.0E-6 -> 0.0E-6
+dqbast867 toEng 0.0E-7 -> 0.00E-6
+dqbast868 toEng 0.0E-8 -> 0E-9
+dqbast869 toEng 0.0E-9 -> 0.0E-9
+
+dqbast870 toEng 0.00E-0 -> 0.00
+dqbast871 toEng 0.00E-1 -> 0.000
+dqbast872 toEng 0.00E-2 -> 0.0000
+dqbast873 toEng 0.00E-3 -> 0.00000
+dqbast874 toEng 0.00E-4 -> 0.000000
+dqbast875 toEng 0.00E-5 -> 0.0E-6
+dqbast876 toEng 0.00E-6 -> 0.00E-6
+dqbast877 toEng 0.00E-7 -> 0E-9
+dqbast878 toEng 0.00E-8 -> 0.0E-9
+dqbast879 toEng 0.00E-9 -> 0.00E-9
+
+-- long input strings
+dqbas801 tosci '01234567890123456' -> 1234567890123456
+dqbas802 tosci '001234567890123456' -> 1234567890123456
+dqbas803 tosci '0001234567890123456' -> 1234567890123456
+dqbas804 tosci '00001234567890123456' -> 1234567890123456
+dqbas805 tosci '000001234567890123456' -> 1234567890123456
+dqbas806 tosci '0000001234567890123456' -> 1234567890123456
+dqbas807 tosci '00000001234567890123456' -> 1234567890123456
+dqbas808 tosci '000000001234567890123456' -> 1234567890123456
+dqbas809 tosci '0000000001234567890123456' -> 1234567890123456
+dqbas810 tosci '00000000001234567890123456' -> 1234567890123456
+
+dqbas811 tosci '0.1234567890123456' -> 0.1234567890123456
+dqbas812 tosci '0.01234567890123456' -> 0.01234567890123456
+dqbas813 tosci '0.001234567890123456' -> 0.001234567890123456
+dqbas814 tosci '0.0001234567890123456' -> 0.0001234567890123456
+dqbas815 tosci '0.00001234567890123456' -> 0.00001234567890123456
+dqbas816 tosci '0.000001234567890123456' -> 0.000001234567890123456
+dqbas817 tosci '0.0000001234567890123456' -> 1.234567890123456E-7
+dqbas818 tosci '0.00000001234567890123456' -> 1.234567890123456E-8
+dqbas819 tosci '0.000000001234567890123456' -> 1.234567890123456E-9
+dqbas820 tosci '0.0000000001234567890123456' -> 1.234567890123456E-10
+
+dqbas821 tosci '12345678912345678901234567801234567890' -> 1.234567891234567890123456780123457E+37 Inexact Rounded
+dqbas822 tosci '123456789123456789012345678012345678901' -> 1.234567891234567890123456780123457E+38 Inexact Rounded
+dqbas823 tosci '1234567891234567890123456780123456789012' -> 1.234567891234567890123456780123457E+39 Inexact Rounded
+dqbas824 tosci '12345678912345678901234567801234567890123' -> 1.234567891234567890123456780123457E+40 Inexact Rounded
+dqbas825 tosci '123456789123456789012345678012345678901234' -> 1.234567891234567890123456780123457E+41 Inexact Rounded
+dqbas826 tosci '1234567891234567890123456780123456789012345' -> 1.234567891234567890123456780123457E+42 Inexact Rounded
+dqbas827 tosci '12345678912345678901234567801234567890123456' -> 1.234567891234567890123456780123457E+43 Inexact Rounded
+dqbas828 tosci '123456789123456789012345678012345678901234567' -> 1.234567891234567890123456780123457E+44 Inexact Rounded
+dqbas829 tosci '1234567891234567890123456780123456789012345678' -> 1.234567891234567890123456780123457E+45 Inexact Rounded
+
+-- subnormals and overflows
+dqbas906 toSci '99e999999999' -> Infinity Overflow Inexact Rounded
+dqbas907 toSci '999e999999999' -> Infinity Overflow Inexact Rounded
+dqbas908 toSci '0.9e-999999999' -> 0E-6176 Underflow Subnormal Inexact Rounded Clamped
+dqbas909 toSci '0.09e-999999999' -> 0E-6176 Underflow Subnormal Inexact Rounded Clamped
+dqbas910 toSci '0.1e1000000000' -> Infinity Overflow Inexact Rounded
+dqbas911 toSci '10e-1000000000' -> 0E-6176 Underflow Subnormal Inexact Rounded Clamped
+dqbas912 toSci '0.9e9999999999' -> Infinity Overflow Inexact Rounded
+dqbas913 toSci '99e-9999999999' -> 0E-6176 Underflow Subnormal Inexact Rounded Clamped
+dqbas914 toSci '111e9999999999' -> Infinity Overflow Inexact Rounded
+dqbas915 toSci '1111e-9999999999' -> 0E-6176 Underflow Subnormal Inexact Rounded Clamped
+dqbas916 toSci '1111e-99999999999' -> 0E-6176 Underflow Subnormal Inexact Rounded Clamped
+dqbas917 toSci '7e1000000000' -> Infinity Overflow Inexact Rounded
+-- negatives the same
+dqbas918 toSci '-99e999999999' -> -Infinity Overflow Inexact Rounded
+dqbas919 toSci '-999e999999999' -> -Infinity Overflow Inexact Rounded
+dqbas920 toSci '-0.9e-999999999' -> -0E-6176 Underflow Subnormal Inexact Rounded Clamped
+dqbas921 toSci '-0.09e-999999999' -> -0E-6176 Underflow Subnormal Inexact Rounded Clamped
+dqbas922 toSci '-0.1e1000000000' -> -Infinity Overflow Inexact Rounded
+dqbas923 toSci '-10e-1000000000' -> -0E-6176 Underflow Subnormal Inexact Rounded Clamped
+dqbas924 toSci '-0.9e9999999999' -> -Infinity Overflow Inexact Rounded
+dqbas925 toSci '-99e-9999999999' -> -0E-6176 Underflow Subnormal Inexact Rounded Clamped
+dqbas926 toSci '-111e9999999999' -> -Infinity Overflow Inexact Rounded
+dqbas927 toSci '-1111e-9999999999' -> -0E-6176 Underflow Subnormal Inexact Rounded Clamped
+dqbas928 toSci '-1111e-99999999999' -> -0E-6176 Underflow Subnormal Inexact Rounded Clamped
+dqbas929 toSci '-7e1000000000' -> -Infinity Overflow Inexact Rounded
+
+-- overflow results at different rounding modes
+rounding: ceiling
+dqbas930 toSci '7e10000' -> Infinity Overflow Inexact Rounded
+dqbas931 toSci '-7e10000' -> -9.999999999999999999999999999999999E+6144 Overflow Inexact Rounded
+rounding: up
+dqbas932 toSci '7e10000' -> Infinity Overflow Inexact Rounded
+dqbas933 toSci '-7e10000' -> -Infinity Overflow Inexact Rounded
+rounding: down
+dqbas934 toSci '7e10000' -> 9.999999999999999999999999999999999E+6144 Overflow Inexact Rounded
+dqbas935 toSci '-7e10000' -> -9.999999999999999999999999999999999E+6144 Overflow Inexact Rounded
+rounding: floor
+dqbas936 toSci '7e10000' -> 9.999999999999999999999999999999999E+6144 Overflow Inexact Rounded
+dqbas937 toSci '-7e10000' -> -Infinity Overflow Inexact Rounded
+
+rounding: half_up
+dqbas938 toSci '7e10000' -> Infinity Overflow Inexact Rounded
+dqbas939 toSci '-7e10000' -> -Infinity Overflow Inexact Rounded
+rounding: half_even
+dqbas940 toSci '7e10000' -> Infinity Overflow Inexact Rounded
+dqbas941 toSci '-7e10000' -> -Infinity Overflow Inexact Rounded
+rounding: half_down
+dqbas942 toSci '7e10000' -> Infinity Overflow Inexact Rounded
+dqbas943 toSci '-7e10000' -> -Infinity Overflow Inexact Rounded
+
+rounding: half_even
+
+-- Now check 854/754r some subnormals and underflow to 0
+dqbem400 toSci 1.0000E-383 -> 1.0000E-383
+dqbem401 toSci 0.1E-6172 -> 1E-6173 Subnormal
+dqbem402 toSci 0.1000E-6172 -> 1.000E-6173 Subnormal
+dqbem403 toSci 0.0100E-6172 -> 1.00E-6174 Subnormal
+dqbem404 toSci 0.0010E-6172 -> 1.0E-6175 Subnormal
+dqbem405 toSci 0.0001E-6172 -> 1E-6176 Subnormal
+dqbem406 toSci 0.00010E-6172 -> 1E-6176 Subnormal Rounded
+dqbem407 toSci 0.00013E-6172 -> 1E-6176 Underflow Subnormal Inexact Rounded
+dqbem408 toSci 0.00015E-6172 -> 2E-6176 Underflow Subnormal Inexact Rounded
+dqbem409 toSci 0.00017E-6172 -> 2E-6176 Underflow Subnormal Inexact Rounded
+dqbem410 toSci 0.00023E-6172 -> 2E-6176 Underflow Subnormal Inexact Rounded
+dqbem411 toSci 0.00025E-6172 -> 2E-6176 Underflow Subnormal Inexact Rounded
+dqbem412 toSci 0.00027E-6172 -> 3E-6176 Underflow Subnormal Inexact Rounded
+dqbem413 toSci 0.000149E-6172 -> 1E-6176 Underflow Subnormal Inexact Rounded
+dqbem414 toSci 0.000150E-6172 -> 2E-6176 Underflow Subnormal Inexact Rounded
+dqbem415 toSci 0.000151E-6172 -> 2E-6176 Underflow Subnormal Inexact Rounded
+dqbem416 toSci 0.000249E-6172 -> 2E-6176 Underflow Subnormal Inexact Rounded
+dqbem417 toSci 0.000250E-6172 -> 2E-6176 Underflow Subnormal Inexact Rounded
+dqbem418 toSci 0.000251E-6172 -> 3E-6176 Underflow Subnormal Inexact Rounded
+dqbem419 toSci 0.00009E-6172 -> 1E-6176 Underflow Subnormal Inexact Rounded
+dqbem420 toSci 0.00005E-6172 -> 0E-6176 Underflow Subnormal Inexact Rounded Clamped
+dqbem421 toSci 0.00003E-6172 -> 0E-6176 Underflow Subnormal Inexact Rounded Clamped
+dqbem422 toSci 0.000009E-6172 -> 0E-6176 Underflow Subnormal Inexact Rounded Clamped
+dqbem423 toSci 0.000005E-6172 -> 0E-6176 Underflow Subnormal Inexact Rounded Clamped
+dqbem424 toSci 0.000003E-6172 -> 0E-6176 Underflow Subnormal Inexact Rounded Clamped
+
+dqbem425 toSci 0.001049E-6172 -> 1.0E-6175 Underflow Subnormal Inexact Rounded
+dqbem426 toSci 0.001050E-6172 -> 1.0E-6175 Underflow Subnormal Inexact Rounded
+dqbem427 toSci 0.001051E-6172 -> 1.1E-6175 Underflow Subnormal Inexact Rounded
+dqbem428 toSci 0.001149E-6172 -> 1.1E-6175 Underflow Subnormal Inexact Rounded
+dqbem429 toSci 0.001150E-6172 -> 1.2E-6175 Underflow Subnormal Inexact Rounded
+dqbem430 toSci 0.001151E-6172 -> 1.2E-6175 Underflow Subnormal Inexact Rounded
+
+dqbem432 toSci 0.010049E-6172 -> 1.00E-6174 Underflow Subnormal Inexact Rounded
+dqbem433 toSci 0.010050E-6172 -> 1.00E-6174 Underflow Subnormal Inexact Rounded
+dqbem434 toSci 0.010051E-6172 -> 1.01E-6174 Underflow Subnormal Inexact Rounded
+dqbem435 toSci 0.010149E-6172 -> 1.01E-6174 Underflow Subnormal Inexact Rounded
+dqbem436 toSci 0.010150E-6172 -> 1.02E-6174 Underflow Subnormal Inexact Rounded
+dqbem437 toSci 0.010151E-6172 -> 1.02E-6174 Underflow Subnormal Inexact Rounded
+
+dqbem440 toSci 0.10103E-6172 -> 1.010E-6173 Underflow Subnormal Inexact Rounded
+dqbem441 toSci 0.10105E-6172 -> 1.010E-6173 Underflow Subnormal Inexact Rounded
+dqbem442 toSci 0.10107E-6172 -> 1.011E-6173 Underflow Subnormal Inexact Rounded
+dqbem443 toSci 0.10113E-6172 -> 1.011E-6173 Underflow Subnormal Inexact Rounded
+dqbem444 toSci 0.10115E-6172 -> 1.012E-6173 Underflow Subnormal Inexact Rounded
+dqbem445 toSci 0.10117E-6172 -> 1.012E-6173 Underflow Subnormal Inexact Rounded
+
+dqbem450 toSci 1.10730E-6173 -> 1.107E-6173 Underflow Subnormal Inexact Rounded
+dqbem451 toSci 1.10750E-6173 -> 1.108E-6173 Underflow Subnormal Inexact Rounded
+dqbem452 toSci 1.10770E-6173 -> 1.108E-6173 Underflow Subnormal Inexact Rounded
+dqbem453 toSci 1.10830E-6173 -> 1.108E-6173 Underflow Subnormal Inexact Rounded
+dqbem454 toSci 1.10850E-6173 -> 1.108E-6173 Underflow Subnormal Inexact Rounded
+dqbem455 toSci 1.10870E-6173 -> 1.109E-6173 Underflow Subnormal Inexact Rounded
+
+-- make sure sign OK
+dqbem456 toSci -0.10103E-6172 -> -1.010E-6173 Underflow Subnormal Inexact Rounded
+dqbem457 toSci -0.10105E-6172 -> -1.010E-6173 Underflow Subnormal Inexact Rounded
+dqbem458 toSci -0.10107E-6172 -> -1.011E-6173 Underflow Subnormal Inexact Rounded
+dqbem459 toSci -0.10113E-6172 -> -1.011E-6173 Underflow Subnormal Inexact Rounded
+dqbem460 toSci -0.10115E-6172 -> -1.012E-6173 Underflow Subnormal Inexact Rounded
+dqbem461 toSci -0.10117E-6172 -> -1.012E-6173 Underflow Subnormal Inexact Rounded
+
+-- '999s' cases
+dqbem464 toSci 999999E-6173 -> 9.99999E-6168 Subnormal
+dqbem465 toSci 99999.0E-6172 -> 9.99990E-6168 Subnormal
+dqbem466 toSci 99999.E-6172 -> 9.9999E-6168 Subnormal
+dqbem467 toSci 9999.9E-6172 -> 9.9999E-6169 Subnormal
+dqbem468 toSci 999.99E-6172 -> 9.9999E-6170 Subnormal
+dqbem469 toSci 99.999E-6172 -> 9.9999E-6171 Subnormal
+dqbem470 toSci 9.9999E-6172 -> 9.9999E-6172 Subnormal
+dqbem471 toSci 0.99999E-6172 -> 1.0000E-6172 Underflow Subnormal Inexact Rounded
+dqbem472 toSci 0.099999E-6172 -> 1.000E-6173 Underflow Subnormal Inexact Rounded
+dqbem473 toSci 0.0099999E-6172 -> 1.00E-6174 Underflow Subnormal Inexact Rounded
+dqbem474 toSci 0.00099999E-6172 -> 1.0E-6175 Underflow Subnormal Inexact Rounded
+dqbem475 toSci 0.000099999E-6172 -> 1E-6176 Underflow Subnormal Inexact Rounded
+dqbem476 toSci 0.0000099999E-6172 -> 0E-6176 Underflow Subnormal Inexact Rounded Clamped
+dqbem477 toSci 0.00000099999E-6172 -> 0E-6176 Underflow Subnormal Inexact Rounded Clamped
+dqbem478 toSci 0.000000099999E-6172 -> 0E-6176 Underflow Subnormal Inexact Rounded Clamped
+
+-- Exponents with insignificant leading zeros
+dqbas1001 toSci 1e999999999 -> Infinity Overflow Inexact Rounded
+dqbas1002 toSci 1e0999999999 -> Infinity Overflow Inexact Rounded
+dqbas1003 toSci 1e00999999999 -> Infinity Overflow Inexact Rounded
+dqbas1004 toSci 1e000999999999 -> Infinity Overflow Inexact Rounded
+dqbas1005 toSci 1e000000000000999999999 -> Infinity Overflow Inexact Rounded
+dqbas1006 toSci 1e000000000001000000007 -> Infinity Overflow Inexact Rounded
+dqbas1007 toSci 1e-999999999 -> 0E-6176 Underflow Subnormal Inexact Rounded Clamped
+dqbas1008 toSci 1e-0999999999 -> 0E-6176 Underflow Subnormal Inexact Rounded Clamped
+dqbas1009 toSci 1e-00999999999 -> 0E-6176 Underflow Subnormal Inexact Rounded Clamped
+dqbas1010 toSci 1e-000999999999 -> 0E-6176 Underflow Subnormal Inexact Rounded Clamped
+dqbas1011 toSci 1e-000000000000999999999 -> 0E-6176 Underflow Subnormal Inexact Rounded Clamped
+dqbas1012 toSci 1e-000000000001000000007 -> 0E-6176 Underflow Subnormal Inexact Rounded Clamped
+
+-- check for double-rounded subnormals
+dqbas1041 toSci 1.1111111111111111111111111111152444E-6144 -> 1.11111111111111111111111111111524E-6144 Inexact Rounded Subnormal Underflow
+dqbas1042 toSci 1.1111111111111111111111111111152445E-6144 -> 1.11111111111111111111111111111524E-6144 Inexact Rounded Subnormal Underflow
+dqbas1043 toSci 1.1111111111111111111111111111152446E-6144 -> 1.11111111111111111111111111111524E-6144 Inexact Rounded Subnormal Underflow
+
+-- clamped zeros [see also clamp.decTest]
+dqbas1075 toSci 0e+10000 -> 0E+6111 Clamped
+dqbas1076 toSci 0e-10000 -> 0E-6176 Clamped
+dqbas1077 toSci -0e+10000 -> -0E+6111 Clamped
+dqbas1078 toSci -0e-10000 -> -0E-6176 Clamped
+
+-- extreme values from next-wider
+dqbas1101 toSci -9.9999999999999999999999999999999999999999999999999999999999999999999E+1572864 -> -Infinity Overflow Inexact Rounded
+dqbas1102 toSci -1E-1572863 -> -0E-6176 Inexact Rounded Subnormal Underflow Clamped
+dqbas1103 toSci -1E-1572932 -> -0E-6176 Inexact Rounded Subnormal Underflow Clamped
+dqbas1104 toSci -0 -> -0
+dqbas1105 toSci +0 -> 0
+dqbas1106 toSci +1E-1572932 -> 0E-6176 Inexact Rounded Subnormal Underflow Clamped
+dqbas1107 toSci +1E-1572863 -> 0E-6176 Inexact Rounded Subnormal Underflow Clamped
+dqbas1108 toSci +9.9999999999999999999999999999999999999999999999999999999999999999999E+1572864 -> Infinity Overflow Inexact Rounded
+
diff --git a/Lib/test/decimaltestdata/dqCanonical.decTest b/Lib/test/decimaltestdata/dqCanonical.decTest
new file mode 100644
index 0000000..a6b801a
--- /dev/null
+++ b/Lib/test/decimaltestdata/dqCanonical.decTest
@@ -0,0 +1,372 @@
+------------------------------------------------------------------------
+-- dqCanonical.decTest -- test decQuad canonical results --
+-- Copyright (c) IBM Corporation, 1981, 2007. All rights reserved. --
+------------------------------------------------------------------------
+-- Please see the document "General Decimal Arithmetic Testcases" --
+-- at http://www2.hursley.ibm.com/decimal for the description of --
+-- these testcases. --
+-- --
+-- These testcases are experimental ('beta' versions), and they --
+-- may contain errors. They are offered on an as-is basis. In --
+-- particular, achieving the same results as the tests here is not --
+-- a guarantee that an implementation complies with any Standard --
+-- or specification. The tests are not exhaustive. --
+-- --
+-- Please send comments, suggestions, and corrections to the author: --
+-- Mike Cowlishaw, IBM Fellow --
+-- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK --
+-- mfc@uk.ibm.com --
+------------------------------------------------------------------------
+version: 2.56
+
+-- This file tests that copy operations leave uncanonical operands
+-- unchanged, and vice versa
+
+-- All operands and results are decQuads.
+extended: 1
+clamp: 1
+precision: 34
+maxExponent: 6144
+minExponent: -6143
+rounding: half_even
+
+-- Uncanonical declets are: abc, where:
+-- a=1,2,3
+-- b=6,7,e,f
+-- c=e,f
+
+-- assert some standard (canonical) values; this tests that FromString
+-- produces canonical results (many more in decimalNN)
+dqcan001 apply 9.999999999999999999999999999999999E+6144 -> #77ffcff3fcff3fcff3fcff3fcff3fcff
+dqcan002 apply 0 -> #22080000000000000000000000000000
+dqcan003 apply 1 -> #22080000000000000000000000000001
+dqcan004 apply -1 -> #a2080000000000000000000000000001
+dqcan005 apply Infinity -> #78000000000000000000000000000000
+dqcan006 apply -Infinity -> #f8000000000000000000000000000000
+dqcan007 apply -NaN -> #fc000000000000000000000000000000
+dqcan008 apply -sNaN -> #fe000000000000000000000000000000
+dqcan009 apply NaN999999999999999999999999999999999 -> #7c000ff3fcff3fcff3fcff3fcff3fcff
+dqcan010 apply sNaN999999999999999999999999999999999 -> #7e000ff3fcff3fcff3fcff3fcff3fcff
+decan011 apply 9999999999999999999999999999999999 -> #6e080ff3fcff3fcff3fcff3fcff3fcff
+dqcan012 apply 7.50 -> #220780000000000000000000000003d0
+dqcan013 apply 9.99 -> #220780000000000000000000000000ff
+
+-- Base tests for canonical encodings (individual operator
+-- propagation is tested later)
+
+-- Finites: declets in coefficient
+dqcan021 canonical #77ffcff3fcff3fcff3fcff3fcff3fcff -> #77ffcff3fcff3fcff3fcff3fcff3fcff
+dqcan022 canonical #77fffff3fcff3fcff3fcff3fcff3fcff -> #77ffcff3fcff3fcff3fcff3fcff3fcff
+dqcan023 canonical #77ffcffffcff3fcff3fcff3fcff3fcff -> #77ffcff3fcff3fcff3fcff3fcff3fcff
+dqcan024 canonical #77ffcff3ffff3fcff3fcff3fcff3fcff -> #77ffcff3fcff3fcff3fcff3fcff3fcff
+dqcan025 canonical #77ffcff3fcffffcff3fcff3fcff3fcff -> #77ffcff3fcff3fcff3fcff3fcff3fcff
+dqcan026 canonical #77ffcff3fcff3ffff3fcff3fcff3fcff -> #77ffcff3fcff3fcff3fcff3fcff3fcff
+dqcan027 canonical #77ffcff3fcff3fcffffcff3fcff3fcff -> #77ffcff3fcff3fcff3fcff3fcff3fcff
+dqcan028 canonical #77ffcff3fcff3fcff3ffff3fcff3fcff -> #77ffcff3fcff3fcff3fcff3fcff3fcff
+dqcan029 canonical #77ffcff3fcff3fcff3fcffffcff3fcff -> #77ffcff3fcff3fcff3fcff3fcff3fcff
+dqcan030 canonical #77ffcff3fcff3fcff3fcff3ffff3fcff -> #77ffcff3fcff3fcff3fcff3fcff3fcff
+dqcan031 canonical #77ffcff3fcff3fcff3fcff3fcffffcff -> #77ffcff3fcff3fcff3fcff3fcff3fcff
+dqcan032 canonical #77ffcff3fcff3fcff3fcff3fcff3ffff -> #77ffcff3fcff3fcff3fcff3fcff3fcff
+
+-- NaN: declets in payload
+dqcan061 canonical #7c000ff3fcff3fcff3fcff3fcff3fcff -> #7c000ff3fcff3fcff3fcff3fcff3fcff
+dqcan062 canonical #7c000ffffcff3fcff3fcff3fcff3fcff -> #7c000ff3fcff3fcff3fcff3fcff3fcff
+dqcan063 canonical #7c000ff3ffff3fcff3fcff3fcff3fcff -> #7c000ff3fcff3fcff3fcff3fcff3fcff
+dqcan064 canonical #7c000ff3fcffffcff3fcff3fcff3fcff -> #7c000ff3fcff3fcff3fcff3fcff3fcff
+dqcan065 canonical #7c000ff3fcff3ffff3fcff3fcff3fcff -> #7c000ff3fcff3fcff3fcff3fcff3fcff
+dqcan066 canonical #7c000ff3fcff3fcffffcff3fcff3fcff -> #7c000ff3fcff3fcff3fcff3fcff3fcff
+dqcan067 canonical #7c000ff3fcff3fcff3ffff3fcff3fcff -> #7c000ff3fcff3fcff3fcff3fcff3fcff
+dqcan068 canonical #7c000ff3fcff3fcff3fcffffcff3fcff -> #7c000ff3fcff3fcff3fcff3fcff3fcff
+dqcan069 canonical #7c000ff3fcff3fcff3fcff3ffff3fcff -> #7c000ff3fcff3fcff3fcff3fcff3fcff
+dqcan070 canonical #7c000ff3fcff3fcff3fcff3fcffffcff -> #7c000ff3fcff3fcff3fcff3fcff3fcff
+dqcan071 canonical #7c000ff3fcff3fcff3fcff3fcff3ffff -> #7c000ff3fcff3fcff3fcff3fcff3fcff
+-- NaN: exponent continuation bits [excluding sNaN selector]
+dqcan081 canonical #7d000ff3fcff3fcff3fcff3fcff3fcff -> #7c000ff3fcff3fcff3fcff3fcff3fcff
+dqcan082 canonical #7c800ff3fcff3fcff3fcff3fcff3fcff -> #7c000ff3fcff3fcff3fcff3fcff3fcff
+dqcan083 canonical #7c400ff3fcff3fcff3fcff3fcff3fcff -> #7c000ff3fcff3fcff3fcff3fcff3fcff
+dqcan084 canonical #7c200ff3fcff3fcff3fcff3fcff3fcff -> #7c000ff3fcff3fcff3fcff3fcff3fcff
+dqcan085 canonical #7c100ff3fcff3fcff3fcff3fcff3fcff -> #7c000ff3fcff3fcff3fcff3fcff3fcff
+dqcan086 canonical #7c080ff3fcff3fcff3fcff3fcff3fcff -> #7c000ff3fcff3fcff3fcff3fcff3fcff
+dqcan087 canonical #7c040ff3fcff3fcff3fcff3fcff3fcff -> #7c000ff3fcff3fcff3fcff3fcff3fcff
+dqcan088 canonical #7c020ff3fcff3fcff3fcff3fcff3fcff -> #7c000ff3fcff3fcff3fcff3fcff3fcff
+dqcan089 canonical #7c010ff3fcff3fcff3fcff3fcff3fcff -> #7c000ff3fcff3fcff3fcff3fcff3fcff
+dqcan090 canonical #7c008ff3fcff3fcff3fcff3fcff3fcff -> #7c000ff3fcff3fcff3fcff3fcff3fcff
+dqcan091 canonical #7c004ff3fcff3fcff3fcff3fcff3fcff -> #7c000ff3fcff3fcff3fcff3fcff3fcff
+
+-- sNaN: declets in payload
+dqcan101 canonical #7e000ff3fcff3fcff3fcff3fcff3fcff -> #7e000ff3fcff3fcff3fcff3fcff3fcff
+dqcan102 canonical #7e000ffffcff3fcff3fcff3fcff3fcff -> #7e000ff3fcff3fcff3fcff3fcff3fcff
+dqcan103 canonical #7e000ff3ffff3fcff3fcff3fcff3fcff -> #7e000ff3fcff3fcff3fcff3fcff3fcff
+dqcan104 canonical #7e000ff3fcffffcff3fcff3fcff3fcff -> #7e000ff3fcff3fcff3fcff3fcff3fcff
+dqcan105 canonical #7e000ff3fcff3ffff3fcff3fcff3fcff -> #7e000ff3fcff3fcff3fcff3fcff3fcff
+dqcan106 canonical #7e000ff3fcff3fcffffcff3fcff3fcff -> #7e000ff3fcff3fcff3fcff3fcff3fcff
+dqcan107 canonical #7e000ff3fcff3fcff3ffff3fcff3fcff -> #7e000ff3fcff3fcff3fcff3fcff3fcff
+dqcan108 canonical #7e000ff3fcff3fcff3fcffffcff3fcff -> #7e000ff3fcff3fcff3fcff3fcff3fcff
+dqcan109 canonical #7e000ff3fcff3fcff3fcff3ffff3fcff -> #7e000ff3fcff3fcff3fcff3fcff3fcff
+dqcan100 canonical #7e000ff3fcff3fcff3fcff3fcffffcff -> #7e000ff3fcff3fcff3fcff3fcff3fcff
+dqcan111 canonical #7e000ff3fcff3fcff3fcff3fcff3ffff -> #7e000ff3fcff3fcff3fcff3fcff3fcff
+-- sNaN: exponent continuation bits [excluding sNaN selector]
+dqcan121 canonical #7f000ff3fcff3fcff3fcff3fcff3fcff -> #7e000ff3fcff3fcff3fcff3fcff3fcff
+dqcan122 canonical #7e800ff3fcff3fcff3fcff3fcff3fcff -> #7e000ff3fcff3fcff3fcff3fcff3fcff
+dqcan123 canonical #7e400ff3fcff3fcff3fcff3fcff3fcff -> #7e000ff3fcff3fcff3fcff3fcff3fcff
+dqcan124 canonical #7e200ff3fcff3fcff3fcff3fcff3fcff -> #7e000ff3fcff3fcff3fcff3fcff3fcff
+dqcan125 canonical #7e100ff3fcff3fcff3fcff3fcff3fcff -> #7e000ff3fcff3fcff3fcff3fcff3fcff
+dqcan126 canonical #7e080ff3fcff3fcff3fcff3fcff3fcff -> #7e000ff3fcff3fcff3fcff3fcff3fcff
+dqcan127 canonical #7e040ff3fcff3fcff3fcff3fcff3fcff -> #7e000ff3fcff3fcff3fcff3fcff3fcff
+dqcan128 canonical #7e020ff3fcff3fcff3fcff3fcff3fcff -> #7e000ff3fcff3fcff3fcff3fcff3fcff
+dqcan129 canonical #7e010ff3fcff3fcff3fcff3fcff3fcff -> #7e000ff3fcff3fcff3fcff3fcff3fcff
+dqcan130 canonical #7e008ff3fcff3fcff3fcff3fcff3fcff -> #7e000ff3fcff3fcff3fcff3fcff3fcff
+dqcan131 canonical #7e004ff3fcff3fcff3fcff3fcff3fcff -> #7e000ff3fcff3fcff3fcff3fcff3fcff
+
+-- Inf: exponent continuation bits
+dqcan137 canonical #78000000000000000000000000000000 -> #78000000000000000000000000000000
+dqcan138 canonical #79000000000000000000000000000000 -> #78000000000000000000000000000000
+dqcan139 canonical #7a000000000000000000000000000000 -> #78000000000000000000000000000000
+dqcan140 canonical #78800000000000000000000000000000 -> #78000000000000000000000000000000
+dqcan141 canonical #78400000000000000000000000000000 -> #78000000000000000000000000000000
+dqcan142 canonical #78200000000000000000000000000000 -> #78000000000000000000000000000000
+dqcan143 canonical #78100000000000000000000000000000 -> #78000000000000000000000000000000
+dqcan144 canonical #78080000000000000000000000000000 -> #78000000000000000000000000000000
+dqcan145 canonical #78040000000000000000000000000000 -> #78000000000000000000000000000000
+dqcan146 canonical #78020000000000000000000000000000 -> #78000000000000000000000000000000
+dqcan147 canonical #78010000000000000000000000000000 -> #78000000000000000000000000000000
+dqcan148 canonical #78008000000000000000000000000000 -> #78000000000000000000000000000000
+dqcan149 canonical #78004000000000000000000000000000 -> #78000000000000000000000000000000
+
+-- Inf: coefficient continuation bits (first, last, and a few others)
+dqcan150 canonical #78000000000000000000000000000000 -> #78000000000000000000000000000000
+dqcan151 canonical #78020000000000000000000000000000 -> #78000000000000000000000000000000
+dqcan152 canonical #78000000000000000000000000000001 -> #78000000000000000000000000000000
+dqcan153 canonical #78010000000000000000000000000000 -> #78000000000000000000000000000000
+dqcan154 canonical #78002000000000000000000000000000 -> #78000000000000000000000000000000
+dqcan155 canonical #78000800000000000000000000000000 -> #78000000000000000000000000000000
+dqcan156 canonical #78000020000000000000000000000000 -> #78000000000000000000000000000000
+dqcan157 canonical #78000004000000000000000000000000 -> #78000000000000000000000000000000
+dqcan158 canonical #78000000400000000000000000000000 -> #78000000000000000000000000000000
+dqcan159 canonical #78000000080000000000000000000000 -> #78000000000000000000000000000000
+dqcan160 canonical #78000000004000000000000000000000 -> #78000000000000000000000000000000
+dqcan161 canonical #78000000000200000000000000000000 -> #78000000000000000000000000000000
+dqcan162 canonical #78000000000080000000000000000000 -> #78000000000000000000000000000000
+dqcan163 canonical #78000000000002000000000000000000 -> #78000000000000000000000000000000
+dqcan164 canonical #78000000000000400000000000000000 -> #78000000000000000000000000000000
+dqcan165 canonical #78000000000000080000000000000000 -> #78000000000000000000000000000000
+dqcan166 canonical #78000000000000001000000000000000 -> #78000000000000000000000000000000
+dqcan167 canonical #78000000000000000200000000000000 -> #78000000000000000000000000000000
+dqcan168 canonical #78000000000000000080000000000000 -> #78000000000000000000000000000000
+dqcan169 canonical #78000000000000000004000000000000 -> #78000000000000000000000000000000
+dqcan170 canonical #78000000000000000000400000000000 -> #78000000000000000000000000000000
+dqcan171 canonical #78000000000000000000010000000000 -> #78000000000000000000000000000000
+dqcan172 canonical #78000000000000000000002000000000 -> #78000000000000000000000000000000
+dqcan173 canonical #78000000000000000000000400000000 -> #78000000000000000000000000000000
+dqcan174 canonical #78000000000000000000000080000000 -> #78000000000000000000000000000000
+dqcan175 canonical #78000000000000000000000002000000 -> #78000000000000000000000000000000
+dqcan176 canonical #78000000000000000000000000400000 -> #78000000000000000000000000000000
+dqcan177 canonical #78000000000000000000000000020000 -> #78000000000000000000000000000000
+dqcan178 canonical #78000000000000000000000000001000 -> #78000000000000000000000000000000
+dqcan179 canonical #78000000000000000000000000000400 -> #78000000000000000000000000000000
+dqcan180 canonical #78000000000000000000000000000020 -> #78000000000000000000000000000000
+dqcan181 canonical #78000000000000000000000000000008 -> #78000000000000000000000000000000
+
+
+-- Now the operators -- trying to check paths that might fail to
+-- canonicalize propagated operands
+
+----- Add:
+-- Finites: neutral 0
+dqcan202 add 0E+6144 #77ffcff3fcff3fcffffcff3fcff3fcff -> #77ffcff3fcff3fcff3fcff3fcff3fcff
+dqcan203 add #77ffcff3fcff3fcff3fcff3ffff3fcff 0E+6144 -> #77ffcff3fcff3fcff3fcff3fcff3fcff
+-- tiny zero
+dqcan204 add 0E-6176 #77ffcff3ffff3fcff3fcff3fcff3fcff -> #77ffcff3fcff3fcff3fcff3fcff3fcff Rounded
+dqcan205 add #77ffcff3fcff3fcff3fcff3fcff3ffff 0E-6176 -> #77ffcff3fcff3fcff3fcff3fcff3fcff Rounded
+-- tiny non zero
+dqcan206 add -1E-6176 #77ffcff3fcff3fcff3fcff3fcfffffff -> #77ffcff3fcff3fcff3fcff3fcff3fcff Inexact Rounded
+dqcan207 add #77ffcffffffffffffffffffffff3fcff -1E-6176 -> #77ffcff3fcff3fcff3fcff3fcff3fcff Inexact Rounded
+-- NaN: declets in payload
+dqcan211 add 0 #7c000ff3fcff3fcff3fcfffffff3fcff -> #7c000ff3fcff3fcff3fcff3fcff3fcff
+dqcan212 add #7c000ff3fcff3fcfffffff3fcff3fcff 0 -> #7c000ff3fcff3fcff3fcff3fcff3fcff
+-- NaN: exponent continuation bits [excluding sNaN selector]
+dqcan213 add 0 #7c400ff3fcff3fcff3fcff3fcff3fcff -> #7c000ff3fcff3fcff3fcff3fcff3fcff
+dqcan214 add #7c020ff3fcff3fcff3fcff3fcff3fcff 0 -> #7c000ff3fcff3fcff3fcff3fcff3fcff
+-- sNaN: declets in payload
+dqcan215 add 0 #7e000ff3fcffffcff3fcff3fcff3fcff -> #7c000ff3fcff3fcff3fcff3fcff3fcff Invalid_operation
+dqcan216 add #7e003ff3fcff3fcff3fcff3fcff3fcff 0 -> #7c000ff3fcff3fcff3fcff3fcff3fcff Invalid_operation
+-- sNaN: exponent continuation bits [excluding sNaN selector]
+dqcan217 add 0 #7e500ff3fcff3fcff3fcff3fcff3fcff -> #7c000ff3fcff3fcff3fcff3fcff3fcff Invalid_operation
+dqcan218 add #7e0e0ff3fcff3fcff3fcff3fcff3fcff 0 -> #7c000ff3fcff3fcff3fcff3fcff3fcff Invalid_operation
+-- Inf: exponent continuation bits
+dqcan220 add 0 #78010000000000000000000000000000 -> #78000000000000000000000000000000
+dqcan221 add #78680000000000000000000000000000 0 -> #78000000000000000000000000000000
+-- Inf: coefficient continuation bits
+dqcan222 add 0 #78002000000000000000000000000000 -> #78000000000000000000000000000000
+dqcan223 add #78000000000000000000000000000001 0 -> #78000000000000000000000000000000
+dqcan224 add 0 #78000002000000000000000000000000 -> #78000000000000000000000000000000
+dqcan225 add #780000000000f0000000000000000000 0 -> #78000000000000000000000000000000
+dqcan226 add 0 #78000000000000000005000000000000 -> #78000000000000000000000000000000
+dqcan227 add #780000000000000000000000000a0000 0 -> #78000000000000000000000000000000
+
+----- Class: [does not return encoded]
+
+----- Compare:
+dqcan231 compare -Inf 1 -> #a2080000000000000000000000000001
+dqcan232 compare -Inf -Inf -> #22080000000000000000000000000000
+dqcan233 compare 1 -Inf -> #22080000000000000000000000000001
+dqcan234 compare #7c010ff3fcff3fcff3fcff3ffffffcff -1000 -> #7c000ff3fcff3fcff3fcff3fcff3fcff
+dqcan235 compare #7e004ff3fcff3fcff3ffffffcff3fcff -1000 -> #7c000ff3fcff3fcff3fcff3fcff3fcff Invalid_operation
+
+----- CompareSig:
+dqcan241 comparesig -Inf 1 -> #a2080000000000000000000000000001
+dqcan242 comparesig -Inf -Inf -> #22080000000000000000000000000000
+dqcan243 comparesig 1 -Inf -> #22080000000000000000000000000001
+dqcan244 comparesig #7c400ff3ffff3fcff3fcff3fcff3fcff -1000 -> #7c000ff3fcff3fcff3fcff3fcff3fcff Invalid_operation
+dqcan245 comparesig #7e050ff3fcfffffff3fcff3fcff3fcff -1000 -> #7c000ff3fcff3fcff3fcff3fcff3fcff Invalid_operation
+
+----- Copy: [does not usually canonicalize]
+-- finites
+dqcan250 copy #6e080ff3fcff3fcfffffff3fcfffffff -> #6e080ff3fcff3fcfffffff3fcfffffff
+dqcan251 copy #ee080ff3fcff3ffff3fcff3ffff3fcff -> #ee080ff3fcff3ffff3fcff3ffff3fcff
+-- NaNs
+dqcan252 copy #7c000ff3fcffffffffffffffcff3fcff -> #7c000ff3fcffffffffffffffcff3fcff
+dqcan253 copy #7c080ff3fcff3fcff3fcff3fcff3fcff -> #7c080ff3fcff3fcff3fcff3fcff3fcff
+-- sNaN
+dqcan254 copy #7e003ff3fcffffffffffffffcff3fcff -> #7e003ff3fcffffffffffffffcff3fcff
+dqcan255 copy #7e100ff3fcff3fcff3fcff3fcff3fcff -> #7e100ff3fcff3fcff3fcff3fcff3fcff
+-- Inf
+dqcan258 copy #78002000000000000000000000000000 -> #78002000000000000000000000000000
+dqcan259 copy #78000000000010000000000000100000 -> #78000000000010000000000000100000
+
+----- CopyAbs: [does not usually canonicalize]
+-- finites
+dqcan260 copyabs #6e080ff3fcff3fcfffffff3fcfffffff -> #6e080ff3fcff3fcfffffff3fcfffffff
+dqcan261 copyabs #ee080ff3fcff3ffff3fcff3ffff3fcff -> #6e080ff3fcff3ffff3fcff3ffff3fcff
+-- NaNs
+dqcan262 copyabs #fc000ff3fcffffffffffffffcff3fcff -> #7c000ff3fcffffffffffffffcff3fcff
+dqcan263 copyabs #fc080ff3fcff3fcff3fcff3fcff3fcff -> #7c080ff3fcff3fcff3fcff3fcff3fcff
+-- sNaN
+dqcan264 copyabs #fe003ff3fcffffffffffffffcff3fcff -> #7e003ff3fcffffffffffffffcff3fcff
+dqcan265 copyabs #fe100ff3fcff3fcff3fcff3fcff3fcff -> #7e100ff3fcff3fcff3fcff3fcff3fcff
+-- Inf
+dqcan268 copyabs #f8002000000000000000000000000000 -> #78002000000000000000000000000000
+dqcan269 copyabs #f8000000000000700700700000000000 -> #78000000000000700700700000000000
+
+----- CopyNegate: [does not usually canonicalize]
+-- finites
+dqcan270 copynegate #6e080ff3fcff3fcfffffff3fcfffffff -> #ee080ff3fcff3fcfffffff3fcfffffff
+dqcan271 copynegate #ee080ff3fcff3ffff3fcff3ffff3fcff -> #6e080ff3fcff3ffff3fcff3ffff3fcff
+-- NaNs
+dqcan272 copynegate #7c000ff3fcffffffffffff3fcff3fcff -> #fc000ff3fcffffffffffff3fcff3fcff
+dqcan273 copynegate #7c080ff3fcff3fcff3fcff3fcff3fcff -> #fc080ff3fcff3fcff3fcff3fcff3fcff
+-- sNaN
+dqcan274 copynegate #7e003ff3fcffffffffffffffcff3fcff -> #fe003ff3fcffffffffffffffcff3fcff
+dqcan275 copynegate #7e100ff3fcff3fcff3fcff3fcff3fcff -> #fe100ff3fcff3fcff3fcff3fcff3fcff
+-- Inf
+dqcan278 copynegate #78002000000000000000000000000000 -> #f8002000000000000000000000000000
+dqcan279 copynegate #78000000000010000000000000100000 -> #f8000000000010000000000000100000
+
+----- CopySign: [does not usually canonicalize]
+-- finites
+dqcan280 copysign #6e080ff3fcff3fcfffffff3fcfffffff -1 -> #ee080ff3fcff3fcfffffff3fcfffffff
+dqcan281 copysign #ee080ff3fcff3ffff3fcff3ffff3fcff 1 -> #6e080ff3fcff3ffff3fcff3ffff3fcff
+-- NaNs
+dqcan282 copysign #7c000ff3fcffffffffffffffcff3fcff -1 -> #fc000ff3fcffffffffffffffcff3fcff
+dqcan283 copysign #7c080ff3fcff3fcff3fcff3fcff3fcff 1 -> #7c080ff3fcff3fcff3fcff3fcff3fcff
+-- sNaN
+dqcan284 copysign #7e003ff3fcffffffffffffffcff3fcff -1 -> #fe003ff3fcffffffffffffffcff3fcff
+dqcan285 copysign #7e100ff3fcff3fcff3fcff3fcff3fcff 1 -> #7e100ff3fcff3fcff3fcff3fcff3fcff
+-- Inf
+dqcan288 copysign #78002000000000000000000000000000 -1 -> #f8002000000000000000000000000000
+dqcan289 copysign #78000000000010000000000000100000 1 -> #78000000000010000000000000100000
+
+----- Multiply:
+-- Finites: neutral 0
+dqcan302 multiply 1 #77ffff3fcff3fcff0000000000000000 -> #77ffff3fcff3fcff0000000000000000
+dqcan303 multiply #77fcffffcff3fcff0000000000000000 1 -> #77fccfffcff3fcff0000000000000000
+-- negative
+dqcan306 multiply -1 #77ffff3fcff3fcff0000000000000000 -> #f7ffff3fcff3fcff0000000000000000
+dqcan307 multiply #77fcffffcff3fcff0000000000000000 -1 -> #f7fccfffcff3fcff0000000000000000
+-- NaN: declets in payload
+dqcan311 multiply 1 #7c03ff3fcff3fcff0000000000000000 -> #7c003f3fcff3fcff0000000000000000
+dqcan312 multiply #7c03ff3fcff3fcff0000000000000000 1 -> #7c003f3fcff3fcff0000000000000000
+-- NaN: exponent continuation bits [excluding sNaN selector]
+dqcan313 multiply 1 #7c40ff3fcff3fcff0000000000000000 -> #7c003f3fcff3fcff0000000000000000
+dqcan314 multiply #7c40ff3fcff3fcff0000000000000000 1 -> #7c003f3fcff3fcff0000000000000000
+-- sNaN: declets in payload
+dqcan315 multiply 1 #7e00ffffcff3fcff0000000000000000 -> #7c000fffcff3fcff0000000000000000 Invalid_operation
+dqcan316 multiply #7e00ffffcff3fcff0000000000000000 1 -> #7c000fffcff3fcff0000000000000000 Invalid_operation
+-- sNaN: exponent continuation bits [excluding sNaN selector]
+dqcan317 multiply 1 #7e80ff3fcff3fcff0000000000000000 -> #7c003f3fcff3fcff0000000000000000 Invalid_operation
+dqcan318 multiply #7e80ff3fcff3fcff0000000000000000 1 -> #7c003f3fcff3fcff0000000000000000 Invalid_operation
+-- Inf: exponent continuation bits
+dqcan320 multiply 1 #78800000000000000000000000000000 -> #78000000000000000000000000000000
+dqcan321 multiply #78800000000000000000000000000000 1 -> #78000000000000000000000000000000
+-- Inf: coefficient continuation bits
+dqcan322 multiply 1 #78020000000000000000000000000000 -> #78000000000000000000000000000000
+dqcan323 multiply #78020000000000000000000000000000 1 -> #78000000000000000000000000000000
+dqcan324 multiply 1 #78000000000000010000000000000000 -> #78000000000000000000000000000000
+dqcan325 multiply #78000000000000010000000000000000 1 -> #78000000000000000000000000000000
+dqcan326 multiply 1 #78000020000000000000000000000000 -> #78000000000000000000000000000000
+dqcan327 multiply #78000020000000000000000000000000 1 -> #78000000000000000000000000000000
+
+----- Quantize:
+dqcan401 quantize #ee080ff3fcff3fcff3fffffffff3fcff 0 -> #ee080ff3fcff3fcff3fcff3fcff3fcff
+dqcan402 quantize #ee080ff3fffffffffffcff3fcff3fcff 0 -> #ee080ff3fcff3fcff3fcff3fcff3fcff
+dqcan403 quantize #78800000000000000000000000000000 Inf -> #78000000000000000000000000000000
+dqcan404 quantize #78020000000000000000000000000000 -Inf -> #78000000000000000000000000000000
+dqcan410 quantize #7c080ff3fcff3fcff3fcff3fcff3fcff 1 -> #7c000ff3fcff3fcff3fcff3fcff3fcff
+dqcan411 quantize #fc000ff3fcfffffff3fcff3fcff3fcff 1 -> #fc000ff3fcff3fcff3fcff3fcff3fcff
+dqcan412 quantize #7e100ff3fcff3fcff3fcff3fcff3fcff 1 -> #7c000ff3fcff3fcff3fcff3fcff3fcff Invalid_operation
+dqcan413 quantize #fe000ff3fcff3fcff3ffffffcff3fcff 1 -> #fc000ff3fcff3fcff3fcff3fcff3fcff Invalid_operation
+
+----- Subtract:
+-- Finites: neutral 0
+dqcan502 subtract 0E+6144 #77ffcff3fcff3fcffffcff3fcff3fcff -> #f7ffcff3fcff3fcff3fcff3fcff3fcff
+dqcan503 subtract #77ffcff3fcff3fcff3fcff3ffff3fcff 0E+6144 -> #77ffcff3fcff3fcff3fcff3fcff3fcff
+-- tiny zero
+dqcan504 subtract 0E-6176 #77ffcff3ffff3fcff3fcff3fcff3fcff -> #f7ffcff3fcff3fcff3fcff3fcff3fcff Rounded
+dqcan505 subtract #77ffcff3fcff3fcff3fcff3fcff3ffff 0E-6176 -> #77ffcff3fcff3fcff3fcff3fcff3fcff Rounded
+-- tiny non zero
+dqcan506 subtract -1E-6176 #77ffcff3fcff3fcff3fcff3fcfffffff -> #f7ffcff3fcff3fcff3fcff3fcff3fcff Inexact Rounded
+dqcan507 subtract #77ffcffffffffffffffffffffff3fcff -1E-6176 -> #77ffcff3fcff3fcff3fcff3fcff3fcff Inexact Rounded
+-- NaN: declets in payload
+dqcan511 subtract 0 #7c000ff3fcff3fcff3fcfffffff3fcff -> #7c000ff3fcff3fcff3fcff3fcff3fcff
+dqcan512 subtract #7c000ff3fcff3fcfffffff3fcff3fcff 0 -> #7c000ff3fcff3fcff3fcff3fcff3fcff
+-- NaN: exponent continuation bits [excluding sNaN selector]
+dqcan513 subtract 0 #7c400ff3fcff3fcff3fcff3fcff3fcff -> #7c000ff3fcff3fcff3fcff3fcff3fcff
+dqcan514 subtract #7c020ff3fcff3fcff3fcff3fcff3fcff 0 -> #7c000ff3fcff3fcff3fcff3fcff3fcff
+-- sNaN: declets in payload
+dqcan515 subtract 0 #7e000ff3fcffffcff3fcff3fcff3fcff -> #7c000ff3fcff3fcff3fcff3fcff3fcff Invalid_operation
+dqcan516 subtract #7e003ff3fcff3fcff3fcff3fcff3fcff 0 -> #7c000ff3fcff3fcff3fcff3fcff3fcff Invalid_operation
+-- sNaN: exponent continuation bits [excluding sNaN selector]
+dqcan517 subtract 0 #7e500ff3fcff3fcff3fcff3fcff3fcff -> #7c000ff3fcff3fcff3fcff3fcff3fcff Invalid_operation
+dqcan518 subtract #7e0e0ff3fcff3fcff3fcff3fcff3fcff 0 -> #7c000ff3fcff3fcff3fcff3fcff3fcff Invalid_operation
+-- Inf: exponent continuation bits
+dqcan520 subtract 0 #78010000000000000000000000000000 -> #f8000000000000000000000000000000
+dqcan521 subtract #78680000000000000000000000000000 0 -> #78000000000000000000000000000000
+-- Inf: coefficient continuation bits
+dqcan522 subtract 0 #78002000000000000000000000000000 -> #f8000000000000000000000000000000
+dqcan523 subtract #78000000000000000000000000000001 0 -> #78000000000000000000000000000000
+dqcan524 subtract 0 #78000002000000000000000000000000 -> #f8000000000000000000000000000000
+dqcan525 subtract #780000000000f0000000000000000000 0 -> #78000000000000000000000000000000
+dqcan526 subtract 0 #78000000000000000005000000000000 -> #f8000000000000000000000000000000
+dqcan527 subtract #780000000000000000000000000a0000 0 -> #78000000000000000000000000000000
+
+----- ToIntegral:
+dqcan601 tointegralx #6e080ff3fdff3fcff3fcff3fcff3fcff -> #6e080ff3fcff3fcff3fcff3fcff3fcff
+dqcan602 tointegralx #ee080ff3fcff3ffff3fcff3fcff3fcff -> #ee080ff3fcff3fcff3fcff3fcff3fcff
+dqcan603 tointegralx #78800000000000000000000000000000 -> #78000000000000000000000000000000
+dqcan604 tointegralx #78020000000000000000000000000000 -> #78000000000000000000000000000000
+dqcan614 tointegralx #7c100ff3fcff3fcff3fcff3fcff3fcff -> #7c000ff3fcff3fcff3fcff3fcff3fcff
+dqcan615 tointegralx #fc000ff3fcff3fcff3fcffffcff3fcff -> #fc000ff3fcff3fcff3fcff3fcff3fcff
+dqcan616 tointegralx #7e010ff3fcff3fcff3fcff3fcff3fcff -> #7c000ff3fcff3fcff3fcff3fcff3fcff Invalid_operation
+dqcan617 tointegralx #fe000ff3fcff3fcff3fdff3fcff3fcff -> #fc000ff3fcff3fcff3fcff3fcff3fcff Invalid_operation
+-- uncanonical 3999, 39.99, 3.99, 0.399, and negatives
+dqcan618 tointegralx #22080000000000000000000000000fff -> #22080000000000000000000000000cff
+dqcan619 tointegralx #22078000000000000000000000000fff -> #22080000000000000000000000000040 Inexact Rounded
+dqcan620 tointegralx #22074000000000000000000000000fff -> #22080000000000000000000000000004 Inexact Rounded
+dqcan621 tointegralx #22070000000000000000000000000fff -> #22080000000000000000000000000000 Inexact Rounded
+dqcan622 tointegralx #a2080000000000000000000000000fff -> #a2080000000000000000000000000cff
+dqcan623 tointegralx #a2078000000000000000000000000fff -> #a2080000000000000000000000000040 Inexact Rounded
+dqcan624 tointegralx #a2074000000000000000000000000fff -> #a2080000000000000000000000000004 Inexact Rounded
+dqcan625 tointegralx #a2070000000000000000000000000fff -> #a2080000000000000000000000000000 Inexact Rounded
+
+
+
diff --git a/Lib/test/decimaltestdata/dqClass.decTest b/Lib/test/decimaltestdata/dqClass.decTest
new file mode 100644
index 0000000..185fbfc
--- /dev/null
+++ b/Lib/test/decimaltestdata/dqClass.decTest
@@ -0,0 +1,77 @@
+------------------------------------------------------------------------
+-- dqClass.decTest -- decQuad Class operations --
+-- Copyright (c) IBM Corporation, 1981, 2007. All rights reserved. --
+------------------------------------------------------------------------
+-- Please see the document "General Decimal Arithmetic Testcases" --
+-- at http://www2.hursley.ibm.com/decimal for the description of --
+-- these testcases. --
+-- --
+-- These testcases are experimental ('beta' versions), and they --
+-- may contain errors. They are offered on an as-is basis. In --
+-- particular, achieving the same results as the tests here is not --
+-- a guarantee that an implementation complies with any Standard --
+-- or specification. The tests are not exhaustive. --
+-- --
+-- Please send comments, suggestions, and corrections to the author: --
+-- Mike Cowlishaw, IBM Fellow --
+-- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK --
+-- mfc@uk.ibm.com --
+------------------------------------------------------------------------
+version: 2.56
+
+-- [New 2006.11.27]
+
+extended: 1
+clamp: 1
+precision: 34
+maxExponent: 6144
+minExponent: -6143
+rounding: half_even
+
+dqcla001 class 0 -> +Zero
+dqcla002 class 0.00 -> +Zero
+dqcla003 class 0E+5 -> +Zero
+dqcla004 class 1E-6176 -> +Subnormal
+dqcla005 class 0.1E-6143 -> +Subnormal
+dqcla006 class 0.99999999999999999999999999999999E-6143 -> +Subnormal
+dqcla007 class 1.00000000000000000000000000000000E-6143 -> +Normal
+dqcla008 class 1E-6143 -> +Normal
+dqcla009 class 1E-100 -> +Normal
+dqcla010 class 1E-10 -> +Normal
+dqcla012 class 1E-1 -> +Normal
+dqcla013 class 1 -> +Normal
+dqcla014 class 2.50 -> +Normal
+dqcla015 class 100.100 -> +Normal
+dqcla016 class 1E+30 -> +Normal
+dqcla017 class 1E+6144 -> +Normal
+dqcla018 class 9.99999999999999999999999999999999E+6144 -> +Normal
+dqcla019 class Inf -> +Infinity
+
+dqcla021 class -0 -> -Zero
+dqcla022 class -0.00 -> -Zero
+dqcla023 class -0E+5 -> -Zero
+dqcla024 class -1E-6176 -> -Subnormal
+dqcla025 class -0.1E-6143 -> -Subnormal
+dqcla026 class -0.99999999999999999999999999999999E-6143 -> -Subnormal
+dqcla027 class -1.00000000000000000000000000000000E-6143 -> -Normal
+dqcla028 class -1E-6143 -> -Normal
+dqcla029 class -1E-100 -> -Normal
+dqcla030 class -1E-10 -> -Normal
+dqcla032 class -1E-1 -> -Normal
+dqcla033 class -1 -> -Normal
+dqcla034 class -2.50 -> -Normal
+dqcla035 class -100.100 -> -Normal
+dqcla036 class -1E+30 -> -Normal
+dqcla037 class -1E+6144 -> -Normal
+dqcla0614 class -9.99999999999999999999999999999999E+6144 -> -Normal
+dqcla039 class -Inf -> -Infinity
+
+dqcla041 class NaN -> NaN
+dqcla042 class -NaN -> NaN
+dqcla043 class +NaN12345 -> NaN
+dqcla044 class sNaN -> sNaN
+dqcla045 class -sNaN -> sNaN
+dqcla046 class +sNaN12345 -> sNaN
+
+
+
diff --git a/Lib/test/decimaltestdata/dqCompare.decTest b/Lib/test/decimaltestdata/dqCompare.decTest
new file mode 100644
index 0000000..8947280
--- /dev/null
+++ b/Lib/test/decimaltestdata/dqCompare.decTest
@@ -0,0 +1,753 @@
+------------------------------------------------------------------------
+-- dqCompare.decTest -- decQuad comparison that allows quiet NaNs --
+-- Copyright (c) IBM Corporation, 1981, 2007. All rights reserved. --
+------------------------------------------------------------------------
+-- Please see the document "General Decimal Arithmetic Testcases" --
+-- at http://www2.hursley.ibm.com/decimal for the description of --
+-- these testcases. --
+-- --
+-- These testcases are experimental ('beta' versions), and they --
+-- may contain errors. They are offered on an as-is basis. In --
+-- particular, achieving the same results as the tests here is not --
+-- a guarantee that an implementation complies with any Standard --
+-- or specification. The tests are not exhaustive. --
+-- --
+-- Please send comments, suggestions, and corrections to the author: --
+-- Mike Cowlishaw, IBM Fellow --
+-- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK --
+-- mfc@uk.ibm.com --
+------------------------------------------------------------------------
+version: 2.56
+
+-- Note that we cannot assume add/subtract tests cover paths adequately,
+-- here, because the code might be quite different (comparison cannot
+-- overflow or underflow, so actual subtractions are not necessary).
+
+-- All operands and results are decQuads.
+extended: 1
+clamp: 1
+precision: 34
+maxExponent: 6144
+minExponent: -6143
+rounding: half_even
+
+-- sanity checks
+dqcom001 compare -2 -2 -> 0
+dqcom002 compare -2 -1 -> -1
+dqcom003 compare -2 0 -> -1
+dqcom004 compare -2 1 -> -1
+dqcom005 compare -2 2 -> -1
+dqcom006 compare -1 -2 -> 1
+dqcom007 compare -1 -1 -> 0
+dqcom008 compare -1 0 -> -1
+dqcom009 compare -1 1 -> -1
+dqcom010 compare -1 2 -> -1
+dqcom011 compare 0 -2 -> 1
+dqcom012 compare 0 -1 -> 1
+dqcom013 compare 0 0 -> 0
+dqcom014 compare 0 1 -> -1
+dqcom015 compare 0 2 -> -1
+dqcom016 compare 1 -2 -> 1
+dqcom017 compare 1 -1 -> 1
+dqcom018 compare 1 0 -> 1
+dqcom019 compare 1 1 -> 0
+dqcom020 compare 1 2 -> -1
+dqcom021 compare 2 -2 -> 1
+dqcom022 compare 2 -1 -> 1
+dqcom023 compare 2 0 -> 1
+dqcom025 compare 2 1 -> 1
+dqcom026 compare 2 2 -> 0
+
+dqcom031 compare -20 -20 -> 0
+dqcom032 compare -20 -10 -> -1
+dqcom033 compare -20 00 -> -1
+dqcom034 compare -20 10 -> -1
+dqcom035 compare -20 20 -> -1
+dqcom036 compare -10 -20 -> 1
+dqcom037 compare -10 -10 -> 0
+dqcom038 compare -10 00 -> -1
+dqcom039 compare -10 10 -> -1
+dqcom040 compare -10 20 -> -1
+dqcom041 compare 00 -20 -> 1
+dqcom042 compare 00 -10 -> 1
+dqcom043 compare 00 00 -> 0
+dqcom044 compare 00 10 -> -1
+dqcom045 compare 00 20 -> -1
+dqcom046 compare 10 -20 -> 1
+dqcom047 compare 10 -10 -> 1
+dqcom048 compare 10 00 -> 1
+dqcom049 compare 10 10 -> 0
+dqcom050 compare 10 20 -> -1
+dqcom051 compare 20 -20 -> 1
+dqcom052 compare 20 -10 -> 1
+dqcom053 compare 20 00 -> 1
+dqcom055 compare 20 10 -> 1
+dqcom056 compare 20 20 -> 0
+
+dqcom061 compare -2.0 -2.0 -> 0
+dqcom062 compare -2.0 -1.0 -> -1
+dqcom063 compare -2.0 0.0 -> -1
+dqcom064 compare -2.0 1.0 -> -1
+dqcom065 compare -2.0 2.0 -> -1
+dqcom066 compare -1.0 -2.0 -> 1
+dqcom067 compare -1.0 -1.0 -> 0
+dqcom068 compare -1.0 0.0 -> -1
+dqcom069 compare -1.0 1.0 -> -1
+dqcom070 compare -1.0 2.0 -> -1
+dqcom071 compare 0.0 -2.0 -> 1
+dqcom072 compare 0.0 -1.0 -> 1
+dqcom073 compare 0.0 0.0 -> 0
+dqcom074 compare 0.0 1.0 -> -1
+dqcom075 compare 0.0 2.0 -> -1
+dqcom076 compare 1.0 -2.0 -> 1
+dqcom077 compare 1.0 -1.0 -> 1
+dqcom078 compare 1.0 0.0 -> 1
+dqcom079 compare 1.0 1.0 -> 0
+dqcom080 compare 1.0 2.0 -> -1
+dqcom081 compare 2.0 -2.0 -> 1
+dqcom082 compare 2.0 -1.0 -> 1
+dqcom083 compare 2.0 0.0 -> 1
+dqcom085 compare 2.0 1.0 -> 1
+dqcom086 compare 2.0 2.0 -> 0
+
+-- now some cases which might overflow if subtract were used
+dqcom090 compare 9.999999999999999999999999999999999E+6144 9.999999999999999999999999999999999E+6144 -> 0
+dqcom091 compare -9.999999999999999999999999999999999E+6144 9.999999999999999999999999999999999E+6144 -> -1
+dqcom092 compare 9.999999999999999999999999999999999E+6144 -9.999999999999999999999999999999999E+6144 -> 1
+dqcom093 compare -9.999999999999999999999999999999999E+6144 -9.999999999999999999999999999999999E+6144 -> 0
+
+-- some differing length/exponent cases
+dqcom100 compare 7.0 7.0 -> 0
+dqcom101 compare 7.0 7 -> 0
+dqcom102 compare 7 7.0 -> 0
+dqcom103 compare 7E+0 7.0 -> 0
+dqcom104 compare 70E-1 7.0 -> 0
+dqcom105 compare 0.7E+1 7 -> 0
+dqcom106 compare 70E-1 7 -> 0
+dqcom107 compare 7.0 7E+0 -> 0
+dqcom108 compare 7.0 70E-1 -> 0
+dqcom109 compare 7 0.7E+1 -> 0
+dqcom110 compare 7 70E-1 -> 0
+
+dqcom120 compare 8.0 7.0 -> 1
+dqcom121 compare 8.0 7 -> 1
+dqcom122 compare 8 7.0 -> 1
+dqcom123 compare 8E+0 7.0 -> 1
+dqcom124 compare 80E-1 7.0 -> 1
+dqcom125 compare 0.8E+1 7 -> 1
+dqcom126 compare 80E-1 7 -> 1
+dqcom127 compare 8.0 7E+0 -> 1
+dqcom128 compare 8.0 70E-1 -> 1
+dqcom129 compare 8 0.7E+1 -> 1
+dqcom130 compare 8 70E-1 -> 1
+
+dqcom140 compare 8.0 9.0 -> -1
+dqcom141 compare 8.0 9 -> -1
+dqcom142 compare 8 9.0 -> -1
+dqcom143 compare 8E+0 9.0 -> -1
+dqcom144 compare 80E-1 9.0 -> -1
+dqcom145 compare 0.8E+1 9 -> -1
+dqcom146 compare 80E-1 9 -> -1
+dqcom147 compare 8.0 9E+0 -> -1
+dqcom148 compare 8.0 90E-1 -> -1
+dqcom149 compare 8 0.9E+1 -> -1
+dqcom150 compare 8 90E-1 -> -1
+
+-- and again, with sign changes -+ ..
+dqcom200 compare -7.0 7.0 -> -1
+dqcom201 compare -7.0 7 -> -1
+dqcom202 compare -7 7.0 -> -1
+dqcom203 compare -7E+0 7.0 -> -1
+dqcom204 compare -70E-1 7.0 -> -1
+dqcom205 compare -0.7E+1 7 -> -1
+dqcom206 compare -70E-1 7 -> -1
+dqcom207 compare -7.0 7E+0 -> -1
+dqcom208 compare -7.0 70E-1 -> -1
+dqcom209 compare -7 0.7E+1 -> -1
+dqcom210 compare -7 70E-1 -> -1
+
+dqcom220 compare -8.0 7.0 -> -1
+dqcom221 compare -8.0 7 -> -1
+dqcom222 compare -8 7.0 -> -1
+dqcom223 compare -8E+0 7.0 -> -1
+dqcom224 compare -80E-1 7.0 -> -1
+dqcom225 compare -0.8E+1 7 -> -1
+dqcom226 compare -80E-1 7 -> -1
+dqcom227 compare -8.0 7E+0 -> -1
+dqcom228 compare -8.0 70E-1 -> -1
+dqcom229 compare -8 0.7E+1 -> -1
+dqcom230 compare -8 70E-1 -> -1
+
+dqcom240 compare -8.0 9.0 -> -1
+dqcom241 compare -8.0 9 -> -1
+dqcom242 compare -8 9.0 -> -1
+dqcom243 compare -8E+0 9.0 -> -1
+dqcom244 compare -80E-1 9.0 -> -1
+dqcom245 compare -0.8E+1 9 -> -1
+dqcom246 compare -80E-1 9 -> -1
+dqcom247 compare -8.0 9E+0 -> -1
+dqcom248 compare -8.0 90E-1 -> -1
+dqcom249 compare -8 0.9E+1 -> -1
+dqcom250 compare -8 90E-1 -> -1
+
+-- and again, with sign changes +- ..
+dqcom300 compare 7.0 -7.0 -> 1
+dqcom301 compare 7.0 -7 -> 1
+dqcom302 compare 7 -7.0 -> 1
+dqcom303 compare 7E+0 -7.0 -> 1
+dqcom304 compare 70E-1 -7.0 -> 1
+dqcom305 compare .7E+1 -7 -> 1
+dqcom306 compare 70E-1 -7 -> 1
+dqcom307 compare 7.0 -7E+0 -> 1
+dqcom308 compare 7.0 -70E-1 -> 1
+dqcom309 compare 7 -.7E+1 -> 1
+dqcom310 compare 7 -70E-1 -> 1
+
+dqcom320 compare 8.0 -7.0 -> 1
+dqcom321 compare 8.0 -7 -> 1
+dqcom322 compare 8 -7.0 -> 1
+dqcom323 compare 8E+0 -7.0 -> 1
+dqcom324 compare 80E-1 -7.0 -> 1
+dqcom325 compare .8E+1 -7 -> 1
+dqcom326 compare 80E-1 -7 -> 1
+dqcom327 compare 8.0 -7E+0 -> 1
+dqcom328 compare 8.0 -70E-1 -> 1
+dqcom329 compare 8 -.7E+1 -> 1
+dqcom330 compare 8 -70E-1 -> 1
+
+dqcom340 compare 8.0 -9.0 -> 1
+dqcom341 compare 8.0 -9 -> 1
+dqcom342 compare 8 -9.0 -> 1
+dqcom343 compare 8E+0 -9.0 -> 1
+dqcom344 compare 80E-1 -9.0 -> 1
+dqcom345 compare .8E+1 -9 -> 1
+dqcom346 compare 80E-1 -9 -> 1
+dqcom347 compare 8.0 -9E+0 -> 1
+dqcom348 compare 8.0 -90E-1 -> 1
+dqcom349 compare 8 -.9E+1 -> 1
+dqcom350 compare 8 -90E-1 -> 1
+
+-- and again, with sign changes -- ..
+dqcom400 compare -7.0 -7.0 -> 0
+dqcom401 compare -7.0 -7 -> 0
+dqcom402 compare -7 -7.0 -> 0
+dqcom403 compare -7E+0 -7.0 -> 0
+dqcom404 compare -70E-1 -7.0 -> 0
+dqcom405 compare -.7E+1 -7 -> 0
+dqcom406 compare -70E-1 -7 -> 0
+dqcom407 compare -7.0 -7E+0 -> 0
+dqcom408 compare -7.0 -70E-1 -> 0
+dqcom409 compare -7 -.7E+1 -> 0
+dqcom410 compare -7 -70E-1 -> 0
+
+dqcom420 compare -8.0 -7.0 -> -1
+dqcom421 compare -8.0 -7 -> -1
+dqcom422 compare -8 -7.0 -> -1
+dqcom423 compare -8E+0 -7.0 -> -1
+dqcom424 compare -80E-1 -7.0 -> -1
+dqcom425 compare -.8E+1 -7 -> -1
+dqcom426 compare -80E-1 -7 -> -1
+dqcom427 compare -8.0 -7E+0 -> -1
+dqcom428 compare -8.0 -70E-1 -> -1
+dqcom429 compare -8 -.7E+1 -> -1
+dqcom430 compare -8 -70E-1 -> -1
+
+dqcom440 compare -8.0 -9.0 -> 1
+dqcom441 compare -8.0 -9 -> 1
+dqcom442 compare -8 -9.0 -> 1
+dqcom443 compare -8E+0 -9.0 -> 1
+dqcom444 compare -80E-1 -9.0 -> 1
+dqcom445 compare -.8E+1 -9 -> 1
+dqcom446 compare -80E-1 -9 -> 1
+dqcom447 compare -8.0 -9E+0 -> 1
+dqcom448 compare -8.0 -90E-1 -> 1
+dqcom449 compare -8 -.9E+1 -> 1
+dqcom450 compare -8 -90E-1 -> 1
+
+-- misalignment traps for little-endian
+dqcom451 compare 1.0 0.1 -> 1
+dqcom452 compare 0.1 1.0 -> -1
+dqcom453 compare 10.0 0.1 -> 1
+dqcom454 compare 0.1 10.0 -> -1
+dqcom455 compare 100 1.0 -> 1
+dqcom456 compare 1.0 100 -> -1
+dqcom457 compare 1000 10.0 -> 1
+dqcom458 compare 10.0 1000 -> -1
+dqcom459 compare 10000 100.0 -> 1
+dqcom460 compare 100.0 10000 -> -1
+dqcom461 compare 100000 1000.0 -> 1
+dqcom462 compare 1000.0 100000 -> -1
+dqcom463 compare 1000000 10000.0 -> 1
+dqcom464 compare 10000.0 1000000 -> -1
+
+-- testcases that subtract to lots of zeros at boundaries [pgr]
+dqcom473 compare 123.9999999999999999994560000000000E-89 123.999999999999999999456E-89 -> 0
+dqcom474 compare 123.999999999999999999456000000000E+89 123.999999999999999999456E+89 -> 0
+dqcom475 compare 123.99999999999999999945600000000E-89 123.999999999999999999456E-89 -> 0
+dqcom476 compare 123.9999999999999999994560000000E+89 123.999999999999999999456E+89 -> 0
+dqcom477 compare 123.999999999999999999456000000E-89 123.999999999999999999456E-89 -> 0
+dqcom478 compare 123.99999999999999999945600000E+89 123.999999999999999999456E+89 -> 0
+dqcom479 compare 123.9999999999999999994560000E-89 123.999999999999999999456E-89 -> 0
+dqcom480 compare 123.999999999999999999456000E+89 123.999999999999999999456E+89 -> 0
+dqcom481 compare 123.99999999999999999945600E-89 123.999999999999999999456E-89 -> 0
+dqcom482 compare 123.9999999999999999994560E+89 123.999999999999999999456E+89 -> 0
+dqcom483 compare 123.999999999999999999456E-89 123.999999999999999999456E-89 -> 0
+dqcom487 compare 123.999999999999999999456E+89 123.9999999999999999994560000000000E+89 -> 0
+dqcom488 compare 123.999999999999999999456E-89 123.999999999999999999456000000000E-89 -> 0
+dqcom489 compare 123.999999999999999999456E+89 123.99999999999999999945600000000E+89 -> 0
+dqcom490 compare 123.999999999999999999456E-89 123.9999999999999999994560000000E-89 -> 0
+dqcom491 compare 123.999999999999999999456E+89 123.999999999999999999456000000E+89 -> 0
+dqcom492 compare 123.999999999999999999456E-89 123.99999999999999999945600000E-89 -> 0
+dqcom493 compare 123.999999999999999999456E+89 123.9999999999999999994560000E+89 -> 0
+dqcom494 compare 123.999999999999999999456E-89 123.999999999999999999456000E-89 -> 0
+dqcom495 compare 123.999999999999999999456E+89 123.99999999999999999945600E+89 -> 0
+dqcom496 compare 123.999999999999999999456E-89 123.9999999999999999994560E-89 -> 0
+dqcom497 compare 123.999999999999999999456E+89 123.999999999999999999456E+89 -> 0
+
+-- wide-ranging, around precision; signs equal
+dqcom500 compare 1 1E-15 -> 1
+dqcom501 compare 1 1E-14 -> 1
+dqcom502 compare 1 1E-13 -> 1
+dqcom503 compare 1 1E-12 -> 1
+dqcom504 compare 1 1E-11 -> 1
+dqcom505 compare 1 1E-10 -> 1
+dqcom506 compare 1 1E-9 -> 1
+dqcom507 compare 1 1E-8 -> 1
+dqcom508 compare 1 1E-7 -> 1
+dqcom509 compare 1 1E-6 -> 1
+dqcom510 compare 1 1E-5 -> 1
+dqcom511 compare 1 1E-4 -> 1
+dqcom512 compare 1 1E-3 -> 1
+dqcom513 compare 1 1E-2 -> 1
+dqcom514 compare 1 1E-1 -> 1
+dqcom515 compare 1 1E-0 -> 0
+dqcom516 compare 1 1E+1 -> -1
+dqcom517 compare 1 1E+2 -> -1
+dqcom518 compare 1 1E+3 -> -1
+dqcom519 compare 1 1E+4 -> -1
+dqcom521 compare 1 1E+5 -> -1
+dqcom522 compare 1 1E+6 -> -1
+dqcom523 compare 1 1E+7 -> -1
+dqcom524 compare 1 1E+8 -> -1
+dqcom525 compare 1 1E+9 -> -1
+dqcom526 compare 1 1E+10 -> -1
+dqcom527 compare 1 1E+11 -> -1
+dqcom528 compare 1 1E+12 -> -1
+dqcom529 compare 1 1E+13 -> -1
+dqcom530 compare 1 1E+14 -> -1
+dqcom531 compare 1 1E+15 -> -1
+-- LR swap
+dqcom540 compare 1E-15 1 -> -1
+dqcom541 compare 1E-14 1 -> -1
+dqcom542 compare 1E-13 1 -> -1
+dqcom543 compare 1E-12 1 -> -1
+dqcom544 compare 1E-11 1 -> -1
+dqcom545 compare 1E-10 1 -> -1
+dqcom546 compare 1E-9 1 -> -1
+dqcom547 compare 1E-8 1 -> -1
+dqcom548 compare 1E-7 1 -> -1
+dqcom549 compare 1E-6 1 -> -1
+dqcom550 compare 1E-5 1 -> -1
+dqcom551 compare 1E-4 1 -> -1
+dqcom552 compare 1E-3 1 -> -1
+dqcom553 compare 1E-2 1 -> -1
+dqcom554 compare 1E-1 1 -> -1
+dqcom555 compare 1E-0 1 -> 0
+dqcom556 compare 1E+1 1 -> 1
+dqcom557 compare 1E+2 1 -> 1
+dqcom558 compare 1E+3 1 -> 1
+dqcom559 compare 1E+4 1 -> 1
+dqcom561 compare 1E+5 1 -> 1
+dqcom562 compare 1E+6 1 -> 1
+dqcom563 compare 1E+7 1 -> 1
+dqcom564 compare 1E+8 1 -> 1
+dqcom565 compare 1E+9 1 -> 1
+dqcom566 compare 1E+10 1 -> 1
+dqcom567 compare 1E+11 1 -> 1
+dqcom568 compare 1E+12 1 -> 1
+dqcom569 compare 1E+13 1 -> 1
+dqcom570 compare 1E+14 1 -> 1
+dqcom571 compare 1E+15 1 -> 1
+-- similar with a useful coefficient, one side only
+dqcom580 compare 0.000000987654321 1E-15 -> 1
+dqcom581 compare 0.000000987654321 1E-14 -> 1
+dqcom582 compare 0.000000987654321 1E-13 -> 1
+dqcom583 compare 0.000000987654321 1E-12 -> 1
+dqcom584 compare 0.000000987654321 1E-11 -> 1
+dqcom585 compare 0.000000987654321 1E-10 -> 1
+dqcom586 compare 0.000000987654321 1E-9 -> 1
+dqcom587 compare 0.000000987654321 1E-8 -> 1
+dqcom588 compare 0.000000987654321 1E-7 -> 1
+dqcom589 compare 0.000000987654321 1E-6 -> -1
+dqcom590 compare 0.000000987654321 1E-5 -> -1
+dqcom591 compare 0.000000987654321 1E-4 -> -1
+dqcom592 compare 0.000000987654321 1E-3 -> -1
+dqcom593 compare 0.000000987654321 1E-2 -> -1
+dqcom594 compare 0.000000987654321 1E-1 -> -1
+dqcom595 compare 0.000000987654321 1E-0 -> -1
+dqcom596 compare 0.000000987654321 1E+1 -> -1
+dqcom597 compare 0.000000987654321 1E+2 -> -1
+dqcom598 compare 0.000000987654321 1E+3 -> -1
+dqcom599 compare 0.000000987654321 1E+4 -> -1
+
+-- check some unit-y traps
+dqcom600 compare 12 12.2345 -> -1
+dqcom601 compare 12.0 12.2345 -> -1
+dqcom602 compare 12.00 12.2345 -> -1
+dqcom603 compare 12.000 12.2345 -> -1
+dqcom604 compare 12.0000 12.2345 -> -1
+dqcom605 compare 12.00000 12.2345 -> -1
+dqcom606 compare 12.000000 12.2345 -> -1
+dqcom607 compare 12.0000000 12.2345 -> -1
+dqcom608 compare 12.00000000 12.2345 -> -1
+dqcom609 compare 12.000000000 12.2345 -> -1
+dqcom610 compare 12.1234 12 -> 1
+dqcom611 compare 12.1234 12.0 -> 1
+dqcom612 compare 12.1234 12.00 -> 1
+dqcom613 compare 12.1234 12.000 -> 1
+dqcom614 compare 12.1234 12.0000 -> 1
+dqcom615 compare 12.1234 12.00000 -> 1
+dqcom616 compare 12.1234 12.000000 -> 1
+dqcom617 compare 12.1234 12.0000000 -> 1
+dqcom618 compare 12.1234 12.00000000 -> 1
+dqcom619 compare 12.1234 12.000000000 -> 1
+dqcom620 compare -12 -12.2345 -> 1
+dqcom621 compare -12.0 -12.2345 -> 1
+dqcom622 compare -12.00 -12.2345 -> 1
+dqcom623 compare -12.000 -12.2345 -> 1
+dqcom624 compare -12.0000 -12.2345 -> 1
+dqcom625 compare -12.00000 -12.2345 -> 1
+dqcom626 compare -12.000000 -12.2345 -> 1
+dqcom627 compare -12.0000000 -12.2345 -> 1
+dqcom628 compare -12.00000000 -12.2345 -> 1
+dqcom629 compare -12.000000000 -12.2345 -> 1
+dqcom630 compare -12.1234 -12 -> -1
+dqcom631 compare -12.1234 -12.0 -> -1
+dqcom632 compare -12.1234 -12.00 -> -1
+dqcom633 compare -12.1234 -12.000 -> -1
+dqcom634 compare -12.1234 -12.0000 -> -1
+dqcom635 compare -12.1234 -12.00000 -> -1
+dqcom636 compare -12.1234 -12.000000 -> -1
+dqcom637 compare -12.1234 -12.0000000 -> -1
+dqcom638 compare -12.1234 -12.00000000 -> -1
+dqcom639 compare -12.1234 -12.000000000 -> -1
+
+-- extended zeros
+dqcom640 compare 0 0 -> 0
+dqcom641 compare 0 -0 -> 0
+dqcom642 compare 0 -0.0 -> 0
+dqcom643 compare 0 0.0 -> 0
+dqcom644 compare -0 0 -> 0
+dqcom645 compare -0 -0 -> 0
+dqcom646 compare -0 -0.0 -> 0
+dqcom647 compare -0 0.0 -> 0
+dqcom648 compare 0.0 0 -> 0
+dqcom649 compare 0.0 -0 -> 0
+dqcom650 compare 0.0 -0.0 -> 0
+dqcom651 compare 0.0 0.0 -> 0
+dqcom652 compare -0.0 0 -> 0
+dqcom653 compare -0.0 -0 -> 0
+dqcom654 compare -0.0 -0.0 -> 0
+dqcom655 compare -0.0 0.0 -> 0
+
+dqcom656 compare -0E1 0.0 -> 0
+dqcom657 compare -0E2 0.0 -> 0
+dqcom658 compare 0E1 0.0 -> 0
+dqcom659 compare 0E2 0.0 -> 0
+dqcom660 compare -0E1 0 -> 0
+dqcom661 compare -0E2 0 -> 0
+dqcom662 compare 0E1 0 -> 0
+dqcom663 compare 0E2 0 -> 0
+dqcom664 compare -0E1 -0E1 -> 0
+dqcom665 compare -0E2 -0E1 -> 0
+dqcom666 compare 0E1 -0E1 -> 0
+dqcom667 compare 0E2 -0E1 -> 0
+dqcom668 compare -0E1 -0E2 -> 0
+dqcom669 compare -0E2 -0E2 -> 0
+dqcom670 compare 0E1 -0E2 -> 0
+dqcom671 compare 0E2 -0E2 -> 0
+dqcom672 compare -0E1 0E1 -> 0
+dqcom673 compare -0E2 0E1 -> 0
+dqcom674 compare 0E1 0E1 -> 0
+dqcom675 compare 0E2 0E1 -> 0
+dqcom676 compare -0E1 0E2 -> 0
+dqcom677 compare -0E2 0E2 -> 0
+dqcom678 compare 0E1 0E2 -> 0
+dqcom679 compare 0E2 0E2 -> 0
+
+-- trailing zeros; unit-y
+dqcom680 compare 12 12 -> 0
+dqcom681 compare 12 12.0 -> 0
+dqcom682 compare 12 12.00 -> 0
+dqcom683 compare 12 12.000 -> 0
+dqcom684 compare 12 12.0000 -> 0
+dqcom685 compare 12 12.00000 -> 0
+dqcom686 compare 12 12.000000 -> 0
+dqcom687 compare 12 12.0000000 -> 0
+dqcom688 compare 12 12.00000000 -> 0
+dqcom689 compare 12 12.000000000 -> 0
+dqcom690 compare 12 12 -> 0
+dqcom691 compare 12.0 12 -> 0
+dqcom692 compare 12.00 12 -> 0
+dqcom693 compare 12.000 12 -> 0
+dqcom694 compare 12.0000 12 -> 0
+dqcom695 compare 12.00000 12 -> 0
+dqcom696 compare 12.000000 12 -> 0
+dqcom697 compare 12.0000000 12 -> 0
+dqcom698 compare 12.00000000 12 -> 0
+dqcom699 compare 12.000000000 12 -> 0
+
+-- first, second, & last digit
+dqcom700 compare 1234567899999999999999999990123456 1234567899999999999999999990123455 -> 1
+dqcom701 compare 1234567899999999999999999990123456 1234567899999999999999999990123456 -> 0
+dqcom702 compare 1234567899999999999999999990123456 1234567899999999999999999990123457 -> -1
+dqcom703 compare 1234567899999999999999999990123456 0234567899999999999999999990123456 -> 1
+dqcom704 compare 1234567899999999999999999990123456 1234567899999999999999999990123456 -> 0
+dqcom705 compare 1234567899999999999999999990123456 2234567899999999999999999990123456 -> -1
+dqcom706 compare 1134567899999999999999999990123456 1034567899999999999999999990123456 -> 1
+dqcom707 compare 1134567899999999999999999990123456 1134567899999999999999999990123456 -> 0
+dqcom708 compare 1134567899999999999999999990123456 1234567899999999999999999990123456 -> -1
+
+-- miscellaneous
+dqcom721 compare 12345678000 1 -> 1
+dqcom722 compare 1 12345678000 -> -1
+dqcom723 compare 1234567800 1 -> 1
+dqcom724 compare 1 1234567800 -> -1
+dqcom725 compare 1234567890 1 -> 1
+dqcom726 compare 1 1234567890 -> -1
+dqcom727 compare 1234567891 1 -> 1
+dqcom728 compare 1 1234567891 -> -1
+dqcom729 compare 12345678901 1 -> 1
+dqcom730 compare 1 12345678901 -> -1
+dqcom731 compare 1234567896 1 -> 1
+dqcom732 compare 1 1234567896 -> -1
+
+-- residue cases at lower precision
+dqcom740 compare 1 0.9999999 -> 1
+dqcom741 compare 1 0.999999 -> 1
+dqcom742 compare 1 0.99999 -> 1
+dqcom743 compare 1 1.0000 -> 0
+dqcom744 compare 1 1.00001 -> -1
+dqcom745 compare 1 1.000001 -> -1
+dqcom746 compare 1 1.0000001 -> -1
+dqcom750 compare 0.9999999 1 -> -1
+dqcom751 compare 0.999999 1 -> -1
+dqcom752 compare 0.99999 1 -> -1
+dqcom753 compare 1.0000 1 -> 0
+dqcom754 compare 1.00001 1 -> 1
+dqcom755 compare 1.000001 1 -> 1
+dqcom756 compare 1.0000001 1 -> 1
+
+-- Specials
+dqcom780 compare Inf -Inf -> 1
+dqcom781 compare Inf -1000 -> 1
+dqcom782 compare Inf -1 -> 1
+dqcom783 compare Inf -0 -> 1
+dqcom784 compare Inf 0 -> 1
+dqcom785 compare Inf 1 -> 1
+dqcom786 compare Inf 1000 -> 1
+dqcom787 compare Inf Inf -> 0
+dqcom788 compare -1000 Inf -> -1
+dqcom789 compare -Inf Inf -> -1
+dqcom790 compare -1 Inf -> -1
+dqcom791 compare -0 Inf -> -1
+dqcom792 compare 0 Inf -> -1
+dqcom793 compare 1 Inf -> -1
+dqcom794 compare 1000 Inf -> -1
+dqcom795 compare Inf Inf -> 0
+
+dqcom800 compare -Inf -Inf -> 0
+dqcom801 compare -Inf -1000 -> -1
+dqcom802 compare -Inf -1 -> -1
+dqcom803 compare -Inf -0 -> -1
+dqcom804 compare -Inf 0 -> -1
+dqcom805 compare -Inf 1 -> -1
+dqcom806 compare -Inf 1000 -> -1
+dqcom807 compare -Inf Inf -> -1
+dqcom808 compare -Inf -Inf -> 0
+dqcom809 compare -1000 -Inf -> 1
+dqcom810 compare -1 -Inf -> 1
+dqcom811 compare -0 -Inf -> 1
+dqcom812 compare 0 -Inf -> 1
+dqcom813 compare 1 -Inf -> 1
+dqcom814 compare 1000 -Inf -> 1
+dqcom815 compare Inf -Inf -> 1
+
+dqcom821 compare NaN -Inf -> NaN
+dqcom822 compare NaN -1000 -> NaN
+dqcom823 compare NaN -1 -> NaN
+dqcom824 compare NaN -0 -> NaN
+dqcom825 compare NaN 0 -> NaN
+dqcom826 compare NaN 1 -> NaN
+dqcom827 compare NaN 1000 -> NaN
+dqcom828 compare NaN Inf -> NaN
+dqcom829 compare NaN NaN -> NaN
+dqcom830 compare -Inf NaN -> NaN
+dqcom831 compare -1000 NaN -> NaN
+dqcom832 compare -1 NaN -> NaN
+dqcom833 compare -0 NaN -> NaN
+dqcom834 compare 0 NaN -> NaN
+dqcom835 compare 1 NaN -> NaN
+dqcom836 compare 1000 NaN -> NaN
+dqcom837 compare Inf NaN -> NaN
+dqcom838 compare -NaN -NaN -> -NaN
+dqcom839 compare +NaN -NaN -> NaN
+dqcom840 compare -NaN +NaN -> -NaN
+
+dqcom841 compare sNaN -Inf -> NaN Invalid_operation
+dqcom842 compare sNaN -1000 -> NaN Invalid_operation
+dqcom843 compare sNaN -1 -> NaN Invalid_operation
+dqcom844 compare sNaN -0 -> NaN Invalid_operation
+dqcom845 compare sNaN 0 -> NaN Invalid_operation
+dqcom846 compare sNaN 1 -> NaN Invalid_operation
+dqcom847 compare sNaN 1000 -> NaN Invalid_operation
+dqcom848 compare sNaN NaN -> NaN Invalid_operation
+dqcom849 compare sNaN sNaN -> NaN Invalid_operation
+dqcom850 compare NaN sNaN -> NaN Invalid_operation
+dqcom851 compare -Inf sNaN -> NaN Invalid_operation
+dqcom852 compare -1000 sNaN -> NaN Invalid_operation
+dqcom853 compare -1 sNaN -> NaN Invalid_operation
+dqcom854 compare -0 sNaN -> NaN Invalid_operation
+dqcom855 compare 0 sNaN -> NaN Invalid_operation
+dqcom856 compare 1 sNaN -> NaN Invalid_operation
+dqcom857 compare 1000 sNaN -> NaN Invalid_operation
+dqcom858 compare Inf sNaN -> NaN Invalid_operation
+dqcom859 compare NaN sNaN -> NaN Invalid_operation
+
+-- propagating NaNs
+dqcom860 compare NaN9 -Inf -> NaN9
+dqcom861 compare NaN8 999 -> NaN8
+dqcom862 compare NaN77 Inf -> NaN77
+dqcom863 compare -NaN67 NaN5 -> -NaN67
+dqcom864 compare -Inf -NaN4 -> -NaN4
+dqcom865 compare -999 -NaN33 -> -NaN33
+dqcom866 compare Inf NaN2 -> NaN2
+dqcom867 compare -NaN41 -NaN42 -> -NaN41
+dqcom868 compare +NaN41 -NaN42 -> NaN41
+dqcom869 compare -NaN41 +NaN42 -> -NaN41
+dqcom870 compare +NaN41 +NaN42 -> NaN41
+
+dqcom871 compare -sNaN99 -Inf -> -NaN99 Invalid_operation
+dqcom872 compare sNaN98 -11 -> NaN98 Invalid_operation
+dqcom873 compare sNaN97 NaN -> NaN97 Invalid_operation
+dqcom874 compare sNaN16 sNaN94 -> NaN16 Invalid_operation
+dqcom875 compare NaN85 sNaN83 -> NaN83 Invalid_operation
+dqcom876 compare -Inf sNaN92 -> NaN92 Invalid_operation
+dqcom877 compare 088 sNaN81 -> NaN81 Invalid_operation
+dqcom878 compare Inf sNaN90 -> NaN90 Invalid_operation
+dqcom879 compare NaN -sNaN89 -> -NaN89 Invalid_operation
+
+-- wide range
+dqcom880 compare +1.23456789012345E-0 9E+6144 -> -1
+dqcom881 compare 9E+6144 +1.23456789012345E-0 -> 1
+dqcom882 compare +0.100 9E-6143 -> 1
+dqcom883 compare 9E-6143 +0.100 -> -1
+dqcom885 compare -1.23456789012345E-0 9E+6144 -> -1
+dqcom886 compare 9E+6144 -1.23456789012345E-0 -> 1
+dqcom887 compare -0.100 9E-6143 -> -1
+dqcom888 compare 9E-6143 -0.100 -> 1
+
+-- signs
+dqcom901 compare 1e+77 1e+11 -> 1
+dqcom902 compare 1e+77 -1e+11 -> 1
+dqcom903 compare -1e+77 1e+11 -> -1
+dqcom904 compare -1e+77 -1e+11 -> -1
+dqcom905 compare 1e-77 1e-11 -> -1
+dqcom906 compare 1e-77 -1e-11 -> 1
+dqcom907 compare -1e-77 1e-11 -> -1
+dqcom908 compare -1e-77 -1e-11 -> 1
+
+-- full alignment range, both ways
+dqcomp1001 compare 1 1.000000000000000000000000000000000 -> 0
+dqcomp1002 compare 1 1.00000000000000000000000000000000 -> 0
+dqcomp1003 compare 1 1.0000000000000000000000000000000 -> 0
+dqcomp1004 compare 1 1.000000000000000000000000000000 -> 0
+dqcomp1005 compare 1 1.00000000000000000000000000000 -> 0
+dqcomp1006 compare 1 1.0000000000000000000000000000 -> 0
+dqcomp1007 compare 1 1.000000000000000000000000000 -> 0
+dqcomp1008 compare 1 1.00000000000000000000000000 -> 0
+dqcomp1009 compare 1 1.0000000000000000000000000 -> 0
+dqcomp1010 compare 1 1.000000000000000000000000 -> 0
+dqcomp1011 compare 1 1.00000000000000000000000 -> 0
+dqcomp1012 compare 1 1.0000000000000000000000 -> 0
+dqcomp1013 compare 1 1.000000000000000000000 -> 0
+dqcomp1014 compare 1 1.00000000000000000000 -> 0
+dqcomp1015 compare 1 1.0000000000000000000 -> 0
+dqcomp1016 compare 1 1.000000000000000000 -> 0
+dqcomp1017 compare 1 1.00000000000000000 -> 0
+dqcomp1018 compare 1 1.0000000000000000 -> 0
+dqcomp1019 compare 1 1.000000000000000 -> 0
+dqcomp1020 compare 1 1.00000000000000 -> 0
+dqcomp1021 compare 1 1.0000000000000 -> 0
+dqcomp1022 compare 1 1.000000000000 -> 0
+dqcomp1023 compare 1 1.00000000000 -> 0
+dqcomp1024 compare 1 1.0000000000 -> 0
+dqcomp1025 compare 1 1.000000000 -> 0
+dqcomp1026 compare 1 1.00000000 -> 0
+dqcomp1027 compare 1 1.0000000 -> 0
+dqcomp1028 compare 1 1.000000 -> 0
+dqcomp1029 compare 1 1.00000 -> 0
+dqcomp1030 compare 1 1.0000 -> 0
+dqcomp1031 compare 1 1.000 -> 0
+dqcomp1032 compare 1 1.00 -> 0
+dqcomp1033 compare 1 1.0 -> 0
+
+dqcomp1041 compare 1.000000000000000000000000000000000 1 -> 0
+dqcomp1042 compare 1.00000000000000000000000000000000 1 -> 0
+dqcomp1043 compare 1.0000000000000000000000000000000 1 -> 0
+dqcomp1044 compare 1.000000000000000000000000000000 1 -> 0
+dqcomp1045 compare 1.00000000000000000000000000000 1 -> 0
+dqcomp1046 compare 1.0000000000000000000000000000 1 -> 0
+dqcomp1047 compare 1.000000000000000000000000000 1 -> 0
+dqcomp1048 compare 1.00000000000000000000000000 1 -> 0
+dqcomp1049 compare 1.0000000000000000000000000 1 -> 0
+dqcomp1050 compare 1.000000000000000000000000 1 -> 0
+dqcomp1051 compare 1.00000000000000000000000 1 -> 0
+dqcomp1052 compare 1.0000000000000000000000 1 -> 0
+dqcomp1053 compare 1.000000000000000000000 1 -> 0
+dqcomp1054 compare 1.00000000000000000000 1 -> 0
+dqcomp1055 compare 1.0000000000000000000 1 -> 0
+dqcomp1056 compare 1.000000000000000000 1 -> 0
+dqcomp1057 compare 1.00000000000000000 1 -> 0
+dqcomp1058 compare 1.0000000000000000 1 -> 0
+dqcomp1059 compare 1.000000000000000 1 -> 0
+dqcomp1060 compare 1.00000000000000 1 -> 0
+dqcomp1061 compare 1.0000000000000 1 -> 0
+dqcomp1062 compare 1.000000000000 1 -> 0
+dqcomp1063 compare 1.00000000000 1 -> 0
+dqcomp1064 compare 1.0000000000 1 -> 0
+dqcomp1065 compare 1.000000000 1 -> 0
+dqcomp1066 compare 1.00000000 1 -> 0
+dqcomp1067 compare 1.0000000 1 -> 0
+dqcomp1068 compare 1.000000 1 -> 0
+dqcomp1069 compare 1.00000 1 -> 0
+dqcomp1070 compare 1.0000 1 -> 0
+dqcomp1071 compare 1.000 1 -> 0
+dqcomp1072 compare 1.00 1 -> 0
+dqcomp1073 compare 1.0 1 -> 0
+
+-- check MSD always detected non-zero
+dqcomp1080 compare 0 0.000000000000000000000000000000000 -> 0
+dqcomp1081 compare 0 1.000000000000000000000000000000000 -> -1
+dqcomp1082 compare 0 2.000000000000000000000000000000000 -> -1
+dqcomp1083 compare 0 3.000000000000000000000000000000000 -> -1
+dqcomp1084 compare 0 4.000000000000000000000000000000000 -> -1
+dqcomp1085 compare 0 5.000000000000000000000000000000000 -> -1
+dqcomp1086 compare 0 6.000000000000000000000000000000000 -> -1
+dqcomp1087 compare 0 7.000000000000000000000000000000000 -> -1
+dqcomp1088 compare 0 8.000000000000000000000000000000000 -> -1
+dqcomp1089 compare 0 9.000000000000000000000000000000000 -> -1
+dqcomp1090 compare 0.000000000000000000000000000000000 0 -> 0
+dqcomp1091 compare 1.000000000000000000000000000000000 0 -> 1
+dqcomp1092 compare 2.000000000000000000000000000000000 0 -> 1
+dqcomp1093 compare 3.000000000000000000000000000000000 0 -> 1
+dqcomp1094 compare 4.000000000000000000000000000000000 0 -> 1
+dqcomp1095 compare 5.000000000000000000000000000000000 0 -> 1
+dqcomp1096 compare 6.000000000000000000000000000000000 0 -> 1
+dqcomp1097 compare 7.000000000000000000000000000000000 0 -> 1
+dqcomp1098 compare 8.000000000000000000000000000000000 0 -> 1
+dqcomp1099 compare 9.000000000000000000000000000000000 0 -> 1
+
+-- Null tests
+dqcom990 compare 10 # -> NaN Invalid_operation
+dqcom991 compare # 10 -> NaN Invalid_operation
diff --git a/Lib/test/decimaltestdata/dqCompareSig.decTest b/Lib/test/decimaltestdata/dqCompareSig.decTest
new file mode 100644
index 0000000..43833ea
--- /dev/null
+++ b/Lib/test/decimaltestdata/dqCompareSig.decTest
@@ -0,0 +1,647 @@
+------------------------------------------------------------------------
+-- dqCompareSig.decTest -- decQuad comparison; all NaNs signal --
+-- Copyright (c) IBM Corporation, 1981, 2007. All rights reserved. --
+------------------------------------------------------------------------
+-- Please see the document "General Decimal Arithmetic Testcases" --
+-- at http://www2.hursley.ibm.com/decimal for the description of --
+-- these testcases. --
+-- --
+-- These testcases are experimental ('beta' versions), and they --
+-- may contain errors. They are offered on an as-is basis. In --
+-- particular, achieving the same results as the tests here is not --
+-- a guarantee that an implementation complies with any Standard --
+-- or specification. The tests are not exhaustive. --
+-- --
+-- Please send comments, suggestions, and corrections to the author: --
+-- Mike Cowlishaw, IBM Fellow --
+-- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK --
+-- mfc@uk.ibm.com --
+------------------------------------------------------------------------
+version: 2.56
+
+-- Note that we cannot assume add/subtract tests cover paths adequately,
+-- here, because the code might be quite different (comparison cannot
+-- overflow or underflow, so actual subtractions are not necessary).
+
+-- All operands and results are decQuads.
+extended: 1
+clamp: 1
+precision: 34
+maxExponent: 6144
+minExponent: -6143
+rounding: half_even
+
+-- sanity checks
+dqcms001 comparesig -2 -2 -> 0
+dqcms002 comparesig -2 -1 -> -1
+dqcms003 comparesig -2 0 -> -1
+dqcms004 comparesig -2 1 -> -1
+dqcms005 comparesig -2 2 -> -1
+dqcms006 comparesig -1 -2 -> 1
+dqcms007 comparesig -1 -1 -> 0
+dqcms008 comparesig -1 0 -> -1
+dqcms009 comparesig -1 1 -> -1
+dqcms010 comparesig -1 2 -> -1
+dqcms011 comparesig 0 -2 -> 1
+dqcms012 comparesig 0 -1 -> 1
+dqcms013 comparesig 0 0 -> 0
+dqcms014 comparesig 0 1 -> -1
+dqcms015 comparesig 0 2 -> -1
+dqcms016 comparesig 1 -2 -> 1
+dqcms017 comparesig 1 -1 -> 1
+dqcms018 comparesig 1 0 -> 1
+dqcms019 comparesig 1 1 -> 0
+dqcms020 comparesig 1 2 -> -1
+dqcms021 comparesig 2 -2 -> 1
+dqcms022 comparesig 2 -1 -> 1
+dqcms023 comparesig 2 0 -> 1
+dqcms025 comparesig 2 1 -> 1
+dqcms026 comparesig 2 2 -> 0
+
+dqcms031 comparesig -20 -20 -> 0
+dqcms032 comparesig -20 -10 -> -1
+dqcms033 comparesig -20 00 -> -1
+dqcms034 comparesig -20 10 -> -1
+dqcms035 comparesig -20 20 -> -1
+dqcms036 comparesig -10 -20 -> 1
+dqcms037 comparesig -10 -10 -> 0
+dqcms038 comparesig -10 00 -> -1
+dqcms039 comparesig -10 10 -> -1
+dqcms040 comparesig -10 20 -> -1
+dqcms041 comparesig 00 -20 -> 1
+dqcms042 comparesig 00 -10 -> 1
+dqcms043 comparesig 00 00 -> 0
+dqcms044 comparesig 00 10 -> -1
+dqcms045 comparesig 00 20 -> -1
+dqcms046 comparesig 10 -20 -> 1
+dqcms047 comparesig 10 -10 -> 1
+dqcms048 comparesig 10 00 -> 1
+dqcms049 comparesig 10 10 -> 0
+dqcms050 comparesig 10 20 -> -1
+dqcms051 comparesig 20 -20 -> 1
+dqcms052 comparesig 20 -10 -> 1
+dqcms053 comparesig 20 00 -> 1
+dqcms055 comparesig 20 10 -> 1
+dqcms056 comparesig 20 20 -> 0
+
+dqcms061 comparesig -2.0 -2.0 -> 0
+dqcms062 comparesig -2.0 -1.0 -> -1
+dqcms063 comparesig -2.0 0.0 -> -1
+dqcms064 comparesig -2.0 1.0 -> -1
+dqcms065 comparesig -2.0 2.0 -> -1
+dqcms066 comparesig -1.0 -2.0 -> 1
+dqcms067 comparesig -1.0 -1.0 -> 0
+dqcms068 comparesig -1.0 0.0 -> -1
+dqcms069 comparesig -1.0 1.0 -> -1
+dqcms070 comparesig -1.0 2.0 -> -1
+dqcms071 comparesig 0.0 -2.0 -> 1
+dqcms072 comparesig 0.0 -1.0 -> 1
+dqcms073 comparesig 0.0 0.0 -> 0
+dqcms074 comparesig 0.0 1.0 -> -1
+dqcms075 comparesig 0.0 2.0 -> -1
+dqcms076 comparesig 1.0 -2.0 -> 1
+dqcms077 comparesig 1.0 -1.0 -> 1
+dqcms078 comparesig 1.0 0.0 -> 1
+dqcms079 comparesig 1.0 1.0 -> 0
+dqcms080 comparesig 1.0 2.0 -> -1
+dqcms081 comparesig 2.0 -2.0 -> 1
+dqcms082 comparesig 2.0 -1.0 -> 1
+dqcms083 comparesig 2.0 0.0 -> 1
+dqcms085 comparesig 2.0 1.0 -> 1
+dqcms086 comparesig 2.0 2.0 -> 0
+
+-- now some cases which might overflow if subtract were used
+dqcms090 comparesig 9.999999999999999999999999999999999E+6144 9.999999999999999999999999999999999E+6144 -> 0
+dqcms091 comparesig -9.999999999999999999999999999999999E+6144 9.999999999999999999999999999999999E+6144 -> -1
+dqcms092 comparesig 9.999999999999999999999999999999999E+6144 -9.999999999999999999999999999999999E+6144 -> 1
+dqcms093 comparesig -9.999999999999999999999999999999999E+6144 -9.999999999999999999999999999999999E+6144 -> 0
+
+-- some differing length/exponent cases
+dqcms100 comparesig 7.0 7.0 -> 0
+dqcms101 comparesig 7.0 7 -> 0
+dqcms102 comparesig 7 7.0 -> 0
+dqcms103 comparesig 7E+0 7.0 -> 0
+dqcms104 comparesig 70E-1 7.0 -> 0
+dqcms105 comparesig 0.7E+1 7 -> 0
+dqcms106 comparesig 70E-1 7 -> 0
+dqcms107 comparesig 7.0 7E+0 -> 0
+dqcms108 comparesig 7.0 70E-1 -> 0
+dqcms109 comparesig 7 0.7E+1 -> 0
+dqcms110 comparesig 7 70E-1 -> 0
+
+dqcms120 comparesig 8.0 7.0 -> 1
+dqcms121 comparesig 8.0 7 -> 1
+dqcms122 comparesig 8 7.0 -> 1
+dqcms123 comparesig 8E+0 7.0 -> 1
+dqcms124 comparesig 80E-1 7.0 -> 1
+dqcms125 comparesig 0.8E+1 7 -> 1
+dqcms126 comparesig 80E-1 7 -> 1
+dqcms127 comparesig 8.0 7E+0 -> 1
+dqcms128 comparesig 8.0 70E-1 -> 1
+dqcms129 comparesig 8 0.7E+1 -> 1
+dqcms130 comparesig 8 70E-1 -> 1
+
+dqcms140 comparesig 8.0 9.0 -> -1
+dqcms141 comparesig 8.0 9 -> -1
+dqcms142 comparesig 8 9.0 -> -1
+dqcms143 comparesig 8E+0 9.0 -> -1
+dqcms144 comparesig 80E-1 9.0 -> -1
+dqcms145 comparesig 0.8E+1 9 -> -1
+dqcms146 comparesig 80E-1 9 -> -1
+dqcms147 comparesig 8.0 9E+0 -> -1
+dqcms148 comparesig 8.0 90E-1 -> -1
+dqcms149 comparesig 8 0.9E+1 -> -1
+dqcms150 comparesig 8 90E-1 -> -1
+
+-- and again, with sign changes -+ ..
+dqcms200 comparesig -7.0 7.0 -> -1
+dqcms201 comparesig -7.0 7 -> -1
+dqcms202 comparesig -7 7.0 -> -1
+dqcms203 comparesig -7E+0 7.0 -> -1
+dqcms204 comparesig -70E-1 7.0 -> -1
+dqcms205 comparesig -0.7E+1 7 -> -1
+dqcms206 comparesig -70E-1 7 -> -1
+dqcms207 comparesig -7.0 7E+0 -> -1
+dqcms208 comparesig -7.0 70E-1 -> -1
+dqcms209 comparesig -7 0.7E+1 -> -1
+dqcms210 comparesig -7 70E-1 -> -1
+
+dqcms220 comparesig -8.0 7.0 -> -1
+dqcms221 comparesig -8.0 7 -> -1
+dqcms222 comparesig -8 7.0 -> -1
+dqcms223 comparesig -8E+0 7.0 -> -1
+dqcms224 comparesig -80E-1 7.0 -> -1
+dqcms225 comparesig -0.8E+1 7 -> -1
+dqcms226 comparesig -80E-1 7 -> -1
+dqcms227 comparesig -8.0 7E+0 -> -1
+dqcms228 comparesig -8.0 70E-1 -> -1
+dqcms229 comparesig -8 0.7E+1 -> -1
+dqcms230 comparesig -8 70E-1 -> -1
+
+dqcms240 comparesig -8.0 9.0 -> -1
+dqcms241 comparesig -8.0 9 -> -1
+dqcms242 comparesig -8 9.0 -> -1
+dqcms243 comparesig -8E+0 9.0 -> -1
+dqcms244 comparesig -80E-1 9.0 -> -1
+dqcms245 comparesig -0.8E+1 9 -> -1
+dqcms246 comparesig -80E-1 9 -> -1
+dqcms247 comparesig -8.0 9E+0 -> -1
+dqcms248 comparesig -8.0 90E-1 -> -1
+dqcms249 comparesig -8 0.9E+1 -> -1
+dqcms250 comparesig -8 90E-1 -> -1
+
+-- and again, with sign changes +- ..
+dqcms300 comparesig 7.0 -7.0 -> 1
+dqcms301 comparesig 7.0 -7 -> 1
+dqcms302 comparesig 7 -7.0 -> 1
+dqcms303 comparesig 7E+0 -7.0 -> 1
+dqcms304 comparesig 70E-1 -7.0 -> 1
+dqcms305 comparesig .7E+1 -7 -> 1
+dqcms306 comparesig 70E-1 -7 -> 1
+dqcms307 comparesig 7.0 -7E+0 -> 1
+dqcms308 comparesig 7.0 -70E-1 -> 1
+dqcms309 comparesig 7 -.7E+1 -> 1
+dqcms310 comparesig 7 -70E-1 -> 1
+
+dqcms320 comparesig 8.0 -7.0 -> 1
+dqcms321 comparesig 8.0 -7 -> 1
+dqcms322 comparesig 8 -7.0 -> 1
+dqcms323 comparesig 8E+0 -7.0 -> 1
+dqcms324 comparesig 80E-1 -7.0 -> 1
+dqcms325 comparesig .8E+1 -7 -> 1
+dqcms326 comparesig 80E-1 -7 -> 1
+dqcms327 comparesig 8.0 -7E+0 -> 1
+dqcms328 comparesig 8.0 -70E-1 -> 1
+dqcms329 comparesig 8 -.7E+1 -> 1
+dqcms330 comparesig 8 -70E-1 -> 1
+
+dqcms340 comparesig 8.0 -9.0 -> 1
+dqcms341 comparesig 8.0 -9 -> 1
+dqcms342 comparesig 8 -9.0 -> 1
+dqcms343 comparesig 8E+0 -9.0 -> 1
+dqcms344 comparesig 80E-1 -9.0 -> 1
+dqcms345 comparesig .8E+1 -9 -> 1
+dqcms346 comparesig 80E-1 -9 -> 1
+dqcms347 comparesig 8.0 -9E+0 -> 1
+dqcms348 comparesig 8.0 -90E-1 -> 1
+dqcms349 comparesig 8 -.9E+1 -> 1
+dqcms350 comparesig 8 -90E-1 -> 1
+
+-- and again, with sign changes -- ..
+dqcms400 comparesig -7.0 -7.0 -> 0
+dqcms401 comparesig -7.0 -7 -> 0
+dqcms402 comparesig -7 -7.0 -> 0
+dqcms403 comparesig -7E+0 -7.0 -> 0
+dqcms404 comparesig -70E-1 -7.0 -> 0
+dqcms405 comparesig -.7E+1 -7 -> 0
+dqcms406 comparesig -70E-1 -7 -> 0
+dqcms407 comparesig -7.0 -7E+0 -> 0
+dqcms408 comparesig -7.0 -70E-1 -> 0
+dqcms409 comparesig -7 -.7E+1 -> 0
+dqcms410 comparesig -7 -70E-1 -> 0
+
+dqcms420 comparesig -8.0 -7.0 -> -1
+dqcms421 comparesig -8.0 -7 -> -1
+dqcms422 comparesig -8 -7.0 -> -1
+dqcms423 comparesig -8E+0 -7.0 -> -1
+dqcms424 comparesig -80E-1 -7.0 -> -1
+dqcms425 comparesig -.8E+1 -7 -> -1
+dqcms426 comparesig -80E-1 -7 -> -1
+dqcms427 comparesig -8.0 -7E+0 -> -1
+dqcms428 comparesig -8.0 -70E-1 -> -1
+dqcms429 comparesig -8 -.7E+1 -> -1
+dqcms430 comparesig -8 -70E-1 -> -1
+
+dqcms440 comparesig -8.0 -9.0 -> 1
+dqcms441 comparesig -8.0 -9 -> 1
+dqcms442 comparesig -8 -9.0 -> 1
+dqcms443 comparesig -8E+0 -9.0 -> 1
+dqcms444 comparesig -80E-1 -9.0 -> 1
+dqcms445 comparesig -.8E+1 -9 -> 1
+dqcms446 comparesig -80E-1 -9 -> 1
+dqcms447 comparesig -8.0 -9E+0 -> 1
+dqcms448 comparesig -8.0 -90E-1 -> 1
+dqcms449 comparesig -8 -.9E+1 -> 1
+dqcms450 comparesig -8 -90E-1 -> 1
+
+
+-- testcases that subtract to lots of zeros at boundaries [pgr]
+dqcms473 comparesig 123.9999999999999999994560000000000E-89 123.999999999999999999456E-89 -> 0
+dqcms474 comparesig 123.999999999999999999456000000000E+89 123.999999999999999999456E+89 -> 0
+dqcms475 comparesig 123.99999999999999999945600000000E-89 123.999999999999999999456E-89 -> 0
+dqcms476 comparesig 123.9999999999999999994560000000E+89 123.999999999999999999456E+89 -> 0
+dqcms477 comparesig 123.999999999999999999456000000E-89 123.999999999999999999456E-89 -> 0
+dqcms478 comparesig 123.99999999999999999945600000E+89 123.999999999999999999456E+89 -> 0
+dqcms479 comparesig 123.9999999999999999994560000E-89 123.999999999999999999456E-89 -> 0
+dqcms480 comparesig 123.999999999999999999456000E+89 123.999999999999999999456E+89 -> 0
+dqcms481 comparesig 123.99999999999999999945600E-89 123.999999999999999999456E-89 -> 0
+dqcms482 comparesig 123.9999999999999999994560E+89 123.999999999999999999456E+89 -> 0
+dqcms483 comparesig 123.999999999999999999456E-89 123.999999999999999999456E-89 -> 0
+dqcms487 comparesig 123.999999999999999999456E+89 123.9999999999999999994560000000000E+89 -> 0
+dqcms488 comparesig 123.999999999999999999456E-89 123.999999999999999999456000000000E-89 -> 0
+dqcms489 comparesig 123.999999999999999999456E+89 123.99999999999999999945600000000E+89 -> 0
+dqcms490 comparesig 123.999999999999999999456E-89 123.9999999999999999994560000000E-89 -> 0
+dqcms491 comparesig 123.999999999999999999456E+89 123.999999999999999999456000000E+89 -> 0
+dqcms492 comparesig 123.999999999999999999456E-89 123.99999999999999999945600000E-89 -> 0
+dqcms493 comparesig 123.999999999999999999456E+89 123.9999999999999999994560000E+89 -> 0
+dqcms494 comparesig 123.999999999999999999456E-89 123.999999999999999999456000E-89 -> 0
+dqcms495 comparesig 123.999999999999999999456E+89 123.99999999999999999945600E+89 -> 0
+dqcms496 comparesig 123.999999999999999999456E-89 123.9999999999999999994560E-89 -> 0
+dqcms497 comparesig 123.999999999999999999456E+89 123.999999999999999999456E+89 -> 0
+
+-- wide-ranging, around precision; signs equal
+dqcms500 comparesig 1 1E-15 -> 1
+dqcms501 comparesig 1 1E-14 -> 1
+dqcms502 comparesig 1 1E-13 -> 1
+dqcms503 comparesig 1 1E-12 -> 1
+dqcms504 comparesig 1 1E-11 -> 1
+dqcms505 comparesig 1 1E-10 -> 1
+dqcms506 comparesig 1 1E-9 -> 1
+dqcms507 comparesig 1 1E-8 -> 1
+dqcms508 comparesig 1 1E-7 -> 1
+dqcms509 comparesig 1 1E-6 -> 1
+dqcms510 comparesig 1 1E-5 -> 1
+dqcms511 comparesig 1 1E-4 -> 1
+dqcms512 comparesig 1 1E-3 -> 1
+dqcms513 comparesig 1 1E-2 -> 1
+dqcms514 comparesig 1 1E-1 -> 1
+dqcms515 comparesig 1 1E-0 -> 0
+dqcms516 comparesig 1 1E+1 -> -1
+dqcms517 comparesig 1 1E+2 -> -1
+dqcms518 comparesig 1 1E+3 -> -1
+dqcms519 comparesig 1 1E+4 -> -1
+dqcms521 comparesig 1 1E+5 -> -1
+dqcms522 comparesig 1 1E+6 -> -1
+dqcms523 comparesig 1 1E+7 -> -1
+dqcms524 comparesig 1 1E+8 -> -1
+dqcms525 comparesig 1 1E+9 -> -1
+dqcms526 comparesig 1 1E+10 -> -1
+dqcms527 comparesig 1 1E+11 -> -1
+dqcms528 comparesig 1 1E+12 -> -1
+dqcms529 comparesig 1 1E+13 -> -1
+dqcms530 comparesig 1 1E+14 -> -1
+dqcms531 comparesig 1 1E+15 -> -1
+-- LR swap
+dqcms540 comparesig 1E-15 1 -> -1
+dqcms541 comparesig 1E-14 1 -> -1
+dqcms542 comparesig 1E-13 1 -> -1
+dqcms543 comparesig 1E-12 1 -> -1
+dqcms544 comparesig 1E-11 1 -> -1
+dqcms545 comparesig 1E-10 1 -> -1
+dqcms546 comparesig 1E-9 1 -> -1
+dqcms547 comparesig 1E-8 1 -> -1
+dqcms548 comparesig 1E-7 1 -> -1
+dqcms549 comparesig 1E-6 1 -> -1
+dqcms550 comparesig 1E-5 1 -> -1
+dqcms551 comparesig 1E-4 1 -> -1
+dqcms552 comparesig 1E-3 1 -> -1
+dqcms553 comparesig 1E-2 1 -> -1
+dqcms554 comparesig 1E-1 1 -> -1
+dqcms555 comparesig 1E-0 1 -> 0
+dqcms556 comparesig 1E+1 1 -> 1
+dqcms557 comparesig 1E+2 1 -> 1
+dqcms558 comparesig 1E+3 1 -> 1
+dqcms559 comparesig 1E+4 1 -> 1
+dqcms561 comparesig 1E+5 1 -> 1
+dqcms562 comparesig 1E+6 1 -> 1
+dqcms563 comparesig 1E+7 1 -> 1
+dqcms564 comparesig 1E+8 1 -> 1
+dqcms565 comparesig 1E+9 1 -> 1
+dqcms566 comparesig 1E+10 1 -> 1
+dqcms567 comparesig 1E+11 1 -> 1
+dqcms568 comparesig 1E+12 1 -> 1
+dqcms569 comparesig 1E+13 1 -> 1
+dqcms570 comparesig 1E+14 1 -> 1
+dqcms571 comparesig 1E+15 1 -> 1
+-- similar with a useful coefficient, one side only
+dqcms580 comparesig 0.000000987654321 1E-15 -> 1
+dqcms581 comparesig 0.000000987654321 1E-14 -> 1
+dqcms582 comparesig 0.000000987654321 1E-13 -> 1
+dqcms583 comparesig 0.000000987654321 1E-12 -> 1
+dqcms584 comparesig 0.000000987654321 1E-11 -> 1
+dqcms585 comparesig 0.000000987654321 1E-10 -> 1
+dqcms586 comparesig 0.000000987654321 1E-9 -> 1
+dqcms587 comparesig 0.000000987654321 1E-8 -> 1
+dqcms588 comparesig 0.000000987654321 1E-7 -> 1
+dqcms589 comparesig 0.000000987654321 1E-6 -> -1
+dqcms590 comparesig 0.000000987654321 1E-5 -> -1
+dqcms591 comparesig 0.000000987654321 1E-4 -> -1
+dqcms592 comparesig 0.000000987654321 1E-3 -> -1
+dqcms593 comparesig 0.000000987654321 1E-2 -> -1
+dqcms594 comparesig 0.000000987654321 1E-1 -> -1
+dqcms595 comparesig 0.000000987654321 1E-0 -> -1
+dqcms596 comparesig 0.000000987654321 1E+1 -> -1
+dqcms597 comparesig 0.000000987654321 1E+2 -> -1
+dqcms598 comparesig 0.000000987654321 1E+3 -> -1
+dqcms599 comparesig 0.000000987654321 1E+4 -> -1
+
+-- check some unit-y traps
+dqcms600 comparesig 12 12.2345 -> -1
+dqcms601 comparesig 12.0 12.2345 -> -1
+dqcms602 comparesig 12.00 12.2345 -> -1
+dqcms603 comparesig 12.000 12.2345 -> -1
+dqcms604 comparesig 12.0000 12.2345 -> -1
+dqcms605 comparesig 12.00000 12.2345 -> -1
+dqcms606 comparesig 12.000000 12.2345 -> -1
+dqcms607 comparesig 12.0000000 12.2345 -> -1
+dqcms608 comparesig 12.00000000 12.2345 -> -1
+dqcms609 comparesig 12.000000000 12.2345 -> -1
+dqcms610 comparesig 12.1234 12 -> 1
+dqcms611 comparesig 12.1234 12.0 -> 1
+dqcms612 comparesig 12.1234 12.00 -> 1
+dqcms613 comparesig 12.1234 12.000 -> 1
+dqcms614 comparesig 12.1234 12.0000 -> 1
+dqcms615 comparesig 12.1234 12.00000 -> 1
+dqcms616 comparesig 12.1234 12.000000 -> 1
+dqcms617 comparesig 12.1234 12.0000000 -> 1
+dqcms618 comparesig 12.1234 12.00000000 -> 1
+dqcms619 comparesig 12.1234 12.000000000 -> 1
+dqcms620 comparesig -12 -12.2345 -> 1
+dqcms621 comparesig -12.0 -12.2345 -> 1
+dqcms622 comparesig -12.00 -12.2345 -> 1
+dqcms623 comparesig -12.000 -12.2345 -> 1
+dqcms624 comparesig -12.0000 -12.2345 -> 1
+dqcms625 comparesig -12.00000 -12.2345 -> 1
+dqcms626 comparesig -12.000000 -12.2345 -> 1
+dqcms627 comparesig -12.0000000 -12.2345 -> 1
+dqcms628 comparesig -12.00000000 -12.2345 -> 1
+dqcms629 comparesig -12.000000000 -12.2345 -> 1
+dqcms630 comparesig -12.1234 -12 -> -1
+dqcms631 comparesig -12.1234 -12.0 -> -1
+dqcms632 comparesig -12.1234 -12.00 -> -1
+dqcms633 comparesig -12.1234 -12.000 -> -1
+dqcms634 comparesig -12.1234 -12.0000 -> -1
+dqcms635 comparesig -12.1234 -12.00000 -> -1
+dqcms636 comparesig -12.1234 -12.000000 -> -1
+dqcms637 comparesig -12.1234 -12.0000000 -> -1
+dqcms638 comparesig -12.1234 -12.00000000 -> -1
+dqcms639 comparesig -12.1234 -12.000000000 -> -1
+
+-- extended zeros
+dqcms640 comparesig 0 0 -> 0
+dqcms641 comparesig 0 -0 -> 0
+dqcms642 comparesig 0 -0.0 -> 0
+dqcms643 comparesig 0 0.0 -> 0
+dqcms644 comparesig -0 0 -> 0
+dqcms645 comparesig -0 -0 -> 0
+dqcms646 comparesig -0 -0.0 -> 0
+dqcms647 comparesig -0 0.0 -> 0
+dqcms648 comparesig 0.0 0 -> 0
+dqcms649 comparesig 0.0 -0 -> 0
+dqcms650 comparesig 0.0 -0.0 -> 0
+dqcms651 comparesig 0.0 0.0 -> 0
+dqcms652 comparesig -0.0 0 -> 0
+dqcms653 comparesig -0.0 -0 -> 0
+dqcms654 comparesig -0.0 -0.0 -> 0
+dqcms655 comparesig -0.0 0.0 -> 0
+
+dqcms656 comparesig -0E1 0.0 -> 0
+dqcms657 comparesig -0E2 0.0 -> 0
+dqcms658 comparesig 0E1 0.0 -> 0
+dqcms659 comparesig 0E2 0.0 -> 0
+dqcms660 comparesig -0E1 0 -> 0
+dqcms661 comparesig -0E2 0 -> 0
+dqcms662 comparesig 0E1 0 -> 0
+dqcms663 comparesig 0E2 0 -> 0
+dqcms664 comparesig -0E1 -0E1 -> 0
+dqcms665 comparesig -0E2 -0E1 -> 0
+dqcms666 comparesig 0E1 -0E1 -> 0
+dqcms667 comparesig 0E2 -0E1 -> 0
+dqcms668 comparesig -0E1 -0E2 -> 0
+dqcms669 comparesig -0E2 -0E2 -> 0
+dqcms670 comparesig 0E1 -0E2 -> 0
+dqcms671 comparesig 0E2 -0E2 -> 0
+dqcms672 comparesig -0E1 0E1 -> 0
+dqcms673 comparesig -0E2 0E1 -> 0
+dqcms674 comparesig 0E1 0E1 -> 0
+dqcms675 comparesig 0E2 0E1 -> 0
+dqcms676 comparesig -0E1 0E2 -> 0
+dqcms677 comparesig -0E2 0E2 -> 0
+dqcms678 comparesig 0E1 0E2 -> 0
+dqcms679 comparesig 0E2 0E2 -> 0
+
+-- trailing zeros; unit-y
+dqcms680 comparesig 12 12 -> 0
+dqcms681 comparesig 12 12.0 -> 0
+dqcms682 comparesig 12 12.00 -> 0
+dqcms683 comparesig 12 12.000 -> 0
+dqcms684 comparesig 12 12.0000 -> 0
+dqcms685 comparesig 12 12.00000 -> 0
+dqcms686 comparesig 12 12.000000 -> 0
+dqcms687 comparesig 12 12.0000000 -> 0
+dqcms688 comparesig 12 12.00000000 -> 0
+dqcms689 comparesig 12 12.000000000 -> 0
+dqcms690 comparesig 12 12 -> 0
+dqcms691 comparesig 12.0 12 -> 0
+dqcms692 comparesig 12.00 12 -> 0
+dqcms693 comparesig 12.000 12 -> 0
+dqcms694 comparesig 12.0000 12 -> 0
+dqcms695 comparesig 12.00000 12 -> 0
+dqcms696 comparesig 12.000000 12 -> 0
+dqcms697 comparesig 12.0000000 12 -> 0
+dqcms698 comparesig 12.00000000 12 -> 0
+dqcms699 comparesig 12.000000000 12 -> 0
+
+-- first, second, & last digit
+dqcms700 comparesig 1234567899999999999999999990123456 1234567899999999999999999990123455 -> 1
+dqcms701 comparesig 1234567899999999999999999990123456 1234567899999999999999999990123456 -> 0
+dqcms702 comparesig 1234567899999999999999999990123456 1234567899999999999999999990123457 -> -1
+dqcms703 comparesig 1234567899999999999999999990123456 0234567899999999999999999990123456 -> 1
+dqcms704 comparesig 1234567899999999999999999990123456 1234567899999999999999999990123456 -> 0
+dqcms705 comparesig 1234567899999999999999999990123456 2234567899999999999999999990123456 -> -1
+dqcms706 comparesig 1134567899999999999999999990123456 1034567899999999999999999990123456 -> 1
+dqcms707 comparesig 1134567899999999999999999990123456 1134567899999999999999999990123456 -> 0
+dqcms708 comparesig 1134567899999999999999999990123456 1234567899999999999999999990123456 -> -1
+
+-- miscellaneous
+dqcms721 comparesig 12345678000 1 -> 1
+dqcms722 comparesig 1 12345678000 -> -1
+dqcms723 comparesig 1234567800 1 -> 1
+dqcms724 comparesig 1 1234567800 -> -1
+dqcms725 comparesig 1234567890 1 -> 1
+dqcms726 comparesig 1 1234567890 -> -1
+dqcms727 comparesig 1234567891 1 -> 1
+dqcms728 comparesig 1 1234567891 -> -1
+dqcms729 comparesig 12345678901 1 -> 1
+dqcms730 comparesig 1 12345678901 -> -1
+dqcms731 comparesig 1234567896 1 -> 1
+dqcms732 comparesig 1 1234567896 -> -1
+
+-- residue cases at lower precision
+dqcms740 comparesig 1 0.9999999 -> 1
+dqcms741 comparesig 1 0.999999 -> 1
+dqcms742 comparesig 1 0.99999 -> 1
+dqcms743 comparesig 1 1.0000 -> 0
+dqcms744 comparesig 1 1.00001 -> -1
+dqcms745 comparesig 1 1.000001 -> -1
+dqcms746 comparesig 1 1.0000001 -> -1
+dqcms750 comparesig 0.9999999 1 -> -1
+dqcms751 comparesig 0.999999 1 -> -1
+dqcms752 comparesig 0.99999 1 -> -1
+dqcms753 comparesig 1.0000 1 -> 0
+dqcms754 comparesig 1.00001 1 -> 1
+dqcms755 comparesig 1.000001 1 -> 1
+dqcms756 comparesig 1.0000001 1 -> 1
+
+-- Specials
+dqcms780 comparesig Inf -Inf -> 1
+dqcms781 comparesig Inf -1000 -> 1
+dqcms782 comparesig Inf -1 -> 1
+dqcms783 comparesig Inf -0 -> 1
+dqcms784 comparesig Inf 0 -> 1
+dqcms785 comparesig Inf 1 -> 1
+dqcms786 comparesig Inf 1000 -> 1
+dqcms787 comparesig Inf Inf -> 0
+dqcms788 comparesig -1000 Inf -> -1
+dqcms789 comparesig -Inf Inf -> -1
+dqcms790 comparesig -1 Inf -> -1
+dqcms791 comparesig -0 Inf -> -1
+dqcms792 comparesig 0 Inf -> -1
+dqcms793 comparesig 1 Inf -> -1
+dqcms794 comparesig 1000 Inf -> -1
+dqcms795 comparesig Inf Inf -> 0
+
+dqcms800 comparesig -Inf -Inf -> 0
+dqcms801 comparesig -Inf -1000 -> -1
+dqcms802 comparesig -Inf -1 -> -1
+dqcms803 comparesig -Inf -0 -> -1
+dqcms804 comparesig -Inf 0 -> -1
+dqcms805 comparesig -Inf 1 -> -1
+dqcms806 comparesig -Inf 1000 -> -1
+dqcms807 comparesig -Inf Inf -> -1
+dqcms808 comparesig -Inf -Inf -> 0
+dqcms809 comparesig -1000 -Inf -> 1
+dqcms810 comparesig -1 -Inf -> 1
+dqcms811 comparesig -0 -Inf -> 1
+dqcms812 comparesig 0 -Inf -> 1
+dqcms813 comparesig 1 -Inf -> 1
+dqcms814 comparesig 1000 -Inf -> 1
+dqcms815 comparesig Inf -Inf -> 1
+
+dqcms821 comparesig NaN -Inf -> NaN Invalid_operation
+dqcms822 comparesig NaN -1000 -> NaN Invalid_operation
+dqcms823 comparesig NaN -1 -> NaN Invalid_operation
+dqcms824 comparesig NaN -0 -> NaN Invalid_operation
+dqcms825 comparesig NaN 0 -> NaN Invalid_operation
+dqcms826 comparesig NaN 1 -> NaN Invalid_operation
+dqcms827 comparesig NaN 1000 -> NaN Invalid_operation
+dqcms828 comparesig NaN Inf -> NaN Invalid_operation
+dqcms829 comparesig NaN NaN -> NaN Invalid_operation
+dqcms830 comparesig -Inf NaN -> NaN Invalid_operation
+dqcms831 comparesig -1000 NaN -> NaN Invalid_operation
+dqcms832 comparesig -1 NaN -> NaN Invalid_operation
+dqcms833 comparesig -0 NaN -> NaN Invalid_operation
+dqcms834 comparesig 0 NaN -> NaN Invalid_operation
+dqcms835 comparesig 1 NaN -> NaN Invalid_operation
+dqcms836 comparesig 1000 NaN -> NaN Invalid_operation
+dqcms837 comparesig Inf NaN -> NaN Invalid_operation
+dqcms838 comparesig -NaN -NaN -> -NaN Invalid_operation
+dqcms839 comparesig +NaN -NaN -> NaN Invalid_operation
+dqcms840 comparesig -NaN +NaN -> -NaN Invalid_operation
+
+dqcms841 comparesig sNaN -Inf -> NaN Invalid_operation
+dqcms842 comparesig sNaN -1000 -> NaN Invalid_operation
+dqcms843 comparesig sNaN -1 -> NaN Invalid_operation
+dqcms844 comparesig sNaN -0 -> NaN Invalid_operation
+dqcms845 comparesig sNaN 0 -> NaN Invalid_operation
+dqcms846 comparesig sNaN 1 -> NaN Invalid_operation
+dqcms847 comparesig sNaN 1000 -> NaN Invalid_operation
+dqcms848 comparesig sNaN NaN -> NaN Invalid_operation
+dqcms849 comparesig sNaN sNaN -> NaN Invalid_operation
+dqcms850 comparesig NaN sNaN -> NaN Invalid_operation
+dqcms851 comparesig -Inf sNaN -> NaN Invalid_operation
+dqcms852 comparesig -1000 sNaN -> NaN Invalid_operation
+dqcms853 comparesig -1 sNaN -> NaN Invalid_operation
+dqcms854 comparesig -0 sNaN -> NaN Invalid_operation
+dqcms855 comparesig 0 sNaN -> NaN Invalid_operation
+dqcms856 comparesig 1 sNaN -> NaN Invalid_operation
+dqcms857 comparesig 1000 sNaN -> NaN Invalid_operation
+dqcms858 comparesig Inf sNaN -> NaN Invalid_operation
+dqcms859 comparesig NaN sNaN -> NaN Invalid_operation
+
+-- propagating NaNs
+dqcms860 comparesig NaN9 -Inf -> NaN9 Invalid_operation
+dqcms861 comparesig NaN8 999 -> NaN8 Invalid_operation
+dqcms862 comparesig NaN77 Inf -> NaN77 Invalid_operation
+dqcms863 comparesig -NaN67 NaN5 -> -NaN67 Invalid_operation
+dqcms864 comparesig -Inf -NaN4 -> -NaN4 Invalid_operation
+dqcms865 comparesig -999 -NaN33 -> -NaN33 Invalid_operation
+dqcms866 comparesig Inf NaN2 -> NaN2 Invalid_operation
+dqcms867 comparesig -NaN41 -NaN42 -> -NaN41 Invalid_operation
+dqcms868 comparesig +NaN41 -NaN42 -> NaN41 Invalid_operation
+dqcms869 comparesig -NaN41 +NaN42 -> -NaN41 Invalid_operation
+dqcms870 comparesig +NaN41 +NaN42 -> NaN41 Invalid_operation
+
+dqcms871 comparesig -sNaN99 -Inf -> -NaN99 Invalid_operation
+dqcms872 comparesig sNaN98 -11 -> NaN98 Invalid_operation
+dqcms873 comparesig sNaN97 NaN -> NaN97 Invalid_operation
+dqcms874 comparesig sNaN16 sNaN94 -> NaN16 Invalid_operation
+dqcms875 comparesig NaN85 sNaN83 -> NaN83 Invalid_operation
+dqcms876 comparesig -Inf sNaN92 -> NaN92 Invalid_operation
+dqcms877 comparesig 088 sNaN81 -> NaN81 Invalid_operation
+dqcms878 comparesig Inf sNaN90 -> NaN90 Invalid_operation
+dqcms879 comparesig NaN -sNaN89 -> -NaN89 Invalid_operation
+
+-- wide range
+dqcms880 comparesig +1.23456789012345E-0 9E+6144 -> -1
+dqcms881 comparesig 9E+6144 +1.23456789012345E-0 -> 1
+dqcms882 comparesig +0.100 9E-6143 -> 1
+dqcms883 comparesig 9E-6143 +0.100 -> -1
+dqcms885 comparesig -1.23456789012345E-0 9E+6144 -> -1
+dqcms886 comparesig 9E+6144 -1.23456789012345E-0 -> 1
+dqcms887 comparesig -0.100 9E-6143 -> -1
+dqcms888 comparesig 9E-6143 -0.100 -> 1
+
+-- signs
+dqcms901 comparesig 1e+77 1e+11 -> 1
+dqcms902 comparesig 1e+77 -1e+11 -> 1
+dqcms903 comparesig -1e+77 1e+11 -> -1
+dqcms904 comparesig -1e+77 -1e+11 -> -1
+dqcms905 comparesig 1e-77 1e-11 -> -1
+dqcms906 comparesig 1e-77 -1e-11 -> 1
+dqcms907 comparesig -1e-77 1e-11 -> -1
+dqcms908 comparesig -1e-77 -1e-11 -> 1
+
+-- Null tests
+dqcms990 comparesig 10 # -> NaN Invalid_operation
+dqcms991 comparesig # 10 -> NaN Invalid_operation
diff --git a/Lib/test/decimaltestdata/dqCompareTotal.decTest b/Lib/test/decimaltestdata/dqCompareTotal.decTest
new file mode 100644
index 0000000..d4a7c5a
--- /dev/null
+++ b/Lib/test/decimaltestdata/dqCompareTotal.decTest
@@ -0,0 +1,706 @@
+------------------------------------------------------------------------
+-- dqCompareTotal.decTest -- decQuad comparison using total ordering --
+-- Copyright (c) IBM Corporation, 1981, 2007. All rights reserved. --
+------------------------------------------------------------------------
+-- Please see the document "General Decimal Arithmetic Testcases" --
+-- at http://www2.hursley.ibm.com/decimal for the description of --
+-- these testcases. --
+-- --
+-- These testcases are experimental ('beta' versions), and they --
+-- may contain errors. They are offered on an as-is basis. In --
+-- particular, achieving the same results as the tests here is not --
+-- a guarantee that an implementation complies with any Standard --
+-- or specification. The tests are not exhaustive. --
+-- --
+-- Please send comments, suggestions, and corrections to the author: --
+-- Mike Cowlishaw, IBM Fellow --
+-- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK --
+-- mfc@uk.ibm.com --
+------------------------------------------------------------------------
+version: 2.56
+
+-- Note that we cannot assume add/subtract tests cover paths adequately,
+-- here, because the code might be quite different (comparison cannot
+-- overflow or underflow, so actual subtractions are not necessary).
+-- Similarly, comparetotal will have some radically different paths
+-- than compare.
+
+-- All operands and results are decQuads.
+extended: 1
+clamp: 1
+precision: 34
+maxExponent: 6144
+minExponent: -6143
+rounding: half_even
+
+-- sanity checks
+dqcot001 comparetotal -2 -2 -> 0
+dqcot002 comparetotal -2 -1 -> -1
+dqcot003 comparetotal -2 0 -> -1
+dqcot004 comparetotal -2 1 -> -1
+dqcot005 comparetotal -2 2 -> -1
+dqcot006 comparetotal -1 -2 -> 1
+dqcot007 comparetotal -1 -1 -> 0
+dqcot008 comparetotal -1 0 -> -1
+dqcot009 comparetotal -1 1 -> -1
+dqcot010 comparetotal -1 2 -> -1
+dqcot011 comparetotal 0 -2 -> 1
+dqcot012 comparetotal 0 -1 -> 1
+dqcot013 comparetotal 0 0 -> 0
+dqcot014 comparetotal 0 1 -> -1
+dqcot015 comparetotal 0 2 -> -1
+dqcot016 comparetotal 1 -2 -> 1
+dqcot017 comparetotal 1 -1 -> 1
+dqcot018 comparetotal 1 0 -> 1
+dqcot019 comparetotal 1 1 -> 0
+dqcot020 comparetotal 1 2 -> -1
+dqcot021 comparetotal 2 -2 -> 1
+dqcot022 comparetotal 2 -1 -> 1
+dqcot023 comparetotal 2 0 -> 1
+dqcot025 comparetotal 2 1 -> 1
+dqcot026 comparetotal 2 2 -> 0
+
+dqcot031 comparetotal -20 -20 -> 0
+dqcot032 comparetotal -20 -10 -> -1
+dqcot033 comparetotal -20 00 -> -1
+dqcot034 comparetotal -20 10 -> -1
+dqcot035 comparetotal -20 20 -> -1
+dqcot036 comparetotal -10 -20 -> 1
+dqcot037 comparetotal -10 -10 -> 0
+dqcot038 comparetotal -10 00 -> -1
+dqcot039 comparetotal -10 10 -> -1
+dqcot040 comparetotal -10 20 -> -1
+dqcot041 comparetotal 00 -20 -> 1
+dqcot042 comparetotal 00 -10 -> 1
+dqcot043 comparetotal 00 00 -> 0
+dqcot044 comparetotal 00 10 -> -1
+dqcot045 comparetotal 00 20 -> -1
+dqcot046 comparetotal 10 -20 -> 1
+dqcot047 comparetotal 10 -10 -> 1
+dqcot048 comparetotal 10 00 -> 1
+dqcot049 comparetotal 10 10 -> 0
+dqcot050 comparetotal 10 20 -> -1
+dqcot051 comparetotal 20 -20 -> 1
+dqcot052 comparetotal 20 -10 -> 1
+dqcot053 comparetotal 20 00 -> 1
+dqcot055 comparetotal 20 10 -> 1
+dqcot056 comparetotal 20 20 -> 0
+
+dqcot061 comparetotal -2.0 -2.0 -> 0
+dqcot062 comparetotal -2.0 -1.0 -> -1
+dqcot063 comparetotal -2.0 0.0 -> -1
+dqcot064 comparetotal -2.0 1.0 -> -1
+dqcot065 comparetotal -2.0 2.0 -> -1
+dqcot066 comparetotal -1.0 -2.0 -> 1
+dqcot067 comparetotal -1.0 -1.0 -> 0
+dqcot068 comparetotal -1.0 0.0 -> -1
+dqcot069 comparetotal -1.0 1.0 -> -1
+dqcot070 comparetotal -1.0 2.0 -> -1
+dqcot071 comparetotal 0.0 -2.0 -> 1
+dqcot072 comparetotal 0.0 -1.0 -> 1
+dqcot073 comparetotal 0.0 0.0 -> 0
+dqcot074 comparetotal 0.0 1.0 -> -1
+dqcot075 comparetotal 0.0 2.0 -> -1
+dqcot076 comparetotal 1.0 -2.0 -> 1
+dqcot077 comparetotal 1.0 -1.0 -> 1
+dqcot078 comparetotal 1.0 0.0 -> 1
+dqcot079 comparetotal 1.0 1.0 -> 0
+dqcot080 comparetotal 1.0 2.0 -> -1
+dqcot081 comparetotal 2.0 -2.0 -> 1
+dqcot082 comparetotal 2.0 -1.0 -> 1
+dqcot083 comparetotal 2.0 0.0 -> 1
+dqcot085 comparetotal 2.0 1.0 -> 1
+dqcot086 comparetotal 2.0 2.0 -> 0
+
+-- now some cases which might overflow if subtract were used
+dqcot090 comparetotal 9.99999999999999999999999999999E+6144 9.99999999999999999999999999999E+6144 -> 0
+dqcot091 comparetotal -9.99999999999999999999999999999E+6144 9.99999999999999999999999999999E+6144 -> -1
+dqcot092 comparetotal 9.99999999999999999999999999999E+6144 -9.99999999999999999999999999999E+6144 -> 1
+dqcot093 comparetotal -9.99999999999999999999999999999E+6144 -9.99999999999999999999999999999E+6144 -> 0
+
+-- some differing length/exponent cases
+-- in this first group, compare would compare all equal
+dqcot100 comparetotal 7.0 7.0 -> 0
+dqcot101 comparetotal 7.0 7 -> -1
+dqcot102 comparetotal 7 7.0 -> 1
+dqcot103 comparetotal 7E+0 7.0 -> 1
+dqcot104 comparetotal 70E-1 7.0 -> 0
+dqcot105 comparetotal 0.7E+1 7 -> 0
+dqcot106 comparetotal 70E-1 7 -> -1
+dqcot107 comparetotal 7.0 7E+0 -> -1
+dqcot108 comparetotal 7.0 70E-1 -> 0
+dqcot109 comparetotal 7 0.7E+1 -> 0
+dqcot110 comparetotal 7 70E-1 -> 1
+
+dqcot120 comparetotal 8.0 7.0 -> 1
+dqcot121 comparetotal 8.0 7 -> 1
+dqcot122 comparetotal 8 7.0 -> 1
+dqcot123 comparetotal 8E+0 7.0 -> 1
+dqcot124 comparetotal 80E-1 7.0 -> 1
+dqcot125 comparetotal 0.8E+1 7 -> 1
+dqcot126 comparetotal 80E-1 7 -> 1
+dqcot127 comparetotal 8.0 7E+0 -> 1
+dqcot128 comparetotal 8.0 70E-1 -> 1
+dqcot129 comparetotal 8 0.7E+1 -> 1
+dqcot130 comparetotal 8 70E-1 -> 1
+
+dqcot140 comparetotal 8.0 9.0 -> -1
+dqcot141 comparetotal 8.0 9 -> -1
+dqcot142 comparetotal 8 9.0 -> -1
+dqcot143 comparetotal 8E+0 9.0 -> -1
+dqcot144 comparetotal 80E-1 9.0 -> -1
+dqcot145 comparetotal 0.8E+1 9 -> -1
+dqcot146 comparetotal 80E-1 9 -> -1
+dqcot147 comparetotal 8.0 9E+0 -> -1
+dqcot148 comparetotal 8.0 90E-1 -> -1
+dqcot149 comparetotal 8 0.9E+1 -> -1
+dqcot150 comparetotal 8 90E-1 -> -1
+
+-- and again, with sign changes -+ ..
+dqcot200 comparetotal -7.0 7.0 -> -1
+dqcot201 comparetotal -7.0 7 -> -1
+dqcot202 comparetotal -7 7.0 -> -1
+dqcot203 comparetotal -7E+0 7.0 -> -1
+dqcot204 comparetotal -70E-1 7.0 -> -1
+dqcot205 comparetotal -0.7E+1 7 -> -1
+dqcot206 comparetotal -70E-1 7 -> -1
+dqcot207 comparetotal -7.0 7E+0 -> -1
+dqcot208 comparetotal -7.0 70E-1 -> -1
+dqcot209 comparetotal -7 0.7E+1 -> -1
+dqcot210 comparetotal -7 70E-1 -> -1
+
+dqcot220 comparetotal -8.0 7.0 -> -1
+dqcot221 comparetotal -8.0 7 -> -1
+dqcot222 comparetotal -8 7.0 -> -1
+dqcot223 comparetotal -8E+0 7.0 -> -1
+dqcot224 comparetotal -80E-1 7.0 -> -1
+dqcot225 comparetotal -0.8E+1 7 -> -1
+dqcot226 comparetotal -80E-1 7 -> -1
+dqcot227 comparetotal -8.0 7E+0 -> -1
+dqcot228 comparetotal -8.0 70E-1 -> -1
+dqcot229 comparetotal -8 0.7E+1 -> -1
+dqcot230 comparetotal -8 70E-1 -> -1
+
+dqcot240 comparetotal -8.0 9.0 -> -1
+dqcot241 comparetotal -8.0 9 -> -1
+dqcot242 comparetotal -8 9.0 -> -1
+dqcot243 comparetotal -8E+0 9.0 -> -1
+dqcot244 comparetotal -80E-1 9.0 -> -1
+dqcot245 comparetotal -0.8E+1 9 -> -1
+dqcot246 comparetotal -80E-1 9 -> -1
+dqcot247 comparetotal -8.0 9E+0 -> -1
+dqcot248 comparetotal -8.0 90E-1 -> -1
+dqcot249 comparetotal -8 0.9E+1 -> -1
+dqcot250 comparetotal -8 90E-1 -> -1
+
+-- and again, with sign changes +- ..
+dqcot300 comparetotal 7.0 -7.0 -> 1
+dqcot301 comparetotal 7.0 -7 -> 1
+dqcot302 comparetotal 7 -7.0 -> 1
+dqcot303 comparetotal 7E+0 -7.0 -> 1
+dqcot304 comparetotal 70E-1 -7.0 -> 1
+dqcot305 comparetotal .7E+1 -7 -> 1
+dqcot306 comparetotal 70E-1 -7 -> 1
+dqcot307 comparetotal 7.0 -7E+0 -> 1
+dqcot308 comparetotal 7.0 -70E-1 -> 1
+dqcot309 comparetotal 7 -.7E+1 -> 1
+dqcot310 comparetotal 7 -70E-1 -> 1
+
+dqcot320 comparetotal 8.0 -7.0 -> 1
+dqcot321 comparetotal 8.0 -7 -> 1
+dqcot322 comparetotal 8 -7.0 -> 1
+dqcot323 comparetotal 8E+0 -7.0 -> 1
+dqcot324 comparetotal 80E-1 -7.0 -> 1
+dqcot325 comparetotal .8E+1 -7 -> 1
+dqcot326 comparetotal 80E-1 -7 -> 1
+dqcot327 comparetotal 8.0 -7E+0 -> 1
+dqcot328 comparetotal 8.0 -70E-1 -> 1
+dqcot329 comparetotal 8 -.7E+1 -> 1
+dqcot330 comparetotal 8 -70E-1 -> 1
+
+dqcot340 comparetotal 8.0 -9.0 -> 1
+dqcot341 comparetotal 8.0 -9 -> 1
+dqcot342 comparetotal 8 -9.0 -> 1
+dqcot343 comparetotal 8E+0 -9.0 -> 1
+dqcot344 comparetotal 80E-1 -9.0 -> 1
+dqcot345 comparetotal .8E+1 -9 -> 1
+dqcot346 comparetotal 80E-1 -9 -> 1
+dqcot347 comparetotal 8.0 -9E+0 -> 1
+dqcot348 comparetotal 8.0 -90E-1 -> 1
+dqcot349 comparetotal 8 -.9E+1 -> 1
+dqcot350 comparetotal 8 -90E-1 -> 1
+
+-- and again, with sign changes -- ..
+dqcot400 comparetotal -7.0 -7.0 -> 0
+dqcot401 comparetotal -7.0 -7 -> 1
+dqcot402 comparetotal -7 -7.0 -> -1
+dqcot403 comparetotal -7E+0 -7.0 -> -1
+dqcot404 comparetotal -70E-1 -7.0 -> 0
+dqcot405 comparetotal -.7E+1 -7 -> 0
+dqcot406 comparetotal -70E-1 -7 -> 1
+dqcot407 comparetotal -7.0 -7E+0 -> 1
+dqcot408 comparetotal -7.0 -70E-1 -> 0
+dqcot409 comparetotal -7 -.7E+1 -> 0
+dqcot410 comparetotal -7 -70E-1 -> -1
+
+dqcot420 comparetotal -8.0 -7.0 -> -1
+dqcot421 comparetotal -8.0 -7 -> -1
+dqcot422 comparetotal -8 -7.0 -> -1
+dqcot423 comparetotal -8E+0 -7.0 -> -1
+dqcot424 comparetotal -80E-1 -7.0 -> -1
+dqcot425 comparetotal -.8E+1 -7 -> -1
+dqcot426 comparetotal -80E-1 -7 -> -1
+dqcot427 comparetotal -8.0 -7E+0 -> -1
+dqcot428 comparetotal -8.0 -70E-1 -> -1
+dqcot429 comparetotal -8 -.7E+1 -> -1
+dqcot430 comparetotal -8 -70E-1 -> -1
+
+dqcot440 comparetotal -8.0 -9.0 -> 1
+dqcot441 comparetotal -8.0 -9 -> 1
+dqcot442 comparetotal -8 -9.0 -> 1
+dqcot443 comparetotal -8E+0 -9.0 -> 1
+dqcot444 comparetotal -80E-1 -9.0 -> 1
+dqcot445 comparetotal -.8E+1 -9 -> 1
+dqcot446 comparetotal -80E-1 -9 -> 1
+dqcot447 comparetotal -8.0 -9E+0 -> 1
+dqcot448 comparetotal -8.0 -90E-1 -> 1
+dqcot449 comparetotal -8 -.9E+1 -> 1
+dqcot450 comparetotal -8 -90E-1 -> 1
+
+
+-- testcases that subtract to lots of zeros at boundaries [pgr]
+dqcot473 comparetotal 123.4560000000000E-89 123.456E-89 -> -1
+dqcot474 comparetotal 123.456000000000E+89 123.456E+89 -> -1
+dqcot475 comparetotal 123.45600000000E-89 123.456E-89 -> -1
+dqcot476 comparetotal 123.4560000000E+89 123.456E+89 -> -1
+dqcot477 comparetotal 123.456000000E-89 123.456E-89 -> -1
+dqcot478 comparetotal 123.45600000E+89 123.456E+89 -> -1
+dqcot479 comparetotal 123.4560000E-89 123.456E-89 -> -1
+dqcot480 comparetotal 123.456000E+89 123.456E+89 -> -1
+dqcot481 comparetotal 123.45600E-89 123.456E-89 -> -1
+dqcot482 comparetotal 123.4560E+89 123.456E+89 -> -1
+dqcot483 comparetotal 123.456E-89 123.456E-89 -> 0
+dqcot487 comparetotal 123.456E+89 123.4560000000000E+89 -> 1
+dqcot488 comparetotal 123.456E-89 123.456000000000E-89 -> 1
+dqcot489 comparetotal 123.456E+89 123.45600000000E+89 -> 1
+dqcot490 comparetotal 123.456E-89 123.4560000000E-89 -> 1
+dqcot491 comparetotal 123.456E+89 123.456000000E+89 -> 1
+dqcot492 comparetotal 123.456E-89 123.45600000E-89 -> 1
+dqcot493 comparetotal 123.456E+89 123.4560000E+89 -> 1
+dqcot494 comparetotal 123.456E-89 123.456000E-89 -> 1
+dqcot495 comparetotal 123.456E+89 123.45600E+89 -> 1
+dqcot496 comparetotal 123.456E-89 123.4560E-89 -> 1
+dqcot497 comparetotal 123.456E+89 123.456E+89 -> 0
+
+-- wide-ranging, around precision; signs equal
+dqcot498 comparetotal 1 1E-17 -> 1
+dqcot499 comparetotal 1 1E-16 -> 1
+dqcot500 comparetotal 1 1E-15 -> 1
+dqcot501 comparetotal 1 1E-14 -> 1
+dqcot502 comparetotal 1 1E-13 -> 1
+dqcot503 comparetotal 1 1E-12 -> 1
+dqcot504 comparetotal 1 1E-11 -> 1
+dqcot505 comparetotal 1 1E-10 -> 1
+dqcot506 comparetotal 1 1E-9 -> 1
+dqcot507 comparetotal 1 1E-8 -> 1
+dqcot508 comparetotal 1 1E-7 -> 1
+dqcot509 comparetotal 1 1E-6 -> 1
+dqcot510 comparetotal 1 1E-5 -> 1
+dqcot511 comparetotal 1 1E-4 -> 1
+dqcot512 comparetotal 1 1E-3 -> 1
+dqcot513 comparetotal 1 1E-2 -> 1
+dqcot514 comparetotal 1 1E-1 -> 1
+dqcot515 comparetotal 1 1E-0 -> 0
+dqcot516 comparetotal 1 1E+1 -> -1
+dqcot517 comparetotal 1 1E+2 -> -1
+dqcot518 comparetotal 1 1E+3 -> -1
+dqcot519 comparetotal 1 1E+4 -> -1
+dqcot521 comparetotal 1 1E+5 -> -1
+dqcot522 comparetotal 1 1E+6 -> -1
+dqcot523 comparetotal 1 1E+7 -> -1
+dqcot524 comparetotal 1 1E+8 -> -1
+dqcot525 comparetotal 1 1E+9 -> -1
+dqcot526 comparetotal 1 1E+10 -> -1
+dqcot527 comparetotal 1 1E+11 -> -1
+dqcot528 comparetotal 1 1E+12 -> -1
+dqcot529 comparetotal 1 1E+13 -> -1
+dqcot530 comparetotal 1 1E+14 -> -1
+dqcot531 comparetotal 1 1E+15 -> -1
+dqcot532 comparetotal 1 1E+16 -> -1
+dqcot533 comparetotal 1 1E+17 -> -1
+-- LR swap
+dqcot538 comparetotal 1E-17 1 -> -1
+dqcot539 comparetotal 1E-16 1 -> -1
+dqcot540 comparetotal 1E-15 1 -> -1
+dqcot541 comparetotal 1E-14 1 -> -1
+dqcot542 comparetotal 1E-13 1 -> -1
+dqcot543 comparetotal 1E-12 1 -> -1
+dqcot544 comparetotal 1E-11 1 -> -1
+dqcot545 comparetotal 1E-10 1 -> -1
+dqcot546 comparetotal 1E-9 1 -> -1
+dqcot547 comparetotal 1E-8 1 -> -1
+dqcot548 comparetotal 1E-7 1 -> -1
+dqcot549 comparetotal 1E-6 1 -> -1
+dqcot550 comparetotal 1E-5 1 -> -1
+dqcot551 comparetotal 1E-4 1 -> -1
+dqcot552 comparetotal 1E-3 1 -> -1
+dqcot553 comparetotal 1E-2 1 -> -1
+dqcot554 comparetotal 1E-1 1 -> -1
+dqcot555 comparetotal 1E-0 1 -> 0
+dqcot556 comparetotal 1E+1 1 -> 1
+dqcot557 comparetotal 1E+2 1 -> 1
+dqcot558 comparetotal 1E+3 1 -> 1
+dqcot559 comparetotal 1E+4 1 -> 1
+dqcot561 comparetotal 1E+5 1 -> 1
+dqcot562 comparetotal 1E+6 1 -> 1
+dqcot563 comparetotal 1E+7 1 -> 1
+dqcot564 comparetotal 1E+8 1 -> 1
+dqcot565 comparetotal 1E+9 1 -> 1
+dqcot566 comparetotal 1E+10 1 -> 1
+dqcot567 comparetotal 1E+11 1 -> 1
+dqcot568 comparetotal 1E+12 1 -> 1
+dqcot569 comparetotal 1E+13 1 -> 1
+dqcot570 comparetotal 1E+14 1 -> 1
+dqcot571 comparetotal 1E+15 1 -> 1
+dqcot572 comparetotal 1E+16 1 -> 1
+dqcot573 comparetotal 1E+17 1 -> 1
+-- similar with a useful coefficient, one side only
+dqcot578 comparetotal 0.000000987654321 1E-17 -> 1
+dqcot579 comparetotal 0.000000987654321 1E-16 -> 1
+dqcot580 comparetotal 0.000000987654321 1E-15 -> 1
+dqcot581 comparetotal 0.000000987654321 1E-14 -> 1
+dqcot582 comparetotal 0.000000987654321 1E-13 -> 1
+dqcot583 comparetotal 0.000000987654321 1E-12 -> 1
+dqcot584 comparetotal 0.000000987654321 1E-11 -> 1
+dqcot585 comparetotal 0.000000987654321 1E-10 -> 1
+dqcot586 comparetotal 0.000000987654321 1E-9 -> 1
+dqcot587 comparetotal 0.000000987654321 1E-8 -> 1
+dqcot588 comparetotal 0.000000987654321 1E-7 -> 1
+dqcot589 comparetotal 0.000000987654321 1E-6 -> -1
+dqcot590 comparetotal 0.000000987654321 1E-5 -> -1
+dqcot591 comparetotal 0.000000987654321 1E-4 -> -1
+dqcot592 comparetotal 0.000000987654321 1E-3 -> -1
+dqcot593 comparetotal 0.000000987654321 1E-2 -> -1
+dqcot594 comparetotal 0.000000987654321 1E-1 -> -1
+dqcot595 comparetotal 0.000000987654321 1E-0 -> -1
+dqcot596 comparetotal 0.000000987654321 1E+1 -> -1
+dqcot597 comparetotal 0.000000987654321 1E+2 -> -1
+dqcot598 comparetotal 0.000000987654321 1E+3 -> -1
+dqcot599 comparetotal 0.000000987654321 1E+4 -> -1
+
+-- check some unit-y traps
+dqcot600 comparetotal 12 12.2345 -> -1
+dqcot601 comparetotal 12.0 12.2345 -> -1
+dqcot602 comparetotal 12.00 12.2345 -> -1
+dqcot603 comparetotal 12.000 12.2345 -> -1
+dqcot604 comparetotal 12.0000 12.2345 -> -1
+dqcot605 comparetotal 12.00000 12.2345 -> -1
+dqcot606 comparetotal 12.000000 12.2345 -> -1
+dqcot607 comparetotal 12.0000000 12.2345 -> -1
+dqcot608 comparetotal 12.00000000 12.2345 -> -1
+dqcot609 comparetotal 12.000000000 12.2345 -> -1
+dqcot610 comparetotal 12.1234 12 -> 1
+dqcot611 comparetotal 12.1234 12.0 -> 1
+dqcot612 comparetotal 12.1234 12.00 -> 1
+dqcot613 comparetotal 12.1234 12.000 -> 1
+dqcot614 comparetotal 12.1234 12.0000 -> 1
+dqcot615 comparetotal 12.1234 12.00000 -> 1
+dqcot616 comparetotal 12.1234 12.000000 -> 1
+dqcot617 comparetotal 12.1234 12.0000000 -> 1
+dqcot618 comparetotal 12.1234 12.00000000 -> 1
+dqcot619 comparetotal 12.1234 12.000000000 -> 1
+dqcot620 comparetotal -12 -12.2345 -> 1
+dqcot621 comparetotal -12.0 -12.2345 -> 1
+dqcot622 comparetotal -12.00 -12.2345 -> 1
+dqcot623 comparetotal -12.000 -12.2345 -> 1
+dqcot624 comparetotal -12.0000 -12.2345 -> 1
+dqcot625 comparetotal -12.00000 -12.2345 -> 1
+dqcot626 comparetotal -12.000000 -12.2345 -> 1
+dqcot627 comparetotal -12.0000000 -12.2345 -> 1
+dqcot628 comparetotal -12.00000000 -12.2345 -> 1
+dqcot629 comparetotal -12.000000000 -12.2345 -> 1
+dqcot630 comparetotal -12.1234 -12 -> -1
+dqcot631 comparetotal -12.1234 -12.0 -> -1
+dqcot632 comparetotal -12.1234 -12.00 -> -1
+dqcot633 comparetotal -12.1234 -12.000 -> -1
+dqcot634 comparetotal -12.1234 -12.0000 -> -1
+dqcot635 comparetotal -12.1234 -12.00000 -> -1
+dqcot636 comparetotal -12.1234 -12.000000 -> -1
+dqcot637 comparetotal -12.1234 -12.0000000 -> -1
+dqcot638 comparetotal -12.1234 -12.00000000 -> -1
+dqcot639 comparetotal -12.1234 -12.000000000 -> -1
+
+-- extended zeros
+dqcot640 comparetotal 0 0 -> 0
+dqcot641 comparetotal 0 -0 -> 1
+dqcot642 comparetotal 0 -0.0 -> 1
+dqcot643 comparetotal 0 0.0 -> 1
+dqcot644 comparetotal -0 0 -> -1
+dqcot645 comparetotal -0 -0 -> 0
+dqcot646 comparetotal -0 -0.0 -> -1
+dqcot647 comparetotal -0 0.0 -> -1
+dqcot648 comparetotal 0.0 0 -> -1
+dqcot649 comparetotal 0.0 -0 -> 1
+dqcot650 comparetotal 0.0 -0.0 -> 1
+dqcot651 comparetotal 0.0 0.0 -> 0
+dqcot652 comparetotal -0.0 0 -> -1
+dqcot653 comparetotal -0.0 -0 -> 1
+dqcot654 comparetotal -0.0 -0.0 -> 0
+dqcot655 comparetotal -0.0 0.0 -> -1
+
+dqcot656 comparetotal -0E1 0.0 -> -1
+dqcot657 comparetotal -0E2 0.0 -> -1
+dqcot658 comparetotal 0E1 0.0 -> 1
+dqcot659 comparetotal 0E2 0.0 -> 1
+dqcot660 comparetotal -0E1 0 -> -1
+dqcot661 comparetotal -0E2 0 -> -1
+dqcot662 comparetotal 0E1 0 -> 1
+dqcot663 comparetotal 0E2 0 -> 1
+dqcot664 comparetotal -0E1 -0E1 -> 0
+dqcot665 comparetotal -0E2 -0E1 -> -1
+dqcot666 comparetotal 0E1 -0E1 -> 1
+dqcot667 comparetotal 0E2 -0E1 -> 1
+dqcot668 comparetotal -0E1 -0E2 -> 1
+dqcot669 comparetotal -0E2 -0E2 -> 0
+dqcot670 comparetotal 0E1 -0E2 -> 1
+dqcot671 comparetotal 0E2 -0E2 -> 1
+dqcot672 comparetotal -0E1 0E1 -> -1
+dqcot673 comparetotal -0E2 0E1 -> -1
+dqcot674 comparetotal 0E1 0E1 -> 0
+dqcot675 comparetotal 0E2 0E1 -> 1
+dqcot676 comparetotal -0E1 0E2 -> -1
+dqcot677 comparetotal -0E2 0E2 -> -1
+dqcot678 comparetotal 0E1 0E2 -> -1
+dqcot679 comparetotal 0E2 0E2 -> 0
+
+-- trailing zeros; unit-y
+dqcot680 comparetotal 12 12 -> 0
+dqcot681 comparetotal 12 12.0 -> 1
+dqcot682 comparetotal 12 12.00 -> 1
+dqcot683 comparetotal 12 12.000 -> 1
+dqcot684 comparetotal 12 12.0000 -> 1
+dqcot685 comparetotal 12 12.00000 -> 1
+dqcot686 comparetotal 12 12.000000 -> 1
+dqcot687 comparetotal 12 12.0000000 -> 1
+dqcot688 comparetotal 12 12.00000000 -> 1
+dqcot689 comparetotal 12 12.000000000 -> 1
+dqcot690 comparetotal 12 12 -> 0
+dqcot691 comparetotal 12.0 12 -> -1
+dqcot692 comparetotal 12.00 12 -> -1
+dqcot693 comparetotal 12.000 12 -> -1
+dqcot694 comparetotal 12.0000 12 -> -1
+dqcot695 comparetotal 12.00000 12 -> -1
+dqcot696 comparetotal 12.000000 12 -> -1
+dqcot697 comparetotal 12.0000000 12 -> -1
+dqcot698 comparetotal 12.00000000 12 -> -1
+dqcot699 comparetotal 12.000000000 12 -> -1
+
+-- old long operand checks
+dqcot701 comparetotal 12345678000 1 -> 1
+dqcot702 comparetotal 1 12345678000 -> -1
+dqcot703 comparetotal 1234567800 1 -> 1
+dqcot704 comparetotal 1 1234567800 -> -1
+dqcot705 comparetotal 1234567890 1 -> 1
+dqcot706 comparetotal 1 1234567890 -> -1
+dqcot707 comparetotal 1234567891 1 -> 1
+dqcot708 comparetotal 1 1234567891 -> -1
+dqcot709 comparetotal 12345678901 1 -> 1
+dqcot710 comparetotal 1 12345678901 -> -1
+dqcot711 comparetotal 1234567896 1 -> 1
+dqcot712 comparetotal 1 1234567896 -> -1
+dqcot713 comparetotal -1234567891 1 -> -1
+dqcot714 comparetotal 1 -1234567891 -> 1
+dqcot715 comparetotal -12345678901 1 -> -1
+dqcot716 comparetotal 1 -12345678901 -> 1
+dqcot717 comparetotal -1234567896 1 -> -1
+dqcot718 comparetotal 1 -1234567896 -> 1
+
+-- old residue cases
+dqcot740 comparetotal 1 0.9999999 -> 1
+dqcot741 comparetotal 1 0.999999 -> 1
+dqcot742 comparetotal 1 0.99999 -> 1
+dqcot743 comparetotal 1 1.0000 -> 1
+dqcot744 comparetotal 1 1.00001 -> -1
+dqcot745 comparetotal 1 1.000001 -> -1
+dqcot746 comparetotal 1 1.0000001 -> -1
+dqcot750 comparetotal 0.9999999 1 -> -1
+dqcot751 comparetotal 0.999999 1 -> -1
+dqcot752 comparetotal 0.99999 1 -> -1
+dqcot753 comparetotal 1.0000 1 -> -1
+dqcot754 comparetotal 1.00001 1 -> 1
+dqcot755 comparetotal 1.000001 1 -> 1
+dqcot756 comparetotal 1.0000001 1 -> 1
+
+-- Specials
+dqcot780 comparetotal Inf -Inf -> 1
+dqcot781 comparetotal Inf -1000 -> 1
+dqcot782 comparetotal Inf -1 -> 1
+dqcot783 comparetotal Inf -0 -> 1
+dqcot784 comparetotal Inf 0 -> 1
+dqcot785 comparetotal Inf 1 -> 1
+dqcot786 comparetotal Inf 1000 -> 1
+dqcot787 comparetotal Inf Inf -> 0
+dqcot788 comparetotal -1000 Inf -> -1
+dqcot789 comparetotal -Inf Inf -> -1
+dqcot790 comparetotal -1 Inf -> -1
+dqcot791 comparetotal -0 Inf -> -1
+dqcot792 comparetotal 0 Inf -> -1
+dqcot793 comparetotal 1 Inf -> -1
+dqcot794 comparetotal 1000 Inf -> -1
+dqcot795 comparetotal Inf Inf -> 0
+
+dqcot800 comparetotal -Inf -Inf -> 0
+dqcot801 comparetotal -Inf -1000 -> -1
+dqcot802 comparetotal -Inf -1 -> -1
+dqcot803 comparetotal -Inf -0 -> -1
+dqcot804 comparetotal -Inf 0 -> -1
+dqcot805 comparetotal -Inf 1 -> -1
+dqcot806 comparetotal -Inf 1000 -> -1
+dqcot807 comparetotal -Inf Inf -> -1
+dqcot808 comparetotal -Inf -Inf -> 0
+dqcot809 comparetotal -1000 -Inf -> 1
+dqcot810 comparetotal -1 -Inf -> 1
+dqcot811 comparetotal -0 -Inf -> 1
+dqcot812 comparetotal 0 -Inf -> 1
+dqcot813 comparetotal 1 -Inf -> 1
+dqcot814 comparetotal 1000 -Inf -> 1
+dqcot815 comparetotal Inf -Inf -> 1
+
+dqcot821 comparetotal NaN -Inf -> 1
+dqcot822 comparetotal NaN -1000 -> 1
+dqcot823 comparetotal NaN -1 -> 1
+dqcot824 comparetotal NaN -0 -> 1
+dqcot825 comparetotal NaN 0 -> 1
+dqcot826 comparetotal NaN 1 -> 1
+dqcot827 comparetotal NaN 1000 -> 1
+dqcot828 comparetotal NaN Inf -> 1
+dqcot829 comparetotal NaN NaN -> 0
+dqcot830 comparetotal -Inf NaN -> -1
+dqcot831 comparetotal -1000 NaN -> -1
+dqcot832 comparetotal -1 NaN -> -1
+dqcot833 comparetotal -0 NaN -> -1
+dqcot834 comparetotal 0 NaN -> -1
+dqcot835 comparetotal 1 NaN -> -1
+dqcot836 comparetotal 1000 NaN -> -1
+dqcot837 comparetotal Inf NaN -> -1
+dqcot838 comparetotal -NaN -NaN -> 0
+dqcot839 comparetotal +NaN -NaN -> 1
+dqcot840 comparetotal -NaN +NaN -> -1
+
+dqcot841 comparetotal sNaN -sNaN -> 1
+dqcot842 comparetotal sNaN -NaN -> 1
+dqcot843 comparetotal sNaN -Inf -> 1
+dqcot844 comparetotal sNaN -1000 -> 1
+dqcot845 comparetotal sNaN -1 -> 1
+dqcot846 comparetotal sNaN -0 -> 1
+dqcot847 comparetotal sNaN 0 -> 1
+dqcot848 comparetotal sNaN 1 -> 1
+dqcot849 comparetotal sNaN 1000 -> 1
+dqcot850 comparetotal sNaN NaN -> -1
+dqcot851 comparetotal sNaN sNaN -> 0
+
+dqcot852 comparetotal -sNaN sNaN -> -1
+dqcot853 comparetotal -NaN sNaN -> -1
+dqcot854 comparetotal -Inf sNaN -> -1
+dqcot855 comparetotal -1000 sNaN -> -1
+dqcot856 comparetotal -1 sNaN -> -1
+dqcot857 comparetotal -0 sNaN -> -1
+dqcot858 comparetotal 0 sNaN -> -1
+dqcot859 comparetotal 1 sNaN -> -1
+dqcot860 comparetotal 1000 sNaN -> -1
+dqcot861 comparetotal Inf sNaN -> -1
+dqcot862 comparetotal NaN sNaN -> 1
+dqcot863 comparetotal sNaN sNaN -> 0
+
+dqcot871 comparetotal -sNaN -sNaN -> 0
+dqcot872 comparetotal -sNaN -NaN -> 1
+dqcot873 comparetotal -sNaN -Inf -> -1
+dqcot874 comparetotal -sNaN -1000 -> -1
+dqcot875 comparetotal -sNaN -1 -> -1
+dqcot876 comparetotal -sNaN -0 -> -1
+dqcot877 comparetotal -sNaN 0 -> -1
+dqcot878 comparetotal -sNaN 1 -> -1
+dqcot879 comparetotal -sNaN 1000 -> -1
+dqcot880 comparetotal -sNaN NaN -> -1
+dqcot881 comparetotal -sNaN sNaN -> -1
+
+dqcot882 comparetotal -sNaN -sNaN -> 0
+dqcot883 comparetotal -NaN -sNaN -> -1
+dqcot884 comparetotal -Inf -sNaN -> 1
+dqcot885 comparetotal -1000 -sNaN -> 1
+dqcot886 comparetotal -1 -sNaN -> 1
+dqcot887 comparetotal -0 -sNaN -> 1
+dqcot888 comparetotal 0 -sNaN -> 1
+dqcot889 comparetotal 1 -sNaN -> 1
+dqcot890 comparetotal 1000 -sNaN -> 1
+dqcot891 comparetotal Inf -sNaN -> 1
+dqcot892 comparetotal NaN -sNaN -> 1
+dqcot893 comparetotal sNaN -sNaN -> 1
+
+-- NaNs with payload
+dqcot960 comparetotal NaN9 -Inf -> 1
+dqcot961 comparetotal NaN8 999 -> 1
+dqcot962 comparetotal NaN77 Inf -> 1
+dqcot963 comparetotal -NaN67 NaN5 -> -1
+dqcot964 comparetotal -Inf -NaN4 -> 1
+dqcot965 comparetotal -999 -NaN33 -> 1
+dqcot966 comparetotal Inf NaN2 -> -1
+
+dqcot970 comparetotal -NaN41 -NaN42 -> 1
+dqcot971 comparetotal +NaN41 -NaN42 -> 1
+dqcot972 comparetotal -NaN41 +NaN42 -> -1
+dqcot973 comparetotal +NaN41 +NaN42 -> -1
+dqcot974 comparetotal -NaN42 -NaN01 -> -1
+dqcot975 comparetotal +NaN42 -NaN01 -> 1
+dqcot976 comparetotal -NaN42 +NaN01 -> -1
+dqcot977 comparetotal +NaN42 +NaN01 -> 1
+
+dqcot980 comparetotal -sNaN771 -sNaN772 -> 1
+dqcot981 comparetotal +sNaN771 -sNaN772 -> 1
+dqcot982 comparetotal -sNaN771 +sNaN772 -> -1
+dqcot983 comparetotal +sNaN771 +sNaN772 -> -1
+dqcot984 comparetotal -sNaN772 -sNaN771 -> -1
+dqcot985 comparetotal +sNaN772 -sNaN771 -> 1
+dqcot986 comparetotal -sNaN772 +sNaN771 -> -1
+dqcot987 comparetotal +sNaN772 +sNaN771 -> 1
+
+dqcot991 comparetotal -sNaN99 -Inf -> -1
+dqcot992 comparetotal sNaN98 -11 -> 1
+dqcot993 comparetotal sNaN97 NaN -> -1
+dqcot994 comparetotal sNaN16 sNaN94 -> -1
+dqcot995 comparetotal NaN85 sNaN83 -> 1
+dqcot996 comparetotal -Inf sNaN92 -> -1
+dqcot997 comparetotal 088 sNaN81 -> -1
+dqcot998 comparetotal Inf sNaN90 -> -1
+dqcot999 comparetotal NaN -sNaN89 -> 1
+
+-- spread zeros
+dqcot1110 comparetotal 0E-6143 0 -> -1
+dqcot1111 comparetotal 0E-6143 -0 -> 1
+dqcot1112 comparetotal -0E-6143 0 -> -1
+dqcot1113 comparetotal -0E-6143 -0 -> 1
+dqcot1114 comparetotal 0E-6143 0E+6144 -> -1
+dqcot1115 comparetotal 0E-6143 -0E+6144 -> 1
+dqcot1116 comparetotal -0E-6143 0E+6144 -> -1
+dqcot1117 comparetotal -0E-6143 -0E+6144 -> 1
+dqcot1118 comparetotal 0 0E+6144 -> -1
+dqcot1119 comparetotal 0 -0E+6144 -> 1
+dqcot1120 comparetotal -0 0E+6144 -> -1
+dqcot1121 comparetotal -0 -0E+6144 -> 1
+
+dqcot1130 comparetotal 0E+6144 0 -> 1
+dqcot1131 comparetotal 0E+6144 -0 -> 1
+dqcot1132 comparetotal -0E+6144 0 -> -1
+dqcot1133 comparetotal -0E+6144 -0 -> -1
+dqcot1134 comparetotal 0E+6144 0E-6143 -> 1
+dqcot1135 comparetotal 0E+6144 -0E-6143 -> 1
+dqcot1136 comparetotal -0E+6144 0E-6143 -> -1
+dqcot1137 comparetotal -0E+6144 -0E-6143 -> -1
+dqcot1138 comparetotal 0 0E-6143 -> 1
+dqcot1139 comparetotal 0 -0E-6143 -> 1
+dqcot1140 comparetotal -0 0E-6143 -> -1
+dqcot1141 comparetotal -0 -0E-6143 -> -1
+
+-- Null tests
+dqcot9990 comparetotal 10 # -> NaN Invalid_operation
+dqcot9991 comparetotal # 10 -> NaN Invalid_operation
diff --git a/Lib/test/decimaltestdata/dqCompareTotalMag.decTest b/Lib/test/decimaltestdata/dqCompareTotalMag.decTest
new file mode 100644
index 0000000..9461d6b
--- /dev/null
+++ b/Lib/test/decimaltestdata/dqCompareTotalMag.decTest
@@ -0,0 +1,706 @@
+------------------------------------------------------------------------
+-- dqCompareTotalMag.decTest -- decQuad comparison; abs. total order --
+-- Copyright (c) IBM Corporation, 1981, 2007. All rights reserved. --
+------------------------------------------------------------------------
+-- Please see the document "General Decimal Arithmetic Testcases" --
+-- at http://www2.hursley.ibm.com/decimal for the description of --
+-- these testcases. --
+-- --
+-- These testcases are experimental ('beta' versions), and they --
+-- may contain errors. They are offered on an as-is basis. In --
+-- particular, achieving the same results as the tests here is not --
+-- a guarantee that an implementation complies with any Standard --
+-- or specification. The tests are not exhaustive. --
+-- --
+-- Please send comments, suggestions, and corrections to the author: --
+-- Mike Cowlishaw, IBM Fellow --
+-- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK --
+-- mfc@uk.ibm.com --
+------------------------------------------------------------------------
+version: 2.56
+
+-- Note that we cannot assume add/subtract tests cover paths adequately,
+-- here, because the code might be quite different (comparison cannot
+-- overflow or underflow, so actual subtractions are not necessary).
+-- Similarly, comparetotal will have some radically different paths
+-- than compare.
+
+-- All operands and results are decQuads.
+extended: 1
+clamp: 1
+precision: 34
+maxExponent: 6144
+minExponent: -6143
+rounding: half_even
+
+-- sanity checks
+dqctm001 comparetotmag -2 -2 -> 0
+dqctm002 comparetotmag -2 -1 -> 1
+dqctm003 comparetotmag -2 0 -> 1
+dqctm004 comparetotmag -2 1 -> 1
+dqctm005 comparetotmag -2 2 -> 0
+dqctm006 comparetotmag -1 -2 -> -1
+dqctm007 comparetotmag -1 -1 -> 0
+dqctm008 comparetotmag -1 0 -> 1
+dqctm009 comparetotmag -1 1 -> 0
+dqctm010 comparetotmag -1 2 -> -1
+dqctm011 comparetotmag 0 -2 -> -1
+dqctm012 comparetotmag 0 -1 -> -1
+dqctm013 comparetotmag 0 0 -> 0
+dqctm014 comparetotmag 0 1 -> -1
+dqctm015 comparetotmag 0 2 -> -1
+dqctm016 comparetotmag 1 -2 -> -1
+dqctm017 comparetotmag 1 -1 -> 0
+dqctm018 comparetotmag 1 0 -> 1
+dqctm019 comparetotmag 1 1 -> 0
+dqctm020 comparetotmag 1 2 -> -1
+dqctm021 comparetotmag 2 -2 -> 0
+dqctm022 comparetotmag 2 -1 -> 1
+dqctm023 comparetotmag 2 0 -> 1
+dqctm025 comparetotmag 2 1 -> 1
+dqctm026 comparetotmag 2 2 -> 0
+
+dqctm031 comparetotmag -20 -20 -> 0
+dqctm032 comparetotmag -20 -10 -> 1
+dqctm033 comparetotmag -20 00 -> 1
+dqctm034 comparetotmag -20 10 -> 1
+dqctm035 comparetotmag -20 20 -> 0
+dqctm036 comparetotmag -10 -20 -> -1
+dqctm037 comparetotmag -10 -10 -> 0
+dqctm038 comparetotmag -10 00 -> 1
+dqctm039 comparetotmag -10 10 -> 0
+dqctm040 comparetotmag -10 20 -> -1
+dqctm041 comparetotmag 00 -20 -> -1
+dqctm042 comparetotmag 00 -10 -> -1
+dqctm043 comparetotmag 00 00 -> 0
+dqctm044 comparetotmag 00 10 -> -1
+dqctm045 comparetotmag 00 20 -> -1
+dqctm046 comparetotmag 10 -20 -> -1
+dqctm047 comparetotmag 10 -10 -> 0
+dqctm048 comparetotmag 10 00 -> 1
+dqctm049 comparetotmag 10 10 -> 0
+dqctm050 comparetotmag 10 20 -> -1
+dqctm051 comparetotmag 20 -20 -> 0
+dqctm052 comparetotmag 20 -10 -> 1
+dqctm053 comparetotmag 20 00 -> 1
+dqctm055 comparetotmag 20 10 -> 1
+dqctm056 comparetotmag 20 20 -> 0
+
+dqctm061 comparetotmag -2.0 -2.0 -> 0
+dqctm062 comparetotmag -2.0 -1.0 -> 1
+dqctm063 comparetotmag -2.0 0.0 -> 1
+dqctm064 comparetotmag -2.0 1.0 -> 1
+dqctm065 comparetotmag -2.0 2.0 -> 0
+dqctm066 comparetotmag -1.0 -2.0 -> -1
+dqctm067 comparetotmag -1.0 -1.0 -> 0
+dqctm068 comparetotmag -1.0 0.0 -> 1
+dqctm069 comparetotmag -1.0 1.0 -> 0
+dqctm070 comparetotmag -1.0 2.0 -> -1
+dqctm071 comparetotmag 0.0 -2.0 -> -1
+dqctm072 comparetotmag 0.0 -1.0 -> -1
+dqctm073 comparetotmag 0.0 0.0 -> 0
+dqctm074 comparetotmag 0.0 1.0 -> -1
+dqctm075 comparetotmag 0.0 2.0 -> -1
+dqctm076 comparetotmag 1.0 -2.0 -> -1
+dqctm077 comparetotmag 1.0 -1.0 -> 0
+dqctm078 comparetotmag 1.0 0.0 -> 1
+dqctm079 comparetotmag 1.0 1.0 -> 0
+dqctm080 comparetotmag 1.0 2.0 -> -1
+dqctm081 comparetotmag 2.0 -2.0 -> 0
+dqctm082 comparetotmag 2.0 -1.0 -> 1
+dqctm083 comparetotmag 2.0 0.0 -> 1
+dqctm085 comparetotmag 2.0 1.0 -> 1
+dqctm086 comparetotmag 2.0 2.0 -> 0
+
+-- now some cases which might overflow if subtract were used
+dqctm090 comparetotmag 9.99999999999999999999999999999E+6144 9.99999999999999999999999999999E+6144 -> 0
+dqctm091 comparetotmag -9.99999999999999999999999999999E+6144 9.99999999999999999999999999999E+6144 -> 0
+dqctm092 comparetotmag 9.99999999999999999999999999999E+6144 -9.99999999999999999999999999999E+6144 -> 0
+dqctm093 comparetotmag -9.99999999999999999999999999999E+6144 -9.99999999999999999999999999999E+6144 -> 0
+
+-- some differing length/exponent cases
+-- in this first group, compare would compare all equal
+dqctm100 comparetotmag 7.0 7.0 -> 0
+dqctm101 comparetotmag 7.0 7 -> -1
+dqctm102 comparetotmag 7 7.0 -> 1
+dqctm103 comparetotmag 7E+0 7.0 -> 1
+dqctm104 comparetotmag 70E-1 7.0 -> 0
+dqctm105 comparetotmag 0.7E+1 7 -> 0
+dqctm106 comparetotmag 70E-1 7 -> -1
+dqctm107 comparetotmag 7.0 7E+0 -> -1
+dqctm108 comparetotmag 7.0 70E-1 -> 0
+dqctm109 comparetotmag 7 0.7E+1 -> 0
+dqctm110 comparetotmag 7 70E-1 -> 1
+
+dqctm120 comparetotmag 8.0 7.0 -> 1
+dqctm121 comparetotmag 8.0 7 -> 1
+dqctm122 comparetotmag 8 7.0 -> 1
+dqctm123 comparetotmag 8E+0 7.0 -> 1
+dqctm124 comparetotmag 80E-1 7.0 -> 1
+dqctm125 comparetotmag 0.8E+1 7 -> 1
+dqctm126 comparetotmag 80E-1 7 -> 1
+dqctm127 comparetotmag 8.0 7E+0 -> 1
+dqctm128 comparetotmag 8.0 70E-1 -> 1
+dqctm129 comparetotmag 8 0.7E+1 -> 1
+dqctm130 comparetotmag 8 70E-1 -> 1
+
+dqctm140 comparetotmag 8.0 9.0 -> -1
+dqctm141 comparetotmag 8.0 9 -> -1
+dqctm142 comparetotmag 8 9.0 -> -1
+dqctm143 comparetotmag 8E+0 9.0 -> -1
+dqctm144 comparetotmag 80E-1 9.0 -> -1
+dqctm145 comparetotmag 0.8E+1 9 -> -1
+dqctm146 comparetotmag 80E-1 9 -> -1
+dqctm147 comparetotmag 8.0 9E+0 -> -1
+dqctm148 comparetotmag 8.0 90E-1 -> -1
+dqctm149 comparetotmag 8 0.9E+1 -> -1
+dqctm150 comparetotmag 8 90E-1 -> -1
+
+-- and again, with sign changes -+ ..
+dqctm200 comparetotmag -7.0 7.0 -> 0
+dqctm201 comparetotmag -7.0 7 -> -1
+dqctm202 comparetotmag -7 7.0 -> 1
+dqctm203 comparetotmag -7E+0 7.0 -> 1
+dqctm204 comparetotmag -70E-1 7.0 -> 0
+dqctm205 comparetotmag -0.7E+1 7 -> 0
+dqctm206 comparetotmag -70E-1 7 -> -1
+dqctm207 comparetotmag -7.0 7E+0 -> -1
+dqctm208 comparetotmag -7.0 70E-1 -> 0
+dqctm209 comparetotmag -7 0.7E+1 -> 0
+dqctm210 comparetotmag -7 70E-1 -> 1
+
+dqctm220 comparetotmag -8.0 7.0 -> 1
+dqctm221 comparetotmag -8.0 7 -> 1
+dqctm222 comparetotmag -8 7.0 -> 1
+dqctm223 comparetotmag -8E+0 7.0 -> 1
+dqctm224 comparetotmag -80E-1 7.0 -> 1
+dqctm225 comparetotmag -0.8E+1 7 -> 1
+dqctm226 comparetotmag -80E-1 7 -> 1
+dqctm227 comparetotmag -8.0 7E+0 -> 1
+dqctm228 comparetotmag -8.0 70E-1 -> 1
+dqctm229 comparetotmag -8 0.7E+1 -> 1
+dqctm230 comparetotmag -8 70E-1 -> 1
+
+dqctm240 comparetotmag -8.0 9.0 -> -1
+dqctm241 comparetotmag -8.0 9 -> -1
+dqctm242 comparetotmag -8 9.0 -> -1
+dqctm243 comparetotmag -8E+0 9.0 -> -1
+dqctm244 comparetotmag -80E-1 9.0 -> -1
+dqctm245 comparetotmag -0.8E+1 9 -> -1
+dqctm246 comparetotmag -80E-1 9 -> -1
+dqctm247 comparetotmag -8.0 9E+0 -> -1
+dqctm248 comparetotmag -8.0 90E-1 -> -1
+dqctm249 comparetotmag -8 0.9E+1 -> -1
+dqctm250 comparetotmag -8 90E-1 -> -1
+
+-- and again, with sign changes +- ..
+dqctm300 comparetotmag 7.0 -7.0 -> 0
+dqctm301 comparetotmag 7.0 -7 -> -1
+dqctm302 comparetotmag 7 -7.0 -> 1
+dqctm303 comparetotmag 7E+0 -7.0 -> 1
+dqctm304 comparetotmag 70E-1 -7.0 -> 0
+dqctm305 comparetotmag .7E+1 -7 -> 0
+dqctm306 comparetotmag 70E-1 -7 -> -1
+dqctm307 comparetotmag 7.0 -7E+0 -> -1
+dqctm308 comparetotmag 7.0 -70E-1 -> 0
+dqctm309 comparetotmag 7 -.7E+1 -> 0
+dqctm310 comparetotmag 7 -70E-1 -> 1
+
+dqctm320 comparetotmag 8.0 -7.0 -> 1
+dqctm321 comparetotmag 8.0 -7 -> 1
+dqctm322 comparetotmag 8 -7.0 -> 1
+dqctm323 comparetotmag 8E+0 -7.0 -> 1
+dqctm324 comparetotmag 80E-1 -7.0 -> 1
+dqctm325 comparetotmag .8E+1 -7 -> 1
+dqctm326 comparetotmag 80E-1 -7 -> 1
+dqctm327 comparetotmag 8.0 -7E+0 -> 1
+dqctm328 comparetotmag 8.0 -70E-1 -> 1
+dqctm329 comparetotmag 8 -.7E+1 -> 1
+dqctm330 comparetotmag 8 -70E-1 -> 1
+
+dqctm340 comparetotmag 8.0 -9.0 -> -1
+dqctm341 comparetotmag 8.0 -9 -> -1
+dqctm342 comparetotmag 8 -9.0 -> -1
+dqctm343 comparetotmag 8E+0 -9.0 -> -1
+dqctm344 comparetotmag 80E-1 -9.0 -> -1
+dqctm345 comparetotmag .8E+1 -9 -> -1
+dqctm346 comparetotmag 80E-1 -9 -> -1
+dqctm347 comparetotmag 8.0 -9E+0 -> -1
+dqctm348 comparetotmag 8.0 -90E-1 -> -1
+dqctm349 comparetotmag 8 -.9E+1 -> -1
+dqctm350 comparetotmag 8 -90E-1 -> -1
+
+-- and again, with sign changes -- ..
+dqctm400 comparetotmag -7.0 -7.0 -> 0
+dqctm401 comparetotmag -7.0 -7 -> -1
+dqctm402 comparetotmag -7 -7.0 -> 1
+dqctm403 comparetotmag -7E+0 -7.0 -> 1
+dqctm404 comparetotmag -70E-1 -7.0 -> 0
+dqctm405 comparetotmag -.7E+1 -7 -> 0
+dqctm406 comparetotmag -70E-1 -7 -> -1
+dqctm407 comparetotmag -7.0 -7E+0 -> -1
+dqctm408 comparetotmag -7.0 -70E-1 -> 0
+dqctm409 comparetotmag -7 -.7E+1 -> 0
+dqctm410 comparetotmag -7 -70E-1 -> 1
+
+dqctm420 comparetotmag -8.0 -7.0 -> 1
+dqctm421 comparetotmag -8.0 -7 -> 1
+dqctm422 comparetotmag -8 -7.0 -> 1
+dqctm423 comparetotmag -8E+0 -7.0 -> 1
+dqctm424 comparetotmag -80E-1 -7.0 -> 1
+dqctm425 comparetotmag -.8E+1 -7 -> 1
+dqctm426 comparetotmag -80E-1 -7 -> 1
+dqctm427 comparetotmag -8.0 -7E+0 -> 1
+dqctm428 comparetotmag -8.0 -70E-1 -> 1
+dqctm429 comparetotmag -8 -.7E+1 -> 1
+dqctm430 comparetotmag -8 -70E-1 -> 1
+
+dqctm440 comparetotmag -8.0 -9.0 -> -1
+dqctm441 comparetotmag -8.0 -9 -> -1
+dqctm442 comparetotmag -8 -9.0 -> -1
+dqctm443 comparetotmag -8E+0 -9.0 -> -1
+dqctm444 comparetotmag -80E-1 -9.0 -> -1
+dqctm445 comparetotmag -.8E+1 -9 -> -1
+dqctm446 comparetotmag -80E-1 -9 -> -1
+dqctm447 comparetotmag -8.0 -9E+0 -> -1
+dqctm448 comparetotmag -8.0 -90E-1 -> -1
+dqctm449 comparetotmag -8 -.9E+1 -> -1
+dqctm450 comparetotmag -8 -90E-1 -> -1
+
+
+-- testcases that subtract to lots of zeros at boundaries [pgr]
+dqctm473 comparetotmag 123.4560000000000E-89 123.456E-89 -> -1
+dqctm474 comparetotmag 123.456000000000E+89 123.456E+89 -> -1
+dqctm475 comparetotmag 123.45600000000E-89 123.456E-89 -> -1
+dqctm476 comparetotmag 123.4560000000E+89 123.456E+89 -> -1
+dqctm477 comparetotmag 123.456000000E-89 123.456E-89 -> -1
+dqctm478 comparetotmag 123.45600000E+89 123.456E+89 -> -1
+dqctm479 comparetotmag 123.4560000E-89 123.456E-89 -> -1
+dqctm480 comparetotmag 123.456000E+89 123.456E+89 -> -1
+dqctm481 comparetotmag 123.45600E-89 123.456E-89 -> -1
+dqctm482 comparetotmag 123.4560E+89 123.456E+89 -> -1
+dqctm483 comparetotmag 123.456E-89 123.456E-89 -> 0
+dqctm487 comparetotmag 123.456E+89 123.4560000000000E+89 -> 1
+dqctm488 comparetotmag 123.456E-89 123.456000000000E-89 -> 1
+dqctm489 comparetotmag 123.456E+89 123.45600000000E+89 -> 1
+dqctm490 comparetotmag 123.456E-89 123.4560000000E-89 -> 1
+dqctm491 comparetotmag 123.456E+89 123.456000000E+89 -> 1
+dqctm492 comparetotmag 123.456E-89 123.45600000E-89 -> 1
+dqctm493 comparetotmag 123.456E+89 123.4560000E+89 -> 1
+dqctm494 comparetotmag 123.456E-89 123.456000E-89 -> 1
+dqctm495 comparetotmag 123.456E+89 123.45600E+89 -> 1
+dqctm496 comparetotmag 123.456E-89 123.4560E-89 -> 1
+dqctm497 comparetotmag 123.456E+89 123.456E+89 -> 0
+
+-- wide-ranging, around precision; signs equal
+dqctm498 comparetotmag 1 1E-17 -> 1
+dqctm499 comparetotmag 1 1E-16 -> 1
+dqctm500 comparetotmag 1 1E-15 -> 1
+dqctm501 comparetotmag 1 1E-14 -> 1
+dqctm502 comparetotmag 1 1E-13 -> 1
+dqctm503 comparetotmag 1 1E-12 -> 1
+dqctm504 comparetotmag 1 1E-11 -> 1
+dqctm505 comparetotmag 1 1E-10 -> 1
+dqctm506 comparetotmag 1 1E-9 -> 1
+dqctm507 comparetotmag 1 1E-8 -> 1
+dqctm508 comparetotmag 1 1E-7 -> 1
+dqctm509 comparetotmag 1 1E-6 -> 1
+dqctm510 comparetotmag 1 1E-5 -> 1
+dqctm511 comparetotmag 1 1E-4 -> 1
+dqctm512 comparetotmag 1 1E-3 -> 1
+dqctm513 comparetotmag 1 1E-2 -> 1
+dqctm514 comparetotmag 1 1E-1 -> 1
+dqctm515 comparetotmag 1 1E-0 -> 0
+dqctm516 comparetotmag 1 1E+1 -> -1
+dqctm517 comparetotmag 1 1E+2 -> -1
+dqctm518 comparetotmag 1 1E+3 -> -1
+dqctm519 comparetotmag 1 1E+4 -> -1
+dqctm521 comparetotmag 1 1E+5 -> -1
+dqctm522 comparetotmag 1 1E+6 -> -1
+dqctm523 comparetotmag 1 1E+7 -> -1
+dqctm524 comparetotmag 1 1E+8 -> -1
+dqctm525 comparetotmag 1 1E+9 -> -1
+dqctm526 comparetotmag 1 1E+10 -> -1
+dqctm527 comparetotmag 1 1E+11 -> -1
+dqctm528 comparetotmag 1 1E+12 -> -1
+dqctm529 comparetotmag 1 1E+13 -> -1
+dqctm530 comparetotmag 1 1E+14 -> -1
+dqctm531 comparetotmag 1 1E+15 -> -1
+dqctm532 comparetotmag 1 1E+16 -> -1
+dqctm533 comparetotmag 1 1E+17 -> -1
+-- LR swap
+dqctm538 comparetotmag 1E-17 1 -> -1
+dqctm539 comparetotmag 1E-16 1 -> -1
+dqctm540 comparetotmag 1E-15 1 -> -1
+dqctm541 comparetotmag 1E-14 1 -> -1
+dqctm542 comparetotmag 1E-13 1 -> -1
+dqctm543 comparetotmag 1E-12 1 -> -1
+dqctm544 comparetotmag 1E-11 1 -> -1
+dqctm545 comparetotmag 1E-10 1 -> -1
+dqctm546 comparetotmag 1E-9 1 -> -1
+dqctm547 comparetotmag 1E-8 1 -> -1
+dqctm548 comparetotmag 1E-7 1 -> -1
+dqctm549 comparetotmag 1E-6 1 -> -1
+dqctm550 comparetotmag 1E-5 1 -> -1
+dqctm551 comparetotmag 1E-4 1 -> -1
+dqctm552 comparetotmag 1E-3 1 -> -1
+dqctm553 comparetotmag 1E-2 1 -> -1
+dqctm554 comparetotmag 1E-1 1 -> -1
+dqctm555 comparetotmag 1E-0 1 -> 0
+dqctm556 comparetotmag 1E+1 1 -> 1
+dqctm557 comparetotmag 1E+2 1 -> 1
+dqctm558 comparetotmag 1E+3 1 -> 1
+dqctm559 comparetotmag 1E+4 1 -> 1
+dqctm561 comparetotmag 1E+5 1 -> 1
+dqctm562 comparetotmag 1E+6 1 -> 1
+dqctm563 comparetotmag 1E+7 1 -> 1
+dqctm564 comparetotmag 1E+8 1 -> 1
+dqctm565 comparetotmag 1E+9 1 -> 1
+dqctm566 comparetotmag 1E+10 1 -> 1
+dqctm567 comparetotmag 1E+11 1 -> 1
+dqctm568 comparetotmag 1E+12 1 -> 1
+dqctm569 comparetotmag 1E+13 1 -> 1
+dqctm570 comparetotmag 1E+14 1 -> 1
+dqctm571 comparetotmag 1E+15 1 -> 1
+dqctm572 comparetotmag 1E+16 1 -> 1
+dqctm573 comparetotmag 1E+17 1 -> 1
+-- similar with a useful coefficient, one side only
+dqctm578 comparetotmag 0.000000987654321 1E-17 -> 1
+dqctm579 comparetotmag 0.000000987654321 1E-16 -> 1
+dqctm580 comparetotmag 0.000000987654321 1E-15 -> 1
+dqctm581 comparetotmag 0.000000987654321 1E-14 -> 1
+dqctm582 comparetotmag 0.000000987654321 1E-13 -> 1
+dqctm583 comparetotmag 0.000000987654321 1E-12 -> 1
+dqctm584 comparetotmag 0.000000987654321 1E-11 -> 1
+dqctm585 comparetotmag 0.000000987654321 1E-10 -> 1
+dqctm586 comparetotmag 0.000000987654321 1E-9 -> 1
+dqctm587 comparetotmag 0.000000987654321 1E-8 -> 1
+dqctm588 comparetotmag 0.000000987654321 1E-7 -> 1
+dqctm589 comparetotmag 0.000000987654321 1E-6 -> -1
+dqctm590 comparetotmag 0.000000987654321 1E-5 -> -1
+dqctm591 comparetotmag 0.000000987654321 1E-4 -> -1
+dqctm592 comparetotmag 0.000000987654321 1E-3 -> -1
+dqctm593 comparetotmag 0.000000987654321 1E-2 -> -1
+dqctm594 comparetotmag 0.000000987654321 1E-1 -> -1
+dqctm595 comparetotmag 0.000000987654321 1E-0 -> -1
+dqctm596 comparetotmag 0.000000987654321 1E+1 -> -1
+dqctm597 comparetotmag 0.000000987654321 1E+2 -> -1
+dqctm598 comparetotmag 0.000000987654321 1E+3 -> -1
+dqctm599 comparetotmag 0.000000987654321 1E+4 -> -1
+
+-- check some unit-y traps
+dqctm600 comparetotmag 12 12.2345 -> -1
+dqctm601 comparetotmag 12.0 12.2345 -> -1
+dqctm602 comparetotmag 12.00 12.2345 -> -1
+dqctm603 comparetotmag 12.000 12.2345 -> -1
+dqctm604 comparetotmag 12.0000 12.2345 -> -1
+dqctm605 comparetotmag 12.00000 12.2345 -> -1
+dqctm606 comparetotmag 12.000000 12.2345 -> -1
+dqctm607 comparetotmag 12.0000000 12.2345 -> -1
+dqctm608 comparetotmag 12.00000000 12.2345 -> -1
+dqctm609 comparetotmag 12.000000000 12.2345 -> -1
+dqctm610 comparetotmag 12.1234 12 -> 1
+dqctm611 comparetotmag 12.1234 12.0 -> 1
+dqctm612 comparetotmag 12.1234 12.00 -> 1
+dqctm613 comparetotmag 12.1234 12.000 -> 1
+dqctm614 comparetotmag 12.1234 12.0000 -> 1
+dqctm615 comparetotmag 12.1234 12.00000 -> 1
+dqctm616 comparetotmag 12.1234 12.000000 -> 1
+dqctm617 comparetotmag 12.1234 12.0000000 -> 1
+dqctm618 comparetotmag 12.1234 12.00000000 -> 1
+dqctm619 comparetotmag 12.1234 12.000000000 -> 1
+dqctm620 comparetotmag -12 -12.2345 -> -1
+dqctm621 comparetotmag -12.0 -12.2345 -> -1
+dqctm622 comparetotmag -12.00 -12.2345 -> -1
+dqctm623 comparetotmag -12.000 -12.2345 -> -1
+dqctm624 comparetotmag -12.0000 -12.2345 -> -1
+dqctm625 comparetotmag -12.00000 -12.2345 -> -1
+dqctm626 comparetotmag -12.000000 -12.2345 -> -1
+dqctm627 comparetotmag -12.0000000 -12.2345 -> -1
+dqctm628 comparetotmag -12.00000000 -12.2345 -> -1
+dqctm629 comparetotmag -12.000000000 -12.2345 -> -1
+dqctm630 comparetotmag -12.1234 -12 -> 1
+dqctm631 comparetotmag -12.1234 -12.0 -> 1
+dqctm632 comparetotmag -12.1234 -12.00 -> 1
+dqctm633 comparetotmag -12.1234 -12.000 -> 1
+dqctm634 comparetotmag -12.1234 -12.0000 -> 1
+dqctm635 comparetotmag -12.1234 -12.00000 -> 1
+dqctm636 comparetotmag -12.1234 -12.000000 -> 1
+dqctm637 comparetotmag -12.1234 -12.0000000 -> 1
+dqctm638 comparetotmag -12.1234 -12.00000000 -> 1
+dqctm639 comparetotmag -12.1234 -12.000000000 -> 1
+
+-- extended zeros
+dqctm640 comparetotmag 0 0 -> 0
+dqctm641 comparetotmag 0 -0 -> 0
+dqctm642 comparetotmag 0 -0.0 -> 1
+dqctm643 comparetotmag 0 0.0 -> 1
+dqctm644 comparetotmag -0 0 -> 0
+dqctm645 comparetotmag -0 -0 -> 0
+dqctm646 comparetotmag -0 -0.0 -> 1
+dqctm647 comparetotmag -0 0.0 -> 1
+dqctm648 comparetotmag 0.0 0 -> -1
+dqctm649 comparetotmag 0.0 -0 -> -1
+dqctm650 comparetotmag 0.0 -0.0 -> 0
+dqctm651 comparetotmag 0.0 0.0 -> 0
+dqctm652 comparetotmag -0.0 0 -> -1
+dqctm653 comparetotmag -0.0 -0 -> -1
+dqctm654 comparetotmag -0.0 -0.0 -> 0
+dqctm655 comparetotmag -0.0 0.0 -> 0
+
+dqctm656 comparetotmag -0E1 0.0 -> 1
+dqctm657 comparetotmag -0E2 0.0 -> 1
+dqctm658 comparetotmag 0E1 0.0 -> 1
+dqctm659 comparetotmag 0E2 0.0 -> 1
+dqctm660 comparetotmag -0E1 0 -> 1
+dqctm661 comparetotmag -0E2 0 -> 1
+dqctm662 comparetotmag 0E1 0 -> 1
+dqctm663 comparetotmag 0E2 0 -> 1
+dqctm664 comparetotmag -0E1 -0E1 -> 0
+dqctm665 comparetotmag -0E2 -0E1 -> 1
+dqctm666 comparetotmag 0E1 -0E1 -> 0
+dqctm667 comparetotmag 0E2 -0E1 -> 1
+dqctm668 comparetotmag -0E1 -0E2 -> -1
+dqctm669 comparetotmag -0E2 -0E2 -> 0
+dqctm670 comparetotmag 0E1 -0E2 -> -1
+dqctm671 comparetotmag 0E2 -0E2 -> 0
+dqctm672 comparetotmag -0E1 0E1 -> 0
+dqctm673 comparetotmag -0E2 0E1 -> 1
+dqctm674 comparetotmag 0E1 0E1 -> 0
+dqctm675 comparetotmag 0E2 0E1 -> 1
+dqctm676 comparetotmag -0E1 0E2 -> -1
+dqctm677 comparetotmag -0E2 0E2 -> 0
+dqctm678 comparetotmag 0E1 0E2 -> -1
+dqctm679 comparetotmag 0E2 0E2 -> 0
+
+-- trailing zeros; unit-y
+dqctm680 comparetotmag 12 12 -> 0
+dqctm681 comparetotmag 12 12.0 -> 1
+dqctm682 comparetotmag 12 12.00 -> 1
+dqctm683 comparetotmag 12 12.000 -> 1
+dqctm684 comparetotmag 12 12.0000 -> 1
+dqctm685 comparetotmag 12 12.00000 -> 1
+dqctm686 comparetotmag 12 12.000000 -> 1
+dqctm687 comparetotmag 12 12.0000000 -> 1
+dqctm688 comparetotmag 12 12.00000000 -> 1
+dqctm689 comparetotmag 12 12.000000000 -> 1
+dqctm690 comparetotmag 12 12 -> 0
+dqctm691 comparetotmag 12.0 12 -> -1
+dqctm692 comparetotmag 12.00 12 -> -1
+dqctm693 comparetotmag 12.000 12 -> -1
+dqctm694 comparetotmag 12.0000 12 -> -1
+dqctm695 comparetotmag 12.00000 12 -> -1
+dqctm696 comparetotmag 12.000000 12 -> -1
+dqctm697 comparetotmag 12.0000000 12 -> -1
+dqctm698 comparetotmag 12.00000000 12 -> -1
+dqctm699 comparetotmag 12.000000000 12 -> -1
+
+-- old long operand checks
+dqctm701 comparetotmag 12345678000 1 -> 1
+dqctm702 comparetotmag 1 12345678000 -> -1
+dqctm703 comparetotmag 1234567800 1 -> 1
+dqctm704 comparetotmag 1 1234567800 -> -1
+dqctm705 comparetotmag 1234567890 1 -> 1
+dqctm706 comparetotmag 1 1234567890 -> -1
+dqctm707 comparetotmag 1234567891 1 -> 1
+dqctm708 comparetotmag 1 1234567891 -> -1
+dqctm709 comparetotmag 12345678901 1 -> 1
+dqctm710 comparetotmag 1 12345678901 -> -1
+dqctm711 comparetotmag 1234567896 1 -> 1
+dqctm712 comparetotmag 1 1234567896 -> -1
+dqctm713 comparetotmag -1234567891 1 -> 1
+dqctm714 comparetotmag 1 -1234567891 -> -1
+dqctm715 comparetotmag -12345678901 1 -> 1
+dqctm716 comparetotmag 1 -12345678901 -> -1
+dqctm717 comparetotmag -1234567896 1 -> 1
+dqctm718 comparetotmag 1 -1234567896 -> -1
+
+-- old residue cases
+dqctm740 comparetotmag 1 0.9999999 -> 1
+dqctm741 comparetotmag 1 0.999999 -> 1
+dqctm742 comparetotmag 1 0.99999 -> 1
+dqctm743 comparetotmag 1 1.0000 -> 1
+dqctm744 comparetotmag 1 1.00001 -> -1
+dqctm745 comparetotmag 1 1.000001 -> -1
+dqctm746 comparetotmag 1 1.0000001 -> -1
+dqctm750 comparetotmag 0.9999999 1 -> -1
+dqctm751 comparetotmag 0.999999 1 -> -1
+dqctm752 comparetotmag 0.99999 1 -> -1
+dqctm753 comparetotmag 1.0000 1 -> -1
+dqctm754 comparetotmag 1.00001 1 -> 1
+dqctm755 comparetotmag 1.000001 1 -> 1
+dqctm756 comparetotmag 1.0000001 1 -> 1
+
+-- Specials
+dqctm780 comparetotmag Inf -Inf -> 0
+dqctm781 comparetotmag Inf -1000 -> 1
+dqctm782 comparetotmag Inf -1 -> 1
+dqctm783 comparetotmag Inf -0 -> 1
+dqctm784 comparetotmag Inf 0 -> 1
+dqctm785 comparetotmag Inf 1 -> 1
+dqctm786 comparetotmag Inf 1000 -> 1
+dqctm787 comparetotmag Inf Inf -> 0
+dqctm788 comparetotmag -1000 Inf -> -1
+dqctm789 comparetotmag -Inf Inf -> 0
+dqctm790 comparetotmag -1 Inf -> -1
+dqctm791 comparetotmag -0 Inf -> -1
+dqctm792 comparetotmag 0 Inf -> -1
+dqctm793 comparetotmag 1 Inf -> -1
+dqctm794 comparetotmag 1000 Inf -> -1
+dqctm795 comparetotmag Inf Inf -> 0
+
+dqctm800 comparetotmag -Inf -Inf -> 0
+dqctm801 comparetotmag -Inf -1000 -> 1
+dqctm802 comparetotmag -Inf -1 -> 1
+dqctm803 comparetotmag -Inf -0 -> 1
+dqctm804 comparetotmag -Inf 0 -> 1
+dqctm805 comparetotmag -Inf 1 -> 1
+dqctm806 comparetotmag -Inf 1000 -> 1
+dqctm807 comparetotmag -Inf Inf -> 0
+dqctm808 comparetotmag -Inf -Inf -> 0
+dqctm809 comparetotmag -1000 -Inf -> -1
+dqctm810 comparetotmag -1 -Inf -> -1
+dqctm811 comparetotmag -0 -Inf -> -1
+dqctm812 comparetotmag 0 -Inf -> -1
+dqctm813 comparetotmag 1 -Inf -> -1
+dqctm814 comparetotmag 1000 -Inf -> -1
+dqctm815 comparetotmag Inf -Inf -> 0
+
+dqctm821 comparetotmag NaN -Inf -> 1
+dqctm822 comparetotmag NaN -1000 -> 1
+dqctm823 comparetotmag NaN -1 -> 1
+dqctm824 comparetotmag NaN -0 -> 1
+dqctm825 comparetotmag NaN 0 -> 1
+dqctm826 comparetotmag NaN 1 -> 1
+dqctm827 comparetotmag NaN 1000 -> 1
+dqctm828 comparetotmag NaN Inf -> 1
+dqctm829 comparetotmag NaN NaN -> 0
+dqctm830 comparetotmag -Inf NaN -> -1
+dqctm831 comparetotmag -1000 NaN -> -1
+dqctm832 comparetotmag -1 NaN -> -1
+dqctm833 comparetotmag -0 NaN -> -1
+dqctm834 comparetotmag 0 NaN -> -1
+dqctm835 comparetotmag 1 NaN -> -1
+dqctm836 comparetotmag 1000 NaN -> -1
+dqctm837 comparetotmag Inf NaN -> -1
+dqctm838 comparetotmag -NaN -NaN -> 0
+dqctm839 comparetotmag +NaN -NaN -> 0
+dqctm840 comparetotmag -NaN +NaN -> 0
+
+dqctm841 comparetotmag sNaN -sNaN -> 0
+dqctm842 comparetotmag sNaN -NaN -> -1
+dqctm843 comparetotmag sNaN -Inf -> 1
+dqctm844 comparetotmag sNaN -1000 -> 1
+dqctm845 comparetotmag sNaN -1 -> 1
+dqctm846 comparetotmag sNaN -0 -> 1
+dqctm847 comparetotmag sNaN 0 -> 1
+dqctm848 comparetotmag sNaN 1 -> 1
+dqctm849 comparetotmag sNaN 1000 -> 1
+dqctm850 comparetotmag sNaN NaN -> -1
+dqctm851 comparetotmag sNaN sNaN -> 0
+
+dqctm852 comparetotmag -sNaN sNaN -> 0
+dqctm853 comparetotmag -NaN sNaN -> 1
+dqctm854 comparetotmag -Inf sNaN -> -1
+dqctm855 comparetotmag -1000 sNaN -> -1
+dqctm856 comparetotmag -1 sNaN -> -1
+dqctm857 comparetotmag -0 sNaN -> -1
+dqctm858 comparetotmag 0 sNaN -> -1
+dqctm859 comparetotmag 1 sNaN -> -1
+dqctm860 comparetotmag 1000 sNaN -> -1
+dqctm861 comparetotmag Inf sNaN -> -1
+dqctm862 comparetotmag NaN sNaN -> 1
+dqctm863 comparetotmag sNaN sNaN -> 0
+
+dqctm871 comparetotmag -sNaN -sNaN -> 0
+dqctm872 comparetotmag -sNaN -NaN -> -1
+dqctm873 comparetotmag -sNaN -Inf -> 1
+dqctm874 comparetotmag -sNaN -1000 -> 1
+dqctm875 comparetotmag -sNaN -1 -> 1
+dqctm876 comparetotmag -sNaN -0 -> 1
+dqctm877 comparetotmag -sNaN 0 -> 1
+dqctm878 comparetotmag -sNaN 1 -> 1
+dqctm879 comparetotmag -sNaN 1000 -> 1
+dqctm880 comparetotmag -sNaN NaN -> -1
+dqctm881 comparetotmag -sNaN sNaN -> 0
+
+dqctm882 comparetotmag -sNaN -sNaN -> 0
+dqctm883 comparetotmag -NaN -sNaN -> 1
+dqctm884 comparetotmag -Inf -sNaN -> -1
+dqctm885 comparetotmag -1000 -sNaN -> -1
+dqctm886 comparetotmag -1 -sNaN -> -1
+dqctm887 comparetotmag -0 -sNaN -> -1
+dqctm888 comparetotmag 0 -sNaN -> -1
+dqctm889 comparetotmag 1 -sNaN -> -1
+dqctm890 comparetotmag 1000 -sNaN -> -1
+dqctm891 comparetotmag Inf -sNaN -> -1
+dqctm892 comparetotmag NaN -sNaN -> 1
+dqctm893 comparetotmag sNaN -sNaN -> 0
+
+-- NaNs with payload
+dqctm960 comparetotmag NaN9 -Inf -> 1
+dqctm961 comparetotmag NaN8 999 -> 1
+dqctm962 comparetotmag NaN77 Inf -> 1
+dqctm963 comparetotmag -NaN67 NaN5 -> 1
+dqctm964 comparetotmag -Inf -NaN4 -> -1
+dqctm965 comparetotmag -999 -NaN33 -> -1
+dqctm966 comparetotmag Inf NaN2 -> -1
+
+dqctm970 comparetotmag -NaN41 -NaN42 -> -1
+dqctm971 comparetotmag +NaN41 -NaN42 -> -1
+dqctm972 comparetotmag -NaN41 +NaN42 -> -1
+dqctm973 comparetotmag +NaN41 +NaN42 -> -1
+dqctm974 comparetotmag -NaN42 -NaN01 -> 1
+dqctm975 comparetotmag +NaN42 -NaN01 -> 1
+dqctm976 comparetotmag -NaN42 +NaN01 -> 1
+dqctm977 comparetotmag +NaN42 +NaN01 -> 1
+
+dqctm980 comparetotmag -sNaN771 -sNaN772 -> -1
+dqctm981 comparetotmag +sNaN771 -sNaN772 -> -1
+dqctm982 comparetotmag -sNaN771 +sNaN772 -> -1
+dqctm983 comparetotmag +sNaN771 +sNaN772 -> -1
+dqctm984 comparetotmag -sNaN772 -sNaN771 -> 1
+dqctm985 comparetotmag +sNaN772 -sNaN771 -> 1
+dqctm986 comparetotmag -sNaN772 +sNaN771 -> 1
+dqctm987 comparetotmag +sNaN772 +sNaN771 -> 1
+
+dqctm991 comparetotmag -sNaN99 -Inf -> 1
+dqctm992 comparetotmag sNaN98 -11 -> 1
+dqctm993 comparetotmag sNaN97 NaN -> -1
+dqctm994 comparetotmag sNaN16 sNaN94 -> -1
+dqctm995 comparetotmag NaN85 sNaN83 -> 1
+dqctm996 comparetotmag -Inf sNaN92 -> -1
+dqctm997 comparetotmag 088 sNaN81 -> -1
+dqctm998 comparetotmag Inf sNaN90 -> -1
+dqctm999 comparetotmag NaN -sNaN89 -> 1
+
+-- spread zeros
+dqctm1110 comparetotmag 0E-6143 0 -> -1
+dqctm1111 comparetotmag 0E-6143 -0 -> -1
+dqctm1112 comparetotmag -0E-6143 0 -> -1
+dqctm1113 comparetotmag -0E-6143 -0 -> -1
+dqctm1114 comparetotmag 0E-6143 0E+6144 -> -1
+dqctm1115 comparetotmag 0E-6143 -0E+6144 -> -1
+dqctm1116 comparetotmag -0E-6143 0E+6144 -> -1
+dqctm1117 comparetotmag -0E-6143 -0E+6144 -> -1
+dqctm1118 comparetotmag 0 0E+6144 -> -1
+dqctm1119 comparetotmag 0 -0E+6144 -> -1
+dqctm1120 comparetotmag -0 0E+6144 -> -1
+dqctm1121 comparetotmag -0 -0E+6144 -> -1
+
+dqctm1130 comparetotmag 0E+6144 0 -> 1
+dqctm1131 comparetotmag 0E+6144 -0 -> 1
+dqctm1132 comparetotmag -0E+6144 0 -> 1
+dqctm1133 comparetotmag -0E+6144 -0 -> 1
+dqctm1134 comparetotmag 0E+6144 0E-6143 -> 1
+dqctm1135 comparetotmag 0E+6144 -0E-6143 -> 1
+dqctm1136 comparetotmag -0E+6144 0E-6143 -> 1
+dqctm1137 comparetotmag -0E+6144 -0E-6143 -> 1
+dqctm1138 comparetotmag 0 0E-6143 -> 1
+dqctm1139 comparetotmag 0 -0E-6143 -> 1
+dqctm1140 comparetotmag -0 0E-6143 -> 1
+dqctm1141 comparetotmag -0 -0E-6143 -> 1
+
+-- Null tests
+dqctm9990 comparetotmag 10 # -> NaN Invalid_operation
+dqctm9991 comparetotmag # 10 -> NaN Invalid_operation
diff --git a/Lib/test/decimaltestdata/dqCopy.decTest b/Lib/test/decimaltestdata/dqCopy.decTest
new file mode 100644
index 0000000..b833776
--- /dev/null
+++ b/Lib/test/decimaltestdata/dqCopy.decTest
@@ -0,0 +1,88 @@
+------------------------------------------------------------------------
+-- dqCopy.decTest -- quiet decQuad copy --
+-- Copyright (c) IBM Corporation, 1981, 2007. All rights reserved. --
+------------------------------------------------------------------------
+-- Please see the document "General Decimal Arithmetic Testcases" --
+-- at http://www2.hursley.ibm.com/decimal for the description of --
+-- these testcases. --
+-- --
+-- These testcases are experimental ('beta' versions), and they --
+-- may contain errors. They are offered on an as-is basis. In --
+-- particular, achieving the same results as the tests here is not --
+-- a guarantee that an implementation complies with any Standard --
+-- or specification. The tests are not exhaustive. --
+-- --
+-- Please send comments, suggestions, and corrections to the author: --
+-- Mike Cowlishaw, IBM Fellow --
+-- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK --
+-- mfc@uk.ibm.com --
+------------------------------------------------------------------------
+version: 2.56
+
+-- All operands and results are decQuads.
+extended: 1
+clamp: 1
+precision: 34
+maxExponent: 6144
+minExponent: -6143
+rounding: half_even
+
+-- Sanity check
+dqcpy001 copy +7.50 -> 7.50
+
+-- Infinities
+dqcpy011 copy Infinity -> Infinity
+dqcpy012 copy -Infinity -> -Infinity
+
+-- NaNs, 0 payload
+dqcpy021 copy NaN -> NaN
+dqcpy022 copy -NaN -> -NaN
+dqcpy023 copy sNaN -> sNaN
+dqcpy024 copy -sNaN -> -sNaN
+
+-- NaNs, non-0 payload
+dqcpy031 copy NaN10 -> NaN10
+dqcpy032 copy -NaN10 -> -NaN10
+dqcpy033 copy sNaN10 -> sNaN10
+dqcpy034 copy -sNaN10 -> -sNaN10
+dqcpy035 copy NaN7 -> NaN7
+dqcpy036 copy -NaN7 -> -NaN7
+dqcpy037 copy sNaN101 -> sNaN101
+dqcpy038 copy -sNaN101 -> -sNaN101
+
+-- finites
+dqcpy101 copy 7 -> 7
+dqcpy102 copy -7 -> -7
+dqcpy103 copy 75 -> 75
+dqcpy104 copy -75 -> -75
+dqcpy105 copy 7.50 -> 7.50
+dqcpy106 copy -7.50 -> -7.50
+dqcpy107 copy 7.500 -> 7.500
+dqcpy108 copy -7.500 -> -7.500
+
+-- zeros
+dqcpy111 copy 0 -> 0
+dqcpy112 copy -0 -> -0
+dqcpy113 copy 0E+4 -> 0E+4
+dqcpy114 copy -0E+4 -> -0E+4
+dqcpy115 copy 0.0000 -> 0.0000
+dqcpy116 copy -0.0000 -> -0.0000
+dqcpy117 copy 0E-141 -> 0E-141
+dqcpy118 copy -0E-141 -> -0E-141
+
+-- full coefficients, alternating bits
+dqcpy121 copy 2682682682682682682682682682682682 -> 2682682682682682682682682682682682
+dqcpy122 copy -2682682682682682682682682682682682 -> -2682682682682682682682682682682682
+dqcpy123 copy 1341341341341341341341341341341341 -> 1341341341341341341341341341341341
+dqcpy124 copy -1341341341341341341341341341341341 -> -1341341341341341341341341341341341
+
+-- Nmax, Nmin, Ntiny
+dqcpy131 copy 9.999999999999999999999999999999999E+6144 -> 9.999999999999999999999999999999999E+6144
+dqcpy132 copy 1E-6143 -> 1E-6143
+dqcpy133 copy 1.000000000000000000000000000000000E-6143 -> 1.000000000000000000000000000000000E-6143
+dqcpy134 copy 1E-6176 -> 1E-6176
+
+dqcpy135 copy -1E-6176 -> -1E-6176
+dqcpy136 copy -1.000000000000000000000000000000000E-6143 -> -1.000000000000000000000000000000000E-6143
+dqcpy137 copy -1E-6143 -> -1E-6143
+dqcpy138 copy -9.999999999999999999999999999999999E+6144 -> -9.999999999999999999999999999999999E+6144
diff --git a/Lib/test/decimaltestdata/dqCopyAbs.decTest b/Lib/test/decimaltestdata/dqCopyAbs.decTest
new file mode 100644
index 0000000..91f4a68
--- /dev/null
+++ b/Lib/test/decimaltestdata/dqCopyAbs.decTest
@@ -0,0 +1,88 @@
+------------------------------------------------------------------------
+-- dqCopyAbs.decTest -- quiet decQuad copy and set sign to zero --
+-- Copyright (c) IBM Corporation, 1981, 2007. All rights reserved. --
+------------------------------------------------------------------------
+-- Please see the document "General Decimal Arithmetic Testcases" --
+-- at http://www2.hursley.ibm.com/decimal for the description of --
+-- these testcases. --
+-- --
+-- These testcases are experimental ('beta' versions), and they --
+-- may contain errors. They are offered on an as-is basis. In --
+-- particular, achieving the same results as the tests here is not --
+-- a guarantee that an implementation complies with any Standard --
+-- or specification. The tests are not exhaustive. --
+-- --
+-- Please send comments, suggestions, and corrections to the author: --
+-- Mike Cowlishaw, IBM Fellow --
+-- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK --
+-- mfc@uk.ibm.com --
+------------------------------------------------------------------------
+version: 2.56
+
+-- All operands and results are decQuads.
+extended: 1
+clamp: 1
+precision: 34
+maxExponent: 6144
+minExponent: -6143
+rounding: half_even
+
+-- Sanity check
+dqcpa001 copyabs +7.50 -> 7.50
+
+-- Infinities
+dqcpa011 copyabs Infinity -> Infinity
+dqcpa012 copyabs -Infinity -> Infinity
+
+-- NaNs, 0 payload
+dqcpa021 copyabs NaN -> NaN
+dqcpa022 copyabs -NaN -> NaN
+dqcpa023 copyabs sNaN -> sNaN
+dqcpa024 copyabs -sNaN -> sNaN
+
+-- NaNs, non-0 payload
+dqcpa031 copyabs NaN10 -> NaN10
+dqcpa032 copyabs -NaN15 -> NaN15
+dqcpa033 copyabs sNaN15 -> sNaN15
+dqcpa034 copyabs -sNaN10 -> sNaN10
+dqcpa035 copyabs NaN7 -> NaN7
+dqcpa036 copyabs -NaN7 -> NaN7
+dqcpa037 copyabs sNaN101 -> sNaN101
+dqcpa038 copyabs -sNaN101 -> sNaN101
+
+-- finites
+dqcpa101 copyabs 7 -> 7
+dqcpa102 copyabs -7 -> 7
+dqcpa103 copyabs 75 -> 75
+dqcpa104 copyabs -75 -> 75
+dqcpa105 copyabs 7.10 -> 7.10
+dqcpa106 copyabs -7.10 -> 7.10
+dqcpa107 copyabs 7.500 -> 7.500
+dqcpa108 copyabs -7.500 -> 7.500
+
+-- zeros
+dqcpa111 copyabs 0 -> 0
+dqcpa112 copyabs -0 -> 0
+dqcpa113 copyabs 0E+6 -> 0E+6
+dqcpa114 copyabs -0E+6 -> 0E+6
+dqcpa115 copyabs 0.0000 -> 0.0000
+dqcpa116 copyabs -0.0000 -> 0.0000
+dqcpa117 copyabs 0E-141 -> 0E-141
+dqcpa118 copyabs -0E-141 -> 0E-141
+
+-- full coefficients, alternating bits
+dqcpa121 copyabs 2682682682682682682682682682682682 -> 2682682682682682682682682682682682
+dqcpa122 copyabs -2682682682682682682682682682682682 -> 2682682682682682682682682682682682
+dqcpa123 copyabs 1341341341341341341341341341341341 -> 1341341341341341341341341341341341
+dqcpa124 copyabs -1341341341341341341341341341341341 -> 1341341341341341341341341341341341
+
+-- Nmax, Nmin, Ntiny
+dqcpa131 copyabs 9.999999999999999999999999999999999E+6144 -> 9.999999999999999999999999999999999E+6144
+dqcpa132 copyabs 1E-6143 -> 1E-6143
+dqcpa133 copyabs 1.000000000000000000000000000000000E-6143 -> 1.000000000000000000000000000000000E-6143
+dqcpa134 copyabs 1E-6176 -> 1E-6176
+
+dqcpa135 copyabs -1E-6176 -> 1E-6176
+dqcpa136 copyabs -1.000000000000000000000000000000000E-6143 -> 1.000000000000000000000000000000000E-6143
+dqcpa137 copyabs -1E-6143 -> 1E-6143
+dqcpa138 copyabs -9.999999999999999999999999999999999E+6144 -> 9.999999999999999999999999999999999E+6144
diff --git a/Lib/test/decimaltestdata/dqCopyNegate.decTest b/Lib/test/decimaltestdata/dqCopyNegate.decTest
new file mode 100644
index 0000000..22ac89c
--- /dev/null
+++ b/Lib/test/decimaltestdata/dqCopyNegate.decTest
@@ -0,0 +1,88 @@
+------------------------------------------------------------------------
+-- dqCopyNegate.decTest -- quiet decQuad copy and negate --
+-- Copyright (c) IBM Corporation, 1981, 2007. All rights reserved. --
+------------------------------------------------------------------------
+-- Please see the document "General Decimal Arithmetic Testcases" --
+-- at http://www2.hursley.ibm.com/decimal for the description of --
+-- these testcases. --
+-- --
+-- These testcases are experimental ('beta' versions), and they --
+-- may contain errors. They are offered on an as-is basis. In --
+-- particular, achieving the same results as the tests here is not --
+-- a guarantee that an implementation complies with any Standard --
+-- or specification. The tests are not exhaustive. --
+-- --
+-- Please send comments, suggestions, and corrections to the author: --
+-- Mike Cowlishaw, IBM Fellow --
+-- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK --
+-- mfc@uk.ibm.com --
+------------------------------------------------------------------------
+version: 2.56
+
+-- All operands and results are decQuads.
+extended: 1
+clamp: 1
+precision: 34
+maxExponent: 6144
+minExponent: -6143
+rounding: half_even
+
+-- Sanity check
+dqcpn001 copynegate +7.50 -> -7.50
+
+-- Infinities
+dqcpn011 copynegate Infinity -> -Infinity
+dqcpn012 copynegate -Infinity -> Infinity
+
+-- NaNs, 0 payload
+dqcpn021 copynegate NaN -> -NaN
+dqcpn022 copynegate -NaN -> NaN
+dqcpn023 copynegate sNaN -> -sNaN
+dqcpn024 copynegate -sNaN -> sNaN
+
+-- NaNs, non-0 payload
+dqcpn031 copynegate NaN13 -> -NaN13
+dqcpn032 copynegate -NaN13 -> NaN13
+dqcpn033 copynegate sNaN13 -> -sNaN13
+dqcpn034 copynegate -sNaN13 -> sNaN13
+dqcpn035 copynegate NaN70 -> -NaN70
+dqcpn036 copynegate -NaN70 -> NaN70
+dqcpn037 copynegate sNaN101 -> -sNaN101
+dqcpn038 copynegate -sNaN101 -> sNaN101
+
+-- finites
+dqcpn101 copynegate 7 -> -7
+dqcpn102 copynegate -7 -> 7
+dqcpn103 copynegate 75 -> -75
+dqcpn104 copynegate -75 -> 75
+dqcpn105 copynegate 7.50 -> -7.50
+dqcpn106 copynegate -7.50 -> 7.50
+dqcpn107 copynegate 7.500 -> -7.500
+dqcpn108 copynegate -7.500 -> 7.500
+
+-- zeros
+dqcpn111 copynegate 0 -> -0
+dqcpn112 copynegate -0 -> 0
+dqcpn113 copynegate 0E+4 -> -0E+4
+dqcpn114 copynegate -0E+4 -> 0E+4
+dqcpn115 copynegate 0.0000 -> -0.0000
+dqcpn116 copynegate -0.0000 -> 0.0000
+dqcpn117 copynegate 0E-141 -> -0E-141
+dqcpn118 copynegate -0E-141 -> 0E-141
+
+-- full coefficients, alternating bits
+dqcpn121 copynegate 2682682682682682682682682682682682 -> -2682682682682682682682682682682682
+dqcpn122 copynegate -2682682682682682682682682682682682 -> 2682682682682682682682682682682682
+dqcpn123 copynegate 1341341341341341341341341341341341 -> -1341341341341341341341341341341341
+dqcpn124 copynegate -1341341341341341341341341341341341 -> 1341341341341341341341341341341341
+
+-- Nmax, Nmin, Ntiny
+dqcpn131 copynegate 9.999999999999999999999999999999999E+6144 -> -9.999999999999999999999999999999999E+6144
+dqcpn132 copynegate 1E-6143 -> -1E-6143
+dqcpn133 copynegate 1.000000000000000000000000000000000E-6143 -> -1.000000000000000000000000000000000E-6143
+dqcpn134 copynegate 1E-6176 -> -1E-6176
+
+dqcpn135 copynegate -1E-6176 -> 1E-6176
+dqcpn136 copynegate -1.000000000000000000000000000000000E-6143 -> 1.000000000000000000000000000000000E-6143
+dqcpn137 copynegate -1E-6143 -> 1E-6143
+dqcpn138 copynegate -9.999999999999999999999999999999999E+6144 -> 9.999999999999999999999999999999999E+6144
diff --git a/Lib/test/decimaltestdata/dqCopySign.decTest b/Lib/test/decimaltestdata/dqCopySign.decTest
new file mode 100644
index 0000000..8f275cd
--- /dev/null
+++ b/Lib/test/decimaltestdata/dqCopySign.decTest
@@ -0,0 +1,175 @@
+------------------------------------------------------------------------
+-- dqCopySign.decTest -- quiet decQuad copy with sign from rhs --
+-- Copyright (c) IBM Corporation, 1981, 2007. All rights reserved. --
+------------------------------------------------------------------------
+-- Please see the document "General Decimal Arithmetic Testcases" --
+-- at http://www2.hursley.ibm.com/decimal for the description of --
+-- these testcases. --
+-- --
+-- These testcases are experimental ('beta' versions), and they --
+-- may contain errors. They are offered on an as-is basis. In --
+-- particular, achieving the same results as the tests here is not --
+-- a guarantee that an implementation complies with any Standard --
+-- or specification. The tests are not exhaustive. --
+-- --
+-- Please send comments, suggestions, and corrections to the author: --
+-- Mike Cowlishaw, IBM Fellow --
+-- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK --
+-- mfc@uk.ibm.com --
+------------------------------------------------------------------------
+version: 2.56
+
+-- All operands and results are decQuads.
+extended: 1
+clamp: 1
+precision: 34
+maxExponent: 6144
+minExponent: -6143
+rounding: half_even
+
+-- Sanity check
+dqcps001 copysign +7.50 11 -> 7.50
+
+-- Infinities
+dqcps011 copysign Infinity 11 -> Infinity
+dqcps012 copysign -Infinity 11 -> Infinity
+
+-- NaNs, 0 payload
+dqcps021 copysign NaN 11 -> NaN
+dqcps022 copysign -NaN 11 -> NaN
+dqcps023 copysign sNaN 11 -> sNaN
+dqcps024 copysign -sNaN 11 -> sNaN
+
+-- NaNs, non-0 payload
+dqcps031 copysign NaN10 11 -> NaN10
+dqcps032 copysign -NaN10 11 -> NaN10
+dqcps033 copysign sNaN10 11 -> sNaN10
+dqcps034 copysign -sNaN10 11 -> sNaN10
+dqcps035 copysign NaN7 11 -> NaN7
+dqcps036 copysign -NaN7 11 -> NaN7
+dqcps037 copysign sNaN101 11 -> sNaN101
+dqcps038 copysign -sNaN101 11 -> sNaN101
+
+-- finites
+dqcps101 copysign 7 11 -> 7
+dqcps102 copysign -7 11 -> 7
+dqcps103 copysign 75 11 -> 75
+dqcps104 copysign -75 11 -> 75
+dqcps105 copysign 7.50 11 -> 7.50
+dqcps106 copysign -7.50 11 -> 7.50
+dqcps107 copysign 7.500 11 -> 7.500
+dqcps108 copysign -7.500 11 -> 7.500
+
+-- zeros
+dqcps111 copysign 0 11 -> 0
+dqcps112 copysign -0 11 -> 0
+dqcps113 copysign 0E+4 11 -> 0E+4
+dqcps114 copysign -0E+4 11 -> 0E+4
+dqcps115 copysign 0.0000 11 -> 0.0000
+dqcps116 copysign -0.0000 11 -> 0.0000
+dqcps117 copysign 0E-141 11 -> 0E-141
+dqcps118 copysign -0E-141 11 -> 0E-141
+
+-- full coefficients, alternating bits
+dqcps121 copysign 2682682682682682682682682682682682 8 -> 2682682682682682682682682682682682
+dqcps122 copysign -2682682682682682682682682682682682 8 -> 2682682682682682682682682682682682
+dqcps123 copysign 1341341341341341341341341341341341 8 -> 1341341341341341341341341341341341
+dqcps124 copysign -1341341341341341341341341341341341 8 -> 1341341341341341341341341341341341
+
+-- Nmax, Nmin, Ntiny
+dqcps131 copysign 9.999999999999999999999999999999999E+6144 8 -> 9.999999999999999999999999999999999E+6144
+dqcps132 copysign 1E-6143 8 -> 1E-6143
+dqcps133 copysign 1.000000000000000000000000000000000E-6143 8 -> 1.000000000000000000000000000000000E-6143
+dqcps134 copysign 1E-6176 8 -> 1E-6176
+
+dqcps135 copysign -1E-6176 8 -> 1E-6176
+dqcps136 copysign -1.000000000000000000000000000000000E-6143 8 -> 1.000000000000000000000000000000000E-6143
+dqcps137 copysign -1E-6143 8 -> 1E-6143
+dqcps138 copysign -9.999999999999999999999999999999999E+6144 8 -> 9.999999999999999999999999999999999E+6144
+
+-- repeat with negative RHS
+
+-- Infinities
+dqcps211 copysign Infinity -34 -> -Infinity
+dqcps212 copysign -Infinity -34 -> -Infinity
+
+-- NaNs, 0 payload
+dqcps221 copysign NaN -34 -> -NaN
+dqcps222 copysign -NaN -34 -> -NaN
+dqcps223 copysign sNaN -34 -> -sNaN
+dqcps224 copysign -sNaN -34 -> -sNaN
+
+-- NaNs, non-0 payload
+dqcps231 copysign NaN10 -34 -> -NaN10
+dqcps232 copysign -NaN10 -34 -> -NaN10
+dqcps233 copysign sNaN10 -34 -> -sNaN10
+dqcps234 copysign -sNaN10 -34 -> -sNaN10
+dqcps235 copysign NaN7 -34 -> -NaN7
+dqcps236 copysign -NaN7 -34 -> -NaN7
+dqcps237 copysign sNaN101 -34 -> -sNaN101
+dqcps238 copysign -sNaN101 -34 -> -sNaN101
+
+-- finites
+dqcps301 copysign 7 -34 -> -7
+dqcps302 copysign -7 -34 -> -7
+dqcps303 copysign 75 -34 -> -75
+dqcps304 copysign -75 -34 -> -75
+dqcps305 copysign 7.50 -34 -> -7.50
+dqcps306 copysign -7.50 -34 -> -7.50
+dqcps307 copysign 7.500 -34 -> -7.500
+dqcps308 copysign -7.500 -34 -> -7.500
+
+-- zeros
+dqcps311 copysign 0 -34 -> -0
+dqcps312 copysign -0 -34 -> -0
+dqcps313 copysign 0E+4 -34 -> -0E+4
+dqcps314 copysign -0E+4 -34 -> -0E+4
+dqcps315 copysign 0.0000 -34 -> -0.0000
+dqcps316 copysign -0.0000 -34 -> -0.0000
+dqcps317 copysign 0E-141 -34 -> -0E-141
+dqcps318 copysign -0E-141 -34 -> -0E-141
+
+-- full coefficients, alternating bits
+dqcps321 copysign 2682682682682682682682682682682682 -9 -> -2682682682682682682682682682682682
+dqcps322 copysign -2682682682682682682682682682682682 -9 -> -2682682682682682682682682682682682
+dqcps323 copysign 1341341341341341341341341341341341 -9 -> -1341341341341341341341341341341341
+dqcps324 copysign -1341341341341341341341341341341341 -9 -> -1341341341341341341341341341341341
+
+-- Nmax, Nmin, Ntiny
+dqcps331 copysign 9.999999999999999999999999999999999E+6144 -1 -> -9.999999999999999999999999999999999E+6144
+dqcps332 copysign 1E-6143 -1 -> -1E-6143
+dqcps333 copysign 1.000000000000000000000000000000000E-6143 -1 -> -1.000000000000000000000000000000000E-6143
+dqcps334 copysign 1E-6176 -1 -> -1E-6176
+
+dqcps335 copysign -1E-6176 -3 -> -1E-6176
+dqcps336 copysign -1.000000000000000000000000000000000E-6143 -3 -> -1.000000000000000000000000000000000E-6143
+dqcps337 copysign -1E-6143 -3 -> -1E-6143
+dqcps338 copysign -9.999999999999999999999999999999999E+6144 -3 -> -9.999999999999999999999999999999999E+6144
+
+-- Other kinds of RHS
+dqcps401 copysign 701 -34 -> -701
+dqcps402 copysign -720 -34 -> -720
+dqcps403 copysign 701 -0 -> -701
+dqcps404 copysign -720 -0 -> -720
+dqcps405 copysign 701 +0 -> 701
+dqcps406 copysign -720 +0 -> 720
+dqcps407 copysign 701 +34 -> 701
+dqcps408 copysign -720 +34 -> 720
+
+dqcps413 copysign 701 -Inf -> -701
+dqcps414 copysign -720 -Inf -> -720
+dqcps415 copysign 701 +Inf -> 701
+dqcps416 copysign -720 +Inf -> 720
+
+dqcps420 copysign 701 -NaN -> -701
+dqcps421 copysign -720 -NaN -> -720
+dqcps422 copysign 701 +NaN -> 701
+dqcps423 copysign -720 +NaN -> 720
+dqcps425 copysign -720 +NaN8 -> 720
+
+dqcps426 copysign 701 -sNaN -> -701
+dqcps427 copysign -720 -sNaN -> -720
+dqcps428 copysign 701 +sNaN -> 701
+dqcps429 copysign -720 +sNaN -> 720
+dqcps430 copysign -720 +sNaN3 -> 720
+
diff --git a/Lib/test/decimaltestdata/dqDivide.decTest b/Lib/test/decimaltestdata/dqDivide.decTest
new file mode 100644
index 0000000..a84e1d0
--- /dev/null
+++ b/Lib/test/decimaltestdata/dqDivide.decTest
@@ -0,0 +1,808 @@
+------------------------------------------------------------------------
+-- dqDivide.decTest -- decQuad division --
+-- Copyright (c) IBM Corporation, 1981, 2007. All rights reserved. --
+------------------------------------------------------------------------
+-- Please see the document "General Decimal Arithmetic Testcases" --
+-- at http://www2.hursley.ibm.com/decimal for the description of --
+-- these testcases. --
+-- --
+-- These testcases are experimental ('beta' versions), and they --
+-- may contain errors. They are offered on an as-is basis. In --
+-- particular, achieving the same results as the tests here is not --
+-- a guarantee that an implementation complies with any Standard --
+-- or specification. The tests are not exhaustive. --
+-- --
+-- Please send comments, suggestions, and corrections to the author: --
+-- Mike Cowlishaw, IBM Fellow --
+-- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK --
+-- mfc@uk.ibm.com --
+------------------------------------------------------------------------
+version: 2.56
+
+extended: 1
+clamp: 1
+precision: 34
+maxExponent: 6144
+minExponent: -6143
+rounding: half_even
+
+-- sanity checks
+dqdiv001 divide 1 1 -> 1
+dqdiv002 divide 2 1 -> 2
+dqdiv003 divide 1 2 -> 0.5
+dqdiv004 divide 2 2 -> 1
+dqdiv005 divide 0 1 -> 0
+dqdiv006 divide 0 2 -> 0
+dqdiv007 divide 1 3 -> 0.3333333333333333333333333333333333 Inexact Rounded
+dqdiv008 divide 2 3 -> 0.6666666666666666666666666666666667 Inexact Rounded
+dqdiv009 divide 3 3 -> 1
+
+dqdiv010 divide 2.4 1 -> 2.4
+dqdiv011 divide 2.4 -1 -> -2.4
+dqdiv012 divide -2.4 1 -> -2.4
+dqdiv013 divide -2.4 -1 -> 2.4
+dqdiv014 divide 2.40 1 -> 2.40
+dqdiv015 divide 2.400 1 -> 2.400
+dqdiv016 divide 2.4 2 -> 1.2
+dqdiv017 divide 2.400 2 -> 1.200
+dqdiv018 divide 2. 2 -> 1
+dqdiv019 divide 20 20 -> 1
+
+dqdiv020 divide 187 187 -> 1
+dqdiv021 divide 5 2 -> 2.5
+dqdiv022 divide 50 20 -> 2.5
+dqdiv023 divide 500 200 -> 2.5
+dqdiv024 divide 50.0 20.0 -> 2.5
+dqdiv025 divide 5.00 2.00 -> 2.5
+dqdiv026 divide 5 2.0 -> 2.5
+dqdiv027 divide 5 2.000 -> 2.5
+dqdiv028 divide 5 0.20 -> 25
+dqdiv029 divide 5 0.200 -> 25
+dqdiv030 divide 10 1 -> 10
+dqdiv031 divide 100 1 -> 100
+dqdiv032 divide 1000 1 -> 1000
+dqdiv033 divide 1000 100 -> 10
+
+dqdiv035 divide 1 2 -> 0.5
+dqdiv036 divide 1 4 -> 0.25
+dqdiv037 divide 1 8 -> 0.125
+dqdiv038 divide 1 16 -> 0.0625
+dqdiv039 divide 1 32 -> 0.03125
+dqdiv040 divide 1 64 -> 0.015625
+dqdiv041 divide 1 -2 -> -0.5
+dqdiv042 divide 1 -4 -> -0.25
+dqdiv043 divide 1 -8 -> -0.125
+dqdiv044 divide 1 -16 -> -0.0625
+dqdiv045 divide 1 -32 -> -0.03125
+dqdiv046 divide 1 -64 -> -0.015625
+dqdiv047 divide -1 2 -> -0.5
+dqdiv048 divide -1 4 -> -0.25
+dqdiv049 divide -1 8 -> -0.125
+dqdiv050 divide -1 16 -> -0.0625
+dqdiv051 divide -1 32 -> -0.03125
+dqdiv052 divide -1 64 -> -0.015625
+dqdiv053 divide -1 -2 -> 0.5
+dqdiv054 divide -1 -4 -> 0.25
+dqdiv055 divide -1 -8 -> 0.125
+dqdiv056 divide -1 -16 -> 0.0625
+dqdiv057 divide -1 -32 -> 0.03125
+dqdiv058 divide -1 -64 -> 0.015625
+
+-- bcdTime
+dqdiv060 divide 1 7 -> 0.1428571428571428571428571428571429 Inexact Rounded
+dqdiv061 divide 1.2345678 1.9876543 -> 0.6211179680490717123193907511985359 Inexact Rounded
+
+-- 1234567890123456
+dqdiv067 divide 9999999999999999999999999999999999 1 -> 9999999999999999999999999999999999
+dqdiv068 divide 999999999999999999999999999999999 1 -> 999999999999999999999999999999999
+dqdiv069 divide 99999999999999999999999999999999 1 -> 99999999999999999999999999999999
+dqdiv070 divide 99999999999999999 1 -> 99999999999999999
+dqdiv071 divide 9999999999999999 1 -> 9999999999999999
+dqdiv072 divide 999999999999999 1 -> 999999999999999
+dqdiv073 divide 99999999999999 1 -> 99999999999999
+dqdiv074 divide 9999999999999 1 -> 9999999999999
+dqdiv075 divide 999999999999 1 -> 999999999999
+dqdiv076 divide 99999999999 1 -> 99999999999
+dqdiv077 divide 9999999999 1 -> 9999999999
+dqdiv078 divide 999999999 1 -> 999999999
+dqdiv079 divide 99999999 1 -> 99999999
+dqdiv080 divide 9999999 1 -> 9999999
+dqdiv081 divide 999999 1 -> 999999
+dqdiv082 divide 99999 1 -> 99999
+dqdiv083 divide 9999 1 -> 9999
+dqdiv084 divide 999 1 -> 999
+dqdiv085 divide 99 1 -> 99
+dqdiv086 divide 9 1 -> 9
+
+dqdiv090 divide 0. 1 -> 0
+dqdiv091 divide .0 1 -> 0.0
+dqdiv092 divide 0.00 1 -> 0.00
+dqdiv093 divide 0.00E+9 1 -> 0E+7
+dqdiv094 divide 0.0000E-50 1 -> 0E-54
+
+dqdiv095 divide 1 1E-8 -> 1E+8
+dqdiv096 divide 1 1E-9 -> 1E+9
+dqdiv097 divide 1 1E-10 -> 1E+10
+dqdiv098 divide 1 1E-11 -> 1E+11
+dqdiv099 divide 1 1E-12 -> 1E+12
+
+dqdiv100 divide 1 1 -> 1
+dqdiv101 divide 1 2 -> 0.5
+dqdiv102 divide 1 3 -> 0.3333333333333333333333333333333333 Inexact Rounded
+dqdiv103 divide 1 4 -> 0.25
+dqdiv104 divide 1 5 -> 0.2
+dqdiv105 divide 1 6 -> 0.1666666666666666666666666666666667 Inexact Rounded
+dqdiv106 divide 1 7 -> 0.1428571428571428571428571428571429 Inexact Rounded
+dqdiv107 divide 1 8 -> 0.125
+dqdiv108 divide 1 9 -> 0.1111111111111111111111111111111111 Inexact Rounded
+dqdiv109 divide 1 10 -> 0.1
+dqdiv110 divide 1 1 -> 1
+dqdiv111 divide 2 1 -> 2
+dqdiv112 divide 3 1 -> 3
+dqdiv113 divide 4 1 -> 4
+dqdiv114 divide 5 1 -> 5
+dqdiv115 divide 6 1 -> 6
+dqdiv116 divide 7 1 -> 7
+dqdiv117 divide 8 1 -> 8
+dqdiv118 divide 9 1 -> 9
+dqdiv119 divide 10 1 -> 10
+
+dqdiv120 divide 3E+1 0.001 -> 3E+4
+dqdiv121 divide 2.200 2 -> 1.100
+
+dqdiv130 divide 12345 4.999 -> 2469.493898779755951190238047609522 Inexact Rounded
+dqdiv131 divide 12345 4.99 -> 2473.947895791583166332665330661323 Inexact Rounded
+dqdiv132 divide 12345 4.9 -> 2519.387755102040816326530612244898 Inexact Rounded
+dqdiv133 divide 12345 5 -> 2469
+dqdiv134 divide 12345 5.1 -> 2420.588235294117647058823529411765 Inexact Rounded
+dqdiv135 divide 12345 5.01 -> 2464.071856287425149700598802395210 Inexact Rounded
+dqdiv136 divide 12345 5.001 -> 2468.506298740251949610077984403119 Inexact Rounded
+
+-- test possibly imprecise results
+dqdiv220 divide 391 597 -> 0.6549413735343383584589614740368509 Inexact Rounded
+dqdiv221 divide 391 -597 -> -0.6549413735343383584589614740368509 Inexact Rounded
+dqdiv222 divide -391 597 -> -0.6549413735343383584589614740368509 Inexact Rounded
+dqdiv223 divide -391 -597 -> 0.6549413735343383584589614740368509 Inexact Rounded
+
+-- test some cases that are close to exponent overflow
+dqdiv270 divide 1 1e6144 -> 1E-6144 Subnormal
+dqdiv271 divide 1 0.9e6144 -> 1.11111111111111111111111111111111E-6144 Rounded Inexact Subnormal Underflow
+dqdiv272 divide 1 0.99e6144 -> 1.01010101010101010101010101010101E-6144 Rounded Inexact Subnormal Underflow
+dqdiv273 divide 1 0.9999999999999999e6144 -> 1.00000000000000010000000000000001E-6144 Rounded Inexact Subnormal Underflow
+dqdiv274 divide 9e6144 1 -> 9.000000000000000000000000000000000E+6144 Clamped
+dqdiv275 divide 9.9e6144 1 -> 9.900000000000000000000000000000000E+6144 Clamped
+dqdiv276 divide 9.99e6144 1 -> 9.990000000000000000000000000000000E+6144 Clamped
+dqdiv277 divide 9.999999999999999e6144 1 -> 9.999999999999999000000000000000000E+6144 Clamped
+
+dqdiv278 divide 1 0.9999999999999999999999999999999999e6144 -> 1.00000000000000000000000000000000E-6144 Rounded Inexact Subnormal Underflow
+dqdiv279 divide 9.999999999999999999999999999999999e6144 1 -> 9.999999999999999999999999999999999E+6144
+
+-- Divide into 0 tests
+dqdiv301 divide 0 7 -> 0
+dqdiv302 divide 0 7E-5 -> 0E+5
+dqdiv303 divide 0 7E-1 -> 0E+1
+dqdiv304 divide 0 7E+1 -> 0.0
+dqdiv305 divide 0 7E+5 -> 0.00000
+dqdiv306 divide 0 7E+6 -> 0.000000
+dqdiv307 divide 0 7E+7 -> 0E-7
+dqdiv308 divide 0 70E-5 -> 0E+5
+dqdiv309 divide 0 70E-1 -> 0E+1
+dqdiv310 divide 0 70E+0 -> 0
+dqdiv311 divide 0 70E+1 -> 0.0
+dqdiv312 divide 0 70E+5 -> 0.00000
+dqdiv313 divide 0 70E+6 -> 0.000000
+dqdiv314 divide 0 70E+7 -> 0E-7
+dqdiv315 divide 0 700E-5 -> 0E+5
+dqdiv316 divide 0 700E-1 -> 0E+1
+dqdiv317 divide 0 700E+0 -> 0
+dqdiv318 divide 0 700E+1 -> 0.0
+dqdiv319 divide 0 700E+5 -> 0.00000
+dqdiv320 divide 0 700E+6 -> 0.000000
+dqdiv321 divide 0 700E+7 -> 0E-7
+dqdiv322 divide 0 700E+77 -> 0E-77
+
+dqdiv331 divide 0E-3 7E-5 -> 0E+2
+dqdiv332 divide 0E-3 7E-1 -> 0.00
+dqdiv333 divide 0E-3 7E+1 -> 0.0000
+dqdiv334 divide 0E-3 7E+5 -> 0E-8
+dqdiv335 divide 0E-1 7E-5 -> 0E+4
+dqdiv336 divide 0E-1 7E-1 -> 0
+dqdiv337 divide 0E-1 7E+1 -> 0.00
+dqdiv338 divide 0E-1 7E+5 -> 0.000000
+dqdiv339 divide 0E+1 7E-5 -> 0E+6
+dqdiv340 divide 0E+1 7E-1 -> 0E+2
+dqdiv341 divide 0E+1 7E+1 -> 0
+dqdiv342 divide 0E+1 7E+5 -> 0.0000
+dqdiv343 divide 0E+3 7E-5 -> 0E+8
+dqdiv344 divide 0E+3 7E-1 -> 0E+4
+dqdiv345 divide 0E+3 7E+1 -> 0E+2
+dqdiv346 divide 0E+3 7E+5 -> 0.00
+
+-- These were 'input rounding'
+dqdiv441 divide 12345678000 1 -> 12345678000
+dqdiv442 divide 1 12345678000 -> 8.100000664200054464404466081166219E-11 Inexact Rounded
+dqdiv443 divide 1234567800 1 -> 1234567800
+dqdiv444 divide 1 1234567800 -> 8.100000664200054464404466081166219E-10 Inexact Rounded
+dqdiv445 divide 1234567890 1 -> 1234567890
+dqdiv446 divide 1 1234567890 -> 8.100000073710000670761006103925156E-10 Inexact Rounded
+dqdiv447 divide 1234567891 1 -> 1234567891
+dqdiv448 divide 1 1234567891 -> 8.100000067149000556665214614754629E-10 Inexact Rounded
+dqdiv449 divide 12345678901 1 -> 12345678901
+dqdiv450 divide 1 12345678901 -> 8.100000073053900658873130042376760E-11 Inexact Rounded
+dqdiv451 divide 1234567896 1 -> 1234567896
+dqdiv452 divide 1 1234567896 -> 8.100000034344000145618560617422697E-10 Inexact Rounded
+
+-- high-lows
+dqdiv453 divide 1e+1 1 -> 1E+1
+dqdiv454 divide 1e+1 1.0 -> 1E+1
+dqdiv455 divide 1e+1 1.00 -> 1E+1
+dqdiv456 divide 1e+2 2 -> 5E+1
+dqdiv457 divide 1e+2 2.0 -> 5E+1
+dqdiv458 divide 1e+2 2.00 -> 5E+1
+
+-- some from IEEE discussions
+dqdiv460 divide 3e0 2e0 -> 1.5
+dqdiv461 divide 30e-1 2e0 -> 1.5
+dqdiv462 divide 300e-2 2e0 -> 1.50
+dqdiv464 divide 3000e-3 2e0 -> 1.500
+dqdiv465 divide 3e0 20e-1 -> 1.5
+dqdiv466 divide 30e-1 20e-1 -> 1.5
+dqdiv467 divide 300e-2 20e-1 -> 1.5
+dqdiv468 divide 3000e-3 20e-1 -> 1.50
+dqdiv469 divide 3e0 200e-2 -> 1.5
+dqdiv470 divide 30e-1 200e-2 -> 1.5
+dqdiv471 divide 300e-2 200e-2 -> 1.5
+dqdiv472 divide 3000e-3 200e-2 -> 1.5
+dqdiv473 divide 3e0 2000e-3 -> 1.5
+dqdiv474 divide 30e-1 2000e-3 -> 1.5
+dqdiv475 divide 300e-2 2000e-3 -> 1.5
+dqdiv476 divide 3000e-3 2000e-3 -> 1.5
+
+-- some reciprocals
+dqdiv480 divide 1 1.0E+33 -> 1E-33
+dqdiv481 divide 1 10E+33 -> 1E-34
+dqdiv482 divide 1 1.0E-33 -> 1E+33
+dqdiv483 divide 1 10E-33 -> 1E+32
+
+-- RMS discussion table
+dqdiv484 divide 0e5 1e3 -> 0E+2
+dqdiv485 divide 0e5 2e3 -> 0E+2
+dqdiv486 divide 0e5 10e2 -> 0E+3
+dqdiv487 divide 0e5 20e2 -> 0E+3
+dqdiv488 divide 0e5 100e1 -> 0E+4
+dqdiv489 divide 0e5 200e1 -> 0E+4
+
+dqdiv491 divide 1e5 1e3 -> 1E+2
+dqdiv492 divide 1e5 2e3 -> 5E+1
+dqdiv493 divide 1e5 10e2 -> 1E+2
+dqdiv494 divide 1e5 20e2 -> 5E+1
+dqdiv495 divide 1e5 100e1 -> 1E+2
+dqdiv496 divide 1e5 200e1 -> 5E+1
+
+-- tryzeros cases
+rounding: half_up
+dqdiv497 divide 0E+6108 1000E-33 -> 0E+6111 Clamped
+dqdiv498 divide 0E-6170 1000E+33 -> 0E-6176 Clamped
+
+rounding: half_up
+
+-- focus on trailing zeros issues
+dqdiv500 divide 1 9.9 -> 0.1010101010101010101010101010101010 Inexact Rounded
+dqdiv501 divide 1 9.09 -> 0.1100110011001100110011001100110011 Inexact Rounded
+dqdiv502 divide 1 9.009 -> 0.1110001110001110001110001110001110 Inexact Rounded
+
+dqdiv511 divide 1 2 -> 0.5
+dqdiv512 divide 1.0 2 -> 0.5
+dqdiv513 divide 1.00 2 -> 0.50
+dqdiv514 divide 1.000 2 -> 0.500
+dqdiv515 divide 1.0000 2 -> 0.5000
+dqdiv516 divide 1.00000 2 -> 0.50000
+dqdiv517 divide 1.000000 2 -> 0.500000
+dqdiv518 divide 1.0000000 2 -> 0.5000000
+dqdiv519 divide 1.00 2.00 -> 0.5
+
+dqdiv521 divide 2 1 -> 2
+dqdiv522 divide 2 1.0 -> 2
+dqdiv523 divide 2 1.00 -> 2
+dqdiv524 divide 2 1.000 -> 2
+dqdiv525 divide 2 1.0000 -> 2
+dqdiv526 divide 2 1.00000 -> 2
+dqdiv527 divide 2 1.000000 -> 2
+dqdiv528 divide 2 1.0000000 -> 2
+dqdiv529 divide 2.00 1.00 -> 2
+
+dqdiv530 divide 2.40 2 -> 1.20
+dqdiv531 divide 2.40 4 -> 0.60
+dqdiv532 divide 2.40 10 -> 0.24
+dqdiv533 divide 2.40 2.0 -> 1.2
+dqdiv534 divide 2.40 4.0 -> 0.6
+dqdiv535 divide 2.40 10.0 -> 0.24
+dqdiv536 divide 2.40 2.00 -> 1.2
+dqdiv537 divide 2.40 4.00 -> 0.6
+dqdiv538 divide 2.40 10.00 -> 0.24
+dqdiv539 divide 0.9 0.1 -> 9
+dqdiv540 divide 0.9 0.01 -> 9E+1
+dqdiv541 divide 0.9 0.001 -> 9E+2
+dqdiv542 divide 5 2 -> 2.5
+dqdiv543 divide 5 2.0 -> 2.5
+dqdiv544 divide 5 2.00 -> 2.5
+dqdiv545 divide 5 20 -> 0.25
+dqdiv546 divide 5 20.0 -> 0.25
+dqdiv547 divide 2.400 2 -> 1.200
+dqdiv548 divide 2.400 2.0 -> 1.20
+dqdiv549 divide 2.400 2.400 -> 1
+
+dqdiv550 divide 240 1 -> 240
+dqdiv551 divide 240 10 -> 24
+dqdiv552 divide 240 100 -> 2.4
+dqdiv553 divide 240 1000 -> 0.24
+dqdiv554 divide 2400 1 -> 2400
+dqdiv555 divide 2400 10 -> 240
+dqdiv556 divide 2400 100 -> 24
+dqdiv557 divide 2400 1000 -> 2.4
+
+-- +ve exponent
+dqdiv600 divide 2.4E+9 2 -> 1.2E+9
+dqdiv601 divide 2.40E+9 2 -> 1.20E+9
+dqdiv602 divide 2.400E+9 2 -> 1.200E+9
+dqdiv603 divide 2.4000E+9 2 -> 1.2000E+9
+dqdiv604 divide 24E+8 2 -> 1.2E+9
+dqdiv605 divide 240E+7 2 -> 1.20E+9
+dqdiv606 divide 2400E+6 2 -> 1.200E+9
+dqdiv607 divide 24000E+5 2 -> 1.2000E+9
+
+-- more zeros, etc.
+dqdiv731 divide 5.00 1E-3 -> 5.00E+3
+dqdiv732 divide 00.00 0.000 -> NaN Division_undefined
+dqdiv733 divide 00.00 0E-3 -> NaN Division_undefined
+dqdiv734 divide 0 -0 -> NaN Division_undefined
+dqdiv735 divide -0 0 -> NaN Division_undefined
+dqdiv736 divide -0 -0 -> NaN Division_undefined
+
+dqdiv741 divide 0 -1 -> -0
+dqdiv742 divide -0 -1 -> 0
+dqdiv743 divide 0 1 -> 0
+dqdiv744 divide -0 1 -> -0
+dqdiv745 divide -1 0 -> -Infinity Division_by_zero
+dqdiv746 divide -1 -0 -> Infinity Division_by_zero
+dqdiv747 divide 1 0 -> Infinity Division_by_zero
+dqdiv748 divide 1 -0 -> -Infinity Division_by_zero
+
+dqdiv751 divide 0.0 -1 -> -0.0
+dqdiv752 divide -0.0 -1 -> 0.0
+dqdiv753 divide 0.0 1 -> 0.0
+dqdiv754 divide -0.0 1 -> -0.0
+dqdiv755 divide -1.0 0 -> -Infinity Division_by_zero
+dqdiv756 divide -1.0 -0 -> Infinity Division_by_zero
+dqdiv757 divide 1.0 0 -> Infinity Division_by_zero
+dqdiv758 divide 1.0 -0 -> -Infinity Division_by_zero
+
+dqdiv761 divide 0 -1.0 -> -0E+1
+dqdiv762 divide -0 -1.0 -> 0E+1
+dqdiv763 divide 0 1.0 -> 0E+1
+dqdiv764 divide -0 1.0 -> -0E+1
+dqdiv765 divide -1 0.0 -> -Infinity Division_by_zero
+dqdiv766 divide -1 -0.0 -> Infinity Division_by_zero
+dqdiv767 divide 1 0.0 -> Infinity Division_by_zero
+dqdiv768 divide 1 -0.0 -> -Infinity Division_by_zero
+
+dqdiv771 divide 0.0 -1.0 -> -0
+dqdiv772 divide -0.0 -1.0 -> 0
+dqdiv773 divide 0.0 1.0 -> 0
+dqdiv774 divide -0.0 1.0 -> -0
+dqdiv775 divide -1.0 0.0 -> -Infinity Division_by_zero
+dqdiv776 divide -1.0 -0.0 -> Infinity Division_by_zero
+dqdiv777 divide 1.0 0.0 -> Infinity Division_by_zero
+dqdiv778 divide 1.0 -0.0 -> -Infinity Division_by_zero
+
+-- Specials
+dqdiv780 divide Inf -Inf -> NaN Invalid_operation
+dqdiv781 divide Inf -1000 -> -Infinity
+dqdiv782 divide Inf -1 -> -Infinity
+dqdiv783 divide Inf -0 -> -Infinity
+dqdiv784 divide Inf 0 -> Infinity
+dqdiv785 divide Inf 1 -> Infinity
+dqdiv786 divide Inf 1000 -> Infinity
+dqdiv787 divide Inf Inf -> NaN Invalid_operation
+dqdiv788 divide -1000 Inf -> -0E-6176 Clamped
+dqdiv789 divide -Inf Inf -> NaN Invalid_operation
+dqdiv790 divide -1 Inf -> -0E-6176 Clamped
+dqdiv791 divide -0 Inf -> -0E-6176 Clamped
+dqdiv792 divide 0 Inf -> 0E-6176 Clamped
+dqdiv793 divide 1 Inf -> 0E-6176 Clamped
+dqdiv794 divide 1000 Inf -> 0E-6176 Clamped
+dqdiv795 divide Inf Inf -> NaN Invalid_operation
+
+dqdiv800 divide -Inf -Inf -> NaN Invalid_operation
+dqdiv801 divide -Inf -1000 -> Infinity
+dqdiv802 divide -Inf -1 -> Infinity
+dqdiv803 divide -Inf -0 -> Infinity
+dqdiv804 divide -Inf 0 -> -Infinity
+dqdiv805 divide -Inf 1 -> -Infinity
+dqdiv806 divide -Inf 1000 -> -Infinity
+dqdiv807 divide -Inf Inf -> NaN Invalid_operation
+dqdiv808 divide -1000 Inf -> -0E-6176 Clamped
+dqdiv809 divide -Inf -Inf -> NaN Invalid_operation
+dqdiv810 divide -1 -Inf -> 0E-6176 Clamped
+dqdiv811 divide -0 -Inf -> 0E-6176 Clamped
+dqdiv812 divide 0 -Inf -> -0E-6176 Clamped
+dqdiv813 divide 1 -Inf -> -0E-6176 Clamped
+dqdiv814 divide 1000 -Inf -> -0E-6176 Clamped
+dqdiv815 divide Inf -Inf -> NaN Invalid_operation
+
+dqdiv821 divide NaN -Inf -> NaN
+dqdiv822 divide NaN -1000 -> NaN
+dqdiv823 divide NaN -1 -> NaN
+dqdiv824 divide NaN -0 -> NaN
+dqdiv825 divide NaN 0 -> NaN
+dqdiv826 divide NaN 1 -> NaN
+dqdiv827 divide NaN 1000 -> NaN
+dqdiv828 divide NaN Inf -> NaN
+dqdiv829 divide NaN NaN -> NaN
+dqdiv830 divide -Inf NaN -> NaN
+dqdiv831 divide -1000 NaN -> NaN
+dqdiv832 divide -1 NaN -> NaN
+dqdiv833 divide -0 NaN -> NaN
+dqdiv834 divide 0 NaN -> NaN
+dqdiv835 divide 1 NaN -> NaN
+dqdiv836 divide 1000 NaN -> NaN
+dqdiv837 divide Inf NaN -> NaN
+
+dqdiv841 divide sNaN -Inf -> NaN Invalid_operation
+dqdiv842 divide sNaN -1000 -> NaN Invalid_operation
+dqdiv843 divide sNaN -1 -> NaN Invalid_operation
+dqdiv844 divide sNaN -0 -> NaN Invalid_operation
+dqdiv845 divide sNaN 0 -> NaN Invalid_operation
+dqdiv846 divide sNaN 1 -> NaN Invalid_operation
+dqdiv847 divide sNaN 1000 -> NaN Invalid_operation
+dqdiv848 divide sNaN NaN -> NaN Invalid_operation
+dqdiv849 divide sNaN sNaN -> NaN Invalid_operation
+dqdiv850 divide NaN sNaN -> NaN Invalid_operation
+dqdiv851 divide -Inf sNaN -> NaN Invalid_operation
+dqdiv852 divide -1000 sNaN -> NaN Invalid_operation
+dqdiv853 divide -1 sNaN -> NaN Invalid_operation
+dqdiv854 divide -0 sNaN -> NaN Invalid_operation
+dqdiv855 divide 0 sNaN -> NaN Invalid_operation
+dqdiv856 divide 1 sNaN -> NaN Invalid_operation
+dqdiv857 divide 1000 sNaN -> NaN Invalid_operation
+dqdiv858 divide Inf sNaN -> NaN Invalid_operation
+dqdiv859 divide NaN sNaN -> NaN Invalid_operation
+
+-- propagating NaNs
+dqdiv861 divide NaN9 -Inf -> NaN9
+dqdiv862 divide NaN8 1000 -> NaN8
+dqdiv863 divide NaN7 Inf -> NaN7
+dqdiv864 divide NaN6 NaN5 -> NaN6
+dqdiv865 divide -Inf NaN4 -> NaN4
+dqdiv866 divide -1000 NaN3 -> NaN3
+dqdiv867 divide Inf NaN2 -> NaN2
+
+dqdiv871 divide sNaN99 -Inf -> NaN99 Invalid_operation
+dqdiv872 divide sNaN98 -1 -> NaN98 Invalid_operation
+dqdiv873 divide sNaN97 NaN -> NaN97 Invalid_operation
+dqdiv874 divide sNaN96 sNaN94 -> NaN96 Invalid_operation
+dqdiv875 divide NaN95 sNaN93 -> NaN93 Invalid_operation
+dqdiv876 divide -Inf sNaN92 -> NaN92 Invalid_operation
+dqdiv877 divide 0 sNaN91 -> NaN91 Invalid_operation
+dqdiv878 divide Inf sNaN90 -> NaN90 Invalid_operation
+dqdiv879 divide NaN sNaN89 -> NaN89 Invalid_operation
+
+dqdiv881 divide -NaN9 -Inf -> -NaN9
+dqdiv882 divide -NaN8 1000 -> -NaN8
+dqdiv883 divide -NaN7 Inf -> -NaN7
+dqdiv884 divide -NaN6 -NaN5 -> -NaN6
+dqdiv885 divide -Inf -NaN4 -> -NaN4
+dqdiv886 divide -1000 -NaN3 -> -NaN3
+dqdiv887 divide Inf -NaN2 -> -NaN2
+
+dqdiv891 divide -sNaN99 -Inf -> -NaN99 Invalid_operation
+dqdiv892 divide -sNaN98 -1 -> -NaN98 Invalid_operation
+dqdiv893 divide -sNaN97 NaN -> -NaN97 Invalid_operation
+dqdiv894 divide -sNaN96 -sNaN94 -> -NaN96 Invalid_operation
+dqdiv895 divide -NaN95 -sNaN93 -> -NaN93 Invalid_operation
+dqdiv896 divide -Inf -sNaN92 -> -NaN92 Invalid_operation
+dqdiv897 divide 0 -sNaN91 -> -NaN91 Invalid_operation
+dqdiv898 divide Inf -sNaN90 -> -NaN90 Invalid_operation
+dqdiv899 divide -NaN -sNaN89 -> -NaN89 Invalid_operation
+
+-- Various flavours of divide by 0
+dqdiv901 divide 0 0 -> NaN Division_undefined
+dqdiv902 divide 0.0E5 0 -> NaN Division_undefined
+dqdiv903 divide 0.000 0 -> NaN Division_undefined
+dqdiv904 divide 0.0001 0 -> Infinity Division_by_zero
+dqdiv905 divide 0.01 0 -> Infinity Division_by_zero
+dqdiv906 divide 0.1 0 -> Infinity Division_by_zero
+dqdiv907 divide 1 0 -> Infinity Division_by_zero
+dqdiv908 divide 1 0.0 -> Infinity Division_by_zero
+dqdiv909 divide 10 0.0 -> Infinity Division_by_zero
+dqdiv910 divide 1E+100 0.0 -> Infinity Division_by_zero
+dqdiv911 divide 1E+100 0 -> Infinity Division_by_zero
+
+dqdiv921 divide -0.0001 0 -> -Infinity Division_by_zero
+dqdiv922 divide -0.01 0 -> -Infinity Division_by_zero
+dqdiv923 divide -0.1 0 -> -Infinity Division_by_zero
+dqdiv924 divide -1 0 -> -Infinity Division_by_zero
+dqdiv925 divide -1 0.0 -> -Infinity Division_by_zero
+dqdiv926 divide -10 0.0 -> -Infinity Division_by_zero
+dqdiv927 divide -1E+100 0.0 -> -Infinity Division_by_zero
+dqdiv928 divide -1E+100 0 -> -Infinity Division_by_zero
+
+dqdiv931 divide 0.0001 -0 -> -Infinity Division_by_zero
+dqdiv932 divide 0.01 -0 -> -Infinity Division_by_zero
+dqdiv933 divide 0.1 -0 -> -Infinity Division_by_zero
+dqdiv934 divide 1 -0 -> -Infinity Division_by_zero
+dqdiv935 divide 1 -0.0 -> -Infinity Division_by_zero
+dqdiv936 divide 10 -0.0 -> -Infinity Division_by_zero
+dqdiv937 divide 1E+100 -0.0 -> -Infinity Division_by_zero
+dqdiv938 divide 1E+100 -0 -> -Infinity Division_by_zero
+
+dqdiv941 divide -0.0001 -0 -> Infinity Division_by_zero
+dqdiv942 divide -0.01 -0 -> Infinity Division_by_zero
+dqdiv943 divide -0.1 -0 -> Infinity Division_by_zero
+dqdiv944 divide -1 -0 -> Infinity Division_by_zero
+dqdiv945 divide -1 -0.0 -> Infinity Division_by_zero
+dqdiv946 divide -10 -0.0 -> Infinity Division_by_zero
+dqdiv947 divide -1E+100 -0.0 -> Infinity Division_by_zero
+dqdiv948 divide -1E+100 -0 -> Infinity Division_by_zero
+
+-- Examples from SQL proposal (Krishna Kulkarni)
+dqdiv1021 divide 1E0 1E0 -> 1
+dqdiv1022 divide 1E0 2E0 -> 0.5
+dqdiv1023 divide 1E0 3E0 -> 0.3333333333333333333333333333333333 Inexact Rounded
+dqdiv1024 divide 100E-2 1000E-3 -> 1
+dqdiv1025 divide 24E-1 2E0 -> 1.2
+dqdiv1026 divide 2400E-3 2E0 -> 1.200
+dqdiv1027 divide 5E0 2E0 -> 2.5
+dqdiv1028 divide 5E0 20E-1 -> 2.5
+dqdiv1029 divide 5E0 2000E-3 -> 2.5
+dqdiv1030 divide 5E0 2E-1 -> 25
+dqdiv1031 divide 5E0 20E-2 -> 25
+dqdiv1032 divide 480E-2 3E0 -> 1.60
+dqdiv1033 divide 47E-1 2E0 -> 2.35
+
+-- ECMAScript bad examples
+rounding: half_down
+dqdiv1040 divide 5 9 -> 0.5555555555555555555555555555555556 Inexact Rounded
+rounding: half_even
+dqdiv1041 divide 6 11 -> 0.5454545454545454545454545454545455 Inexact Rounded
+
+-- Gyuris example
+dqdiv1050 divide 8.336804418094040989630006819881709E-6143 8.336804418094040989630006819889000E-6143 -> 0.9999999999999999999999999999991254 Inexact Rounded
+
+-- overflow and underflow tests .. note subnormal results
+-- signs
+dqdiv1751 divide 1e+4277 1e-3311 -> Infinity Overflow Inexact Rounded
+dqdiv1752 divide 1e+4277 -1e-3311 -> -Infinity Overflow Inexact Rounded
+dqdiv1753 divide -1e+4277 1e-3311 -> -Infinity Overflow Inexact Rounded
+dqdiv1754 divide -1e+4277 -1e-3311 -> Infinity Overflow Inexact Rounded
+dqdiv1755 divide 1e-4277 1e+3311 -> 0E-6176 Underflow Subnormal Inexact Rounded Clamped
+dqdiv1756 divide 1e-4277 -1e+3311 -> -0E-6176 Underflow Subnormal Inexact Rounded Clamped
+dqdiv1757 divide -1e-4277 1e+3311 -> -0E-6176 Underflow Subnormal Inexact Rounded Clamped
+dqdiv1758 divide -1e-4277 -1e+3311 -> 0E-6176 Underflow Subnormal Inexact Rounded Clamped
+
+-- 'subnormal' boundary (all hard underflow or overflow in base arithemtic)
+dqdiv1760 divide 1e-6069 1e+101 -> 1E-6170 Subnormal
+dqdiv1761 divide 1e-6069 1e+102 -> 1E-6171 Subnormal
+dqdiv1762 divide 1e-6069 1e+103 -> 1E-6172 Subnormal
+dqdiv1763 divide 1e-6069 1e+104 -> 1E-6173 Subnormal
+dqdiv1764 divide 1e-6069 1e+105 -> 1E-6174 Subnormal
+dqdiv1765 divide 1e-6069 1e+106 -> 1E-6175 Subnormal
+dqdiv1766 divide 1e-6069 1e+107 -> 1E-6176 Subnormal
+dqdiv1767 divide 1e-6069 1e+108 -> 0E-6176 Underflow Subnormal Inexact Rounded Clamped
+dqdiv1768 divide 1e-6069 1e+109 -> 0E-6176 Underflow Subnormal Inexact Rounded Clamped
+dqdiv1769 divide 1e-6069 1e+110 -> 0E-6176 Underflow Subnormal Inexact Rounded Clamped
+-- [no equivalent of 'subnormal' for overflow]
+dqdiv1770 divide 1e+40 1e-6101 -> 1.000000000000000000000000000000E+6141 Clamped
+dqdiv1771 divide 1e+40 1e-6102 -> 1.0000000000000000000000000000000E+6142 Clamped
+dqdiv1772 divide 1e+40 1e-6103 -> 1.00000000000000000000000000000000E+6143 Clamped
+dqdiv1773 divide 1e+40 1e-6104 -> 1.000000000000000000000000000000000E+6144 Clamped
+dqdiv1774 divide 1e+40 1e-6105 -> Infinity Overflow Inexact Rounded
+dqdiv1775 divide 1e+40 1e-6106 -> Infinity Overflow Inexact Rounded
+dqdiv1776 divide 1e+40 1e-6107 -> Infinity Overflow Inexact Rounded
+dqdiv1777 divide 1e+40 1e-6108 -> Infinity Overflow Inexact Rounded
+dqdiv1778 divide 1e+40 1e-6109 -> Infinity Overflow Inexact Rounded
+dqdiv1779 divide 1e+40 1e-6110 -> Infinity Overflow Inexact Rounded
+
+dqdiv1801 divide 1.0000E-6172 1 -> 1.0000E-6172 Subnormal
+dqdiv1802 divide 1.000E-6172 1e+1 -> 1.000E-6173 Subnormal
+dqdiv1803 divide 1.00E-6172 1e+2 -> 1.00E-6174 Subnormal
+dqdiv1804 divide 1.0E-6172 1e+3 -> 1.0E-6175 Subnormal
+dqdiv1805 divide 1.0E-6172 1e+4 -> 1E-6176 Subnormal Rounded
+dqdiv1806 divide 1.3E-6172 1e+4 -> 1E-6176 Underflow Subnormal Inexact Rounded
+dqdiv1807 divide 1.5E-6172 1e+4 -> 2E-6176 Underflow Subnormal Inexact Rounded
+dqdiv1808 divide 1.7E-6172 1e+4 -> 2E-6176 Underflow Subnormal Inexact Rounded
+dqdiv1809 divide 2.3E-6172 1e+4 -> 2E-6176 Underflow Subnormal Inexact Rounded
+dqdiv1810 divide 2.5E-6172 1e+4 -> 2E-6176 Underflow Subnormal Inexact Rounded
+dqdiv1811 divide 2.7E-6172 1e+4 -> 3E-6176 Underflow Subnormal Inexact Rounded
+dqdiv1812 divide 1.49E-6172 1e+4 -> 1E-6176 Underflow Subnormal Inexact Rounded
+dqdiv1813 divide 1.50E-6172 1e+4 -> 2E-6176 Underflow Subnormal Inexact Rounded
+dqdiv1814 divide 1.51E-6172 1e+4 -> 2E-6176 Underflow Subnormal Inexact Rounded
+dqdiv1815 divide 2.49E-6172 1e+4 -> 2E-6176 Underflow Subnormal Inexact Rounded
+dqdiv1816 divide 2.50E-6172 1e+4 -> 2E-6176 Underflow Subnormal Inexact Rounded
+dqdiv1817 divide 2.51E-6172 1e+4 -> 3E-6176 Underflow Subnormal Inexact Rounded
+
+dqdiv1818 divide 1E-6172 1e+4 -> 1E-6176 Subnormal
+dqdiv1819 divide 3E-6172 1e+5 -> 0E-6176 Underflow Subnormal Inexact Rounded Clamped
+dqdiv1820 divide 5E-6172 1e+5 -> 0E-6176 Underflow Subnormal Inexact Rounded Clamped
+dqdiv1821 divide 7E-6172 1e+5 -> 1E-6176 Underflow Subnormal Inexact Rounded
+dqdiv1822 divide 9E-6172 1e+5 -> 1E-6176 Underflow Subnormal Inexact Rounded
+dqdiv1823 divide 9.9E-6172 1e+5 -> 1E-6176 Underflow Subnormal Inexact Rounded
+
+dqdiv1824 divide 1E-6172 -1e+4 -> -1E-6176 Subnormal
+dqdiv1825 divide 3E-6172 -1e+5 -> -0E-6176 Underflow Subnormal Inexact Rounded Clamped
+dqdiv1826 divide -5E-6172 1e+5 -> -0E-6176 Underflow Subnormal Inexact Rounded Clamped
+dqdiv1827 divide 7E-6172 -1e+5 -> -1E-6176 Underflow Subnormal Inexact Rounded
+dqdiv1828 divide -9E-6172 1e+5 -> -1E-6176 Underflow Subnormal Inexact Rounded
+dqdiv1829 divide 9.9E-6172 -1e+5 -> -1E-6176 Underflow Subnormal Inexact Rounded
+dqdiv1830 divide 3.0E-6172 -1e+5 -> -0E-6176 Underflow Subnormal Inexact Rounded Clamped
+
+dqdiv1831 divide 1.0E-5977 1e+200 -> 0E-6176 Underflow Subnormal Inexact Rounded Clamped
+dqdiv1832 divide 1.0E-5977 1e+199 -> 1E-6176 Subnormal Rounded
+dqdiv1833 divide 1.0E-5977 1e+198 -> 1.0E-6175 Subnormal
+dqdiv1834 divide 2.0E-5977 2e+198 -> 1.0E-6175 Subnormal
+dqdiv1835 divide 4.0E-5977 4e+198 -> 1.0E-6175 Subnormal
+dqdiv1836 divide 10.0E-5977 10e+198 -> 1.0E-6175 Subnormal
+dqdiv1837 divide 30.0E-5977 30e+198 -> 1.0E-6175 Subnormal
+dqdiv1838 divide 40.0E-5982 40e+166 -> 1.0E-6148 Subnormal
+dqdiv1839 divide 40.0E-5982 40e+165 -> 1.0E-6147 Subnormal
+dqdiv1840 divide 40.0E-5982 40e+164 -> 1.0E-6146 Subnormal
+
+-- randoms
+rounding: half_even
+dqdiv2010 divide -5231195652931651968034356117118850 -7243718664422548573203260970.34995 -> 722169.9095831284624736051460550680 Inexact Rounded
+dqdiv2011 divide -89584669773927.82711237350022515352 -42077943728529635884.21142627532985 -> 0.000002129017291146471565928125887527266 Inexact Rounded
+dqdiv2012 divide -2.828201693360723203806974891946180E-232 812596541221823960386384403089240.9 -> -3.480450075640521320040055759125120E-265 Inexact Rounded
+dqdiv2013 divide -6442775372761069267502937539408720 24904085056.69185465145182606089196 -> -258703556388226463687701.4884719589 Inexact Rounded
+dqdiv2014 divide 5.535520011272625629610079879714705 -44343664650.57203052003068113531208 -> -1.248322630728089308975940533493562E-10 Inexact Rounded
+dqdiv2015 divide 65919273712517865964325.99419625010 -314733354141381737378622515.7789054 -> -0.0002094448295521490616379784758911632 Inexact Rounded
+dqdiv2016 divide -7.779172568193197107115275140431129E+759 -140453015639.3988987652895178782143 -> 5.538629792161641534962774244238115E+748 Inexact Rounded
+dqdiv2017 divide 644314832597569.0181226067518178797 -115024585257425.1635759521565201075 -> -5.601540150356479257367687450922795 Inexact Rounded
+dqdiv2018 divide 6.898640941579611450676592553286870E-47 -11272429881407851485163914999.25943 -> -6.119923578285338689371137648319280E-75 Inexact Rounded
+dqdiv2019 divide -3591344544888727133.30819750163254 5329395.423792795661446561090331037 -> -673874662941.1968525589460533725290 Inexact Rounded
+dqdiv2020 divide -7.682356781384631313156462724425838E+747 -6.60375855512219057281922141809940E+703 -> 1.163330960279556016678379128875149E+44 Inexact Rounded
+dqdiv2021 divide -4511495596596941820863224.274679699 3365395017.263329795449661616090724 -> -1340554548115304.904166888018346299 Inexact Rounded
+dqdiv2022 divide 5.211164127840931517263639608151299 164.5566381356276567012533847006453 -> 0.03166790587655228864478260157156510 Inexact Rounded
+dqdiv2023 divide -49891.2243893458830384077684620383 -47179.9312961860747554053371171530 -> 1.057467084386767291602189656430268 Inexact Rounded
+dqdiv2024 divide 15065477.47214268488077415462413353 4366211.120892953261309529740552596 -> 3.450469309661227984244545513441359 Inexact Rounded
+dqdiv2025 divide 1.575670269440761846109602429612644E+370 653199649324740300.006185482643439 -> 2.412233795700359170904588548041481E+352 Inexact Rounded
+dqdiv2026 divide -2112422311733448924573432192.620145 -80067206.03590693153848215848613406 -> 26383115089417660175.20102646756574 Inexact Rounded
+dqdiv2027 divide -67096536051279809.32218611548721839 -869685412881941081664251990181.1049 -> 7.715035236584805921278566365231168E-14 Inexact Rounded
+dqdiv2028 divide -58612908548962047.21866913425488972 -978449597531.3873665583475633831644 -> 59903.86085991703091236507859837023 Inexact Rounded
+dqdiv2029 divide -133032412010942.1476864138213319796 -7.882059293498670705446528648201359E-428 -> 1.687787506504433064549515681693715E+441 Inexact Rounded
+dqdiv2030 divide 1.83746698338966029492299716360513E+977 -9.897926608979649951672839879128603E+154 -> -1.856416051542212552042390218062458E+822 Inexact Rounded
+dqdiv2031 divide -113742475841399236307128962.1507063 8298602.203049834732657567965262989 -> -13706221006665137826.16557393919929 Inexact Rounded
+dqdiv2032 divide 196.4787574650754152995941808331862 929.6553388472318094427422117172394 -> 0.2113458066176526651006917922814018 Inexact Rounded
+dqdiv2033 divide 71931221465.43867996282803628130350 3838685934206426257090718.402248853 -> 1.873850132527423413607199513324021E-14 Inexact Rounded
+dqdiv2034 divide 488.4282502289651653783596246312885 -80.68940956806634280078706577953188 -> -6.053189047280693318844801899473272 Inexact Rounded
+dqdiv2035 divide 9.001764344963921754981762913247394E-162 -8.585540973667205753734967645386919E-729 -> -1.048479574271827326396012573232934E+567 Inexact Rounded
+dqdiv2036 divide -7.404133959409894743706402857145471E-828 -51.38159929460289711134684843086265 -> 1.441008855516029461032061785219773E-829 Inexact Rounded
+dqdiv2037 divide 2.967520235574419794048994436040717E-613 -6252513855.91394894949879262731889 -> -4.746123405656409127572998751885338E-623 Inexact Rounded
+dqdiv2038 divide -18826852654824040505.83920366765051 -6336924877942437992590557460147340 -> 2.970976146546494669807886278519194E-15 Inexact Rounded
+dqdiv2039 divide -8.101406784809197604949584001735949E+561 4.823300306948942821076681658771635E+361 -> -1.679639721610839204738445747238987E+200 Inexact Rounded
+dqdiv2040 divide -6.11981977773094052331062585191723E+295 1.507610253755339328302779005586534E+238 -> -4.059285058911577244044418416044763E+57 Inexact Rounded
+dqdiv2041 divide 6.472638850046815880599220534274055E-596 -4.475233712083047516933911786159972 -> -1.446324207062261745520496475778879E-596 Inexact Rounded
+dqdiv2042 divide -84438593330.71277839631144509397112 -586684596204401664208947.4054879633 -> 1.439250218550041228759983937772504E-13 Inexact Rounded
+dqdiv2043 divide 9.354533233294022616695815656704369E-24 405.500390626135304252144163591746 -> 2.306911028827774549740571229736198E-26 Inexact Rounded
+dqdiv2044 divide 985606423350210.7374876650149957881 -36811563697.41925681866694859828794 -> -26774.36990864119445335813354717711 Inexact Rounded
+dqdiv2045 divide -8.187280774177715706278002247766311E-123 -38784124393.91212870828430001300068 -> 2.110987653356139147357240727794365E-133 Inexact Rounded
+dqdiv2046 divide -4.612203126350070903459245798371657E+912 7.971562182727956290901984736800519E+64 -> -5.785820922708683237098826662769748E+847 Inexact Rounded
+dqdiv2047 divide 4.661015909421485298247928967977089E+888 -6.360911253323922338737311563845581E+388 -> -7.327591478321365980156654539638836E+499 Inexact Rounded
+dqdiv2048 divide 9156078172903.257500003260710833030 7.189796653262147139071634237964074E-90 -> 1.273482215766000994365201545096026E+102 Inexact Rounded
+dqdiv2049 divide -1.710722303327476586373477781276586E-311 -3167561628260156837329323.729380695 -> 5.400754599578613984875752958645655E-336 Inexact Rounded
+dqdiv2050 divide -4.647935210881806238321616345413021E-878 209388.5431867744648177308460639582 -> -2.219765771394593733140494297388140E-883 Inexact Rounded
+dqdiv2051 divide 5958.694728395760992719084781582700 4.541510156564315632536353171846096E-746 -> 1.312051393253638664947852693005480E+749 Inexact Rounded
+dqdiv2052 divide -7.935732544649702175256699886872093E-489 -7.433329073664793138998765647467971E+360 -> 1.067587949626076917672271619664656E-849 Inexact Rounded
+dqdiv2053 divide -2746650864601157.863589959939901350 7.016684945507647528907184694359598E+548 -> -3.914456593009309529351254950429932E-534 Inexact Rounded
+dqdiv2054 divide 3605149408631197365447953.994569178 -75614025825649082.78264864428237833 -> -47678315.88472693507060063188020532 Inexact Rounded
+dqdiv2055 divide 788194320921798404906375214.196349 -6.222718148433247384932573401976337E-418 -> -1.266639918634671803982222244977287E+444 Inexact Rounded
+dqdiv2056 divide 5620722730534752.758208943447603211 6.843552841168538319123000917657759E-139 -> 8.213164800485434666629970443739554E+153 Inexact Rounded
+dqdiv2057 divide 7304534676713703938102.403949019402 -576169.3685010935108153023803590835 -> -12677756014201995.31969237144394772 Inexact Rounded
+dqdiv2058 divide 8067918762.134621639254916786945547 -8.774771480055536009105596163864758E+954 -> -9.194448858836332156766764605125245E-946 Inexact Rounded
+dqdiv2059 divide 8.702093454123046507578256899537563E-324 -5.875399733016018404580201176576293E-401 -> -1.481106622452052581470443526957335E+77 Inexact Rounded
+dqdiv2060 divide -41426.01662518451861386352415092356 90.00146621684478300510769802013464 -> -460.2815750287318692732067709176200 Inexact Rounded
+
+-- random divide tests with result near 1
+dqdiv4001 divide 2003100352770753969878925664524900 2003100352770753969878925664497824 -> 1.000000000000000000000000000013517 Inexact Rounded
+dqdiv4002 divide 4817785793916490652579552318371645 4817785793916490652579552318362097 -> 1.000000000000000000000000000001982 Inexact Rounded
+dqdiv4003 divide 8299187410920067325648068439560282 8299187410920067325648068439591159 -> 0.9999999999999999999999999999962795 Inexact Rounded
+dqdiv4004 divide 5641088455897407044544461785365899 5641088455897407044544461785389965 -> 0.9999999999999999999999999999957338 Inexact Rounded
+dqdiv4005 divide 5752274694706545359326361313490424 5752274694706545359326361313502723 -> 0.9999999999999999999999999999978619 Inexact Rounded
+dqdiv4006 divide 6762079477373670594829319346099665 6762079477373670594829319346132579 -> 0.9999999999999999999999999999951326 Inexact Rounded
+dqdiv4007 divide 7286425153691890341633023222602916 7286425153691890341633023222606556 -> 0.9999999999999999999999999999995004 Inexact Rounded
+dqdiv4008 divide 9481233991901305727648306421946655 9481233991901305727648306421919124 -> 1.000000000000000000000000000002904 Inexact Rounded
+dqdiv4009 divide 4282053941893951742029444065614311 4282053941893951742029444065583077 -> 1.000000000000000000000000000007294 Inexact Rounded
+dqdiv4010 divide 626888225441250639741781850338695 626888225441250639741781850327299 -> 1.000000000000000000000000000018179 Inexact Rounded
+dqdiv4011 divide 3860973649222028009456598604468547 3860973649222028009456598604476849 -> 0.9999999999999999999999999999978498 Inexact Rounded
+dqdiv4012 divide 4753157080127468127908060607821839 4753157080127468127908060607788379 -> 1.000000000000000000000000000007040 Inexact Rounded
+dqdiv4013 divide 552448546203754062805706277880419 552448546203754062805706277881903 -> 0.9999999999999999999999999999973138 Inexact Rounded
+dqdiv4014 divide 8405954527952158455323713728917395 8405954527952158455323713728933866 -> 0.9999999999999999999999999999980406 Inexact Rounded
+dqdiv4015 divide 7554096502235321142555802238016116 7554096502235321142555802238026546 -> 0.9999999999999999999999999999986193 Inexact Rounded
+dqdiv4016 divide 4053257674127518606871054934746782 4053257674127518606871054934767355 -> 0.9999999999999999999999999999949243 Inexact Rounded
+dqdiv4017 divide 7112419420755090454716888844011582 7112419420755090454716888844038105 -> 0.9999999999999999999999999999962709 Inexact Rounded
+dqdiv4018 divide 3132302137520072728164549730911846 3132302137520072728164549730908416 -> 1.000000000000000000000000000001095 Inexact Rounded
+dqdiv4019 divide 4788374045841416355706715048161013 4788374045841416355706715048190077 -> 0.9999999999999999999999999999939303 Inexact Rounded
+dqdiv4020 divide 9466021636047630218238075099510597 9466021636047630218238075099484053 -> 1.000000000000000000000000000002804 Inexact Rounded
+dqdiv4021 divide 912742745646765625597399692138650 912742745646765625597399692139042 -> 0.9999999999999999999999999999995705 Inexact Rounded
+dqdiv4022 divide 9508402742933643208806264897188504 9508402742933643208806264897195973 -> 0.9999999999999999999999999999992145 Inexact Rounded
+dqdiv4023 divide 1186956795727233704962361914360895 1186956795727233704962361914329577 -> 1.000000000000000000000000000026385 Inexact Rounded
+dqdiv4024 divide 5972210268839014812696916170967938 5972210268839014812696916170954974 -> 1.000000000000000000000000000002171 Inexact Rounded
+dqdiv4025 divide 2303801625521619930894460139793140 2303801625521619930894460139799643 -> 0.9999999999999999999999999999971773 Inexact Rounded
+dqdiv4026 divide 6022231560002898264777393473966595 6022231560002898264777393473947198 -> 1.000000000000000000000000000003221 Inexact Rounded
+dqdiv4027 divide 8426148335801396199969346032210893 8426148335801396199969346032203179 -> 1.000000000000000000000000000000915 Inexact Rounded
+dqdiv4028 divide 8812278947028784637382847098411749 8812278947028784637382847098385317 -> 1.000000000000000000000000000002999 Inexact Rounded
+dqdiv4029 divide 8145282002348367383264197170116146 8145282002348367383264197170083988 -> 1.000000000000000000000000000003948 Inexact Rounded
+dqdiv4030 divide 6821577571876840153123510107387026 6821577571876840153123510107418008 -> 0.9999999999999999999999999999954582 Inexact Rounded
+dqdiv4031 divide 9018555319518966970480565482023720 9018555319518966970480565482013346 -> 1.000000000000000000000000000001150 Inexact Rounded
+dqdiv4032 divide 4602155712998228449640717252788864 4602155712998228449640717252818502 -> 0.9999999999999999999999999999935600 Inexact Rounded
+dqdiv4033 divide 6675607481522785614506828292264472 6675607481522785614506828292277100 -> 0.9999999999999999999999999999981083 Inexact Rounded
+dqdiv4034 divide 4015881516871833897766945836264472 4015881516871833897766945836262645 -> 1.000000000000000000000000000000455 Inexact Rounded
+dqdiv4035 divide 1415580205933411837595459716910365 1415580205933411837595459716880139 -> 1.000000000000000000000000000021352 Inexact Rounded
+dqdiv4036 divide 9432968297069542816752035276361552 9432968297069542816752035276353054 -> 1.000000000000000000000000000000901 Inexact Rounded
+dqdiv4037 divide 4799319591303848500532766682140658 4799319591303848500532766682172655 -> 0.9999999999999999999999999999933330 Inexact Rounded
+dqdiv4038 divide 316854270732839529790584284987472 316854270732839529790584285004832 -> 0.9999999999999999999999999999452114 Inexact Rounded
+dqdiv4039 divide 3598981300592490427826027975697415 3598981300592490427826027975686712 -> 1.000000000000000000000000000002974 Inexact Rounded
+dqdiv4040 divide 1664315435694461371155800682196520 1664315435694461371155800682195617 -> 1.000000000000000000000000000000543 Inexact Rounded
+dqdiv4041 divide 1680872316531128890102855316510581 1680872316531128890102855316495545 -> 1.000000000000000000000000000008945 Inexact Rounded
+dqdiv4042 divide 9881274879566405475755499281644730 9881274879566405475755499281615743 -> 1.000000000000000000000000000002934 Inexact Rounded
+dqdiv4043 divide 4737225957717466960447204232279216 4737225957717466960447204232277452 -> 1.000000000000000000000000000000372 Inexact Rounded
+dqdiv4044 divide 2482097379414867061213319346418288 2482097379414867061213319346387936 -> 1.000000000000000000000000000012228 Inexact Rounded
+dqdiv4045 divide 7406977595233762723576434122161868 7406977595233762723576434122189042 -> 0.9999999999999999999999999999963313 Inexact Rounded
+dqdiv4046 divide 228782057757566047086593281773577 228782057757566047086593281769727 -> 1.000000000000000000000000000016828 Inexact Rounded
+dqdiv4047 divide 2956594270240579648823270540367653 2956594270240579648823270540368556 -> 0.9999999999999999999999999999996946 Inexact Rounded
+dqdiv4048 divide 6326964098897620620534136767634340 6326964098897620620534136767619339 -> 1.000000000000000000000000000002371 Inexact Rounded
+dqdiv4049 divide 414586440456590215247002678327800 414586440456590215247002678316922 -> 1.000000000000000000000000000026238 Inexact Rounded
+dqdiv4050 divide 7364552208570039386220505636779125 7364552208570039386220505636803548 -> 0.9999999999999999999999999999966837 Inexact Rounded
+dqdiv4051 divide 5626266749902369710022824950590056 5626266749902369710022824950591008 -> 0.9999999999999999999999999999998308 Inexact Rounded
+dqdiv4052 divide 4863278293916197454987481343460484 4863278293916197454987481343442522 -> 1.000000000000000000000000000003693 Inexact Rounded
+dqdiv4053 divide 1170713582030637359713249796835483 1170713582030637359713249796823345 -> 1.000000000000000000000000000010368 Inexact Rounded
+dqdiv4054 divide 9838062494725965667776326556052931 9838062494725965667776326556061002 -> 0.9999999999999999999999999999991796 Inexact Rounded
+dqdiv4055 divide 4071388731298861093005687091498922 4071388731298861093005687091498278 -> 1.000000000000000000000000000000158 Inexact Rounded
+dqdiv4056 divide 8753155722324706795855038590272526 8753155722324706795855038590276656 -> 0.9999999999999999999999999999995282 Inexact Rounded
+dqdiv4057 divide 4399941911533273418844742658240485 4399941911533273418844742658219891 -> 1.000000000000000000000000000004681 Inexact Rounded
+dqdiv4058 divide 4127884159949503677776430620050269 4127884159949503677776430620026091 -> 1.000000000000000000000000000005857 Inexact Rounded
+dqdiv4059 divide 5536160822360800067042528317438808 5536160822360800067042528317450687 -> 0.9999999999999999999999999999978543 Inexact Rounded
+dqdiv4060 divide 3973234998468664936671088237710246 3973234998468664936671088237741886 -> 0.9999999999999999999999999999920367 Inexact Rounded
+dqdiv4061 divide 9824855935638263593410444142327358 9824855935638263593410444142328576 -> 0.9999999999999999999999999999998760 Inexact Rounded
+dqdiv4062 divide 5917078517340218131867327300814867 5917078517340218131867327300788701 -> 1.000000000000000000000000000004422 Inexact Rounded
+dqdiv4063 divide 4354236601830544882286139612521362 4354236601830544882286139612543223 -> 0.9999999999999999999999999999949794 Inexact Rounded
+dqdiv4064 divide 8058474772375259017342110013891294 8058474772375259017342110013906792 -> 0.9999999999999999999999999999980768 Inexact Rounded
+dqdiv4065 divide 5519604020981748170517093746166328 5519604020981748170517093746181763 -> 0.9999999999999999999999999999972036 Inexact Rounded
+dqdiv4066 divide 1502130966879805458831323782443139 1502130966879805458831323782412213 -> 1.000000000000000000000000000020588 Inexact Rounded
+dqdiv4067 divide 562795633719481212915159787980270 562795633719481212915159788007066 -> 0.9999999999999999999999999999523877 Inexact Rounded
+dqdiv4068 divide 6584743324494664273941281557268878 6584743324494664273941281557258945 -> 1.000000000000000000000000000001508 Inexact Rounded
+dqdiv4069 divide 3632000327285743997976431109416500 3632000327285743997976431109408107 -> 1.000000000000000000000000000002311 Inexact Rounded
+dqdiv4070 divide 1145827237315430089388953838561450 1145827237315430089388953838527332 -> 1.000000000000000000000000000029776 Inexact Rounded
+dqdiv4071 divide 8874431010357691869725372317350380 8874431010357691869725372317316472 -> 1.000000000000000000000000000003821 Inexact Rounded
+dqdiv4072 divide 992948718902804648119753141202196 992948718902804648119753141235222 -> 0.9999999999999999999999999999667395 Inexact Rounded
+dqdiv4073 divide 2522735183374218505142417265439989 2522735183374218505142417265453779 -> 0.9999999999999999999999999999945337 Inexact Rounded
+dqdiv4074 divide 2668419161912936508006872303501052 2668419161912936508006872303471036 -> 1.000000000000000000000000000011249 Inexact Rounded
+dqdiv4075 divide 3036169085665186712590941111775092 3036169085665186712590941111808846 -> 0.9999999999999999999999999999888827 Inexact Rounded
+dqdiv4076 divide 9441634604917231638508898934006147 9441634604917231638508898934000288 -> 1.000000000000000000000000000000621 Inexact Rounded
+dqdiv4077 divide 2677301353164377091111458811839190 2677301353164377091111458811867722 -> 0.9999999999999999999999999999893430 Inexact Rounded
+dqdiv4078 divide 6844979203112066166583765857171426 6844979203112066166583765857189682 -> 0.9999999999999999999999999999973329 Inexact Rounded
+dqdiv4079 divide 2220337435141796724323783960231661 2220337435141796724323783960208778 -> 1.000000000000000000000000000010306 Inexact Rounded
+dqdiv4080 divide 6447424700019783931569996989561380 6447424700019783931569996989572454 -> 0.9999999999999999999999999999982824 Inexact Rounded
+dqdiv4081 divide 7512856762696607119847092195587180 7512856762696607119847092195557346 -> 1.000000000000000000000000000003971 Inexact Rounded
+dqdiv4082 divide 7395261981193960399087819077237482 7395261981193960399087819077242487 -> 0.9999999999999999999999999999993232 Inexact Rounded
+dqdiv4083 divide 2253442467682584035792724884376735 2253442467682584035792724884407178 -> 0.9999999999999999999999999999864904 Inexact Rounded
+dqdiv4084 divide 8153138680300213135577336466190997 8153138680300213135577336466220607 -> 0.9999999999999999999999999999963683 Inexact Rounded
+dqdiv4085 divide 4668731252254148074041022681801390 4668731252254148074041022681778101 -> 1.000000000000000000000000000004988 Inexact Rounded
+dqdiv4086 divide 6078404557993669696040425501815056 6078404557993669696040425501797612 -> 1.000000000000000000000000000002870 Inexact Rounded
+dqdiv4087 divide 2306352359874261623223356878316278 2306352359874261623223356878335612 -> 0.9999999999999999999999999999916171 Inexact Rounded
+dqdiv4088 divide 3264842186668480362900909564091908 3264842186668480362900909564058658 -> 1.000000000000000000000000000010184 Inexact Rounded
+dqdiv4089 divide 6971985047279636878957959608612204 6971985047279636878957959608615088 -> 0.9999999999999999999999999999995863 Inexact Rounded
+dqdiv4090 divide 5262810889952721235466445973816257 5262810889952721235466445973783077 -> 1.000000000000000000000000000006305 Inexact Rounded
+dqdiv4091 divide 7947944731035267178548357070080288 7947944731035267178548357070061339 -> 1.000000000000000000000000000002384 Inexact Rounded
+dqdiv4092 divide 5071808908395375108383035800443229 5071808908395375108383035800412429 -> 1.000000000000000000000000000006073 Inexact Rounded
+dqdiv4093 divide 2043146542084503655511507209262969 2043146542084503655511507209249263 -> 1.000000000000000000000000000006708 Inexact Rounded
+dqdiv4094 divide 4097632735384534181661959731264802 4097632735384534181661959731234499 -> 1.000000000000000000000000000007395 Inexact Rounded
+dqdiv4095 divide 3061477642831387489729464587044430 3061477642831387489729464587059452 -> 0.9999999999999999999999999999950932 Inexact Rounded
+dqdiv4096 divide 3429854941039776159498802936252638 3429854941039776159498802936246415 -> 1.000000000000000000000000000001814 Inexact Rounded
+dqdiv4097 divide 4874324979578599700024133278284545 4874324979578599700024133278262131 -> 1.000000000000000000000000000004598 Inexact Rounded
+dqdiv4098 divide 5701652369691833541455978515820882 5701652369691833541455978515834854 -> 0.9999999999999999999999999999975495 Inexact Rounded
+dqdiv4099 divide 2928205728402945266953255632343113 2928205728402945266953255632373794 -> 0.9999999999999999999999999999895223 Inexact Rounded
+
+-- Null tests
+dqdiv9998 divide 10 # -> NaN Invalid_operation
+dqdiv9999 divide # 10 -> NaN Invalid_operation
+
diff --git a/Lib/test/decimaltestdata/dqDivideInt.decTest b/Lib/test/decimaltestdata/dqDivideInt.decTest
new file mode 100644
index 0000000..953c1e0
--- /dev/null
+++ b/Lib/test/decimaltestdata/dqDivideInt.decTest
@@ -0,0 +1,453 @@
+------------------------------------------------------------------------
+-- dqDivideInt.decTest -- decQuad integer division --
+-- Copyright (c) IBM Corporation, 1981, 2007. All rights reserved. --
+------------------------------------------------------------------------
+-- Please see the document "General Decimal Arithmetic Testcases" --
+-- at http://www2.hursley.ibm.com/decimal for the description of --
+-- these testcases. --
+-- --
+-- These testcases are experimental ('beta' versions), and they --
+-- may contain errors. They are offered on an as-is basis. In --
+-- particular, achieving the same results as the tests here is not --
+-- a guarantee that an implementation complies with any Standard --
+-- or specification. The tests are not exhaustive. --
+-- --
+-- Please send comments, suggestions, and corrections to the author: --
+-- Mike Cowlishaw, IBM Fellow --
+-- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK --
+-- mfc@uk.ibm.com --
+------------------------------------------------------------------------
+version: 2.56
+
+extended: 1
+clamp: 1
+precision: 34
+maxExponent: 6144
+minExponent: -6143
+rounding: half_even
+
+
+dqdvi001 divideint 1 1 -> 1
+dqdvi002 divideint 2 1 -> 2
+dqdvi003 divideint 1 2 -> 0
+dqdvi004 divideint 2 2 -> 1
+dqdvi005 divideint 0 1 -> 0
+dqdvi006 divideint 0 2 -> 0
+dqdvi007 divideint 1 3 -> 0
+dqdvi008 divideint 2 3 -> 0
+dqdvi009 divideint 3 3 -> 1
+
+dqdvi010 divideint 2.4 1 -> 2
+dqdvi011 divideint 2.4 -1 -> -2
+dqdvi012 divideint -2.4 1 -> -2
+dqdvi013 divideint -2.4 -1 -> 2
+dqdvi014 divideint 2.40 1 -> 2
+dqdvi015 divideint 2.400 1 -> 2
+dqdvi016 divideint 2.4 2 -> 1
+dqdvi017 divideint 2.400 2 -> 1
+dqdvi018 divideint 2. 2 -> 1
+dqdvi019 divideint 20 20 -> 1
+
+dqdvi020 divideint 187 187 -> 1
+dqdvi021 divideint 5 2 -> 2
+dqdvi022 divideint 5 2.0 -> 2
+dqdvi023 divideint 5 2.000 -> 2
+dqdvi024 divideint 5 0.200 -> 25
+dqdvi025 divideint 5 0.200 -> 25
+
+dqdvi030 divideint 1 2 -> 0
+dqdvi031 divideint 1 4 -> 0
+dqdvi032 divideint 1 8 -> 0
+dqdvi033 divideint 1 16 -> 0
+dqdvi034 divideint 1 32 -> 0
+dqdvi035 divideint 1 64 -> 0
+dqdvi040 divideint 1 -2 -> -0
+dqdvi041 divideint 1 -4 -> -0
+dqdvi042 divideint 1 -8 -> -0
+dqdvi043 divideint 1 -16 -> -0
+dqdvi044 divideint 1 -32 -> -0
+dqdvi045 divideint 1 -64 -> -0
+dqdvi050 divideint -1 2 -> -0
+dqdvi051 divideint -1 4 -> -0
+dqdvi052 divideint -1 8 -> -0
+dqdvi053 divideint -1 16 -> -0
+dqdvi054 divideint -1 32 -> -0
+dqdvi055 divideint -1 64 -> -0
+dqdvi060 divideint -1 -2 -> 0
+dqdvi061 divideint -1 -4 -> 0
+dqdvi062 divideint -1 -8 -> 0
+dqdvi063 divideint -1 -16 -> 0
+dqdvi064 divideint -1 -32 -> 0
+dqdvi065 divideint -1 -64 -> 0
+
+-- similar with powers of ten
+dqdvi160 divideint 1 1 -> 1
+dqdvi161 divideint 1 10 -> 0
+dqdvi162 divideint 1 100 -> 0
+dqdvi163 divideint 1 1000 -> 0
+dqdvi164 divideint 1 10000 -> 0
+dqdvi165 divideint 1 100000 -> 0
+dqdvi166 divideint 1 1000000 -> 0
+dqdvi167 divideint 1 10000000 -> 0
+dqdvi168 divideint 1 100000000 -> 0
+dqdvi170 divideint 1 -1 -> -1
+dqdvi171 divideint 1 -10 -> -0
+dqdvi172 divideint 1 -100 -> -0
+dqdvi173 divideint 1 -1000 -> -0
+dqdvi174 divideint 1 -10000 -> -0
+dqdvi175 divideint 1 -100000 -> -0
+dqdvi176 divideint 1 -1000000 -> -0
+dqdvi177 divideint 1 -10000000 -> -0
+dqdvi178 divideint 1 -100000000 -> -0
+dqdvi180 divideint -1 1 -> -1
+dqdvi181 divideint -1 10 -> -0
+dqdvi182 divideint -1 100 -> -0
+dqdvi183 divideint -1 1000 -> -0
+dqdvi184 divideint -1 10000 -> -0
+dqdvi185 divideint -1 100000 -> -0
+dqdvi186 divideint -1 1000000 -> -0
+dqdvi187 divideint -1 10000000 -> -0
+dqdvi188 divideint -1 100000000 -> -0
+dqdvi190 divideint -1 -1 -> 1
+dqdvi191 divideint -1 -10 -> 0
+dqdvi192 divideint -1 -100 -> 0
+dqdvi193 divideint -1 -1000 -> 0
+dqdvi194 divideint -1 -10000 -> 0
+dqdvi195 divideint -1 -100000 -> 0
+dqdvi196 divideint -1 -1000000 -> 0
+dqdvi197 divideint -1 -10000000 -> 0
+dqdvi198 divideint -1 -100000000 -> 0
+
+-- some long operand (at p=9) cases
+dqdvi070 divideint 999999999 1 -> 999999999
+dqdvi071 divideint 999999999.4 1 -> 999999999
+dqdvi072 divideint 999999999.5 1 -> 999999999
+dqdvi073 divideint 999999999.9 1 -> 999999999
+dqdvi074 divideint 999999999.999 1 -> 999999999
+
+dqdvi090 divideint 0. 1 -> 0
+dqdvi091 divideint .0 1 -> 0
+dqdvi092 divideint 0.00 1 -> 0
+dqdvi093 divideint 0.00E+9 1 -> 0
+dqdvi094 divideint 0.0000E-50 1 -> 0
+
+dqdvi100 divideint 1 1 -> 1
+dqdvi101 divideint 1 2 -> 0
+dqdvi102 divideint 1 3 -> 0
+dqdvi103 divideint 1 4 -> 0
+dqdvi104 divideint 1 5 -> 0
+dqdvi105 divideint 1 6 -> 0
+dqdvi106 divideint 1 7 -> 0
+dqdvi107 divideint 1 8 -> 0
+dqdvi108 divideint 1 9 -> 0
+dqdvi109 divideint 1 10 -> 0
+dqdvi110 divideint 1 1 -> 1
+dqdvi111 divideint 2 1 -> 2
+dqdvi112 divideint 3 1 -> 3
+dqdvi113 divideint 4 1 -> 4
+dqdvi114 divideint 5 1 -> 5
+dqdvi115 divideint 6 1 -> 6
+dqdvi116 divideint 7 1 -> 7
+dqdvi117 divideint 8 1 -> 8
+dqdvi118 divideint 9 1 -> 9
+dqdvi119 divideint 10 1 -> 10
+
+-- from DiagBigDecimal
+dqdvi131 divideint 101.3 1 -> 101
+dqdvi132 divideint 101.0 1 -> 101
+dqdvi133 divideint 101.3 3 -> 33
+dqdvi134 divideint 101.0 3 -> 33
+dqdvi135 divideint 2.4 1 -> 2
+dqdvi136 divideint 2.400 1 -> 2
+dqdvi137 divideint 18 18 -> 1
+dqdvi138 divideint 1120 1000 -> 1
+dqdvi139 divideint 2.4 2 -> 1
+dqdvi140 divideint 2.400 2 -> 1
+dqdvi141 divideint 0.5 2.000 -> 0
+dqdvi142 divideint 8.005 7 -> 1
+dqdvi143 divideint 5 2 -> 2
+dqdvi144 divideint 0 2 -> 0
+dqdvi145 divideint 0.00 2 -> 0
+
+-- Others
+dqdvi150 divideint 12345 4.999 -> 2469
+dqdvi151 divideint 12345 4.99 -> 2473
+dqdvi152 divideint 12345 4.9 -> 2519
+dqdvi153 divideint 12345 5 -> 2469
+dqdvi154 divideint 12345 5.1 -> 2420
+dqdvi155 divideint 12345 5.01 -> 2464
+dqdvi156 divideint 12345 5.001 -> 2468
+dqdvi157 divideint 101 7.6 -> 13
+
+-- Various flavours of divideint by 0
+dqdvi201 divideint 0 0 -> NaN Division_undefined
+dqdvi202 divideint 0.0E5 0 -> NaN Division_undefined
+dqdvi203 divideint 0.000 0 -> NaN Division_undefined
+dqdvi204 divideint 0.0001 0 -> Infinity Division_by_zero
+dqdvi205 divideint 0.01 0 -> Infinity Division_by_zero
+dqdvi206 divideint 0.1 0 -> Infinity Division_by_zero
+dqdvi207 divideint 1 0 -> Infinity Division_by_zero
+dqdvi208 divideint 1 0.0 -> Infinity Division_by_zero
+dqdvi209 divideint 10 0.0 -> Infinity Division_by_zero
+dqdvi210 divideint 1E+100 0.0 -> Infinity Division_by_zero
+dqdvi211 divideint 1E+380 0 -> Infinity Division_by_zero
+dqdvi214 divideint -0.0001 0 -> -Infinity Division_by_zero
+dqdvi215 divideint -0.01 0 -> -Infinity Division_by_zero
+dqdvi216 divideint -0.1 0 -> -Infinity Division_by_zero
+dqdvi217 divideint -1 0 -> -Infinity Division_by_zero
+dqdvi218 divideint -1 0.0 -> -Infinity Division_by_zero
+dqdvi219 divideint -10 0.0 -> -Infinity Division_by_zero
+dqdvi220 divideint -1E+100 0.0 -> -Infinity Division_by_zero
+dqdvi221 divideint -1E+380 0 -> -Infinity Division_by_zero
+
+-- test some cases that are close to exponent overflow
+dqdvi270 divideint 1 1e384 -> 0
+dqdvi271 divideint 1 0.9e384 -> 0
+dqdvi272 divideint 1 0.99e384 -> 0
+dqdvi273 divideint 1 0.9999999999999999e384 -> 0
+dqdvi274 divideint 9e384 1 -> NaN Division_impossible
+dqdvi275 divideint 9.9e384 1 -> NaN Division_impossible
+dqdvi276 divideint 9.99e384 1 -> NaN Division_impossible
+dqdvi277 divideint 9.999999999999999e384 1 -> NaN Division_impossible
+
+dqdvi280 divideint 0.1 9e-383 -> NaN Division_impossible
+dqdvi281 divideint 0.1 99e-383 -> NaN Division_impossible
+dqdvi282 divideint 0.1 999e-383 -> NaN Division_impossible
+dqdvi283 divideint 0.1 9e-382 -> NaN Division_impossible
+dqdvi284 divideint 0.1 99e-382 -> NaN Division_impossible
+
+-- GD edge cases: lhs smaller than rhs but more digits
+dqdvi301 divideint 0.9 2 -> 0
+dqdvi302 divideint 0.9 2.0 -> 0
+dqdvi303 divideint 0.9 2.1 -> 0
+dqdvi304 divideint 0.9 2.00 -> 0
+dqdvi305 divideint 0.9 2.01 -> 0
+dqdvi306 divideint 0.12 1 -> 0
+dqdvi307 divideint 0.12 1.0 -> 0
+dqdvi308 divideint 0.12 1.00 -> 0
+dqdvi309 divideint 0.12 1.0 -> 0
+dqdvi310 divideint 0.12 1.00 -> 0
+dqdvi311 divideint 0.12 2 -> 0
+dqdvi312 divideint 0.12 2.0 -> 0
+dqdvi313 divideint 0.12 2.1 -> 0
+dqdvi314 divideint 0.12 2.00 -> 0
+dqdvi315 divideint 0.12 2.01 -> 0
+
+-- edge cases of impossible
+dqdvi330 divideint 1234567987654321987654321890123456 10 -> 123456798765432198765432189012345
+dqdvi331 divideint 1234567987654321987654321890123456 1 -> 1234567987654321987654321890123456
+dqdvi332 divideint 1234567987654321987654321890123456 0.1 -> NaN Division_impossible
+dqdvi333 divideint 1234567987654321987654321890123456 0.01 -> NaN Division_impossible
+
+-- overflow and underflow tests [from divide]
+dqdvi1051 divideint 1e+277 1e-311 -> NaN Division_impossible
+dqdvi1052 divideint 1e+277 -1e-311 -> NaN Division_impossible
+dqdvi1053 divideint -1e+277 1e-311 -> NaN Division_impossible
+dqdvi1054 divideint -1e+277 -1e-311 -> NaN Division_impossible
+dqdvi1055 divideint 1e-277 1e+311 -> 0
+dqdvi1056 divideint 1e-277 -1e+311 -> -0
+dqdvi1057 divideint -1e-277 1e+311 -> -0
+dqdvi1058 divideint -1e-277 -1e+311 -> 0
+
+-- 'subnormal' boundary (all hard underflow or overflow in base arithemtic)
+dqdvi1060 divideint 1e-291 1e+101 -> 0
+dqdvi1061 divideint 1e-291 1e+102 -> 0
+dqdvi1062 divideint 1e-291 1e+103 -> 0
+dqdvi1063 divideint 1e-291 1e+104 -> 0
+dqdvi1064 divideint 1e-291 1e+105 -> 0
+dqdvi1065 divideint 1e-291 1e+106 -> 0
+dqdvi1066 divideint 1e-291 1e+107 -> 0
+dqdvi1067 divideint 1e-291 1e+108 -> 0
+dqdvi1068 divideint 1e-291 1e+109 -> 0
+dqdvi1069 divideint 1e-291 1e+110 -> 0
+
+dqdvi1101 divideint 1.0000E-394 1 -> 0
+dqdvi1102 divideint 1.000E-394 1e+1 -> 0
+dqdvi1103 divideint 1.00E-394 1e+2 -> 0
+
+dqdvi1118 divideint 1E-394 1e+4 -> 0
+dqdvi1119 divideint 3E-394 -1e+5 -> -0
+dqdvi1120 divideint 5E-394 1e+5 -> 0
+
+dqdvi1124 divideint 1E-394 -1e+4 -> -0
+dqdvi1130 divideint 3.0E-394 -1e+5 -> -0
+
+dqdvi1131 divideint 1.0E-199 1e+200 -> 0
+dqdvi1132 divideint 1.0E-199 1e+199 -> 0
+dqdvi1133 divideint 1.0E-199 1e+198 -> 0
+dqdvi1134 divideint 2.0E-199 2e+198 -> 0
+dqdvi1135 divideint 4.0E-199 4e+198 -> 0
+
+-- long operand checks
+dqdvi401 divideint 12345678000 100 -> 123456780
+dqdvi402 divideint 1 12345678000 -> 0
+dqdvi403 divideint 1234567800 10 -> 123456780
+dqdvi404 divideint 1 1234567800 -> 0
+dqdvi405 divideint 1234567890 10 -> 123456789
+dqdvi406 divideint 1 1234567890 -> 0
+dqdvi407 divideint 1234567891 10 -> 123456789
+dqdvi408 divideint 1 1234567891 -> 0
+dqdvi409 divideint 12345678901 100 -> 123456789
+dqdvi410 divideint 1 12345678901 -> 0
+dqdvi411 divideint 1234567896 10 -> 123456789
+dqdvi412 divideint 1 1234567896 -> 0
+dqdvi413 divideint 12345678948 100 -> 123456789
+dqdvi414 divideint 12345678949 100 -> 123456789
+dqdvi415 divideint 12345678950 100 -> 123456789
+dqdvi416 divideint 12345678951 100 -> 123456789
+dqdvi417 divideint 12345678999 100 -> 123456789
+dqdvi441 divideint 12345678000 1 -> 12345678000
+dqdvi442 divideint 1 12345678000 -> 0
+dqdvi443 divideint 1234567800 1 -> 1234567800
+dqdvi444 divideint 1 1234567800 -> 0
+dqdvi445 divideint 1234567890 1 -> 1234567890
+dqdvi446 divideint 1 1234567890 -> 0
+dqdvi447 divideint 1234567891 1 -> 1234567891
+dqdvi448 divideint 1 1234567891 -> 0
+dqdvi449 divideint 12345678901 1 -> 12345678901
+dqdvi450 divideint 1 12345678901 -> 0
+dqdvi451 divideint 1234567896 1 -> 1234567896
+dqdvi452 divideint 1 1234567896 -> 0
+
+-- more zeros, etc.
+dqdvi531 divideint 5.00 1E-3 -> 5000
+dqdvi532 divideint 00.00 0.000 -> NaN Division_undefined
+dqdvi533 divideint 00.00 0E-3 -> NaN Division_undefined
+dqdvi534 divideint 0 -0 -> NaN Division_undefined
+dqdvi535 divideint -0 0 -> NaN Division_undefined
+dqdvi536 divideint -0 -0 -> NaN Division_undefined
+
+dqdvi541 divideint 0 -1 -> -0
+dqdvi542 divideint -0 -1 -> 0
+dqdvi543 divideint 0 1 -> 0
+dqdvi544 divideint -0 1 -> -0
+dqdvi545 divideint -1 0 -> -Infinity Division_by_zero
+dqdvi546 divideint -1 -0 -> Infinity Division_by_zero
+dqdvi547 divideint 1 0 -> Infinity Division_by_zero
+dqdvi548 divideint 1 -0 -> -Infinity Division_by_zero
+
+dqdvi551 divideint 0.0 -1 -> -0
+dqdvi552 divideint -0.0 -1 -> 0
+dqdvi553 divideint 0.0 1 -> 0
+dqdvi554 divideint -0.0 1 -> -0
+dqdvi555 divideint -1.0 0 -> -Infinity Division_by_zero
+dqdvi556 divideint -1.0 -0 -> Infinity Division_by_zero
+dqdvi557 divideint 1.0 0 -> Infinity Division_by_zero
+dqdvi558 divideint 1.0 -0 -> -Infinity Division_by_zero
+
+dqdvi561 divideint 0 -1.0 -> -0
+dqdvi562 divideint -0 -1.0 -> 0
+dqdvi563 divideint 0 1.0 -> 0
+dqdvi564 divideint -0 1.0 -> -0
+dqdvi565 divideint -1 0.0 -> -Infinity Division_by_zero
+dqdvi566 divideint -1 -0.0 -> Infinity Division_by_zero
+dqdvi567 divideint 1 0.0 -> Infinity Division_by_zero
+dqdvi568 divideint 1 -0.0 -> -Infinity Division_by_zero
+
+dqdvi571 divideint 0.0 -1.0 -> -0
+dqdvi572 divideint -0.0 -1.0 -> 0
+dqdvi573 divideint 0.0 1.0 -> 0
+dqdvi574 divideint -0.0 1.0 -> -0
+dqdvi575 divideint -1.0 0.0 -> -Infinity Division_by_zero
+dqdvi576 divideint -1.0 -0.0 -> Infinity Division_by_zero
+dqdvi577 divideint 1.0 0.0 -> Infinity Division_by_zero
+dqdvi578 divideint 1.0 -0.0 -> -Infinity Division_by_zero
+
+-- Specials
+dqdvi580 divideint Inf -Inf -> NaN Invalid_operation
+dqdvi581 divideint Inf -1000 -> -Infinity
+dqdvi582 divideint Inf -1 -> -Infinity
+dqdvi583 divideint Inf -0 -> -Infinity
+dqdvi584 divideint Inf 0 -> Infinity
+dqdvi585 divideint Inf 1 -> Infinity
+dqdvi586 divideint Inf 1000 -> Infinity
+dqdvi587 divideint Inf Inf -> NaN Invalid_operation
+dqdvi588 divideint -1000 Inf -> -0
+dqdvi589 divideint -Inf Inf -> NaN Invalid_operation
+dqdvi590 divideint -1 Inf -> -0
+dqdvi591 divideint -0 Inf -> -0
+dqdvi592 divideint 0 Inf -> 0
+dqdvi593 divideint 1 Inf -> 0
+dqdvi594 divideint 1000 Inf -> 0
+dqdvi595 divideint Inf Inf -> NaN Invalid_operation
+
+dqdvi600 divideint -Inf -Inf -> NaN Invalid_operation
+dqdvi601 divideint -Inf -1000 -> Infinity
+dqdvi602 divideint -Inf -1 -> Infinity
+dqdvi603 divideint -Inf -0 -> Infinity
+dqdvi604 divideint -Inf 0 -> -Infinity
+dqdvi605 divideint -Inf 1 -> -Infinity
+dqdvi606 divideint -Inf 1000 -> -Infinity
+dqdvi607 divideint -Inf Inf -> NaN Invalid_operation
+dqdvi608 divideint -1000 Inf -> -0
+dqdvi609 divideint -Inf -Inf -> NaN Invalid_operation
+dqdvi610 divideint -1 -Inf -> 0
+dqdvi611 divideint -0 -Inf -> 0
+dqdvi612 divideint 0 -Inf -> -0
+dqdvi613 divideint 1 -Inf -> -0
+dqdvi614 divideint 1000 -Inf -> -0
+dqdvi615 divideint Inf -Inf -> NaN Invalid_operation
+
+dqdvi621 divideint NaN -Inf -> NaN
+dqdvi622 divideint NaN -1000 -> NaN
+dqdvi623 divideint NaN -1 -> NaN
+dqdvi624 divideint NaN -0 -> NaN
+dqdvi625 divideint NaN 0 -> NaN
+dqdvi626 divideint NaN 1 -> NaN
+dqdvi627 divideint NaN 1000 -> NaN
+dqdvi628 divideint NaN Inf -> NaN
+dqdvi629 divideint NaN NaN -> NaN
+dqdvi630 divideint -Inf NaN -> NaN
+dqdvi631 divideint -1000 NaN -> NaN
+dqdvi632 divideint -1 NaN -> NaN
+dqdvi633 divideint -0 NaN -> NaN
+dqdvi634 divideint 0 NaN -> NaN
+dqdvi635 divideint 1 NaN -> NaN
+dqdvi636 divideint 1000 NaN -> NaN
+dqdvi637 divideint Inf NaN -> NaN
+
+dqdvi641 divideint sNaN -Inf -> NaN Invalid_operation
+dqdvi642 divideint sNaN -1000 -> NaN Invalid_operation
+dqdvi643 divideint sNaN -1 -> NaN Invalid_operation
+dqdvi644 divideint sNaN -0 -> NaN Invalid_operation
+dqdvi645 divideint sNaN 0 -> NaN Invalid_operation
+dqdvi646 divideint sNaN 1 -> NaN Invalid_operation
+dqdvi647 divideint sNaN 1000 -> NaN Invalid_operation
+dqdvi648 divideint sNaN NaN -> NaN Invalid_operation
+dqdvi649 divideint sNaN sNaN -> NaN Invalid_operation
+dqdvi650 divideint NaN sNaN -> NaN Invalid_operation
+dqdvi651 divideint -Inf sNaN -> NaN Invalid_operation
+dqdvi652 divideint -1000 sNaN -> NaN Invalid_operation
+dqdvi653 divideint -1 sNaN -> NaN Invalid_operation
+dqdvi654 divideint -0 sNaN -> NaN Invalid_operation
+dqdvi655 divideint 0 sNaN -> NaN Invalid_operation
+dqdvi656 divideint 1 sNaN -> NaN Invalid_operation
+dqdvi657 divideint 1000 sNaN -> NaN Invalid_operation
+dqdvi658 divideint Inf sNaN -> NaN Invalid_operation
+dqdvi659 divideint NaN sNaN -> NaN Invalid_operation
+
+-- propagating NaNs
+dqdvi661 divideint NaN9 -Inf -> NaN9
+dqdvi662 divideint NaN8 1000 -> NaN8
+dqdvi663 divideint NaN7 Inf -> NaN7
+dqdvi664 divideint -NaN6 NaN5 -> -NaN6
+dqdvi665 divideint -Inf NaN4 -> NaN4
+dqdvi666 divideint -1000 NaN3 -> NaN3
+dqdvi667 divideint Inf -NaN2 -> -NaN2
+
+dqdvi671 divideint -sNaN99 -Inf -> -NaN99 Invalid_operation
+dqdvi672 divideint sNaN98 -1 -> NaN98 Invalid_operation
+dqdvi673 divideint sNaN97 NaN -> NaN97 Invalid_operation
+dqdvi674 divideint sNaN96 sNaN94 -> NaN96 Invalid_operation
+dqdvi675 divideint NaN95 sNaN93 -> NaN93 Invalid_operation
+dqdvi676 divideint -Inf sNaN92 -> NaN92 Invalid_operation
+dqdvi677 divideint 0 sNaN91 -> NaN91 Invalid_operation
+dqdvi678 divideint Inf -sNaN90 -> -NaN90 Invalid_operation
+dqdvi679 divideint NaN sNaN89 -> NaN89 Invalid_operation
+
+-- Gyuris example
+dqdvi700 divideint 8.336804418094040989630006819881709E-6143 8.336804418094040989630006819889000E-6143 -> 0
+
+-- Null tests
+dqdvi900 divideint 10 # -> NaN Invalid_operation
+dqdvi901 divideint # 10 -> NaN Invalid_operation
diff --git a/Lib/test/decimaltestdata/dqEncode.decTest b/Lib/test/decimaltestdata/dqEncode.decTest
new file mode 100644
index 0000000..ed3f328
--- /dev/null
+++ b/Lib/test/decimaltestdata/dqEncode.decTest
@@ -0,0 +1,470 @@
+------------------------------------------------------------------------
+-- dqEncode.decTest -- decimal sixteen-byte format testcases --
+-- Copyright (c) IBM Corporation, 2000, 2007. All rights reserved. --
+------------------------------------------------------------------------
+-- Please see the document "General Decimal Arithmetic Testcases" --
+-- at http://www2.hursley.ibm.com/decimal for the description of --
+-- these testcases. --
+-- --
+-- These testcases are experimental ('beta' versions), and they --
+-- may contain errors. They are offered on an as-is basis. In --
+-- particular, achieving the same results as the tests here is not --
+-- a guarantee that an implementation complies with any Standard --
+-- or specification. The tests are not exhaustive. --
+-- --
+-- Please send comments, suggestions, and corrections to the author: --
+-- Mike Cowlishaw, IBM Fellow --
+-- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK --
+-- mfc@uk.ibm.com --
+------------------------------------------------------------------------
+-- [Previously called decimal128.decTest]
+version: 2.56
+
+-- This set of tests is for the sixteen-byte concrete representation.
+-- Its characteristics are:
+--
+-- 1 bit sign
+-- 5 bits combination field
+-- 12 bits exponent continuation
+-- 110 bits coefficient continuation
+--
+-- Total exponent length 14 bits
+-- Total coefficient length 114 bits (34 digits)
+--
+-- Elimit = 12287 (maximum encoded exponent)
+-- Emax = 6144 (largest exponent value)
+-- Emin = -6143 (smallest exponent value)
+-- bias = 6176 (subtracted from encoded exponent) = -Etiny
+
+-- The testcases here have only exactly representable data on the
+-- 'left-hand-side'; rounding from strings is tested in 'base'
+-- testcase groups.
+
+extended: 1
+clamp: 1
+precision: 34
+rounding: half_up
+maxExponent: 6144
+minExponent: -6143
+
+-- General testcases
+-- (mostly derived from the Strawman 4 document and examples)
+decq001 apply #A20780000000000000000000000003D0 -> -7.50
+decq002 apply -7.50 -> #A20780000000000000000000000003D0
+-- derivative canonical plain strings
+decq003 apply #A20840000000000000000000000003D0 -> -7.50E+3
+decq004 apply -7.50E+3 -> #A20840000000000000000000000003D0
+decq005 apply #A20800000000000000000000000003D0 -> -750
+decq006 apply -750 -> #A20800000000000000000000000003D0
+decq007 apply #A207c0000000000000000000000003D0 -> -75.0
+decq008 apply -75.0 -> #A207c0000000000000000000000003D0
+decq009 apply #A20740000000000000000000000003D0 -> -0.750
+decq010 apply -0.750 -> #A20740000000000000000000000003D0
+decq011 apply #A20700000000000000000000000003D0 -> -0.0750
+decq012 apply -0.0750 -> #A20700000000000000000000000003D0
+decq013 apply #A20680000000000000000000000003D0 -> -0.000750
+decq014 apply -0.000750 -> #A20680000000000000000000000003D0
+decq015 apply #A20600000000000000000000000003D0 -> -0.00000750
+decq016 apply -0.00000750 -> #A20600000000000000000000000003D0
+decq017 apply #A205c0000000000000000000000003D0 -> -7.50E-7
+decq018 apply -7.50E-7 -> #A205c0000000000000000000000003D0
+
+-- Normality
+decq020 apply 1234567890123456789012345678901234 -> #2608134b9c1e28e56f3c127177823534
+decq021 apply -1234567890123456789012345678901234 -> #a608134b9c1e28e56f3c127177823534
+decq022 apply 1111111111111111111111111111111111 -> #26080912449124491244912449124491
+
+-- Nmax and similar
+decq031 apply 9.999999999999999999999999999999999E+6144 -> #77ffcff3fcff3fcff3fcff3fcff3fcff
+decq032 apply #77ffcff3fcff3fcff3fcff3fcff3fcff -> 9.999999999999999999999999999999999E+6144
+decq033 apply 1.234567890123456789012345678901234E+6144 -> #47ffd34b9c1e28e56f3c127177823534
+decq034 apply #47ffd34b9c1e28e56f3c127177823534 -> 1.234567890123456789012345678901234E+6144
+-- fold-downs (more below)
+decq035 apply 1.23E+6144 -> #47ffd300000000000000000000000000 Clamped
+decq036 apply #47ffd300000000000000000000000000 -> 1.230000000000000000000000000000000E+6144
+decq037 apply 1E+6144 -> #47ffc000000000000000000000000000 Clamped
+decq038 apply #47ffc000000000000000000000000000 -> 1.000000000000000000000000000000000E+6144
+
+decq051 apply 12345 -> #220800000000000000000000000049c5
+decq052 apply #220800000000000000000000000049c5 -> 12345
+decq053 apply 1234 -> #22080000000000000000000000000534
+decq054 apply #22080000000000000000000000000534 -> 1234
+decq055 apply 123 -> #220800000000000000000000000000a3
+decq056 apply #220800000000000000000000000000a3 -> 123
+decq057 apply 12 -> #22080000000000000000000000000012
+decq058 apply #22080000000000000000000000000012 -> 12
+decq059 apply 1 -> #22080000000000000000000000000001
+decq060 apply #22080000000000000000000000000001 -> 1
+decq061 apply 1.23 -> #220780000000000000000000000000a3
+decq062 apply #220780000000000000000000000000a3 -> 1.23
+decq063 apply 123.45 -> #220780000000000000000000000049c5
+decq064 apply #220780000000000000000000000049c5 -> 123.45
+
+-- Nmin and below
+decq071 apply 1E-6143 -> #00084000000000000000000000000001
+decq072 apply #00084000000000000000000000000001 -> 1E-6143
+decq073 apply 1.000000000000000000000000000000000E-6143 -> #04000000000000000000000000000000
+decq074 apply #04000000000000000000000000000000 -> 1.000000000000000000000000000000000E-6143
+decq075 apply 1.000000000000000000000000000000001E-6143 -> #04000000000000000000000000000001
+decq076 apply #04000000000000000000000000000001 -> 1.000000000000000000000000000000001E-6143
+
+decq077 apply 0.100000000000000000000000000000000E-6143 -> #00000800000000000000000000000000 Subnormal
+decq078 apply #00000800000000000000000000000000 -> 1.00000000000000000000000000000000E-6144 Subnormal
+decq079 apply 0.000000000000000000000000000000010E-6143 -> #00000000000000000000000000000010 Subnormal
+decq080 apply #00000000000000000000000000000010 -> 1.0E-6175 Subnormal
+decq081 apply 0.00000000000000000000000000000001E-6143 -> #00004000000000000000000000000001 Subnormal
+decq082 apply #00004000000000000000000000000001 -> 1E-6175 Subnormal
+decq083 apply 0.000000000000000000000000000000001E-6143 -> #00000000000000000000000000000001 Subnormal
+decq084 apply #00000000000000000000000000000001 -> 1E-6176 Subnormal
+
+-- underflows cannot be tested for simple copies, check edge cases
+decq090 apply 1e-6176 -> #00000000000000000000000000000001 Subnormal
+decq100 apply 999999999999999999999999999999999e-6176 -> #00000ff3fcff3fcff3fcff3fcff3fcff Subnormal
+
+-- same again, negatives
+-- Nmax and similar
+decq122 apply -9.999999999999999999999999999999999E+6144 -> #f7ffcff3fcff3fcff3fcff3fcff3fcff
+decq123 apply #f7ffcff3fcff3fcff3fcff3fcff3fcff -> -9.999999999999999999999999999999999E+6144
+decq124 apply -1.234567890123456789012345678901234E+6144 -> #c7ffd34b9c1e28e56f3c127177823534
+decq125 apply #c7ffd34b9c1e28e56f3c127177823534 -> -1.234567890123456789012345678901234E+6144
+-- fold-downs (more below)
+decq130 apply -1.23E+6144 -> #c7ffd300000000000000000000000000 Clamped
+decq131 apply #c7ffd300000000000000000000000000 -> -1.230000000000000000000000000000000E+6144
+decq132 apply -1E+6144 -> #c7ffc000000000000000000000000000 Clamped
+decq133 apply #c7ffc000000000000000000000000000 -> -1.000000000000000000000000000000000E+6144
+
+decq151 apply -12345 -> #a20800000000000000000000000049c5
+decq152 apply #a20800000000000000000000000049c5 -> -12345
+decq153 apply -1234 -> #a2080000000000000000000000000534
+decq154 apply #a2080000000000000000000000000534 -> -1234
+decq155 apply -123 -> #a20800000000000000000000000000a3
+decq156 apply #a20800000000000000000000000000a3 -> -123
+decq157 apply -12 -> #a2080000000000000000000000000012
+decq158 apply #a2080000000000000000000000000012 -> -12
+decq159 apply -1 -> #a2080000000000000000000000000001
+decq160 apply #a2080000000000000000000000000001 -> -1
+decq161 apply -1.23 -> #a20780000000000000000000000000a3
+decq162 apply #a20780000000000000000000000000a3 -> -1.23
+decq163 apply -123.45 -> #a20780000000000000000000000049c5
+decq164 apply #a20780000000000000000000000049c5 -> -123.45
+
+-- Nmin and below
+decq171 apply -1E-6143 -> #80084000000000000000000000000001
+decq172 apply #80084000000000000000000000000001 -> -1E-6143
+decq173 apply -1.000000000000000000000000000000000E-6143 -> #84000000000000000000000000000000
+decq174 apply #84000000000000000000000000000000 -> -1.000000000000000000000000000000000E-6143
+decq175 apply -1.000000000000000000000000000000001E-6143 -> #84000000000000000000000000000001
+decq176 apply #84000000000000000000000000000001 -> -1.000000000000000000000000000000001E-6143
+
+decq177 apply -0.100000000000000000000000000000000E-6143 -> #80000800000000000000000000000000 Subnormal
+decq178 apply #80000800000000000000000000000000 -> -1.00000000000000000000000000000000E-6144 Subnormal
+decq179 apply -0.000000000000000000000000000000010E-6143 -> #80000000000000000000000000000010 Subnormal
+decq180 apply #80000000000000000000000000000010 -> -1.0E-6175 Subnormal
+decq181 apply -0.00000000000000000000000000000001E-6143 -> #80004000000000000000000000000001 Subnormal
+decq182 apply #80004000000000000000000000000001 -> -1E-6175 Subnormal
+decq183 apply -0.000000000000000000000000000000001E-6143 -> #80000000000000000000000000000001 Subnormal
+decq184 apply #80000000000000000000000000000001 -> -1E-6176 Subnormal
+
+-- underflow edge cases
+decq190 apply -1e-6176 -> #80000000000000000000000000000001 Subnormal
+decq200 apply -999999999999999999999999999999999e-6176 -> #80000ff3fcff3fcff3fcff3fcff3fcff Subnormal
+
+-- zeros
+decq400 apply 0E-8000 -> #00000000000000000000000000000000 Clamped
+decq401 apply 0E-6177 -> #00000000000000000000000000000000 Clamped
+decq402 apply 0E-6176 -> #00000000000000000000000000000000
+decq403 apply #00000000000000000000000000000000 -> 0E-6176
+decq404 apply 0.000000000000000000000000000000000E-6143 -> #00000000000000000000000000000000
+decq405 apply #00000000000000000000000000000000 -> 0E-6176
+decq406 apply 0E-2 -> #22078000000000000000000000000000
+decq407 apply #22078000000000000000000000000000 -> 0.00
+decq408 apply 0 -> #22080000000000000000000000000000
+decq409 apply #22080000000000000000000000000000 -> 0
+decq410 apply 0E+3 -> #2208c000000000000000000000000000
+decq411 apply #2208c000000000000000000000000000 -> 0E+3
+decq412 apply 0E+6111 -> #43ffc000000000000000000000000000
+decq413 apply #43ffc000000000000000000000000000 -> 0E+6111
+-- clamped zeros...
+decq414 apply 0E+6112 -> #43ffc000000000000000000000000000 Clamped
+decq415 apply #43ffc000000000000000000000000000 -> 0E+6111
+decq416 apply 0E+6144 -> #43ffc000000000000000000000000000 Clamped
+decq417 apply #43ffc000000000000000000000000000 -> 0E+6111
+decq418 apply 0E+8000 -> #43ffc000000000000000000000000000 Clamped
+decq419 apply #43ffc000000000000000000000000000 -> 0E+6111
+
+-- negative zeros
+decq420 apply -0E-8000 -> #80000000000000000000000000000000 Clamped
+decq421 apply -0E-6177 -> #80000000000000000000000000000000 Clamped
+decq422 apply -0E-6176 -> #80000000000000000000000000000000
+decq423 apply #80000000000000000000000000000000 -> -0E-6176
+decq424 apply -0.000000000000000000000000000000000E-6143 -> #80000000000000000000000000000000
+decq425 apply #80000000000000000000000000000000 -> -0E-6176
+decq426 apply -0E-2 -> #a2078000000000000000000000000000
+decq427 apply #a2078000000000000000000000000000 -> -0.00
+decq428 apply -0 -> #a2080000000000000000000000000000
+decq429 apply #a2080000000000000000000000000000 -> -0
+decq430 apply -0E+3 -> #a208c000000000000000000000000000
+decq431 apply #a208c000000000000000000000000000 -> -0E+3
+decq432 apply -0E+6111 -> #c3ffc000000000000000000000000000
+decq433 apply #c3ffc000000000000000000000000000 -> -0E+6111
+-- clamped zeros...
+decq434 apply -0E+6112 -> #c3ffc000000000000000000000000000 Clamped
+decq435 apply #c3ffc000000000000000000000000000 -> -0E+6111
+decq436 apply -0E+6144 -> #c3ffc000000000000000000000000000 Clamped
+decq437 apply #c3ffc000000000000000000000000000 -> -0E+6111
+decq438 apply -0E+8000 -> #c3ffc000000000000000000000000000 Clamped
+decq439 apply #c3ffc000000000000000000000000000 -> -0E+6111
+
+-- exponent lengths
+decq440 apply #22080000000000000000000000000007 -> 7
+decq441 apply 7 -> #22080000000000000000000000000007
+decq442 apply #220a4000000000000000000000000007 -> 7E+9
+decq443 apply 7E+9 -> #220a4000000000000000000000000007
+decq444 apply #2220c000000000000000000000000007 -> 7E+99
+decq445 apply 7E+99 -> #2220c000000000000000000000000007
+decq446 apply #2301c000000000000000000000000007 -> 7E+999
+decq447 apply 7E+999 -> #2301c000000000000000000000000007
+decq448 apply #43e3c000000000000000000000000007 -> 7E+5999
+decq449 apply 7E+5999 -> #43e3c000000000000000000000000007
+
+-- Specials
+decq500 apply Infinity -> #78000000000000000000000000000000
+decq501 apply #78787878787878787878787878787878 -> #78000000000000000000000000000000
+decq502 apply #78000000000000000000000000000000 -> Infinity
+decq503 apply #79797979797979797979797979797979 -> #78000000000000000000000000000000
+decq504 apply #79000000000000000000000000000000 -> Infinity
+decq505 apply #7a7a7a7a7a7a7a7a7a7a7a7a7a7a7a7a -> #78000000000000000000000000000000
+decq506 apply #7a000000000000000000000000000000 -> Infinity
+decq507 apply #7b7b7b7b7b7b7b7b7b7b7b7b7b7b7b7b -> #78000000000000000000000000000000
+decq508 apply #7b000000000000000000000000000000 -> Infinity
+
+decq509 apply NaN -> #7c000000000000000000000000000000
+decq510 apply #7c7c7c7c7c7c7c7c7c7c7c7c7c7c7c7c -> #7c003c7c7c7c7c7c7c7c7c7c7c7c7c7c
+decq511 apply #7c000000000000000000000000000000 -> NaN
+decq512 apply #7d7d7d7d7d7d7d7d7d7d7d7d7d7d7d7d -> #7c003d7d7d7d7d7d7d7d7d7d7d7d7d7d
+decq513 apply #7d000000000000000000000000000000 -> NaN
+decq514 apply #7e7e7e7e7e7e7e7e7e7e7e7e7e7e7e7e -> #7e003e7e7c7e7e7e7e7c7e7e7e7e7c7e
+decq515 apply #7e000000000000000000000000000000 -> sNaN
+decq516 apply #7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f -> #7e003f7f7c7f7f7f7f7c7f7f7f7f7c7f
+decq517 apply #7f000000000000000000000000000000 -> sNaN
+decq518 apply #7fffffffffffffffffffffffffffffff -> sNaN999999999999999999999999999999999
+decq519 apply #7fffffffffffffffffffffffffffffff -> #7e000ff3fcff3fcff3fcff3fcff3fcff
+
+decq520 apply -Infinity -> #f8000000000000000000000000000000
+decq521 apply #f8787878787878787878787878787878 -> #f8000000000000000000000000000000
+decq522 apply #f8000000000000000000000000000000 -> -Infinity
+decq523 apply #f9797979797979797979797979797979 -> #f8000000000000000000000000000000
+decq524 apply #f9000000000000000000000000000000 -> -Infinity
+decq525 apply #fa7a7a7a7a7a7a7a7a7a7a7a7a7a7a7a -> #f8000000000000000000000000000000
+decq526 apply #fa000000000000000000000000000000 -> -Infinity
+decq527 apply #fb7b7b7b7b7b7b7b7b7b7b7b7b7b7b7b -> #f8000000000000000000000000000000
+decq528 apply #fb000000000000000000000000000000 -> -Infinity
+
+decq529 apply -NaN -> #fc000000000000000000000000000000
+decq530 apply #fc7c7c7c7c7c7c7c7c7c7c7c7c7c7c7c -> #fc003c7c7c7c7c7c7c7c7c7c7c7c7c7c
+decq531 apply #fc000000000000000000000000000000 -> -NaN
+decq532 apply #fd7d7d7d7d7d7d7d7d7d7d7d7d7d7d7d -> #fc003d7d7d7d7d7d7d7d7d7d7d7d7d7d
+decq533 apply #fd000000000000000000000000000000 -> -NaN
+decq534 apply #fe7e7e7e7e7e7e7e7e7e7e7e7e7e7e7e -> #fe003e7e7c7e7e7e7e7c7e7e7e7e7c7e
+decq535 apply #fe000000000000000000000000000000 -> -sNaN
+decq536 apply #ff7f7f7f7f7f7f7f7f7f7f7f7f7f7f7f -> #fe003f7f7c7f7f7f7f7c7f7f7f7f7c7f
+decq537 apply #ff000000000000000000000000000000 -> -sNaN
+decq538 apply #ffffffffffffffffffffffffffffffff -> -sNaN999999999999999999999999999999999
+decq539 apply #ffffffffffffffffffffffffffffffff -> #fe000ff3fcff3fcff3fcff3fcff3fcff
+
+decq540 apply NaN -> #7c000000000000000000000000000000
+decq541 apply NaN0 -> #7c000000000000000000000000000000
+decq542 apply NaN1 -> #7c000000000000000000000000000001
+decq543 apply NaN12 -> #7c000000000000000000000000000012
+decq544 apply NaN79 -> #7c000000000000000000000000000079
+decq545 apply NaN12345 -> #7c0000000000000000000000000049c5
+decq546 apply NaN123456 -> #7c000000000000000000000000028e56
+decq547 apply NaN799799 -> #7c0000000000000000000000000f7fdf
+decq548 apply NaN799799799799799799799799799799799 -> #7c003dff7fdff7fdff7fdff7fdff7fdf
+decq549 apply NaN999999999999999999999999999999999 -> #7c000ff3fcff3fcff3fcff3fcff3fcff
+decq550 apply 9999999999999999999999999999999999 -> #6e080ff3fcff3fcff3fcff3fcff3fcff
+
+-- fold-down full sequence
+decq601 apply 1E+6144 -> #47ffc000000000000000000000000000 Clamped
+decq602 apply #47ffc000000000000000000000000000 -> 1.000000000000000000000000000000000E+6144
+decq603 apply 1E+6143 -> #43ffc800000000000000000000000000 Clamped
+decq604 apply #43ffc800000000000000000000000000 -> 1.00000000000000000000000000000000E+6143
+decq605 apply 1E+6142 -> #43ffc100000000000000000000000000 Clamped
+decq606 apply #43ffc100000000000000000000000000 -> 1.0000000000000000000000000000000E+6142
+decq607 apply 1E+6141 -> #43ffc010000000000000000000000000 Clamped
+decq608 apply #43ffc010000000000000000000000000 -> 1.000000000000000000000000000000E+6141
+decq609 apply 1E+6140 -> #43ffc002000000000000000000000000 Clamped
+decq610 apply #43ffc002000000000000000000000000 -> 1.00000000000000000000000000000E+6140
+decq611 apply 1E+6139 -> #43ffc000400000000000000000000000 Clamped
+decq612 apply #43ffc000400000000000000000000000 -> 1.0000000000000000000000000000E+6139
+decq613 apply 1E+6138 -> #43ffc000040000000000000000000000 Clamped
+decq614 apply #43ffc000040000000000000000000000 -> 1.000000000000000000000000000E+6138
+decq615 apply 1E+6137 -> #43ffc000008000000000000000000000 Clamped
+decq616 apply #43ffc000008000000000000000000000 -> 1.00000000000000000000000000E+6137
+decq617 apply 1E+6136 -> #43ffc000001000000000000000000000 Clamped
+decq618 apply #43ffc000001000000000000000000000 -> 1.0000000000000000000000000E+6136
+decq619 apply 1E+6135 -> #43ffc000000100000000000000000000 Clamped
+decq620 apply #43ffc000000100000000000000000000 -> 1.000000000000000000000000E+6135
+decq621 apply 1E+6134 -> #43ffc000000020000000000000000000 Clamped
+decq622 apply #43ffc000000020000000000000000000 -> 1.00000000000000000000000E+6134
+decq623 apply 1E+6133 -> #43ffc000000004000000000000000000 Clamped
+decq624 apply #43ffc000000004000000000000000000 -> 1.0000000000000000000000E+6133
+decq625 apply 1E+6132 -> #43ffc000000000400000000000000000 Clamped
+decq626 apply #43ffc000000000400000000000000000 -> 1.000000000000000000000E+6132
+decq627 apply 1E+6131 -> #43ffc000000000080000000000000000 Clamped
+decq628 apply #43ffc000000000080000000000000000 -> 1.00000000000000000000E+6131
+decq629 apply 1E+6130 -> #43ffc000000000010000000000000000 Clamped
+decq630 apply #43ffc000000000010000000000000000 -> 1.0000000000000000000E+6130
+decq631 apply 1E+6129 -> #43ffc000000000001000000000000000 Clamped
+decq632 apply #43ffc000000000001000000000000000 -> 1.000000000000000000E+6129
+decq633 apply 1E+6128 -> #43ffc000000000000200000000000000 Clamped
+decq634 apply #43ffc000000000000200000000000000 -> 1.00000000000000000E+6128
+decq635 apply 1E+6127 -> #43ffc000000000000040000000000000 Clamped
+decq636 apply #43ffc000000000000040000000000000 -> 1.0000000000000000E+6127
+decq637 apply 1E+6126 -> #43ffc000000000000004000000000000 Clamped
+decq638 apply #43ffc000000000000004000000000000 -> 1.000000000000000E+6126
+decq639 apply 1E+6125 -> #43ffc000000000000000800000000000 Clamped
+decq640 apply #43ffc000000000000000800000000000 -> 1.00000000000000E+6125
+decq641 apply 1E+6124 -> #43ffc000000000000000100000000000 Clamped
+decq642 apply #43ffc000000000000000100000000000 -> 1.0000000000000E+6124
+decq643 apply 1E+6123 -> #43ffc000000000000000010000000000 Clamped
+decq644 apply #43ffc000000000000000010000000000 -> 1.000000000000E+6123
+decq645 apply 1E+6122 -> #43ffc000000000000000002000000000 Clamped
+decq646 apply #43ffc000000000000000002000000000 -> 1.00000000000E+6122
+decq647 apply 1E+6121 -> #43ffc000000000000000000400000000 Clamped
+decq648 apply #43ffc000000000000000000400000000 -> 1.0000000000E+6121
+decq649 apply 1E+6120 -> #43ffc000000000000000000040000000 Clamped
+decq650 apply #43ffc000000000000000000040000000 -> 1.000000000E+6120
+decq651 apply 1E+6119 -> #43ffc000000000000000000008000000 Clamped
+decq652 apply #43ffc000000000000000000008000000 -> 1.00000000E+6119
+decq653 apply 1E+6118 -> #43ffc000000000000000000001000000 Clamped
+decq654 apply #43ffc000000000000000000001000000 -> 1.0000000E+6118
+decq655 apply 1E+6117 -> #43ffc000000000000000000000100000 Clamped
+decq656 apply #43ffc000000000000000000000100000 -> 1.000000E+6117
+decq657 apply 1E+6116 -> #43ffc000000000000000000000020000 Clamped
+decq658 apply #43ffc000000000000000000000020000 -> 1.00000E+6116
+decq659 apply 1E+6115 -> #43ffc000000000000000000000004000 Clamped
+decq660 apply #43ffc000000000000000000000004000 -> 1.0000E+6115
+decq661 apply 1E+6114 -> #43ffc000000000000000000000000400 Clamped
+decq662 apply #43ffc000000000000000000000000400 -> 1.000E+6114
+decq663 apply 1E+6113 -> #43ffc000000000000000000000000080 Clamped
+decq664 apply #43ffc000000000000000000000000080 -> 1.00E+6113
+decq665 apply 1E+6112 -> #43ffc000000000000000000000000010 Clamped
+decq666 apply #43ffc000000000000000000000000010 -> 1.0E+6112
+decq667 apply 1E+6111 -> #43ffc000000000000000000000000001
+decq668 apply #43ffc000000000000000000000000001 -> 1E+6111
+decq669 apply 1E+6110 -> #43ff8000000000000000000000000001
+decq670 apply #43ff8000000000000000000000000001 -> 1E+6110
+
+-- Selected DPD codes
+decq700 apply #22080000000000000000000000000000 -> 0
+decq701 apply #22080000000000000000000000000009 -> 9
+decq702 apply #22080000000000000000000000000010 -> 10
+decq703 apply #22080000000000000000000000000019 -> 19
+decq704 apply #22080000000000000000000000000020 -> 20
+decq705 apply #22080000000000000000000000000029 -> 29
+decq706 apply #22080000000000000000000000000030 -> 30
+decq707 apply #22080000000000000000000000000039 -> 39
+decq708 apply #22080000000000000000000000000040 -> 40
+decq709 apply #22080000000000000000000000000049 -> 49
+decq710 apply #22080000000000000000000000000050 -> 50
+decq711 apply #22080000000000000000000000000059 -> 59
+decq712 apply #22080000000000000000000000000060 -> 60
+decq713 apply #22080000000000000000000000000069 -> 69
+decq714 apply #22080000000000000000000000000070 -> 70
+decq715 apply #22080000000000000000000000000071 -> 71
+decq716 apply #22080000000000000000000000000072 -> 72
+decq717 apply #22080000000000000000000000000073 -> 73
+decq718 apply #22080000000000000000000000000074 -> 74
+decq719 apply #22080000000000000000000000000075 -> 75
+decq720 apply #22080000000000000000000000000076 -> 76
+decq721 apply #22080000000000000000000000000077 -> 77
+decq722 apply #22080000000000000000000000000078 -> 78
+decq723 apply #22080000000000000000000000000079 -> 79
+
+decq730 apply #2208000000000000000000000000029e -> 994
+decq731 apply #2208000000000000000000000000029f -> 995
+decq732 apply #220800000000000000000000000002a0 -> 520
+decq733 apply #220800000000000000000000000002a1 -> 521
+
+-- DPD: one of each of the huffman groups
+decq740 apply #220800000000000000000000000003f7 -> 777
+decq741 apply #220800000000000000000000000003f8 -> 778
+decq742 apply #220800000000000000000000000003eb -> 787
+decq743 apply #2208000000000000000000000000037d -> 877
+decq744 apply #2208000000000000000000000000039f -> 997
+decq745 apply #220800000000000000000000000003bf -> 979
+decq746 apply #220800000000000000000000000003df -> 799
+decq747 apply #2208000000000000000000000000006e -> 888
+
+
+-- DPD all-highs cases (includes the 24 redundant codes)
+decq750 apply #2208000000000000000000000000006e -> 888
+decq751 apply #2208000000000000000000000000016e -> 888
+decq752 apply #2208000000000000000000000000026e -> 888
+decq753 apply #2208000000000000000000000000036e -> 888
+decq754 apply #2208000000000000000000000000006f -> 889
+decq755 apply #2208000000000000000000000000016f -> 889
+decq756 apply #2208000000000000000000000000026f -> 889
+decq757 apply #2208000000000000000000000000036f -> 889
+
+decq760 apply #2208000000000000000000000000007e -> 898
+decq761 apply #2208000000000000000000000000017e -> 898
+decq762 apply #2208000000000000000000000000027e -> 898
+decq763 apply #2208000000000000000000000000037e -> 898
+decq764 apply #2208000000000000000000000000007f -> 899
+decq765 apply #2208000000000000000000000000017f -> 899
+decq766 apply #2208000000000000000000000000027f -> 899
+decq767 apply #2208000000000000000000000000037f -> 899
+
+decq770 apply #220800000000000000000000000000ee -> 988
+decq771 apply #220800000000000000000000000001ee -> 988
+decq772 apply #220800000000000000000000000002ee -> 988
+decq773 apply #220800000000000000000000000003ee -> 988
+decq774 apply #220800000000000000000000000000ef -> 989
+decq775 apply #220800000000000000000000000001ef -> 989
+decq776 apply #220800000000000000000000000002ef -> 989
+decq777 apply #220800000000000000000000000003ef -> 989
+
+decq780 apply #220800000000000000000000000000fe -> 998
+decq781 apply #220800000000000000000000000001fe -> 998
+decq782 apply #220800000000000000000000000002fe -> 998
+decq783 apply #220800000000000000000000000003fe -> 998
+decq784 apply #220800000000000000000000000000ff -> 999
+decq785 apply #220800000000000000000000000001ff -> 999
+decq786 apply #220800000000000000000000000002ff -> 999
+decq787 apply #220800000000000000000000000003ff -> 999
+
+-- Miscellaneous (testers' queries, etc.)
+
+decq790 apply #2208000000000000000000000000c000 -> 30000
+decq791 apply #22080000000000000000000000007800 -> 890000
+decq792 apply 30000 -> #2208000000000000000000000000c000
+decq793 apply 890000 -> #22080000000000000000000000007800
+
+-- values around [u]int32 edges (zeros done earlier)
+decq800 apply -2147483646 -> #a208000000000000000000008c78af46
+decq801 apply -2147483647 -> #a208000000000000000000008c78af47
+decq802 apply -2147483648 -> #a208000000000000000000008c78af48
+decq803 apply -2147483649 -> #a208000000000000000000008c78af49
+decq804 apply 2147483646 -> #2208000000000000000000008c78af46
+decq805 apply 2147483647 -> #2208000000000000000000008c78af47
+decq806 apply 2147483648 -> #2208000000000000000000008c78af48
+decq807 apply 2147483649 -> #2208000000000000000000008c78af49
+decq808 apply 4294967294 -> #22080000000000000000000115afb55a
+decq809 apply 4294967295 -> #22080000000000000000000115afb55b
+decq810 apply 4294967296 -> #22080000000000000000000115afb57a
+decq811 apply 4294967297 -> #22080000000000000000000115afb57b
+
+decq820 apply #a208000000000000000000008c78af46 -> -2147483646
+decq821 apply #a208000000000000000000008c78af47 -> -2147483647
+decq822 apply #a208000000000000000000008c78af48 -> -2147483648
+decq823 apply #a208000000000000000000008c78af49 -> -2147483649
+decq824 apply #2208000000000000000000008c78af46 -> 2147483646
+decq825 apply #2208000000000000000000008c78af47 -> 2147483647
+decq826 apply #2208000000000000000000008c78af48 -> 2147483648
+decq827 apply #2208000000000000000000008c78af49 -> 2147483649
+decq828 apply #22080000000000000000000115afb55a -> 4294967294
+decq829 apply #22080000000000000000000115afb55b -> 4294967295
+decq830 apply #22080000000000000000000115afb57a -> 4294967296
+decq831 apply #22080000000000000000000115afb57b -> 4294967297
diff --git a/Lib/test/decimaltestdata/dqFMA.decTest b/Lib/test/decimaltestdata/dqFMA.decTest
new file mode 100644
index 0000000..37d7749
--- /dev/null
+++ b/Lib/test/decimaltestdata/dqFMA.decTest
@@ -0,0 +1,1761 @@
+------------------------------------------------------------------------
+-- dqFMA.decTest -- decQuad Fused Multiply Add --
+-- Copyright (c) IBM Corporation, 1981, 2007. All rights reserved. --
+------------------------------------------------------------------------
+-- Please see the document "General Decimal Arithmetic Testcases" --
+-- at http://www2.hursley.ibm.com/decimal for the description of --
+-- these testcases. --
+-- --
+-- These testcases are experimental ('beta' versions), and they --
+-- may contain errors. They are offered on an as-is basis. In --
+-- particular, achieving the same results as the tests here is not --
+-- a guarantee that an implementation complies with any Standard --
+-- or specification. The tests are not exhaustive. --
+-- --
+-- Please send comments, suggestions, and corrections to the author: --
+-- Mike Cowlishaw, IBM Fellow --
+-- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK --
+-- mfc@uk.ibm.com --
+------------------------------------------------------------------------
+version: 2.56
+
+extended: 1
+clamp: 1
+precision: 34
+maxExponent: 6144
+minExponent: -6143
+rounding: half_even
+
+-- These tests comprese three parts:
+-- 1. Sanity checks and other three-operand tests (especially those
+-- where the fused operation makes a difference)
+-- 2. Multiply tests (third operand is neutral zero [0E+emax])
+-- 3. Addition tests (first operand is 1)
+-- The multiply and addition tests are extensive because FMA may have
+-- its own dedicated multiplication or addition routine(s), and they
+-- also inherently check the left-to-right properties.
+
+-- Sanity checks
+dqfma0001 fma 1 1 1 -> 2
+dqfma0002 fma 1 1 2 -> 3
+dqfma0003 fma 2 2 3 -> 7
+dqfma0004 fma 9 9 9 -> 90
+dqfma0005 fma -1 1 1 -> 0
+dqfma0006 fma -1 1 2 -> 1
+dqfma0007 fma -2 2 3 -> -1
+dqfma0008 fma -9 9 9 -> -72
+dqfma0011 fma 1 -1 1 -> 0
+dqfma0012 fma 1 -1 2 -> 1
+dqfma0013 fma 2 -2 3 -> -1
+dqfma0014 fma 9 -9 9 -> -72
+dqfma0015 fma 1 1 -1 -> 0
+dqfma0016 fma 1 1 -2 -> -1
+dqfma0017 fma 2 2 -3 -> 1
+dqfma0018 fma 9 9 -9 -> 72
+
+-- non-integer exacts
+dqfma0100 fma 25.2 63.6 -438 -> 1164.72
+dqfma0101 fma 0.301 0.380 334 -> 334.114380
+dqfma0102 fma 49.2 -4.8 23.3 -> -212.86
+dqfma0103 fma 4.22 0.079 -94.6 -> -94.26662
+dqfma0104 fma 903 0.797 0.887 -> 720.578
+dqfma0105 fma 6.13 -161 65.9 -> -921.03
+dqfma0106 fma 28.2 727 5.45 -> 20506.85
+dqfma0107 fma 4 605 688 -> 3108
+dqfma0108 fma 93.3 0.19 0.226 -> 17.953
+dqfma0109 fma 0.169 -341 5.61 -> -52.019
+dqfma0110 fma -72.2 30 -51.2 -> -2217.2
+dqfma0111 fma -0.409 13 20.4 -> 15.083
+dqfma0112 fma 317 77.0 19.0 -> 24428.0
+dqfma0113 fma 47 6.58 1.62 -> 310.88
+dqfma0114 fma 1.36 0.984 0.493 -> 1.83124
+dqfma0115 fma 72.7 274 1.56 -> 19921.36
+dqfma0116 fma 335 847 83 -> 283828
+dqfma0117 fma 666 0.247 25.4 -> 189.902
+dqfma0118 fma -3.87 3.06 78.0 -> 66.1578
+dqfma0119 fma 0.742 192 35.6 -> 178.064
+dqfma0120 fma -91.6 5.29 0.153 -> -484.411
+
+-- cases where result is different from separate multiply + add; each
+-- is preceded by the result of unfused multiply and add
+-- [this is about 20% of all similar cases in general]
+-- -> 4.500119002100000209469729375698778E+38
+dqfma0202 fma 68537985861355864457.5694 6565875762972086605.85969 35892634447236753.172812 -> 4.500119002100000209469729375698779E+38 Inexact Rounded
+-- -> 5.996248469584594346858881620185514E+41
+dqfma0208 fma 89261822344727628571.9 6717595845654131383336.89 5061036497288796076266.11 -> 5.996248469584594346858881620185513E+41 Inexact Rounded
+-- -> 1.899242968678256924021594770874070E+34
+dqfma0210 fma 320506237232448685.495971 59257597764017967.984448 3205615239077711589912.85 -> 1.899242968678256924021594770874071E+34 Inexact Rounded
+-- -> 7.078596978842809537929699954860309E+37
+dqfma0215 fma 220247843259112263.17995 321392340287987979002.80 47533279819997167655440 -> 7.078596978842809537929699954860308E+37 Inexact Rounded
+-- -> 1.224955667581427559754106862350743E+37
+dqfma0226 fma 23880729790368880412.1449 512947333827064719.55407 217117438419590824502.963 -> 1.224955667581427559754106862350744E+37 Inexact Rounded
+-- -> -2.530094043253148806272276368579144E+42
+dqfma0229 fma 2539892357016099706.4126 -996142232667504817717435 53682082598315949425.937 -> -2.530094043253148806272276368579143E+42 Inexact Rounded
+-- -> 1.713387085759711954319391412788454E+37
+dqfma0233 fma 4546339491341624464.0804 3768717864169205581 83578980278690395184.620 -> 1.713387085759711954319391412788453E+37 Inexact Rounded
+-- -> 4.062275663405823716411579117771547E+35
+dqfma0235 fma 409242119433816131.42253 992633815166741501.477249 70179636544416756129546 -> 4.062275663405823716411579117771548E+35 Inexact Rounded
+-- -> 6.002604327732568490562249875306823E+47
+dqfma0258 fma 817941336593541742159684 733867339769310729266598 78563844650942419311830.8 -> 6.002604327732568490562249875306822E+47 Inexact Rounded
+-- -> -2.027022514381452197510103395283874E+39
+dqfma0264 fma 387617310169161270.737532 -5229442703414956061216.62 57665666816652967150473.5 -> -2.027022514381452197510103395283873E+39 Inexact Rounded
+-- -> -7.856525039803554001144089842730361E+37
+dqfma0267 fma -847655845720565274701.210 92685316564117739.83984 22780950041376424429.5686 -> -7.856525039803554001144089842730360E+37 Inexact Rounded
+-- -> 1.695515562011520746125607502237559E+38
+dqfma0268 fma 21590290365127685.3675 7853139227576541379426.8 -3275859437236180.761544 -> 1.695515562011520746125607502237558E+38 Inexact Rounded
+-- -> -8.448422935783289219748115038014710E+38
+dqfma0269 fma -974320636272862697.971586 867109103641860247440.756 -9775170775902454762.98 -> -8.448422935783289219748115038014709E+38 Inexact Rounded
+
+-- Cases where multiply would overflow or underflow if separate
+dqfma0300 fma 9e+6144 10 0 -> Infinity Overflow Inexact Rounded
+dqfma0301 fma 1e+6144 10 0 -> Infinity Overflow Inexact Rounded
+dqfma0302 fma 1e+6144 10 -1e+6144 -> 9.000000000000000000000000000000000E+6144 Clamped
+dqfma0303 fma 1e+6144 10 -9e+6144 -> 1.000000000000000000000000000000000E+6144 Clamped
+-- subnormal etc.
+dqfma0305 fma 1e-6176 0.1 0 -> 0E-6176 Underflow Subnormal Inexact Rounded Clamped
+dqfma0306 fma 1e-6176 0.1 1 -> 1.000000000000000000000000000000000 Inexact Rounded
+dqfma0307 fma 1e-6176 0.1 1e-6176 -> 1E-6176 Underflow Subnormal Inexact Rounded
+
+-- Infinite combinations
+dqfma0800 fma Inf Inf Inf -> Infinity
+dqfma0801 fma Inf Inf -Inf -> NaN Invalid_operation
+dqfma0802 fma Inf -Inf Inf -> NaN Invalid_operation
+dqfma0803 fma Inf -Inf -Inf -> -Infinity
+dqfma0804 fma -Inf Inf Inf -> NaN Invalid_operation
+dqfma0805 fma -Inf Inf -Inf -> -Infinity
+dqfma0806 fma -Inf -Inf Inf -> Infinity
+dqfma0807 fma -Inf -Inf -Inf -> NaN Invalid_operation
+
+-- Triple NaN propagation
+dqfma0900 fma NaN2 NaN3 NaN5 -> NaN2
+dqfma0901 fma 0 NaN3 NaN5 -> NaN3
+dqfma0902 fma 0 0 NaN5 -> NaN5
+-- first sNaN wins (consider qNaN from earlier sNaN being
+-- overridden by an sNaN in third operand)
+dqfma0903 fma sNaN1 sNaN2 sNaN3 -> NaN1 Invalid_operation
+dqfma0904 fma 0 sNaN2 sNaN3 -> NaN2 Invalid_operation
+dqfma0905 fma 0 0 sNaN3 -> NaN3 Invalid_operation
+dqfma0906 fma sNaN1 sNaN2 sNaN3 -> NaN1 Invalid_operation
+dqfma0907 fma NaN7 sNaN2 sNaN3 -> NaN2 Invalid_operation
+dqfma0908 fma NaN7 NaN5 sNaN3 -> NaN3 Invalid_operation
+
+-- MULTIPLICATION TESTS ------------------------------------------------
+rounding: half_even
+
+-- sanity checks
+dqfma2000 fma 2 2 0e+6144 -> 4
+dqfma2001 fma 2 3 0e+6144 -> 6
+dqfma2002 fma 5 1 0e+6144 -> 5
+dqfma2003 fma 5 2 0e+6144 -> 10
+dqfma2004 fma 1.20 2 0e+6144 -> 2.40
+dqfma2005 fma 1.20 0 0e+6144 -> 0.00
+dqfma2006 fma 1.20 -2 0e+6144 -> -2.40
+dqfma2007 fma -1.20 2 0e+6144 -> -2.40
+dqfma2008 fma -1.20 0 0e+6144 -> 0.00
+dqfma2009 fma -1.20 -2 0e+6144 -> 2.40
+dqfma2010 fma 5.09 7.1 0e+6144 -> 36.139
+dqfma2011 fma 2.5 4 0e+6144 -> 10.0
+dqfma2012 fma 2.50 4 0e+6144 -> 10.00
+dqfma2013 fma 1.23456789 1.0000000000000000000000000000 0e+6144 -> 1.234567890000000000000000000000000 Rounded
+dqfma2015 fma 2.50 4 0e+6144 -> 10.00
+dqfma2016 fma 9.99999999999999999 9.99999999999999999 0e+6144 -> 99.99999999999999980000000000000000 Inexact Rounded
+dqfma2017 fma 9.99999999999999999 -9.99999999999999999 0e+6144 -> -99.99999999999999980000000000000000 Inexact Rounded
+dqfma2018 fma -9.99999999999999999 9.99999999999999999 0e+6144 -> -99.99999999999999980000000000000000 Inexact Rounded
+dqfma2019 fma -9.99999999999999999 -9.99999999999999999 0e+6144 -> 99.99999999999999980000000000000000 Inexact Rounded
+
+-- zeros, etc.
+dqfma2021 fma 0 0 0e+6144 -> 0
+dqfma2022 fma 0 -0 0e+6144 -> 0
+dqfma2023 fma -0 0 0e+6144 -> 0
+dqfma2024 fma -0 -0 0e+6144 -> 0
+dqfma2025 fma -0.0 -0.0 0e+6144 -> 0.00
+dqfma2026 fma -0.0 -0.0 0e+6144 -> 0.00
+dqfma2027 fma -0.0 -0.0 0e+6144 -> 0.00
+dqfma2028 fma -0.0 -0.0 0e+6144 -> 0.00
+dqfma2030 fma 5.00 1E-3 0e+6144 -> 0.00500
+dqfma2031 fma 00.00 0.000 0e+6144 -> 0.00000
+dqfma2032 fma 00.00 0E-3 0e+6144 -> 0.00000 -- rhs is 0
+dqfma2033 fma 0E-3 00.00 0e+6144 -> 0.00000 -- lhs is 0
+dqfma2034 fma -5.00 1E-3 0e+6144 -> -0.00500
+dqfma2035 fma -00.00 0.000 0e+6144 -> 0.00000
+dqfma2036 fma -00.00 0E-3 0e+6144 -> 0.00000 -- rhs is 0
+dqfma2037 fma -0E-3 00.00 0e+6144 -> 0.00000 -- lhs is 0
+dqfma2038 fma 5.00 -1E-3 0e+6144 -> -0.00500
+dqfma2039 fma 00.00 -0.000 0e+6144 -> 0.00000
+dqfma2040 fma 00.00 -0E-3 0e+6144 -> 0.00000 -- rhs is 0
+dqfma2041 fma 0E-3 -00.00 0e+6144 -> 0.00000 -- lhs is 0
+dqfma2042 fma -5.00 -1E-3 0e+6144 -> 0.00500
+dqfma2043 fma -00.00 -0.000 0e+6144 -> 0.00000
+dqfma2044 fma -00.00 -0E-3 0e+6144 -> 0.00000 -- rhs is 0
+dqfma2045 fma -0E-3 -00.00 0e+6144 -> 0.00000 -- lhs is 0
+
+-- examples from decarith
+dqfma2050 fma 1.20 3 0e+6144 -> 3.60
+dqfma2051 fma 7 3 0e+6144 -> 21
+dqfma2052 fma 0.9 0.8 0e+6144 -> 0.72
+dqfma2053 fma 0.9 -0 0e+6144 -> 0.0
+dqfma2054 fma 654321 654321 0e+6144 -> 428135971041
+
+dqfma2060 fma 123.45 1e7 0e+6144 -> 1.2345E+9
+dqfma2061 fma 123.45 1e8 0e+6144 -> 1.2345E+10
+dqfma2062 fma 123.45 1e+9 0e+6144 -> 1.2345E+11
+dqfma2063 fma 123.45 1e10 0e+6144 -> 1.2345E+12
+dqfma2064 fma 123.45 1e11 0e+6144 -> 1.2345E+13
+dqfma2065 fma 123.45 1e12 0e+6144 -> 1.2345E+14
+dqfma2066 fma 123.45 1e13 0e+6144 -> 1.2345E+15
+
+
+-- test some intermediate lengths
+-- 1234567890123456
+dqfma2080 fma 0.1 1230123456456789 0e+6144 -> 123012345645678.9
+dqfma2084 fma 0.1 1230123456456789 0e+6144 -> 123012345645678.9
+dqfma2090 fma 1230123456456789 0.1 0e+6144 -> 123012345645678.9
+dqfma2094 fma 1230123456456789 0.1 0e+6144 -> 123012345645678.9
+
+-- test some more edge cases and carries
+dqfma2101 fma 9 9 0e+6144 -> 81
+dqfma2102 fma 9 90 0e+6144 -> 810
+dqfma2103 fma 9 900 0e+6144 -> 8100
+dqfma2104 fma 9 9000 0e+6144 -> 81000
+dqfma2105 fma 9 90000 0e+6144 -> 810000
+dqfma2106 fma 9 900000 0e+6144 -> 8100000
+dqfma2107 fma 9 9000000 0e+6144 -> 81000000
+dqfma2108 fma 9 90000000 0e+6144 -> 810000000
+dqfma2109 fma 9 900000000 0e+6144 -> 8100000000
+dqfma2110 fma 9 9000000000 0e+6144 -> 81000000000
+dqfma2111 fma 9 90000000000 0e+6144 -> 810000000000
+dqfma2112 fma 9 900000000000 0e+6144 -> 8100000000000
+dqfma2113 fma 9 9000000000000 0e+6144 -> 81000000000000
+dqfma2114 fma 9 90000000000000 0e+6144 -> 810000000000000
+dqfma2115 fma 9 900000000000000 0e+6144 -> 8100000000000000
+--dqfma2116 fma 9 9000000000000000 0e+6144 -> 81000000000000000
+--dqfma2117 fma 9 90000000000000000 0e+6144 -> 810000000000000000
+--dqfma2118 fma 9 900000000000000000 0e+6144 -> 8100000000000000000
+--dqfma2119 fma 9 9000000000000000000 0e+6144 -> 81000000000000000000
+--dqfma2120 fma 9 90000000000000000000 0e+6144 -> 810000000000000000000
+--dqfma2121 fma 9 900000000000000000000 0e+6144 -> 8100000000000000000000
+--dqfma2122 fma 9 9000000000000000000000 0e+6144 -> 81000000000000000000000
+--dqfma2123 fma 9 90000000000000000000000 0e+6144 -> 810000000000000000000000
+-- test some more edge cases without carries
+dqfma2131 fma 3 3 0e+6144 -> 9
+dqfma2132 fma 3 30 0e+6144 -> 90
+dqfma2133 fma 3 300 0e+6144 -> 900
+dqfma2134 fma 3 3000 0e+6144 -> 9000
+dqfma2135 fma 3 30000 0e+6144 -> 90000
+dqfma2136 fma 3 300000 0e+6144 -> 900000
+dqfma2137 fma 3 3000000 0e+6144 -> 9000000
+dqfma2138 fma 3 30000000 0e+6144 -> 90000000
+dqfma2139 fma 3 300000000 0e+6144 -> 900000000
+dqfma2140 fma 3 3000000000 0e+6144 -> 9000000000
+dqfma2141 fma 3 30000000000 0e+6144 -> 90000000000
+dqfma2142 fma 3 300000000000 0e+6144 -> 900000000000
+dqfma2143 fma 3 3000000000000 0e+6144 -> 9000000000000
+dqfma2144 fma 3 30000000000000 0e+6144 -> 90000000000000
+dqfma2145 fma 3 300000000000000 0e+6144 -> 900000000000000
+dqfma2146 fma 3 3000000000000000 0e+6144 -> 9000000000000000
+dqfma2147 fma 3 30000000000000000 0e+6144 -> 90000000000000000
+dqfma2148 fma 3 300000000000000000 0e+6144 -> 900000000000000000
+dqfma2149 fma 3 3000000000000000000 0e+6144 -> 9000000000000000000
+dqfma2150 fma 3 30000000000000000000 0e+6144 -> 90000000000000000000
+dqfma2151 fma 3 300000000000000000000 0e+6144 -> 900000000000000000000
+dqfma2152 fma 3 3000000000000000000000 0e+6144 -> 9000000000000000000000
+dqfma2153 fma 3 30000000000000000000000 0e+6144 -> 90000000000000000000000
+
+dqfma2263 fma 30269.587755640502150977251770554 4.8046009735990873395936309640543 0e+6144 -> 145433.2908011933696719165119928296 Inexact Rounded
+
+-- test some edge cases with exact rounding
+dqfma2301 fma 900000000000000000 9 0e+6144 -> 8100000000000000000
+dqfma2302 fma 900000000000000000 90 0e+6144 -> 81000000000000000000
+dqfma2303 fma 900000000000000000 900 0e+6144 -> 810000000000000000000
+dqfma2304 fma 900000000000000000 9000 0e+6144 -> 8100000000000000000000
+dqfma2305 fma 900000000000000000 90000 0e+6144 -> 81000000000000000000000
+dqfma2306 fma 900000000000000000 900000 0e+6144 -> 810000000000000000000000
+dqfma2307 fma 900000000000000000 9000000 0e+6144 -> 8100000000000000000000000
+dqfma2308 fma 900000000000000000 90000000 0e+6144 -> 81000000000000000000000000
+dqfma2309 fma 900000000000000000 900000000 0e+6144 -> 810000000000000000000000000
+dqfma2310 fma 900000000000000000 9000000000 0e+6144 -> 8100000000000000000000000000
+dqfma2311 fma 900000000000000000 90000000000 0e+6144 -> 81000000000000000000000000000
+dqfma2312 fma 900000000000000000 900000000000 0e+6144 -> 810000000000000000000000000000
+dqfma2313 fma 900000000000000000 9000000000000 0e+6144 -> 8100000000000000000000000000000
+dqfma2314 fma 900000000000000000 90000000000000 0e+6144 -> 81000000000000000000000000000000
+dqfma2315 fma 900000000000000000 900000000000000 0e+6144 -> 810000000000000000000000000000000
+dqfma2316 fma 900000000000000000 9000000000000000 0e+6144 -> 8100000000000000000000000000000000
+dqfma2317 fma 9000000000000000000 9000000000000000 0e+6144 -> 8.100000000000000000000000000000000E+34 Rounded
+dqfma2318 fma 90000000000000000000 9000000000000000 0e+6144 -> 8.100000000000000000000000000000000E+35 Rounded
+dqfma2319 fma 900000000000000000000 9000000000000000 0e+6144 -> 8.100000000000000000000000000000000E+36 Rounded
+dqfma2320 fma 9000000000000000000000 9000000000000000 0e+6144 -> 8.100000000000000000000000000000000E+37 Rounded
+dqfma2321 fma 90000000000000000000000 9000000000000000 0e+6144 -> 8.100000000000000000000000000000000E+38 Rounded
+dqfma2322 fma 900000000000000000000000 9000000000000000 0e+6144 -> 8.100000000000000000000000000000000E+39 Rounded
+dqfma2323 fma 9000000000000000000000000 9000000000000000 0e+6144 -> 8.100000000000000000000000000000000E+40 Rounded
+
+-- tryzeros cases
+dqfma2504 fma 0E-4260 1000E-4260 0e+6144 -> 0E-6176 Clamped
+dqfma2505 fma 100E+4260 0E+4260 0e+6144 -> 0E+6111 Clamped
+
+-- mixed with zeros
+dqfma2541 fma 0 -1 0e+6144 -> 0
+dqfma2542 fma -0 -1 0e+6144 -> 0
+dqfma2543 fma 0 1 0e+6144 -> 0
+dqfma2544 fma -0 1 0e+6144 -> 0
+dqfma2545 fma -1 0 0e+6144 -> 0
+dqfma2546 fma -1 -0 0e+6144 -> 0
+dqfma2547 fma 1 0 0e+6144 -> 0
+dqfma2548 fma 1 -0 0e+6144 -> 0
+
+dqfma2551 fma 0.0 -1 0e+6144 -> 0.0
+dqfma2552 fma -0.0 -1 0e+6144 -> 0.0
+dqfma2553 fma 0.0 1 0e+6144 -> 0.0
+dqfma2554 fma -0.0 1 0e+6144 -> 0.0
+dqfma2555 fma -1.0 0 0e+6144 -> 0.0
+dqfma2556 fma -1.0 -0 0e+6144 -> 0.0
+dqfma2557 fma 1.0 0 0e+6144 -> 0.0
+dqfma2558 fma 1.0 -0 0e+6144 -> 0.0
+
+dqfma2561 fma 0 -1.0 0e+6144 -> 0.0
+dqfma2562 fma -0 -1.0 0e+6144 -> 0.0
+dqfma2563 fma 0 1.0 0e+6144 -> 0.0
+dqfma2564 fma -0 1.0 0e+6144 -> 0.0
+dqfma2565 fma -1 0.0 0e+6144 -> 0.0
+dqfma2566 fma -1 -0.0 0e+6144 -> 0.0
+dqfma2567 fma 1 0.0 0e+6144 -> 0.0
+dqfma2568 fma 1 -0.0 0e+6144 -> 0.0
+
+dqfma2571 fma 0.0 -1.0 0e+6144 -> 0.00
+dqfma2572 fma -0.0 -1.0 0e+6144 -> 0.00
+dqfma2573 fma 0.0 1.0 0e+6144 -> 0.00
+dqfma2574 fma -0.0 1.0 0e+6144 -> 0.00
+dqfma2575 fma -1.0 0.0 0e+6144 -> 0.00
+dqfma2576 fma -1.0 -0.0 0e+6144 -> 0.00
+dqfma2577 fma 1.0 0.0 0e+6144 -> 0.00
+dqfma2578 fma 1.0 -0.0 0e+6144 -> 0.00
+dqfma2579 fma 1.0 0.0 0e+6144 -> 0.00
+dqfma2530 fma -1.0 -0.0 0e+6144 -> 0.00
+dqfma2531 fma -1.0 0.0 0e+6144 -> 0.00
+dqfma2532 fma 1.0 -0.0 -0e+6144 -> -0.00
+dqfma2533 fma 1.0 0.0 -0e+6144 -> 0.00
+dqfma2534 fma -1.0 -0.0 -0e+6144 -> 0.00
+dqfma2535 fma -1.0 0.0 -0e+6144 -> -0.00
+
+
+-- Specials
+dqfma2580 fma Inf -Inf 0e+6144 -> -Infinity
+dqfma2581 fma Inf -1000 0e+6144 -> -Infinity
+dqfma2582 fma Inf -1 0e+6144 -> -Infinity
+dqfma2583 fma Inf -0 0e+6144 -> NaN Invalid_operation
+dqfma2584 fma Inf 0 0e+6144 -> NaN Invalid_operation
+dqfma2585 fma Inf 1 0e+6144 -> Infinity
+dqfma2586 fma Inf 1000 0e+6144 -> Infinity
+dqfma2587 fma Inf Inf 0e+6144 -> Infinity
+dqfma2588 fma -1000 Inf 0e+6144 -> -Infinity
+dqfma2589 fma -Inf Inf 0e+6144 -> -Infinity
+dqfma2590 fma -1 Inf 0e+6144 -> -Infinity
+dqfma2591 fma -0 Inf 0e+6144 -> NaN Invalid_operation
+dqfma2592 fma 0 Inf 0e+6144 -> NaN Invalid_operation
+dqfma2593 fma 1 Inf 0e+6144 -> Infinity
+dqfma2594 fma 1000 Inf 0e+6144 -> Infinity
+dqfma2595 fma Inf Inf 0e+6144 -> Infinity
+
+dqfma2600 fma -Inf -Inf 0e+6144 -> Infinity
+dqfma2601 fma -Inf -1000 0e+6144 -> Infinity
+dqfma2602 fma -Inf -1 0e+6144 -> Infinity
+dqfma2603 fma -Inf -0 0e+6144 -> NaN Invalid_operation
+dqfma2604 fma -Inf 0 0e+6144 -> NaN Invalid_operation
+dqfma2605 fma -Inf 1 0e+6144 -> -Infinity
+dqfma2606 fma -Inf 1000 0e+6144 -> -Infinity
+dqfma2607 fma -Inf Inf 0e+6144 -> -Infinity
+dqfma2608 fma -1000 Inf 0e+6144 -> -Infinity
+dqfma2609 fma -Inf -Inf 0e+6144 -> Infinity
+dqfma2610 fma -1 -Inf 0e+6144 -> Infinity
+dqfma2611 fma -0 -Inf 0e+6144 -> NaN Invalid_operation
+dqfma2612 fma 0 -Inf 0e+6144 -> NaN Invalid_operation
+dqfma2613 fma 1 -Inf 0e+6144 -> -Infinity
+dqfma2614 fma 1000 -Inf 0e+6144 -> -Infinity
+dqfma2615 fma Inf -Inf 0e+6144 -> -Infinity
+
+dqfma2621 fma NaN -Inf 0e+6144 -> NaN
+dqfma2622 fma NaN -1000 0e+6144 -> NaN
+dqfma2623 fma NaN -1 0e+6144 -> NaN
+dqfma2624 fma NaN -0 0e+6144 -> NaN
+dqfma2625 fma NaN 0 0e+6144 -> NaN
+dqfma2626 fma NaN 1 0e+6144 -> NaN
+dqfma2627 fma NaN 1000 0e+6144 -> NaN
+dqfma2628 fma NaN Inf 0e+6144 -> NaN
+dqfma2629 fma NaN NaN 0e+6144 -> NaN
+dqfma2630 fma -Inf NaN 0e+6144 -> NaN
+dqfma2631 fma -1000 NaN 0e+6144 -> NaN
+dqfma2632 fma -1 NaN 0e+6144 -> NaN
+dqfma2633 fma -0 NaN 0e+6144 -> NaN
+dqfma2634 fma 0 NaN 0e+6144 -> NaN
+dqfma2635 fma 1 NaN 0e+6144 -> NaN
+dqfma2636 fma 1000 NaN 0e+6144 -> NaN
+dqfma2637 fma Inf NaN 0e+6144 -> NaN
+
+dqfma2641 fma sNaN -Inf 0e+6144 -> NaN Invalid_operation
+dqfma2642 fma sNaN -1000 0e+6144 -> NaN Invalid_operation
+dqfma2643 fma sNaN -1 0e+6144 -> NaN Invalid_operation
+dqfma2644 fma sNaN -0 0e+6144 -> NaN Invalid_operation
+dqfma2645 fma sNaN 0 0e+6144 -> NaN Invalid_operation
+dqfma2646 fma sNaN 1 0e+6144 -> NaN Invalid_operation
+dqfma2647 fma sNaN 1000 0e+6144 -> NaN Invalid_operation
+dqfma2648 fma sNaN NaN 0e+6144 -> NaN Invalid_operation
+dqfma2649 fma sNaN sNaN 0e+6144 -> NaN Invalid_operation
+dqfma2650 fma NaN sNaN 0e+6144 -> NaN Invalid_operation
+dqfma2651 fma -Inf sNaN 0e+6144 -> NaN Invalid_operation
+dqfma2652 fma -1000 sNaN 0e+6144 -> NaN Invalid_operation
+dqfma2653 fma -1 sNaN 0e+6144 -> NaN Invalid_operation
+dqfma2654 fma -0 sNaN 0e+6144 -> NaN Invalid_operation
+dqfma2655 fma 0 sNaN 0e+6144 -> NaN Invalid_operation
+dqfma2656 fma 1 sNaN 0e+6144 -> NaN Invalid_operation
+dqfma2657 fma 1000 sNaN 0e+6144 -> NaN Invalid_operation
+dqfma2658 fma Inf sNaN 0e+6144 -> NaN Invalid_operation
+dqfma2659 fma NaN sNaN 0e+6144 -> NaN Invalid_operation
+
+-- propagating NaNs
+dqfma2661 fma NaN9 -Inf 0e+6144 -> NaN9
+dqfma2662 fma NaN8 999 0e+6144 -> NaN8
+dqfma2663 fma NaN71 Inf 0e+6144 -> NaN71
+dqfma2664 fma NaN6 NaN5 0e+6144 -> NaN6
+dqfma2665 fma -Inf NaN4 0e+6144 -> NaN4
+dqfma2666 fma -999 NaN33 0e+6144 -> NaN33
+dqfma2667 fma Inf NaN2 0e+6144 -> NaN2
+
+dqfma2671 fma sNaN99 -Inf 0e+6144 -> NaN99 Invalid_operation
+dqfma2672 fma sNaN98 -11 0e+6144 -> NaN98 Invalid_operation
+dqfma2673 fma sNaN97 NaN 0e+6144 -> NaN97 Invalid_operation
+dqfma2674 fma sNaN16 sNaN94 0e+6144 -> NaN16 Invalid_operation
+dqfma2675 fma NaN95 sNaN93 0e+6144 -> NaN93 Invalid_operation
+dqfma2676 fma -Inf sNaN92 0e+6144 -> NaN92 Invalid_operation
+dqfma2677 fma 088 sNaN91 0e+6144 -> NaN91 Invalid_operation
+dqfma2678 fma Inf sNaN90 0e+6144 -> NaN90 Invalid_operation
+dqfma2679 fma NaN sNaN89 0e+6144 -> NaN89 Invalid_operation
+
+dqfma2681 fma -NaN9 -Inf 0e+6144 -> -NaN9
+dqfma2682 fma -NaN8 999 0e+6144 -> -NaN8
+dqfma2683 fma -NaN71 Inf 0e+6144 -> -NaN71
+dqfma2684 fma -NaN6 -NaN5 0e+6144 -> -NaN6
+dqfma2685 fma -Inf -NaN4 0e+6144 -> -NaN4
+dqfma2686 fma -999 -NaN33 0e+6144 -> -NaN33
+dqfma2687 fma Inf -NaN2 0e+6144 -> -NaN2
+
+dqfma2691 fma -sNaN99 -Inf 0e+6144 -> -NaN99 Invalid_operation
+dqfma2692 fma -sNaN98 -11 0e+6144 -> -NaN98 Invalid_operation
+dqfma2693 fma -sNaN97 NaN 0e+6144 -> -NaN97 Invalid_operation
+dqfma2694 fma -sNaN16 -sNaN94 0e+6144 -> -NaN16 Invalid_operation
+dqfma2695 fma -NaN95 -sNaN93 0e+6144 -> -NaN93 Invalid_operation
+dqfma2696 fma -Inf -sNaN92 0e+6144 -> -NaN92 Invalid_operation
+dqfma2697 fma 088 -sNaN91 0e+6144 -> -NaN91 Invalid_operation
+dqfma2698 fma Inf -sNaN90 0e+6144 -> -NaN90 Invalid_operation
+dqfma2699 fma -NaN -sNaN89 0e+6144 -> -NaN89 Invalid_operation
+
+dqfma2701 fma -NaN -Inf 0e+6144 -> -NaN
+dqfma2702 fma -NaN 999 0e+6144 -> -NaN
+dqfma2703 fma -NaN Inf 0e+6144 -> -NaN
+dqfma2704 fma -NaN -NaN 0e+6144 -> -NaN
+dqfma2705 fma -Inf -NaN0 0e+6144 -> -NaN
+dqfma2706 fma -999 -NaN 0e+6144 -> -NaN
+dqfma2707 fma Inf -NaN 0e+6144 -> -NaN
+
+dqfma2711 fma -sNaN -Inf 0e+6144 -> -NaN Invalid_operation
+dqfma2712 fma -sNaN -11 0e+6144 -> -NaN Invalid_operation
+dqfma2713 fma -sNaN00 NaN 0e+6144 -> -NaN Invalid_operation
+dqfma2714 fma -sNaN -sNaN 0e+6144 -> -NaN Invalid_operation
+dqfma2715 fma -NaN -sNaN 0e+6144 -> -NaN Invalid_operation
+dqfma2716 fma -Inf -sNaN 0e+6144 -> -NaN Invalid_operation
+dqfma2717 fma 088 -sNaN 0e+6144 -> -NaN Invalid_operation
+dqfma2718 fma Inf -sNaN 0e+6144 -> -NaN Invalid_operation
+dqfma2719 fma -NaN -sNaN 0e+6144 -> -NaN Invalid_operation
+
+-- overflow and underflow tests .. note subnormal results
+-- signs
+dqfma2751 fma 1e+4277 1e+3311 0e+6144 -> Infinity Overflow Inexact Rounded
+dqfma2752 fma 1e+4277 -1e+3311 0e+6144 -> -Infinity Overflow Inexact Rounded
+dqfma2753 fma -1e+4277 1e+3311 0e+6144 -> -Infinity Overflow Inexact Rounded
+dqfma2754 fma -1e+4277 -1e+3311 0e+6144 -> Infinity Overflow Inexact Rounded
+dqfma2755 fma 1e-4277 1e-3311 0e+6144 -> 0E-6176 Underflow Subnormal Inexact Rounded Clamped
+dqfma2756 fma 1e-4277 -1e-3311 0e+6144 -> -0E-6176 Underflow Subnormal Inexact Rounded Clamped
+dqfma2757 fma -1e-4277 1e-3311 0e+6144 -> -0E-6176 Underflow Subnormal Inexact Rounded Clamped
+dqfma2758 fma -1e-4277 -1e-3311 0e+6144 -> 0E-6176 Underflow Subnormal Inexact Rounded Clamped
+
+-- 'subnormal' boundary (all hard underflow or overflow in base arithemtic)
+dqfma2760 fma 1e-6069 1e-101 0e+6144 -> 1E-6170 Subnormal
+dqfma2761 fma 1e-6069 1e-102 0e+6144 -> 1E-6171 Subnormal
+dqfma2762 fma 1e-6069 1e-103 0e+6144 -> 1E-6172 Subnormal
+dqfma2763 fma 1e-6069 1e-104 0e+6144 -> 1E-6173 Subnormal
+dqfma2764 fma 1e-6069 1e-105 0e+6144 -> 1E-6174 Subnormal
+dqfma2765 fma 1e-6069 1e-106 0e+6144 -> 1E-6175 Subnormal
+dqfma2766 fma 1e-6069 1e-107 0e+6144 -> 1E-6176 Subnormal
+dqfma2767 fma 1e-6069 1e-108 0e+6144 -> 0E-6176 Underflow Subnormal Inexact Rounded Clamped
+dqfma2768 fma 1e-6069 1e-109 0e+6144 -> 0E-6176 Underflow Subnormal Inexact Rounded Clamped
+dqfma2769 fma 1e-6069 1e-110 0e+6144 -> 0E-6176 Underflow Subnormal Inexact Rounded Clamped
+-- [no equivalent of 'subnormal' for overflow]
+dqfma2770 fma 1e+40 1e+6101 0e+6144 -> 1.000000000000000000000000000000E+6141 Clamped
+dqfma2771 fma 1e+40 1e+6102 0e+6144 -> 1.0000000000000000000000000000000E+6142 Clamped
+dqfma2772 fma 1e+40 1e+6103 0e+6144 -> 1.00000000000000000000000000000000E+6143 Clamped
+dqfma2773 fma 1e+40 1e+6104 0e+6144 -> 1.000000000000000000000000000000000E+6144 Clamped
+dqfma2774 fma 1e+40 1e+6105 0e+6144 -> Infinity Overflow Inexact Rounded
+dqfma2775 fma 1e+40 1e+6106 0e+6144 -> Infinity Overflow Inexact Rounded
+dqfma2776 fma 1e+40 1e+6107 0e+6144 -> Infinity Overflow Inexact Rounded
+dqfma2777 fma 1e+40 1e+6108 0e+6144 -> Infinity Overflow Inexact Rounded
+dqfma2778 fma 1e+40 1e+6109 0e+6144 -> Infinity Overflow Inexact Rounded
+dqfma2779 fma 1e+40 1e+6110 0e+6144 -> Infinity Overflow Inexact Rounded
+
+dqfma2801 fma 1.0000E-6172 1 0e+6144 -> 1.0000E-6172 Subnormal
+dqfma2802 fma 1.000E-6172 1e-1 0e+6144 -> 1.000E-6173 Subnormal
+dqfma2803 fma 1.00E-6172 1e-2 0e+6144 -> 1.00E-6174 Subnormal
+dqfma2804 fma 1.0E-6172 1e-3 0e+6144 -> 1.0E-6175 Subnormal
+dqfma2805 fma 1.0E-6172 1e-4 0e+6144 -> 1E-6176 Subnormal Rounded
+dqfma2806 fma 1.3E-6172 1e-4 0e+6144 -> 1E-6176 Underflow Subnormal Inexact Rounded
+dqfma2807 fma 1.5E-6172 1e-4 0e+6144 -> 2E-6176 Underflow Subnormal Inexact Rounded
+dqfma2808 fma 1.7E-6172 1e-4 0e+6144 -> 2E-6176 Underflow Subnormal Inexact Rounded
+dqfma2809 fma 2.3E-6172 1e-4 0e+6144 -> 2E-6176 Underflow Subnormal Inexact Rounded
+dqfma2810 fma 2.5E-6172 1e-4 0e+6144 -> 2E-6176 Underflow Subnormal Inexact Rounded
+dqfma2811 fma 2.7E-6172 1e-4 0e+6144 -> 3E-6176 Underflow Subnormal Inexact Rounded
+dqfma2812 fma 1.49E-6172 1e-4 0e+6144 -> 1E-6176 Underflow Subnormal Inexact Rounded
+dqfma2813 fma 1.50E-6172 1e-4 0e+6144 -> 2E-6176 Underflow Subnormal Inexact Rounded
+dqfma2814 fma 1.51E-6172 1e-4 0e+6144 -> 2E-6176 Underflow Subnormal Inexact Rounded
+dqfma2815 fma 2.49E-6172 1e-4 0e+6144 -> 2E-6176 Underflow Subnormal Inexact Rounded
+dqfma2816 fma 2.50E-6172 1e-4 0e+6144 -> 2E-6176 Underflow Subnormal Inexact Rounded
+dqfma2817 fma 2.51E-6172 1e-4 0e+6144 -> 3E-6176 Underflow Subnormal Inexact Rounded
+
+dqfma2818 fma 1E-6172 1e-4 0e+6144 -> 1E-6176 Subnormal
+dqfma2819 fma 3E-6172 1e-5 0e+6144 -> 0E-6176 Underflow Subnormal Inexact Rounded Clamped
+dqfma2820 fma 5E-6172 1e-5 0e+6144 -> 0E-6176 Underflow Subnormal Inexact Rounded Clamped
+dqfma2821 fma 7E-6172 1e-5 0e+6144 -> 1E-6176 Underflow Subnormal Inexact Rounded
+dqfma2822 fma 9E-6172 1e-5 0e+6144 -> 1E-6176 Underflow Subnormal Inexact Rounded
+dqfma2823 fma 9.9E-6172 1e-5 0e+6144 -> 1E-6176 Underflow Subnormal Inexact Rounded
+
+dqfma2824 fma 1E-6172 -1e-4 0e+6144 -> -1E-6176 Subnormal
+dqfma2825 fma 3E-6172 -1e-5 0e+6144 -> -0E-6176 Underflow Subnormal Inexact Rounded Clamped
+dqfma2826 fma -5E-6172 1e-5 0e+6144 -> -0E-6176 Underflow Subnormal Inexact Rounded Clamped
+dqfma2827 fma 7E-6172 -1e-5 0e+6144 -> -1E-6176 Underflow Subnormal Inexact Rounded
+dqfma2828 fma -9E-6172 1e-5 0e+6144 -> -1E-6176 Underflow Subnormal Inexact Rounded
+dqfma2829 fma 9.9E-6172 -1e-5 0e+6144 -> -1E-6176 Underflow Subnormal Inexact Rounded
+dqfma2830 fma 3.0E-6172 -1e-5 0e+6144 -> -0E-6176 Underflow Subnormal Inexact Rounded Clamped
+
+dqfma2831 fma 1.0E-5977 1e-200 0e+6144 -> 0E-6176 Underflow Subnormal Inexact Rounded Clamped
+dqfma2832 fma 1.0E-5977 1e-199 0e+6144 -> 1E-6176 Subnormal Rounded
+dqfma2833 fma 1.0E-5977 1e-198 0e+6144 -> 1.0E-6175 Subnormal
+dqfma2834 fma 2.0E-5977 2e-198 0e+6144 -> 4.0E-6175 Subnormal
+dqfma2835 fma 4.0E-5977 4e-198 0e+6144 -> 1.60E-6174 Subnormal
+dqfma2836 fma 10.0E-5977 10e-198 0e+6144 -> 1.000E-6173 Subnormal
+dqfma2837 fma 30.0E-5977 30e-198 0e+6144 -> 9.000E-6173 Subnormal
+dqfma2838 fma 40.0E-5982 40e-166 0e+6144 -> 1.6000E-6145 Subnormal
+dqfma2839 fma 40.0E-5982 40e-165 0e+6144 -> 1.6000E-6144 Subnormal
+dqfma2840 fma 40.0E-5982 40e-164 0e+6144 -> 1.6000E-6143
+
+-- Long operand overflow may be a different path
+dqfma2870 fma 100 9.999E+6143 0e+6144 -> Infinity Inexact Overflow Rounded
+dqfma2871 fma 100 -9.999E+6143 0e+6144 -> -Infinity Inexact Overflow Rounded
+dqfma2872 fma 9.999E+6143 100 0e+6144 -> Infinity Inexact Overflow Rounded
+dqfma2873 fma -9.999E+6143 100 0e+6144 -> -Infinity Inexact Overflow Rounded
+
+-- check for double-rounded subnormals
+dqfma2881 fma 1.2347E-6133 1.2347E-40 0e+6144 -> 1.524E-6173 Inexact Rounded Subnormal Underflow
+dqfma2882 fma 1.234E-6133 1.234E-40 0e+6144 -> 1.523E-6173 Inexact Rounded Subnormal Underflow
+dqfma2883 fma 1.23E-6133 1.23E-40 0e+6144 -> 1.513E-6173 Inexact Rounded Subnormal Underflow
+dqfma2884 fma 1.2E-6133 1.2E-40 0e+6144 -> 1.44E-6173 Subnormal
+dqfma2885 fma 1.2E-6133 1.2E-41 0e+6144 -> 1.44E-6174 Subnormal
+dqfma2886 fma 1.2E-6133 1.2E-42 0e+6144 -> 1.4E-6175 Subnormal Inexact Rounded Underflow
+dqfma2887 fma 1.2E-6133 1.3E-42 0e+6144 -> 1.6E-6175 Subnormal Inexact Rounded Underflow
+dqfma2888 fma 1.3E-6133 1.3E-42 0e+6144 -> 1.7E-6175 Subnormal Inexact Rounded Underflow
+dqfma2889 fma 1.3E-6133 1.3E-43 0e+6144 -> 2E-6176 Subnormal Inexact Rounded Underflow
+dqfma2890 fma 1.3E-6134 1.3E-43 0e+6144 -> 0E-6176 Clamped Subnormal Inexact Rounded Underflow
+
+dqfma2891 fma 1.2345E-39 1.234E-6133 0e+6144 -> 1.5234E-6172 Inexact Rounded Subnormal Underflow
+dqfma2892 fma 1.23456E-39 1.234E-6133 0e+6144 -> 1.5234E-6172 Inexact Rounded Subnormal Underflow
+dqfma2893 fma 1.2345E-40 1.234E-6133 0e+6144 -> 1.523E-6173 Inexact Rounded Subnormal Underflow
+dqfma2894 fma 1.23456E-40 1.234E-6133 0e+6144 -> 1.523E-6173 Inexact Rounded Subnormal Underflow
+dqfma2895 fma 1.2345E-41 1.234E-6133 0e+6144 -> 1.52E-6174 Inexact Rounded Subnormal Underflow
+dqfma2896 fma 1.23456E-41 1.234E-6133 0e+6144 -> 1.52E-6174 Inexact Rounded Subnormal Underflow
+
+-- Now explore the case where we get a normal result with Underflow
+-- prove operands are exact
+dqfma2906 fma 9.999999999999999999999999999999999E-6143 1 0e+6144 -> 9.999999999999999999999999999999999E-6143
+dqfma2907 fma 1 0.09999999999999999999999999999999999 0e+6144 -> 0.09999999999999999999999999999999999
+-- the next rounds to Nmin
+dqfma2908 fma 9.999999999999999999999999999999999E-6143 0.09999999999999999999999999999999999 0e+6144 -> 1.000000000000000000000000000000000E-6143 Underflow Inexact Subnormal Rounded
+
+-- hugest
+dqfma2909 fma 9999999999999999999999999999999999 9999999999999999999999999999999999 0e+6144 -> 9.999999999999999999999999999999998E+67 Inexact Rounded
+
+-- Examples from SQL proposal (Krishna Kulkarni)
+precision: 34
+rounding: half_up
+maxExponent: 6144
+minExponent: -6143
+dqfma21001 fma 130E-2 120E-2 0e+6144 -> 1.5600
+dqfma21002 fma 130E-2 12E-1 0e+6144 -> 1.560
+dqfma21003 fma 130E-2 1E0 0e+6144 -> 1.30
+dqfma21004 fma 1E2 1E4 0e+6144 -> 1E+6
+
+-- Null tests
+dqfma2990 fma 10 # 0e+6144 -> NaN Invalid_operation
+dqfma2991 fma # 10 0e+6144 -> NaN Invalid_operation
+
+
+-- ADDITION TESTS ------------------------------------------------------
+rounding: half_even
+
+-- [first group are 'quick confidence check']
+dqadd3001 fma 1 1 1 -> 2
+dqadd3002 fma 1 2 3 -> 5
+dqadd3003 fma 1 '5.75' '3.3' -> 9.05
+dqadd3004 fma 1 '5' '-3' -> 2
+dqadd3005 fma 1 '-5' '-3' -> -8
+dqadd3006 fma 1 '-7' '2.5' -> -4.5
+dqadd3007 fma 1 '0.7' '0.3' -> 1.0
+dqadd3008 fma 1 '1.25' '1.25' -> 2.50
+dqadd3009 fma 1 '1.23456789' '1.00000000' -> '2.23456789'
+dqadd3010 fma 1 '1.23456789' '1.00000011' -> '2.23456800'
+
+-- 1234567890123456 1234567890123456
+dqadd3011 fma 1 '0.4444444444444444444444444444444446' '0.5555555555555555555555555555555555' -> '1.000000000000000000000000000000000' Inexact Rounded
+dqadd3012 fma 1 '0.4444444444444444444444444444444445' '0.5555555555555555555555555555555555' -> '1.000000000000000000000000000000000' Rounded
+dqadd3013 fma 1 '0.4444444444444444444444444444444444' '0.5555555555555555555555555555555555' -> '0.9999999999999999999999999999999999'
+dqadd3014 fma 1 '4444444444444444444444444444444444' '0.49' -> '4444444444444444444444444444444444' Inexact Rounded
+dqadd3015 fma 1 '4444444444444444444444444444444444' '0.499' -> '4444444444444444444444444444444444' Inexact Rounded
+dqadd3016 fma 1 '4444444444444444444444444444444444' '0.4999' -> '4444444444444444444444444444444444' Inexact Rounded
+dqadd3017 fma 1 '4444444444444444444444444444444444' '0.5000' -> '4444444444444444444444444444444444' Inexact Rounded
+dqadd3018 fma 1 '4444444444444444444444444444444444' '0.5001' -> '4444444444444444444444444444444445' Inexact Rounded
+dqadd3019 fma 1 '4444444444444444444444444444444444' '0.501' -> '4444444444444444444444444444444445' Inexact Rounded
+dqadd3020 fma 1 '4444444444444444444444444444444444' '0.51' -> '4444444444444444444444444444444445' Inexact Rounded
+
+dqadd3021 fma 1 0 1 -> 1
+dqadd3022 fma 1 1 1 -> 2
+dqadd3023 fma 1 2 1 -> 3
+dqadd3024 fma 1 3 1 -> 4
+dqadd3025 fma 1 4 1 -> 5
+dqadd3026 fma 1 5 1 -> 6
+dqadd3027 fma 1 6 1 -> 7
+dqadd3028 fma 1 7 1 -> 8
+dqadd3029 fma 1 8 1 -> 9
+dqadd3030 fma 1 9 1 -> 10
+
+-- some carrying effects
+dqadd3031 fma 1 '0.9998' '0.0000' -> '0.9998'
+dqadd3032 fma 1 '0.9998' '0.0001' -> '0.9999'
+dqadd3033 fma 1 '0.9998' '0.0002' -> '1.0000'
+dqadd3034 fma 1 '0.9998' '0.0003' -> '1.0001'
+
+dqadd3035 fma 1 '70' '10000e+34' -> '1.000000000000000000000000000000000E+38' Inexact Rounded
+dqadd3036 fma 1 '700' '10000e+34' -> '1.000000000000000000000000000000000E+38' Inexact Rounded
+dqadd3037 fma 1 '7000' '10000e+34' -> '1.000000000000000000000000000000000E+38' Inexact Rounded
+dqadd3038 fma 1 '70000' '10000e+34' -> '1.000000000000000000000000000000001E+38' Inexact Rounded
+dqadd3039 fma 1 '700000' '10000e+34' -> '1.000000000000000000000000000000007E+38' Rounded
+
+-- symmetry:
+dqadd3040 fma 1 '10000e+34' '70' -> '1.000000000000000000000000000000000E+38' Inexact Rounded
+dqadd3041 fma 1 '10000e+34' '700' -> '1.000000000000000000000000000000000E+38' Inexact Rounded
+dqadd3042 fma 1 '10000e+34' '7000' -> '1.000000000000000000000000000000000E+38' Inexact Rounded
+dqadd3044 fma 1 '10000e+34' '70000' -> '1.000000000000000000000000000000001E+38' Inexact Rounded
+dqadd3045 fma 1 '10000e+34' '700000' -> '1.000000000000000000000000000000007E+38' Rounded
+
+-- same, without rounding
+dqadd3046 fma 1 '10000e+9' '7' -> '10000000000007'
+dqadd3047 fma 1 '10000e+9' '70' -> '10000000000070'
+dqadd3048 fma 1 '10000e+9' '700' -> '10000000000700'
+dqadd3049 fma 1 '10000e+9' '7000' -> '10000000007000'
+dqadd3050 fma 1 '10000e+9' '70000' -> '10000000070000'
+dqadd3051 fma 1 '10000e+9' '700000' -> '10000000700000'
+dqadd3052 fma 1 '10000e+9' '7000000' -> '10000007000000'
+
+-- examples from decarith
+dqadd3053 fma 1 '12' '7.00' -> '19.00'
+dqadd3054 fma 1 '1.3' '-1.07' -> '0.23'
+dqadd3055 fma 1 '1.3' '-1.30' -> '0.00'
+dqadd3056 fma 1 '1.3' '-2.07' -> '-0.77'
+dqadd3057 fma 1 '1E+2' '1E+4' -> '1.01E+4'
+
+-- leading zero preservation
+dqadd3061 fma 1 1 '0.0001' -> '1.0001'
+dqadd3062 fma 1 1 '0.00001' -> '1.00001'
+dqadd3063 fma 1 1 '0.000001' -> '1.000001'
+dqadd3064 fma 1 1 '0.0000001' -> '1.0000001'
+dqadd3065 fma 1 1 '0.00000001' -> '1.00000001'
+
+-- some funny zeros [in case of bad signum]
+dqadd3070 fma 1 1 0 -> 1
+dqadd3071 fma 1 1 0. -> 1
+dqadd3072 fma 1 1 .0 -> 1.0
+dqadd3073 fma 1 1 0.0 -> 1.0
+dqadd3074 fma 1 1 0.00 -> 1.00
+dqadd3075 fma 1 0 1 -> 1
+dqadd3076 fma 1 0. 1 -> 1
+dqadd3077 fma 1 .0 1 -> 1.0
+dqadd3078 fma 1 0.0 1 -> 1.0
+dqadd3079 fma 1 0.00 1 -> 1.00
+
+-- some carries
+dqadd3080 fma 1 999999998 1 -> 999999999
+dqadd3081 fma 1 999999999 1 -> 1000000000
+dqadd3082 fma 1 99999999 1 -> 100000000
+dqadd3083 fma 1 9999999 1 -> 10000000
+dqadd3084 fma 1 999999 1 -> 1000000
+dqadd3085 fma 1 99999 1 -> 100000
+dqadd3086 fma 1 9999 1 -> 10000
+dqadd3087 fma 1 999 1 -> 1000
+dqadd3088 fma 1 99 1 -> 100
+dqadd3089 fma 1 9 1 -> 10
+
+
+-- more LHS swaps
+dqadd3090 fma 1 '-56267E-10' 0 -> '-0.0000056267'
+dqadd3091 fma 1 '-56267E-6' 0 -> '-0.056267'
+dqadd3092 fma 1 '-56267E-5' 0 -> '-0.56267'
+dqadd3093 fma 1 '-56267E-4' 0 -> '-5.6267'
+dqadd3094 fma 1 '-56267E-3' 0 -> '-56.267'
+dqadd3095 fma 1 '-56267E-2' 0 -> '-562.67'
+dqadd3096 fma 1 '-56267E-1' 0 -> '-5626.7'
+dqadd3097 fma 1 '-56267E-0' 0 -> '-56267'
+dqadd3098 fma 1 '-5E-10' 0 -> '-5E-10'
+dqadd3099 fma 1 '-5E-7' 0 -> '-5E-7'
+dqadd3100 fma 1 '-5E-6' 0 -> '-0.000005'
+dqadd3101 fma 1 '-5E-5' 0 -> '-0.00005'
+dqadd3102 fma 1 '-5E-4' 0 -> '-0.0005'
+dqadd3103 fma 1 '-5E-1' 0 -> '-0.5'
+dqadd3104 fma 1 '-5E0' 0 -> '-5'
+dqadd3105 fma 1 '-5E1' 0 -> '-50'
+dqadd3106 fma 1 '-5E5' 0 -> '-500000'
+dqadd3107 fma 1 '-5E33' 0 -> '-5000000000000000000000000000000000'
+dqadd3108 fma 1 '-5E34' 0 -> '-5.000000000000000000000000000000000E+34' Rounded
+dqadd3109 fma 1 '-5E35' 0 -> '-5.000000000000000000000000000000000E+35' Rounded
+dqadd3110 fma 1 '-5E36' 0 -> '-5.000000000000000000000000000000000E+36' Rounded
+dqadd3111 fma 1 '-5E100' 0 -> '-5.000000000000000000000000000000000E+100' Rounded
+
+-- more RHS swaps
+dqadd3113 fma 1 0 '-56267E-10' -> '-0.0000056267'
+dqadd3114 fma 1 0 '-56267E-6' -> '-0.056267'
+dqadd3116 fma 1 0 '-56267E-5' -> '-0.56267'
+dqadd3117 fma 1 0 '-56267E-4' -> '-5.6267'
+dqadd3119 fma 1 0 '-56267E-3' -> '-56.267'
+dqadd3120 fma 1 0 '-56267E-2' -> '-562.67'
+dqadd3121 fma 1 0 '-56267E-1' -> '-5626.7'
+dqadd3122 fma 1 0 '-56267E-0' -> '-56267'
+dqadd3123 fma 1 0 '-5E-10' -> '-5E-10'
+dqadd3124 fma 1 0 '-5E-7' -> '-5E-7'
+dqadd3125 fma 1 0 '-5E-6' -> '-0.000005'
+dqadd3126 fma 1 0 '-5E-5' -> '-0.00005'
+dqadd3127 fma 1 0 '-5E-4' -> '-0.0005'
+dqadd3128 fma 1 0 '-5E-1' -> '-0.5'
+dqadd3129 fma 1 0 '-5E0' -> '-5'
+dqadd3130 fma 1 0 '-5E1' -> '-50'
+dqadd3131 fma 1 0 '-5E5' -> '-500000'
+dqadd3132 fma 1 0 '-5E33' -> '-5000000000000000000000000000000000'
+dqadd3133 fma 1 0 '-5E34' -> '-5.000000000000000000000000000000000E+34' Rounded
+dqadd3134 fma 1 0 '-5E35' -> '-5.000000000000000000000000000000000E+35' Rounded
+dqadd3135 fma 1 0 '-5E36' -> '-5.000000000000000000000000000000000E+36' Rounded
+dqadd3136 fma 1 0 '-5E100' -> '-5.000000000000000000000000000000000E+100' Rounded
+
+-- related
+dqadd3137 fma 1 1 '0E-39' -> '1.000000000000000000000000000000000' Rounded
+dqadd3138 fma 1 -1 '0E-39' -> '-1.000000000000000000000000000000000' Rounded
+dqadd3139 fma 1 '0E-39' 1 -> '1.000000000000000000000000000000000' Rounded
+dqadd3140 fma 1 '0E-39' -1 -> '-1.000000000000000000000000000000000' Rounded
+dqadd3141 fma 1 1E+29 0.0000 -> '100000000000000000000000000000.0000'
+dqadd3142 fma 1 1E+29 0.00000 -> '100000000000000000000000000000.0000' Rounded
+dqadd3143 fma 1 0.000 1E+30 -> '1000000000000000000000000000000.000'
+dqadd3144 fma 1 0.0000 1E+30 -> '1000000000000000000000000000000.000' Rounded
+
+-- [some of the next group are really constructor tests]
+dqadd3146 fma 1 '00.0' 0 -> '0.0'
+dqadd3147 fma 1 '0.00' 0 -> '0.00'
+dqadd3148 fma 1 0 '0.00' -> '0.00'
+dqadd3149 fma 1 0 '00.0' -> '0.0'
+dqadd3150 fma 1 '00.0' '0.00' -> '0.00'
+dqadd3151 fma 1 '0.00' '00.0' -> '0.00'
+dqadd3152 fma 1 '3' '.3' -> '3.3'
+dqadd3153 fma 1 '3.' '.3' -> '3.3'
+dqadd3154 fma 1 '3.0' '.3' -> '3.3'
+dqadd3155 fma 1 '3.00' '.3' -> '3.30'
+dqadd3156 fma 1 '3' '3' -> '6'
+dqadd3157 fma 1 '3' '+3' -> '6'
+dqadd3158 fma 1 '3' '-3' -> '0'
+dqadd3159 fma 1 '0.3' '-0.3' -> '0.0'
+dqadd3160 fma 1 '0.03' '-0.03' -> '0.00'
+
+-- try borderline precision, with carries, etc.
+dqadd3161 fma 1 '1E+12' '-1' -> '999999999999'
+dqadd3162 fma 1 '1E+12' '1.11' -> '1000000000001.11'
+dqadd3163 fma 1 '1.11' '1E+12' -> '1000000000001.11'
+dqadd3164 fma 1 '-1' '1E+12' -> '999999999999'
+dqadd3165 fma 1 '7E+12' '-1' -> '6999999999999'
+dqadd3166 fma 1 '7E+12' '1.11' -> '7000000000001.11'
+dqadd3167 fma 1 '1.11' '7E+12' -> '7000000000001.11'
+dqadd3168 fma 1 '-1' '7E+12' -> '6999999999999'
+
+rounding: half_up
+dqadd3170 fma 1 '4.444444444444444444444444444444444' '0.5555555555555555555555555555555567' -> '5.000000000000000000000000000000001' Inexact Rounded
+dqadd3171 fma 1 '4.444444444444444444444444444444444' '0.5555555555555555555555555555555566' -> '5.000000000000000000000000000000001' Inexact Rounded
+dqadd3172 fma 1 '4.444444444444444444444444444444444' '0.5555555555555555555555555555555565' -> '5.000000000000000000000000000000001' Inexact Rounded
+dqadd3173 fma 1 '4.444444444444444444444444444444444' '0.5555555555555555555555555555555564' -> '5.000000000000000000000000000000000' Inexact Rounded
+dqadd3174 fma 1 '4.444444444444444444444444444444444' '0.5555555555555555555555555555555553' -> '4.999999999999999999999999999999999' Inexact Rounded
+dqadd3175 fma 1 '4.444444444444444444444444444444444' '0.5555555555555555555555555555555552' -> '4.999999999999999999999999999999999' Inexact Rounded
+dqadd3176 fma 1 '4.444444444444444444444444444444444' '0.5555555555555555555555555555555551' -> '4.999999999999999999999999999999999' Inexact Rounded
+dqadd3177 fma 1 '4.444444444444444444444444444444444' '0.5555555555555555555555555555555550' -> '4.999999999999999999999999999999999' Rounded
+dqadd3178 fma 1 '4.444444444444444444444444444444444' '0.5555555555555555555555555555555545' -> '4.999999999999999999999999999999999' Inexact Rounded
+dqadd3179 fma 1 '4.444444444444444444444444444444444' '0.5555555555555555555555555555555544' -> '4.999999999999999999999999999999998' Inexact Rounded
+dqadd3180 fma 1 '4.444444444444444444444444444444444' '0.5555555555555555555555555555555543' -> '4.999999999999999999999999999999998' Inexact Rounded
+dqadd3181 fma 1 '4.444444444444444444444444444444444' '0.5555555555555555555555555555555542' -> '4.999999999999999999999999999999998' Inexact Rounded
+dqadd3182 fma 1 '4.444444444444444444444444444444444' '0.5555555555555555555555555555555541' -> '4.999999999999999999999999999999998' Inexact Rounded
+dqadd3183 fma 1 '4.444444444444444444444444444444444' '0.5555555555555555555555555555555540' -> '4.999999999999999999999999999999998' Rounded
+
+-- and some more, including residue effects and different roundings
+rounding: half_up
+dqadd3200 fma 1 '1231234567890123456784560123456789' 0 -> '1231234567890123456784560123456789'
+dqadd3201 fma 1 '1231234567890123456784560123456789' 0.000000001 -> '1231234567890123456784560123456789' Inexact Rounded
+dqadd3202 fma 1 '1231234567890123456784560123456789' 0.000001 -> '1231234567890123456784560123456789' Inexact Rounded
+dqadd3203 fma 1 '1231234567890123456784560123456789' 0.1 -> '1231234567890123456784560123456789' Inexact Rounded
+dqadd3204 fma 1 '1231234567890123456784560123456789' 0.4 -> '1231234567890123456784560123456789' Inexact Rounded
+dqadd3205 fma 1 '1231234567890123456784560123456789' 0.49 -> '1231234567890123456784560123456789' Inexact Rounded
+dqadd3206 fma 1 '1231234567890123456784560123456789' 0.499999 -> '1231234567890123456784560123456789' Inexact Rounded
+dqadd3207 fma 1 '1231234567890123456784560123456789' 0.499999999 -> '1231234567890123456784560123456789' Inexact Rounded
+dqadd3208 fma 1 '1231234567890123456784560123456789' 0.5 -> '1231234567890123456784560123456790' Inexact Rounded
+dqadd3209 fma 1 '1231234567890123456784560123456789' 0.500000001 -> '1231234567890123456784560123456790' Inexact Rounded
+dqadd3210 fma 1 '1231234567890123456784560123456789' 0.500001 -> '1231234567890123456784560123456790' Inexact Rounded
+dqadd3211 fma 1 '1231234567890123456784560123456789' 0.51 -> '1231234567890123456784560123456790' Inexact Rounded
+dqadd3212 fma 1 '1231234567890123456784560123456789' 0.6 -> '1231234567890123456784560123456790' Inexact Rounded
+dqadd3213 fma 1 '1231234567890123456784560123456789' 0.9 -> '1231234567890123456784560123456790' Inexact Rounded
+dqadd3214 fma 1 '1231234567890123456784560123456789' 0.99999 -> '1231234567890123456784560123456790' Inexact Rounded
+dqadd3215 fma 1 '1231234567890123456784560123456789' 0.999999999 -> '1231234567890123456784560123456790' Inexact Rounded
+dqadd3216 fma 1 '1231234567890123456784560123456789' 1 -> '1231234567890123456784560123456790'
+dqadd3217 fma 1 '1231234567890123456784560123456789' 1.000000001 -> '1231234567890123456784560123456790' Inexact Rounded
+dqadd3218 fma 1 '1231234567890123456784560123456789' 1.00001 -> '1231234567890123456784560123456790' Inexact Rounded
+dqadd3219 fma 1 '1231234567890123456784560123456789' 1.1 -> '1231234567890123456784560123456790' Inexact Rounded
+
+rounding: half_even
+dqadd3220 fma 1 '1231234567890123456784560123456789' 0 -> '1231234567890123456784560123456789'
+dqadd3221 fma 1 '1231234567890123456784560123456789' 0.000000001 -> '1231234567890123456784560123456789' Inexact Rounded
+dqadd3222 fma 1 '1231234567890123456784560123456789' 0.000001 -> '1231234567890123456784560123456789' Inexact Rounded
+dqadd3223 fma 1 '1231234567890123456784560123456789' 0.1 -> '1231234567890123456784560123456789' Inexact Rounded
+dqadd3224 fma 1 '1231234567890123456784560123456789' 0.4 -> '1231234567890123456784560123456789' Inexact Rounded
+dqadd3225 fma 1 '1231234567890123456784560123456789' 0.49 -> '1231234567890123456784560123456789' Inexact Rounded
+dqadd3226 fma 1 '1231234567890123456784560123456789' 0.499999 -> '1231234567890123456784560123456789' Inexact Rounded
+dqadd3227 fma 1 '1231234567890123456784560123456789' 0.499999999 -> '1231234567890123456784560123456789' Inexact Rounded
+dqadd3228 fma 1 '1231234567890123456784560123456789' 0.5 -> '1231234567890123456784560123456790' Inexact Rounded
+dqadd3229 fma 1 '1231234567890123456784560123456789' 0.500000001 -> '1231234567890123456784560123456790' Inexact Rounded
+dqadd3230 fma 1 '1231234567890123456784560123456789' 0.500001 -> '1231234567890123456784560123456790' Inexact Rounded
+dqadd3231 fma 1 '1231234567890123456784560123456789' 0.51 -> '1231234567890123456784560123456790' Inexact Rounded
+dqadd3232 fma 1 '1231234567890123456784560123456789' 0.6 -> '1231234567890123456784560123456790' Inexact Rounded
+dqadd3233 fma 1 '1231234567890123456784560123456789' 0.9 -> '1231234567890123456784560123456790' Inexact Rounded
+dqadd3234 fma 1 '1231234567890123456784560123456789' 0.99999 -> '1231234567890123456784560123456790' Inexact Rounded
+dqadd3235 fma 1 '1231234567890123456784560123456789' 0.999999999 -> '1231234567890123456784560123456790' Inexact Rounded
+dqadd3236 fma 1 '1231234567890123456784560123456789' 1 -> '1231234567890123456784560123456790'
+dqadd3237 fma 1 '1231234567890123456784560123456789' 1.00000001 -> '1231234567890123456784560123456790' Inexact Rounded
+dqadd3238 fma 1 '1231234567890123456784560123456789' 1.00001 -> '1231234567890123456784560123456790' Inexact Rounded
+dqadd3239 fma 1 '1231234567890123456784560123456789' 1.1 -> '1231234567890123456784560123456790' Inexact Rounded
+-- critical few with even bottom digit...
+dqadd3240 fma 1 '1231234567890123456784560123456788' 0.499999999 -> '1231234567890123456784560123456788' Inexact Rounded
+dqadd3241 fma 1 '1231234567890123456784560123456788' 0.5 -> '1231234567890123456784560123456788' Inexact Rounded
+dqadd3242 fma 1 '1231234567890123456784560123456788' 0.500000001 -> '1231234567890123456784560123456789' Inexact Rounded
+
+rounding: down
+dqadd3250 fma 1 '1231234567890123456784560123456789' 0 -> '1231234567890123456784560123456789'
+dqadd3251 fma 1 '1231234567890123456784560123456789' 0.000000001 -> '1231234567890123456784560123456789' Inexact Rounded
+dqadd3252 fma 1 '1231234567890123456784560123456789' 0.000001 -> '1231234567890123456784560123456789' Inexact Rounded
+dqadd3253 fma 1 '1231234567890123456784560123456789' 0.1 -> '1231234567890123456784560123456789' Inexact Rounded
+dqadd3254 fma 1 '1231234567890123456784560123456789' 0.4 -> '1231234567890123456784560123456789' Inexact Rounded
+dqadd3255 fma 1 '1231234567890123456784560123456789' 0.49 -> '1231234567890123456784560123456789' Inexact Rounded
+dqadd3256 fma 1 '1231234567890123456784560123456789' 0.499999 -> '1231234567890123456784560123456789' Inexact Rounded
+dqadd3257 fma 1 '1231234567890123456784560123456789' 0.499999999 -> '1231234567890123456784560123456789' Inexact Rounded
+dqadd3258 fma 1 '1231234567890123456784560123456789' 0.5 -> '1231234567890123456784560123456789' Inexact Rounded
+dqadd3259 fma 1 '1231234567890123456784560123456789' 0.500000001 -> '1231234567890123456784560123456789' Inexact Rounded
+dqadd3260 fma 1 '1231234567890123456784560123456789' 0.500001 -> '1231234567890123456784560123456789' Inexact Rounded
+dqadd3261 fma 1 '1231234567890123456784560123456789' 0.51 -> '1231234567890123456784560123456789' Inexact Rounded
+dqadd3262 fma 1 '1231234567890123456784560123456789' 0.6 -> '1231234567890123456784560123456789' Inexact Rounded
+dqadd3263 fma 1 '1231234567890123456784560123456789' 0.9 -> '1231234567890123456784560123456789' Inexact Rounded
+dqadd3264 fma 1 '1231234567890123456784560123456789' 0.99999 -> '1231234567890123456784560123456789' Inexact Rounded
+dqadd3265 fma 1 '1231234567890123456784560123456789' 0.999999999 -> '1231234567890123456784560123456789' Inexact Rounded
+dqadd3266 fma 1 '1231234567890123456784560123456789' 1 -> '1231234567890123456784560123456790'
+dqadd3267 fma 1 '1231234567890123456784560123456789' 1.00000001 -> '1231234567890123456784560123456790' Inexact Rounded
+dqadd3268 fma 1 '1231234567890123456784560123456789' 1.00001 -> '1231234567890123456784560123456790' Inexact Rounded
+dqadd3269 fma 1 '1231234567890123456784560123456789' 1.1 -> '1231234567890123456784560123456790' Inexact Rounded
+
+-- 1 in last place tests
+rounding: half_up
+dqadd3301 fma 1 -1 1 -> 0
+dqadd3302 fma 1 0 1 -> 1
+dqadd3303 fma 1 1 1 -> 2
+dqadd3304 fma 1 12 1 -> 13
+dqadd3305 fma 1 98 1 -> 99
+dqadd3306 fma 1 99 1 -> 100
+dqadd3307 fma 1 100 1 -> 101
+dqadd3308 fma 1 101 1 -> 102
+dqadd3309 fma 1 -1 -1 -> -2
+dqadd3310 fma 1 0 -1 -> -1
+dqadd3311 fma 1 1 -1 -> 0
+dqadd3312 fma 1 12 -1 -> 11
+dqadd3313 fma 1 98 -1 -> 97
+dqadd3314 fma 1 99 -1 -> 98
+dqadd3315 fma 1 100 -1 -> 99
+dqadd3316 fma 1 101 -1 -> 100
+
+dqadd3321 fma 1 -0.01 0.01 -> 0.00
+dqadd3322 fma 1 0.00 0.01 -> 0.01
+dqadd3323 fma 1 0.01 0.01 -> 0.02
+dqadd3324 fma 1 0.12 0.01 -> 0.13
+dqadd3325 fma 1 0.98 0.01 -> 0.99
+dqadd3326 fma 1 0.99 0.01 -> 1.00
+dqadd3327 fma 1 1.00 0.01 -> 1.01
+dqadd3328 fma 1 1.01 0.01 -> 1.02
+dqadd3329 fma 1 -0.01 -0.01 -> -0.02
+dqadd3330 fma 1 0.00 -0.01 -> -0.01
+dqadd3331 fma 1 0.01 -0.01 -> 0.00
+dqadd3332 fma 1 0.12 -0.01 -> 0.11
+dqadd3333 fma 1 0.98 -0.01 -> 0.97
+dqadd3334 fma 1 0.99 -0.01 -> 0.98
+dqadd3335 fma 1 1.00 -0.01 -> 0.99
+dqadd3336 fma 1 1.01 -0.01 -> 1.00
+
+-- some more cases where adding 0 affects the coefficient
+dqadd3340 fma 1 1E+3 0 -> 1000
+dqadd3341 fma 1 1E+33 0 -> 1000000000000000000000000000000000
+dqadd3342 fma 1 1E+34 0 -> 1.000000000000000000000000000000000E+34 Rounded
+dqadd3343 fma 1 1E+35 0 -> 1.000000000000000000000000000000000E+35 Rounded
+-- which simply follow from these cases ...
+dqadd3344 fma 1 1E+3 1 -> 1001
+dqadd3345 fma 1 1E+33 1 -> 1000000000000000000000000000000001
+dqadd3346 fma 1 1E+34 1 -> 1.000000000000000000000000000000000E+34 Inexact Rounded
+dqadd3347 fma 1 1E+35 1 -> 1.000000000000000000000000000000000E+35 Inexact Rounded
+dqadd3348 fma 1 1E+3 7 -> 1007
+dqadd3349 fma 1 1E+33 7 -> 1000000000000000000000000000000007
+dqadd3350 fma 1 1E+34 7 -> 1.000000000000000000000000000000001E+34 Inexact Rounded
+dqadd3351 fma 1 1E+35 7 -> 1.000000000000000000000000000000000E+35 Inexact Rounded
+
+-- tryzeros cases
+rounding: half_up
+dqadd3360 fma 1 0E+50 10000E+1 -> 1.0000E+5
+dqadd3361 fma 1 0E-50 10000E+1 -> 100000.0000000000000000000000000000 Rounded
+dqadd3362 fma 1 10000E+1 0E-50 -> 100000.0000000000000000000000000000 Rounded
+dqadd3363 fma 1 10000E+1 10000E-50 -> 100000.0000000000000000000000000000 Rounded Inexact
+dqadd3364 fma 1 9.999999999999999999999999999999999E+6144 -9.999999999999999999999999999999999E+6144 -> 0E+6111
+-- 1 234567890123456789012345678901234
+
+-- a curiosity from JSR 13 testing
+rounding: half_down
+dqadd3370 fma 1 999999999999999999999999999999999 815 -> 1000000000000000000000000000000814
+dqadd3371 fma 1 9999999999999999999999999999999999 815 -> 1.000000000000000000000000000000081E+34 Rounded Inexact
+rounding: half_up
+dqadd3372 fma 1 999999999999999999999999999999999 815 -> 1000000000000000000000000000000814
+dqadd3373 fma 1 9999999999999999999999999999999999 815 -> 1.000000000000000000000000000000081E+34 Rounded Inexact
+rounding: half_even
+dqadd3374 fma 1 999999999999999999999999999999999 815 -> 1000000000000000000000000000000814
+dqadd3375 fma 1 9999999999999999999999999999999999 815 -> 1.000000000000000000000000000000081E+34 Rounded Inexact
+
+-- ulp replacement tests
+dqadd3400 fma 1 1 77e-32 -> 1.00000000000000000000000000000077
+dqadd3401 fma 1 1 77e-33 -> 1.000000000000000000000000000000077
+dqadd3402 fma 1 1 77e-34 -> 1.000000000000000000000000000000008 Inexact Rounded
+dqadd3403 fma 1 1 77e-35 -> 1.000000000000000000000000000000001 Inexact Rounded
+dqadd3404 fma 1 1 77e-36 -> 1.000000000000000000000000000000000 Inexact Rounded
+dqadd3405 fma 1 1 77e-37 -> 1.000000000000000000000000000000000 Inexact Rounded
+dqadd3406 fma 1 1 77e-299 -> 1.000000000000000000000000000000000 Inexact Rounded
+
+dqadd3410 fma 1 10 77e-32 -> 10.00000000000000000000000000000077
+dqadd3411 fma 1 10 77e-33 -> 10.00000000000000000000000000000008 Inexact Rounded
+dqadd3412 fma 1 10 77e-34 -> 10.00000000000000000000000000000001 Inexact Rounded
+dqadd3413 fma 1 10 77e-35 -> 10.00000000000000000000000000000000 Inexact Rounded
+dqadd3414 fma 1 10 77e-36 -> 10.00000000000000000000000000000000 Inexact Rounded
+dqadd3415 fma 1 10 77e-37 -> 10.00000000000000000000000000000000 Inexact Rounded
+dqadd3416 fma 1 10 77e-299 -> 10.00000000000000000000000000000000 Inexact Rounded
+
+dqadd3420 fma 1 77e-32 1 -> 1.00000000000000000000000000000077
+dqadd3421 fma 1 77e-33 1 -> 1.000000000000000000000000000000077
+dqadd3422 fma 1 77e-34 1 -> 1.000000000000000000000000000000008 Inexact Rounded
+dqadd3423 fma 1 77e-35 1 -> 1.000000000000000000000000000000001 Inexact Rounded
+dqadd3424 fma 1 77e-36 1 -> 1.000000000000000000000000000000000 Inexact Rounded
+dqadd3425 fma 1 77e-37 1 -> 1.000000000000000000000000000000000 Inexact Rounded
+dqadd3426 fma 1 77e-299 1 -> 1.000000000000000000000000000000000 Inexact Rounded
+
+dqadd3430 fma 1 77e-32 10 -> 10.00000000000000000000000000000077
+dqadd3431 fma 1 77e-33 10 -> 10.00000000000000000000000000000008 Inexact Rounded
+dqadd3432 fma 1 77e-34 10 -> 10.00000000000000000000000000000001 Inexact Rounded
+dqadd3433 fma 1 77e-35 10 -> 10.00000000000000000000000000000000 Inexact Rounded
+dqadd3434 fma 1 77e-36 10 -> 10.00000000000000000000000000000000 Inexact Rounded
+dqadd3435 fma 1 77e-37 10 -> 10.00000000000000000000000000000000 Inexact Rounded
+dqadd3436 fma 1 77e-299 10 -> 10.00000000000000000000000000000000 Inexact Rounded
+
+-- negative ulps
+dqadd36440 fma 1 1 -77e-32 -> 0.99999999999999999999999999999923
+dqadd36441 fma 1 1 -77e-33 -> 0.999999999999999999999999999999923
+dqadd36442 fma 1 1 -77e-34 -> 0.9999999999999999999999999999999923
+dqadd36443 fma 1 1 -77e-35 -> 0.9999999999999999999999999999999992 Inexact Rounded
+dqadd36444 fma 1 1 -77e-36 -> 0.9999999999999999999999999999999999 Inexact Rounded
+dqadd36445 fma 1 1 -77e-37 -> 1.000000000000000000000000000000000 Inexact Rounded
+dqadd36446 fma 1 1 -77e-99 -> 1.000000000000000000000000000000000 Inexact Rounded
+
+dqadd36450 fma 1 10 -77e-32 -> 9.99999999999999999999999999999923
+dqadd36451 fma 1 10 -77e-33 -> 9.999999999999999999999999999999923
+dqadd36452 fma 1 10 -77e-34 -> 9.999999999999999999999999999999992 Inexact Rounded
+dqadd36453 fma 1 10 -77e-35 -> 9.999999999999999999999999999999999 Inexact Rounded
+dqadd36454 fma 1 10 -77e-36 -> 10.00000000000000000000000000000000 Inexact Rounded
+dqadd36455 fma 1 10 -77e-37 -> 10.00000000000000000000000000000000 Inexact Rounded
+dqadd36456 fma 1 10 -77e-99 -> 10.00000000000000000000000000000000 Inexact Rounded
+
+dqadd36460 fma 1 -77e-32 1 -> 0.99999999999999999999999999999923
+dqadd36461 fma 1 -77e-33 1 -> 0.999999999999999999999999999999923
+dqadd36462 fma 1 -77e-34 1 -> 0.9999999999999999999999999999999923
+dqadd36463 fma 1 -77e-35 1 -> 0.9999999999999999999999999999999992 Inexact Rounded
+dqadd36464 fma 1 -77e-36 1 -> 0.9999999999999999999999999999999999 Inexact Rounded
+dqadd36465 fma 1 -77e-37 1 -> 1.000000000000000000000000000000000 Inexact Rounded
+dqadd36466 fma 1 -77e-99 1 -> 1.000000000000000000000000000000000 Inexact Rounded
+
+dqadd36470 fma 1 -77e-32 10 -> 9.99999999999999999999999999999923
+dqadd36471 fma 1 -77e-33 10 -> 9.999999999999999999999999999999923
+dqadd36472 fma 1 -77e-34 10 -> 9.999999999999999999999999999999992 Inexact Rounded
+dqadd36473 fma 1 -77e-35 10 -> 9.999999999999999999999999999999999 Inexact Rounded
+dqadd36474 fma 1 -77e-36 10 -> 10.00000000000000000000000000000000 Inexact Rounded
+dqadd36475 fma 1 -77e-37 10 -> 10.00000000000000000000000000000000 Inexact Rounded
+dqadd36476 fma 1 -77e-99 10 -> 10.00000000000000000000000000000000 Inexact Rounded
+
+-- negative ulps
+dqadd36480 fma 1 -1 77e-32 -> -0.99999999999999999999999999999923
+dqadd36481 fma 1 -1 77e-33 -> -0.999999999999999999999999999999923
+dqadd36482 fma 1 -1 77e-34 -> -0.9999999999999999999999999999999923
+dqadd36483 fma 1 -1 77e-35 -> -0.9999999999999999999999999999999992 Inexact Rounded
+dqadd36484 fma 1 -1 77e-36 -> -0.9999999999999999999999999999999999 Inexact Rounded
+dqadd36485 fma 1 -1 77e-37 -> -1.000000000000000000000000000000000 Inexact Rounded
+dqadd36486 fma 1 -1 77e-99 -> -1.000000000000000000000000000000000 Inexact Rounded
+
+dqadd36490 fma 1 -10 77e-32 -> -9.99999999999999999999999999999923
+dqadd36491 fma 1 -10 77e-33 -> -9.999999999999999999999999999999923
+dqadd36492 fma 1 -10 77e-34 -> -9.999999999999999999999999999999992 Inexact Rounded
+dqadd36493 fma 1 -10 77e-35 -> -9.999999999999999999999999999999999 Inexact Rounded
+dqadd36494 fma 1 -10 77e-36 -> -10.00000000000000000000000000000000 Inexact Rounded
+dqadd36495 fma 1 -10 77e-37 -> -10.00000000000000000000000000000000 Inexact Rounded
+dqadd36496 fma 1 -10 77e-99 -> -10.00000000000000000000000000000000 Inexact Rounded
+
+dqadd36500 fma 1 77e-32 -1 -> -0.99999999999999999999999999999923
+dqadd36501 fma 1 77e-33 -1 -> -0.999999999999999999999999999999923
+dqadd36502 fma 1 77e-34 -1 -> -0.9999999999999999999999999999999923
+dqadd36503 fma 1 77e-35 -1 -> -0.9999999999999999999999999999999992 Inexact Rounded
+dqadd36504 fma 1 77e-36 -1 -> -0.9999999999999999999999999999999999 Inexact Rounded
+dqadd36505 fma 1 77e-37 -1 -> -1.000000000000000000000000000000000 Inexact Rounded
+dqadd36506 fma 1 77e-99 -1 -> -1.000000000000000000000000000000000 Inexact Rounded
+
+dqadd36510 fma 1 77e-32 -10 -> -9.99999999999999999999999999999923
+dqadd36511 fma 1 77e-33 -10 -> -9.999999999999999999999999999999923
+dqadd36512 fma 1 77e-34 -10 -> -9.999999999999999999999999999999992 Inexact Rounded
+dqadd36513 fma 1 77e-35 -10 -> -9.999999999999999999999999999999999 Inexact Rounded
+dqadd36514 fma 1 77e-36 -10 -> -10.00000000000000000000000000000000 Inexact Rounded
+dqadd36515 fma 1 77e-37 -10 -> -10.00000000000000000000000000000000 Inexact Rounded
+dqadd36516 fma 1 77e-99 -10 -> -10.00000000000000000000000000000000 Inexact Rounded
+
+-- and some more residue effects and different roundings
+rounding: half_up
+dqadd36540 fma 1 '9876543219876543216543210123456789' 0 -> '9876543219876543216543210123456789'
+dqadd36541 fma 1 '9876543219876543216543210123456789' 0.000000001 -> '9876543219876543216543210123456789' Inexact Rounded
+dqadd36542 fma 1 '9876543219876543216543210123456789' 0.000001 -> '9876543219876543216543210123456789' Inexact Rounded
+dqadd36543 fma 1 '9876543219876543216543210123456789' 0.1 -> '9876543219876543216543210123456789' Inexact Rounded
+dqadd36544 fma 1 '9876543219876543216543210123456789' 0.4 -> '9876543219876543216543210123456789' Inexact Rounded
+dqadd36545 fma 1 '9876543219876543216543210123456789' 0.49 -> '9876543219876543216543210123456789' Inexact Rounded
+dqadd36546 fma 1 '9876543219876543216543210123456789' 0.499999 -> '9876543219876543216543210123456789' Inexact Rounded
+dqadd36547 fma 1 '9876543219876543216543210123456789' 0.499999999 -> '9876543219876543216543210123456789' Inexact Rounded
+dqadd36548 fma 1 '9876543219876543216543210123456789' 0.5 -> '9876543219876543216543210123456790' Inexact Rounded
+dqadd36549 fma 1 '9876543219876543216543210123456789' 0.500000001 -> '9876543219876543216543210123456790' Inexact Rounded
+dqadd36550 fma 1 '9876543219876543216543210123456789' 0.500001 -> '9876543219876543216543210123456790' Inexact Rounded
+dqadd36551 fma 1 '9876543219876543216543210123456789' 0.51 -> '9876543219876543216543210123456790' Inexact Rounded
+dqadd36552 fma 1 '9876543219876543216543210123456789' 0.6 -> '9876543219876543216543210123456790' Inexact Rounded
+dqadd36553 fma 1 '9876543219876543216543210123456789' 0.9 -> '9876543219876543216543210123456790' Inexact Rounded
+dqadd36554 fma 1 '9876543219876543216543210123456789' 0.99999 -> '9876543219876543216543210123456790' Inexact Rounded
+dqadd36555 fma 1 '9876543219876543216543210123456789' 0.999999999 -> '9876543219876543216543210123456790' Inexact Rounded
+dqadd36556 fma 1 '9876543219876543216543210123456789' 1 -> '9876543219876543216543210123456790'
+dqadd36557 fma 1 '9876543219876543216543210123456789' 1.000000001 -> '9876543219876543216543210123456790' Inexact Rounded
+dqadd36558 fma 1 '9876543219876543216543210123456789' 1.00001 -> '9876543219876543216543210123456790' Inexact Rounded
+dqadd36559 fma 1 '9876543219876543216543210123456789' 1.1 -> '9876543219876543216543210123456790' Inexact Rounded
+
+rounding: half_even
+dqadd36560 fma 1 '9876543219876543216543210123456789' 0 -> '9876543219876543216543210123456789'
+dqadd36561 fma 1 '9876543219876543216543210123456789' 0.000000001 -> '9876543219876543216543210123456789' Inexact Rounded
+dqadd36562 fma 1 '9876543219876543216543210123456789' 0.000001 -> '9876543219876543216543210123456789' Inexact Rounded
+dqadd36563 fma 1 '9876543219876543216543210123456789' 0.1 -> '9876543219876543216543210123456789' Inexact Rounded
+dqadd36564 fma 1 '9876543219876543216543210123456789' 0.4 -> '9876543219876543216543210123456789' Inexact Rounded
+dqadd36565 fma 1 '9876543219876543216543210123456789' 0.49 -> '9876543219876543216543210123456789' Inexact Rounded
+dqadd36566 fma 1 '9876543219876543216543210123456789' 0.499999 -> '9876543219876543216543210123456789' Inexact Rounded
+dqadd36567 fma 1 '9876543219876543216543210123456789' 0.499999999 -> '9876543219876543216543210123456789' Inexact Rounded
+dqadd36568 fma 1 '9876543219876543216543210123456789' 0.5 -> '9876543219876543216543210123456790' Inexact Rounded
+dqadd36569 fma 1 '9876543219876543216543210123456789' 0.500000001 -> '9876543219876543216543210123456790' Inexact Rounded
+dqadd36570 fma 1 '9876543219876543216543210123456789' 0.500001 -> '9876543219876543216543210123456790' Inexact Rounded
+dqadd36571 fma 1 '9876543219876543216543210123456789' 0.51 -> '9876543219876543216543210123456790' Inexact Rounded
+dqadd36572 fma 1 '9876543219876543216543210123456789' 0.6 -> '9876543219876543216543210123456790' Inexact Rounded
+dqadd36573 fma 1 '9876543219876543216543210123456789' 0.9 -> '9876543219876543216543210123456790' Inexact Rounded
+dqadd36574 fma 1 '9876543219876543216543210123456789' 0.99999 -> '9876543219876543216543210123456790' Inexact Rounded
+dqadd36575 fma 1 '9876543219876543216543210123456789' 0.999999999 -> '9876543219876543216543210123456790' Inexact Rounded
+dqadd36576 fma 1 '9876543219876543216543210123456789' 1 -> '9876543219876543216543210123456790'
+dqadd36577 fma 1 '9876543219876543216543210123456789' 1.00000001 -> '9876543219876543216543210123456790' Inexact Rounded
+dqadd36578 fma 1 '9876543219876543216543210123456789' 1.00001 -> '9876543219876543216543210123456790' Inexact Rounded
+dqadd36579 fma 1 '9876543219876543216543210123456789' 1.1 -> '9876543219876543216543210123456790' Inexact Rounded
+
+-- critical few with even bottom digit...
+dqadd37540 fma 1 '9876543219876543216543210123456788' 0.499999999 -> '9876543219876543216543210123456788' Inexact Rounded
+dqadd37541 fma 1 '9876543219876543216543210123456788' 0.5 -> '9876543219876543216543210123456788' Inexact Rounded
+dqadd37542 fma 1 '9876543219876543216543210123456788' 0.500000001 -> '9876543219876543216543210123456789' Inexact Rounded
+
+rounding: down
+dqadd37550 fma 1 '9876543219876543216543210123456789' 0 -> '9876543219876543216543210123456789'
+dqadd37551 fma 1 '9876543219876543216543210123456789' 0.000000001 -> '9876543219876543216543210123456789' Inexact Rounded
+dqadd37552 fma 1 '9876543219876543216543210123456789' 0.000001 -> '9876543219876543216543210123456789' Inexact Rounded
+dqadd37553 fma 1 '9876543219876543216543210123456789' 0.1 -> '9876543219876543216543210123456789' Inexact Rounded
+dqadd37554 fma 1 '9876543219876543216543210123456789' 0.4 -> '9876543219876543216543210123456789' Inexact Rounded
+dqadd37555 fma 1 '9876543219876543216543210123456789' 0.49 -> '9876543219876543216543210123456789' Inexact Rounded
+dqadd37556 fma 1 '9876543219876543216543210123456789' 0.499999 -> '9876543219876543216543210123456789' Inexact Rounded
+dqadd37557 fma 1 '9876543219876543216543210123456789' 0.499999999 -> '9876543219876543216543210123456789' Inexact Rounded
+dqadd37558 fma 1 '9876543219876543216543210123456789' 0.5 -> '9876543219876543216543210123456789' Inexact Rounded
+dqadd37559 fma 1 '9876543219876543216543210123456789' 0.500000001 -> '9876543219876543216543210123456789' Inexact Rounded
+dqadd37560 fma 1 '9876543219876543216543210123456789' 0.500001 -> '9876543219876543216543210123456789' Inexact Rounded
+dqadd37561 fma 1 '9876543219876543216543210123456789' 0.51 -> '9876543219876543216543210123456789' Inexact Rounded
+dqadd37562 fma 1 '9876543219876543216543210123456789' 0.6 -> '9876543219876543216543210123456789' Inexact Rounded
+dqadd37563 fma 1 '9876543219876543216543210123456789' 0.9 -> '9876543219876543216543210123456789' Inexact Rounded
+dqadd37564 fma 1 '9876543219876543216543210123456789' 0.99999 -> '9876543219876543216543210123456789' Inexact Rounded
+dqadd37565 fma 1 '9876543219876543216543210123456789' 0.999999999 -> '9876543219876543216543210123456789' Inexact Rounded
+dqadd37566 fma 1 '9876543219876543216543210123456789' 1 -> '9876543219876543216543210123456790'
+dqadd37567 fma 1 '9876543219876543216543210123456789' 1.00000001 -> '9876543219876543216543210123456790' Inexact Rounded
+dqadd37568 fma 1 '9876543219876543216543210123456789' 1.00001 -> '9876543219876543216543210123456790' Inexact Rounded
+dqadd37569 fma 1 '9876543219876543216543210123456789' 1.1 -> '9876543219876543216543210123456790' Inexact Rounded
+
+-- more zeros, etc.
+rounding: half_even
+
+dqadd37701 fma 1 5.00 1.00E-3 -> 5.00100
+dqadd37702 fma 1 00.00 0.000 -> 0.000
+dqadd37703 fma 1 00.00 0E-3 -> 0.000
+dqadd37704 fma 1 0E-3 00.00 -> 0.000
+
+dqadd37710 fma 1 0E+3 00.00 -> 0.00
+dqadd37711 fma 1 0E+3 00.0 -> 0.0
+dqadd37712 fma 1 0E+3 00. -> 0
+dqadd37713 fma 1 0E+3 00.E+1 -> 0E+1
+dqadd37714 fma 1 0E+3 00.E+2 -> 0E+2
+dqadd37715 fma 1 0E+3 00.E+3 -> 0E+3
+dqadd37716 fma 1 0E+3 00.E+4 -> 0E+3
+dqadd37717 fma 1 0E+3 00.E+5 -> 0E+3
+dqadd37718 fma 1 0E+3 -00.0 -> 0.0
+dqadd37719 fma 1 0E+3 -00. -> 0
+dqadd37731 fma 1 0E+3 -00.E+1 -> 0E+1
+
+dqadd37720 fma 1 00.00 0E+3 -> 0.00
+dqadd37721 fma 1 00.0 0E+3 -> 0.0
+dqadd37722 fma 1 00. 0E+3 -> 0
+dqadd37723 fma 1 00.E+1 0E+3 -> 0E+1
+dqadd37724 fma 1 00.E+2 0E+3 -> 0E+2
+dqadd37725 fma 1 00.E+3 0E+3 -> 0E+3
+dqadd37726 fma 1 00.E+4 0E+3 -> 0E+3
+dqadd37727 fma 1 00.E+5 0E+3 -> 0E+3
+dqadd37728 fma 1 -00.00 0E+3 -> 0.00
+dqadd37729 fma 1 -00.0 0E+3 -> 0.0
+dqadd37730 fma 1 -00. 0E+3 -> 0
+
+dqadd37732 fma 1 0 0 -> 0
+dqadd37733 fma 1 0 -0 -> 0
+dqadd37734 fma 1 -0 0 -> 0
+dqadd37735 fma 1 -0 -0 -> -0 -- IEEE 854 special case
+
+dqadd37736 fma 1 1 -1 -> 0
+dqadd37737 fma 1 -1 -1 -> -2
+dqadd37738 fma 1 1 1 -> 2
+dqadd37739 fma 1 -1 1 -> 0
+
+dqadd37741 fma 1 0 -1 -> -1
+dqadd37742 fma 1 -0 -1 -> -1
+dqadd37743 fma 1 0 1 -> 1
+dqadd37744 fma 1 -0 1 -> 1
+dqadd37745 fma 1 -1 0 -> -1
+dqadd37746 fma 1 -1 -0 -> -1
+dqadd37747 fma 1 1 0 -> 1
+dqadd37748 fma 1 1 -0 -> 1
+
+dqadd37751 fma 1 0.0 -1 -> -1.0
+dqadd37752 fma 1 -0.0 -1 -> -1.0
+dqadd37753 fma 1 0.0 1 -> 1.0
+dqadd37754 fma 1 -0.0 1 -> 1.0
+dqadd37755 fma 1 -1.0 0 -> -1.0
+dqadd37756 fma 1 -1.0 -0 -> -1.0
+dqadd37757 fma 1 1.0 0 -> 1.0
+dqadd37758 fma 1 1.0 -0 -> 1.0
+
+dqadd37761 fma 1 0 -1.0 -> -1.0
+dqadd37762 fma 1 -0 -1.0 -> -1.0
+dqadd37763 fma 1 0 1.0 -> 1.0
+dqadd37764 fma 1 -0 1.0 -> 1.0
+dqadd37765 fma 1 -1 0.0 -> -1.0
+dqadd37766 fma 1 -1 -0.0 -> -1.0
+dqadd37767 fma 1 1 0.0 -> 1.0
+dqadd37768 fma 1 1 -0.0 -> 1.0
+
+dqadd37771 fma 1 0.0 -1.0 -> -1.0
+dqadd37772 fma 1 -0.0 -1.0 -> -1.0
+dqadd37773 fma 1 0.0 1.0 -> 1.0
+dqadd37774 fma 1 -0.0 1.0 -> 1.0
+dqadd37775 fma 1 -1.0 0.0 -> -1.0
+dqadd37776 fma 1 -1.0 -0.0 -> -1.0
+dqadd37777 fma 1 1.0 0.0 -> 1.0
+dqadd37778 fma 1 1.0 -0.0 -> 1.0
+
+-- Specials
+dqadd37780 fma 1 -Inf -Inf -> -Infinity
+dqadd37781 fma 1 -Inf -1000 -> -Infinity
+dqadd37782 fma 1 -Inf -1 -> -Infinity
+dqadd37783 fma 1 -Inf -0 -> -Infinity
+dqadd37784 fma 1 -Inf 0 -> -Infinity
+dqadd37785 fma 1 -Inf 1 -> -Infinity
+dqadd37786 fma 1 -Inf 1000 -> -Infinity
+dqadd37787 fma 1 -1000 -Inf -> -Infinity
+dqadd37788 fma 1 -Inf -Inf -> -Infinity
+dqadd37789 fma 1 -1 -Inf -> -Infinity
+dqadd37790 fma 1 -0 -Inf -> -Infinity
+dqadd37791 fma 1 0 -Inf -> -Infinity
+dqadd37792 fma 1 1 -Inf -> -Infinity
+dqadd37793 fma 1 1000 -Inf -> -Infinity
+dqadd37794 fma 1 Inf -Inf -> NaN Invalid_operation
+
+dqadd37800 fma 1 Inf -Inf -> NaN Invalid_operation
+dqadd37801 fma 1 Inf -1000 -> Infinity
+dqadd37802 fma 1 Inf -1 -> Infinity
+dqadd37803 fma 1 Inf -0 -> Infinity
+dqadd37804 fma 1 Inf 0 -> Infinity
+dqadd37805 fma 1 Inf 1 -> Infinity
+dqadd37806 fma 1 Inf 1000 -> Infinity
+dqadd37807 fma 1 Inf Inf -> Infinity
+dqadd37808 fma 1 -1000 Inf -> Infinity
+dqadd37809 fma 1 -Inf Inf -> NaN Invalid_operation
+dqadd37810 fma 1 -1 Inf -> Infinity
+dqadd37811 fma 1 -0 Inf -> Infinity
+dqadd37812 fma 1 0 Inf -> Infinity
+dqadd37813 fma 1 1 Inf -> Infinity
+dqadd37814 fma 1 1000 Inf -> Infinity
+dqadd37815 fma 1 Inf Inf -> Infinity
+
+dqadd37821 fma 1 NaN -Inf -> NaN
+dqadd37822 fma 1 NaN -1000 -> NaN
+dqadd37823 fma 1 NaN -1 -> NaN
+dqadd37824 fma 1 NaN -0 -> NaN
+dqadd37825 fma 1 NaN 0 -> NaN
+dqadd37826 fma 1 NaN 1 -> NaN
+dqadd37827 fma 1 NaN 1000 -> NaN
+dqadd37828 fma 1 NaN Inf -> NaN
+dqadd37829 fma 1 NaN NaN -> NaN
+dqadd37830 fma 1 -Inf NaN -> NaN
+dqadd37831 fma 1 -1000 NaN -> NaN
+dqadd37832 fma 1 -1 NaN -> NaN
+dqadd37833 fma 1 -0 NaN -> NaN
+dqadd37834 fma 1 0 NaN -> NaN
+dqadd37835 fma 1 1 NaN -> NaN
+dqadd37836 fma 1 1000 NaN -> NaN
+dqadd37837 fma 1 Inf NaN -> NaN
+
+dqadd37841 fma 1 sNaN -Inf -> NaN Invalid_operation
+dqadd37842 fma 1 sNaN -1000 -> NaN Invalid_operation
+dqadd37843 fma 1 sNaN -1 -> NaN Invalid_operation
+dqadd37844 fma 1 sNaN -0 -> NaN Invalid_operation
+dqadd37845 fma 1 sNaN 0 -> NaN Invalid_operation
+dqadd37846 fma 1 sNaN 1 -> NaN Invalid_operation
+dqadd37847 fma 1 sNaN 1000 -> NaN Invalid_operation
+dqadd37848 fma 1 sNaN NaN -> NaN Invalid_operation
+dqadd37849 fma 1 sNaN sNaN -> NaN Invalid_operation
+dqadd37850 fma 1 NaN sNaN -> NaN Invalid_operation
+dqadd37851 fma 1 -Inf sNaN -> NaN Invalid_operation
+dqadd37852 fma 1 -1000 sNaN -> NaN Invalid_operation
+dqadd37853 fma 1 -1 sNaN -> NaN Invalid_operation
+dqadd37854 fma 1 -0 sNaN -> NaN Invalid_operation
+dqadd37855 fma 1 0 sNaN -> NaN Invalid_operation
+dqadd37856 fma 1 1 sNaN -> NaN Invalid_operation
+dqadd37857 fma 1 1000 sNaN -> NaN Invalid_operation
+dqadd37858 fma 1 Inf sNaN -> NaN Invalid_operation
+dqadd37859 fma 1 NaN sNaN -> NaN Invalid_operation
+
+-- propagating NaNs
+dqadd37861 fma 1 NaN1 -Inf -> NaN1
+dqadd37862 fma 1 +NaN2 -1000 -> NaN2
+dqadd37863 fma 1 NaN3 1000 -> NaN3
+dqadd37864 fma 1 NaN4 Inf -> NaN4
+dqadd37865 fma 1 NaN5 +NaN6 -> NaN5
+dqadd37866 fma 1 -Inf NaN7 -> NaN7
+dqadd37867 fma 1 -1000 NaN8 -> NaN8
+dqadd37868 fma 1 1000 NaN9 -> NaN9
+dqadd37869 fma 1 Inf +NaN10 -> NaN10
+dqadd37871 fma 1 sNaN11 -Inf -> NaN11 Invalid_operation
+dqadd37872 fma 1 sNaN12 -1000 -> NaN12 Invalid_operation
+dqadd37873 fma 1 sNaN13 1000 -> NaN13 Invalid_operation
+dqadd37874 fma 1 sNaN14 NaN17 -> NaN14 Invalid_operation
+dqadd37875 fma 1 sNaN15 sNaN18 -> NaN15 Invalid_operation
+dqadd37876 fma 1 NaN16 sNaN19 -> NaN19 Invalid_operation
+dqadd37877 fma 1 -Inf +sNaN20 -> NaN20 Invalid_operation
+dqadd37878 fma 1 -1000 sNaN21 -> NaN21 Invalid_operation
+dqadd37879 fma 1 1000 sNaN22 -> NaN22 Invalid_operation
+dqadd37880 fma 1 Inf sNaN23 -> NaN23 Invalid_operation
+dqadd37881 fma 1 +NaN25 +sNaN24 -> NaN24 Invalid_operation
+dqadd37882 fma 1 -NaN26 NaN28 -> -NaN26
+dqadd37883 fma 1 -sNaN27 sNaN29 -> -NaN27 Invalid_operation
+dqadd37884 fma 1 1000 -NaN30 -> -NaN30
+dqadd37885 fma 1 1000 -sNaN31 -> -NaN31 Invalid_operation
+
+-- Here we explore near the boundary of rounding a subnormal to Nmin
+dqadd37575 fma 1 1E-6143 -1E-6176 -> 9.99999999999999999999999999999999E-6144 Subnormal
+dqadd37576 fma 1 -1E-6143 +1E-6176 -> -9.99999999999999999999999999999999E-6144 Subnormal
+
+-- check overflow edge case
+-- 1234567890123456
+dqadd37972 apply 9.999999999999999999999999999999999E+6144 -> 9.999999999999999999999999999999999E+6144
+dqadd37973 fma 1 9.999999999999999999999999999999999E+6144 1 -> 9.999999999999999999999999999999999E+6144 Inexact Rounded
+dqadd37974 fma 1 9999999999999999999999999999999999E+6111 1 -> 9.999999999999999999999999999999999E+6144 Inexact Rounded
+dqadd37975 fma 1 9999999999999999999999999999999999E+6111 1E+6111 -> Infinity Overflow Inexact Rounded
+dqadd37976 fma 1 9999999999999999999999999999999999E+6111 9E+6110 -> Infinity Overflow Inexact Rounded
+dqadd37977 fma 1 9999999999999999999999999999999999E+6111 8E+6110 -> Infinity Overflow Inexact Rounded
+dqadd37978 fma 1 9999999999999999999999999999999999E+6111 7E+6110 -> Infinity Overflow Inexact Rounded
+dqadd37979 fma 1 9999999999999999999999999999999999E+6111 6E+6110 -> Infinity Overflow Inexact Rounded
+dqadd37980 fma 1 9999999999999999999999999999999999E+6111 5E+6110 -> Infinity Overflow Inexact Rounded
+dqadd37981 fma 1 9999999999999999999999999999999999E+6111 4E+6110 -> 9.999999999999999999999999999999999E+6144 Inexact Rounded
+dqadd37982 fma 1 9999999999999999999999999999999999E+6111 3E+6110 -> 9.999999999999999999999999999999999E+6144 Inexact Rounded
+dqadd37983 fma 1 9999999999999999999999999999999999E+6111 2E+6110 -> 9.999999999999999999999999999999999E+6144 Inexact Rounded
+dqadd37984 fma 1 9999999999999999999999999999999999E+6111 1E+6110 -> 9.999999999999999999999999999999999E+6144 Inexact Rounded
+
+dqadd37985 apply -9.999999999999999999999999999999999E+6144 -> -9.999999999999999999999999999999999E+6144
+dqadd37986 fma 1 -9.999999999999999999999999999999999E+6144 -1 -> -9.999999999999999999999999999999999E+6144 Inexact Rounded
+dqadd37987 fma 1 -9999999999999999999999999999999999E+6111 -1 -> -9.999999999999999999999999999999999E+6144 Inexact Rounded
+dqadd37988 fma 1 -9999999999999999999999999999999999E+6111 -1E+6111 -> -Infinity Overflow Inexact Rounded
+dqadd37989 fma 1 -9999999999999999999999999999999999E+6111 -9E+6110 -> -Infinity Overflow Inexact Rounded
+dqadd37990 fma 1 -9999999999999999999999999999999999E+6111 -8E+6110 -> -Infinity Overflow Inexact Rounded
+dqadd37991 fma 1 -9999999999999999999999999999999999E+6111 -7E+6110 -> -Infinity Overflow Inexact Rounded
+dqadd37992 fma 1 -9999999999999999999999999999999999E+6111 -6E+6110 -> -Infinity Overflow Inexact Rounded
+dqadd37993 fma 1 -9999999999999999999999999999999999E+6111 -5E+6110 -> -Infinity Overflow Inexact Rounded
+dqadd37994 fma 1 -9999999999999999999999999999999999E+6111 -4E+6110 -> -9.999999999999999999999999999999999E+6144 Inexact Rounded
+dqadd37995 fma 1 -9999999999999999999999999999999999E+6111 -3E+6110 -> -9.999999999999999999999999999999999E+6144 Inexact Rounded
+dqadd37996 fma 1 -9999999999999999999999999999999999E+6111 -2E+6110 -> -9.999999999999999999999999999999999E+6144 Inexact Rounded
+dqadd37997 fma 1 -9999999999999999999999999999999999E+6111 -1E+6110 -> -9.999999999999999999999999999999999E+6144 Inexact Rounded
+
+-- And for round down full and subnormal results
+rounding: down
+dqadd371100 fma 1 1e+2 -1e-6143 -> 99.99999999999999999999999999999999 Rounded Inexact
+dqadd371101 fma 1 1e+1 -1e-6143 -> 9.999999999999999999999999999999999 Rounded Inexact
+dqadd371103 fma 1 +1 -1e-6143 -> 0.9999999999999999999999999999999999 Rounded Inexact
+dqadd371104 fma 1 1e-1 -1e-6143 -> 0.09999999999999999999999999999999999 Rounded Inexact
+dqadd371105 fma 1 1e-2 -1e-6143 -> 0.009999999999999999999999999999999999 Rounded Inexact
+dqadd371106 fma 1 1e-3 -1e-6143 -> 0.0009999999999999999999999999999999999 Rounded Inexact
+dqadd371107 fma 1 1e-4 -1e-6143 -> 0.00009999999999999999999999999999999999 Rounded Inexact
+dqadd371108 fma 1 1e-5 -1e-6143 -> 0.000009999999999999999999999999999999999 Rounded Inexact
+dqadd371109 fma 1 1e-6 -1e-6143 -> 9.999999999999999999999999999999999E-7 Rounded Inexact
+
+rounding: ceiling
+dqadd371110 fma 1 -1e+2 +1e-6143 -> -99.99999999999999999999999999999999 Rounded Inexact
+dqadd371111 fma 1 -1e+1 +1e-6143 -> -9.999999999999999999999999999999999 Rounded Inexact
+dqadd371113 fma 1 -1 +1e-6143 -> -0.9999999999999999999999999999999999 Rounded Inexact
+dqadd371114 fma 1 -1e-1 +1e-6143 -> -0.09999999999999999999999999999999999 Rounded Inexact
+dqadd371115 fma 1 -1e-2 +1e-6143 -> -0.009999999999999999999999999999999999 Rounded Inexact
+dqadd371116 fma 1 -1e-3 +1e-6143 -> -0.0009999999999999999999999999999999999 Rounded Inexact
+dqadd371117 fma 1 -1e-4 +1e-6143 -> -0.00009999999999999999999999999999999999 Rounded Inexact
+dqadd371118 fma 1 -1e-5 +1e-6143 -> -0.000009999999999999999999999999999999999 Rounded Inexact
+dqadd371119 fma 1 -1e-6 +1e-6143 -> -9.999999999999999999999999999999999E-7 Rounded Inexact
+
+-- tests based on Gunnar Degnbol's edge case
+rounding: half_even
+
+dqadd371300 fma 1 1E34 -0.5 -> 1.000000000000000000000000000000000E+34 Inexact Rounded
+dqadd371310 fma 1 1E34 -0.51 -> 9999999999999999999999999999999999 Inexact Rounded
+dqadd371311 fma 1 1E34 -0.501 -> 9999999999999999999999999999999999 Inexact Rounded
+dqadd371312 fma 1 1E34 -0.5001 -> 9999999999999999999999999999999999 Inexact Rounded
+dqadd371313 fma 1 1E34 -0.50001 -> 9999999999999999999999999999999999 Inexact Rounded
+dqadd371314 fma 1 1E34 -0.500001 -> 9999999999999999999999999999999999 Inexact Rounded
+dqadd371315 fma 1 1E34 -0.5000001 -> 9999999999999999999999999999999999 Inexact Rounded
+dqadd371316 fma 1 1E34 -0.50000001 -> 9999999999999999999999999999999999 Inexact Rounded
+dqadd371317 fma 1 1E34 -0.500000001 -> 9999999999999999999999999999999999 Inexact Rounded
+dqadd371318 fma 1 1E34 -0.5000000001 -> 9999999999999999999999999999999999 Inexact Rounded
+dqadd371319 fma 1 1E34 -0.50000000001 -> 9999999999999999999999999999999999 Inexact Rounded
+dqadd371320 fma 1 1E34 -0.500000000001 -> 9999999999999999999999999999999999 Inexact Rounded
+dqadd371321 fma 1 1E34 -0.5000000000001 -> 9999999999999999999999999999999999 Inexact Rounded
+dqadd371322 fma 1 1E34 -0.50000000000001 -> 9999999999999999999999999999999999 Inexact Rounded
+dqadd371323 fma 1 1E34 -0.500000000000001 -> 9999999999999999999999999999999999 Inexact Rounded
+dqadd371324 fma 1 1E34 -0.5000000000000001 -> 9999999999999999999999999999999999 Inexact Rounded
+dqadd371325 fma 1 1E34 -0.5000000000000000 -> 1.000000000000000000000000000000000E+34 Inexact Rounded
+dqadd371326 fma 1 1E34 -0.500000000000000 -> 1.000000000000000000000000000000000E+34 Inexact Rounded
+dqadd371327 fma 1 1E34 -0.50000000000000 -> 1.000000000000000000000000000000000E+34 Inexact Rounded
+dqadd371328 fma 1 1E34 -0.5000000000000 -> 1.000000000000000000000000000000000E+34 Inexact Rounded
+dqadd371329 fma 1 1E34 -0.500000000000 -> 1.000000000000000000000000000000000E+34 Inexact Rounded
+dqadd371330 fma 1 1E34 -0.50000000000 -> 1.000000000000000000000000000000000E+34 Inexact Rounded
+dqadd371331 fma 1 1E34 -0.5000000000 -> 1.000000000000000000000000000000000E+34 Inexact Rounded
+dqadd371332 fma 1 1E34 -0.500000000 -> 1.000000000000000000000000000000000E+34 Inexact Rounded
+dqadd371333 fma 1 1E34 -0.50000000 -> 1.000000000000000000000000000000000E+34 Inexact Rounded
+dqadd371334 fma 1 1E34 -0.5000000 -> 1.000000000000000000000000000000000E+34 Inexact Rounded
+dqadd371335 fma 1 1E34 -0.500000 -> 1.000000000000000000000000000000000E+34 Inexact Rounded
+dqadd371336 fma 1 1E34 -0.50000 -> 1.000000000000000000000000000000000E+34 Inexact Rounded
+dqadd371337 fma 1 1E34 -0.5000 -> 1.000000000000000000000000000000000E+34 Inexact Rounded
+dqadd371338 fma 1 1E34 -0.500 -> 1.000000000000000000000000000000000E+34 Inexact Rounded
+dqadd371339 fma 1 1E34 -0.50 -> 1.000000000000000000000000000000000E+34 Inexact Rounded
+
+dqadd371340 fma 1 1E34 -5000000.000010001 -> 9999999999999999999999999995000000 Inexact Rounded
+dqadd371341 fma 1 1E34 -5000000.000000001 -> 9999999999999999999999999995000000 Inexact Rounded
+
+dqadd371349 fma 1 9999999999999999999999999999999999 0.4 -> 9999999999999999999999999999999999 Inexact Rounded
+dqadd371350 fma 1 9999999999999999999999999999999999 0.49 -> 9999999999999999999999999999999999 Inexact Rounded
+dqadd371351 fma 1 9999999999999999999999999999999999 0.499 -> 9999999999999999999999999999999999 Inexact Rounded
+dqadd371352 fma 1 9999999999999999999999999999999999 0.4999 -> 9999999999999999999999999999999999 Inexact Rounded
+dqadd371353 fma 1 9999999999999999999999999999999999 0.49999 -> 9999999999999999999999999999999999 Inexact Rounded
+dqadd371354 fma 1 9999999999999999999999999999999999 0.499999 -> 9999999999999999999999999999999999 Inexact Rounded
+dqadd371355 fma 1 9999999999999999999999999999999999 0.4999999 -> 9999999999999999999999999999999999 Inexact Rounded
+dqadd371356 fma 1 9999999999999999999999999999999999 0.49999999 -> 9999999999999999999999999999999999 Inexact Rounded
+dqadd371357 fma 1 9999999999999999999999999999999999 0.499999999 -> 9999999999999999999999999999999999 Inexact Rounded
+dqadd371358 fma 1 9999999999999999999999999999999999 0.4999999999 -> 9999999999999999999999999999999999 Inexact Rounded
+dqadd371359 fma 1 9999999999999999999999999999999999 0.49999999999 -> 9999999999999999999999999999999999 Inexact Rounded
+dqadd371360 fma 1 9999999999999999999999999999999999 0.499999999999 -> 9999999999999999999999999999999999 Inexact Rounded
+dqadd371361 fma 1 9999999999999999999999999999999999 0.4999999999999 -> 9999999999999999999999999999999999 Inexact Rounded
+dqadd371362 fma 1 9999999999999999999999999999999999 0.49999999999999 -> 9999999999999999999999999999999999 Inexact Rounded
+dqadd371363 fma 1 9999999999999999999999999999999999 0.499999999999999 -> 9999999999999999999999999999999999 Inexact Rounded
+dqadd371364 fma 1 9999999999999999999999999999999999 0.4999999999999999 -> 9999999999999999999999999999999999 Inexact Rounded
+dqadd371365 fma 1 9999999999999999999999999999999999 0.5000000000000000 -> 1.000000000000000000000000000000000E+34 Inexact Rounded
+dqadd371367 fma 1 9999999999999999999999999999999999 0.500000000000000 -> 1.000000000000000000000000000000000E+34 Inexact Rounded
+dqadd371368 fma 1 9999999999999999999999999999999999 0.50000000000000 -> 1.000000000000000000000000000000000E+34 Inexact Rounded
+dqadd371369 fma 1 9999999999999999999999999999999999 0.5000000000000 -> 1.000000000000000000000000000000000E+34 Inexact Rounded
+dqadd371370 fma 1 9999999999999999999999999999999999 0.500000000000 -> 1.000000000000000000000000000000000E+34 Inexact Rounded
+dqadd371371 fma 1 9999999999999999999999999999999999 0.50000000000 -> 1.000000000000000000000000000000000E+34 Inexact Rounded
+dqadd371372 fma 1 9999999999999999999999999999999999 0.5000000000 -> 1.000000000000000000000000000000000E+34 Inexact Rounded
+dqadd371373 fma 1 9999999999999999999999999999999999 0.500000000 -> 1.000000000000000000000000000000000E+34 Inexact Rounded
+dqadd371374 fma 1 9999999999999999999999999999999999 0.50000000 -> 1.000000000000000000000000000000000E+34 Inexact Rounded
+dqadd371375 fma 1 9999999999999999999999999999999999 0.5000000 -> 1.000000000000000000000000000000000E+34 Inexact Rounded
+dqadd371376 fma 1 9999999999999999999999999999999999 0.500000 -> 1.000000000000000000000000000000000E+34 Inexact Rounded
+dqadd371377 fma 1 9999999999999999999999999999999999 0.50000 -> 1.000000000000000000000000000000000E+34 Inexact Rounded
+dqadd371378 fma 1 9999999999999999999999999999999999 0.5000 -> 1.000000000000000000000000000000000E+34 Inexact Rounded
+dqadd371379 fma 1 9999999999999999999999999999999999 0.500 -> 1.000000000000000000000000000000000E+34 Inexact Rounded
+dqadd371380 fma 1 9999999999999999999999999999999999 0.50 -> 1.000000000000000000000000000000000E+34 Inexact Rounded
+dqadd371381 fma 1 9999999999999999999999999999999999 0.5 -> 1.000000000000000000000000000000000E+34 Inexact Rounded
+dqadd371382 fma 1 9999999999999999999999999999999999 0.5000000000000001 -> 1.000000000000000000000000000000000E+34 Inexact Rounded
+dqadd371383 fma 1 9999999999999999999999999999999999 0.500000000000001 -> 1.000000000000000000000000000000000E+34 Inexact Rounded
+dqadd371384 fma 1 9999999999999999999999999999999999 0.50000000000001 -> 1.000000000000000000000000000000000E+34 Inexact Rounded
+dqadd371385 fma 1 9999999999999999999999999999999999 0.5000000000001 -> 1.000000000000000000000000000000000E+34 Inexact Rounded
+dqadd371386 fma 1 9999999999999999999999999999999999 0.500000000001 -> 1.000000000000000000000000000000000E+34 Inexact Rounded
+dqadd371387 fma 1 9999999999999999999999999999999999 0.50000000001 -> 1.000000000000000000000000000000000E+34 Inexact Rounded
+dqadd371388 fma 1 9999999999999999999999999999999999 0.5000000001 -> 1.000000000000000000000000000000000E+34 Inexact Rounded
+dqadd371389 fma 1 9999999999999999999999999999999999 0.500000001 -> 1.000000000000000000000000000000000E+34 Inexact Rounded
+dqadd371390 fma 1 9999999999999999999999999999999999 0.50000001 -> 1.000000000000000000000000000000000E+34 Inexact Rounded
+dqadd371391 fma 1 9999999999999999999999999999999999 0.5000001 -> 1.000000000000000000000000000000000E+34 Inexact Rounded
+dqadd371392 fma 1 9999999999999999999999999999999999 0.500001 -> 1.000000000000000000000000000000000E+34 Inexact Rounded
+dqadd371393 fma 1 9999999999999999999999999999999999 0.50001 -> 1.000000000000000000000000000000000E+34 Inexact Rounded
+dqadd371394 fma 1 9999999999999999999999999999999999 0.5001 -> 1.000000000000000000000000000000000E+34 Inexact Rounded
+dqadd371395 fma 1 9999999999999999999999999999999999 0.501 -> 1.000000000000000000000000000000000E+34 Inexact Rounded
+dqadd371396 fma 1 9999999999999999999999999999999999 0.51 -> 1.000000000000000000000000000000000E+34 Inexact Rounded
+
+-- More GD edge cases, where difference between the unadjusted
+-- exponents is larger than the maximum precision and one side is 0
+dqadd371420 fma 1 0 1.123456789987654321123456789012345 -> 1.123456789987654321123456789012345
+dqadd371421 fma 1 0 1.123456789987654321123456789012345E-1 -> 0.1123456789987654321123456789012345
+dqadd371422 fma 1 0 1.123456789987654321123456789012345E-2 -> 0.01123456789987654321123456789012345
+dqadd371423 fma 1 0 1.123456789987654321123456789012345E-3 -> 0.001123456789987654321123456789012345
+dqadd371424 fma 1 0 1.123456789987654321123456789012345E-4 -> 0.0001123456789987654321123456789012345
+dqadd371425 fma 1 0 1.123456789987654321123456789012345E-5 -> 0.00001123456789987654321123456789012345
+dqadd371426 fma 1 0 1.123456789987654321123456789012345E-6 -> 0.000001123456789987654321123456789012345
+dqadd371427 fma 1 0 1.123456789987654321123456789012345E-7 -> 1.123456789987654321123456789012345E-7
+dqadd371428 fma 1 0 1.123456789987654321123456789012345E-8 -> 1.123456789987654321123456789012345E-8
+dqadd371429 fma 1 0 1.123456789987654321123456789012345E-9 -> 1.123456789987654321123456789012345E-9
+dqadd371430 fma 1 0 1.123456789987654321123456789012345E-10 -> 1.123456789987654321123456789012345E-10
+dqadd371431 fma 1 0 1.123456789987654321123456789012345E-11 -> 1.123456789987654321123456789012345E-11
+dqadd371432 fma 1 0 1.123456789987654321123456789012345E-12 -> 1.123456789987654321123456789012345E-12
+dqadd371433 fma 1 0 1.123456789987654321123456789012345E-13 -> 1.123456789987654321123456789012345E-13
+dqadd371434 fma 1 0 1.123456789987654321123456789012345E-14 -> 1.123456789987654321123456789012345E-14
+dqadd371435 fma 1 0 1.123456789987654321123456789012345E-15 -> 1.123456789987654321123456789012345E-15
+dqadd371436 fma 1 0 1.123456789987654321123456789012345E-16 -> 1.123456789987654321123456789012345E-16
+dqadd371437 fma 1 0 1.123456789987654321123456789012345E-17 -> 1.123456789987654321123456789012345E-17
+dqadd371438 fma 1 0 1.123456789987654321123456789012345E-18 -> 1.123456789987654321123456789012345E-18
+dqadd371439 fma 1 0 1.123456789987654321123456789012345E-19 -> 1.123456789987654321123456789012345E-19
+dqadd371440 fma 1 0 1.123456789987654321123456789012345E-20 -> 1.123456789987654321123456789012345E-20
+dqadd371441 fma 1 0 1.123456789987654321123456789012345E-21 -> 1.123456789987654321123456789012345E-21
+dqadd371442 fma 1 0 1.123456789987654321123456789012345E-22 -> 1.123456789987654321123456789012345E-22
+dqadd371443 fma 1 0 1.123456789987654321123456789012345E-23 -> 1.123456789987654321123456789012345E-23
+dqadd371444 fma 1 0 1.123456789987654321123456789012345E-24 -> 1.123456789987654321123456789012345E-24
+dqadd371445 fma 1 0 1.123456789987654321123456789012345E-25 -> 1.123456789987654321123456789012345E-25
+dqadd371446 fma 1 0 1.123456789987654321123456789012345E-26 -> 1.123456789987654321123456789012345E-26
+dqadd371447 fma 1 0 1.123456789987654321123456789012345E-27 -> 1.123456789987654321123456789012345E-27
+dqadd371448 fma 1 0 1.123456789987654321123456789012345E-28 -> 1.123456789987654321123456789012345E-28
+dqadd371449 fma 1 0 1.123456789987654321123456789012345E-29 -> 1.123456789987654321123456789012345E-29
+dqadd371450 fma 1 0 1.123456789987654321123456789012345E-30 -> 1.123456789987654321123456789012345E-30
+dqadd371451 fma 1 0 1.123456789987654321123456789012345E-31 -> 1.123456789987654321123456789012345E-31
+dqadd371452 fma 1 0 1.123456789987654321123456789012345E-32 -> 1.123456789987654321123456789012345E-32
+dqadd371453 fma 1 0 1.123456789987654321123456789012345E-33 -> 1.123456789987654321123456789012345E-33
+dqadd371454 fma 1 0 1.123456789987654321123456789012345E-34 -> 1.123456789987654321123456789012345E-34
+dqadd371455 fma 1 0 1.123456789987654321123456789012345E-35 -> 1.123456789987654321123456789012345E-35
+dqadd371456 fma 1 0 1.123456789987654321123456789012345E-36 -> 1.123456789987654321123456789012345E-36
+
+-- same, reversed 0
+dqadd371460 fma 1 1.123456789987654321123456789012345 0 -> 1.123456789987654321123456789012345
+dqadd371461 fma 1 1.123456789987654321123456789012345E-1 0 -> 0.1123456789987654321123456789012345
+dqadd371462 fma 1 1.123456789987654321123456789012345E-2 0 -> 0.01123456789987654321123456789012345
+dqadd371463 fma 1 1.123456789987654321123456789012345E-3 0 -> 0.001123456789987654321123456789012345
+dqadd371464 fma 1 1.123456789987654321123456789012345E-4 0 -> 0.0001123456789987654321123456789012345
+dqadd371465 fma 1 1.123456789987654321123456789012345E-5 0 -> 0.00001123456789987654321123456789012345
+dqadd371466 fma 1 1.123456789987654321123456789012345E-6 0 -> 0.000001123456789987654321123456789012345
+dqadd371467 fma 1 1.123456789987654321123456789012345E-7 0 -> 1.123456789987654321123456789012345E-7
+dqadd371468 fma 1 1.123456789987654321123456789012345E-8 0 -> 1.123456789987654321123456789012345E-8
+dqadd371469 fma 1 1.123456789987654321123456789012345E-9 0 -> 1.123456789987654321123456789012345E-9
+dqadd371470 fma 1 1.123456789987654321123456789012345E-10 0 -> 1.123456789987654321123456789012345E-10
+dqadd371471 fma 1 1.123456789987654321123456789012345E-11 0 -> 1.123456789987654321123456789012345E-11
+dqadd371472 fma 1 1.123456789987654321123456789012345E-12 0 -> 1.123456789987654321123456789012345E-12
+dqadd371473 fma 1 1.123456789987654321123456789012345E-13 0 -> 1.123456789987654321123456789012345E-13
+dqadd371474 fma 1 1.123456789987654321123456789012345E-14 0 -> 1.123456789987654321123456789012345E-14
+dqadd371475 fma 1 1.123456789987654321123456789012345E-15 0 -> 1.123456789987654321123456789012345E-15
+dqadd371476 fma 1 1.123456789987654321123456789012345E-16 0 -> 1.123456789987654321123456789012345E-16
+dqadd371477 fma 1 1.123456789987654321123456789012345E-17 0 -> 1.123456789987654321123456789012345E-17
+dqadd371478 fma 1 1.123456789987654321123456789012345E-18 0 -> 1.123456789987654321123456789012345E-18
+dqadd371479 fma 1 1.123456789987654321123456789012345E-19 0 -> 1.123456789987654321123456789012345E-19
+dqadd371480 fma 1 1.123456789987654321123456789012345E-20 0 -> 1.123456789987654321123456789012345E-20
+dqadd371481 fma 1 1.123456789987654321123456789012345E-21 0 -> 1.123456789987654321123456789012345E-21
+dqadd371482 fma 1 1.123456789987654321123456789012345E-22 0 -> 1.123456789987654321123456789012345E-22
+dqadd371483 fma 1 1.123456789987654321123456789012345E-23 0 -> 1.123456789987654321123456789012345E-23
+dqadd371484 fma 1 1.123456789987654321123456789012345E-24 0 -> 1.123456789987654321123456789012345E-24
+dqadd371485 fma 1 1.123456789987654321123456789012345E-25 0 -> 1.123456789987654321123456789012345E-25
+dqadd371486 fma 1 1.123456789987654321123456789012345E-26 0 -> 1.123456789987654321123456789012345E-26
+dqadd371487 fma 1 1.123456789987654321123456789012345E-27 0 -> 1.123456789987654321123456789012345E-27
+dqadd371488 fma 1 1.123456789987654321123456789012345E-28 0 -> 1.123456789987654321123456789012345E-28
+dqadd371489 fma 1 1.123456789987654321123456789012345E-29 0 -> 1.123456789987654321123456789012345E-29
+dqadd371490 fma 1 1.123456789987654321123456789012345E-30 0 -> 1.123456789987654321123456789012345E-30
+dqadd371491 fma 1 1.123456789987654321123456789012345E-31 0 -> 1.123456789987654321123456789012345E-31
+dqadd371492 fma 1 1.123456789987654321123456789012345E-32 0 -> 1.123456789987654321123456789012345E-32
+dqadd371493 fma 1 1.123456789987654321123456789012345E-33 0 -> 1.123456789987654321123456789012345E-33
+dqadd371494 fma 1 1.123456789987654321123456789012345E-34 0 -> 1.123456789987654321123456789012345E-34
+dqadd371495 fma 1 1.123456789987654321123456789012345E-35 0 -> 1.123456789987654321123456789012345E-35
+dqadd371496 fma 1 1.123456789987654321123456789012345E-36 0 -> 1.123456789987654321123456789012345E-36
+
+-- same, Es on the 0
+dqadd371500 fma 1 1.123456789987654321123456789012345 0E-0 -> 1.123456789987654321123456789012345
+dqadd371501 fma 1 1.123456789987654321123456789012345 0E-1 -> 1.123456789987654321123456789012345
+dqadd371502 fma 1 1.123456789987654321123456789012345 0E-2 -> 1.123456789987654321123456789012345
+dqadd371503 fma 1 1.123456789987654321123456789012345 0E-3 -> 1.123456789987654321123456789012345
+dqadd371504 fma 1 1.123456789987654321123456789012345 0E-4 -> 1.123456789987654321123456789012345
+dqadd371505 fma 1 1.123456789987654321123456789012345 0E-5 -> 1.123456789987654321123456789012345
+dqadd371506 fma 1 1.123456789987654321123456789012345 0E-6 -> 1.123456789987654321123456789012345
+dqadd371507 fma 1 1.123456789987654321123456789012345 0E-7 -> 1.123456789987654321123456789012345
+dqadd371508 fma 1 1.123456789987654321123456789012345 0E-8 -> 1.123456789987654321123456789012345
+dqadd371509 fma 1 1.123456789987654321123456789012345 0E-9 -> 1.123456789987654321123456789012345
+dqadd371510 fma 1 1.123456789987654321123456789012345 0E-10 -> 1.123456789987654321123456789012345
+dqadd371511 fma 1 1.123456789987654321123456789012345 0E-11 -> 1.123456789987654321123456789012345
+dqadd371512 fma 1 1.123456789987654321123456789012345 0E-12 -> 1.123456789987654321123456789012345
+dqadd371513 fma 1 1.123456789987654321123456789012345 0E-13 -> 1.123456789987654321123456789012345
+dqadd371514 fma 1 1.123456789987654321123456789012345 0E-14 -> 1.123456789987654321123456789012345
+dqadd371515 fma 1 1.123456789987654321123456789012345 0E-15 -> 1.123456789987654321123456789012345
+dqadd371516 fma 1 1.123456789987654321123456789012345 0E-16 -> 1.123456789987654321123456789012345
+dqadd371517 fma 1 1.123456789987654321123456789012345 0E-17 -> 1.123456789987654321123456789012345
+dqadd371518 fma 1 1.123456789987654321123456789012345 0E-18 -> 1.123456789987654321123456789012345
+dqadd371519 fma 1 1.123456789987654321123456789012345 0E-19 -> 1.123456789987654321123456789012345
+dqadd371520 fma 1 1.123456789987654321123456789012345 0E-20 -> 1.123456789987654321123456789012345
+dqadd371521 fma 1 1.123456789987654321123456789012345 0E-21 -> 1.123456789987654321123456789012345
+dqadd371522 fma 1 1.123456789987654321123456789012345 0E-22 -> 1.123456789987654321123456789012345
+dqadd371523 fma 1 1.123456789987654321123456789012345 0E-23 -> 1.123456789987654321123456789012345
+dqadd371524 fma 1 1.123456789987654321123456789012345 0E-24 -> 1.123456789987654321123456789012345
+dqadd371525 fma 1 1.123456789987654321123456789012345 0E-25 -> 1.123456789987654321123456789012345
+dqadd371526 fma 1 1.123456789987654321123456789012345 0E-26 -> 1.123456789987654321123456789012345
+dqadd371527 fma 1 1.123456789987654321123456789012345 0E-27 -> 1.123456789987654321123456789012345
+dqadd371528 fma 1 1.123456789987654321123456789012345 0E-28 -> 1.123456789987654321123456789012345
+dqadd371529 fma 1 1.123456789987654321123456789012345 0E-29 -> 1.123456789987654321123456789012345
+dqadd371530 fma 1 1.123456789987654321123456789012345 0E-30 -> 1.123456789987654321123456789012345
+dqadd371531 fma 1 1.123456789987654321123456789012345 0E-31 -> 1.123456789987654321123456789012345
+dqadd371532 fma 1 1.123456789987654321123456789012345 0E-32 -> 1.123456789987654321123456789012345
+dqadd371533 fma 1 1.123456789987654321123456789012345 0E-33 -> 1.123456789987654321123456789012345
+-- next four flag Rounded because the 0 extends the result
+dqadd371534 fma 1 1.123456789987654321123456789012345 0E-34 -> 1.123456789987654321123456789012345 Rounded
+dqadd371535 fma 1 1.123456789987654321123456789012345 0E-35 -> 1.123456789987654321123456789012345 Rounded
+dqadd371536 fma 1 1.123456789987654321123456789012345 0E-36 -> 1.123456789987654321123456789012345 Rounded
+dqadd371537 fma 1 1.123456789987654321123456789012345 0E-37 -> 1.123456789987654321123456789012345 Rounded
+
+-- sum of two opposite-sign operands is exactly 0 and floor => -0
+rounding: half_up
+-- exact zeros from zeros
+dqadd371600 fma 1 0 0E-19 -> 0E-19
+dqadd371601 fma 1 -0 0E-19 -> 0E-19
+dqadd371602 fma 1 0 -0E-19 -> 0E-19
+dqadd371603 fma 1 -0 -0E-19 -> -0E-19
+-- exact zeros from non-zeros
+dqadd371611 fma 1 -11 11 -> 0
+dqadd371612 fma 1 11 -11 -> 0
+-- overflow
+dqadd371613 fma 9E6144 10 1 -> Infinity Overflow Inexact Rounded
+dqadd371614 fma -9E6144 10 1 -> -Infinity Overflow Inexact Rounded
+
+rounding: half_down
+-- exact zeros from zeros
+dqadd371620 fma 1 0 0E-19 -> 0E-19
+dqadd371621 fma 1 -0 0E-19 -> 0E-19
+dqadd371622 fma 1 0 -0E-19 -> 0E-19
+dqadd371623 fma 1 -0 -0E-19 -> -0E-19
+-- exact zeros from non-zeros
+dqadd371631 fma 1 -11 11 -> 0
+dqadd371632 fma 1 11 -11 -> 0
+-- overflow
+dqadd371633 fma 9E6144 10 1 -> Infinity Overflow Inexact Rounded
+dqadd371634 fma -9E6144 10 1 -> -Infinity Overflow Inexact Rounded
+
+rounding: half_even
+-- exact zeros from zeros
+dqadd371640 fma 1 0 0E-19 -> 0E-19
+dqadd371641 fma 1 -0 0E-19 -> 0E-19
+dqadd371642 fma 1 0 -0E-19 -> 0E-19
+dqadd371643 fma 1 -0 -0E-19 -> -0E-19
+-- exact zeros from non-zeros
+dqadd371651 fma 1 -11 11 -> 0
+dqadd371652 fma 1 11 -11 -> 0
+-- overflow
+dqadd371653 fma 9E6144 10 1 -> Infinity Overflow Inexact Rounded
+dqadd371654 fma -9E6144 10 1 -> -Infinity Overflow Inexact Rounded
+
+rounding: up
+-- exact zeros from zeros
+dqadd371660 fma 1 0 0E-19 -> 0E-19
+dqadd371661 fma 1 -0 0E-19 -> 0E-19
+dqadd371662 fma 1 0 -0E-19 -> 0E-19
+dqadd371663 fma 1 -0 -0E-19 -> -0E-19
+-- exact zeros from non-zeros
+dqadd371671 fma 1 -11 11 -> 0
+dqadd371672 fma 1 11 -11 -> 0
+-- overflow
+dqadd371673 fma 9E6144 10 1 -> Infinity Overflow Inexact Rounded
+dqadd371674 fma -9E6144 10 1 -> -Infinity Overflow Inexact Rounded
+
+rounding: down
+-- exact zeros from zeros
+dqadd371680 fma 1 0 0E-19 -> 0E-19
+dqadd371681 fma 1 -0 0E-19 -> 0E-19
+dqadd371682 fma 1 0 -0E-19 -> 0E-19
+dqadd371683 fma 1 -0 -0E-19 -> -0E-19
+-- exact zeros from non-zeros
+dqadd371691 fma 1 -11 11 -> 0
+dqadd371692 fma 1 11 -11 -> 0
+-- overflow
+dqadd371693 fma 9E6144 10 1 -> 9.999999999999999999999999999999999E+6144 Overflow Inexact Rounded
+dqadd371694 fma -9E6144 10 1 -> -9.999999999999999999999999999999999E+6144 Overflow Inexact Rounded
+
+rounding: ceiling
+-- exact zeros from zeros
+dqadd371700 fma 1 0 0E-19 -> 0E-19
+dqadd371701 fma 1 -0 0E-19 -> 0E-19
+dqadd371702 fma 1 0 -0E-19 -> 0E-19
+dqadd371703 fma 1 -0 -0E-19 -> -0E-19
+-- exact zeros from non-zeros
+dqadd371711 fma 1 -11 11 -> 0
+dqadd371712 fma 1 11 -11 -> 0
+-- overflow
+dqadd371713 fma 9E6144 10 1 -> Infinity Overflow Inexact Rounded
+dqadd371714 fma -9E6144 10 1 -> -9.999999999999999999999999999999999E+6144 Overflow Inexact Rounded
+
+-- and the extra-special ugly case; unusual minuses marked by -- *
+rounding: floor
+-- exact zeros from zeros
+dqadd371720 fma 1 0 0E-19 -> 0E-19
+dqadd371721 fma 1 -0 0E-19 -> -0E-19 -- *
+dqadd371722 fma 1 0 -0E-19 -> -0E-19 -- *
+dqadd371723 fma 1 -0 -0E-19 -> -0E-19
+-- exact zeros from non-zeros
+dqadd371731 fma 1 -11 11 -> -0 -- *
+dqadd371732 fma 1 11 -11 -> -0 -- *
+-- overflow
+dqadd371733 fma 9E6144 10 1 -> 9.999999999999999999999999999999999E+6144 Overflow Inexact Rounded
+dqadd371734 fma -9E6144 10 1 -> -Infinity Overflow Inexact Rounded
+
+rounding: 05up
+-- exact zeros from zeros
+dqadd371740 fma 1 0 0E-19 -> 0E-19
+dqadd371741 fma 1 -0 0E-19 -> 0E-19
+dqadd371742 fma 1 0 -0E-19 -> 0E-19
+dqadd371743 fma 1 -0 -0E-19 -> -0E-19
+-- exact zeros from non-zeros
+dqadd371751 fma 1 -11 11 -> 0
+dqadd371752 fma 1 11 -11 -> 0
+-- overflow
+dqadd371753 fma 9E6144 10 1 -> 9.999999999999999999999999999999999E+6144 Overflow Inexact Rounded
+dqadd371754 fma -9E6144 10 1 -> -9.999999999999999999999999999999999E+6144 Overflow Inexact Rounded
+
+-- Examples from SQL proposal (Krishna Kulkarni)
+dqadd371761 fma 1 130E-2 120E-2 -> 2.50
+dqadd371762 fma 1 130E-2 12E-1 -> 2.50
+dqadd371763 fma 1 130E-2 1E0 -> 2.30
+dqadd371764 fma 1 1E2 1E4 -> 1.01E+4
+dqadd371765 fma 1 130E-2 -120E-2 -> 0.10
+dqadd371766 fma 1 130E-2 -12E-1 -> 0.10
+dqadd371767 fma 1 130E-2 -1E0 -> 0.30
+dqadd371768 fma 1 1E2 -1E4 -> -9.9E+3
+
+-- Gappy coefficients; check residue handling even with full coefficient gap
+rounding: half_even
+
+dqadd375001 fma 1 1239876543211234567894567890123456 1 -> 1239876543211234567894567890123457
+dqadd375002 fma 1 1239876543211234567894567890123456 0.6 -> 1239876543211234567894567890123457 Inexact Rounded
+dqadd375003 fma 1 1239876543211234567894567890123456 0.06 -> 1239876543211234567894567890123456 Inexact Rounded
+dqadd375004 fma 1 1239876543211234567894567890123456 6E-3 -> 1239876543211234567894567890123456 Inexact Rounded
+dqadd375005 fma 1 1239876543211234567894567890123456 6E-4 -> 1239876543211234567894567890123456 Inexact Rounded
+dqadd375006 fma 1 1239876543211234567894567890123456 6E-5 -> 1239876543211234567894567890123456 Inexact Rounded
+dqadd375007 fma 1 1239876543211234567894567890123456 6E-6 -> 1239876543211234567894567890123456 Inexact Rounded
+dqadd375008 fma 1 1239876543211234567894567890123456 6E-7 -> 1239876543211234567894567890123456 Inexact Rounded
+dqadd375009 fma 1 1239876543211234567894567890123456 6E-8 -> 1239876543211234567894567890123456 Inexact Rounded
+dqadd375010 fma 1 1239876543211234567894567890123456 6E-9 -> 1239876543211234567894567890123456 Inexact Rounded
+dqadd375011 fma 1 1239876543211234567894567890123456 6E-10 -> 1239876543211234567894567890123456 Inexact Rounded
+dqadd375012 fma 1 1239876543211234567894567890123456 6E-11 -> 1239876543211234567894567890123456 Inexact Rounded
+dqadd375013 fma 1 1239876543211234567894567890123456 6E-12 -> 1239876543211234567894567890123456 Inexact Rounded
+dqadd375014 fma 1 1239876543211234567894567890123456 6E-13 -> 1239876543211234567894567890123456 Inexact Rounded
+dqadd375015 fma 1 1239876543211234567894567890123456 6E-14 -> 1239876543211234567894567890123456 Inexact Rounded
+dqadd375016 fma 1 1239876543211234567894567890123456 6E-15 -> 1239876543211234567894567890123456 Inexact Rounded
+dqadd375017 fma 1 1239876543211234567894567890123456 6E-16 -> 1239876543211234567894567890123456 Inexact Rounded
+dqadd375018 fma 1 1239876543211234567894567890123456 6E-17 -> 1239876543211234567894567890123456 Inexact Rounded
+dqadd375019 fma 1 1239876543211234567894567890123456 6E-18 -> 1239876543211234567894567890123456 Inexact Rounded
+dqadd375020 fma 1 1239876543211234567894567890123456 6E-19 -> 1239876543211234567894567890123456 Inexact Rounded
+dqadd375021 fma 1 1239876543211234567894567890123456 6E-20 -> 1239876543211234567894567890123456 Inexact Rounded
+
+-- widening second argument at gap
+dqadd375030 fma 1 12398765432112345678945678 1 -> 12398765432112345678945679
+dqadd375031 fma 1 12398765432112345678945678 0.1 -> 12398765432112345678945678.1
+dqadd375032 fma 1 12398765432112345678945678 0.12 -> 12398765432112345678945678.12
+dqadd375033 fma 1 12398765432112345678945678 0.123 -> 12398765432112345678945678.123
+dqadd375034 fma 1 12398765432112345678945678 0.1234 -> 12398765432112345678945678.1234
+dqadd375035 fma 1 12398765432112345678945678 0.12345 -> 12398765432112345678945678.12345
+dqadd375036 fma 1 12398765432112345678945678 0.123456 -> 12398765432112345678945678.123456
+dqadd375037 fma 1 12398765432112345678945678 0.1234567 -> 12398765432112345678945678.1234567
+dqadd375038 fma 1 12398765432112345678945678 0.12345678 -> 12398765432112345678945678.12345678
+dqadd375039 fma 1 12398765432112345678945678 0.123456789 -> 12398765432112345678945678.12345679 Inexact Rounded
+dqadd375040 fma 1 12398765432112345678945678 0.123456785 -> 12398765432112345678945678.12345678 Inexact Rounded
+dqadd375041 fma 1 12398765432112345678945678 0.1234567850 -> 12398765432112345678945678.12345678 Inexact Rounded
+dqadd375042 fma 1 12398765432112345678945678 0.1234567851 -> 12398765432112345678945678.12345679 Inexact Rounded
+dqadd375043 fma 1 12398765432112345678945678 0.12345678501 -> 12398765432112345678945678.12345679 Inexact Rounded
+dqadd375044 fma 1 12398765432112345678945678 0.123456785001 -> 12398765432112345678945678.12345679 Inexact Rounded
+dqadd375045 fma 1 12398765432112345678945678 0.1234567850001 -> 12398765432112345678945678.12345679 Inexact Rounded
+dqadd375046 fma 1 12398765432112345678945678 0.12345678500001 -> 12398765432112345678945678.12345679 Inexact Rounded
+dqadd375047 fma 1 12398765432112345678945678 0.123456785000001 -> 12398765432112345678945678.12345679 Inexact Rounded
+dqadd375048 fma 1 12398765432112345678945678 0.1234567850000001 -> 12398765432112345678945678.12345679 Inexact Rounded
+dqadd375049 fma 1 12398765432112345678945678 0.1234567850000000 -> 12398765432112345678945678.12345678 Inexact Rounded
+-- 90123456
+rounding: half_even
+dqadd375050 fma 1 12398765432112345678945678 0.0234567750000000 -> 12398765432112345678945678.02345678 Inexact Rounded
+dqadd375051 fma 1 12398765432112345678945678 0.0034567750000000 -> 12398765432112345678945678.00345678 Inexact Rounded
+dqadd375052 fma 1 12398765432112345678945678 0.0004567750000000 -> 12398765432112345678945678.00045678 Inexact Rounded
+dqadd375053 fma 1 12398765432112345678945678 0.0000567750000000 -> 12398765432112345678945678.00005678 Inexact Rounded
+dqadd375054 fma 1 12398765432112345678945678 0.0000067750000000 -> 12398765432112345678945678.00000678 Inexact Rounded
+dqadd375055 fma 1 12398765432112345678945678 0.0000007750000000 -> 12398765432112345678945678.00000078 Inexact Rounded
+dqadd375056 fma 1 12398765432112345678945678 0.0000000750000000 -> 12398765432112345678945678.00000008 Inexact Rounded
+dqadd375057 fma 1 12398765432112345678945678 0.0000000050000000 -> 12398765432112345678945678.00000000 Inexact Rounded
+dqadd375060 fma 1 12398765432112345678945678 0.0234567750000001 -> 12398765432112345678945678.02345678 Inexact Rounded
+dqadd375061 fma 1 12398765432112345678945678 0.0034567750000001 -> 12398765432112345678945678.00345678 Inexact Rounded
+dqadd375062 fma 1 12398765432112345678945678 0.0004567750000001 -> 12398765432112345678945678.00045678 Inexact Rounded
+dqadd375063 fma 1 12398765432112345678945678 0.0000567750000001 -> 12398765432112345678945678.00005678 Inexact Rounded
+dqadd375064 fma 1 12398765432112345678945678 0.0000067750000001 -> 12398765432112345678945678.00000678 Inexact Rounded
+dqadd375065 fma 1 12398765432112345678945678 0.0000007750000001 -> 12398765432112345678945678.00000078 Inexact Rounded
+dqadd375066 fma 1 12398765432112345678945678 0.0000000750000001 -> 12398765432112345678945678.00000008 Inexact Rounded
+dqadd375067 fma 1 12398765432112345678945678 0.0000000050000001 -> 12398765432112345678945678.00000001 Inexact Rounded
+-- far-out residues (full coefficient gap is 16+15 digits)
+rounding: up
+dqadd375070 fma 1 12398765432112345678945678 1E-8 -> 12398765432112345678945678.00000001
+dqadd375071 fma 1 12398765432112345678945678 1E-9 -> 12398765432112345678945678.00000001 Inexact Rounded
+dqadd375072 fma 1 12398765432112345678945678 1E-10 -> 12398765432112345678945678.00000001 Inexact Rounded
+dqadd375073 fma 1 12398765432112345678945678 1E-11 -> 12398765432112345678945678.00000001 Inexact Rounded
+dqadd375074 fma 1 12398765432112345678945678 1E-12 -> 12398765432112345678945678.00000001 Inexact Rounded
+dqadd375075 fma 1 12398765432112345678945678 1E-13 -> 12398765432112345678945678.00000001 Inexact Rounded
+dqadd375076 fma 1 12398765432112345678945678 1E-14 -> 12398765432112345678945678.00000001 Inexact Rounded
+dqadd375077 fma 1 12398765432112345678945678 1E-15 -> 12398765432112345678945678.00000001 Inexact Rounded
+dqadd375078 fma 1 12398765432112345678945678 1E-16 -> 12398765432112345678945678.00000001 Inexact Rounded
+dqadd375079 fma 1 12398765432112345678945678 1E-17 -> 12398765432112345678945678.00000001 Inexact Rounded
+dqadd375080 fma 1 12398765432112345678945678 1E-18 -> 12398765432112345678945678.00000001 Inexact Rounded
+dqadd375081 fma 1 12398765432112345678945678 1E-19 -> 12398765432112345678945678.00000001 Inexact Rounded
+dqadd375082 fma 1 12398765432112345678945678 1E-20 -> 12398765432112345678945678.00000001 Inexact Rounded
+dqadd375083 fma 1 12398765432112345678945678 1E-25 -> 12398765432112345678945678.00000001 Inexact Rounded
+dqadd375084 fma 1 12398765432112345678945678 1E-30 -> 12398765432112345678945678.00000001 Inexact Rounded
+dqadd375085 fma 1 12398765432112345678945678 1E-31 -> 12398765432112345678945678.00000001 Inexact Rounded
+dqadd375086 fma 1 12398765432112345678945678 1E-32 -> 12398765432112345678945678.00000001 Inexact Rounded
+dqadd375087 fma 1 12398765432112345678945678 1E-33 -> 12398765432112345678945678.00000001 Inexact Rounded
+dqadd375088 fma 1 12398765432112345678945678 1E-34 -> 12398765432112345678945678.00000001 Inexact Rounded
+dqadd375089 fma 1 12398765432112345678945678 1E-35 -> 12398765432112345678945678.00000001 Inexact Rounded
+
+-- Null tests
+dqadd39990 fma 1 10 # -> NaN Invalid_operation
+dqadd39991 fma 1 # 10 -> NaN Invalid_operation
+
+
diff --git a/Lib/test/decimaltestdata/dqInvert.decTest b/Lib/test/decimaltestdata/dqInvert.decTest
new file mode 100644
index 0000000..94ba93c
--- /dev/null
+++ b/Lib/test/decimaltestdata/dqInvert.decTest
@@ -0,0 +1,245 @@
+------------------------------------------------------------------------
+-- dqInvert.decTest -- digitwise logical INVERT for decQuads --
+-- Copyright (c) IBM Corporation, 1981, 2007. All rights reserved. --
+------------------------------------------------------------------------
+-- Please see the document "General Decimal Arithmetic Testcases" --
+-- at http://www2.hursley.ibm.com/decimal for the description of --
+-- these testcases. --
+-- --
+-- These testcases are experimental ('beta' versions), and they --
+-- may contain errors. They are offered on an as-is basis. In --
+-- particular, achieving the same results as the tests here is not --
+-- a guarantee that an implementation complies with any Standard --
+-- or specification. The tests are not exhaustive. --
+-- --
+-- Please send comments, suggestions, and corrections to the author: --
+-- Mike Cowlishaw, IBM Fellow --
+-- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK --
+-- mfc@uk.ibm.com --
+------------------------------------------------------------------------
+version: 2.56
+
+extended: 1
+clamp: 1
+precision: 34
+maxExponent: 6144
+minExponent: -6143
+rounding: half_even
+
+-- Sanity check (truth table)
+dqinv001 invert 0 -> 1111111111111111111111111111111111
+dqinv002 invert 1 -> 1111111111111111111111111111111110
+dqinv003 invert 10 -> 1111111111111111111111111111111101
+dqinv004 invert 111111111 -> 1111111111111111111111111000000000
+dqinv005 invert 000000000 -> 1111111111111111111111111111111111
+-- and at msd and msd-1
+dqinv007 invert 0000000000000000000000000000000000 -> 1111111111111111111111111111111111
+dqinv008 invert 1000000000000000000000000000000000 -> 111111111111111111111111111111111
+dqinv009 invert 0000000000000000000000000000000000 -> 1111111111111111111111111111111111
+dqinv010 invert 0100000000000000000000000000000000 -> 1011111111111111111111111111111111
+dqinv011 invert 0111111111111111111111111111111111 -> 1000000000000000000000000000000000
+dqinv012 invert 1111111111111111111111111111111111 -> 0
+dqinv013 invert 0011111111111111111111111111111111 -> 1100000000000000000000000000000000
+dqinv014 invert 0111111111111111111111111111111111 -> 1000000000000000000000000000000000
+
+-- Various lengths
+dqinv600 invert 0111111111111111111011111111111111 -> 1000000000000000000100000000000000
+dqinv601 invert 0011111111111111110101111111111111 -> 1100000000000000001010000000000000
+dqinv602 invert 0101111111111111101110111111111111 -> 1010000000000000010001000000000000
+dqinv603 invert 0110111111111111011111011111111111 -> 1001000000000000100000100000000000
+dqinv604 invert 0111011111111110111111101111111111 -> 1000100000000001000000010000000000
+dqinv605 invert 0111101111111101111111110111111111 -> 1000010000000010000000001000000000
+dqinv606 invert 0111110111111011111111111011111111 -> 1000001000000100000000000100000000
+dqinv607 invert 0111111011110111111111111101111111 -> 1000000100001000000000000010000000
+dqinv608 invert 0111111101101111111111111110111111 -> 1000000010010000000000000001000000
+dqinv609 invert 0111111110011111111111111111011111 -> 1000000001100000000000000000100000
+dqinv610 invert 0111111110011111111111111111101111 -> 1000000001100000000000000000010000
+dqinv611 invert 0111111101101111111111111111110111 -> 1000000010010000000000000000001000
+dqinv612 invert 0111111011110111111111111111111011 -> 1000000100001000000000000000000100
+dqinv613 invert 0111110111111011111111111111111101 -> 1000001000000100000000000000000010
+dqinv614 invert 0111101111111101111111111111111110 -> 1000010000000010000000000000000001
+dqinv615 invert 0111011111111110111111111111111111 -> 1000100000000001000000000000000000
+dqinv616 invert 0110111111111111011111111111111110 -> 1001000000000000100000000000000001
+dqinv617 invert 0101111111111111101111111111111101 -> 1010000000000000010000000000000010
+dqinv618 invert 0011111111111111110111111111111011 -> 1100000000000000001000000000000100
+dqinv619 invert 0101111111111111111011111111110111 -> 1010000000000000000100000000001000
+dqinv620 invert 0110111111111111111101111111101111 -> 1001000000000000000010000000010000
+dqinv621 invert 0111011111111111111110111111011111 -> 1000100000000000000001000000100000
+dqinv622 invert 0111101111111111111111011110111111 -> 1000010000000000000000100001000000
+dqinv623 invert 0111110111111111111111101101111111 -> 1000001000000000000000010010000000
+dqinv624 invert 0111111011111111111111110011111111 -> 1000000100000000000000001100000000
+dqinv625 invert 0111111101111111111111110011111111 -> 1000000010000000000000001100000000
+dqinv626 invert 0111111110111111111111101101111111 -> 1000000001000000000000010010000000
+dqinv627 invert 0111111111011111111111011110111111 -> 1000000000100000000000100001000000
+dqinv628 invert 0111111111101111111110111111011111 -> 1000000000010000000001000000100000
+dqinv629 invert 0111111111110111111101111111101111 -> 1000000000001000000010000000010000
+dqinv630 invert 0111111111111011111011111111110111 -> 1000000000000100000100000000001000
+dqinv631 invert 0111111111111101110111111111111011 -> 1000000000000010001000000000000100
+dqinv632 invert 0111111111111110101111111111111101 -> 1000000000000001010000000000000010
+dqinv633 invert 0111111111111111011111111111111110 -> 1000000000000000100000000000000001
+
+dqinv021 invert 111111111 -> 1111111111111111111111111000000000
+dqinv022 invert 111111111111 -> 1111111111111111111111000000000000
+dqinv023 invert 11111111 -> 1111111111111111111111111100000000
+dqinv025 invert 1111111 -> 1111111111111111111111111110000000
+dqinv026 invert 111111 -> 1111111111111111111111111111000000
+dqinv027 invert 11111 -> 1111111111111111111111111111100000
+dqinv028 invert 1111 -> 1111111111111111111111111111110000
+dqinv029 invert 111 -> 1111111111111111111111111111111000
+dqinv031 invert 11 -> 1111111111111111111111111111111100
+dqinv032 invert 1 -> 1111111111111111111111111111111110
+dqinv033 invert 111111111111 -> 1111111111111111111111000000000000
+dqinv034 invert 11111111111 -> 1111111111111111111111100000000000
+dqinv035 invert 1111111111 -> 1111111111111111111111110000000000
+dqinv036 invert 111111111 -> 1111111111111111111111111000000000
+
+dqinv040 invert 011111111 -> 1111111111111111111111111100000000
+dqinv041 invert 101111111 -> 1111111111111111111111111010000000
+dqinv042 invert 110111111 -> 1111111111111111111111111001000000
+dqinv043 invert 111011111 -> 1111111111111111111111111000100000
+dqinv044 invert 111101111 -> 1111111111111111111111111000010000
+dqinv045 invert 111110111 -> 1111111111111111111111111000001000
+dqinv046 invert 111111011 -> 1111111111111111111111111000000100
+dqinv047 invert 111111101 -> 1111111111111111111111111000000010
+dqinv048 invert 111111110 -> 1111111111111111111111111000000001
+dqinv049 invert 011111011 -> 1111111111111111111111111100000100
+dqinv050 invert 101111101 -> 1111111111111111111111111010000010
+dqinv051 invert 110111110 -> 1111111111111111111111111001000001
+dqinv052 invert 111011101 -> 1111111111111111111111111000100010
+dqinv053 invert 111101011 -> 1111111111111111111111111000010100
+dqinv054 invert 111110111 -> 1111111111111111111111111000001000
+dqinv055 invert 111101011 -> 1111111111111111111111111000010100
+dqinv056 invert 111011101 -> 1111111111111111111111111000100010
+dqinv057 invert 110111110 -> 1111111111111111111111111001000001
+dqinv058 invert 101111101 -> 1111111111111111111111111010000010
+dqinv059 invert 011111011 -> 1111111111111111111111111100000100
+
+dqinv080 invert 1000000011111111 -> 1111111111111111110111111100000000
+dqinv081 invert 0100000101111111 -> 1111111111111111111011111010000000
+dqinv082 invert 0010000110111111 -> 1111111111111111111101111001000000
+dqinv083 invert 0001000111011111 -> 1111111111111111111110111000100000
+dqinv084 invert 0000100111101111 -> 1111111111111111111111011000010000
+dqinv085 invert 0000010111110111 -> 1111111111111111111111101000001000
+dqinv086 invert 0000001111111011 -> 1111111111111111111111110000000100
+dqinv087 invert 0000010111111101 -> 1111111111111111111111101000000010
+dqinv088 invert 0000100111111110 -> 1111111111111111111111011000000001
+dqinv089 invert 0001000011111011 -> 1111111111111111111110111100000100
+dqinv090 invert 0010000101111101 -> 1111111111111111111101111010000010
+dqinv091 invert 0100000110111110 -> 1111111111111111111011111001000001
+dqinv092 invert 1000000111011101 -> 1111111111111111110111111000100010
+dqinv093 invert 0100000111101011 -> 1111111111111111111011111000010100
+dqinv094 invert 0010000111110111 -> 1111111111111111111101111000001000
+dqinv095 invert 0001000111101011 -> 1111111111111111111110111000010100
+dqinv096 invert 0000100111011101 -> 1111111111111111111111011000100010
+dqinv097 invert 0000010110111110 -> 1111111111111111111111101001000001
+dqinv098 invert 0000001101111101 -> 1111111111111111111111110010000010
+dqinv099 invert 0000010011111011 -> 1111111111111111111111101100000100
+
+-- and more thorough MSD/LSD tests [8 and 9 mght be encoded differently...]
+dqinv151 invert 1111111111111111111111111111111110 -> 1
+dqinv152 invert 1111111111111111110000000000000000 -> 1111111111111111
+dqinv153 invert 1000000000000000001111111111111111 -> 111111111111111110000000000000000
+dqinv154 invert 1111111111111111111000000000000000 -> 111111111111111
+dqinv155 invert 0100000000000000000111111111111111 -> 1011111111111111111000000000000000
+dqinv156 invert 1011111111111111110100000000000000 -> 100000000000000001011111111111111
+dqinv157 invert 1101111111111111110111111111111111 -> 10000000000000001000000000000000
+dqinv158 invert 1110111111111111110011111111111111 -> 1000000000000001100000000000000
+
+-- non-0/1 should not be accepted, nor should signs
+dqinv220 invert 111111112 -> NaN Invalid_operation
+dqinv221 invert 333333333 -> NaN Invalid_operation
+dqinv222 invert 555555555 -> NaN Invalid_operation
+dqinv223 invert 777777777 -> NaN Invalid_operation
+dqinv224 invert 999999999 -> NaN Invalid_operation
+dqinv225 invert 222222222 -> NaN Invalid_operation
+dqinv226 invert 444444444 -> NaN Invalid_operation
+dqinv227 invert 666666666 -> NaN Invalid_operation
+dqinv228 invert 888888888 -> NaN Invalid_operation
+dqinv229 invert 999999999 -> NaN Invalid_operation
+dqinv230 invert 999999999 -> NaN Invalid_operation
+dqinv231 invert 999999999 -> NaN Invalid_operation
+dqinv232 invert 999999999 -> NaN Invalid_operation
+-- a few randoms
+dqinv240 invert 567468689 -> NaN Invalid_operation
+dqinv241 invert 567367689 -> NaN Invalid_operation
+dqinv242 invert -631917772 -> NaN Invalid_operation
+dqinv243 invert -756253257 -> NaN Invalid_operation
+dqinv244 invert 835590149 -> NaN Invalid_operation
+-- test MSD
+dqinv250 invert 2000000111000111000111000000000000 -> NaN Invalid_operation
+dqinv251 invert 3000000111000111000111000000000000 -> NaN Invalid_operation
+dqinv252 invert 4000000111000111000111000000000000 -> NaN Invalid_operation
+dqinv253 invert 5000000111000111000111000000000000 -> NaN Invalid_operation
+dqinv254 invert 6000000111000111000111000000000000 -> NaN Invalid_operation
+dqinv255 invert 7000000111000111000111000000000000 -> NaN Invalid_operation
+dqinv256 invert 8000000111000111000111000000000000 -> NaN Invalid_operation
+dqinv257 invert 9000000111000111000111000000000000 -> NaN Invalid_operation
+-- test MSD-1
+dqinv270 invert 0200000111000111000111001000000000 -> NaN Invalid_operation
+dqinv271 invert 0300000111000111000111000100000000 -> NaN Invalid_operation
+dqinv272 invert 0400000111000111000111000010000000 -> NaN Invalid_operation
+dqinv273 invert 0500000111000111000111000001000000 -> NaN Invalid_operation
+dqinv274 invert 1600000111000111000111000000100000 -> NaN Invalid_operation
+dqinv275 invert 1700000111000111000111000000010000 -> NaN Invalid_operation
+dqinv276 invert 1800000111000111000111000000001000 -> NaN Invalid_operation
+dqinv277 invert 1900000111000111000111000000000100 -> NaN Invalid_operation
+-- test LSD
+dqinv280 invert 0010000111000111000111000000000002 -> NaN Invalid_operation
+dqinv281 invert 0001000111000111000111000000000003 -> NaN Invalid_operation
+dqinv282 invert 0000000111000111000111100000000004 -> NaN Invalid_operation
+dqinv283 invert 0000000111000111000111010000000005 -> NaN Invalid_operation
+dqinv284 invert 1000000111000111000111001000000006 -> NaN Invalid_operation
+dqinv285 invert 1000000111000111000111000100000007 -> NaN Invalid_operation
+dqinv286 invert 1000000111000111000111000010000008 -> NaN Invalid_operation
+dqinv287 invert 1000000111000111000111000001000009 -> NaN Invalid_operation
+-- test Middie
+dqinv288 invert 0010000111000111000111000020000000 -> NaN Invalid_operation
+dqinv289 invert 0001000111000111000111000030000001 -> NaN Invalid_operation
+dqinv290 invert 0000000111000111000111100040000010 -> NaN Invalid_operation
+dqinv291 invert 0000000111000111000111010050000100 -> NaN Invalid_operation
+dqinv292 invert 1000000111000111000111001060001000 -> NaN Invalid_operation
+dqinv293 invert 1000000111000111000111000170010000 -> NaN Invalid_operation
+dqinv294 invert 1000000111000111000111000080100000 -> NaN Invalid_operation
+dqinv295 invert 1000000111000111000111000091000000 -> NaN Invalid_operation
+-- signs
+dqinv296 invert -1000000111000111000111000001000000 -> NaN Invalid_operation
+dqinv299 invert 1000000111000111000111000001000000 -> 111111000111000111000111110111111
+
+-- Nmax, Nmin, Ntiny-like
+dqinv341 invert 9.99999999E+2998 -> NaN Invalid_operation
+dqinv342 invert 1E-2998 -> NaN Invalid_operation
+dqinv343 invert 1.00000000E-2998 -> NaN Invalid_operation
+dqinv344 invert 1E-2078 -> NaN Invalid_operation
+dqinv345 invert -1E-2078 -> NaN Invalid_operation
+dqinv346 invert -1.00000000E-2998 -> NaN Invalid_operation
+dqinv347 invert -1E-2998 -> NaN Invalid_operation
+dqinv348 invert -9.99999999E+2998 -> NaN Invalid_operation
+
+-- A few other non-integers
+dqinv361 invert 1.0 -> NaN Invalid_operation
+dqinv362 invert 1E+1 -> NaN Invalid_operation
+dqinv363 invert 0.0 -> NaN Invalid_operation
+dqinv364 invert 0E+1 -> NaN Invalid_operation
+dqinv365 invert 9.9 -> NaN Invalid_operation
+dqinv366 invert 9E+1 -> NaN Invalid_operation
+
+-- All Specials are in error
+dqinv788 invert -Inf -> NaN Invalid_operation
+dqinv794 invert Inf -> NaN Invalid_operation
+dqinv821 invert NaN -> NaN Invalid_operation
+dqinv841 invert sNaN -> NaN Invalid_operation
+-- propagating NaNs
+dqinv861 invert NaN1 -> NaN Invalid_operation
+dqinv862 invert +NaN2 -> NaN Invalid_operation
+dqinv863 invert NaN3 -> NaN Invalid_operation
+dqinv864 invert NaN4 -> NaN Invalid_operation
+dqinv865 invert NaN5 -> NaN Invalid_operation
+dqinv871 invert sNaN11 -> NaN Invalid_operation
+dqinv872 invert sNaN12 -> NaN Invalid_operation
+dqinv873 invert sNaN13 -> NaN Invalid_operation
+dqinv874 invert sNaN14 -> NaN Invalid_operation
+dqinv875 invert sNaN15 -> NaN Invalid_operation
+dqinv876 invert NaN16 -> NaN Invalid_operation
+dqinv881 invert +NaN25 -> NaN Invalid_operation
+dqinv882 invert -NaN26 -> NaN Invalid_operation
+dqinv883 invert -sNaN27 -> NaN Invalid_operation
diff --git a/Lib/test/decimaltestdata/dqLogB.decTest b/Lib/test/decimaltestdata/dqLogB.decTest
new file mode 100644
index 0000000..baa6d1e
--- /dev/null
+++ b/Lib/test/decimaltestdata/dqLogB.decTest
@@ -0,0 +1,160 @@
+------------------------------------------------------------------------
+-- dqLogB.decTest -- integral 754r adjusted exponent, for decQuads --
+-- Copyright (c) IBM Corporation, 2005, 2007. All rights reserved. --
+------------------------------------------------------------------------
+-- Please see the document "General Decimal Arithmetic Testcases" --
+-- at http://www2.hursley.ibm.com/decimal for the description of --
+-- these testcases. --
+-- --
+-- These testcases are experimental ('beta' versions), and they --
+-- may contain errors. They are offered on an as-is basis. In --
+-- particular, achieving the same results as the tests here is not --
+-- a guarantee that an implementation complies with any Standard --
+-- or specification. The tests are not exhaustive. --
+-- --
+-- Please send comments, suggestions, and corrections to the author: --
+-- Mike Cowlishaw, IBM Fellow --
+-- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK --
+-- mfc@uk.ibm.com --
+------------------------------------------------------------------------
+version: 2.56
+
+extended: 1
+clamp: 1
+precision: 34
+maxExponent: 6144
+minExponent: -6143
+rounding: half_even
+
+-- basics
+dqlogb000 logb 0 -> -Infinity Division_by_zero
+dqlogb001 logb 1E-6176 -> -6176
+dqlogb002 logb 1E-6143 -> -6143
+dqlogb003 logb 0.001 -> -3
+dqlogb004 logb 0.03 -> -2
+dqlogb005 logb 1 -> 0
+dqlogb006 logb 2 -> 0
+dqlogb007 logb 2.5 -> 0
+dqlogb008 logb 2.50 -> 0
+dqlogb009 logb 2.500 -> 0
+dqlogb010 logb 10 -> 1
+dqlogb011 logb 70 -> 1
+dqlogb012 logb 100 -> 2
+dqlogb013 logb 250 -> 2
+dqlogb014 logb 9E+6144 -> 6144
+dqlogb015 logb +Infinity -> Infinity
+
+-- negatives appear to be treated as positives
+dqlogb021 logb -0 -> -Infinity Division_by_zero
+dqlogb022 logb -1E-6176 -> -6176
+dqlogb023 logb -9E-6143 -> -6143
+dqlogb024 logb -0.001 -> -3
+dqlogb025 logb -1 -> 0
+dqlogb026 logb -2 -> 0
+dqlogb027 logb -10 -> 1
+dqlogb028 logb -70 -> 1
+dqlogb029 logb -100 -> 2
+dqlogb030 logb -9E+6144 -> 6144
+dqlogb031 logb -Infinity -> Infinity
+
+-- zeros
+dqlogb111 logb 0 -> -Infinity Division_by_zero
+dqlogb112 logb -0 -> -Infinity Division_by_zero
+dqlogb113 logb 0E+4 -> -Infinity Division_by_zero
+dqlogb114 logb -0E+4 -> -Infinity Division_by_zero
+dqlogb115 logb 0.0000 -> -Infinity Division_by_zero
+dqlogb116 logb -0.0000 -> -Infinity Division_by_zero
+dqlogb117 logb 0E-141 -> -Infinity Division_by_zero
+dqlogb118 logb -0E-141 -> -Infinity Division_by_zero
+
+-- full coefficients, alternating bits
+dqlogb121 logb 268268268 -> 8
+dqlogb122 logb -268268268 -> 8
+dqlogb123 logb 134134134 -> 8
+dqlogb124 logb -134134134 -> 8
+
+-- Nmax, Nmin, Ntiny
+dqlogb131 logb 9.999999999999999999999999999999999E+6144 -> 6144
+dqlogb132 logb 1E-6143 -> -6143
+dqlogb133 logb 1.000000000000000000000000000000000E-6143 -> -6143
+dqlogb134 logb 1E-6176 -> -6176
+
+dqlogb135 logb -1E-6176 -> -6176
+dqlogb136 logb -1.000000000000000000000000000000000E-6143 -> -6143
+dqlogb137 logb -1E-6143 -> -6143
+dqlogb1614 logb -9.999999999999999999999999999999999E+6144 -> 6144
+
+-- ones
+dqlogb0061 logb 1 -> 0
+dqlogb0062 logb 1.0 -> 0
+dqlogb0063 logb 1.000000000000000 -> 0
+
+-- notable cases -- exact powers of 10
+dqlogb1100 logb 1 -> 0
+dqlogb1101 logb 10 -> 1
+dqlogb1102 logb 100 -> 2
+dqlogb1103 logb 1000 -> 3
+dqlogb1104 logb 10000 -> 4
+dqlogb1105 logb 100000 -> 5
+dqlogb1106 logb 1000000 -> 6
+dqlogb1107 logb 10000000 -> 7
+dqlogb1108 logb 100000000 -> 8
+dqlogb1109 logb 1000000000 -> 9
+dqlogb1110 logb 10000000000 -> 10
+dqlogb1111 logb 100000000000 -> 11
+dqlogb1112 logb 1000000000000 -> 12
+dqlogb1113 logb 0.00000000001 -> -11
+dqlogb1114 logb 0.0000000001 -> -10
+dqlogb1115 logb 0.000000001 -> -9
+dqlogb1116 logb 0.00000001 -> -8
+dqlogb1117 logb 0.0000001 -> -7
+dqlogb1118 logb 0.000001 -> -6
+dqlogb1119 logb 0.00001 -> -5
+dqlogb1120 logb 0.0001 -> -4
+dqlogb1121 logb 0.001 -> -3
+dqlogb1122 logb 0.01 -> -2
+dqlogb1123 logb 0.1 -> -1
+dqlogb1124 logb 1E-99 -> -99
+dqlogb1125 logb 1E-100 -> -100
+dqlogb1127 logb 1E-299 -> -299
+dqlogb1126 logb 1E-6143 -> -6143
+
+-- suggestions from Ilan Nehama
+dqlogb1400 logb 10E-3 -> -2
+dqlogb1401 logb 10E-2 -> -1
+dqlogb1402 logb 100E-2 -> 0
+dqlogb1403 logb 1000E-2 -> 1
+dqlogb1404 logb 10000E-2 -> 2
+dqlogb1405 logb 10E-1 -> 0
+dqlogb1406 logb 100E-1 -> 1
+dqlogb1407 logb 1000E-1 -> 2
+dqlogb1408 logb 10000E-1 -> 3
+dqlogb1409 logb 10E0 -> 1
+dqlogb1410 logb 100E0 -> 2
+dqlogb1411 logb 1000E0 -> 3
+dqlogb1412 logb 10000E0 -> 4
+dqlogb1413 logb 10E1 -> 2
+dqlogb1414 logb 100E1 -> 3
+dqlogb1415 logb 1000E1 -> 4
+dqlogb1416 logb 10000E1 -> 5
+dqlogb1417 logb 10E2 -> 3
+dqlogb1418 logb 100E2 -> 4
+dqlogb1419 logb 1000E2 -> 5
+dqlogb1420 logb 10000E2 -> 6
+
+-- special values
+dqlogb820 logb Infinity -> Infinity
+dqlogb821 logb 0 -> -Infinity Division_by_zero
+dqlogb822 logb NaN -> NaN
+dqlogb823 logb sNaN -> NaN Invalid_operation
+-- propagating NaNs
+dqlogb824 logb sNaN123 -> NaN123 Invalid_operation
+dqlogb825 logb -sNaN321 -> -NaN321 Invalid_operation
+dqlogb826 logb NaN456 -> NaN456
+dqlogb827 logb -NaN654 -> -NaN654
+dqlogb828 logb NaN1 -> NaN1
+
+-- Null test
+dqlogb900 logb # -> NaN Invalid_operation
+
+
diff --git a/Lib/test/decimaltestdata/dqMax.decTest b/Lib/test/decimaltestdata/dqMax.decTest
new file mode 100644
index 0000000..a00ec1c
--- /dev/null
+++ b/Lib/test/decimaltestdata/dqMax.decTest
@@ -0,0 +1,322 @@
+------------------------------------------------------------------------
+-- dqMax.decTest -- decQuad maxnum --
+-- Copyright (c) IBM Corporation, 1981, 2007. All rights reserved. --
+------------------------------------------------------------------------
+-- Please see the document "General Decimal Arithmetic Testcases" --
+-- at http://www2.hursley.ibm.com/decimal for the description of --
+-- these testcases. --
+-- --
+-- These testcases are experimental ('beta' versions), and they --
+-- may contain errors. They are offered on an as-is basis. In --
+-- particular, achieving the same results as the tests here is not --
+-- a guarantee that an implementation complies with any Standard --
+-- or specification. The tests are not exhaustive. --
+-- --
+-- Please send comments, suggestions, and corrections to the author: --
+-- Mike Cowlishaw, IBM Fellow --
+-- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK --
+-- mfc@uk.ibm.com --
+------------------------------------------------------------------------
+version: 2.56
+
+-- we assume that base comparison is tested in compare.decTest, so
+-- these mainly cover special cases and rounding
+extended: 1
+clamp: 1
+precision: 34
+maxExponent: 6144
+minExponent: -6143
+rounding: half_even
+
+-- sanity checks
+dqmax001 max -2 -2 -> -2
+dqmax002 max -2 -1 -> -1
+dqmax003 max -2 0 -> 0
+dqmax004 max -2 1 -> 1
+dqmax005 max -2 2 -> 2
+dqmax006 max -1 -2 -> -1
+dqmax007 max -1 -1 -> -1
+dqmax008 max -1 0 -> 0
+dqmax009 max -1 1 -> 1
+dqmax010 max -1 2 -> 2
+dqmax011 max 0 -2 -> 0
+dqmax012 max 0 -1 -> 0
+dqmax013 max 0 0 -> 0
+dqmax014 max 0 1 -> 1
+dqmax015 max 0 2 -> 2
+dqmax016 max 1 -2 -> 1
+dqmax017 max 1 -1 -> 1
+dqmax018 max 1 0 -> 1
+dqmax019 max 1 1 -> 1
+dqmax020 max 1 2 -> 2
+dqmax021 max 2 -2 -> 2
+dqmax022 max 2 -1 -> 2
+dqmax023 max 2 0 -> 2
+dqmax025 max 2 1 -> 2
+dqmax026 max 2 2 -> 2
+
+-- extended zeros
+dqmax030 max 0 0 -> 0
+dqmax031 max 0 -0 -> 0
+dqmax032 max 0 -0.0 -> 0
+dqmax033 max 0 0.0 -> 0
+dqmax034 max -0 0 -> 0 -- note: -0 = 0, but 0 chosen
+dqmax035 max -0 -0 -> -0
+dqmax036 max -0 -0.0 -> -0.0
+dqmax037 max -0 0.0 -> 0.0
+dqmax038 max 0.0 0 -> 0
+dqmax039 max 0.0 -0 -> 0.0
+dqmax040 max 0.0 -0.0 -> 0.0
+dqmax041 max 0.0 0.0 -> 0.0
+dqmax042 max -0.0 0 -> 0
+dqmax043 max -0.0 -0 -> -0.0
+dqmax044 max -0.0 -0.0 -> -0.0
+dqmax045 max -0.0 0.0 -> 0.0
+
+dqmax050 max -0E1 0E1 -> 0E+1
+dqmax051 max -0E2 0E2 -> 0E+2
+dqmax052 max -0E2 0E1 -> 0E+1
+dqmax053 max -0E1 0E2 -> 0E+2
+dqmax054 max 0E1 -0E1 -> 0E+1
+dqmax055 max 0E2 -0E2 -> 0E+2
+dqmax056 max 0E2 -0E1 -> 0E+2
+dqmax057 max 0E1 -0E2 -> 0E+1
+
+dqmax058 max 0E1 0E1 -> 0E+1
+dqmax059 max 0E2 0E2 -> 0E+2
+dqmax060 max 0E2 0E1 -> 0E+2
+dqmax061 max 0E1 0E2 -> 0E+2
+dqmax062 max -0E1 -0E1 -> -0E+1
+dqmax063 max -0E2 -0E2 -> -0E+2
+dqmax064 max -0E2 -0E1 -> -0E+1
+dqmax065 max -0E1 -0E2 -> -0E+1
+
+-- Specials
+dqmax090 max Inf -Inf -> Infinity
+dqmax091 max Inf -1000 -> Infinity
+dqmax092 max Inf -1 -> Infinity
+dqmax093 max Inf -0 -> Infinity
+dqmax094 max Inf 0 -> Infinity
+dqmax095 max Inf 1 -> Infinity
+dqmax096 max Inf 1000 -> Infinity
+dqmax097 max Inf Inf -> Infinity
+dqmax098 max -1000 Inf -> Infinity
+dqmax099 max -Inf Inf -> Infinity
+dqmax100 max -1 Inf -> Infinity
+dqmax101 max -0 Inf -> Infinity
+dqmax102 max 0 Inf -> Infinity
+dqmax103 max 1 Inf -> Infinity
+dqmax104 max 1000 Inf -> Infinity
+dqmax105 max Inf Inf -> Infinity
+
+dqmax120 max -Inf -Inf -> -Infinity
+dqmax121 max -Inf -1000 -> -1000
+dqmax122 max -Inf -1 -> -1
+dqmax123 max -Inf -0 -> -0
+dqmax124 max -Inf 0 -> 0
+dqmax125 max -Inf 1 -> 1
+dqmax126 max -Inf 1000 -> 1000
+dqmax127 max -Inf Inf -> Infinity
+dqmax128 max -Inf -Inf -> -Infinity
+dqmax129 max -1000 -Inf -> -1000
+dqmax130 max -1 -Inf -> -1
+dqmax131 max -0 -Inf -> -0
+dqmax132 max 0 -Inf -> 0
+dqmax133 max 1 -Inf -> 1
+dqmax134 max 1000 -Inf -> 1000
+dqmax135 max Inf -Inf -> Infinity
+
+-- 2004.08.02 754r chooses number over NaN in mixed cases
+dqmax141 max NaN -Inf -> -Infinity
+dqmax142 max NaN -1000 -> -1000
+dqmax143 max NaN -1 -> -1
+dqmax144 max NaN -0 -> -0
+dqmax145 max NaN 0 -> 0
+dqmax146 max NaN 1 -> 1
+dqmax147 max NaN 1000 -> 1000
+dqmax148 max NaN Inf -> Infinity
+dqmax149 max NaN NaN -> NaN
+dqmax150 max -Inf NaN -> -Infinity
+dqmax151 max -1000 NaN -> -1000
+dqmax152 max -1 NaN -> -1
+dqmax153 max -0 NaN -> -0
+dqmax154 max 0 NaN -> 0
+dqmax155 max 1 NaN -> 1
+dqmax156 max 1000 NaN -> 1000
+dqmax157 max Inf NaN -> Infinity
+
+dqmax161 max sNaN -Inf -> NaN Invalid_operation
+dqmax162 max sNaN -1000 -> NaN Invalid_operation
+dqmax163 max sNaN -1 -> NaN Invalid_operation
+dqmax164 max sNaN -0 -> NaN Invalid_operation
+dqmax165 max sNaN 0 -> NaN Invalid_operation
+dqmax166 max sNaN 1 -> NaN Invalid_operation
+dqmax167 max sNaN 1000 -> NaN Invalid_operation
+dqmax168 max sNaN NaN -> NaN Invalid_operation
+dqmax169 max sNaN sNaN -> NaN Invalid_operation
+dqmax170 max NaN sNaN -> NaN Invalid_operation
+dqmax171 max -Inf sNaN -> NaN Invalid_operation
+dqmax172 max -1000 sNaN -> NaN Invalid_operation
+dqmax173 max -1 sNaN -> NaN Invalid_operation
+dqmax174 max -0 sNaN -> NaN Invalid_operation
+dqmax175 max 0 sNaN -> NaN Invalid_operation
+dqmax176 max 1 sNaN -> NaN Invalid_operation
+dqmax177 max 1000 sNaN -> NaN Invalid_operation
+dqmax178 max Inf sNaN -> NaN Invalid_operation
+dqmax179 max NaN sNaN -> NaN Invalid_operation
+
+-- propagating NaNs
+dqmax181 max NaN9 -Inf -> -Infinity
+dqmax182 max NaN8 9 -> 9
+dqmax183 max -NaN7 Inf -> Infinity
+
+dqmax184 max -NaN1 NaN11 -> -NaN1
+dqmax185 max NaN2 NaN12 -> NaN2
+dqmax186 max -NaN13 -NaN7 -> -NaN13
+dqmax187 max NaN14 -NaN5 -> NaN14
+
+dqmax188 max -Inf NaN4 -> -Infinity
+dqmax189 max -9 -NaN3 -> -9
+dqmax190 max Inf NaN2 -> Infinity
+
+dqmax191 max sNaN99 -Inf -> NaN99 Invalid_operation
+dqmax192 max sNaN98 -1 -> NaN98 Invalid_operation
+dqmax193 max -sNaN97 NaN -> -NaN97 Invalid_operation
+dqmax194 max sNaN96 sNaN94 -> NaN96 Invalid_operation
+dqmax195 max NaN95 sNaN93 -> NaN93 Invalid_operation
+dqmax196 max -Inf sNaN92 -> NaN92 Invalid_operation
+dqmax197 max 0 sNaN91 -> NaN91 Invalid_operation
+dqmax198 max Inf -sNaN90 -> -NaN90 Invalid_operation
+dqmax199 max NaN sNaN89 -> NaN89 Invalid_operation
+
+-- old rounding checks
+dqmax221 max 12345678000 1 -> 12345678000
+dqmax222 max 1 12345678000 -> 12345678000
+dqmax223 max 1234567800 1 -> 1234567800
+dqmax224 max 1 1234567800 -> 1234567800
+dqmax225 max 1234567890 1 -> 1234567890
+dqmax226 max 1 1234567890 -> 1234567890
+dqmax227 max 1234567891 1 -> 1234567891
+dqmax228 max 1 1234567891 -> 1234567891
+dqmax229 max 12345678901 1 -> 12345678901
+dqmax230 max 1 12345678901 -> 12345678901
+dqmax231 max 1234567896 1 -> 1234567896
+dqmax232 max 1 1234567896 -> 1234567896
+dqmax233 max -1234567891 1 -> 1
+dqmax234 max 1 -1234567891 -> 1
+dqmax235 max -12345678901 1 -> 1
+dqmax236 max 1 -12345678901 -> 1
+dqmax237 max -1234567896 1 -> 1
+dqmax238 max 1 -1234567896 -> 1
+
+-- from examples
+dqmax280 max '3' '2' -> '3'
+dqmax281 max '-10' '3' -> '3'
+dqmax282 max '1.0' '1' -> '1'
+dqmax283 max '1' '1.0' -> '1'
+dqmax284 max '7' 'NaN' -> '7'
+
+-- expanded list from min/max 754r purple prose
+-- [explicit tests for exponent ordering]
+dqmax401 max Inf 1.1 -> Infinity
+dqmax402 max 1.1 1 -> 1.1
+dqmax403 max 1 1.0 -> 1
+dqmax404 max 1.0 0.1 -> 1.0
+dqmax405 max 0.1 0.10 -> 0.1
+dqmax406 max 0.10 0.100 -> 0.10
+dqmax407 max 0.10 0 -> 0.10
+dqmax408 max 0 0.0 -> 0
+dqmax409 max 0.0 -0 -> 0.0
+dqmax410 max 0.0 -0.0 -> 0.0
+dqmax411 max 0.00 -0.0 -> 0.00
+dqmax412 max 0.0 -0.00 -> 0.0
+dqmax413 max 0 -0.0 -> 0
+dqmax414 max 0 -0 -> 0
+dqmax415 max -0.0 -0 -> -0.0
+dqmax416 max -0 -0.100 -> -0
+dqmax417 max -0.100 -0.10 -> -0.100
+dqmax418 max -0.10 -0.1 -> -0.10
+dqmax419 max -0.1 -1.0 -> -0.1
+dqmax420 max -1.0 -1 -> -1.0
+dqmax421 max -1 -1.1 -> -1
+dqmax423 max -1.1 -Inf -> -1.1
+-- same with operands reversed
+dqmax431 max 1.1 Inf -> Infinity
+dqmax432 max 1 1.1 -> 1.1
+dqmax433 max 1.0 1 -> 1
+dqmax434 max 0.1 1.0 -> 1.0
+dqmax435 max 0.10 0.1 -> 0.1
+dqmax436 max 0.100 0.10 -> 0.10
+dqmax437 max 0 0.10 -> 0.10
+dqmax438 max 0.0 0 -> 0
+dqmax439 max -0 0.0 -> 0.0
+dqmax440 max -0.0 0.0 -> 0.0
+dqmax441 max -0.0 0.00 -> 0.00
+dqmax442 max -0.00 0.0 -> 0.0
+dqmax443 max -0.0 0 -> 0
+dqmax444 max -0 0 -> 0
+dqmax445 max -0 -0.0 -> -0.0
+dqmax446 max -0.100 -0 -> -0
+dqmax447 max -0.10 -0.100 -> -0.100
+dqmax448 max -0.1 -0.10 -> -0.10
+dqmax449 max -1.0 -0.1 -> -0.1
+dqmax450 max -1 -1.0 -> -1.0
+dqmax451 max -1.1 -1 -> -1
+dqmax453 max -Inf -1.1 -> -1.1
+-- largies
+dqmax460 max 1000 1E+3 -> 1E+3
+dqmax461 max 1E+3 1000 -> 1E+3
+dqmax462 max 1000 -1E+3 -> 1000
+dqmax463 max 1E+3 -1000 -> 1E+3
+dqmax464 max -1000 1E+3 -> 1E+3
+dqmax465 max -1E+3 1000 -> 1000
+dqmax466 max -1000 -1E+3 -> -1000
+dqmax467 max -1E+3 -1000 -> -1000
+
+-- misalignment traps for little-endian
+dqmax471 max 1.0 0.1 -> 1.0
+dqmax472 max 0.1 1.0 -> 1.0
+dqmax473 max 10.0 0.1 -> 10.0
+dqmax474 max 0.1 10.0 -> 10.0
+dqmax475 max 100 1.0 -> 100
+dqmax476 max 1.0 100 -> 100
+dqmax477 max 1000 10.0 -> 1000
+dqmax478 max 10.0 1000 -> 1000
+dqmax479 max 10000 100.0 -> 10000
+dqmax480 max 100.0 10000 -> 10000
+dqmax481 max 100000 1000.0 -> 100000
+dqmax482 max 1000.0 100000 -> 100000
+dqmax483 max 1000000 10000.0 -> 1000000
+dqmax484 max 10000.0 1000000 -> 1000000
+
+-- subnormals
+dqmax510 max 1.00E-6143 0 -> 1.00E-6143
+dqmax511 max 0.1E-6143 0 -> 1E-6144 Subnormal
+dqmax512 max 0.10E-6143 0 -> 1.0E-6144 Subnormal
+dqmax513 max 0.100E-6143 0 -> 1.00E-6144 Subnormal
+dqmax514 max 0.01E-6143 0 -> 1E-6145 Subnormal
+dqmax515 max 0.999E-6143 0 -> 9.99E-6144 Subnormal
+dqmax516 max 0.099E-6143 0 -> 9.9E-6145 Subnormal
+dqmax517 max 0.009E-6143 0 -> 9E-6146 Subnormal
+dqmax518 max 0.001E-6143 0 -> 1E-6146 Subnormal
+dqmax519 max 0.0009E-6143 0 -> 9E-6147 Subnormal
+dqmax520 max 0.0001E-6143 0 -> 1E-6147 Subnormal
+
+dqmax530 max -1.00E-6143 0 -> 0
+dqmax531 max -0.1E-6143 0 -> 0
+dqmax532 max -0.10E-6143 0 -> 0
+dqmax533 max -0.100E-6143 0 -> 0
+dqmax534 max -0.01E-6143 0 -> 0
+dqmax535 max -0.999E-6143 0 -> 0
+dqmax536 max -0.099E-6143 0 -> 0
+dqmax537 max -0.009E-6143 0 -> 0
+dqmax538 max -0.001E-6143 0 -> 0
+dqmax539 max -0.0009E-6143 0 -> 0
+dqmax540 max -0.0001E-6143 0 -> 0
+
+-- Null tests
+dqmax900 max 10 # -> NaN Invalid_operation
+dqmax901 max # 10 -> NaN Invalid_operation
+
+
+
diff --git a/Lib/test/decimaltestdata/dqMaxMag.decTest b/Lib/test/decimaltestdata/dqMaxMag.decTest
new file mode 100644
index 0000000..53eb82c
--- /dev/null
+++ b/Lib/test/decimaltestdata/dqMaxMag.decTest
@@ -0,0 +1,304 @@
+------------------------------------------------------------------------
+-- dqMaxMag.decTest -- decQuad maxnummag --
+-- Copyright (c) IBM Corporation, 1981, 2007. All rights reserved. --
+------------------------------------------------------------------------
+-- Please see the document "General Decimal Arithmetic Testcases" --
+-- at http://www2.hursley.ibm.com/decimal for the description of --
+-- these testcases. --
+-- --
+-- These testcases are experimental ('beta' versions), and they --
+-- may contain errors. They are offered on an as-is basis. In --
+-- particular, achieving the same results as the tests here is not --
+-- a guarantee that an implementation complies with any Standard --
+-- or specification. The tests are not exhaustive. --
+-- --
+-- Please send comments, suggestions, and corrections to the author: --
+-- Mike Cowlishaw, IBM Fellow --
+-- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK --
+-- mfc@uk.ibm.com --
+------------------------------------------------------------------------
+version: 2.56
+
+-- we assume that base comparison is tested in compare.decTest, so
+-- these mainly cover special cases and rounding
+extended: 1
+clamp: 1
+precision: 34
+maxExponent: 6144
+minExponent: -6143
+rounding: half_even
+
+-- sanity checks
+dqmxg001 maxmag -2 -2 -> -2
+dqmxg002 maxmag -2 -1 -> -2
+dqmxg003 maxmag -2 0 -> -2
+dqmxg004 maxmag -2 1 -> -2
+dqmxg005 maxmag -2 2 -> 2
+dqmxg006 maxmag -1 -2 -> -2
+dqmxg007 maxmag -1 -1 -> -1
+dqmxg008 maxmag -1 0 -> -1
+dqmxg009 maxmag -1 1 -> 1
+dqmxg010 maxmag -1 2 -> 2
+dqmxg011 maxmag 0 -2 -> -2
+dqmxg012 maxmag 0 -1 -> -1
+dqmxg013 maxmag 0 0 -> 0
+dqmxg014 maxmag 0 1 -> 1
+dqmxg015 maxmag 0 2 -> 2
+dqmxg016 maxmag 1 -2 -> -2
+dqmxg017 maxmag 1 -1 -> 1
+dqmxg018 maxmag 1 0 -> 1
+dqmxg019 maxmag 1 1 -> 1
+dqmxg020 maxmag 1 2 -> 2
+dqmxg021 maxmag 2 -2 -> 2
+dqmxg022 maxmag 2 -1 -> 2
+dqmxg023 maxmag 2 0 -> 2
+dqmxg025 maxmag 2 1 -> 2
+dqmxg026 maxmag 2 2 -> 2
+
+-- extended zeros
+dqmxg030 maxmag 0 0 -> 0
+dqmxg031 maxmag 0 -0 -> 0
+dqmxg032 maxmag 0 -0.0 -> 0
+dqmxg033 maxmag 0 0.0 -> 0
+dqmxg034 maxmag -0 0 -> 0 -- note: -0 = 0, but 0 chosen
+dqmxg035 maxmag -0 -0 -> -0
+dqmxg036 maxmag -0 -0.0 -> -0.0
+dqmxg037 maxmag -0 0.0 -> 0.0
+dqmxg038 maxmag 0.0 0 -> 0
+dqmxg039 maxmag 0.0 -0 -> 0.0
+dqmxg040 maxmag 0.0 -0.0 -> 0.0
+dqmxg041 maxmag 0.0 0.0 -> 0.0
+dqmxg042 maxmag -0.0 0 -> 0
+dqmxg043 maxmag -0.0 -0 -> -0.0
+dqmxg044 maxmag -0.0 -0.0 -> -0.0
+dqmxg045 maxmag -0.0 0.0 -> 0.0
+
+dqmxg050 maxmag -0E1 0E1 -> 0E+1
+dqmxg051 maxmag -0E2 0E2 -> 0E+2
+dqmxg052 maxmag -0E2 0E1 -> 0E+1
+dqmxg053 maxmag -0E1 0E2 -> 0E+2
+dqmxg054 maxmag 0E1 -0E1 -> 0E+1
+dqmxg055 maxmag 0E2 -0E2 -> 0E+2
+dqmxg056 maxmag 0E2 -0E1 -> 0E+2
+dqmxg057 maxmag 0E1 -0E2 -> 0E+1
+
+dqmxg058 maxmag 0E1 0E1 -> 0E+1
+dqmxg059 maxmag 0E2 0E2 -> 0E+2
+dqmxg060 maxmag 0E2 0E1 -> 0E+2
+dqmxg061 maxmag 0E1 0E2 -> 0E+2
+dqmxg062 maxmag -0E1 -0E1 -> -0E+1
+dqmxg063 maxmag -0E2 -0E2 -> -0E+2
+dqmxg064 maxmag -0E2 -0E1 -> -0E+1
+dqmxg065 maxmag -0E1 -0E2 -> -0E+1
+
+-- Specials
+dqmxg090 maxmag Inf -Inf -> Infinity
+dqmxg091 maxmag Inf -1000 -> Infinity
+dqmxg092 maxmag Inf -1 -> Infinity
+dqmxg093 maxmag Inf -0 -> Infinity
+dqmxg094 maxmag Inf 0 -> Infinity
+dqmxg095 maxmag Inf 1 -> Infinity
+dqmxg096 maxmag Inf 1000 -> Infinity
+dqmxg097 maxmag Inf Inf -> Infinity
+dqmxg098 maxmag -1000 Inf -> Infinity
+dqmxg099 maxmag -Inf Inf -> Infinity
+dqmxg100 maxmag -1 Inf -> Infinity
+dqmxg101 maxmag -0 Inf -> Infinity
+dqmxg102 maxmag 0 Inf -> Infinity
+dqmxg103 maxmag 1 Inf -> Infinity
+dqmxg104 maxmag 1000 Inf -> Infinity
+dqmxg105 maxmag Inf Inf -> Infinity
+
+dqmxg120 maxmag -Inf -Inf -> -Infinity
+dqmxg121 maxmag -Inf -1000 -> -Infinity
+dqmxg122 maxmag -Inf -1 -> -Infinity
+dqmxg123 maxmag -Inf -0 -> -Infinity
+dqmxg124 maxmag -Inf 0 -> -Infinity
+dqmxg125 maxmag -Inf 1 -> -Infinity
+dqmxg126 maxmag -Inf 1000 -> -Infinity
+dqmxg127 maxmag -Inf Inf -> Infinity
+dqmxg128 maxmag -Inf -Inf -> -Infinity
+dqmxg129 maxmag -1000 -Inf -> -Infinity
+dqmxg130 maxmag -1 -Inf -> -Infinity
+dqmxg131 maxmag -0 -Inf -> -Infinity
+dqmxg132 maxmag 0 -Inf -> -Infinity
+dqmxg133 maxmag 1 -Inf -> -Infinity
+dqmxg134 maxmag 1000 -Inf -> -Infinity
+dqmxg135 maxmag Inf -Inf -> Infinity
+
+-- 2004.08.02 754r chooses number over NaN in mixed cases
+dqmxg141 maxmag NaN -Inf -> -Infinity
+dqmxg142 maxmag NaN -1000 -> -1000
+dqmxg143 maxmag NaN -1 -> -1
+dqmxg144 maxmag NaN -0 -> -0
+dqmxg145 maxmag NaN 0 -> 0
+dqmxg146 maxmag NaN 1 -> 1
+dqmxg147 maxmag NaN 1000 -> 1000
+dqmxg148 maxmag NaN Inf -> Infinity
+dqmxg149 maxmag NaN NaN -> NaN
+dqmxg150 maxmag -Inf NaN -> -Infinity
+dqmxg151 maxmag -1000 NaN -> -1000
+dqmxg152 maxmag -1 NaN -> -1
+dqmxg153 maxmag -0 NaN -> -0
+dqmxg154 maxmag 0 NaN -> 0
+dqmxg155 maxmag 1 NaN -> 1
+dqmxg156 maxmag 1000 NaN -> 1000
+dqmxg157 maxmag Inf NaN -> Infinity
+
+dqmxg161 maxmag sNaN -Inf -> NaN Invalid_operation
+dqmxg162 maxmag sNaN -1000 -> NaN Invalid_operation
+dqmxg163 maxmag sNaN -1 -> NaN Invalid_operation
+dqmxg164 maxmag sNaN -0 -> NaN Invalid_operation
+dqmxg165 maxmag sNaN 0 -> NaN Invalid_operation
+dqmxg166 maxmag sNaN 1 -> NaN Invalid_operation
+dqmxg167 maxmag sNaN 1000 -> NaN Invalid_operation
+dqmxg168 maxmag sNaN NaN -> NaN Invalid_operation
+dqmxg169 maxmag sNaN sNaN -> NaN Invalid_operation
+dqmxg170 maxmag NaN sNaN -> NaN Invalid_operation
+dqmxg171 maxmag -Inf sNaN -> NaN Invalid_operation
+dqmxg172 maxmag -1000 sNaN -> NaN Invalid_operation
+dqmxg173 maxmag -1 sNaN -> NaN Invalid_operation
+dqmxg174 maxmag -0 sNaN -> NaN Invalid_operation
+dqmxg175 maxmag 0 sNaN -> NaN Invalid_operation
+dqmxg176 maxmag 1 sNaN -> NaN Invalid_operation
+dqmxg177 maxmag 1000 sNaN -> NaN Invalid_operation
+dqmxg178 maxmag Inf sNaN -> NaN Invalid_operation
+dqmxg179 maxmag NaN sNaN -> NaN Invalid_operation
+
+-- propagating NaNs
+dqmxg181 maxmag NaN9 -Inf -> -Infinity
+dqmxg182 maxmag NaN8 9 -> 9
+dqmxg183 maxmag -NaN7 Inf -> Infinity
+
+dqmxg184 maxmag -NaN1 NaN11 -> -NaN1
+dqmxg185 maxmag NaN2 NaN12 -> NaN2
+dqmxg186 maxmag -NaN13 -NaN7 -> -NaN13
+dqmxg187 maxmag NaN14 -NaN5 -> NaN14
+
+dqmxg188 maxmag -Inf NaN4 -> -Infinity
+dqmxg189 maxmag -9 -NaN3 -> -9
+dqmxg190 maxmag Inf NaN2 -> Infinity
+
+dqmxg191 maxmag sNaN99 -Inf -> NaN99 Invalid_operation
+dqmxg192 maxmag sNaN98 -1 -> NaN98 Invalid_operation
+dqmxg193 maxmag -sNaN97 NaN -> -NaN97 Invalid_operation
+dqmxg194 maxmag sNaN96 sNaN94 -> NaN96 Invalid_operation
+dqmxg195 maxmag NaN95 sNaN93 -> NaN93 Invalid_operation
+dqmxg196 maxmag -Inf sNaN92 -> NaN92 Invalid_operation
+dqmxg197 maxmag 0 sNaN91 -> NaN91 Invalid_operation
+dqmxg198 maxmag Inf -sNaN90 -> -NaN90 Invalid_operation
+dqmxg199 maxmag NaN sNaN89 -> NaN89 Invalid_operation
+
+-- old rounding checks
+dqmxg221 maxmag 12345678000 1 -> 12345678000
+dqmxg222 maxmag 1 12345678000 -> 12345678000
+dqmxg223 maxmag 1234567800 1 -> 1234567800
+dqmxg224 maxmag 1 1234567800 -> 1234567800
+dqmxg225 maxmag 1234567890 1 -> 1234567890
+dqmxg226 maxmag 1 1234567890 -> 1234567890
+dqmxg227 maxmag 1234567891 1 -> 1234567891
+dqmxg228 maxmag 1 1234567891 -> 1234567891
+dqmxg229 maxmag 12345678901 1 -> 12345678901
+dqmxg230 maxmag 1 12345678901 -> 12345678901
+dqmxg231 maxmag 1234567896 1 -> 1234567896
+dqmxg232 maxmag 1 1234567896 -> 1234567896
+dqmxg233 maxmag -1234567891 1 -> -1234567891
+dqmxg234 maxmag 1 -1234567891 -> -1234567891
+dqmxg235 maxmag -12345678901 1 -> -12345678901
+dqmxg236 maxmag 1 -12345678901 -> -12345678901
+dqmxg237 maxmag -1234567896 1 -> -1234567896
+dqmxg238 maxmag 1 -1234567896 -> -1234567896
+
+-- from examples
+dqmxg280 maxmag '3' '2' -> '3'
+dqmxg281 maxmag '-10' '3' -> '-10'
+dqmxg282 maxmag '1.0' '1' -> '1'
+dqmxg283 maxmag '1' '1.0' -> '1'
+dqmxg284 maxmag '7' 'NaN' -> '7'
+
+-- expanded list from min/max 754r purple prose
+-- [explicit tests for exponent ordering]
+dqmxg401 maxmag Inf 1.1 -> Infinity
+dqmxg402 maxmag 1.1 1 -> 1.1
+dqmxg403 maxmag 1 1.0 -> 1
+dqmxg404 maxmag 1.0 0.1 -> 1.0
+dqmxg405 maxmag 0.1 0.10 -> 0.1
+dqmxg406 maxmag 0.10 0.100 -> 0.10
+dqmxg407 maxmag 0.10 0 -> 0.10
+dqmxg408 maxmag 0 0.0 -> 0
+dqmxg409 maxmag 0.0 -0 -> 0.0
+dqmxg410 maxmag 0.0 -0.0 -> 0.0
+dqmxg411 maxmag 0.00 -0.0 -> 0.00
+dqmxg412 maxmag 0.0 -0.00 -> 0.0
+dqmxg413 maxmag 0 -0.0 -> 0
+dqmxg414 maxmag 0 -0 -> 0
+dqmxg415 maxmag -0.0 -0 -> -0.0
+dqmxg416 maxmag -0 -0.100 -> -0.100
+dqmxg417 maxmag -0.100 -0.10 -> -0.100
+dqmxg418 maxmag -0.10 -0.1 -> -0.10
+dqmxg419 maxmag -0.1 -1.0 -> -1.0
+dqmxg420 maxmag -1.0 -1 -> -1.0
+dqmxg421 maxmag -1 -1.1 -> -1.1
+dqmxg423 maxmag -1.1 -Inf -> -Infinity
+-- same with operands reversed
+dqmxg431 maxmag 1.1 Inf -> Infinity
+dqmxg432 maxmag 1 1.1 -> 1.1
+dqmxg433 maxmag 1.0 1 -> 1
+dqmxg434 maxmag 0.1 1.0 -> 1.0
+dqmxg435 maxmag 0.10 0.1 -> 0.1
+dqmxg436 maxmag 0.100 0.10 -> 0.10
+dqmxg437 maxmag 0 0.10 -> 0.10
+dqmxg438 maxmag 0.0 0 -> 0
+dqmxg439 maxmag -0 0.0 -> 0.0
+dqmxg440 maxmag -0.0 0.0 -> 0.0
+dqmxg441 maxmag -0.0 0.00 -> 0.00
+dqmxg442 maxmag -0.00 0.0 -> 0.0
+dqmxg443 maxmag -0.0 0 -> 0
+dqmxg444 maxmag -0 0 -> 0
+dqmxg445 maxmag -0 -0.0 -> -0.0
+dqmxg446 maxmag -0.100 -0 -> -0.100
+dqmxg447 maxmag -0.10 -0.100 -> -0.100
+dqmxg448 maxmag -0.1 -0.10 -> -0.10
+dqmxg449 maxmag -1.0 -0.1 -> -1.0
+dqmxg450 maxmag -1 -1.0 -> -1.0
+dqmxg451 maxmag -1.1 -1 -> -1.1
+dqmxg453 maxmag -Inf -1.1 -> -Infinity
+-- largies
+dqmxg460 maxmag 1000 1E+3 -> 1E+3
+dqmxg461 maxmag 1E+3 1000 -> 1E+3
+dqmxg462 maxmag 1000 -1E+3 -> 1000
+dqmxg463 maxmag 1E+3 -1000 -> 1E+3
+dqmxg464 maxmag -1000 1E+3 -> 1E+3
+dqmxg465 maxmag -1E+3 1000 -> 1000
+dqmxg466 maxmag -1000 -1E+3 -> -1000
+dqmxg467 maxmag -1E+3 -1000 -> -1000
+
+-- subnormals
+dqmxg510 maxmag 1.00E-6143 0 -> 1.00E-6143
+dqmxg511 maxmag 0.1E-6143 0 -> 1E-6144 Subnormal
+dqmxg512 maxmag 0.10E-6143 0 -> 1.0E-6144 Subnormal
+dqmxg513 maxmag 0.100E-6143 0 -> 1.00E-6144 Subnormal
+dqmxg514 maxmag 0.01E-6143 0 -> 1E-6145 Subnormal
+dqmxg515 maxmag 0.999E-6143 0 -> 9.99E-6144 Subnormal
+dqmxg516 maxmag 0.099E-6143 0 -> 9.9E-6145 Subnormal
+dqmxg517 maxmag 0.009E-6143 0 -> 9E-6146 Subnormal
+dqmxg518 maxmag 0.001E-6143 0 -> 1E-6146 Subnormal
+dqmxg519 maxmag 0.0009E-6143 0 -> 9E-6147 Subnormal
+dqmxg520 maxmag 0.0001E-6143 0 -> 1E-6147 Subnormal
+
+dqmxg530 maxmag -1.00E-6143 0 -> -1.00E-6143
+dqmxg531 maxmag -0.1E-6143 0 -> -1E-6144 Subnormal
+dqmxg532 maxmag -0.10E-6143 0 -> -1.0E-6144 Subnormal
+dqmxg533 maxmag -0.100E-6143 0 -> -1.00E-6144 Subnormal
+dqmxg534 maxmag -0.01E-6143 0 -> -1E-6145 Subnormal
+dqmxg535 maxmag -0.999E-6143 0 -> -9.99E-6144 Subnormal
+dqmxg536 maxmag -0.099E-6143 0 -> -9.9E-6145 Subnormal
+dqmxg537 maxmag -0.009E-6143 0 -> -9E-6146 Subnormal
+dqmxg538 maxmag -0.001E-6143 0 -> -1E-6146 Subnormal
+dqmxg539 maxmag -0.0009E-6143 0 -> -9E-6147 Subnormal
+dqmxg540 maxmag -0.0001E-6143 0 -> -1E-6147 Subnormal
+
+-- Null tests
+dqmxg900 maxmag 10 # -> NaN Invalid_operation
+dqmxg901 maxmag # 10 -> NaN Invalid_operation
+
diff --git a/Lib/test/decimaltestdata/dqMin.decTest b/Lib/test/decimaltestdata/dqMin.decTest
new file mode 100644
index 0000000..9e34694
--- /dev/null
+++ b/Lib/test/decimaltestdata/dqMin.decTest
@@ -0,0 +1,309 @@
+------------------------------------------------------------------------
+-- dqMin.decTest -- decQuad minnum --
+-- Copyright (c) IBM Corporation, 1981, 2007. All rights reserved. --
+------------------------------------------------------------------------
+-- Please see the document "General Decimal Arithmetic Testcases" --
+-- at http://www2.hursley.ibm.com/decimal for the description of --
+-- these testcases. --
+-- --
+-- These testcases are experimental ('beta' versions), and they --
+-- may contain errors. They are offered on an as-is basis. In --
+-- particular, achieving the same results as the tests here is not --
+-- a guarantee that an implementation complies with any Standard --
+-- or specification. The tests are not exhaustive. --
+-- --
+-- Please send comments, suggestions, and corrections to the author: --
+-- Mike Cowlishaw, IBM Fellow --
+-- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK --
+-- mfc@uk.ibm.com --
+------------------------------------------------------------------------
+version: 2.56
+
+-- we assume that base comparison is tested in compare.decTest, so
+-- these mainly cover special cases and rounding
+extended: 1
+clamp: 1
+precision: 34
+maxExponent: 6144
+minExponent: -6143
+rounding: half_even
+
+-- sanity checks
+dqmin001 min -2 -2 -> -2
+dqmin002 min -2 -1 -> -2
+dqmin003 min -2 0 -> -2
+dqmin004 min -2 1 -> -2
+dqmin005 min -2 2 -> -2
+dqmin006 min -1 -2 -> -2
+dqmin007 min -1 -1 -> -1
+dqmin008 min -1 0 -> -1
+dqmin009 min -1 1 -> -1
+dqmin010 min -1 2 -> -1
+dqmin011 min 0 -2 -> -2
+dqmin012 min 0 -1 -> -1
+dqmin013 min 0 0 -> 0
+dqmin014 min 0 1 -> 0
+dqmin015 min 0 2 -> 0
+dqmin016 min 1 -2 -> -2
+dqmin017 min 1 -1 -> -1
+dqmin018 min 1 0 -> 0
+dqmin019 min 1 1 -> 1
+dqmin020 min 1 2 -> 1
+dqmin021 min 2 -2 -> -2
+dqmin022 min 2 -1 -> -1
+dqmin023 min 2 0 -> 0
+dqmin025 min 2 1 -> 1
+dqmin026 min 2 2 -> 2
+
+-- extended zeros
+dqmin030 min 0 0 -> 0
+dqmin031 min 0 -0 -> -0
+dqmin032 min 0 -0.0 -> -0.0
+dqmin033 min 0 0.0 -> 0.0
+dqmin034 min -0 0 -> -0
+dqmin035 min -0 -0 -> -0
+dqmin036 min -0 -0.0 -> -0
+dqmin037 min -0 0.0 -> -0
+dqmin038 min 0.0 0 -> 0.0
+dqmin039 min 0.0 -0 -> -0
+dqmin040 min 0.0 -0.0 -> -0.0
+dqmin041 min 0.0 0.0 -> 0.0
+dqmin042 min -0.0 0 -> -0.0
+dqmin043 min -0.0 -0 -> -0
+dqmin044 min -0.0 -0.0 -> -0.0
+dqmin045 min -0.0 0.0 -> -0.0
+
+dqmin046 min 0E1 -0E1 -> -0E+1
+dqmin047 min -0E1 0E2 -> -0E+1
+dqmin048 min 0E2 0E1 -> 0E+1
+dqmin049 min 0E1 0E2 -> 0E+1
+dqmin050 min -0E3 -0E2 -> -0E+3
+dqmin051 min -0E2 -0E3 -> -0E+3
+
+-- Specials
+dqmin090 min Inf -Inf -> -Infinity
+dqmin091 min Inf -1000 -> -1000
+dqmin092 min Inf -1 -> -1
+dqmin093 min Inf -0 -> -0
+dqmin094 min Inf 0 -> 0
+dqmin095 min Inf 1 -> 1
+dqmin096 min Inf 1000 -> 1000
+dqmin097 min Inf Inf -> Infinity
+dqmin098 min -1000 Inf -> -1000
+dqmin099 min -Inf Inf -> -Infinity
+dqmin100 min -1 Inf -> -1
+dqmin101 min -0 Inf -> -0
+dqmin102 min 0 Inf -> 0
+dqmin103 min 1 Inf -> 1
+dqmin104 min 1000 Inf -> 1000
+dqmin105 min Inf Inf -> Infinity
+
+dqmin120 min -Inf -Inf -> -Infinity
+dqmin121 min -Inf -1000 -> -Infinity
+dqmin122 min -Inf -1 -> -Infinity
+dqmin123 min -Inf -0 -> -Infinity
+dqmin124 min -Inf 0 -> -Infinity
+dqmin125 min -Inf 1 -> -Infinity
+dqmin126 min -Inf 1000 -> -Infinity
+dqmin127 min -Inf Inf -> -Infinity
+dqmin128 min -Inf -Inf -> -Infinity
+dqmin129 min -1000 -Inf -> -Infinity
+dqmin130 min -1 -Inf -> -Infinity
+dqmin131 min -0 -Inf -> -Infinity
+dqmin132 min 0 -Inf -> -Infinity
+dqmin133 min 1 -Inf -> -Infinity
+dqmin134 min 1000 -Inf -> -Infinity
+dqmin135 min Inf -Inf -> -Infinity
+
+-- 2004.08.02 754r chooses number over NaN in mixed cases
+dqmin141 min NaN -Inf -> -Infinity
+dqmin142 min NaN -1000 -> -1000
+dqmin143 min NaN -1 -> -1
+dqmin144 min NaN -0 -> -0
+dqmin145 min NaN 0 -> 0
+dqmin146 min NaN 1 -> 1
+dqmin147 min NaN 1000 -> 1000
+dqmin148 min NaN Inf -> Infinity
+dqmin149 min NaN NaN -> NaN
+dqmin150 min -Inf NaN -> -Infinity
+dqmin151 min -1000 NaN -> -1000
+dqmin152 min -1 -NaN -> -1
+dqmin153 min -0 NaN -> -0
+dqmin154 min 0 -NaN -> 0
+dqmin155 min 1 NaN -> 1
+dqmin156 min 1000 NaN -> 1000
+dqmin157 min Inf NaN -> Infinity
+
+dqmin161 min sNaN -Inf -> NaN Invalid_operation
+dqmin162 min sNaN -1000 -> NaN Invalid_operation
+dqmin163 min sNaN -1 -> NaN Invalid_operation
+dqmin164 min sNaN -0 -> NaN Invalid_operation
+dqmin165 min -sNaN 0 -> -NaN Invalid_operation
+dqmin166 min -sNaN 1 -> -NaN Invalid_operation
+dqmin167 min sNaN 1000 -> NaN Invalid_operation
+dqmin168 min sNaN NaN -> NaN Invalid_operation
+dqmin169 min sNaN sNaN -> NaN Invalid_operation
+dqmin170 min NaN sNaN -> NaN Invalid_operation
+dqmin171 min -Inf sNaN -> NaN Invalid_operation
+dqmin172 min -1000 sNaN -> NaN Invalid_operation
+dqmin173 min -1 sNaN -> NaN Invalid_operation
+dqmin174 min -0 sNaN -> NaN Invalid_operation
+dqmin175 min 0 sNaN -> NaN Invalid_operation
+dqmin176 min 1 sNaN -> NaN Invalid_operation
+dqmin177 min 1000 sNaN -> NaN Invalid_operation
+dqmin178 min Inf sNaN -> NaN Invalid_operation
+dqmin179 min NaN sNaN -> NaN Invalid_operation
+
+-- propagating NaNs
+dqmin181 min NaN9 -Inf -> -Infinity
+dqmin182 min -NaN8 9990 -> 9990
+dqmin183 min NaN71 Inf -> Infinity
+
+dqmin184 min NaN1 NaN54 -> NaN1
+dqmin185 min NaN22 -NaN53 -> NaN22
+dqmin186 min -NaN3 NaN6 -> -NaN3
+dqmin187 min -NaN44 NaN7 -> -NaN44
+
+dqmin188 min -Inf NaN41 -> -Infinity
+dqmin189 min -9999 -NaN33 -> -9999
+dqmin190 min Inf NaN2 -> Infinity
+
+dqmin191 min sNaN99 -Inf -> NaN99 Invalid_operation
+dqmin192 min sNaN98 -11 -> NaN98 Invalid_operation
+dqmin193 min -sNaN97 NaN8 -> -NaN97 Invalid_operation
+dqmin194 min sNaN69 sNaN94 -> NaN69 Invalid_operation
+dqmin195 min NaN95 sNaN93 -> NaN93 Invalid_operation
+dqmin196 min -Inf sNaN92 -> NaN92 Invalid_operation
+dqmin197 min 088 sNaN91 -> NaN91 Invalid_operation
+dqmin198 min Inf -sNaN90 -> -NaN90 Invalid_operation
+dqmin199 min NaN sNaN86 -> NaN86 Invalid_operation
+
+-- old rounding checks
+dqmin221 min -12345678000 1 -> -12345678000
+dqmin222 min 1 -12345678000 -> -12345678000
+dqmin223 min -1234567800 1 -> -1234567800
+dqmin224 min 1 -1234567800 -> -1234567800
+dqmin225 min -1234567890 1 -> -1234567890
+dqmin226 min 1 -1234567890 -> -1234567890
+dqmin227 min -1234567891 1 -> -1234567891
+dqmin228 min 1 -1234567891 -> -1234567891
+dqmin229 min -12345678901 1 -> -12345678901
+dqmin230 min 1 -12345678901 -> -12345678901
+dqmin231 min -1234567896 1 -> -1234567896
+dqmin232 min 1 -1234567896 -> -1234567896
+dqmin233 min 1234567891 1 -> 1
+dqmin234 min 1 1234567891 -> 1
+dqmin235 min 12345678901 1 -> 1
+dqmin236 min 1 12345678901 -> 1
+dqmin237 min 1234567896 1 -> 1
+dqmin238 min 1 1234567896 -> 1
+
+-- from examples
+dqmin280 min '3' '2' -> '2'
+dqmin281 min '-10' '3' -> '-10'
+dqmin282 min '1.0' '1' -> '1.0'
+dqmin283 min '1' '1.0' -> '1.0'
+dqmin284 min '7' 'NaN' -> '7'
+
+-- expanded list from min/max 754r purple prose
+-- [explicit tests for exponent ordering]
+dqmin401 min Inf 1.1 -> 1.1
+dqmin402 min 1.1 1 -> 1
+dqmin403 min 1 1.0 -> 1.0
+dqmin404 min 1.0 0.1 -> 0.1
+dqmin405 min 0.1 0.10 -> 0.10
+dqmin406 min 0.10 0.100 -> 0.100
+dqmin407 min 0.10 0 -> 0
+dqmin408 min 0 0.0 -> 0.0
+dqmin409 min 0.0 -0 -> -0
+dqmin410 min 0.0 -0.0 -> -0.0
+dqmin411 min 0.00 -0.0 -> -0.0
+dqmin412 min 0.0 -0.00 -> -0.00
+dqmin413 min 0 -0.0 -> -0.0
+dqmin414 min 0 -0 -> -0
+dqmin415 min -0.0 -0 -> -0
+dqmin416 min -0 -0.100 -> -0.100
+dqmin417 min -0.100 -0.10 -> -0.10
+dqmin418 min -0.10 -0.1 -> -0.1
+dqmin419 min -0.1 -1.0 -> -1.0
+dqmin420 min -1.0 -1 -> -1
+dqmin421 min -1 -1.1 -> -1.1
+dqmin423 min -1.1 -Inf -> -Infinity
+-- same with operands reversed
+dqmin431 min 1.1 Inf -> 1.1
+dqmin432 min 1 1.1 -> 1
+dqmin433 min 1.0 1 -> 1.0
+dqmin434 min 0.1 1.0 -> 0.1
+dqmin435 min 0.10 0.1 -> 0.10
+dqmin436 min 0.100 0.10 -> 0.100
+dqmin437 min 0 0.10 -> 0
+dqmin438 min 0.0 0 -> 0.0
+dqmin439 min -0 0.0 -> -0
+dqmin440 min -0.0 0.0 -> -0.0
+dqmin441 min -0.0 0.00 -> -0.0
+dqmin442 min -0.00 0.0 -> -0.00
+dqmin443 min -0.0 0 -> -0.0
+dqmin444 min -0 0 -> -0
+dqmin445 min -0 -0.0 -> -0
+dqmin446 min -0.100 -0 -> -0.100
+dqmin447 min -0.10 -0.100 -> -0.10
+dqmin448 min -0.1 -0.10 -> -0.1
+dqmin449 min -1.0 -0.1 -> -1.0
+dqmin450 min -1 -1.0 -> -1
+dqmin451 min -1.1 -1 -> -1.1
+dqmin453 min -Inf -1.1 -> -Infinity
+-- largies
+dqmin460 min 1000 1E+3 -> 1000
+dqmin461 min 1E+3 1000 -> 1000
+dqmin462 min 1000 -1E+3 -> -1E+3
+dqmin463 min 1E+3 -384 -> -384
+dqmin464 min -384 1E+3 -> -384
+dqmin465 min -1E+3 1000 -> -1E+3
+dqmin466 min -384 -1E+3 -> -1E+3
+dqmin467 min -1E+3 -384 -> -1E+3
+
+-- misalignment traps for little-endian
+dqmin471 min 1.0 0.1 -> 0.1
+dqmin472 min 0.1 1.0 -> 0.1
+dqmin473 min 10.0 0.1 -> 0.1
+dqmin474 min 0.1 10.0 -> 0.1
+dqmin475 min 100 1.0 -> 1.0
+dqmin476 min 1.0 100 -> 1.0
+dqmin477 min 1000 10.0 -> 10.0
+dqmin478 min 10.0 1000 -> 10.0
+dqmin479 min 10000 100.0 -> 100.0
+dqmin480 min 100.0 10000 -> 100.0
+dqmin481 min 100000 1000.0 -> 1000.0
+dqmin482 min 1000.0 100000 -> 1000.0
+dqmin483 min 1000000 10000.0 -> 10000.0
+dqmin484 min 10000.0 1000000 -> 10000.0
+
+-- subnormals
+dqmin510 min 1.00E-6143 0 -> 0
+dqmin511 min 0.1E-6143 0 -> 0
+dqmin512 min 0.10E-6143 0 -> 0
+dqmin513 min 0.100E-6143 0 -> 0
+dqmin514 min 0.01E-6143 0 -> 0
+dqmin515 min 0.999E-6143 0 -> 0
+dqmin516 min 0.099E-6143 0 -> 0
+dqmin517 min 0.009E-6143 0 -> 0
+dqmin518 min 0.001E-6143 0 -> 0
+dqmin519 min 0.0009E-6143 0 -> 0
+dqmin520 min 0.0001E-6143 0 -> 0
+
+dqmin530 min -1.00E-6143 0 -> -1.00E-6143
+dqmin531 min -0.1E-6143 0 -> -1E-6144 Subnormal
+dqmin532 min -0.10E-6143 0 -> -1.0E-6144 Subnormal
+dqmin533 min -0.100E-6143 0 -> -1.00E-6144 Subnormal
+dqmin534 min -0.01E-6143 0 -> -1E-6145 Subnormal
+dqmin535 min -0.999E-6143 0 -> -9.99E-6144 Subnormal
+dqmin536 min -0.099E-6143 0 -> -9.9E-6145 Subnormal
+dqmin537 min -0.009E-6143 0 -> -9E-6146 Subnormal
+dqmin538 min -0.001E-6143 0 -> -1E-6146 Subnormal
+dqmin539 min -0.0009E-6143 0 -> -9E-6147 Subnormal
+dqmin540 min -0.0001E-6143 0 -> -1E-6147 Subnormal
+
+
+-- Null tests
+dqmin900 min 10 # -> NaN Invalid_operation
+dqmin901 min # 10 -> NaN Invalid_operation
diff --git a/Lib/test/decimaltestdata/dqMinMag.decTest b/Lib/test/decimaltestdata/dqMinMag.decTest
new file mode 100644
index 0000000..733acfd
--- /dev/null
+++ b/Lib/test/decimaltestdata/dqMinMag.decTest
@@ -0,0 +1,293 @@
+------------------------------------------------------------------------
+-- dqMinMag.decTest -- decQuad minnummag --
+-- Copyright (c) IBM Corporation, 1981, 2007. All rights reserved. --
+------------------------------------------------------------------------
+-- Please see the document "General Decimal Arithmetic Testcases" --
+-- at http://www2.hursley.ibm.com/decimal for the description of --
+-- these testcases. --
+-- --
+-- These testcases are experimental ('beta' versions), and they --
+-- may contain errors. They are offered on an as-is basis. In --
+-- particular, achieving the same results as the tests here is not --
+-- a guarantee that an implementation complies with any Standard --
+-- or specification. The tests are not exhaustive. --
+-- --
+-- Please send comments, suggestions, and corrections to the author: --
+-- Mike Cowlishaw, IBM Fellow --
+-- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK --
+-- mfc@uk.ibm.com --
+------------------------------------------------------------------------
+version: 2.56
+
+-- we assume that base comparison is tested in compare.decTest, so
+-- these mainly cover special cases and rounding
+extended: 1
+clamp: 1
+precision: 34
+maxExponent: 6144
+minExponent: -6143
+rounding: half_even
+
+-- sanity checks
+dqmng001 minmag -2 -2 -> -2
+dqmng002 minmag -2 -1 -> -1
+dqmng003 minmag -2 0 -> 0
+dqmng004 minmag -2 1 -> 1
+dqmng005 minmag -2 2 -> -2
+dqmng006 minmag -1 -2 -> -1
+dqmng007 minmag -1 -1 -> -1
+dqmng008 minmag -1 0 -> 0
+dqmng009 minmag -1 1 -> -1
+dqmng010 minmag -1 2 -> -1
+dqmng011 minmag 0 -2 -> 0
+dqmng012 minmag 0 -1 -> 0
+dqmng013 minmag 0 0 -> 0
+dqmng014 minmag 0 1 -> 0
+dqmng015 minmag 0 2 -> 0
+dqmng016 minmag 1 -2 -> 1
+dqmng017 minmag 1 -1 -> -1
+dqmng018 minmag 1 0 -> 0
+dqmng019 minmag 1 1 -> 1
+dqmng020 minmag 1 2 -> 1
+dqmng021 minmag 2 -2 -> -2
+dqmng022 minmag 2 -1 -> -1
+dqmng023 minmag 2 0 -> 0
+dqmng025 minmag 2 1 -> 1
+dqmng026 minmag 2 2 -> 2
+
+-- extended zeros
+dqmng030 minmag 0 0 -> 0
+dqmng031 minmag 0 -0 -> -0
+dqmng032 minmag 0 -0.0 -> -0.0
+dqmng033 minmag 0 0.0 -> 0.0
+dqmng034 minmag -0 0 -> -0
+dqmng035 minmag -0 -0 -> -0
+dqmng036 minmag -0 -0.0 -> -0
+dqmng037 minmag -0 0.0 -> -0
+dqmng038 minmag 0.0 0 -> 0.0
+dqmng039 minmag 0.0 -0 -> -0
+dqmng040 minmag 0.0 -0.0 -> -0.0
+dqmng041 minmag 0.0 0.0 -> 0.0
+dqmng042 minmag -0.0 0 -> -0.0
+dqmng043 minmag -0.0 -0 -> -0
+dqmng044 minmag -0.0 -0.0 -> -0.0
+dqmng045 minmag -0.0 0.0 -> -0.0
+
+dqmng046 minmag 0E1 -0E1 -> -0E+1
+dqmng047 minmag -0E1 0E2 -> -0E+1
+dqmng048 minmag 0E2 0E1 -> 0E+1
+dqmng049 minmag 0E1 0E2 -> 0E+1
+dqmng050 minmag -0E3 -0E2 -> -0E+3
+dqmng051 minmag -0E2 -0E3 -> -0E+3
+
+-- Specials
+dqmng090 minmag Inf -Inf -> -Infinity
+dqmng091 minmag Inf -1000 -> -1000
+dqmng092 minmag Inf -1 -> -1
+dqmng093 minmag Inf -0 -> -0
+dqmng094 minmag Inf 0 -> 0
+dqmng095 minmag Inf 1 -> 1
+dqmng096 minmag Inf 1000 -> 1000
+dqmng097 minmag Inf Inf -> Infinity
+dqmng098 minmag -1000 Inf -> -1000
+dqmng099 minmag -Inf Inf -> -Infinity
+dqmng100 minmag -1 Inf -> -1
+dqmng101 minmag -0 Inf -> -0
+dqmng102 minmag 0 Inf -> 0
+dqmng103 minmag 1 Inf -> 1
+dqmng104 minmag 1000 Inf -> 1000
+dqmng105 minmag Inf Inf -> Infinity
+
+dqmng120 minmag -Inf -Inf -> -Infinity
+dqmng121 minmag -Inf -1000 -> -1000
+dqmng122 minmag -Inf -1 -> -1
+dqmng123 minmag -Inf -0 -> -0
+dqmng124 minmag -Inf 0 -> 0
+dqmng125 minmag -Inf 1 -> 1
+dqmng126 minmag -Inf 1000 -> 1000
+dqmng127 minmag -Inf Inf -> -Infinity
+dqmng128 minmag -Inf -Inf -> -Infinity
+dqmng129 minmag -1000 -Inf -> -1000
+dqmng130 minmag -1 -Inf -> -1
+dqmng131 minmag -0 -Inf -> -0
+dqmng132 minmag 0 -Inf -> 0
+dqmng133 minmag 1 -Inf -> 1
+dqmng134 minmag 1000 -Inf -> 1000
+dqmng135 minmag Inf -Inf -> -Infinity
+
+-- 2004.08.02 754r chooses number over NaN in mixed cases
+dqmng141 minmag NaN -Inf -> -Infinity
+dqmng142 minmag NaN -1000 -> -1000
+dqmng143 minmag NaN -1 -> -1
+dqmng144 minmag NaN -0 -> -0
+dqmng145 minmag NaN 0 -> 0
+dqmng146 minmag NaN 1 -> 1
+dqmng147 minmag NaN 1000 -> 1000
+dqmng148 minmag NaN Inf -> Infinity
+dqmng149 minmag NaN NaN -> NaN
+dqmng150 minmag -Inf NaN -> -Infinity
+dqmng151 minmag -1000 NaN -> -1000
+dqmng152 minmag -1 -NaN -> -1
+dqmng153 minmag -0 NaN -> -0
+dqmng154 minmag 0 -NaN -> 0
+dqmng155 minmag 1 NaN -> 1
+dqmng156 minmag 1000 NaN -> 1000
+dqmng157 minmag Inf NaN -> Infinity
+
+dqmng161 minmag sNaN -Inf -> NaN Invalid_operation
+dqmng162 minmag sNaN -1000 -> NaN Invalid_operation
+dqmng163 minmag sNaN -1 -> NaN Invalid_operation
+dqmng164 minmag sNaN -0 -> NaN Invalid_operation
+dqmng165 minmag -sNaN 0 -> -NaN Invalid_operation
+dqmng166 minmag -sNaN 1 -> -NaN Invalid_operation
+dqmng167 minmag sNaN 1000 -> NaN Invalid_operation
+dqmng168 minmag sNaN NaN -> NaN Invalid_operation
+dqmng169 minmag sNaN sNaN -> NaN Invalid_operation
+dqmng170 minmag NaN sNaN -> NaN Invalid_operation
+dqmng171 minmag -Inf sNaN -> NaN Invalid_operation
+dqmng172 minmag -1000 sNaN -> NaN Invalid_operation
+dqmng173 minmag -1 sNaN -> NaN Invalid_operation
+dqmng174 minmag -0 sNaN -> NaN Invalid_operation
+dqmng175 minmag 0 sNaN -> NaN Invalid_operation
+dqmng176 minmag 1 sNaN -> NaN Invalid_operation
+dqmng177 minmag 1000 sNaN -> NaN Invalid_operation
+dqmng178 minmag Inf sNaN -> NaN Invalid_operation
+dqmng179 minmag NaN sNaN -> NaN Invalid_operation
+
+-- propagating NaNs
+dqmng181 minmag NaN9 -Inf -> -Infinity
+dqmng182 minmag -NaN8 9990 -> 9990
+dqmng183 minmag NaN71 Inf -> Infinity
+
+dqmng184 minmag NaN1 NaN54 -> NaN1
+dqmng185 minmag NaN22 -NaN53 -> NaN22
+dqmng186 minmag -NaN3 NaN6 -> -NaN3
+dqmng187 minmag -NaN44 NaN7 -> -NaN44
+
+dqmng188 minmag -Inf NaN41 -> -Infinity
+dqmng189 minmag -9999 -NaN33 -> -9999
+dqmng190 minmag Inf NaN2 -> Infinity
+
+dqmng191 minmag sNaN99 -Inf -> NaN99 Invalid_operation
+dqmng192 minmag sNaN98 -11 -> NaN98 Invalid_operation
+dqmng193 minmag -sNaN97 NaN8 -> -NaN97 Invalid_operation
+dqmng194 minmag sNaN69 sNaN94 -> NaN69 Invalid_operation
+dqmng195 minmag NaN95 sNaN93 -> NaN93 Invalid_operation
+dqmng196 minmag -Inf sNaN92 -> NaN92 Invalid_operation
+dqmng197 minmag 088 sNaN91 -> NaN91 Invalid_operation
+dqmng198 minmag Inf -sNaN90 -> -NaN90 Invalid_operation
+dqmng199 minmag NaN sNaN86 -> NaN86 Invalid_operation
+
+-- old rounding checks
+dqmng221 minmag -12345678000 1 -> 1
+dqmng222 minmag 1 -12345678000 -> 1
+dqmng223 minmag -1234567800 1 -> 1
+dqmng224 minmag 1 -1234567800 -> 1
+dqmng225 minmag -1234567890 1 -> 1
+dqmng226 minmag 1 -1234567890 -> 1
+dqmng227 minmag -1234567891 1 -> 1
+dqmng228 minmag 1 -1234567891 -> 1
+dqmng229 minmag -12345678901 1 -> 1
+dqmng230 minmag 1 -12345678901 -> 1
+dqmng231 minmag -1234567896 1 -> 1
+dqmng232 minmag 1 -1234567896 -> 1
+dqmng233 minmag 1234567891 1 -> 1
+dqmng234 minmag 1 1234567891 -> 1
+dqmng235 minmag 12345678901 1 -> 1
+dqmng236 minmag 1 12345678901 -> 1
+dqmng237 minmag 1234567896 1 -> 1
+dqmng238 minmag 1 1234567896 -> 1
+
+-- from examples
+dqmng280 minmag '3' '2' -> '2'
+dqmng281 minmag '-10' '3' -> '3'
+dqmng282 minmag '1.0' '1' -> '1.0'
+dqmng283 minmag '1' '1.0' -> '1.0'
+dqmng284 minmag '7' 'NaN' -> '7'
+
+-- expanded list from min/max 754r purple prose
+-- [explicit tests for exponent ordering]
+dqmng401 minmag Inf 1.1 -> 1.1
+dqmng402 minmag 1.1 1 -> 1
+dqmng403 minmag 1 1.0 -> 1.0
+dqmng404 minmag 1.0 0.1 -> 0.1
+dqmng405 minmag 0.1 0.10 -> 0.10
+dqmng406 minmag 0.10 0.100 -> 0.100
+dqmng407 minmag 0.10 0 -> 0
+dqmng408 minmag 0 0.0 -> 0.0
+dqmng409 minmag 0.0 -0 -> -0
+dqmng410 minmag 0.0 -0.0 -> -0.0
+dqmng411 minmag 0.00 -0.0 -> -0.0
+dqmng412 minmag 0.0 -0.00 -> -0.00
+dqmng413 minmag 0 -0.0 -> -0.0
+dqmng414 minmag 0 -0 -> -0
+dqmng415 minmag -0.0 -0 -> -0
+dqmng416 minmag -0 -0.100 -> -0
+dqmng417 minmag -0.100 -0.10 -> -0.10
+dqmng418 minmag -0.10 -0.1 -> -0.1
+dqmng419 minmag -0.1 -1.0 -> -0.1
+dqmng420 minmag -1.0 -1 -> -1
+dqmng421 minmag -1 -1.1 -> -1
+dqmng423 minmag -1.1 -Inf -> -1.1
+-- same with operands reversed
+dqmng431 minmag 1.1 Inf -> 1.1
+dqmng432 minmag 1 1.1 -> 1
+dqmng433 minmag 1.0 1 -> 1.0
+dqmng434 minmag 0.1 1.0 -> 0.1
+dqmng435 minmag 0.10 0.1 -> 0.10
+dqmng436 minmag 0.100 0.10 -> 0.100
+dqmng437 minmag 0 0.10 -> 0
+dqmng438 minmag 0.0 0 -> 0.0
+dqmng439 minmag -0 0.0 -> -0
+dqmng440 minmag -0.0 0.0 -> -0.0
+dqmng441 minmag -0.0 0.00 -> -0.0
+dqmng442 minmag -0.00 0.0 -> -0.00
+dqmng443 minmag -0.0 0 -> -0.0
+dqmng444 minmag -0 0 -> -0
+dqmng445 minmag -0 -0.0 -> -0
+dqmng446 minmag -0.100 -0 -> -0
+dqmng447 minmag -0.10 -0.100 -> -0.10
+dqmng448 minmag -0.1 -0.10 -> -0.1
+dqmng449 minmag -1.0 -0.1 -> -0.1
+dqmng450 minmag -1 -1.0 -> -1
+dqmng451 minmag -1.1 -1 -> -1
+dqmng453 minmag -Inf -1.1 -> -1.1
+-- largies
+dqmng460 minmag 1000 1E+3 -> 1000
+dqmng461 minmag 1E+3 1000 -> 1000
+dqmng462 minmag 1000 -1E+3 -> -1E+3
+dqmng463 minmag 1E+3 -384 -> -384
+dqmng464 minmag -384 1E+3 -> -384
+dqmng465 minmag -1E+3 1000 -> -1E+3
+dqmng466 minmag -384 -1E+3 -> -384
+dqmng467 minmag -1E+3 -384 -> -384
+
+-- subnormals
+dqmng510 minmag 1.00E-6143 0 -> 0
+dqmng511 minmag 0.1E-6143 0 -> 0
+dqmng512 minmag 0.10E-6143 0 -> 0
+dqmng513 minmag 0.100E-6143 0 -> 0
+dqmng514 minmag 0.01E-6143 0 -> 0
+dqmng515 minmag 0.999E-6143 0 -> 0
+dqmng516 minmag 0.099E-6143 0 -> 0
+dqmng517 minmag 0.009E-6143 0 -> 0
+dqmng518 minmag 0.001E-6143 0 -> 0
+dqmng519 minmag 0.0009E-6143 0 -> 0
+dqmng520 minmag 0.0001E-6143 0 -> 0
+
+dqmng530 minmag -1.00E-6143 0 -> 0
+dqmng531 minmag -0.1E-6143 0 -> 0
+dqmng532 minmag -0.10E-6143 0 -> 0
+dqmng533 minmag -0.100E-6143 0 -> 0
+dqmng534 minmag -0.01E-6143 0 -> 0
+dqmng535 minmag -0.999E-6143 0 -> 0
+dqmng536 minmag -0.099E-6143 0 -> 0
+dqmng537 minmag -0.009E-6143 0 -> 0
+dqmng538 minmag -0.001E-6143 0 -> 0
+dqmng539 minmag -0.0009E-6143 0 -> 0
+dqmng540 minmag -0.0001E-6143 0 -> 0
+
+
+-- Null tests
+dqmng900 minmag 10 # -> NaN Invalid_operation
+dqmng901 minmag # 10 -> NaN Invalid_operation
diff --git a/Lib/test/decimaltestdata/dqMinus.decTest b/Lib/test/decimaltestdata/dqMinus.decTest
new file mode 100644
index 0000000..50ac85a
--- /dev/null
+++ b/Lib/test/decimaltestdata/dqMinus.decTest
@@ -0,0 +1,88 @@
+------------------------------------------------------------------------
+-- dqMinus.decTest -- decQuad 0-x --
+-- Copyright (c) IBM Corporation, 1981, 2007. All rights reserved. --
+------------------------------------------------------------------------
+-- Please see the document "General Decimal Arithmetic Testcases" --
+-- at http://www2.hursley.ibm.com/decimal for the description of --
+-- these testcases. --
+-- --
+-- These testcases are experimental ('beta' versions), and they --
+-- may contain errors. They are offered on an as-is basis. In --
+-- particular, achieving the same results as the tests here is not --
+-- a guarantee that an implementation complies with any Standard --
+-- or specification. The tests are not exhaustive. --
+-- --
+-- Please send comments, suggestions, and corrections to the author: --
+-- Mike Cowlishaw, IBM Fellow --
+-- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK --
+-- mfc@uk.ibm.com --
+------------------------------------------------------------------------
+version: 2.56
+
+-- All operands and results are decQuads.
+extended: 1
+clamp: 1
+precision: 34
+maxExponent: 6144
+minExponent: -6143
+rounding: half_even
+
+-- Sanity check
+dqmns001 minus +7.50 -> -7.50
+
+-- Infinities
+dqmns011 minus Infinity -> -Infinity
+dqmns012 minus -Infinity -> Infinity
+
+-- NaNs, 0 payload
+dqmns021 minus NaN -> NaN
+dqmns022 minus -NaN -> -NaN
+dqmns023 minus sNaN -> NaN Invalid_operation
+dqmns024 minus -sNaN -> -NaN Invalid_operation
+
+-- NaNs, non-0 payload
+dqmns031 minus NaN13 -> NaN13
+dqmns032 minus -NaN13 -> -NaN13
+dqmns033 minus sNaN13 -> NaN13 Invalid_operation
+dqmns034 minus -sNaN13 -> -NaN13 Invalid_operation
+dqmns035 minus NaN70 -> NaN70
+dqmns036 minus -NaN70 -> -NaN70
+dqmns037 minus sNaN101 -> NaN101 Invalid_operation
+dqmns038 minus -sNaN101 -> -NaN101 Invalid_operation
+
+-- finites
+dqmns101 minus 7 -> -7
+dqmns102 minus -7 -> 7
+dqmns103 minus 75 -> -75
+dqmns104 minus -75 -> 75
+dqmns105 minus 7.50 -> -7.50
+dqmns106 minus -7.50 -> 7.50
+dqmns107 minus 7.500 -> -7.500
+dqmns108 minus -7.500 -> 7.500
+
+-- zeros
+dqmns111 minus 0 -> 0
+dqmns112 minus -0 -> 0
+dqmns113 minus 0E+4 -> 0E+4
+dqmns114 minus -0E+4 -> 0E+4
+dqmns115 minus 0.0000 -> 0.0000
+dqmns116 minus -0.0000 -> 0.0000
+dqmns117 minus 0E-141 -> 0E-141
+dqmns118 minus -0E-141 -> 0E-141
+
+-- full coefficients, alternating bits
+dqmns121 minus 2682682682682682682682682682682682 -> -2682682682682682682682682682682682
+dqmns122 minus -2682682682682682682682682682682682 -> 2682682682682682682682682682682682
+dqmns123 minus 1341341341341341341341341341341341 -> -1341341341341341341341341341341341
+dqmns124 minus -1341341341341341341341341341341341 -> 1341341341341341341341341341341341
+
+-- Nmax, Nmin, Ntiny
+dqmns131 minus 9.999999999999999999999999999999999E+6144 -> -9.999999999999999999999999999999999E+6144
+dqmns132 minus 1E-6143 -> -1E-6143
+dqmns133 minus 1.000000000000000000000000000000000E-6143 -> -1.000000000000000000000000000000000E-6143
+dqmns134 minus 1E-6176 -> -1E-6176 Subnormal
+
+dqmns135 minus -1E-6176 -> 1E-6176 Subnormal
+dqmns136 minus -1.000000000000000000000000000000000E-6143 -> 1.000000000000000000000000000000000E-6143
+dqmns137 minus -1E-6143 -> 1E-6143
+dqmns138 minus -9.999999999999999999999999999999999E+6144 -> 9.999999999999999999999999999999999E+6144
diff --git a/Lib/test/decimaltestdata/dqMultiply.decTest b/Lib/test/decimaltestdata/dqMultiply.decTest
new file mode 100644
index 0000000..a6f85e0
--- /dev/null
+++ b/Lib/test/decimaltestdata/dqMultiply.decTest
@@ -0,0 +1,473 @@
+------------------------------------------------------------------------
+-- dqMultiply.decTest -- decQuad multiplication --
+-- Copyright (c) IBM Corporation, 1981, 2007. All rights reserved. --
+------------------------------------------------------------------------
+-- Please see the document "General Decimal Arithmetic Testcases" --
+-- at http://www2.hursley.ibm.com/decimal for the description of --
+-- these testcases. --
+-- --
+-- These testcases are experimental ('beta' versions), and they --
+-- may contain errors. They are offered on an as-is basis. In --
+-- particular, achieving the same results as the tests here is not --
+-- a guarantee that an implementation complies with any Standard --
+-- or specification. The tests are not exhaustive. --
+-- --
+-- Please send comments, suggestions, and corrections to the author: --
+-- Mike Cowlishaw, IBM Fellow --
+-- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK --
+-- mfc@uk.ibm.com --
+------------------------------------------------------------------------
+version: 2.56
+
+-- This set of tests are for decQuads only; all arguments are
+-- representable in a decQuad
+extended: 1
+clamp: 1
+precision: 34
+maxExponent: 6144
+minExponent: -6143
+rounding: half_even
+
+-- sanity checks
+dqmul000 multiply 2 2 -> 4
+dqmul001 multiply 2 3 -> 6
+dqmul002 multiply 5 1 -> 5
+dqmul003 multiply 5 2 -> 10
+dqmul004 multiply 1.20 2 -> 2.40
+dqmul005 multiply 1.20 0 -> 0.00
+dqmul006 multiply 1.20 -2 -> -2.40
+dqmul007 multiply -1.20 2 -> -2.40
+dqmul008 multiply -1.20 0 -> -0.00
+dqmul009 multiply -1.20 -2 -> 2.40
+dqmul010 multiply 5.09 7.1 -> 36.139
+dqmul011 multiply 2.5 4 -> 10.0
+dqmul012 multiply 2.50 4 -> 10.00
+dqmul013 multiply 1.23456789 1.0000000000000000000000000000 -> 1.234567890000000000000000000000000 Rounded
+dqmul015 multiply 2.50 4 -> 10.00
+dqmul016 multiply 9.99999999999999999 9.99999999999999999 -> 99.99999999999999980000000000000000 Inexact Rounded
+dqmul017 multiply 9.99999999999999999 -9.99999999999999999 -> -99.99999999999999980000000000000000 Inexact Rounded
+dqmul018 multiply -9.99999999999999999 9.99999999999999999 -> -99.99999999999999980000000000000000 Inexact Rounded
+dqmul019 multiply -9.99999999999999999 -9.99999999999999999 -> 99.99999999999999980000000000000000 Inexact Rounded
+
+-- zeros, etc.
+dqmul021 multiply 0 0 -> 0
+dqmul022 multiply 0 -0 -> -0
+dqmul023 multiply -0 0 -> -0
+dqmul024 multiply -0 -0 -> 0
+dqmul025 multiply -0.0 -0.0 -> 0.00
+dqmul026 multiply -0.0 -0.0 -> 0.00
+dqmul027 multiply -0.0 -0.0 -> 0.00
+dqmul028 multiply -0.0 -0.0 -> 0.00
+dqmul030 multiply 5.00 1E-3 -> 0.00500
+dqmul031 multiply 00.00 0.000 -> 0.00000
+dqmul032 multiply 00.00 0E-3 -> 0.00000 -- rhs is 0
+dqmul033 multiply 0E-3 00.00 -> 0.00000 -- lhs is 0
+dqmul034 multiply -5.00 1E-3 -> -0.00500
+dqmul035 multiply -00.00 0.000 -> -0.00000
+dqmul036 multiply -00.00 0E-3 -> -0.00000 -- rhs is 0
+dqmul037 multiply -0E-3 00.00 -> -0.00000 -- lhs is 0
+dqmul038 multiply 5.00 -1E-3 -> -0.00500
+dqmul039 multiply 00.00 -0.000 -> -0.00000
+dqmul040 multiply 00.00 -0E-3 -> -0.00000 -- rhs is 0
+dqmul041 multiply 0E-3 -00.00 -> -0.00000 -- lhs is 0
+dqmul042 multiply -5.00 -1E-3 -> 0.00500
+dqmul043 multiply -00.00 -0.000 -> 0.00000
+dqmul044 multiply -00.00 -0E-3 -> 0.00000 -- rhs is 0
+dqmul045 multiply -0E-3 -00.00 -> 0.00000 -- lhs is 0
+
+-- examples from decarith
+dqmul050 multiply 1.20 3 -> 3.60
+dqmul051 multiply 7 3 -> 21
+dqmul052 multiply 0.9 0.8 -> 0.72
+dqmul053 multiply 0.9 -0 -> -0.0
+dqmul054 multiply 654321 654321 -> 428135971041
+
+dqmul060 multiply 123.45 1e7 -> 1.2345E+9
+dqmul061 multiply 123.45 1e8 -> 1.2345E+10
+dqmul062 multiply 123.45 1e+9 -> 1.2345E+11
+dqmul063 multiply 123.45 1e10 -> 1.2345E+12
+dqmul064 multiply 123.45 1e11 -> 1.2345E+13
+dqmul065 multiply 123.45 1e12 -> 1.2345E+14
+dqmul066 multiply 123.45 1e13 -> 1.2345E+15
+
+
+-- test some intermediate lengths
+-- 1234567890123456
+dqmul080 multiply 0.1 1230123456456789 -> 123012345645678.9
+dqmul084 multiply 0.1 1230123456456789 -> 123012345645678.9
+dqmul090 multiply 1230123456456789 0.1 -> 123012345645678.9
+dqmul094 multiply 1230123456456789 0.1 -> 123012345645678.9
+
+-- test some more edge cases and carries
+dqmul101 multiply 9 9 -> 81
+dqmul102 multiply 9 90 -> 810
+dqmul103 multiply 9 900 -> 8100
+dqmul104 multiply 9 9000 -> 81000
+dqmul105 multiply 9 90000 -> 810000
+dqmul106 multiply 9 900000 -> 8100000
+dqmul107 multiply 9 9000000 -> 81000000
+dqmul108 multiply 9 90000000 -> 810000000
+dqmul109 multiply 9 900000000 -> 8100000000
+dqmul110 multiply 9 9000000000 -> 81000000000
+dqmul111 multiply 9 90000000000 -> 810000000000
+dqmul112 multiply 9 900000000000 -> 8100000000000
+dqmul113 multiply 9 9000000000000 -> 81000000000000
+dqmul114 multiply 9 90000000000000 -> 810000000000000
+dqmul115 multiply 9 900000000000000 -> 8100000000000000
+--dqmul116 multiply 9 9000000000000000 -> 81000000000000000
+--dqmul117 multiply 9 90000000000000000 -> 810000000000000000
+--dqmul118 multiply 9 900000000000000000 -> 8100000000000000000
+--dqmul119 multiply 9 9000000000000000000 -> 81000000000000000000
+--dqmul120 multiply 9 90000000000000000000 -> 810000000000000000000
+--dqmul121 multiply 9 900000000000000000000 -> 8100000000000000000000
+--dqmul122 multiply 9 9000000000000000000000 -> 81000000000000000000000
+--dqmul123 multiply 9 90000000000000000000000 -> 810000000000000000000000
+-- test some more edge cases without carries
+dqmul131 multiply 3 3 -> 9
+dqmul132 multiply 3 30 -> 90
+dqmul133 multiply 3 300 -> 900
+dqmul134 multiply 3 3000 -> 9000
+dqmul135 multiply 3 30000 -> 90000
+dqmul136 multiply 3 300000 -> 900000
+dqmul137 multiply 3 3000000 -> 9000000
+dqmul138 multiply 3 30000000 -> 90000000
+dqmul139 multiply 3 300000000 -> 900000000
+dqmul140 multiply 3 3000000000 -> 9000000000
+dqmul141 multiply 3 30000000000 -> 90000000000
+dqmul142 multiply 3 300000000000 -> 900000000000
+dqmul143 multiply 3 3000000000000 -> 9000000000000
+dqmul144 multiply 3 30000000000000 -> 90000000000000
+dqmul145 multiply 3 300000000000000 -> 900000000000000
+dqmul146 multiply 3 3000000000000000 -> 9000000000000000
+dqmul147 multiply 3 30000000000000000 -> 90000000000000000
+dqmul148 multiply 3 300000000000000000 -> 900000000000000000
+dqmul149 multiply 3 3000000000000000000 -> 9000000000000000000
+dqmul150 multiply 3 30000000000000000000 -> 90000000000000000000
+dqmul151 multiply 3 300000000000000000000 -> 900000000000000000000
+dqmul152 multiply 3 3000000000000000000000 -> 9000000000000000000000
+dqmul153 multiply 3 30000000000000000000000 -> 90000000000000000000000
+
+dqmul263 multiply 30269.587755640502150977251770554 4.8046009735990873395936309640543 -> 145433.2908011933696719165119928296 Inexact Rounded
+
+-- test some edge cases with exact rounding
+dqmul301 multiply 900000000000000000 9 -> 8100000000000000000
+dqmul302 multiply 900000000000000000 90 -> 81000000000000000000
+dqmul303 multiply 900000000000000000 900 -> 810000000000000000000
+dqmul304 multiply 900000000000000000 9000 -> 8100000000000000000000
+dqmul305 multiply 900000000000000000 90000 -> 81000000000000000000000
+dqmul306 multiply 900000000000000000 900000 -> 810000000000000000000000
+dqmul307 multiply 900000000000000000 9000000 -> 8100000000000000000000000
+dqmul308 multiply 900000000000000000 90000000 -> 81000000000000000000000000
+dqmul309 multiply 900000000000000000 900000000 -> 810000000000000000000000000
+dqmul310 multiply 900000000000000000 9000000000 -> 8100000000000000000000000000
+dqmul311 multiply 900000000000000000 90000000000 -> 81000000000000000000000000000
+dqmul312 multiply 900000000000000000 900000000000 -> 810000000000000000000000000000
+dqmul313 multiply 900000000000000000 9000000000000 -> 8100000000000000000000000000000
+dqmul314 multiply 900000000000000000 90000000000000 -> 81000000000000000000000000000000
+dqmul315 multiply 900000000000000000 900000000000000 -> 810000000000000000000000000000000
+dqmul316 multiply 900000000000000000 9000000000000000 -> 8100000000000000000000000000000000
+dqmul317 multiply 9000000000000000000 9000000000000000 -> 8.100000000000000000000000000000000E+34 Rounded
+dqmul318 multiply 90000000000000000000 9000000000000000 -> 8.100000000000000000000000000000000E+35 Rounded
+dqmul319 multiply 900000000000000000000 9000000000000000 -> 8.100000000000000000000000000000000E+36 Rounded
+dqmul320 multiply 9000000000000000000000 9000000000000000 -> 8.100000000000000000000000000000000E+37 Rounded
+dqmul321 multiply 90000000000000000000000 9000000000000000 -> 8.100000000000000000000000000000000E+38 Rounded
+dqmul322 multiply 900000000000000000000000 9000000000000000 -> 8.100000000000000000000000000000000E+39 Rounded
+dqmul323 multiply 9000000000000000000000000 9000000000000000 -> 8.100000000000000000000000000000000E+40 Rounded
+
+-- tryzeros cases
+dqmul504 multiply 0E-4260 1000E-4260 -> 0E-6176 Clamped
+dqmul505 multiply 100E+4260 0E+4260 -> 0E+6111 Clamped
+
+-- mixed with zeros
+dqmul541 multiply 0 -1 -> -0
+dqmul542 multiply -0 -1 -> 0
+dqmul543 multiply 0 1 -> 0
+dqmul544 multiply -0 1 -> -0
+dqmul545 multiply -1 0 -> -0
+dqmul546 multiply -1 -0 -> 0
+dqmul547 multiply 1 0 -> 0
+dqmul548 multiply 1 -0 -> -0
+
+dqmul551 multiply 0.0 -1 -> -0.0
+dqmul552 multiply -0.0 -1 -> 0.0
+dqmul553 multiply 0.0 1 -> 0.0
+dqmul554 multiply -0.0 1 -> -0.0
+dqmul555 multiply -1.0 0 -> -0.0
+dqmul556 multiply -1.0 -0 -> 0.0
+dqmul557 multiply 1.0 0 -> 0.0
+dqmul558 multiply 1.0 -0 -> -0.0
+
+dqmul561 multiply 0 -1.0 -> -0.0
+dqmul562 multiply -0 -1.0 -> 0.0
+dqmul563 multiply 0 1.0 -> 0.0
+dqmul564 multiply -0 1.0 -> -0.0
+dqmul565 multiply -1 0.0 -> -0.0
+dqmul566 multiply -1 -0.0 -> 0.0
+dqmul567 multiply 1 0.0 -> 0.0
+dqmul568 multiply 1 -0.0 -> -0.0
+
+dqmul571 multiply 0.0 -1.0 -> -0.00
+dqmul572 multiply -0.0 -1.0 -> 0.00
+dqmul573 multiply 0.0 1.0 -> 0.00
+dqmul574 multiply -0.0 1.0 -> -0.00
+dqmul575 multiply -1.0 0.0 -> -0.00
+dqmul576 multiply -1.0 -0.0 -> 0.00
+dqmul577 multiply 1.0 0.0 -> 0.00
+dqmul578 multiply 1.0 -0.0 -> -0.00
+
+
+-- Specials
+dqmul580 multiply Inf -Inf -> -Infinity
+dqmul581 multiply Inf -1000 -> -Infinity
+dqmul582 multiply Inf -1 -> -Infinity
+dqmul583 multiply Inf -0 -> NaN Invalid_operation
+dqmul584 multiply Inf 0 -> NaN Invalid_operation
+dqmul585 multiply Inf 1 -> Infinity
+dqmul586 multiply Inf 1000 -> Infinity
+dqmul587 multiply Inf Inf -> Infinity
+dqmul588 multiply -1000 Inf -> -Infinity
+dqmul589 multiply -Inf Inf -> -Infinity
+dqmul590 multiply -1 Inf -> -Infinity
+dqmul591 multiply -0 Inf -> NaN Invalid_operation
+dqmul592 multiply 0 Inf -> NaN Invalid_operation
+dqmul593 multiply 1 Inf -> Infinity
+dqmul594 multiply 1000 Inf -> Infinity
+dqmul595 multiply Inf Inf -> Infinity
+
+dqmul600 multiply -Inf -Inf -> Infinity
+dqmul601 multiply -Inf -1000 -> Infinity
+dqmul602 multiply -Inf -1 -> Infinity
+dqmul603 multiply -Inf -0 -> NaN Invalid_operation
+dqmul604 multiply -Inf 0 -> NaN Invalid_operation
+dqmul605 multiply -Inf 1 -> -Infinity
+dqmul606 multiply -Inf 1000 -> -Infinity
+dqmul607 multiply -Inf Inf -> -Infinity
+dqmul608 multiply -1000 Inf -> -Infinity
+dqmul609 multiply -Inf -Inf -> Infinity
+dqmul610 multiply -1 -Inf -> Infinity
+dqmul611 multiply -0 -Inf -> NaN Invalid_operation
+dqmul612 multiply 0 -Inf -> NaN Invalid_operation
+dqmul613 multiply 1 -Inf -> -Infinity
+dqmul614 multiply 1000 -Inf -> -Infinity
+dqmul615 multiply Inf -Inf -> -Infinity
+
+dqmul621 multiply NaN -Inf -> NaN
+dqmul622 multiply NaN -1000 -> NaN
+dqmul623 multiply NaN -1 -> NaN
+dqmul624 multiply NaN -0 -> NaN
+dqmul625 multiply NaN 0 -> NaN
+dqmul626 multiply NaN 1 -> NaN
+dqmul627 multiply NaN 1000 -> NaN
+dqmul628 multiply NaN Inf -> NaN
+dqmul629 multiply NaN NaN -> NaN
+dqmul630 multiply -Inf NaN -> NaN
+dqmul631 multiply -1000 NaN -> NaN
+dqmul632 multiply -1 NaN -> NaN
+dqmul633 multiply -0 NaN -> NaN
+dqmul634 multiply 0 NaN -> NaN
+dqmul635 multiply 1 NaN -> NaN
+dqmul636 multiply 1000 NaN -> NaN
+dqmul637 multiply Inf NaN -> NaN
+
+dqmul641 multiply sNaN -Inf -> NaN Invalid_operation
+dqmul642 multiply sNaN -1000 -> NaN Invalid_operation
+dqmul643 multiply sNaN -1 -> NaN Invalid_operation
+dqmul644 multiply sNaN -0 -> NaN Invalid_operation
+dqmul645 multiply sNaN 0 -> NaN Invalid_operation
+dqmul646 multiply sNaN 1 -> NaN Invalid_operation
+dqmul647 multiply sNaN 1000 -> NaN Invalid_operation
+dqmul648 multiply sNaN NaN -> NaN Invalid_operation
+dqmul649 multiply sNaN sNaN -> NaN Invalid_operation
+dqmul650 multiply NaN sNaN -> NaN Invalid_operation
+dqmul651 multiply -Inf sNaN -> NaN Invalid_operation
+dqmul652 multiply -1000 sNaN -> NaN Invalid_operation
+dqmul653 multiply -1 sNaN -> NaN Invalid_operation
+dqmul654 multiply -0 sNaN -> NaN Invalid_operation
+dqmul655 multiply 0 sNaN -> NaN Invalid_operation
+dqmul656 multiply 1 sNaN -> NaN Invalid_operation
+dqmul657 multiply 1000 sNaN -> NaN Invalid_operation
+dqmul658 multiply Inf sNaN -> NaN Invalid_operation
+dqmul659 multiply NaN sNaN -> NaN Invalid_operation
+
+-- propagating NaNs
+dqmul661 multiply NaN9 -Inf -> NaN9
+dqmul662 multiply NaN8 999 -> NaN8
+dqmul663 multiply NaN71 Inf -> NaN71
+dqmul664 multiply NaN6 NaN5 -> NaN6
+dqmul665 multiply -Inf NaN4 -> NaN4
+dqmul666 multiply -999 NaN33 -> NaN33
+dqmul667 multiply Inf NaN2 -> NaN2
+
+dqmul671 multiply sNaN99 -Inf -> NaN99 Invalid_operation
+dqmul672 multiply sNaN98 -11 -> NaN98 Invalid_operation
+dqmul673 multiply sNaN97 NaN -> NaN97 Invalid_operation
+dqmul674 multiply sNaN16 sNaN94 -> NaN16 Invalid_operation
+dqmul675 multiply NaN95 sNaN93 -> NaN93 Invalid_operation
+dqmul676 multiply -Inf sNaN92 -> NaN92 Invalid_operation
+dqmul677 multiply 088 sNaN91 -> NaN91 Invalid_operation
+dqmul678 multiply Inf sNaN90 -> NaN90 Invalid_operation
+dqmul679 multiply NaN sNaN89 -> NaN89 Invalid_operation
+
+dqmul681 multiply -NaN9 -Inf -> -NaN9
+dqmul682 multiply -NaN8 999 -> -NaN8
+dqmul683 multiply -NaN71 Inf -> -NaN71
+dqmul684 multiply -NaN6 -NaN5 -> -NaN6
+dqmul685 multiply -Inf -NaN4 -> -NaN4
+dqmul686 multiply -999 -NaN33 -> -NaN33
+dqmul687 multiply Inf -NaN2 -> -NaN2
+
+dqmul691 multiply -sNaN99 -Inf -> -NaN99 Invalid_operation
+dqmul692 multiply -sNaN98 -11 -> -NaN98 Invalid_operation
+dqmul693 multiply -sNaN97 NaN -> -NaN97 Invalid_operation
+dqmul694 multiply -sNaN16 -sNaN94 -> -NaN16 Invalid_operation
+dqmul695 multiply -NaN95 -sNaN93 -> -NaN93 Invalid_operation
+dqmul696 multiply -Inf -sNaN92 -> -NaN92 Invalid_operation
+dqmul697 multiply 088 -sNaN91 -> -NaN91 Invalid_operation
+dqmul698 multiply Inf -sNaN90 -> -NaN90 Invalid_operation
+dqmul699 multiply -NaN -sNaN89 -> -NaN89 Invalid_operation
+
+dqmul701 multiply -NaN -Inf -> -NaN
+dqmul702 multiply -NaN 999 -> -NaN
+dqmul703 multiply -NaN Inf -> -NaN
+dqmul704 multiply -NaN -NaN -> -NaN
+dqmul705 multiply -Inf -NaN0 -> -NaN
+dqmul706 multiply -999 -NaN -> -NaN
+dqmul707 multiply Inf -NaN -> -NaN
+
+dqmul711 multiply -sNaN -Inf -> -NaN Invalid_operation
+dqmul712 multiply -sNaN -11 -> -NaN Invalid_operation
+dqmul713 multiply -sNaN00 NaN -> -NaN Invalid_operation
+dqmul714 multiply -sNaN -sNaN -> -NaN Invalid_operation
+dqmul715 multiply -NaN -sNaN -> -NaN Invalid_operation
+dqmul716 multiply -Inf -sNaN -> -NaN Invalid_operation
+dqmul717 multiply 088 -sNaN -> -NaN Invalid_operation
+dqmul718 multiply Inf -sNaN -> -NaN Invalid_operation
+dqmul719 multiply -NaN -sNaN -> -NaN Invalid_operation
+
+-- overflow and underflow tests .. note subnormal results
+-- signs
+dqmul751 multiply 1e+4277 1e+3311 -> Infinity Overflow Inexact Rounded
+dqmul752 multiply 1e+4277 -1e+3311 -> -Infinity Overflow Inexact Rounded
+dqmul753 multiply -1e+4277 1e+3311 -> -Infinity Overflow Inexact Rounded
+dqmul754 multiply -1e+4277 -1e+3311 -> Infinity Overflow Inexact Rounded
+dqmul755 multiply 1e-4277 1e-3311 -> 0E-6176 Underflow Subnormal Inexact Rounded Clamped
+dqmul756 multiply 1e-4277 -1e-3311 -> -0E-6176 Underflow Subnormal Inexact Rounded Clamped
+dqmul757 multiply -1e-4277 1e-3311 -> -0E-6176 Underflow Subnormal Inexact Rounded Clamped
+dqmul758 multiply -1e-4277 -1e-3311 -> 0E-6176 Underflow Subnormal Inexact Rounded Clamped
+
+-- 'subnormal' boundary (all hard underflow or overflow in base arithemtic)
+dqmul760 multiply 1e-6069 1e-101 -> 1E-6170 Subnormal
+dqmul761 multiply 1e-6069 1e-102 -> 1E-6171 Subnormal
+dqmul762 multiply 1e-6069 1e-103 -> 1E-6172 Subnormal
+dqmul763 multiply 1e-6069 1e-104 -> 1E-6173 Subnormal
+dqmul764 multiply 1e-6069 1e-105 -> 1E-6174 Subnormal
+dqmul765 multiply 1e-6069 1e-106 -> 1E-6175 Subnormal
+dqmul766 multiply 1e-6069 1e-107 -> 1E-6176 Subnormal
+dqmul767 multiply 1e-6069 1e-108 -> 0E-6176 Underflow Subnormal Inexact Rounded Clamped
+dqmul768 multiply 1e-6069 1e-109 -> 0E-6176 Underflow Subnormal Inexact Rounded Clamped
+dqmul769 multiply 1e-6069 1e-110 -> 0E-6176 Underflow Subnormal Inexact Rounded Clamped
+-- [no equivalent of 'subnormal' for overflow]
+dqmul770 multiply 1e+40 1e+6101 -> 1.000000000000000000000000000000E+6141 Clamped
+dqmul771 multiply 1e+40 1e+6102 -> 1.0000000000000000000000000000000E+6142 Clamped
+dqmul772 multiply 1e+40 1e+6103 -> 1.00000000000000000000000000000000E+6143 Clamped
+dqmul773 multiply 1e+40 1e+6104 -> 1.000000000000000000000000000000000E+6144 Clamped
+dqmul774 multiply 1e+40 1e+6105 -> Infinity Overflow Inexact Rounded
+dqmul775 multiply 1e+40 1e+6106 -> Infinity Overflow Inexact Rounded
+dqmul776 multiply 1e+40 1e+6107 -> Infinity Overflow Inexact Rounded
+dqmul777 multiply 1e+40 1e+6108 -> Infinity Overflow Inexact Rounded
+dqmul778 multiply 1e+40 1e+6109 -> Infinity Overflow Inexact Rounded
+dqmul779 multiply 1e+40 1e+6110 -> Infinity Overflow Inexact Rounded
+
+dqmul801 multiply 1.0000E-6172 1 -> 1.0000E-6172 Subnormal
+dqmul802 multiply 1.000E-6172 1e-1 -> 1.000E-6173 Subnormal
+dqmul803 multiply 1.00E-6172 1e-2 -> 1.00E-6174 Subnormal
+dqmul804 multiply 1.0E-6172 1e-3 -> 1.0E-6175 Subnormal
+dqmul805 multiply 1.0E-6172 1e-4 -> 1E-6176 Subnormal Rounded
+dqmul806 multiply 1.3E-6172 1e-4 -> 1E-6176 Underflow Subnormal Inexact Rounded
+dqmul807 multiply 1.5E-6172 1e-4 -> 2E-6176 Underflow Subnormal Inexact Rounded
+dqmul808 multiply 1.7E-6172 1e-4 -> 2E-6176 Underflow Subnormal Inexact Rounded
+dqmul809 multiply 2.3E-6172 1e-4 -> 2E-6176 Underflow Subnormal Inexact Rounded
+dqmul810 multiply 2.5E-6172 1e-4 -> 2E-6176 Underflow Subnormal Inexact Rounded
+dqmul811 multiply 2.7E-6172 1e-4 -> 3E-6176 Underflow Subnormal Inexact Rounded
+dqmul812 multiply 1.49E-6172 1e-4 -> 1E-6176 Underflow Subnormal Inexact Rounded
+dqmul813 multiply 1.50E-6172 1e-4 -> 2E-6176 Underflow Subnormal Inexact Rounded
+dqmul814 multiply 1.51E-6172 1e-4 -> 2E-6176 Underflow Subnormal Inexact Rounded
+dqmul815 multiply 2.49E-6172 1e-4 -> 2E-6176 Underflow Subnormal Inexact Rounded
+dqmul816 multiply 2.50E-6172 1e-4 -> 2E-6176 Underflow Subnormal Inexact Rounded
+dqmul817 multiply 2.51E-6172 1e-4 -> 3E-6176 Underflow Subnormal Inexact Rounded
+
+dqmul818 multiply 1E-6172 1e-4 -> 1E-6176 Subnormal
+dqmul819 multiply 3E-6172 1e-5 -> 0E-6176 Underflow Subnormal Inexact Rounded Clamped
+dqmul820 multiply 5E-6172 1e-5 -> 0E-6176 Underflow Subnormal Inexact Rounded Clamped
+dqmul821 multiply 7E-6172 1e-5 -> 1E-6176 Underflow Subnormal Inexact Rounded
+dqmul822 multiply 9E-6172 1e-5 -> 1E-6176 Underflow Subnormal Inexact Rounded
+dqmul823 multiply 9.9E-6172 1e-5 -> 1E-6176 Underflow Subnormal Inexact Rounded
+
+dqmul824 multiply 1E-6172 -1e-4 -> -1E-6176 Subnormal
+dqmul825 multiply 3E-6172 -1e-5 -> -0E-6176 Underflow Subnormal Inexact Rounded Clamped
+dqmul826 multiply -5E-6172 1e-5 -> -0E-6176 Underflow Subnormal Inexact Rounded Clamped
+dqmul827 multiply 7E-6172 -1e-5 -> -1E-6176 Underflow Subnormal Inexact Rounded
+dqmul828 multiply -9E-6172 1e-5 -> -1E-6176 Underflow Subnormal Inexact Rounded
+dqmul829 multiply 9.9E-6172 -1e-5 -> -1E-6176 Underflow Subnormal Inexact Rounded
+dqmul830 multiply 3.0E-6172 -1e-5 -> -0E-6176 Underflow Subnormal Inexact Rounded Clamped
+
+dqmul831 multiply 1.0E-5977 1e-200 -> 0E-6176 Underflow Subnormal Inexact Rounded Clamped
+dqmul832 multiply 1.0E-5977 1e-199 -> 1E-6176 Subnormal Rounded
+dqmul833 multiply 1.0E-5977 1e-198 -> 1.0E-6175 Subnormal
+dqmul834 multiply 2.0E-5977 2e-198 -> 4.0E-6175 Subnormal
+dqmul835 multiply 4.0E-5977 4e-198 -> 1.60E-6174 Subnormal
+dqmul836 multiply 10.0E-5977 10e-198 -> 1.000E-6173 Subnormal
+dqmul837 multiply 30.0E-5977 30e-198 -> 9.000E-6173 Subnormal
+dqmul838 multiply 40.0E-5982 40e-166 -> 1.6000E-6145 Subnormal
+dqmul839 multiply 40.0E-5982 40e-165 -> 1.6000E-6144 Subnormal
+dqmul840 multiply 40.0E-5982 40e-164 -> 1.6000E-6143
+
+-- Long operand overflow may be a different path
+dqmul870 multiply 100 9.999E+6143 -> Infinity Inexact Overflow Rounded
+dqmul871 multiply 100 -9.999E+6143 -> -Infinity Inexact Overflow Rounded
+dqmul872 multiply 9.999E+6143 100 -> Infinity Inexact Overflow Rounded
+dqmul873 multiply -9.999E+6143 100 -> -Infinity Inexact Overflow Rounded
+
+-- check for double-rounded subnormals
+dqmul881 multiply 1.2347E-6133 1.2347E-40 -> 1.524E-6173 Inexact Rounded Subnormal Underflow
+dqmul882 multiply 1.234E-6133 1.234E-40 -> 1.523E-6173 Inexact Rounded Subnormal Underflow
+dqmul883 multiply 1.23E-6133 1.23E-40 -> 1.513E-6173 Inexact Rounded Subnormal Underflow
+dqmul884 multiply 1.2E-6133 1.2E-40 -> 1.44E-6173 Subnormal
+dqmul885 multiply 1.2E-6133 1.2E-41 -> 1.44E-6174 Subnormal
+dqmul886 multiply 1.2E-6133 1.2E-42 -> 1.4E-6175 Subnormal Inexact Rounded Underflow
+dqmul887 multiply 1.2E-6133 1.3E-42 -> 1.6E-6175 Subnormal Inexact Rounded Underflow
+dqmul888 multiply 1.3E-6133 1.3E-42 -> 1.7E-6175 Subnormal Inexact Rounded Underflow
+dqmul889 multiply 1.3E-6133 1.3E-43 -> 2E-6176 Subnormal Inexact Rounded Underflow
+dqmul890 multiply 1.3E-6134 1.3E-43 -> 0E-6176 Clamped Subnormal Inexact Rounded Underflow
+
+dqmul891 multiply 1.2345E-39 1.234E-6133 -> 1.5234E-6172 Inexact Rounded Subnormal Underflow
+dqmul892 multiply 1.23456E-39 1.234E-6133 -> 1.5234E-6172 Inexact Rounded Subnormal Underflow
+dqmul893 multiply 1.2345E-40 1.234E-6133 -> 1.523E-6173 Inexact Rounded Subnormal Underflow
+dqmul894 multiply 1.23456E-40 1.234E-6133 -> 1.523E-6173 Inexact Rounded Subnormal Underflow
+dqmul895 multiply 1.2345E-41 1.234E-6133 -> 1.52E-6174 Inexact Rounded Subnormal Underflow
+dqmul896 multiply 1.23456E-41 1.234E-6133 -> 1.52E-6174 Inexact Rounded Subnormal Underflow
+
+-- Now explore the case where we get a normal result with Underflow
+-- prove operands are exact
+dqmul906 multiply 9.999999999999999999999999999999999E-6143 1 -> 9.999999999999999999999999999999999E-6143
+dqmul907 multiply 1 0.09999999999999999999999999999999999 -> 0.09999999999999999999999999999999999
+-- the next rounds to Nmin
+dqmul908 multiply 9.999999999999999999999999999999999E-6143 0.09999999999999999999999999999999999 -> 1.000000000000000000000000000000000E-6143 Underflow Inexact Subnormal Rounded
+
+-- hugest
+dqmul909 multiply 9999999999999999999999999999999999 9999999999999999999999999999999999 -> 9.999999999999999999999999999999998E+67 Inexact Rounded
+
+-- Examples from SQL proposal (Krishna Kulkarni)
+precision: 34
+rounding: half_up
+maxExponent: 6144
+minExponent: -6143
+dqmul1001 multiply 130E-2 120E-2 -> 1.5600
+dqmul1002 multiply 130E-2 12E-1 -> 1.560
+dqmul1003 multiply 130E-2 1E0 -> 1.30
+dqmul1004 multiply 1E2 1E4 -> 1E+6
+
+-- Null tests
+dqmul990 multiply 10 # -> NaN Invalid_operation
+dqmul991 multiply # 10 -> NaN Invalid_operation
+
diff --git a/Lib/test/decimaltestdata/dqNextMinus.decTest b/Lib/test/decimaltestdata/dqNextMinus.decTest
new file mode 100644
index 0000000..4880816
--- /dev/null
+++ b/Lib/test/decimaltestdata/dqNextMinus.decTest
@@ -0,0 +1,126 @@
+------------------------------------------------------------------------
+-- dqNextMinus.decTest -- decQuad next that is less [754r nextdown] --
+-- Copyright (c) IBM Corporation, 1981, 2007. All rights reserved. --
+------------------------------------------------------------------------
+-- Please see the document "General Decimal Arithmetic Testcases" --
+-- at http://www2.hursley.ibm.com/decimal for the description of --
+-- these testcases. --
+-- --
+-- These testcases are experimental ('beta' versions), and they --
+-- may contain errors. They are offered on an as-is basis. In --
+-- particular, achieving the same results as the tests here is not --
+-- a guarantee that an implementation complies with any Standard --
+-- or specification. The tests are not exhaustive. --
+-- --
+-- Please send comments, suggestions, and corrections to the author: --
+-- Mike Cowlishaw, IBM Fellow --
+-- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK --
+-- mfc@uk.ibm.com --
+------------------------------------------------------------------------
+version: 2.56
+
+-- All operands and results are decQuads.
+extended: 1
+clamp: 1
+precision: 34
+maxExponent: 6144
+minExponent: -6143
+rounding: half_even
+
+dqnextm001 nextminus 0.9999999999999999999999999999999995 -> 0.9999999999999999999999999999999994
+dqnextm002 nextminus 0.9999999999999999999999999999999996 -> 0.9999999999999999999999999999999995
+dqnextm003 nextminus 0.9999999999999999999999999999999997 -> 0.9999999999999999999999999999999996
+dqnextm004 nextminus 0.9999999999999999999999999999999998 -> 0.9999999999999999999999999999999997
+dqnextm005 nextminus 0.9999999999999999999999999999999999 -> 0.9999999999999999999999999999999998
+dqnextm006 nextminus 1.000000000000000000000000000000000 -> 0.9999999999999999999999999999999999
+dqnextm007 nextminus 1.0 -> 0.9999999999999999999999999999999999
+dqnextm008 nextminus 1 -> 0.9999999999999999999999999999999999
+dqnextm009 nextminus 1.000000000000000000000000000000001 -> 1.000000000000000000000000000000000
+dqnextm010 nextminus 1.000000000000000000000000000000002 -> 1.000000000000000000000000000000001
+dqnextm011 nextminus 1.000000000000000000000000000000003 -> 1.000000000000000000000000000000002
+dqnextm012 nextminus 1.000000000000000000000000000000004 -> 1.000000000000000000000000000000003
+dqnextm013 nextminus 1.000000000000000000000000000000005 -> 1.000000000000000000000000000000004
+dqnextm014 nextminus 1.000000000000000000000000000000006 -> 1.000000000000000000000000000000005
+dqnextm015 nextminus 1.000000000000000000000000000000007 -> 1.000000000000000000000000000000006
+dqnextm016 nextminus 1.000000000000000000000000000000008 -> 1.000000000000000000000000000000007
+dqnextm017 nextminus 1.000000000000000000000000000000009 -> 1.000000000000000000000000000000008
+dqnextm018 nextminus 1.000000000000000000000000000000010 -> 1.000000000000000000000000000000009
+dqnextm019 nextminus 1.000000000000000000000000000000011 -> 1.000000000000000000000000000000010
+dqnextm020 nextminus 1.000000000000000000000000000000012 -> 1.000000000000000000000000000000011
+
+dqnextm021 nextminus -0.9999999999999999999999999999999995 -> -0.9999999999999999999999999999999996
+dqnextm022 nextminus -0.9999999999999999999999999999999996 -> -0.9999999999999999999999999999999997
+dqnextm023 nextminus -0.9999999999999999999999999999999997 -> -0.9999999999999999999999999999999998
+dqnextm024 nextminus -0.9999999999999999999999999999999998 -> -0.9999999999999999999999999999999999
+dqnextm025 nextminus -0.9999999999999999999999999999999999 -> -1.000000000000000000000000000000000
+dqnextm026 nextminus -1.000000000000000000000000000000000 -> -1.000000000000000000000000000000001
+dqnextm027 nextminus -1.0 -> -1.000000000000000000000000000000001
+dqnextm028 nextminus -1 -> -1.000000000000000000000000000000001
+dqnextm029 nextminus -1.000000000000000000000000000000001 -> -1.000000000000000000000000000000002
+dqnextm030 nextminus -1.000000000000000000000000000000002 -> -1.000000000000000000000000000000003
+dqnextm031 nextminus -1.000000000000000000000000000000003 -> -1.000000000000000000000000000000004
+dqnextm032 nextminus -1.000000000000000000000000000000004 -> -1.000000000000000000000000000000005
+dqnextm033 nextminus -1.000000000000000000000000000000005 -> -1.000000000000000000000000000000006
+dqnextm034 nextminus -1.000000000000000000000000000000006 -> -1.000000000000000000000000000000007
+dqnextm035 nextminus -1.000000000000000000000000000000007 -> -1.000000000000000000000000000000008
+dqnextm036 nextminus -1.000000000000000000000000000000008 -> -1.000000000000000000000000000000009
+dqnextm037 nextminus -1.000000000000000000000000000000009 -> -1.000000000000000000000000000000010
+dqnextm038 nextminus -1.000000000000000000000000000000010 -> -1.000000000000000000000000000000011
+dqnextm039 nextminus -1.000000000000000000000000000000011 -> -1.000000000000000000000000000000012
+
+-- ultra-tiny inputs
+dqnextm062 nextminus 1E-6176 -> 0E-6176
+dqnextm065 nextminus -1E-6176 -> -2E-6176
+
+-- Zeros
+dqnextm100 nextminus -0 -> -1E-6176
+dqnextm101 nextminus 0 -> -1E-6176
+dqnextm102 nextminus 0.00 -> -1E-6176
+dqnextm103 nextminus -0.00 -> -1E-6176
+dqnextm104 nextminus 0E-300 -> -1E-6176
+dqnextm105 nextminus 0E+300 -> -1E-6176
+dqnextm106 nextminus 0E+30000 -> -1E-6176
+dqnextm107 nextminus -0E+30000 -> -1E-6176
+
+-- specials
+dqnextm150 nextminus Inf -> 9.999999999999999999999999999999999E+6144
+dqnextm151 nextminus -Inf -> -Infinity
+dqnextm152 nextminus NaN -> NaN
+dqnextm153 nextminus sNaN -> NaN Invalid_operation
+dqnextm154 nextminus NaN77 -> NaN77
+dqnextm155 nextminus sNaN88 -> NaN88 Invalid_operation
+dqnextm156 nextminus -NaN -> -NaN
+dqnextm157 nextminus -sNaN -> -NaN Invalid_operation
+dqnextm158 nextminus -NaN77 -> -NaN77
+dqnextm159 nextminus -sNaN88 -> -NaN88 Invalid_operation
+
+-- Nmax, Nmin, Ntiny, subnormals
+dqnextm170 nextminus 9.999999999999999999999999999999999E+6144 -> 9.999999999999999999999999999999998E+6144
+dqnextm171 nextminus 9.999999999999999999999999999999998E+6144 -> 9.999999999999999999999999999999997E+6144
+dqnextm172 nextminus 1E-6143 -> 9.99999999999999999999999999999999E-6144
+dqnextm173 nextminus 1.000000000000000000000000000000000E-6143 -> 9.99999999999999999999999999999999E-6144
+dqnextm174 nextminus 9E-6176 -> 8E-6176
+dqnextm175 nextminus 9.9E-6175 -> 9.8E-6175
+dqnextm176 nextminus 9.99999999999999999999999999999E-6147 -> 9.99999999999999999999999999998E-6147
+dqnextm177 nextminus 9.99999999999999999999999999999999E-6144 -> 9.99999999999999999999999999999998E-6144
+dqnextm178 nextminus 9.99999999999999999999999999999998E-6144 -> 9.99999999999999999999999999999997E-6144
+dqnextm179 nextminus 9.99999999999999999999999999999997E-6144 -> 9.99999999999999999999999999999996E-6144
+dqnextm180 nextminus 0E-6176 -> -1E-6176
+dqnextm181 nextminus 1E-6176 -> 0E-6176
+dqnextm182 nextminus 2E-6176 -> 1E-6176
+
+dqnextm183 nextminus -0E-6176 -> -1E-6176
+dqnextm184 nextminus -1E-6176 -> -2E-6176
+dqnextm185 nextminus -2E-6176 -> -3E-6176
+dqnextm186 nextminus -10E-6176 -> -1.1E-6175
+dqnextm187 nextminus -100E-6176 -> -1.01E-6174
+dqnextm188 nextminus -100000E-6176 -> -1.00001E-6171
+dqnextm189 nextminus -1.00000000000000000000000000000E-6143 -> -1.000000000000000000000000000000001E-6143
+dqnextm190 nextminus -1.000000000000000000000000000000000E-6143 -> -1.000000000000000000000000000000001E-6143
+dqnextm191 nextminus -1E-6143 -> -1.000000000000000000000000000000001E-6143
+dqnextm192 nextminus -9.999999999999999999999999999999998E+6144 -> -9.999999999999999999999999999999999E+6144
+dqnextm193 nextminus -9.999999999999999999999999999999999E+6144 -> -Infinity
+
+-- Null tests
+dqnextm900 nextminus # -> NaN Invalid_operation
+
diff --git a/Lib/test/decimaltestdata/dqNextPlus.decTest b/Lib/test/decimaltestdata/dqNextPlus.decTest
new file mode 100644
index 0000000..8c0ac45
--- /dev/null
+++ b/Lib/test/decimaltestdata/dqNextPlus.decTest
@@ -0,0 +1,124 @@
+------------------------------------------------------------------------
+-- dqNextPlus.decTest -- decQuad next that is greater [754r nextup] --
+-- Copyright (c) IBM Corporation, 1981, 2007. All rights reserved. --
+------------------------------------------------------------------------
+-- Please see the document "General Decimal Arithmetic Testcases" --
+-- at http://www2.hursley.ibm.com/decimal for the description of --
+-- these testcases. --
+-- --
+-- These testcases are experimental ('beta' versions), and they --
+-- may contain errors. They are offered on an as-is basis. In --
+-- particular, achieving the same results as the tests here is not --
+-- a guarantee that an implementation complies with any Standard --
+-- or specification. The tests are not exhaustive. --
+-- --
+-- Please send comments, suggestions, and corrections to the author: --
+-- Mike Cowlishaw, IBM Fellow --
+-- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK --
+-- mfc@uk.ibm.com --
+------------------------------------------------------------------------
+version: 2.56
+
+-- All operands and results are decQuads.
+extended: 1
+clamp: 1
+precision: 34
+maxExponent: 6144
+minExponent: -6143
+rounding: half_even
+
+dqnextp001 nextplus 0.9999999999999999999999999999999995 -> 0.9999999999999999999999999999999996
+dqnextp002 nextplus 0.9999999999999999999999999999999996 -> 0.9999999999999999999999999999999997
+dqnextp003 nextplus 0.9999999999999999999999999999999997 -> 0.9999999999999999999999999999999998
+dqnextp004 nextplus 0.9999999999999999999999999999999998 -> 0.9999999999999999999999999999999999
+dqnextp005 nextplus 0.9999999999999999999999999999999999 -> 1.000000000000000000000000000000000
+dqnextp006 nextplus 1.000000000000000000000000000000000 -> 1.000000000000000000000000000000001
+dqnextp007 nextplus 1.0 -> 1.000000000000000000000000000000001
+dqnextp008 nextplus 1 -> 1.000000000000000000000000000000001
+dqnextp009 nextplus 1.000000000000000000000000000000001 -> 1.000000000000000000000000000000002
+dqnextp010 nextplus 1.000000000000000000000000000000002 -> 1.000000000000000000000000000000003
+dqnextp011 nextplus 1.000000000000000000000000000000003 -> 1.000000000000000000000000000000004
+dqnextp012 nextplus 1.000000000000000000000000000000004 -> 1.000000000000000000000000000000005
+dqnextp013 nextplus 1.000000000000000000000000000000005 -> 1.000000000000000000000000000000006
+dqnextp014 nextplus 1.000000000000000000000000000000006 -> 1.000000000000000000000000000000007
+dqnextp015 nextplus 1.000000000000000000000000000000007 -> 1.000000000000000000000000000000008
+dqnextp016 nextplus 1.000000000000000000000000000000008 -> 1.000000000000000000000000000000009
+dqnextp017 nextplus 1.000000000000000000000000000000009 -> 1.000000000000000000000000000000010
+dqnextp018 nextplus 1.000000000000000000000000000000010 -> 1.000000000000000000000000000000011
+dqnextp019 nextplus 1.000000000000000000000000000000011 -> 1.000000000000000000000000000000012
+
+dqnextp021 nextplus -0.9999999999999999999999999999999995 -> -0.9999999999999999999999999999999994
+dqnextp022 nextplus -0.9999999999999999999999999999999996 -> -0.9999999999999999999999999999999995
+dqnextp023 nextplus -0.9999999999999999999999999999999997 -> -0.9999999999999999999999999999999996
+dqnextp024 nextplus -0.9999999999999999999999999999999998 -> -0.9999999999999999999999999999999997
+dqnextp025 nextplus -0.9999999999999999999999999999999999 -> -0.9999999999999999999999999999999998
+dqnextp026 nextplus -1.000000000000000000000000000000000 -> -0.9999999999999999999999999999999999
+dqnextp027 nextplus -1.0 -> -0.9999999999999999999999999999999999
+dqnextp028 nextplus -1 -> -0.9999999999999999999999999999999999
+dqnextp029 nextplus -1.000000000000000000000000000000001 -> -1.000000000000000000000000000000000
+dqnextp030 nextplus -1.000000000000000000000000000000002 -> -1.000000000000000000000000000000001
+dqnextp031 nextplus -1.000000000000000000000000000000003 -> -1.000000000000000000000000000000002
+dqnextp032 nextplus -1.000000000000000000000000000000004 -> -1.000000000000000000000000000000003
+dqnextp033 nextplus -1.000000000000000000000000000000005 -> -1.000000000000000000000000000000004
+dqnextp034 nextplus -1.000000000000000000000000000000006 -> -1.000000000000000000000000000000005
+dqnextp035 nextplus -1.000000000000000000000000000000007 -> -1.000000000000000000000000000000006
+dqnextp036 nextplus -1.000000000000000000000000000000008 -> -1.000000000000000000000000000000007
+dqnextp037 nextplus -1.000000000000000000000000000000009 -> -1.000000000000000000000000000000008
+dqnextp038 nextplus -1.000000000000000000000000000000010 -> -1.000000000000000000000000000000009
+dqnextp039 nextplus -1.000000000000000000000000000000011 -> -1.000000000000000000000000000000010
+dqnextp040 nextplus -1.000000000000000000000000000000012 -> -1.000000000000000000000000000000011
+
+-- Zeros
+dqnextp100 nextplus 0 -> 1E-6176
+dqnextp101 nextplus 0.00 -> 1E-6176
+dqnextp102 nextplus 0E-300 -> 1E-6176
+dqnextp103 nextplus 0E+300 -> 1E-6176
+dqnextp104 nextplus 0E+30000 -> 1E-6176
+dqnextp105 nextplus -0 -> 1E-6176
+dqnextp106 nextplus -0.00 -> 1E-6176
+dqnextp107 nextplus -0E-300 -> 1E-6176
+dqnextp108 nextplus -0E+300 -> 1E-6176
+dqnextp109 nextplus -0E+30000 -> 1E-6176
+
+-- specials
+dqnextp150 nextplus Inf -> Infinity
+dqnextp151 nextplus -Inf -> -9.999999999999999999999999999999999E+6144
+dqnextp152 nextplus NaN -> NaN
+dqnextp153 nextplus sNaN -> NaN Invalid_operation
+dqnextp154 nextplus NaN77 -> NaN77
+dqnextp155 nextplus sNaN88 -> NaN88 Invalid_operation
+dqnextp156 nextplus -NaN -> -NaN
+dqnextp157 nextplus -sNaN -> -NaN Invalid_operation
+dqnextp158 nextplus -NaN77 -> -NaN77
+dqnextp159 nextplus -sNaN88 -> -NaN88 Invalid_operation
+
+-- Nmax, Nmin, Ntiny, subnormals
+dqnextp170 nextplus -9.999999999999999999999999999999999E+6144 -> -9.999999999999999999999999999999998E+6144
+dqnextp171 nextplus -9.999999999999999999999999999999998E+6144 -> -9.999999999999999999999999999999997E+6144
+dqnextp172 nextplus -1E-6143 -> -9.99999999999999999999999999999999E-6144
+dqnextp173 nextplus -1.000000000000000E-6143 -> -9.99999999999999999999999999999999E-6144
+dqnextp174 nextplus -9E-6176 -> -8E-6176
+dqnextp175 nextplus -9.9E-6175 -> -9.8E-6175
+dqnextp176 nextplus -9.99999999999999999999999999999E-6147 -> -9.99999999999999999999999999998E-6147
+dqnextp177 nextplus -9.99999999999999999999999999999999E-6144 -> -9.99999999999999999999999999999998E-6144
+dqnextp178 nextplus -9.99999999999999999999999999999998E-6144 -> -9.99999999999999999999999999999997E-6144
+dqnextp179 nextplus -9.99999999999999999999999999999997E-6144 -> -9.99999999999999999999999999999996E-6144
+dqnextp180 nextplus -0E-6176 -> 1E-6176
+dqnextp181 nextplus -1E-6176 -> -0E-6176
+dqnextp182 nextplus -2E-6176 -> -1E-6176
+
+dqnextp183 nextplus 0E-6176 -> 1E-6176
+dqnextp184 nextplus 1E-6176 -> 2E-6176
+dqnextp185 nextplus 2E-6176 -> 3E-6176
+dqnextp186 nextplus 10E-6176 -> 1.1E-6175
+dqnextp187 nextplus 100E-6176 -> 1.01E-6174
+dqnextp188 nextplus 100000E-6176 -> 1.00001E-6171
+dqnextp189 nextplus 1.00000000000000000000000000000E-6143 -> 1.000000000000000000000000000000001E-6143
+dqnextp190 nextplus 1.000000000000000000000000000000000E-6143 -> 1.000000000000000000000000000000001E-6143
+dqnextp191 nextplus 1E-6143 -> 1.000000000000000000000000000000001E-6143
+dqnextp192 nextplus 9.999999999999999999999999999999998E+6144 -> 9.999999999999999999999999999999999E+6144
+dqnextp193 nextplus 9.999999999999999999999999999999999E+6144 -> Infinity
+
+-- Null tests
+dqnextp900 nextplus # -> NaN Invalid_operation
+
diff --git a/Lib/test/decimaltestdata/dqNextToward.decTest b/Lib/test/decimaltestdata/dqNextToward.decTest
new file mode 100644
index 0000000..e534951
--- /dev/null
+++ b/Lib/test/decimaltestdata/dqNextToward.decTest
@@ -0,0 +1,375 @@
+------------------------------------------------------------------------
+-- dqNextToward.decTest -- decQuad next toward rhs [754r nextafter] --
+-- Copyright (c) IBM Corporation, 1981, 2007. All rights reserved. --
+------------------------------------------------------------------------
+-- Please see the document "General Decimal Arithmetic Testcases" --
+-- at http://www2.hursley.ibm.com/decimal for the description of --
+-- these testcases. --
+-- --
+-- These testcases are experimental ('beta' versions), and they --
+-- may contain errors. They are offered on an as-is basis. In --
+-- particular, achieving the same results as the tests here is not --
+-- a guarantee that an implementation complies with any Standard --
+-- or specification. The tests are not exhaustive. --
+-- --
+-- Please send comments, suggestions, and corrections to the author: --
+-- Mike Cowlishaw, IBM Fellow --
+-- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK --
+-- mfc@uk.ibm.com --
+------------------------------------------------------------------------
+version: 2.56
+
+-- All operands and results are decQuads.
+extended: 1
+clamp: 1
+precision: 34
+maxExponent: 6144
+minExponent: -6143
+rounding: half_even
+
+
+-- Sanity check with a scattering of numerics
+dqnextt001 nexttoward 10 10 -> 10
+dqnextt002 nexttoward -10 -10 -> -10
+dqnextt003 nexttoward 1 10 -> 1.000000000000000000000000000000001
+dqnextt004 nexttoward 1 -10 -> 0.9999999999999999999999999999999999
+dqnextt005 nexttoward -1 10 -> -0.9999999999999999999999999999999999
+dqnextt006 nexttoward -1 -10 -> -1.000000000000000000000000000000001
+dqnextt007 nexttoward 0 10 -> 1E-6176 Underflow Subnormal Inexact Rounded
+dqnextt008 nexttoward 0 -10 -> -1E-6176 Underflow Subnormal Inexact Rounded
+dqnextt009 nexttoward 9.999999999999999999999999999999999E+6144 +Infinity -> Infinity Overflow Inexact Rounded
+dqnextt010 nexttoward -9.999999999999999999999999999999999E+6144 -Infinity -> -Infinity Overflow Inexact Rounded
+dqnextt011 nexttoward 9.999999999999999999999999999999999 10 -> 10.00000000000000000000000000000000
+dqnextt012 nexttoward 10 9.999999999999999999999999999999999 -> 9.999999999999999999999999999999999
+dqnextt013 nexttoward -9.999999999999999999999999999999999 -10 -> -10.00000000000000000000000000000000
+dqnextt014 nexttoward -10 -9.999999999999999999999999999999999 -> -9.999999999999999999999999999999999
+dqnextt015 nexttoward 9.999999999999999999999999999999998 10 -> 9.999999999999999999999999999999999
+dqnextt016 nexttoward 10 9.999999999999999999999999999999998 -> 9.999999999999999999999999999999999
+dqnextt017 nexttoward -9.999999999999999999999999999999998 -10 -> -9.999999999999999999999999999999999
+dqnextt018 nexttoward -10 -9.999999999999999999999999999999998 -> -9.999999999999999999999999999999999
+
+------- lhs=rhs
+-- finites
+dqnextt101 nexttoward 7 7 -> 7
+dqnextt102 nexttoward -7 -7 -> -7
+dqnextt103 nexttoward 75 75 -> 75
+dqnextt104 nexttoward -75 -75 -> -75
+dqnextt105 nexttoward 7.50 7.5 -> 7.50
+dqnextt106 nexttoward -7.50 -7.50 -> -7.50
+dqnextt107 nexttoward 7.500 7.5000 -> 7.500
+dqnextt108 nexttoward -7.500 -7.5 -> -7.500
+
+-- zeros
+dqnextt111 nexttoward 0 0 -> 0
+dqnextt112 nexttoward -0 -0 -> -0
+dqnextt113 nexttoward 0E+4 0 -> 0E+4
+dqnextt114 nexttoward -0E+4 -0 -> -0E+4
+dqnextt115 nexttoward 0.00000000000 0.000000000000 -> 0E-11
+dqnextt116 nexttoward -0.00000000000 -0.00 -> -0E-11
+dqnextt117 nexttoward 0E-141 0 -> 0E-141
+dqnextt118 nexttoward -0E-141 -000 -> -0E-141
+
+-- full coefficients, alternating bits
+dqnextt121 nexttoward 268268268 268268268 -> 268268268
+dqnextt122 nexttoward -268268268 -268268268 -> -268268268
+dqnextt123 nexttoward 134134134 134134134 -> 134134134
+dqnextt124 nexttoward -134134134 -134134134 -> -134134134
+
+-- Nmax, Nmin, Ntiny
+dqnextt131 nexttoward 9.999999999999999999999999999999999E+6144 9.999999999999999999999999999999999E+6144 -> 9.999999999999999999999999999999999E+6144
+dqnextt132 nexttoward 1E-6143 1E-6143 -> 1E-6143
+dqnextt133 nexttoward 1.000000000000000000000000000000000E-6143 1.000000000000000000000000000000000E-6143 -> 1.000000000000000000000000000000000E-6143
+dqnextt134 nexttoward 1E-6176 1E-6176 -> 1E-6176
+
+dqnextt135 nexttoward -1E-6176 -1E-6176 -> -1E-6176
+dqnextt136 nexttoward -1.000000000000000000000000000000000E-6143 -1.000000000000000000000000000000000E-6143 -> -1.000000000000000000000000000000000E-6143
+dqnextt137 nexttoward -1E-6143 -1E-6143 -> -1E-6143
+dqnextt138 nexttoward -9.999999999999999999999999999999999E+6144 -9.999999999999999999999999999999999E+6144 -> -9.999999999999999999999999999999999E+6144
+
+------- lhs<rhs
+dqnextt201 nexttoward 0.9999999999999999999999999999999995 Infinity -> 0.9999999999999999999999999999999996
+dqnextt202 nexttoward 0.9999999999999999999999999999999996 Infinity -> 0.9999999999999999999999999999999997
+dqnextt203 nexttoward 0.9999999999999999999999999999999997 Infinity -> 0.9999999999999999999999999999999998
+dqnextt204 nexttoward 0.9999999999999999999999999999999998 Infinity -> 0.9999999999999999999999999999999999
+dqnextt205 nexttoward 0.9999999999999999999999999999999999 Infinity -> 1.000000000000000000000000000000000
+dqnextt206 nexttoward 1.000000000000000000000000000000000 Infinity -> 1.000000000000000000000000000000001
+dqnextt207 nexttoward 1.0 Infinity -> 1.000000000000000000000000000000001
+dqnextt208 nexttoward 1 Infinity -> 1.000000000000000000000000000000001
+dqnextt209 nexttoward 1.000000000000000000000000000000001 Infinity -> 1.000000000000000000000000000000002
+dqnextt210 nexttoward 1.000000000000000000000000000000002 Infinity -> 1.000000000000000000000000000000003
+dqnextt211 nexttoward 1.000000000000000000000000000000003 Infinity -> 1.000000000000000000000000000000004
+dqnextt212 nexttoward 1.000000000000000000000000000000004 Infinity -> 1.000000000000000000000000000000005
+dqnextt213 nexttoward 1.000000000000000000000000000000005 Infinity -> 1.000000000000000000000000000000006
+dqnextt214 nexttoward 1.000000000000000000000000000000006 Infinity -> 1.000000000000000000000000000000007
+dqnextt215 nexttoward 1.000000000000000000000000000000007 Infinity -> 1.000000000000000000000000000000008
+dqnextt216 nexttoward 1.000000000000000000000000000000008 Infinity -> 1.000000000000000000000000000000009
+dqnextt217 nexttoward 1.000000000000000000000000000000009 Infinity -> 1.000000000000000000000000000000010
+dqnextt218 nexttoward 1.000000000000000000000000000000010 Infinity -> 1.000000000000000000000000000000011
+dqnextt219 nexttoward 1.000000000000000000000000000000011 Infinity -> 1.000000000000000000000000000000012
+
+dqnextt221 nexttoward -0.9999999999999999999999999999999995 Infinity -> -0.9999999999999999999999999999999994
+dqnextt222 nexttoward -0.9999999999999999999999999999999996 Infinity -> -0.9999999999999999999999999999999995
+dqnextt223 nexttoward -0.9999999999999999999999999999999997 Infinity -> -0.9999999999999999999999999999999996
+dqnextt224 nexttoward -0.9999999999999999999999999999999998 Infinity -> -0.9999999999999999999999999999999997
+dqnextt225 nexttoward -0.9999999999999999999999999999999999 Infinity -> -0.9999999999999999999999999999999998
+dqnextt226 nexttoward -1.000000000000000000000000000000000 Infinity -> -0.9999999999999999999999999999999999
+dqnextt227 nexttoward -1.0 Infinity -> -0.9999999999999999999999999999999999
+dqnextt228 nexttoward -1 Infinity -> -0.9999999999999999999999999999999999
+dqnextt229 nexttoward -1.000000000000000000000000000000001 Infinity -> -1.000000000000000000000000000000000
+dqnextt230 nexttoward -1.000000000000000000000000000000002 Infinity -> -1.000000000000000000000000000000001
+dqnextt231 nexttoward -1.000000000000000000000000000000003 Infinity -> -1.000000000000000000000000000000002
+dqnextt232 nexttoward -1.000000000000000000000000000000004 Infinity -> -1.000000000000000000000000000000003
+dqnextt233 nexttoward -1.000000000000000000000000000000005 Infinity -> -1.000000000000000000000000000000004
+dqnextt234 nexttoward -1.000000000000000000000000000000006 Infinity -> -1.000000000000000000000000000000005
+dqnextt235 nexttoward -1.000000000000000000000000000000007 Infinity -> -1.000000000000000000000000000000006
+dqnextt236 nexttoward -1.000000000000000000000000000000008 Infinity -> -1.000000000000000000000000000000007
+dqnextt237 nexttoward -1.000000000000000000000000000000009 Infinity -> -1.000000000000000000000000000000008
+dqnextt238 nexttoward -1.000000000000000000000000000000010 Infinity -> -1.000000000000000000000000000000009
+dqnextt239 nexttoward -1.000000000000000000000000000000011 Infinity -> -1.000000000000000000000000000000010
+dqnextt240 nexttoward -1.000000000000000000000000000000012 Infinity -> -1.000000000000000000000000000000011
+
+-- Zeros
+dqnextt300 nexttoward 0 Infinity -> 1E-6176 Underflow Subnormal Inexact Rounded
+dqnextt301 nexttoward 0.00 Infinity -> 1E-6176 Underflow Subnormal Inexact Rounded
+dqnextt302 nexttoward 0E-300 Infinity -> 1E-6176 Underflow Subnormal Inexact Rounded
+dqnextt303 nexttoward 0E+300 Infinity -> 1E-6176 Underflow Subnormal Inexact Rounded
+dqnextt304 nexttoward 0E+30000 Infinity -> 1E-6176 Underflow Subnormal Inexact Rounded
+dqnextt305 nexttoward -0 Infinity -> 1E-6176 Underflow Subnormal Inexact Rounded
+dqnextt306 nexttoward -0.00 Infinity -> 1E-6176 Underflow Subnormal Inexact Rounded
+dqnextt307 nexttoward -0E-300 Infinity -> 1E-6176 Underflow Subnormal Inexact Rounded
+dqnextt308 nexttoward -0E+300 Infinity -> 1E-6176 Underflow Subnormal Inexact Rounded
+dqnextt309 nexttoward -0E+30000 Infinity -> 1E-6176 Underflow Subnormal Inexact Rounded
+
+-- specials
+dqnextt350 nexttoward Inf Infinity -> Infinity
+dqnextt351 nexttoward -Inf Infinity -> -9.999999999999999999999999999999999E+6144
+dqnextt352 nexttoward NaN Infinity -> NaN
+dqnextt353 nexttoward sNaN Infinity -> NaN Invalid_operation
+dqnextt354 nexttoward NaN77 Infinity -> NaN77
+dqnextt355 nexttoward sNaN88 Infinity -> NaN88 Invalid_operation
+dqnextt356 nexttoward -NaN Infinity -> -NaN
+dqnextt357 nexttoward -sNaN Infinity -> -NaN Invalid_operation
+dqnextt358 nexttoward -NaN77 Infinity -> -NaN77
+dqnextt359 nexttoward -sNaN88 Infinity -> -NaN88 Invalid_operation
+
+-- Nmax, Nmin, Ntiny, subnormals
+dqnextt370 nexttoward -9.999999999999999999999999999999999E+6144 Infinity -> -9.999999999999999999999999999999998E+6144
+dqnextt371 nexttoward -9.999999999999999999999999999999998E+6144 Infinity -> -9.999999999999999999999999999999997E+6144
+dqnextt372 nexttoward -1E-6143 Infinity -> -9.99999999999999999999999999999999E-6144 Underflow Subnormal Inexact Rounded
+dqnextt373 nexttoward -1.000000000000000E-6143 Infinity -> -9.99999999999999999999999999999999E-6144 Underflow Subnormal Inexact Rounded
+dqnextt374 nexttoward -9E-6176 Infinity -> -8E-6176 Underflow Subnormal Inexact Rounded
+dqnextt375 nexttoward -9.9E-6175 Infinity -> -9.8E-6175 Underflow Subnormal Inexact Rounded
+dqnextt376 nexttoward -9.99999999999999999999999999999E-6147 Infinity -> -9.99999999999999999999999999998E-6147 Underflow Subnormal Inexact Rounded
+dqnextt377 nexttoward -9.99999999999999999999999999999999E-6144 Infinity -> -9.99999999999999999999999999999998E-6144 Underflow Subnormal Inexact Rounded
+dqnextt378 nexttoward -9.99999999999999999999999999999998E-6144 Infinity -> -9.99999999999999999999999999999997E-6144 Underflow Subnormal Inexact Rounded
+dqnextt379 nexttoward -9.99999999999999999999999999999997E-6144 Infinity -> -9.99999999999999999999999999999996E-6144 Underflow Subnormal Inexact Rounded
+dqnextt380 nexttoward -0E-6176 Infinity -> 1E-6176 Underflow Subnormal Inexact Rounded
+dqnextt381 nexttoward -1E-6176 Infinity -> -0E-6176 Underflow Subnormal Inexact Rounded Clamped
+dqnextt382 nexttoward -2E-6176 Infinity -> -1E-6176 Underflow Subnormal Inexact Rounded
+
+dqnextt383 nexttoward 0E-6176 Infinity -> 1E-6176 Underflow Subnormal Inexact Rounded
+dqnextt384 nexttoward 1E-6176 Infinity -> 2E-6176 Underflow Subnormal Inexact Rounded
+dqnextt385 nexttoward 2E-6176 Infinity -> 3E-6176 Underflow Subnormal Inexact Rounded
+dqnextt386 nexttoward 10E-6176 Infinity -> 1.1E-6175 Underflow Subnormal Inexact Rounded
+dqnextt387 nexttoward 100E-6176 Infinity -> 1.01E-6174 Underflow Subnormal Inexact Rounded
+dqnextt388 nexttoward 100000E-6176 Infinity -> 1.00001E-6171 Underflow Subnormal Inexact Rounded
+dqnextt389 nexttoward 1.00000000000000000000000000000E-6143 Infinity -> 1.000000000000000000000000000000001E-6143
+dqnextt390 nexttoward 1.000000000000000000000000000000000E-6143 Infinity -> 1.000000000000000000000000000000001E-6143
+dqnextt391 nexttoward 1E-6143 Infinity -> 1.000000000000000000000000000000001E-6143
+dqnextt392 nexttoward 9.999999999999999999999999999999997E+6144 Infinity -> 9.999999999999999999999999999999998E+6144
+dqnextt393 nexttoward 9.999999999999999999999999999999998E+6144 Infinity -> 9.999999999999999999999999999999999E+6144
+dqnextt394 nexttoward 9.999999999999999999999999999999999E+6144 Infinity -> Infinity Overflow Inexact Rounded
+
+------- lhs>rhs
+dqnextt401 nexttoward 0.9999999999999999999999999999999995 -Infinity -> 0.9999999999999999999999999999999994
+dqnextt402 nexttoward 0.9999999999999999999999999999999996 -Infinity -> 0.9999999999999999999999999999999995
+dqnextt403 nexttoward 0.9999999999999999999999999999999997 -Infinity -> 0.9999999999999999999999999999999996
+dqnextt404 nexttoward 0.9999999999999999999999999999999998 -Infinity -> 0.9999999999999999999999999999999997
+dqnextt405 nexttoward 0.9999999999999999999999999999999999 -Infinity -> 0.9999999999999999999999999999999998
+dqnextt406 nexttoward 1.000000000000000000000000000000000 -Infinity -> 0.9999999999999999999999999999999999
+dqnextt407 nexttoward 1.0 -Infinity -> 0.9999999999999999999999999999999999
+dqnextt408 nexttoward 1 -Infinity -> 0.9999999999999999999999999999999999
+dqnextt409 nexttoward 1.000000000000000000000000000000001 -Infinity -> 1.000000000000000000000000000000000
+dqnextt410 nexttoward 1.000000000000000000000000000000002 -Infinity -> 1.000000000000000000000000000000001
+dqnextt411 nexttoward 1.000000000000000000000000000000003 -Infinity -> 1.000000000000000000000000000000002
+dqnextt412 nexttoward 1.000000000000000000000000000000004 -Infinity -> 1.000000000000000000000000000000003
+dqnextt413 nexttoward 1.000000000000000000000000000000005 -Infinity -> 1.000000000000000000000000000000004
+dqnextt414 nexttoward 1.000000000000000000000000000000006 -Infinity -> 1.000000000000000000000000000000005
+dqnextt415 nexttoward 1.000000000000000000000000000000007 -Infinity -> 1.000000000000000000000000000000006
+dqnextt416 nexttoward 1.000000000000000000000000000000008 -Infinity -> 1.000000000000000000000000000000007
+dqnextt417 nexttoward 1.000000000000000000000000000000009 -Infinity -> 1.000000000000000000000000000000008
+dqnextt418 nexttoward 1.000000000000000000000000000000010 -Infinity -> 1.000000000000000000000000000000009
+dqnextt419 nexttoward 1.000000000000000000000000000000011 -Infinity -> 1.000000000000000000000000000000010
+dqnextt420 nexttoward 1.000000000000000000000000000000012 -Infinity -> 1.000000000000000000000000000000011
+
+dqnextt421 nexttoward -0.9999999999999999999999999999999995 -Infinity -> -0.9999999999999999999999999999999996
+dqnextt422 nexttoward -0.9999999999999999999999999999999996 -Infinity -> -0.9999999999999999999999999999999997
+dqnextt423 nexttoward -0.9999999999999999999999999999999997 -Infinity -> -0.9999999999999999999999999999999998
+dqnextt424 nexttoward -0.9999999999999999999999999999999998 -Infinity -> -0.9999999999999999999999999999999999
+dqnextt425 nexttoward -0.9999999999999999999999999999999999 -Infinity -> -1.000000000000000000000000000000000
+dqnextt426 nexttoward -1.000000000000000000000000000000000 -Infinity -> -1.000000000000000000000000000000001
+dqnextt427 nexttoward -1.0 -Infinity -> -1.000000000000000000000000000000001
+dqnextt428 nexttoward -1 -Infinity -> -1.000000000000000000000000000000001
+dqnextt429 nexttoward -1.000000000000000000000000000000001 -Infinity -> -1.000000000000000000000000000000002
+dqnextt430 nexttoward -1.000000000000000000000000000000002 -Infinity -> -1.000000000000000000000000000000003
+dqnextt431 nexttoward -1.000000000000000000000000000000003 -Infinity -> -1.000000000000000000000000000000004
+dqnextt432 nexttoward -1.000000000000000000000000000000004 -Infinity -> -1.000000000000000000000000000000005
+dqnextt433 nexttoward -1.000000000000000000000000000000005 -Infinity -> -1.000000000000000000000000000000006
+dqnextt434 nexttoward -1.000000000000000000000000000000006 -Infinity -> -1.000000000000000000000000000000007
+dqnextt435 nexttoward -1.000000000000000000000000000000007 -Infinity -> -1.000000000000000000000000000000008
+dqnextt436 nexttoward -1.000000000000000000000000000000008 -Infinity -> -1.000000000000000000000000000000009
+dqnextt437 nexttoward -1.000000000000000000000000000000009 -Infinity -> -1.000000000000000000000000000000010
+dqnextt438 nexttoward -1.000000000000000000000000000000010 -Infinity -> -1.000000000000000000000000000000011
+dqnextt439 nexttoward -1.000000000000000000000000000000011 -Infinity -> -1.000000000000000000000000000000012
+
+-- Zeros
+dqnextt500 nexttoward -0 -Infinity -> -1E-6176 Underflow Subnormal Inexact Rounded
+dqnextt501 nexttoward 0 -Infinity -> -1E-6176 Underflow Subnormal Inexact Rounded
+dqnextt502 nexttoward 0.00 -Infinity -> -1E-6176 Underflow Subnormal Inexact Rounded
+dqnextt503 nexttoward -0.00 -Infinity -> -1E-6176 Underflow Subnormal Inexact Rounded
+dqnextt504 nexttoward 0E-300 -Infinity -> -1E-6176 Underflow Subnormal Inexact Rounded
+dqnextt505 nexttoward 0E+300 -Infinity -> -1E-6176 Underflow Subnormal Inexact Rounded
+dqnextt506 nexttoward 0E+30000 -Infinity -> -1E-6176 Underflow Subnormal Inexact Rounded
+dqnextt507 nexttoward -0E+30000 -Infinity -> -1E-6176 Underflow Subnormal Inexact Rounded
+
+-- specials
+dqnextt550 nexttoward Inf -Infinity -> 9.999999999999999999999999999999999E+6144
+dqnextt551 nexttoward -Inf -Infinity -> -Infinity
+dqnextt552 nexttoward NaN -Infinity -> NaN
+dqnextt553 nexttoward sNaN -Infinity -> NaN Invalid_operation
+dqnextt554 nexttoward NaN77 -Infinity -> NaN77
+dqnextt555 nexttoward sNaN88 -Infinity -> NaN88 Invalid_operation
+dqnextt556 nexttoward -NaN -Infinity -> -NaN
+dqnextt557 nexttoward -sNaN -Infinity -> -NaN Invalid_operation
+dqnextt558 nexttoward -NaN77 -Infinity -> -NaN77
+dqnextt559 nexttoward -sNaN88 -Infinity -> -NaN88 Invalid_operation
+
+-- Nmax, Nmin, Ntiny, subnormals
+dqnextt670 nexttoward 9.999999999999999999999999999999999E+6144 -Infinity -> 9.999999999999999999999999999999998E+6144
+dqnextt671 nexttoward 9.999999999999999999999999999999998E+6144 -Infinity -> 9.999999999999999999999999999999997E+6144
+dqnextt672 nexttoward 1E-6143 -Infinity -> 9.99999999999999999999999999999999E-6144 Underflow Subnormal Inexact Rounded
+dqnextt673 nexttoward 1.000000000000000000000000000000000E-6143 -Infinity -> 9.99999999999999999999999999999999E-6144 Underflow Subnormal Inexact Rounded
+dqnextt674 nexttoward 9E-6176 -Infinity -> 8E-6176 Underflow Subnormal Inexact Rounded
+dqnextt675 nexttoward 9.9E-6175 -Infinity -> 9.8E-6175 Underflow Subnormal Inexact Rounded
+dqnextt676 nexttoward 9.99999999999999999999999999999E-6147 -Infinity -> 9.99999999999999999999999999998E-6147 Underflow Subnormal Inexact Rounded
+dqnextt677 nexttoward 9.99999999999999999999999999999999E-6144 -Infinity -> 9.99999999999999999999999999999998E-6144 Underflow Subnormal Inexact Rounded
+dqnextt678 nexttoward 9.99999999999999999999999999999998E-6144 -Infinity -> 9.99999999999999999999999999999997E-6144 Underflow Subnormal Inexact Rounded
+dqnextt679 nexttoward 9.99999999999999999999999999999997E-6144 -Infinity -> 9.99999999999999999999999999999996E-6144 Underflow Subnormal Inexact Rounded
+dqnextt680 nexttoward 0E-6176 -Infinity -> -1E-6176 Underflow Subnormal Inexact Rounded
+dqnextt681 nexttoward 1E-6176 -Infinity -> 0E-6176 Underflow Subnormal Inexact Rounded Clamped
+dqnextt682 nexttoward 2E-6176 -Infinity -> 1E-6176 Underflow Subnormal Inexact Rounded
+
+dqnextt683 nexttoward -0E-6176 -Infinity -> -1E-6176 Underflow Subnormal Inexact Rounded
+dqnextt684 nexttoward -1E-6176 -Infinity -> -2E-6176 Underflow Subnormal Inexact Rounded
+dqnextt685 nexttoward -2E-6176 -Infinity -> -3E-6176 Underflow Subnormal Inexact Rounded
+dqnextt686 nexttoward -10E-6176 -Infinity -> -1.1E-6175 Underflow Subnormal Inexact Rounded
+dqnextt687 nexttoward -100E-6176 -Infinity -> -1.01E-6174 Underflow Subnormal Inexact Rounded
+dqnextt688 nexttoward -100000E-6176 -Infinity -> -1.00001E-6171 Underflow Subnormal Inexact Rounded
+dqnextt689 nexttoward -1.00000000000000000000000000000E-6143 -Infinity -> -1.000000000000000000000000000000001E-6143
+dqnextt690 nexttoward -1.000000000000000000000000000000000E-6143 -Infinity -> -1.000000000000000000000000000000001E-6143
+dqnextt691 nexttoward -1E-6143 -Infinity -> -1.000000000000000000000000000000001E-6143
+dqnextt692 nexttoward -9.999999999999999999999999999999998E+6144 -Infinity -> -9.999999999999999999999999999999999E+6144
+dqnextt693 nexttoward -9.999999999999999999999999999999999E+6144 -Infinity -> -Infinity Overflow Inexact Rounded
+
+------- Specials
+dqnextt780 nexttoward -Inf -Inf -> -Infinity
+dqnextt781 nexttoward -Inf -1000 -> -9.999999999999999999999999999999999E+6144
+dqnextt782 nexttoward -Inf -1 -> -9.999999999999999999999999999999999E+6144
+dqnextt783 nexttoward -Inf -0 -> -9.999999999999999999999999999999999E+6144
+dqnextt784 nexttoward -Inf 0 -> -9.999999999999999999999999999999999E+6144
+dqnextt785 nexttoward -Inf 1 -> -9.999999999999999999999999999999999E+6144
+dqnextt786 nexttoward -Inf 1000 -> -9.999999999999999999999999999999999E+6144
+dqnextt787 nexttoward -1000 -Inf -> -1000.000000000000000000000000000001
+dqnextt788 nexttoward -Inf -Inf -> -Infinity
+dqnextt789 nexttoward -1 -Inf -> -1.000000000000000000000000000000001
+dqnextt790 nexttoward -0 -Inf -> -1E-6176 Underflow Subnormal Inexact Rounded
+dqnextt791 nexttoward 0 -Inf -> -1E-6176 Underflow Subnormal Inexact Rounded
+dqnextt792 nexttoward 1 -Inf -> 0.9999999999999999999999999999999999
+dqnextt793 nexttoward 1000 -Inf -> 999.9999999999999999999999999999999
+dqnextt794 nexttoward Inf -Inf -> 9.999999999999999999999999999999999E+6144
+
+dqnextt800 nexttoward Inf -Inf -> 9.999999999999999999999999999999999E+6144
+dqnextt801 nexttoward Inf -1000 -> 9.999999999999999999999999999999999E+6144
+dqnextt802 nexttoward Inf -1 -> 9.999999999999999999999999999999999E+6144
+dqnextt803 nexttoward Inf -0 -> 9.999999999999999999999999999999999E+6144
+dqnextt804 nexttoward Inf 0 -> 9.999999999999999999999999999999999E+6144
+dqnextt805 nexttoward Inf 1 -> 9.999999999999999999999999999999999E+6144
+dqnextt806 nexttoward Inf 1000 -> 9.999999999999999999999999999999999E+6144
+dqnextt807 nexttoward Inf Inf -> Infinity
+dqnextt808 nexttoward -1000 Inf -> -999.9999999999999999999999999999999
+dqnextt809 nexttoward -Inf Inf -> -9.999999999999999999999999999999999E+6144
+dqnextt810 nexttoward -1 Inf -> -0.9999999999999999999999999999999999
+dqnextt811 nexttoward -0 Inf -> 1E-6176 Underflow Subnormal Inexact Rounded
+dqnextt812 nexttoward 0 Inf -> 1E-6176 Underflow Subnormal Inexact Rounded
+dqnextt813 nexttoward 1 Inf -> 1.000000000000000000000000000000001
+dqnextt814 nexttoward 1000 Inf -> 1000.000000000000000000000000000001
+dqnextt815 nexttoward Inf Inf -> Infinity
+
+dqnextt821 nexttoward NaN -Inf -> NaN
+dqnextt822 nexttoward NaN -1000 -> NaN
+dqnextt823 nexttoward NaN -1 -> NaN
+dqnextt824 nexttoward NaN -0 -> NaN
+dqnextt825 nexttoward NaN 0 -> NaN
+dqnextt826 nexttoward NaN 1 -> NaN
+dqnextt827 nexttoward NaN 1000 -> NaN
+dqnextt828 nexttoward NaN Inf -> NaN
+dqnextt829 nexttoward NaN NaN -> NaN
+dqnextt830 nexttoward -Inf NaN -> NaN
+dqnextt831 nexttoward -1000 NaN -> NaN
+dqnextt832 nexttoward -1 NaN -> NaN
+dqnextt833 nexttoward -0 NaN -> NaN
+dqnextt834 nexttoward 0 NaN -> NaN
+dqnextt835 nexttoward 1 NaN -> NaN
+dqnextt836 nexttoward 1000 NaN -> NaN
+dqnextt837 nexttoward Inf NaN -> NaN
+
+dqnextt841 nexttoward sNaN -Inf -> NaN Invalid_operation
+dqnextt842 nexttoward sNaN -1000 -> NaN Invalid_operation
+dqnextt843 nexttoward sNaN -1 -> NaN Invalid_operation
+dqnextt844 nexttoward sNaN -0 -> NaN Invalid_operation
+dqnextt845 nexttoward sNaN 0 -> NaN Invalid_operation
+dqnextt846 nexttoward sNaN 1 -> NaN Invalid_operation
+dqnextt847 nexttoward sNaN 1000 -> NaN Invalid_operation
+dqnextt848 nexttoward sNaN NaN -> NaN Invalid_operation
+dqnextt849 nexttoward sNaN sNaN -> NaN Invalid_operation
+dqnextt850 nexttoward NaN sNaN -> NaN Invalid_operation
+dqnextt851 nexttoward -Inf sNaN -> NaN Invalid_operation
+dqnextt852 nexttoward -1000 sNaN -> NaN Invalid_operation
+dqnextt853 nexttoward -1 sNaN -> NaN Invalid_operation
+dqnextt854 nexttoward -0 sNaN -> NaN Invalid_operation
+dqnextt855 nexttoward 0 sNaN -> NaN Invalid_operation
+dqnextt856 nexttoward 1 sNaN -> NaN Invalid_operation
+dqnextt857 nexttoward 1000 sNaN -> NaN Invalid_operation
+dqnextt858 nexttoward Inf sNaN -> NaN Invalid_operation
+dqnextt859 nexttoward NaN sNaN -> NaN Invalid_operation
+
+-- propagating NaNs
+dqnextt861 nexttoward NaN1 -Inf -> NaN1
+dqnextt862 nexttoward +NaN2 -1000 -> NaN2
+dqnextt863 nexttoward NaN3 1000 -> NaN3
+dqnextt864 nexttoward NaN4 Inf -> NaN4
+dqnextt865 nexttoward NaN5 +NaN6 -> NaN5
+dqnextt866 nexttoward -Inf NaN7 -> NaN7
+dqnextt867 nexttoward -1000 NaN8 -> NaN8
+dqnextt868 nexttoward 1000 NaN9 -> NaN9
+dqnextt869 nexttoward Inf +NaN10 -> NaN10
+dqnextt871 nexttoward sNaN11 -Inf -> NaN11 Invalid_operation
+dqnextt872 nexttoward sNaN12 -1000 -> NaN12 Invalid_operation
+dqnextt873 nexttoward sNaN13 1000 -> NaN13 Invalid_operation
+dqnextt874 nexttoward sNaN14 NaN17 -> NaN14 Invalid_operation
+dqnextt875 nexttoward sNaN15 sNaN18 -> NaN15 Invalid_operation
+dqnextt876 nexttoward NaN16 sNaN19 -> NaN19 Invalid_operation
+dqnextt877 nexttoward -Inf +sNaN20 -> NaN20 Invalid_operation
+dqnextt878 nexttoward -1000 sNaN21 -> NaN21 Invalid_operation
+dqnextt879 nexttoward 1000 sNaN22 -> NaN22 Invalid_operation
+dqnextt880 nexttoward Inf sNaN23 -> NaN23 Invalid_operation
+dqnextt881 nexttoward +NaN25 +sNaN24 -> NaN24 Invalid_operation
+dqnextt882 nexttoward -NaN26 NaN28 -> -NaN26
+dqnextt883 nexttoward -sNaN27 sNaN29 -> -NaN27 Invalid_operation
+dqnextt884 nexttoward 1000 -NaN30 -> -NaN30
+dqnextt885 nexttoward 1000 -sNaN31 -> -NaN31 Invalid_operation
+
+-- Null tests
+dqnextt900 nexttoward 1 # -> NaN Invalid_operation
+dqnextt901 nexttoward # 1 -> NaN Invalid_operation
+
diff --git a/Lib/test/decimaltestdata/dqOr.decTest b/Lib/test/decimaltestdata/dqOr.decTest
new file mode 100644
index 0000000..60470ea
--- /dev/null
+++ b/Lib/test/decimaltestdata/dqOr.decTest
@@ -0,0 +1,401 @@
+------------------------------------------------------------------------
+-- dqOr.decTest -- digitwise logical OR for decQuads --
+-- Copyright (c) IBM Corporation, 1981, 2007. All rights reserved. --
+------------------------------------------------------------------------
+-- Please see the document "General Decimal Arithmetic Testcases" --
+-- at http://www2.hursley.ibm.com/decimal for the description of --
+-- these testcases. --
+-- --
+-- These testcases are experimental ('beta' versions), and they --
+-- may contain errors. They are offered on an as-is basis. In --
+-- particular, achieving the same results as the tests here is not --
+-- a guarantee that an implementation complies with any Standard --
+-- or specification. The tests are not exhaustive. --
+-- --
+-- Please send comments, suggestions, and corrections to the author: --
+-- Mike Cowlishaw, IBM Fellow --
+-- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK --
+-- mfc@uk.ibm.com --
+------------------------------------------------------------------------
+version: 2.56
+
+extended: 1
+clamp: 1
+precision: 34
+maxExponent: 6144
+minExponent: -6143
+rounding: half_even
+
+-- Sanity check (truth table)
+dqor001 or 0 0 -> 0
+dqor002 or 0 1 -> 1
+dqor003 or 1 0 -> 1
+dqor004 or 1 1 -> 1
+dqor005 or 1100 1010 -> 1110
+-- and at msd and msd-1
+dqor006 or 0000000000000000000000000000000000 0000000000000000000000000000000000 -> 0
+dqor007 or 0000000000000000000000000000000000 1000000000000000000000000000000000 -> 1000000000000000000000000000000000
+dqor008 or 1000000000000000000000000000000000 0000000000000000000000000000000000 -> 1000000000000000000000000000000000
+dqor009 or 1000000000000000000000000000000000 1000000000000000000000000000000000 -> 1000000000000000000000000000000000
+dqor010 or 0000000000000000000000000000000000 0000000000000000000000000000000000 -> 0
+dqor011 or 0000000000000000000000000000000000 0100000000000000000000000000000000 -> 100000000000000000000000000000000
+dqor012 or 0100000000000000000000000000000000 0000000000000000000000000000000000 -> 100000000000000000000000000000000
+dqor013 or 0100000000000000000000000000000000 0100000000000000000000000000000000 -> 100000000000000000000000000000000
+
+-- Various lengths
+dqor601 or 0111111111111111111111111111111111 1111111111111111111111111111111110 -> 1111111111111111111111111111111111
+dqor602 or 1011111111111111111111111111111111 1111111111111111111111111111111101 -> 1111111111111111111111111111111111
+dqor603 or 1101111111111111111111111111111111 1111111111111111111111111111111011 -> 1111111111111111111111111111111111
+dqor604 or 1110111111111111111111111111111111 1111111111111111111111111111110111 -> 1111111111111111111111111111111111
+dqor605 or 1111011111111111111111111111111111 1111111111111111111111111111101111 -> 1111111111111111111111111111111111
+dqor606 or 1111101111111111111111111111111111 1111111111111111111111111111011111 -> 1111111111111111111111111111111111
+dqor607 or 1111110111111111111111111111111111 1111111111111111111111111110111111 -> 1111111111111111111111111111111111
+dqor608 or 1111111011111111111111111111111111 1111111111111111111111111101111111 -> 1111111111111111111111111111111111
+dqor609 or 1111111101111111111111111111111111 1111111111111111111111111011111111 -> 1111111111111111111111111111111111
+dqor610 or 1111111110111111111111111111111111 1111111111111111111111110111111111 -> 1111111111111111111111111111111111
+dqor611 or 1111111111011111111111111111111111 1111111111111111111111101111111111 -> 1111111111111111111111111111111111
+dqor612 or 1111111111101111111111111111111111 1111111111111111111111011111111111 -> 1111111111111111111111111111111111
+dqor613 or 1111111111110111111111111111111111 1111111111111111111110111111111111 -> 1111111111111111111111111111111111
+dqor614 or 1111111111111011111111111111111111 1111111111111111111101111111111111 -> 1111111111111111111111111111111111
+dqor615 or 1111111111111101111111111111111111 1111111111111111111011111111111111 -> 1111111111111111111111111111111111
+dqor616 or 1111111111111110111111111111111111 1111111111111111110111111111111111 -> 1111111111111111111111111111111111
+dqor617 or 1111111111111111011111111111111111 1111111111111111101111111111111111 -> 1111111111111111111111111111111111
+dqor618 or 1111111111111111101111111111111111 1111111111111111011111111111111111 -> 1111111111111111111111111111111111
+dqor619 or 1111111111111111110111111111111111 1111111111111110111111111111111111 -> 1111111111111111111111111111111111
+dqor620 or 1111111111111111111011111111111111 1111111111111101111111111111111111 -> 1111111111111111111111111111111111
+dqor621 or 1111111111111111111101111111111111 1111111111111011111111111111111111 -> 1111111111111111111111111111111111
+dqor622 or 1111111111111111111110111111111111 1111111111110111111111111111111111 -> 1111111111111111111111111111111111
+dqor623 or 1111111111111111111111011111111111 1111111111101111111111111111111111 -> 1111111111111111111111111111111111
+dqor624 or 1111111111111111111111101111111111 1111111111011111111111111111111111 -> 1111111111111111111111111111111111
+dqor625 or 1111111111111111111111110111111111 1111111110111111111111111111111111 -> 1111111111111111111111111111111111
+dqor626 or 1111111111111111111111111011111111 1111111101111111111111111111111111 -> 1111111111111111111111111111111111
+dqor627 or 1111111111111111111111111101111111 1111111011111111111111111111111111 -> 1111111111111111111111111111111111
+dqor628 or 1111111111111111111111111110111111 1111110111111111111111111111111111 -> 1111111111111111111111111111111111
+dqor629 or 1111111111111111111111111111011111 1111101111111111111111111111111111 -> 1111111111111111111111111111111111
+dqor630 or 1111111111111111111111111111101111 1111011111111111111111111111111111 -> 1111111111111111111111111111111111
+dqor631 or 1111111111111111111111111111110111 1110111111111111111111111111111111 -> 1111111111111111111111111111111111
+dqor632 or 1111111111111111111111111111111011 1101111111111111111111111111111111 -> 1111111111111111111111111111111111
+dqor633 or 1111111111111111111111111111111101 1011111111111111111111111111111111 -> 1111111111111111111111111111111111
+dqor634 or 1111111111111111111111111111111110 0111111111111111111111111111111111 -> 1111111111111111111111111111111111
+
+dqor641 or 1111111111111111111111111111111110 0111111111111111111111111111111111 -> 1111111111111111111111111111111111
+dqor642 or 1111111111111111111111111111111101 1011111111111111111111111111111111 -> 1111111111111111111111111111111111
+dqor643 or 1111111111111111111111111111111011 1101111111111111111111111111111111 -> 1111111111111111111111111111111111
+dqor644 or 1111111111111111111111111111110111 1110111111111111111111111111111111 -> 1111111111111111111111111111111111
+dqor645 or 1111111111111111111111111111101111 1111011111111111111111111111111111 -> 1111111111111111111111111111111111
+dqor646 or 1111111111111111111111111111011111 1111101111111111111111111111111111 -> 1111111111111111111111111111111111
+dqor647 or 1111111111111111111111111110111111 1111110111111111111111111111111111 -> 1111111111111111111111111111111111
+dqor648 or 1111111111111111111111111101111111 1111111011111111111111111111111111 -> 1111111111111111111111111111111111
+dqor649 or 1111111111111111111111111011111111 1111111101111111111111111111111111 -> 1111111111111111111111111111111111
+dqor650 or 1111111111111111111111110111111111 1111111110111111111111111111111111 -> 1111111111111111111111111111111111
+dqor651 or 1111111111111111111111101111111111 1111111111011111111111111111111111 -> 1111111111111111111111111111111111
+dqor652 or 1111111111111111111111011111111111 1111111111101111111111111111111111 -> 1111111111111111111111111111111111
+dqor653 or 1111111111111111111110111111111111 1111111111110111111111111111111111 -> 1111111111111111111111111111111111
+dqor654 or 1111111111111111111101111111111111 1111111111111011111111111111111111 -> 1111111111111111111111111111111111
+dqor655 or 1111111111111111111011111111111111 1111111111111101111111111111111111 -> 1111111111111111111111111111111111
+dqor656 or 1111111111111111110111111111111111 1111111111111110111111111111111111 -> 1111111111111111111111111111111111
+dqor657 or 1010101010101010101010101010101010 1010101010101010001010101010101010 -> 1010101010101010101010101010101010
+dqor658 or 1111111111111111011111111111111111 1111111111111111101111111111111111 -> 1111111111111111111111111111111111
+dqor659 or 1111111111111110111111111111111111 1111111111111111110111111111111111 -> 1111111111111111111111111111111111
+dqor660 or 1111111111111101111111111111111111 1111111111111111111011111111111111 -> 1111111111111111111111111111111111
+dqor661 or 1111111111111011111111111111111111 1111111111111111111101111111111111 -> 1111111111111111111111111111111111
+dqor662 or 1111111111110111111111111111111111 1111111111111111111110111111111111 -> 1111111111111111111111111111111111
+dqor663 or 1111111111101111111111111111111111 1111111111111111111111011111111111 -> 1111111111111111111111111111111111
+dqor664 or 1111111111011111111111111111111111 1111111111111111111111101111111111 -> 1111111111111111111111111111111111
+dqor665 or 1111111110111111111111111111111111 1111111111111111111111110111111111 -> 1111111111111111111111111111111111
+dqor666 or 0101010101010101010101010101010101 0101010101010101010101010001010101 -> 101010101010101010101010101010101
+dqor667 or 1111111011111111111111111111111111 1111111111111111111111111101111111 -> 1111111111111111111111111111111111
+dqor668 or 1111110111111111111111111111111111 1111111111111111111111111110111111 -> 1111111111111111111111111111111111
+dqor669 or 1111101111111111111111111111111111 1111111111111111111111111111011111 -> 1111111111111111111111111111111111
+dqor670 or 1111011111111111111111111111111111 1111111111111111111111111111101111 -> 1111111111111111111111111111111111
+dqor671 or 1110111111111111111111111111111111 1111111111111111111111111111110111 -> 1111111111111111111111111111111111
+dqor672 or 1101111111111111111111111111111111 1111111111111111111111111111111011 -> 1111111111111111111111111111111111
+dqor673 or 1011111111111111111111111111111111 1111111111111111111111111111111101 -> 1111111111111111111111111111111111
+dqor674 or 0111111111111111111111111111111111 1111111111111111111111111111111110 -> 1111111111111111111111111111111111
+dqor675 or 0111111111111111111111111111111110 1111111111111111111111111111111110 -> 1111111111111111111111111111111110
+dqor676 or 1111111111111111111111111111111110 1111111111111111111111111111111110 -> 1111111111111111111111111111111110
+
+dqor681 or 0111111111111111111111111111111111 0111111111011111111111111111111110 -> 111111111111111111111111111111111
+dqor682 or 1011111111111111111111111111111111 1011111110101111111111111111111101 -> 1011111111111111111111111111111111
+dqor683 or 1101111111111111111111111111111111 1101111101110111111111111111111011 -> 1101111111111111111111111111111111
+dqor684 or 1110111111111111111111111111111111 1110111011111011111111111111110111 -> 1110111111111111111111111111111111
+dqor685 or 1111011111111111111111111111111111 1111010111111101111111111111101111 -> 1111011111111111111111111111111111
+dqor686 or 1111101111111111111111111111111111 1111101111111110111111111111011111 -> 1111101111111111111111111111111111
+dqor687 or 1111110111111111111111111111111111 1111010111111111011111111110111111 -> 1111110111111111111111111111111111
+dqor688 or 1111111011111111111111111111111111 1110111011111111101111111101111111 -> 1111111011111111111111111111111111
+dqor689 or 1111111101111111111111111111111111 1101111101111111110111111011111111 -> 1111111101111111111111111111111111
+dqor690 or 1111111110111111111111111111111111 1011111110111111111011110111111110 -> 1111111110111111111111111111111111
+dqor691 or 1111111111011111111111111111111111 0111111111011111111101101111111101 -> 1111111111011111111111111111111111
+dqor692 or 1111111111101111111111111111111111 1111111111101111111110011111111011 -> 1111111111101111111111111111111111
+dqor693 or 1111111111110111111111111111111111 1111111111110111111110011111110111 -> 1111111111110111111111111111111111
+dqor694 or 1111111111111011111111111111111111 1111111111111011111101101111101111 -> 1111111111111011111111111111111111
+dqor695 or 1111111111111101111111111111111111 1111111111111101111011110111011111 -> 1111111111111101111111111111111111
+dqor696 or 1111111111111110111111111111111111 1111111111111110110111111010111111 -> 1111111111111110111111111111111111
+dqor697 or 1111111111111111011111111111111111 1111111111111111001111111101111111 -> 1111111111111111011111111111111111
+dqor698 or 1111111111111111101111111111111111 1111111111111111001111111010111111 -> 1111111111111111101111111111111111
+dqor699 or 1111111111111111110111111111111111 1111111111111110110111110111011111 -> 1111111111111111110111111111111111
+dqor700 or 1111111111111111111011111111111111 1111111111111101111011101111101111 -> 1111111111111111111011111111111111
+dqor701 or 1111111111111111111101111111111111 1111111111111011111101011111110111 -> 1111111111111111111101111111111111
+dqor702 or 1111111111111111111110111111111111 1111111111110111111110111111111011 -> 1111111111111111111110111111111111
+dqor703 or 1111111111111111111111011111111111 1111111111101111111101011111111101 -> 1111111111111111111111011111111111
+dqor704 or 1111111111111111111111101111111111 1111111111011111111011101111111110 -> 1111111111111111111111101111111111
+dqor705 or 1111111111111111111111110111111111 0111111110111111110111110111111111 -> 1111111111111111111111110111111111
+dqor706 or 1111111111111111111111111011111111 1011111101111111101111111011111111 -> 1111111111111111111111111011111111
+dqor707 or 1111111111111111111111111101111111 1101111011111111011111111101111111 -> 1111111111111111111111111101111111
+dqor708 or 1111111111111111111111111110111111 1110110111111110111111111110111111 -> 1111111111111111111111111110111111
+dqor709 or 1111111111111111111111111111011111 1111001111111101111111111111011111 -> 1111111111111111111111111111011111
+dqor710 or 1111111111111111111111111111101111 1111001111111011111111111111101111 -> 1111111111111111111111111111101111
+dqor711 or 1111111111111111111111111111110111 1110110111110111111111111111110111 -> 1111111111111111111111111111110111
+dqor712 or 1111111111111111111111111111111011 1101111011101111111111111111111011 -> 1111111111111111111111111111111011
+dqor713 or 1111111111111111111111111111111101 1011111101011111111111111111111101 -> 1111111111111111111111111111111101
+dqor714 or 1111111111111111111111111111111110 0111111110111111111111111111111110 -> 1111111111111111111111111111111110
+
+
+
+-- 1234567890123456 1234567890123456 1234567890123456
+dqor020 or 1111111111111111 1111111111111111 -> 1111111111111111
+dqor021 or 111111111111111 111111111111111 -> 111111111111111
+dqor022 or 11111111111111 11111111111111 -> 11111111111111
+dqor023 or 1111111111111 1111111111111 -> 1111111111111
+dqor024 or 111111111111 111111111111 -> 111111111111
+dqor025 or 11111111111 11111111111 -> 11111111111
+dqor026 or 1111111111 1111111111 -> 1111111111
+dqor027 or 111111111 111111111 -> 111111111
+dqor028 or 11111111 11111111 -> 11111111
+dqor029 or 1111111 1111111 -> 1111111
+dqor030 or 111111 111111 -> 111111
+dqor031 or 11111 11111 -> 11111
+dqor032 or 1111 1111 -> 1111
+dqor033 or 111 111 -> 111
+dqor034 or 11 11 -> 11
+dqor035 or 1 1 -> 1
+dqor036 or 0 0 -> 0
+
+dqor042 or 111111110000000 1111111110000000 -> 1111111110000000
+dqor043 or 11111110000000 1000000100000000 -> 1011111110000000
+dqor044 or 1111110000000 1000001000000000 -> 1001111110000000
+dqor045 or 111110000000 1000010000000000 -> 1000111110000000
+dqor046 or 11110000000 1000100000000000 -> 1000111110000000
+dqor047 or 1110000000 1001000000000000 -> 1001001110000000
+dqor048 or 110000000 1010000000000000 -> 1010000110000000
+dqor049 or 10000000 1100000000000000 -> 1100000010000000
+
+dqor090 or 011111111 111101111 -> 111111111
+dqor091 or 101111111 111101111 -> 111111111
+dqor092 or 110111111 111101111 -> 111111111
+dqor093 or 111011111 111101111 -> 111111111
+dqor094 or 111101111 111101111 -> 111101111
+dqor095 or 111110111 111101111 -> 111111111
+dqor096 or 111111011 111101111 -> 111111111
+dqor097 or 111111101 111101111 -> 111111111
+dqor098 or 111111110 111101111 -> 111111111
+
+dqor100 or 111101111 011111111 -> 111111111
+dqor101 or 111101111 101111111 -> 111111111
+dqor102 or 111101111 110111111 -> 111111111
+dqor103 or 111101111 111011111 -> 111111111
+dqor104 or 111101111 111101111 -> 111101111
+dqor105 or 111101111 111110111 -> 111111111
+dqor106 or 111101111 111111011 -> 111111111
+dqor107 or 111101111 111111101 -> 111111111
+dqor108 or 111101111 111111110 -> 111111111
+
+-- non-0/1 should not be accepted, nor should signs
+dqor220 or 111111112 111111111 -> NaN Invalid_operation
+dqor221 or 333333333 333333333 -> NaN Invalid_operation
+dqor222 or 555555555 555555555 -> NaN Invalid_operation
+dqor223 or 777777777 777777777 -> NaN Invalid_operation
+dqor224 or 999999999 999999999 -> NaN Invalid_operation
+dqor225 or 222222222 999999999 -> NaN Invalid_operation
+dqor226 or 444444444 999999999 -> NaN Invalid_operation
+dqor227 or 666666666 999999999 -> NaN Invalid_operation
+dqor228 or 888888888 999999999 -> NaN Invalid_operation
+dqor229 or 999999999 222222222 -> NaN Invalid_operation
+dqor230 or 999999999 444444444 -> NaN Invalid_operation
+dqor231 or 999999999 666666666 -> NaN Invalid_operation
+dqor232 or 999999999 888888888 -> NaN Invalid_operation
+-- a few randoms
+dqor240 or 567468689 -934981942 -> NaN Invalid_operation
+dqor241 or 567367689 934981942 -> NaN Invalid_operation
+dqor242 or -631917772 -706014634 -> NaN Invalid_operation
+dqor243 or -756253257 138579234 -> NaN Invalid_operation
+dqor244 or 835590149 567435400 -> NaN Invalid_operation
+-- test MSD
+dqor250 or 2000000111000111000111000000000000 1000000111000111000111000000000000 -> NaN Invalid_operation
+dqor251 or 7000000111000111000111000000000000 1000000111000111000111000000000000 -> NaN Invalid_operation
+dqor252 or 8000000111000111000111000000000000 1000000111000111000111000000000000 -> NaN Invalid_operation
+dqor253 or 9000000111000111000111000000000000 1000000111000111000111000000000000 -> NaN Invalid_operation
+dqor254 or 2000000111000111000111000000000000 0000000111000111000111000000000000 -> NaN Invalid_operation
+dqor255 or 7000000111000111000111000000000000 0000000111000111000111000000000000 -> NaN Invalid_operation
+dqor256 or 8000000111000111000111000000000000 0000000111000111000111000000000000 -> NaN Invalid_operation
+dqor257 or 9000000111000111000111000000000000 0000000111000111000111000000000000 -> NaN Invalid_operation
+dqor258 or 1000000111000111000111000000000000 2000000111000111000111000000000000 -> NaN Invalid_operation
+dqor259 or 1000000111000111000111000000000000 7000000111000111000111000000000000 -> NaN Invalid_operation
+dqor260 or 1000000111000111000111000000000000 8000000111000111000111000000000000 -> NaN Invalid_operation
+dqor261 or 1000000111000111000111000000000000 9000000111000111000111000000000000 -> NaN Invalid_operation
+dqor262 or 0000000111000111000111000000000000 2000000111000111000111000000000000 -> NaN Invalid_operation
+dqor263 or 0000000111000111000111000000000000 7000000111000111000111000000000000 -> NaN Invalid_operation
+dqor264 or 0000000111000111000111000000000000 8000000111000111000111000000000000 -> NaN Invalid_operation
+dqor265 or 0000000111000111000111000000000000 9000000111000111000111000000000000 -> NaN Invalid_operation
+-- test MSD-1
+dqor270 or 0200000111000111000111001000000000 1000000111000111000111100000000010 -> NaN Invalid_operation
+dqor271 or 0700000111000111000111000100000000 1000000111000111000111010000000100 -> NaN Invalid_operation
+dqor272 or 0800000111000111000111000010000000 1000000111000111000111001000001000 -> NaN Invalid_operation
+dqor273 or 0900000111000111000111000001000000 1000000111000111000111000100010000 -> NaN Invalid_operation
+dqor274 or 1000000111000111000111000000100000 0200000111000111000111000010100000 -> NaN Invalid_operation
+dqor275 or 1000000111000111000111000000010000 0700000111000111000111000001000000 -> NaN Invalid_operation
+dqor276 or 1000000111000111000111000000001000 0800000111000111000111000010100000 -> NaN Invalid_operation
+dqor277 or 1000000111000111000111000000000100 0900000111000111000111000000010000 -> NaN Invalid_operation
+-- test LSD
+dqor280 or 0010000111000111000111000000000002 1000000111000111000111000100000001 -> NaN Invalid_operation
+dqor281 or 0001000111000111000111000000000007 1000000111000111000111001000000011 -> NaN Invalid_operation
+dqor282 or 0000000111000111000111100000000008 1000000111000111000111010000000001 -> NaN Invalid_operation
+dqor283 or 0000000111000111000111010000000009 1000000111000111000111100000000001 -> NaN Invalid_operation
+dqor284 or 1000000111000111000111001000000000 0001000111000111000111000000000002 -> NaN Invalid_operation
+dqor285 or 1000000111000111000111000100000000 0010000111000111000111000000000007 -> NaN Invalid_operation
+dqor286 or 1000000111000111000111000010000000 0100000111000111000111000000000008 -> NaN Invalid_operation
+dqor287 or 1000000111000111000111000001000000 1000000111000111000111000000000009 -> NaN Invalid_operation
+-- test Middie
+dqor288 or 0010000111000111000111000020000000 1000000111000111000111001000000000 -> NaN Invalid_operation
+dqor289 or 0001000111000111000111000070000001 1000000111000111000111000100000000 -> NaN Invalid_operation
+dqor290 or 0000000111000111000111100080000010 1000000111000111000111000010000000 -> NaN Invalid_operation
+dqor291 or 0000000111000111000111010090000100 1000000111000111000111000001000000 -> NaN Invalid_operation
+dqor292 or 1000000111000111000111001000001000 0000000111000111000111000020100000 -> NaN Invalid_operation
+dqor293 or 1000000111000111000111000100010000 0000000111000111000111000070010000 -> NaN Invalid_operation
+dqor294 or 1000000111000111000111000010100000 0000000111000111000111000080001000 -> NaN Invalid_operation
+dqor295 or 1000000111000111000111000001000000 0000000111000111000111000090000100 -> NaN Invalid_operation
+-- signs
+dqor296 or -1000000111000111000111000001000000 -0000001110001110001110010000000100 -> NaN Invalid_operation
+dqor297 or -1000000111000111000111000001000000 0000001110001110001110000010000100 -> NaN Invalid_operation
+dqor298 or 1000000111000111000111000001000000 -0000001110001110001110001000000100 -> NaN Invalid_operation
+dqor299 or 1000000111000111000111000001000000 0000001110001110001110000011000100 -> 1000001111001111001111000011000100
+
+-- Nmax, Nmin, Ntiny-like
+dqor331 or 2 9.99999999E+1999 -> NaN Invalid_operation
+dqor332 or 3 1E-1999 -> NaN Invalid_operation
+dqor333 or 4 1.00000000E-1999 -> NaN Invalid_operation
+dqor334 or 5 1E-1009 -> NaN Invalid_operation
+dqor335 or 6 -1E-1009 -> NaN Invalid_operation
+dqor336 or 7 -1.00000000E-1999 -> NaN Invalid_operation
+dqor337 or 8 -1E-1999 -> NaN Invalid_operation
+dqor338 or 9 -9.99999999E+1999 -> NaN Invalid_operation
+dqor341 or 9.99999999E+2999 -18 -> NaN Invalid_operation
+dqor342 or 1E-2999 01 -> NaN Invalid_operation
+dqor343 or 1.00000000E-2999 -18 -> NaN Invalid_operation
+dqor344 or 1E-1009 18 -> NaN Invalid_operation
+dqor345 or -1E-1009 -10 -> NaN Invalid_operation
+dqor346 or -1.00000000E-2999 18 -> NaN Invalid_operation
+dqor347 or -1E-2999 10 -> NaN Invalid_operation
+dqor348 or -9.99999999E+2999 -18 -> NaN Invalid_operation
+
+-- A few other non-integers
+dqor361 or 1.0 1 -> NaN Invalid_operation
+dqor362 or 1E+1 1 -> NaN Invalid_operation
+dqor363 or 0.0 1 -> NaN Invalid_operation
+dqor364 or 0E+1 1 -> NaN Invalid_operation
+dqor365 or 9.9 1 -> NaN Invalid_operation
+dqor366 or 9E+1 1 -> NaN Invalid_operation
+dqor371 or 0 1.0 -> NaN Invalid_operation
+dqor372 or 0 1E+1 -> NaN Invalid_operation
+dqor373 or 0 0.0 -> NaN Invalid_operation
+dqor374 or 0 0E+1 -> NaN Invalid_operation
+dqor375 or 0 9.9 -> NaN Invalid_operation
+dqor376 or 0 9E+1 -> NaN Invalid_operation
+
+-- All Specials are in error
+dqor780 or -Inf -Inf -> NaN Invalid_operation
+dqor781 or -Inf -1000 -> NaN Invalid_operation
+dqor782 or -Inf -1 -> NaN Invalid_operation
+dqor783 or -Inf -0 -> NaN Invalid_operation
+dqor784 or -Inf 0 -> NaN Invalid_operation
+dqor785 or -Inf 1 -> NaN Invalid_operation
+dqor786 or -Inf 1000 -> NaN Invalid_operation
+dqor787 or -1000 -Inf -> NaN Invalid_operation
+dqor788 or -Inf -Inf -> NaN Invalid_operation
+dqor789 or -1 -Inf -> NaN Invalid_operation
+dqor790 or -0 -Inf -> NaN Invalid_operation
+dqor791 or 0 -Inf -> NaN Invalid_operation
+dqor792 or 1 -Inf -> NaN Invalid_operation
+dqor793 or 1000 -Inf -> NaN Invalid_operation
+dqor794 or Inf -Inf -> NaN Invalid_operation
+
+dqor800 or Inf -Inf -> NaN Invalid_operation
+dqor801 or Inf -1000 -> NaN Invalid_operation
+dqor802 or Inf -1 -> NaN Invalid_operation
+dqor803 or Inf -0 -> NaN Invalid_operation
+dqor804 or Inf 0 -> NaN Invalid_operation
+dqor805 or Inf 1 -> NaN Invalid_operation
+dqor806 or Inf 1000 -> NaN Invalid_operation
+dqor807 or Inf Inf -> NaN Invalid_operation
+dqor808 or -1000 Inf -> NaN Invalid_operation
+dqor809 or -Inf Inf -> NaN Invalid_operation
+dqor810 or -1 Inf -> NaN Invalid_operation
+dqor811 or -0 Inf -> NaN Invalid_operation
+dqor812 or 0 Inf -> NaN Invalid_operation
+dqor813 or 1 Inf -> NaN Invalid_operation
+dqor814 or 1000 Inf -> NaN Invalid_operation
+dqor815 or Inf Inf -> NaN Invalid_operation
+
+dqor821 or NaN -Inf -> NaN Invalid_operation
+dqor822 or NaN -1000 -> NaN Invalid_operation
+dqor823 or NaN -1 -> NaN Invalid_operation
+dqor824 or NaN -0 -> NaN Invalid_operation
+dqor825 or NaN 0 -> NaN Invalid_operation
+dqor826 or NaN 1 -> NaN Invalid_operation
+dqor827 or NaN 1000 -> NaN Invalid_operation
+dqor828 or NaN Inf -> NaN Invalid_operation
+dqor829 or NaN NaN -> NaN Invalid_operation
+dqor830 or -Inf NaN -> NaN Invalid_operation
+dqor831 or -1000 NaN -> NaN Invalid_operation
+dqor832 or -1 NaN -> NaN Invalid_operation
+dqor833 or -0 NaN -> NaN Invalid_operation
+dqor834 or 0 NaN -> NaN Invalid_operation
+dqor835 or 1 NaN -> NaN Invalid_operation
+dqor836 or 1000 NaN -> NaN Invalid_operation
+dqor837 or Inf NaN -> NaN Invalid_operation
+
+dqor841 or sNaN -Inf -> NaN Invalid_operation
+dqor842 or sNaN -1000 -> NaN Invalid_operation
+dqor843 or sNaN -1 -> NaN Invalid_operation
+dqor844 or sNaN -0 -> NaN Invalid_operation
+dqor845 or sNaN 0 -> NaN Invalid_operation
+dqor846 or sNaN 1 -> NaN Invalid_operation
+dqor847 or sNaN 1000 -> NaN Invalid_operation
+dqor848 or sNaN NaN -> NaN Invalid_operation
+dqor849 or sNaN sNaN -> NaN Invalid_operation
+dqor850 or NaN sNaN -> NaN Invalid_operation
+dqor851 or -Inf sNaN -> NaN Invalid_operation
+dqor852 or -1000 sNaN -> NaN Invalid_operation
+dqor853 or -1 sNaN -> NaN Invalid_operation
+dqor854 or -0 sNaN -> NaN Invalid_operation
+dqor855 or 0 sNaN -> NaN Invalid_operation
+dqor856 or 1 sNaN -> NaN Invalid_operation
+dqor857 or 1000 sNaN -> NaN Invalid_operation
+dqor858 or Inf sNaN -> NaN Invalid_operation
+dqor859 or NaN sNaN -> NaN Invalid_operation
+
+-- propagating NaNs
+dqor861 or NaN1 -Inf -> NaN Invalid_operation
+dqor862 or +NaN2 -1000 -> NaN Invalid_operation
+dqor863 or NaN3 1000 -> NaN Invalid_operation
+dqor864 or NaN4 Inf -> NaN Invalid_operation
+dqor865 or NaN5 +NaN6 -> NaN Invalid_operation
+dqor866 or -Inf NaN7 -> NaN Invalid_operation
+dqor867 or -1000 NaN8 -> NaN Invalid_operation
+dqor868 or 1000 NaN9 -> NaN Invalid_operation
+dqor869 or Inf +NaN10 -> NaN Invalid_operation
+dqor871 or sNaN11 -Inf -> NaN Invalid_operation
+dqor872 or sNaN12 -1000 -> NaN Invalid_operation
+dqor873 or sNaN13 1000 -> NaN Invalid_operation
+dqor874 or sNaN14 NaN17 -> NaN Invalid_operation
+dqor875 or sNaN15 sNaN18 -> NaN Invalid_operation
+dqor876 or NaN16 sNaN19 -> NaN Invalid_operation
+dqor877 or -Inf +sNaN20 -> NaN Invalid_operation
+dqor878 or -1000 sNaN21 -> NaN Invalid_operation
+dqor879 or 1000 sNaN22 -> NaN Invalid_operation
+dqor880 or Inf sNaN23 -> NaN Invalid_operation
+dqor881 or +NaN25 +sNaN24 -> NaN Invalid_operation
+dqor882 or -NaN26 NaN28 -> NaN Invalid_operation
+dqor883 or -sNaN27 sNaN29 -> NaN Invalid_operation
+dqor884 or 1000 -NaN30 -> NaN Invalid_operation
+dqor885 or 1000 -sNaN31 -> NaN Invalid_operation
diff --git a/Lib/test/decimaltestdata/dqPlus.decTest b/Lib/test/decimaltestdata/dqPlus.decTest
new file mode 100644
index 0000000..5dc5a68
--- /dev/null
+++ b/Lib/test/decimaltestdata/dqPlus.decTest
@@ -0,0 +1,88 @@
+------------------------------------------------------------------------
+-- dqPlus.decTest -- decQuad 0+x --
+-- Copyright (c) IBM Corporation, 1981, 2007. All rights reserved. --
+------------------------------------------------------------------------
+-- Please see the document "General Decimal Arithmetic Testcases" --
+-- at http://www2.hursley.ibm.com/decimal for the description of --
+-- these testcases. --
+-- --
+-- These testcases are experimental ('beta' versions), and they --
+-- may contain errors. They are offered on an as-is basis. In --
+-- particular, achieving the same results as the tests here is not --
+-- a guarantee that an implementation complies with any Standard --
+-- or specification. The tests are not exhaustive. --
+-- --
+-- Please send comments, suggestions, and corrections to the author: --
+-- Mike Cowlishaw, IBM Fellow --
+-- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK --
+-- mfc@uk.ibm.com --
+------------------------------------------------------------------------
+version: 2.56
+
+-- All operands and results are decQuads.
+extended: 1
+clamp: 1
+precision: 34
+maxExponent: 6144
+minExponent: -6143
+rounding: half_even
+
+-- Sanity check
+dqpls001 plus +7.50 -> 7.50
+
+-- Infinities
+dqpls011 plus Infinity -> Infinity
+dqpls012 plus -Infinity -> -Infinity
+
+-- NaNs, 0 payload
+ddqls021 plus NaN -> NaN
+ddqls022 plus -NaN -> -NaN
+ddqls023 plus sNaN -> NaN Invalid_operation
+ddqls024 plus -sNaN -> -NaN Invalid_operation
+
+-- NaNs, non-0 payload
+ddqls031 plus NaN13 -> NaN13
+ddqls032 plus -NaN13 -> -NaN13
+ddqls033 plus sNaN13 -> NaN13 Invalid_operation
+ddqls034 plus -sNaN13 -> -NaN13 Invalid_operation
+ddqls035 plus NaN70 -> NaN70
+ddqls036 plus -NaN70 -> -NaN70
+ddqls037 plus sNaN101 -> NaN101 Invalid_operation
+ddqls038 plus -sNaN101 -> -NaN101 Invalid_operation
+
+-- finites
+dqpls101 plus 7 -> 7
+dqpls102 plus -7 -> -7
+dqpls103 plus 75 -> 75
+dqpls104 plus -75 -> -75
+dqpls105 plus 7.50 -> 7.50
+dqpls106 plus -7.50 -> -7.50
+dqpls107 plus 7.500 -> 7.500
+dqpls108 plus -7.500 -> -7.500
+
+-- zeros
+dqpls111 plus 0 -> 0
+dqpls112 plus -0 -> 0
+dqpls113 plus 0E+4 -> 0E+4
+dqpls114 plus -0E+4 -> 0E+4
+dqpls115 plus 0.0000 -> 0.0000
+dqpls116 plus -0.0000 -> 0.0000
+dqpls117 plus 0E-141 -> 0E-141
+dqpls118 plus -0E-141 -> 0E-141
+
+-- full coefficients, alternating bits
+dqpls121 plus 2682682682682682682682682682682682 -> 2682682682682682682682682682682682
+dqpls122 plus -2682682682682682682682682682682682 -> -2682682682682682682682682682682682
+dqpls123 plus 1341341341341341341341341341341341 -> 1341341341341341341341341341341341
+dqpls124 plus -1341341341341341341341341341341341 -> -1341341341341341341341341341341341
+
+-- Nmax, Nmin, Ntiny
+dqpls131 plus 9.999999999999999999999999999999999E+6144 -> 9.999999999999999999999999999999999E+6144
+dqpls132 plus 1E-6143 -> 1E-6143
+dqpls133 plus 1.000000000000000000000000000000000E-6143 -> 1.000000000000000000000000000000000E-6143
+dqpls134 plus 1E-6176 -> 1E-6176 Subnormal
+
+dqpls135 plus -1E-6176 -> -1E-6176 Subnormal
+dqpls136 plus -1.000000000000000000000000000000000E-6143 -> -1.000000000000000000000000000000000E-6143
+dqpls137 plus -1E-6143 -> -1E-6143
+dqpls138 plus -9.999999999999999999999999999999999E+6144 -> -9.999999999999999999999999999999999E+6144
diff --git a/Lib/test/decimaltestdata/dqQuantize.decTest b/Lib/test/decimaltestdata/dqQuantize.decTest
new file mode 100644
index 0000000..aa8cf2e
--- /dev/null
+++ b/Lib/test/decimaltestdata/dqQuantize.decTest
@@ -0,0 +1,823 @@
+------------------------------------------------------------------------
+-- dqQuantize.decTest -- decQuad quantize operation --
+-- Copyright (c) IBM Corporation, 1981, 2007. All rights reserved. --
+------------------------------------------------------------------------
+-- Please see the document "General Decimal Arithmetic Testcases" --
+-- at http://www2.hursley.ibm.com/decimal for the description of --
+-- these testcases. --
+-- --
+-- These testcases are experimental ('beta' versions), and they --
+-- may contain errors. They are offered on an as-is basis. In --
+-- particular, achieving the same results as the tests here is not --
+-- a guarantee that an implementation complies with any Standard --
+-- or specification. The tests are not exhaustive. --
+-- --
+-- Please send comments, suggestions, and corrections to the author: --
+-- Mike Cowlishaw, IBM Fellow --
+-- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK --
+-- mfc@uk.ibm.com --
+------------------------------------------------------------------------
+version: 2.56
+
+-- Most of the tests here assume a "regular pattern", where the
+-- sign and coefficient are +1.
+-- 2004.03.15 Underflow for quantize is suppressed
+-- 2005.06.08 More extensive tests for 'does not fit'
+-- [Forked from quantize.decTest 2006.11.25]
+
+extended: 1
+clamp: 1
+precision: 34
+maxExponent: 6144
+minExponent: -6143
+rounding: half_even
+
+-- sanity checks
+dqqua001 quantize 0 1e0 -> 0
+dqqua002 quantize 1 1e0 -> 1
+dqqua003 quantize 0.1 1e+2 -> 0E+2 Inexact Rounded
+dqqua005 quantize 0.1 1e+1 -> 0E+1 Inexact Rounded
+dqqua006 quantize 0.1 1e0 -> 0 Inexact Rounded
+dqqua007 quantize 0.1 1e-1 -> 0.1
+dqqua008 quantize 0.1 1e-2 -> 0.10
+dqqua009 quantize 0.1 1e-3 -> 0.100
+dqqua010 quantize 0.9 1e+2 -> 0E+2 Inexact Rounded
+dqqua011 quantize 0.9 1e+1 -> 0E+1 Inexact Rounded
+dqqua012 quantize 0.9 1e+0 -> 1 Inexact Rounded
+dqqua013 quantize 0.9 1e-1 -> 0.9
+dqqua014 quantize 0.9 1e-2 -> 0.90
+dqqua015 quantize 0.9 1e-3 -> 0.900
+-- negatives
+dqqua021 quantize -0 1e0 -> -0
+dqqua022 quantize -1 1e0 -> -1
+dqqua023 quantize -0.1 1e+2 -> -0E+2 Inexact Rounded
+dqqua025 quantize -0.1 1e+1 -> -0E+1 Inexact Rounded
+dqqua026 quantize -0.1 1e0 -> -0 Inexact Rounded
+dqqua027 quantize -0.1 1e-1 -> -0.1
+dqqua028 quantize -0.1 1e-2 -> -0.10
+dqqua029 quantize -0.1 1e-3 -> -0.100
+dqqua030 quantize -0.9 1e+2 -> -0E+2 Inexact Rounded
+dqqua031 quantize -0.9 1e+1 -> -0E+1 Inexact Rounded
+dqqua032 quantize -0.9 1e+0 -> -1 Inexact Rounded
+dqqua033 quantize -0.9 1e-1 -> -0.9
+dqqua034 quantize -0.9 1e-2 -> -0.90
+dqqua035 quantize -0.9 1e-3 -> -0.900
+dqqua036 quantize -0.5 1e+2 -> -0E+2 Inexact Rounded
+dqqua037 quantize -0.5 1e+1 -> -0E+1 Inexact Rounded
+dqqua038 quantize -0.5 1e+0 -> -0 Inexact Rounded
+dqqua039 quantize -0.5 1e-1 -> -0.5
+dqqua040 quantize -0.5 1e-2 -> -0.50
+dqqua041 quantize -0.5 1e-3 -> -0.500
+dqqua042 quantize -0.9 1e+2 -> -0E+2 Inexact Rounded
+dqqua043 quantize -0.9 1e+1 -> -0E+1 Inexact Rounded
+dqqua044 quantize -0.9 1e+0 -> -1 Inexact Rounded
+dqqua045 quantize -0.9 1e-1 -> -0.9
+dqqua046 quantize -0.9 1e-2 -> -0.90
+dqqua047 quantize -0.9 1e-3 -> -0.900
+
+-- examples from Specification
+dqqua060 quantize 2.17 0.001 -> 2.170
+dqqua061 quantize 2.17 0.01 -> 2.17
+dqqua062 quantize 2.17 0.1 -> 2.2 Inexact Rounded
+dqqua063 quantize 2.17 1e+0 -> 2 Inexact Rounded
+dqqua064 quantize 2.17 1e+1 -> 0E+1 Inexact Rounded
+dqqua065 quantize -Inf Inf -> -Infinity
+dqqua066 quantize 2 Inf -> NaN Invalid_operation
+dqqua067 quantize -0.1 1 -> -0 Inexact Rounded
+dqqua068 quantize -0 1e+5 -> -0E+5
+dqqua069 quantize +123451234567899876543216789012345.6 1e-2 -> NaN Invalid_operation
+dqqua070 quantize -987651234567899876543214335236450.6 1e-2 -> NaN Invalid_operation
+dqqua071 quantize 217 1e-1 -> 217.0
+dqqua072 quantize 217 1e+0 -> 217
+dqqua073 quantize 217 1e+1 -> 2.2E+2 Inexact Rounded
+dqqua074 quantize 217 1e+2 -> 2E+2 Inexact Rounded
+
+-- general tests ..
+dqqua089 quantize 12 1e+4 -> 0E+4 Inexact Rounded
+dqqua090 quantize 12 1e+3 -> 0E+3 Inexact Rounded
+dqqua091 quantize 12 1e+2 -> 0E+2 Inexact Rounded
+dqqua092 quantize 12 1e+1 -> 1E+1 Inexact Rounded
+dqqua093 quantize 1.2345 1e-2 -> 1.23 Inexact Rounded
+dqqua094 quantize 1.2355 1e-2 -> 1.24 Inexact Rounded
+dqqua095 quantize 1.2345 1e-6 -> 1.234500
+dqqua096 quantize 9.9999 1e-2 -> 10.00 Inexact Rounded
+dqqua097 quantize 0.0001 1e-2 -> 0.00 Inexact Rounded
+dqqua098 quantize 0.001 1e-2 -> 0.00 Inexact Rounded
+dqqua099 quantize 0.009 1e-2 -> 0.01 Inexact Rounded
+dqqua100 quantize 92 1e+2 -> 1E+2 Inexact Rounded
+
+dqqua101 quantize -1 1e0 -> -1
+dqqua102 quantize -1 1e-1 -> -1.0
+dqqua103 quantize -1 1e-2 -> -1.00
+dqqua104 quantize 0 1e0 -> 0
+dqqua105 quantize 0 1e-1 -> 0.0
+dqqua106 quantize 0 1e-2 -> 0.00
+dqqua107 quantize 0.00 1e0 -> 0
+dqqua108 quantize 0 1e+1 -> 0E+1
+dqqua109 quantize 0 1e+2 -> 0E+2
+dqqua110 quantize +1 1e0 -> 1
+dqqua111 quantize +1 1e-1 -> 1.0
+dqqua112 quantize +1 1e-2 -> 1.00
+
+dqqua120 quantize 1.04 1e-3 -> 1.040
+dqqua121 quantize 1.04 1e-2 -> 1.04
+dqqua122 quantize 1.04 1e-1 -> 1.0 Inexact Rounded
+dqqua123 quantize 1.04 1e0 -> 1 Inexact Rounded
+dqqua124 quantize 1.05 1e-3 -> 1.050
+dqqua125 quantize 1.05 1e-2 -> 1.05
+dqqua126 quantize 1.05 1e-1 -> 1.0 Inexact Rounded
+dqqua131 quantize 1.05 1e0 -> 1 Inexact Rounded
+dqqua132 quantize 1.06 1e-3 -> 1.060
+dqqua133 quantize 1.06 1e-2 -> 1.06
+dqqua134 quantize 1.06 1e-1 -> 1.1 Inexact Rounded
+dqqua135 quantize 1.06 1e0 -> 1 Inexact Rounded
+
+dqqua140 quantize -10 1e-2 -> -10.00
+dqqua141 quantize +1 1e-2 -> 1.00
+dqqua142 quantize +10 1e-2 -> 10.00
+dqqua143 quantize 1E+37 1e-2 -> NaN Invalid_operation
+dqqua144 quantize 1E-37 1e-2 -> 0.00 Inexact Rounded
+dqqua145 quantize 1E-3 1e-2 -> 0.00 Inexact Rounded
+dqqua146 quantize 1E-2 1e-2 -> 0.01
+dqqua147 quantize 1E-1 1e-2 -> 0.10
+dqqua148 quantize 0E-37 1e-2 -> 0.00
+
+dqqua150 quantize 1.0600 1e-5 -> 1.06000
+dqqua151 quantize 1.0600 1e-4 -> 1.0600
+dqqua152 quantize 1.0600 1e-3 -> 1.060 Rounded
+dqqua153 quantize 1.0600 1e-2 -> 1.06 Rounded
+dqqua154 quantize 1.0600 1e-1 -> 1.1 Inexact Rounded
+dqqua155 quantize 1.0600 1e0 -> 1 Inexact Rounded
+
+-- a couple where rounding was different in base tests
+rounding: half_up
+dqqua157 quantize -0.5 1e+0 -> -1 Inexact Rounded
+dqqua158 quantize 1.05 1e-1 -> 1.1 Inexact Rounded
+dqqua159 quantize 1.06 1e0 -> 1 Inexact Rounded
+rounding: half_even
+
+-- base tests with non-1 coefficients
+dqqua161 quantize 0 -9e0 -> 0
+dqqua162 quantize 1 -7e0 -> 1
+dqqua163 quantize 0.1 -1e+2 -> 0E+2 Inexact Rounded
+dqqua165 quantize 0.1 0e+1 -> 0E+1 Inexact Rounded
+dqqua166 quantize 0.1 2e0 -> 0 Inexact Rounded
+dqqua167 quantize 0.1 3e-1 -> 0.1
+dqqua168 quantize 0.1 44e-2 -> 0.10
+dqqua169 quantize 0.1 555e-3 -> 0.100
+dqqua170 quantize 0.9 6666e+2 -> 0E+2 Inexact Rounded
+dqqua171 quantize 0.9 -777e+1 -> 0E+1 Inexact Rounded
+dqqua172 quantize 0.9 -88e+0 -> 1 Inexact Rounded
+dqqua173 quantize 0.9 -9e-1 -> 0.9
+dqqua174 quantize 0.9 0e-2 -> 0.90
+dqqua175 quantize 0.9 1.1e-3 -> 0.9000
+-- negatives
+dqqua181 quantize -0 1.1e0 -> -0.0
+dqqua182 quantize -1 -1e0 -> -1
+dqqua183 quantize -0.1 11e+2 -> -0E+2 Inexact Rounded
+dqqua185 quantize -0.1 111e+1 -> -0E+1 Inexact Rounded
+dqqua186 quantize -0.1 71e0 -> -0 Inexact Rounded
+dqqua187 quantize -0.1 -91e-1 -> -0.1
+dqqua188 quantize -0.1 -.1e-2 -> -0.100
+dqqua189 quantize -0.1 -1e-3 -> -0.100
+dqqua190 quantize -0.9 0e+2 -> -0E+2 Inexact Rounded
+dqqua191 quantize -0.9 -0e+1 -> -0E+1 Inexact Rounded
+dqqua192 quantize -0.9 -10e+0 -> -1 Inexact Rounded
+dqqua193 quantize -0.9 100e-1 -> -0.9
+dqqua194 quantize -0.9 999e-2 -> -0.90
+
+-- +ve exponents ..
+dqqua201 quantize -1 1e+0 -> -1
+dqqua202 quantize -1 1e+1 -> -0E+1 Inexact Rounded
+dqqua203 quantize -1 1e+2 -> -0E+2 Inexact Rounded
+dqqua204 quantize 0 1e+0 -> 0
+dqqua205 quantize 0 1e+1 -> 0E+1
+dqqua206 quantize 0 1e+2 -> 0E+2
+dqqua207 quantize +1 1e+0 -> 1
+dqqua208 quantize +1 1e+1 -> 0E+1 Inexact Rounded
+dqqua209 quantize +1 1e+2 -> 0E+2 Inexact Rounded
+
+dqqua220 quantize 1.04 1e+3 -> 0E+3 Inexact Rounded
+dqqua221 quantize 1.04 1e+2 -> 0E+2 Inexact Rounded
+dqqua222 quantize 1.04 1e+1 -> 0E+1 Inexact Rounded
+dqqua223 quantize 1.04 1e+0 -> 1 Inexact Rounded
+dqqua224 quantize 1.05 1e+3 -> 0E+3 Inexact Rounded
+dqqua225 quantize 1.05 1e+2 -> 0E+2 Inexact Rounded
+dqqua226 quantize 1.05 1e+1 -> 0E+1 Inexact Rounded
+dqqua227 quantize 1.05 1e+0 -> 1 Inexact Rounded
+dqqua228 quantize 1.05 1e+3 -> 0E+3 Inexact Rounded
+dqqua229 quantize 1.05 1e+2 -> 0E+2 Inexact Rounded
+dqqua230 quantize 1.05 1e+1 -> 0E+1 Inexact Rounded
+dqqua231 quantize 1.05 1e+0 -> 1 Inexact Rounded
+dqqua232 quantize 1.06 1e+3 -> 0E+3 Inexact Rounded
+dqqua233 quantize 1.06 1e+2 -> 0E+2 Inexact Rounded
+dqqua234 quantize 1.06 1e+1 -> 0E+1 Inexact Rounded
+dqqua235 quantize 1.06 1e+0 -> 1 Inexact Rounded
+
+dqqua240 quantize -10 1e+1 -> -1E+1 Rounded
+dqqua241 quantize +1 1e+1 -> 0E+1 Inexact Rounded
+dqqua242 quantize +10 1e+1 -> 1E+1 Rounded
+dqqua243 quantize 1E+1 1e+1 -> 1E+1 -- underneath this is E+1
+dqqua244 quantize 1E+2 1e+1 -> 1.0E+2 -- underneath this is E+1
+dqqua245 quantize 1E+3 1e+1 -> 1.00E+3 -- underneath this is E+1
+dqqua246 quantize 1E+4 1e+1 -> 1.000E+4 -- underneath this is E+1
+dqqua247 quantize 1E+5 1e+1 -> 1.0000E+5 -- underneath this is E+1
+dqqua248 quantize 1E+6 1e+1 -> 1.00000E+6 -- underneath this is E+1
+dqqua249 quantize 1E+7 1e+1 -> 1.000000E+7 -- underneath this is E+1
+dqqua250 quantize 1E+8 1e+1 -> 1.0000000E+8 -- underneath this is E+1
+dqqua251 quantize 1E+9 1e+1 -> 1.00000000E+9 -- underneath this is E+1
+-- next one tries to add 9 zeros
+dqqua252 quantize 1E+37 1e+1 -> NaN Invalid_operation
+dqqua253 quantize 1E-37 1e+1 -> 0E+1 Inexact Rounded
+dqqua254 quantize 1E-2 1e+1 -> 0E+1 Inexact Rounded
+dqqua255 quantize 0E-37 1e+1 -> 0E+1
+dqqua256 quantize -0E-37 1e+1 -> -0E+1
+dqqua257 quantize -0E-1 1e+1 -> -0E+1
+dqqua258 quantize -0 1e+1 -> -0E+1
+dqqua259 quantize -0E+1 1e+1 -> -0E+1
+
+dqqua260 quantize -10 1e+2 -> -0E+2 Inexact Rounded
+dqqua261 quantize +1 1e+2 -> 0E+2 Inexact Rounded
+dqqua262 quantize +10 1e+2 -> 0E+2 Inexact Rounded
+dqqua263 quantize 1E+1 1e+2 -> 0E+2 Inexact Rounded
+dqqua264 quantize 1E+2 1e+2 -> 1E+2
+dqqua265 quantize 1E+3 1e+2 -> 1.0E+3
+dqqua266 quantize 1E+4 1e+2 -> 1.00E+4
+dqqua267 quantize 1E+5 1e+2 -> 1.000E+5
+dqqua268 quantize 1E+6 1e+2 -> 1.0000E+6
+dqqua269 quantize 1E+7 1e+2 -> 1.00000E+7
+dqqua270 quantize 1E+8 1e+2 -> 1.000000E+8
+dqqua271 quantize 1E+9 1e+2 -> 1.0000000E+9
+dqqua272 quantize 1E+10 1e+2 -> 1.00000000E+10
+dqqua273 quantize 1E-10 1e+2 -> 0E+2 Inexact Rounded
+dqqua274 quantize 1E-2 1e+2 -> 0E+2 Inexact Rounded
+dqqua275 quantize 0E-10 1e+2 -> 0E+2
+
+dqqua280 quantize -10 1e+3 -> -0E+3 Inexact Rounded
+dqqua281 quantize +1 1e+3 -> 0E+3 Inexact Rounded
+dqqua282 quantize +10 1e+3 -> 0E+3 Inexact Rounded
+dqqua283 quantize 1E+1 1e+3 -> 0E+3 Inexact Rounded
+dqqua284 quantize 1E+2 1e+3 -> 0E+3 Inexact Rounded
+dqqua285 quantize 1E+3 1e+3 -> 1E+3
+dqqua286 quantize 1E+4 1e+3 -> 1.0E+4
+dqqua287 quantize 1E+5 1e+3 -> 1.00E+5
+dqqua288 quantize 1E+6 1e+3 -> 1.000E+6
+dqqua289 quantize 1E+7 1e+3 -> 1.0000E+7
+dqqua290 quantize 1E+8 1e+3 -> 1.00000E+8
+dqqua291 quantize 1E+9 1e+3 -> 1.000000E+9
+dqqua292 quantize 1E+10 1e+3 -> 1.0000000E+10
+dqqua293 quantize 1E-10 1e+3 -> 0E+3 Inexact Rounded
+dqqua294 quantize 1E-2 1e+3 -> 0E+3 Inexact Rounded
+dqqua295 quantize 0E-10 1e+3 -> 0E+3
+
+-- round up from below [sign wrong in JIT compiler once]
+dqqua300 quantize 0.0078 1e-5 -> 0.00780
+dqqua301 quantize 0.0078 1e-4 -> 0.0078
+dqqua302 quantize 0.0078 1e-3 -> 0.008 Inexact Rounded
+dqqua303 quantize 0.0078 1e-2 -> 0.01 Inexact Rounded
+dqqua304 quantize 0.0078 1e-1 -> 0.0 Inexact Rounded
+dqqua305 quantize 0.0078 1e0 -> 0 Inexact Rounded
+dqqua306 quantize 0.0078 1e+1 -> 0E+1 Inexact Rounded
+dqqua307 quantize 0.0078 1e+2 -> 0E+2 Inexact Rounded
+
+dqqua310 quantize -0.0078 1e-5 -> -0.00780
+dqqua311 quantize -0.0078 1e-4 -> -0.0078
+dqqua312 quantize -0.0078 1e-3 -> -0.008 Inexact Rounded
+dqqua313 quantize -0.0078 1e-2 -> -0.01 Inexact Rounded
+dqqua314 quantize -0.0078 1e-1 -> -0.0 Inexact Rounded
+dqqua315 quantize -0.0078 1e0 -> -0 Inexact Rounded
+dqqua316 quantize -0.0078 1e+1 -> -0E+1 Inexact Rounded
+dqqua317 quantize -0.0078 1e+2 -> -0E+2 Inexact Rounded
+
+dqqua320 quantize 0.078 1e-5 -> 0.07800
+dqqua321 quantize 0.078 1e-4 -> 0.0780
+dqqua322 quantize 0.078 1e-3 -> 0.078
+dqqua323 quantize 0.078 1e-2 -> 0.08 Inexact Rounded
+dqqua324 quantize 0.078 1e-1 -> 0.1 Inexact Rounded
+dqqua325 quantize 0.078 1e0 -> 0 Inexact Rounded
+dqqua326 quantize 0.078 1e+1 -> 0E+1 Inexact Rounded
+dqqua327 quantize 0.078 1e+2 -> 0E+2 Inexact Rounded
+
+dqqua330 quantize -0.078 1e-5 -> -0.07800
+dqqua331 quantize -0.078 1e-4 -> -0.0780
+dqqua332 quantize -0.078 1e-3 -> -0.078
+dqqua333 quantize -0.078 1e-2 -> -0.08 Inexact Rounded
+dqqua334 quantize -0.078 1e-1 -> -0.1 Inexact Rounded
+dqqua335 quantize -0.078 1e0 -> -0 Inexact Rounded
+dqqua336 quantize -0.078 1e+1 -> -0E+1 Inexact Rounded
+dqqua337 quantize -0.078 1e+2 -> -0E+2 Inexact Rounded
+
+dqqua340 quantize 0.78 1e-5 -> 0.78000
+dqqua341 quantize 0.78 1e-4 -> 0.7800
+dqqua342 quantize 0.78 1e-3 -> 0.780
+dqqua343 quantize 0.78 1e-2 -> 0.78
+dqqua344 quantize 0.78 1e-1 -> 0.8 Inexact Rounded
+dqqua345 quantize 0.78 1e0 -> 1 Inexact Rounded
+dqqua346 quantize 0.78 1e+1 -> 0E+1 Inexact Rounded
+dqqua347 quantize 0.78 1e+2 -> 0E+2 Inexact Rounded
+
+dqqua350 quantize -0.78 1e-5 -> -0.78000
+dqqua351 quantize -0.78 1e-4 -> -0.7800
+dqqua352 quantize -0.78 1e-3 -> -0.780
+dqqua353 quantize -0.78 1e-2 -> -0.78
+dqqua354 quantize -0.78 1e-1 -> -0.8 Inexact Rounded
+dqqua355 quantize -0.78 1e0 -> -1 Inexact Rounded
+dqqua356 quantize -0.78 1e+1 -> -0E+1 Inexact Rounded
+dqqua357 quantize -0.78 1e+2 -> -0E+2 Inexact Rounded
+
+dqqua360 quantize 7.8 1e-5 -> 7.80000
+dqqua361 quantize 7.8 1e-4 -> 7.8000
+dqqua362 quantize 7.8 1e-3 -> 7.800
+dqqua363 quantize 7.8 1e-2 -> 7.80
+dqqua364 quantize 7.8 1e-1 -> 7.8
+dqqua365 quantize 7.8 1e0 -> 8 Inexact Rounded
+dqqua366 quantize 7.8 1e+1 -> 1E+1 Inexact Rounded
+dqqua367 quantize 7.8 1e+2 -> 0E+2 Inexact Rounded
+dqqua368 quantize 7.8 1e+3 -> 0E+3 Inexact Rounded
+
+dqqua370 quantize -7.8 1e-5 -> -7.80000
+dqqua371 quantize -7.8 1e-4 -> -7.8000
+dqqua372 quantize -7.8 1e-3 -> -7.800
+dqqua373 quantize -7.8 1e-2 -> -7.80
+dqqua374 quantize -7.8 1e-1 -> -7.8
+dqqua375 quantize -7.8 1e0 -> -8 Inexact Rounded
+dqqua376 quantize -7.8 1e+1 -> -1E+1 Inexact Rounded
+dqqua377 quantize -7.8 1e+2 -> -0E+2 Inexact Rounded
+dqqua378 quantize -7.8 1e+3 -> -0E+3 Inexact Rounded
+
+-- some individuals
+dqqua380 quantize 1122334455667788991234567352364.506 1e-2 -> 1122334455667788991234567352364.51 Inexact Rounded
+dqqua381 quantize 11223344556677889912345673523645.06 1e-2 -> 11223344556677889912345673523645.06
+dqqua382 quantize 112233445566778899123456735236450.6 1e-2 -> NaN Invalid_operation
+dqqua383 quantize 1122334455667788991234567352364506 1e-2 -> NaN Invalid_operation
+dqqua384 quantize -1122334455667788991234567352364.506 1e-2 -> -1122334455667788991234567352364.51 Inexact Rounded
+dqqua385 quantize -11223344556677889912345673523645.06 1e-2 -> -11223344556677889912345673523645.06
+dqqua386 quantize -112233445566778899123456735236450.6 1e-2 -> NaN Invalid_operation
+dqqua387 quantize -1122334455667788991234567352364506 1e-2 -> NaN Invalid_operation
+
+rounding: down
+dqqua389 quantize 112233445566778899123456735236450.6 1e-2 -> NaN Invalid_operation
+-- ? should that one instead have been:
+-- dqqua389 quantize 112233445566778899123456735236450.6 1e-2 -> NaN Invalid_operation
+rounding: half_up
+
+-- and a few more from e-mail discussions
+dqqua391 quantize 11223344556677889912345678912.34567 1e-3 -> 11223344556677889912345678912.346 Inexact Rounded
+dqqua392 quantize 112233445566778899123456789123.4567 1e-3 -> 112233445566778899123456789123.457 Inexact Rounded
+dqqua393 quantize 1122334455667788991234567891234567. 1e-3 -> NaN Invalid_operation
+
+-- some 9999 round-up cases
+dqqua400 quantize 9.999 1e-5 -> 9.99900
+dqqua401 quantize 9.999 1e-4 -> 9.9990
+dqqua402 quantize 9.999 1e-3 -> 9.999
+dqqua403 quantize 9.999 1e-2 -> 10.00 Inexact Rounded
+dqqua404 quantize 9.999 1e-1 -> 10.0 Inexact Rounded
+dqqua405 quantize 9.999 1e0 -> 10 Inexact Rounded
+dqqua406 quantize 9.999 1e1 -> 1E+1 Inexact Rounded
+dqqua407 quantize 9.999 1e2 -> 0E+2 Inexact Rounded
+
+dqqua410 quantize 0.999 1e-5 -> 0.99900
+dqqua411 quantize 0.999 1e-4 -> 0.9990
+dqqua412 quantize 0.999 1e-3 -> 0.999
+dqqua413 quantize 0.999 1e-2 -> 1.00 Inexact Rounded
+dqqua414 quantize 0.999 1e-1 -> 1.0 Inexact Rounded
+dqqua415 quantize 0.999 1e0 -> 1 Inexact Rounded
+dqqua416 quantize 0.999 1e1 -> 0E+1 Inexact Rounded
+
+dqqua420 quantize 0.0999 1e-5 -> 0.09990
+dqqua421 quantize 0.0999 1e-4 -> 0.0999
+dqqua422 quantize 0.0999 1e-3 -> 0.100 Inexact Rounded
+dqqua423 quantize 0.0999 1e-2 -> 0.10 Inexact Rounded
+dqqua424 quantize 0.0999 1e-1 -> 0.1 Inexact Rounded
+dqqua425 quantize 0.0999 1e0 -> 0 Inexact Rounded
+dqqua426 quantize 0.0999 1e1 -> 0E+1 Inexact Rounded
+
+dqqua430 quantize 0.00999 1e-5 -> 0.00999
+dqqua431 quantize 0.00999 1e-4 -> 0.0100 Inexact Rounded
+dqqua432 quantize 0.00999 1e-3 -> 0.010 Inexact Rounded
+dqqua433 quantize 0.00999 1e-2 -> 0.01 Inexact Rounded
+dqqua434 quantize 0.00999 1e-1 -> 0.0 Inexact Rounded
+dqqua435 quantize 0.00999 1e0 -> 0 Inexact Rounded
+dqqua436 quantize 0.00999 1e1 -> 0E+1 Inexact Rounded
+
+dqqua440 quantize 0.000999 1e-5 -> 0.00100 Inexact Rounded
+dqqua441 quantize 0.000999 1e-4 -> 0.0010 Inexact Rounded
+dqqua442 quantize 0.000999 1e-3 -> 0.001 Inexact Rounded
+dqqua443 quantize 0.000999 1e-2 -> 0.00 Inexact Rounded
+dqqua444 quantize 0.000999 1e-1 -> 0.0 Inexact Rounded
+dqqua445 quantize 0.000999 1e0 -> 0 Inexact Rounded
+dqqua446 quantize 0.000999 1e1 -> 0E+1 Inexact Rounded
+
+dqqua1001 quantize 0.000 0.001 -> 0.000
+dqqua1002 quantize 0.001 0.001 -> 0.001
+dqqua1003 quantize 0.0012 0.001 -> 0.001 Inexact Rounded
+dqqua1004 quantize 0.0018 0.001 -> 0.002 Inexact Rounded
+dqqua1005 quantize 0.501 0.001 -> 0.501
+dqqua1006 quantize 0.5012 0.001 -> 0.501 Inexact Rounded
+dqqua1007 quantize 0.5018 0.001 -> 0.502 Inexact Rounded
+dqqua1008 quantize 0.999 0.001 -> 0.999
+
+dqqua481 quantize 12345678000 1e+3 -> 1.2345678E+10 Rounded
+dqqua482 quantize 1234567800 1e+1 -> 1.23456780E+9 Rounded
+dqqua483 quantize 1234567890 1e+1 -> 1.23456789E+9 Rounded
+dqqua484 quantize 1234567891 1e+1 -> 1.23456789E+9 Inexact Rounded
+dqqua485 quantize 12345678901 1e+2 -> 1.23456789E+10 Inexact Rounded
+dqqua486 quantize 1234567896 1e+1 -> 1.23456790E+9 Inexact Rounded
+-- a potential double-round
+dqqua487 quantize 1234.987643 1e-4 -> 1234.9876 Inexact Rounded
+dqqua488 quantize 1234.987647 1e-4 -> 1234.9876 Inexact Rounded
+
+dqqua491 quantize 12345678000 1e+3 -> 1.2345678E+10 Rounded
+dqqua492 quantize 1234567800 1e+1 -> 1.23456780E+9 Rounded
+dqqua493 quantize 1234567890 1e+1 -> 1.23456789E+9 Rounded
+dqqua494 quantize 1234567891 1e+1 -> 1.23456789E+9 Inexact Rounded
+dqqua495 quantize 12345678901 1e+2 -> 1.23456789E+10 Inexact Rounded
+dqqua496 quantize 1234567896 1e+1 -> 1.23456790E+9 Inexact Rounded
+dqqua497 quantize 1234.987643 1e-4 -> 1234.9876 Inexact Rounded
+dqqua498 quantize 1234.987647 1e-4 -> 1234.9876 Inexact Rounded
+
+-- Zeros
+dqqua500 quantize 0 1e1 -> 0E+1
+dqqua501 quantize 0 1e0 -> 0
+dqqua502 quantize 0 1e-1 -> 0.0
+dqqua503 quantize 0.0 1e-1 -> 0.0
+dqqua504 quantize 0.0 1e0 -> 0
+dqqua505 quantize 0.0 1e+1 -> 0E+1
+dqqua506 quantize 0E+1 1e-1 -> 0.0
+dqqua507 quantize 0E+1 1e0 -> 0
+dqqua508 quantize 0E+1 1e+1 -> 0E+1
+dqqua509 quantize -0 1e1 -> -0E+1
+dqqua510 quantize -0 1e0 -> -0
+dqqua511 quantize -0 1e-1 -> -0.0
+dqqua512 quantize -0.0 1e-1 -> -0.0
+dqqua513 quantize -0.0 1e0 -> -0
+dqqua514 quantize -0.0 1e+1 -> -0E+1
+dqqua515 quantize -0E+1 1e-1 -> -0.0
+dqqua516 quantize -0E+1 1e0 -> -0
+dqqua517 quantize -0E+1 1e+1 -> -0E+1
+
+-- Suspicious RHS values
+dqqua520 quantize 1.234 1e359 -> 0E+359 Inexact Rounded
+dqqua521 quantize 123.456 1e359 -> 0E+359 Inexact Rounded
+dqqua522 quantize 1.234 1e359 -> 0E+359 Inexact Rounded
+dqqua523 quantize 123.456 1e359 -> 0E+359 Inexact Rounded
+-- next four are "won't fit" overfl
+dqqua526 quantize 1.234 1e-299 -> NaN Invalid_operation
+dqqua527 quantize 123.456 1e-299 -> NaN Invalid_operation
+dqqua528 quantize 1.234 1e-299 -> NaN Invalid_operation
+dqqua529 quantize 123.456 1e-299 -> NaN Invalid_operation
+
+dqqua532 quantize 1.234E+299 1e299 -> 1E+299 Inexact Rounded
+dqqua533 quantize 1.234E+298 1e299 -> 0E+299 Inexact Rounded
+dqqua534 quantize 1.234 1e299 -> 0E+299 Inexact Rounded
+dqqua537 quantize 0 1e-299 -> 0E-299
+-- next two are "won't fit" overflows
+dqqua538 quantize 1.234 1e-299 -> NaN Invalid_operation
+dqqua539 quantize 1.234 1e-300 -> NaN Invalid_operation
+-- [more below]
+
+-- Specials
+dqqua580 quantize Inf -Inf -> Infinity
+dqqua581 quantize Inf 1e-299 -> NaN Invalid_operation
+dqqua582 quantize Inf 1e-1 -> NaN Invalid_operation
+dqqua583 quantize Inf 1e0 -> NaN Invalid_operation
+dqqua584 quantize Inf 1e1 -> NaN Invalid_operation
+dqqua585 quantize Inf 1e299 -> NaN Invalid_operation
+dqqua586 quantize Inf Inf -> Infinity
+dqqua587 quantize -1000 Inf -> NaN Invalid_operation
+dqqua588 quantize -Inf Inf -> -Infinity
+dqqua589 quantize -1 Inf -> NaN Invalid_operation
+dqqua590 quantize 0 Inf -> NaN Invalid_operation
+dqqua591 quantize 1 Inf -> NaN Invalid_operation
+dqqua592 quantize 1000 Inf -> NaN Invalid_operation
+dqqua593 quantize Inf Inf -> Infinity
+dqqua594 quantize Inf 1e-0 -> NaN Invalid_operation
+dqqua595 quantize -0 Inf -> NaN Invalid_operation
+
+dqqua600 quantize -Inf -Inf -> -Infinity
+dqqua601 quantize -Inf 1e-299 -> NaN Invalid_operation
+dqqua602 quantize -Inf 1e-1 -> NaN Invalid_operation
+dqqua603 quantize -Inf 1e0 -> NaN Invalid_operation
+dqqua604 quantize -Inf 1e1 -> NaN Invalid_operation
+dqqua605 quantize -Inf 1e299 -> NaN Invalid_operation
+dqqua606 quantize -Inf Inf -> -Infinity
+dqqua607 quantize -1000 Inf -> NaN Invalid_operation
+dqqua608 quantize -Inf -Inf -> -Infinity
+dqqua609 quantize -1 -Inf -> NaN Invalid_operation
+dqqua610 quantize 0 -Inf -> NaN Invalid_operation
+dqqua611 quantize 1 -Inf -> NaN Invalid_operation
+dqqua612 quantize 1000 -Inf -> NaN Invalid_operation
+dqqua613 quantize Inf -Inf -> Infinity
+dqqua614 quantize -Inf 1e-0 -> NaN Invalid_operation
+dqqua615 quantize -0 -Inf -> NaN Invalid_operation
+
+dqqua621 quantize NaN -Inf -> NaN
+dqqua622 quantize NaN 1e-299 -> NaN
+dqqua623 quantize NaN 1e-1 -> NaN
+dqqua624 quantize NaN 1e0 -> NaN
+dqqua625 quantize NaN 1e1 -> NaN
+dqqua626 quantize NaN 1e299 -> NaN
+dqqua627 quantize NaN Inf -> NaN
+dqqua628 quantize NaN NaN -> NaN
+dqqua629 quantize -Inf NaN -> NaN
+dqqua630 quantize -1000 NaN -> NaN
+dqqua631 quantize -1 NaN -> NaN
+dqqua632 quantize 0 NaN -> NaN
+dqqua633 quantize 1 NaN -> NaN
+dqqua634 quantize 1000 NaN -> NaN
+dqqua635 quantize Inf NaN -> NaN
+dqqua636 quantize NaN 1e-0 -> NaN
+dqqua637 quantize -0 NaN -> NaN
+
+dqqua641 quantize sNaN -Inf -> NaN Invalid_operation
+dqqua642 quantize sNaN 1e-299 -> NaN Invalid_operation
+dqqua643 quantize sNaN 1e-1 -> NaN Invalid_operation
+dqqua644 quantize sNaN 1e0 -> NaN Invalid_operation
+dqqua645 quantize sNaN 1e1 -> NaN Invalid_operation
+dqqua646 quantize sNaN 1e299 -> NaN Invalid_operation
+dqqua647 quantize sNaN NaN -> NaN Invalid_operation
+dqqua648 quantize sNaN sNaN -> NaN Invalid_operation
+dqqua649 quantize NaN sNaN -> NaN Invalid_operation
+dqqua650 quantize -Inf sNaN -> NaN Invalid_operation
+dqqua651 quantize -1000 sNaN -> NaN Invalid_operation
+dqqua652 quantize -1 sNaN -> NaN Invalid_operation
+dqqua653 quantize 0 sNaN -> NaN Invalid_operation
+dqqua654 quantize 1 sNaN -> NaN Invalid_operation
+dqqua655 quantize 1000 sNaN -> NaN Invalid_operation
+dqqua656 quantize Inf sNaN -> NaN Invalid_operation
+dqqua657 quantize NaN sNaN -> NaN Invalid_operation
+dqqua658 quantize sNaN 1e-0 -> NaN Invalid_operation
+dqqua659 quantize -0 sNaN -> NaN Invalid_operation
+
+-- propagating NaNs
+dqqua661 quantize NaN9 -Inf -> NaN9
+dqqua662 quantize NaN8 919 -> NaN8
+dqqua663 quantize NaN71 Inf -> NaN71
+dqqua664 quantize NaN6 NaN5 -> NaN6
+dqqua665 quantize -Inf NaN4 -> NaN4
+dqqua666 quantize -919 NaN31 -> NaN31
+dqqua667 quantize Inf NaN2 -> NaN2
+
+dqqua671 quantize sNaN99 -Inf -> NaN99 Invalid_operation
+dqqua672 quantize sNaN98 -11 -> NaN98 Invalid_operation
+dqqua673 quantize sNaN97 NaN -> NaN97 Invalid_operation
+dqqua674 quantize sNaN16 sNaN94 -> NaN16 Invalid_operation
+dqqua675 quantize NaN95 sNaN93 -> NaN93 Invalid_operation
+dqqua676 quantize -Inf sNaN92 -> NaN92 Invalid_operation
+dqqua677 quantize 088 sNaN91 -> NaN91 Invalid_operation
+dqqua678 quantize Inf sNaN90 -> NaN90 Invalid_operation
+dqqua679 quantize NaN sNaN88 -> NaN88 Invalid_operation
+
+dqqua681 quantize -NaN9 -Inf -> -NaN9
+dqqua682 quantize -NaN8 919 -> -NaN8
+dqqua683 quantize -NaN71 Inf -> -NaN71
+dqqua684 quantize -NaN6 -NaN5 -> -NaN6
+dqqua685 quantize -Inf -NaN4 -> -NaN4
+dqqua686 quantize -919 -NaN31 -> -NaN31
+dqqua687 quantize Inf -NaN2 -> -NaN2
+
+dqqua691 quantize -sNaN99 -Inf -> -NaN99 Invalid_operation
+dqqua692 quantize -sNaN98 -11 -> -NaN98 Invalid_operation
+dqqua693 quantize -sNaN97 NaN -> -NaN97 Invalid_operation
+dqqua694 quantize -sNaN16 sNaN94 -> -NaN16 Invalid_operation
+dqqua695 quantize -NaN95 -sNaN93 -> -NaN93 Invalid_operation
+dqqua696 quantize -Inf -sNaN92 -> -NaN92 Invalid_operation
+dqqua697 quantize 088 -sNaN91 -> -NaN91 Invalid_operation
+dqqua698 quantize Inf -sNaN90 -> -NaN90 Invalid_operation
+dqqua699 quantize NaN -sNaN88 -> -NaN88 Invalid_operation
+
+-- subnormals and underflow
+dqqua710 quantize 1.00E-6143 1e-6143 -> 1E-6143 Rounded
+dqqua711 quantize 0.1E-6143 2e-6144 -> 1E-6144 Subnormal
+dqqua712 quantize 0.10E-6143 3e-6144 -> 1E-6144 Subnormal Rounded
+dqqua713 quantize 0.100E-6143 4e-6144 -> 1E-6144 Subnormal Rounded
+dqqua714 quantize 0.01E-6143 5e-6145 -> 1E-6145 Subnormal
+-- next is rounded to Emin
+dqqua715 quantize 0.999E-6143 1e-6143 -> 1E-6143 Inexact Rounded
+dqqua716 quantize 0.099E-6143 10e-6144 -> 1E-6144 Inexact Rounded Subnormal
+
+dqqua717 quantize 0.009E-6143 1e-6145 -> 1E-6145 Inexact Rounded Subnormal
+dqqua718 quantize 0.001E-6143 1e-6145 -> 0E-6145 Inexact Rounded
+dqqua719 quantize 0.0009E-6143 1e-6145 -> 0E-6145 Inexact Rounded
+dqqua720 quantize 0.0001E-6143 1e-6145 -> 0E-6145 Inexact Rounded
+
+dqqua730 quantize -1.00E-6143 1e-6143 -> -1E-6143 Rounded
+dqqua731 quantize -0.1E-6143 1e-6143 -> -0E-6143 Rounded Inexact
+dqqua732 quantize -0.10E-6143 1e-6143 -> -0E-6143 Rounded Inexact
+dqqua733 quantize -0.100E-6143 1e-6143 -> -0E-6143 Rounded Inexact
+dqqua734 quantize -0.01E-6143 1e-6143 -> -0E-6143 Inexact Rounded
+-- next is rounded to Emin
+dqqua735 quantize -0.999E-6143 90e-6143 -> -1E-6143 Inexact Rounded
+dqqua736 quantize -0.099E-6143 -1e-6143 -> -0E-6143 Inexact Rounded
+dqqua737 quantize -0.009E-6143 -1e-6143 -> -0E-6143 Inexact Rounded
+dqqua738 quantize -0.001E-6143 -0e-6143 -> -0E-6143 Inexact Rounded
+dqqua739 quantize -0.0001E-6143 0e-6143 -> -0E-6143 Inexact Rounded
+
+dqqua740 quantize -1.00E-6143 1e-6144 -> -1.0E-6143 Rounded
+dqqua741 quantize -0.1E-6143 1e-6144 -> -1E-6144 Subnormal
+dqqua742 quantize -0.10E-6143 1e-6144 -> -1E-6144 Subnormal Rounded
+dqqua743 quantize -0.100E-6143 1e-6144 -> -1E-6144 Subnormal Rounded
+dqqua744 quantize -0.01E-6143 1e-6144 -> -0E-6144 Inexact Rounded
+-- next is rounded to Emin
+dqqua745 quantize -0.999E-6143 1e-6144 -> -1.0E-6143 Inexact Rounded
+dqqua746 quantize -0.099E-6143 1e-6144 -> -1E-6144 Inexact Rounded Subnormal
+dqqua747 quantize -0.009E-6143 1e-6144 -> -0E-6144 Inexact Rounded
+dqqua748 quantize -0.001E-6143 1e-6144 -> -0E-6144 Inexact Rounded
+dqqua749 quantize -0.0001E-6143 1e-6144 -> -0E-6144 Inexact Rounded
+
+dqqua750 quantize -1.00E-6143 1e-6145 -> -1.00E-6143
+dqqua751 quantize -0.1E-6143 1e-6145 -> -1.0E-6144 Subnormal
+dqqua752 quantize -0.10E-6143 1e-6145 -> -1.0E-6144 Subnormal
+dqqua753 quantize -0.100E-6143 1e-6145 -> -1.0E-6144 Subnormal Rounded
+dqqua754 quantize -0.01E-6143 1e-6145 -> -1E-6145 Subnormal
+-- next is rounded to Emin
+dqqua755 quantize -0.999E-6143 1e-6145 -> -1.00E-6143 Inexact Rounded
+dqqua756 quantize -0.099E-6143 1e-6145 -> -1.0E-6144 Inexact Rounded Subnormal
+dqqua757 quantize -0.009E-6143 1e-6145 -> -1E-6145 Inexact Rounded Subnormal
+dqqua758 quantize -0.001E-6143 1e-6145 -> -0E-6145 Inexact Rounded
+dqqua759 quantize -0.0001E-6143 1e-6145 -> -0E-6145 Inexact Rounded
+
+dqqua760 quantize -1.00E-6143 1e-6146 -> -1.000E-6143
+dqqua761 quantize -0.1E-6143 1e-6146 -> -1.00E-6144 Subnormal
+dqqua762 quantize -0.10E-6143 1e-6146 -> -1.00E-6144 Subnormal
+dqqua763 quantize -0.100E-6143 1e-6146 -> -1.00E-6144 Subnormal
+dqqua764 quantize -0.01E-6143 1e-6146 -> -1.0E-6145 Subnormal
+dqqua765 quantize -0.999E-6143 1e-6146 -> -9.99E-6144 Subnormal
+dqqua766 quantize -0.099E-6143 1e-6146 -> -9.9E-6145 Subnormal
+dqqua767 quantize -0.009E-6143 1e-6146 -> -9E-6146 Subnormal
+dqqua768 quantize -0.001E-6143 1e-6146 -> -1E-6146 Subnormal
+dqqua769 quantize -0.0001E-6143 1e-6146 -> -0E-6146 Inexact Rounded
+
+-- More from Fung Lee
+dqqua1021 quantize 8.666666666666000E+6144 1.000000000000000E+6144 -> 8.666666666666000000000000000000000E+6144 Clamped
+dqqua1022 quantize -8.666666666666000E+6144 1.000000000000000E+6144 -> -8.666666666666000000000000000000000E+6144 Clamped
+dqqua1027 quantize 8.666666666666000E+323 1E+31 -> NaN Invalid_operation
+dqqua1030 quantize 8.66666666E+3 1E+3 -> 9E+3 Inexact Rounded
+
+-- Int and uInt32 edge values for testing conversions
+dqqua1040 quantize -2147483646 0 -> -2147483646
+dqqua1041 quantize -2147483647 0 -> -2147483647
+dqqua1042 quantize -2147483648 0 -> -2147483648
+dqqua1043 quantize -2147483649 0 -> -2147483649
+dqqua1044 quantize 2147483646 0 -> 2147483646
+dqqua1045 quantize 2147483647 0 -> 2147483647
+dqqua1046 quantize 2147483648 0 -> 2147483648
+dqqua1047 quantize 2147483649 0 -> 2147483649
+dqqua1048 quantize 4294967294 0 -> 4294967294
+dqqua1049 quantize 4294967295 0 -> 4294967295
+dqqua1050 quantize 4294967296 0 -> 4294967296
+dqqua1051 quantize 4294967297 0 -> 4294967297
+
+-- Rounding swathe
+rounding: half_even
+dqqua1100 quantize 1.2300 1.00 -> 1.23 Rounded
+dqqua1101 quantize 1.2301 1.00 -> 1.23 Inexact Rounded
+dqqua1102 quantize 1.2310 1.00 -> 1.23 Inexact Rounded
+dqqua1103 quantize 1.2350 1.00 -> 1.24 Inexact Rounded
+dqqua1104 quantize 1.2351 1.00 -> 1.24 Inexact Rounded
+dqqua1105 quantize 1.2450 1.00 -> 1.24 Inexact Rounded
+dqqua1106 quantize 1.2451 1.00 -> 1.25 Inexact Rounded
+dqqua1107 quantize 1.2360 1.00 -> 1.24 Inexact Rounded
+dqqua1108 quantize 1.2370 1.00 -> 1.24 Inexact Rounded
+dqqua1109 quantize 1.2399 1.00 -> 1.24 Inexact Rounded
+
+rounding: half_up
+dqqua1200 quantize 1.2300 1.00 -> 1.23 Rounded
+dqqua1201 quantize 1.2301 1.00 -> 1.23 Inexact Rounded
+dqqua1202 quantize 1.2310 1.00 -> 1.23 Inexact Rounded
+dqqua1203 quantize 1.2350 1.00 -> 1.24 Inexact Rounded
+dqqua1204 quantize 1.2351 1.00 -> 1.24 Inexact Rounded
+dqqua1205 quantize 1.2450 1.00 -> 1.25 Inexact Rounded
+dqqua1206 quantize 1.2451 1.00 -> 1.25 Inexact Rounded
+dqqua1207 quantize 1.2360 1.00 -> 1.24 Inexact Rounded
+dqqua1208 quantize 1.2370 1.00 -> 1.24 Inexact Rounded
+dqqua1209 quantize 1.2399 1.00 -> 1.24 Inexact Rounded
+
+rounding: half_down
+dqqua1300 quantize 1.2300 1.00 -> 1.23 Rounded
+dqqua1301 quantize 1.2301 1.00 -> 1.23 Inexact Rounded
+dqqua1302 quantize 1.2310 1.00 -> 1.23 Inexact Rounded
+dqqua1303 quantize 1.2350 1.00 -> 1.23 Inexact Rounded
+dqqua1304 quantize 1.2351 1.00 -> 1.24 Inexact Rounded
+dqqua1305 quantize 1.2450 1.00 -> 1.24 Inexact Rounded
+dqqua1306 quantize 1.2451 1.00 -> 1.25 Inexact Rounded
+dqqua1307 quantize 1.2360 1.00 -> 1.24 Inexact Rounded
+dqqua1308 quantize 1.2370 1.00 -> 1.24 Inexact Rounded
+dqqua1309 quantize 1.2399 1.00 -> 1.24 Inexact Rounded
+
+rounding: up
+dqqua1400 quantize 1.2300 1.00 -> 1.23 Rounded
+dqqua1401 quantize 1.2301 1.00 -> 1.24 Inexact Rounded
+dqqua1402 quantize 1.2310 1.00 -> 1.24 Inexact Rounded
+dqqua1403 quantize 1.2350 1.00 -> 1.24 Inexact Rounded
+dqqua1404 quantize 1.2351 1.00 -> 1.24 Inexact Rounded
+dqqua1405 quantize 1.2450 1.00 -> 1.25 Inexact Rounded
+dqqua1406 quantize 1.2451 1.00 -> 1.25 Inexact Rounded
+dqqua1407 quantize 1.2360 1.00 -> 1.24 Inexact Rounded
+dqqua1408 quantize 1.2370 1.00 -> 1.24 Inexact Rounded
+dqqua1409 quantize 1.2399 1.00 -> 1.24 Inexact Rounded
+dqqua1411 quantize -1.2399 1.00 -> -1.24 Inexact Rounded
+
+rounding: down
+dqqua1500 quantize 1.2300 1.00 -> 1.23 Rounded
+dqqua1501 quantize 1.2301 1.00 -> 1.23 Inexact Rounded
+dqqua1502 quantize 1.2310 1.00 -> 1.23 Inexact Rounded
+dqqua1503 quantize 1.2350 1.00 -> 1.23 Inexact Rounded
+dqqua1504 quantize 1.2351 1.00 -> 1.23 Inexact Rounded
+dqqua1505 quantize 1.2450 1.00 -> 1.24 Inexact Rounded
+dqqua1506 quantize 1.2451 1.00 -> 1.24 Inexact Rounded
+dqqua1507 quantize 1.2360 1.00 -> 1.23 Inexact Rounded
+dqqua1508 quantize 1.2370 1.00 -> 1.23 Inexact Rounded
+dqqua1509 quantize 1.2399 1.00 -> 1.23 Inexact Rounded
+dqqua1511 quantize -1.2399 1.00 -> -1.23 Inexact Rounded
+
+rounding: ceiling
+dqqua1600 quantize 1.2300 1.00 -> 1.23 Rounded
+dqqua1601 quantize 1.2301 1.00 -> 1.24 Inexact Rounded
+dqqua1602 quantize 1.2310 1.00 -> 1.24 Inexact Rounded
+dqqua1603 quantize 1.2350 1.00 -> 1.24 Inexact Rounded
+dqqua1604 quantize 1.2351 1.00 -> 1.24 Inexact Rounded
+dqqua1605 quantize 1.2450 1.00 -> 1.25 Inexact Rounded
+dqqua1606 quantize 1.2451 1.00 -> 1.25 Inexact Rounded
+dqqua1607 quantize 1.2360 1.00 -> 1.24 Inexact Rounded
+dqqua1608 quantize 1.2370 1.00 -> 1.24 Inexact Rounded
+dqqua1609 quantize 1.2399 1.00 -> 1.24 Inexact Rounded
+dqqua1611 quantize -1.2399 1.00 -> -1.23 Inexact Rounded
+
+rounding: floor
+dqqua1700 quantize 1.2300 1.00 -> 1.23 Rounded
+dqqua1701 quantize 1.2301 1.00 -> 1.23 Inexact Rounded
+dqqua1702 quantize 1.2310 1.00 -> 1.23 Inexact Rounded
+dqqua1703 quantize 1.2350 1.00 -> 1.23 Inexact Rounded
+dqqua1704 quantize 1.2351 1.00 -> 1.23 Inexact Rounded
+dqqua1705 quantize 1.2450 1.00 -> 1.24 Inexact Rounded
+dqqua1706 quantize 1.2451 1.00 -> 1.24 Inexact Rounded
+dqqua1707 quantize 1.2360 1.00 -> 1.23 Inexact Rounded
+dqqua1708 quantize 1.2370 1.00 -> 1.23 Inexact Rounded
+dqqua1709 quantize 1.2399 1.00 -> 1.23 Inexact Rounded
+dqqua1711 quantize -1.2399 1.00 -> -1.24 Inexact Rounded
+
+rounding: 05up
+dqqua1800 quantize 1.2000 1.00 -> 1.20 Rounded
+dqqua1801 quantize 1.2001 1.00 -> 1.21 Inexact Rounded
+dqqua1802 quantize 1.2010 1.00 -> 1.21 Inexact Rounded
+dqqua1803 quantize 1.2050 1.00 -> 1.21 Inexact Rounded
+dqqua1804 quantize 1.2051 1.00 -> 1.21 Inexact Rounded
+dqqua1807 quantize 1.2060 1.00 -> 1.21 Inexact Rounded
+dqqua1808 quantize 1.2070 1.00 -> 1.21 Inexact Rounded
+dqqua1809 quantize 1.2099 1.00 -> 1.21 Inexact Rounded
+dqqua1811 quantize -1.2099 1.00 -> -1.21 Inexact Rounded
+
+dqqua1900 quantize 1.2100 1.00 -> 1.21 Rounded
+dqqua1901 quantize 1.2101 1.00 -> 1.21 Inexact Rounded
+dqqua1902 quantize 1.2110 1.00 -> 1.21 Inexact Rounded
+dqqua1903 quantize 1.2150 1.00 -> 1.21 Inexact Rounded
+dqqua1904 quantize 1.2151 1.00 -> 1.21 Inexact Rounded
+dqqua1907 quantize 1.2160 1.00 -> 1.21 Inexact Rounded
+dqqua1908 quantize 1.2170 1.00 -> 1.21 Inexact Rounded
+dqqua1909 quantize 1.2199 1.00 -> 1.21 Inexact Rounded
+dqqua1911 quantize -1.2199 1.00 -> -1.21 Inexact Rounded
+
+dqqua2000 quantize 1.2400 1.00 -> 1.24 Rounded
+dqqua2001 quantize 1.2401 1.00 -> 1.24 Inexact Rounded
+dqqua2002 quantize 1.2410 1.00 -> 1.24 Inexact Rounded
+dqqua2003 quantize 1.2450 1.00 -> 1.24 Inexact Rounded
+dqqua2004 quantize 1.2451 1.00 -> 1.24 Inexact Rounded
+dqqua2007 quantize 1.2460 1.00 -> 1.24 Inexact Rounded
+dqqua2008 quantize 1.2470 1.00 -> 1.24 Inexact Rounded
+dqqua2009 quantize 1.2499 1.00 -> 1.24 Inexact Rounded
+dqqua2011 quantize -1.2499 1.00 -> -1.24 Inexact Rounded
+
+dqqua2100 quantize 1.2500 1.00 -> 1.25 Rounded
+dqqua2101 quantize 1.2501 1.00 -> 1.26 Inexact Rounded
+dqqua2102 quantize 1.2510 1.00 -> 1.26 Inexact Rounded
+dqqua2103 quantize 1.2550 1.00 -> 1.26 Inexact Rounded
+dqqua2104 quantize 1.2551 1.00 -> 1.26 Inexact Rounded
+dqqua2107 quantize 1.2560 1.00 -> 1.26 Inexact Rounded
+dqqua2108 quantize 1.2570 1.00 -> 1.26 Inexact Rounded
+dqqua2109 quantize 1.2599 1.00 -> 1.26 Inexact Rounded
+dqqua2111 quantize -1.2599 1.00 -> -1.26 Inexact Rounded
+
+dqqua2200 quantize 1.2600 1.00 -> 1.26 Rounded
+dqqua2201 quantize 1.2601 1.00 -> 1.26 Inexact Rounded
+dqqua2202 quantize 1.2610 1.00 -> 1.26 Inexact Rounded
+dqqua2203 quantize 1.2650 1.00 -> 1.26 Inexact Rounded
+dqqua2204 quantize 1.2651 1.00 -> 1.26 Inexact Rounded
+dqqua2207 quantize 1.2660 1.00 -> 1.26 Inexact Rounded
+dqqua2208 quantize 1.2670 1.00 -> 1.26 Inexact Rounded
+dqqua2209 quantize 1.2699 1.00 -> 1.26 Inexact Rounded
+dqqua2211 quantize -1.2699 1.00 -> -1.26 Inexact Rounded
+
+dqqua2300 quantize 1.2900 1.00 -> 1.29 Rounded
+dqqua2301 quantize 1.2901 1.00 -> 1.29 Inexact Rounded
+dqqua2302 quantize 1.2910 1.00 -> 1.29 Inexact Rounded
+dqqua2303 quantize 1.2950 1.00 -> 1.29 Inexact Rounded
+dqqua2304 quantize 1.2951 1.00 -> 1.29 Inexact Rounded
+dqqua2307 quantize 1.2960 1.00 -> 1.29 Inexact Rounded
+dqqua2308 quantize 1.2970 1.00 -> 1.29 Inexact Rounded
+dqqua2309 quantize 1.2999 1.00 -> 1.29 Inexact Rounded
+dqqua2311 quantize -1.2999 1.00 -> -1.29 Inexact Rounded
+
+-- Null tests
+dqqua998 quantize 10 # -> NaN Invalid_operation
+dqqua999 quantize # 1e10 -> NaN Invalid_operation
diff --git a/Lib/test/decimaltestdata/dqReduce.decTest b/Lib/test/decimaltestdata/dqReduce.decTest
new file mode 100644
index 0000000..183e9dc
--- /dev/null
+++ b/Lib/test/decimaltestdata/dqReduce.decTest
@@ -0,0 +1,183 @@
+------------------------------------------------------------------------
+-- dqReduce.decTest -- remove trailing zeros from a decQuad --
+-- Copyright (c) IBM Corporation, 2003, 2007. All rights reserved. --
+------------------------------------------------------------------------
+-- Please see the document "General Decimal Arithmetic Testcases" --
+-- at http://www2.hursley.ibm.com/decimal for the description of --
+-- these testcases. --
+-- --
+-- These testcases are experimental ('beta' versions), and they --
+-- may contain errors. They are offered on an as-is basis. In --
+-- particular, achieving the same results as the tests here is not --
+-- a guarantee that an implementation complies with any Standard --
+-- or specification. The tests are not exhaustive. --
+-- --
+-- Please send comments, suggestions, and corrections to the author: --
+-- Mike Cowlishaw, IBM Fellow --
+-- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK --
+-- mfc@uk.ibm.com --
+------------------------------------------------------------------------
+
+version: 2.56
+
+extended: 1
+clamp: 1
+precision: 34
+maxExponent: 6144
+minExponent: -6143
+rounding: half_even
+
+dqred001 reduce '1' -> '1'
+dqred002 reduce '-1' -> '-1'
+dqred003 reduce '1.00' -> '1'
+dqred004 reduce '-1.00' -> '-1'
+dqred005 reduce '0' -> '0'
+dqred006 reduce '0.00' -> '0'
+dqred007 reduce '00.0' -> '0'
+dqred008 reduce '00.00' -> '0'
+dqred009 reduce '00' -> '0'
+dqred010 reduce '0E+1' -> '0'
+dqred011 reduce '0E+5' -> '0'
+
+dqred012 reduce '-2' -> '-2'
+dqred013 reduce '2' -> '2'
+dqred014 reduce '-2.00' -> '-2'
+dqred015 reduce '2.00' -> '2'
+dqred016 reduce '-0' -> '-0'
+dqred017 reduce '-0.00' -> '-0'
+dqred018 reduce '-00.0' -> '-0'
+dqred019 reduce '-00.00' -> '-0'
+dqred020 reduce '-00' -> '-0'
+dqred021 reduce '-0E+5' -> '-0'
+dqred022 reduce '-0E+1' -> '-0'
+
+dqred030 reduce '+0.1' -> '0.1'
+dqred031 reduce '-0.1' -> '-0.1'
+dqred032 reduce '+0.01' -> '0.01'
+dqred033 reduce '-0.01' -> '-0.01'
+dqred034 reduce '+0.001' -> '0.001'
+dqred035 reduce '-0.001' -> '-0.001'
+dqred036 reduce '+0.000001' -> '0.000001'
+dqred037 reduce '-0.000001' -> '-0.000001'
+dqred038 reduce '+0.000000000001' -> '1E-12'
+dqred039 reduce '-0.000000000001' -> '-1E-12'
+
+dqred041 reduce 1.1 -> 1.1
+dqred042 reduce 1.10 -> 1.1
+dqred043 reduce 1.100 -> 1.1
+dqred044 reduce 1.110 -> 1.11
+dqred045 reduce -1.1 -> -1.1
+dqred046 reduce -1.10 -> -1.1
+dqred047 reduce -1.100 -> -1.1
+dqred048 reduce -1.110 -> -1.11
+dqred049 reduce 9.9 -> 9.9
+dqred050 reduce 9.90 -> 9.9
+dqred051 reduce 9.900 -> 9.9
+dqred052 reduce 9.990 -> 9.99
+dqred053 reduce -9.9 -> -9.9
+dqred054 reduce -9.90 -> -9.9
+dqred055 reduce -9.900 -> -9.9
+dqred056 reduce -9.990 -> -9.99
+
+-- some trailing fractional zeros with zeros in units
+dqred060 reduce 10.0 -> 1E+1
+dqred061 reduce 10.00 -> 1E+1
+dqred062 reduce 100.0 -> 1E+2
+dqred063 reduce 100.00 -> 1E+2
+dqred064 reduce 1.1000E+3 -> 1.1E+3
+dqred065 reduce 1.10000E+3 -> 1.1E+3
+dqred066 reduce -10.0 -> -1E+1
+dqred067 reduce -10.00 -> -1E+1
+dqred068 reduce -100.0 -> -1E+2
+dqred069 reduce -100.00 -> -1E+2
+dqred070 reduce -1.1000E+3 -> -1.1E+3
+dqred071 reduce -1.10000E+3 -> -1.1E+3
+
+-- some insignificant trailing zeros with positive exponent
+dqred080 reduce 10E+1 -> 1E+2
+dqred081 reduce 100E+1 -> 1E+3
+dqred082 reduce 1.0E+2 -> 1E+2
+dqred083 reduce 1.0E+3 -> 1E+3
+dqred084 reduce 1.1E+3 -> 1.1E+3
+dqred085 reduce 1.00E+3 -> 1E+3
+dqred086 reduce 1.10E+3 -> 1.1E+3
+dqred087 reduce -10E+1 -> -1E+2
+dqred088 reduce -100E+1 -> -1E+3
+dqred089 reduce -1.0E+2 -> -1E+2
+dqred090 reduce -1.0E+3 -> -1E+3
+dqred091 reduce -1.1E+3 -> -1.1E+3
+dqred092 reduce -1.00E+3 -> -1E+3
+dqred093 reduce -1.10E+3 -> -1.1E+3
+
+-- some significant trailing zeros, were we to be trimming
+dqred100 reduce 11 -> 11
+dqred101 reduce 10 -> 1E+1
+dqred102 reduce 10. -> 1E+1
+dqred103 reduce 1.1E+1 -> 11
+dqred104 reduce 1.0E+1 -> 1E+1
+dqred105 reduce 1.10E+2 -> 1.1E+2
+dqred106 reduce 1.00E+2 -> 1E+2
+dqred107 reduce 1.100E+3 -> 1.1E+3
+dqred108 reduce 1.000E+3 -> 1E+3
+dqred109 reduce 1.000000E+6 -> 1E+6
+dqred110 reduce -11 -> -11
+dqred111 reduce -10 -> -1E+1
+dqred112 reduce -10. -> -1E+1
+dqred113 reduce -1.1E+1 -> -11
+dqred114 reduce -1.0E+1 -> -1E+1
+dqred115 reduce -1.10E+2 -> -1.1E+2
+dqred116 reduce -1.00E+2 -> -1E+2
+dqred117 reduce -1.100E+3 -> -1.1E+3
+dqred118 reduce -1.000E+3 -> -1E+3
+dqred119 reduce -1.00000E+5 -> -1E+5
+dqred120 reduce -1.000000E+6 -> -1E+6
+dqred121 reduce -10.00000E+6 -> -1E+7
+dqred122 reduce -100.0000E+6 -> -1E+8
+dqred123 reduce -1000.000E+6 -> -1E+9
+dqred124 reduce -10000.00E+6 -> -1E+10
+dqred125 reduce -100000.0E+6 -> -1E+11
+dqred126 reduce -1000000.E+6 -> -1E+12
+
+-- examples from decArith
+dqred140 reduce '2.1' -> '2.1'
+dqred141 reduce '-2.0' -> '-2'
+dqred142 reduce '1.200' -> '1.2'
+dqred143 reduce '-120' -> '-1.2E+2'
+dqred144 reduce '120.00' -> '1.2E+2'
+dqred145 reduce '0.00' -> '0'
+
+-- Nmax, Nmin, Ntiny
+-- note origami effect on some of these
+dqred151 reduce 9.999999999999999999999999999999999E+6144 -> 9.999999999999999999999999999999999E+6144
+dqred152 reduce 9.999999999999999999999999000000000E+6140 -> 9.99999999999999999999999900000E+6140
+dqred153 reduce 9.999999999999999999999999999990000E+6144 -> 9.999999999999999999999999999990000E+6144
+dqred154 reduce 1E-6143 -> 1E-6143
+dqred155 reduce 1.000000000000000000000000000000000E-6143 -> 1E-6143
+dqred156 reduce 2.000E-6173 -> 2E-6173 Subnormal
+dqred157 reduce 1E-6176 -> 1E-6176 Subnormal
+
+dqred161 reduce -1E-6176 -> -1E-6176 Subnormal
+dqred162 reduce -2.000E-6173 -> -2E-6173 Subnormal
+dqred163 reduce -1.000000000000000000000000000000000E-6143 -> -1E-6143
+dqred164 reduce -1E-6143 -> -1E-6143
+dqred165 reduce -9.999999999999999999999999000000000E+6140 -> -9.99999999999999999999999900000E+6140
+dqred166 reduce -9.999999999999999999999999999990000E+6144 -> -9.999999999999999999999999999990000E+6144
+dqred167 reduce -9.999999999999999999999999999999990E+6144 -> -9.999999999999999999999999999999990E+6144
+dqred168 reduce -9.999999999999999999999999999999999E+6144 -> -9.999999999999999999999999999999999E+6144
+dqred169 reduce -9.999999999999999999999999999999990E+6144 -> -9.999999999999999999999999999999990E+6144
+
+
+-- specials (reduce does not affect payload)
+dqred820 reduce 'Inf' -> 'Infinity'
+dqred821 reduce '-Inf' -> '-Infinity'
+dqred822 reduce NaN -> NaN
+dqred823 reduce sNaN -> NaN Invalid_operation
+dqred824 reduce NaN101 -> NaN101
+dqred825 reduce sNaN010 -> NaN10 Invalid_operation
+dqred827 reduce -NaN -> -NaN
+dqred828 reduce -sNaN -> -NaN Invalid_operation
+dqred829 reduce -NaN101 -> -NaN101
+dqred830 reduce -sNaN010 -> -NaN10 Invalid_operation
+
+-- Null test
+dqred900 reduce # -> NaN Invalid_operation
diff --git a/Lib/test/decimaltestdata/dqRemainder.decTest b/Lib/test/decimaltestdata/dqRemainder.decTest
new file mode 100644
index 0000000..e30fde7
--- /dev/null
+++ b/Lib/test/decimaltestdata/dqRemainder.decTest
@@ -0,0 +1,586 @@
+------------------------------------------------------------------------
+-- dqRemainder.decTest -- decQuad remainder --
+-- Copyright (c) IBM Corporation, 1981, 2007. All rights reserved. --
+------------------------------------------------------------------------
+-- Please see the document "General Decimal Arithmetic Testcases" --
+-- at http://www2.hursley.ibm.com/decimal for the description of --
+-- these testcases. --
+-- --
+-- These testcases are experimental ('beta' versions), and they --
+-- may contain errors. They are offered on an as-is basis. In --
+-- particular, achieving the same results as the tests here is not --
+-- a guarantee that an implementation complies with any Standard --
+-- or specification. The tests are not exhaustive. --
+-- --
+-- Please send comments, suggestions, and corrections to the author: --
+-- Mike Cowlishaw, IBM Fellow --
+-- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK --
+-- mfc@uk.ibm.com --
+------------------------------------------------------------------------
+version: 2.56
+
+extended: 1
+clamp: 1
+precision: 34
+maxExponent: 6144
+minExponent: -6143
+rounding: half_even
+
+-- sanity checks (as base, above)
+dqrem001 remainder 1 1 -> 0
+dqrem002 remainder 2 1 -> 0
+dqrem003 remainder 1 2 -> 1
+dqrem004 remainder 2 2 -> 0
+dqrem005 remainder 0 1 -> 0
+dqrem006 remainder 0 2 -> 0
+dqrem007 remainder 1 3 -> 1
+dqrem008 remainder 2 3 -> 2
+dqrem009 remainder 3 3 -> 0
+
+dqrem010 remainder 2.4 1 -> 0.4
+dqrem011 remainder 2.4 -1 -> 0.4
+dqrem012 remainder -2.4 1 -> -0.4
+dqrem013 remainder -2.4 -1 -> -0.4
+dqrem014 remainder 2.40 1 -> 0.40
+dqrem015 remainder 2.400 1 -> 0.400
+dqrem016 remainder 2.4 2 -> 0.4
+dqrem017 remainder 2.400 2 -> 0.400
+dqrem018 remainder 2. 2 -> 0
+dqrem019 remainder 20 20 -> 0
+
+dqrem020 remainder 187 187 -> 0
+dqrem021 remainder 5 2 -> 1
+dqrem022 remainder 5 2.0 -> 1.0
+dqrem023 remainder 5 2.000 -> 1.000
+dqrem024 remainder 5 0.200 -> 0.000
+dqrem025 remainder 5 0.200 -> 0.000
+
+dqrem030 remainder 1 2 -> 1
+dqrem031 remainder 1 4 -> 1
+dqrem032 remainder 1 8 -> 1
+
+dqrem033 remainder 1 16 -> 1
+dqrem034 remainder 1 32 -> 1
+dqrem035 remainder 1 64 -> 1
+dqrem040 remainder 1 -2 -> 1
+dqrem041 remainder 1 -4 -> 1
+dqrem042 remainder 1 -8 -> 1
+dqrem043 remainder 1 -16 -> 1
+dqrem044 remainder 1 -32 -> 1
+dqrem045 remainder 1 -64 -> 1
+dqrem050 remainder -1 2 -> -1
+dqrem051 remainder -1 4 -> -1
+dqrem052 remainder -1 8 -> -1
+dqrem053 remainder -1 16 -> -1
+dqrem054 remainder -1 32 -> -1
+dqrem055 remainder -1 64 -> -1
+dqrem060 remainder -1 -2 -> -1
+dqrem061 remainder -1 -4 -> -1
+dqrem062 remainder -1 -8 -> -1
+dqrem063 remainder -1 -16 -> -1
+dqrem064 remainder -1 -32 -> -1
+dqrem065 remainder -1 -64 -> -1
+
+dqrem066 remainder 999999999 1 -> 0
+dqrem067 remainder 999999999.4 1 -> 0.4
+dqrem068 remainder 999999999.5 1 -> 0.5
+dqrem069 remainder 999999999.9 1 -> 0.9
+dqrem070 remainder 999999999.999 1 -> 0.999
+dqrem071 remainder 999999.999999 1 -> 0.999999
+dqrem072 remainder 9 1 -> 0
+
+dqrem080 remainder 0. 1 -> 0
+dqrem081 remainder .0 1 -> 0.0
+dqrem082 remainder 0.00 1 -> 0.00
+dqrem083 remainder 0.00E+9 1 -> 0
+dqrem084 remainder 0.00E+3 1 -> 0
+dqrem085 remainder 0.00E+2 1 -> 0
+dqrem086 remainder 0.00E+1 1 -> 0.0
+dqrem087 remainder 0.00E+0 1 -> 0.00
+dqrem088 remainder 0.00E-0 1 -> 0.00
+dqrem089 remainder 0.00E-1 1 -> 0.000
+dqrem090 remainder 0.00E-2 1 -> 0.0000
+dqrem091 remainder 0.00E-3 1 -> 0.00000
+dqrem092 remainder 0.00E-4 1 -> 0.000000
+dqrem093 remainder 0.00E-5 1 -> 0E-7
+dqrem094 remainder 0.00E-6 1 -> 0E-8
+dqrem095 remainder 0.0000E-50 1 -> 0E-54
+
+-- Various flavours of remainder by 0
+dqrem101 remainder 0 0 -> NaN Division_undefined
+dqrem102 remainder 0 -0 -> NaN Division_undefined
+dqrem103 remainder -0 0 -> NaN Division_undefined
+dqrem104 remainder -0 -0 -> NaN Division_undefined
+dqrem105 remainder 0.0E5 0 -> NaN Division_undefined
+dqrem106 remainder 0.000 0 -> NaN Division_undefined
+-- [Some think this next group should be Division_by_zero exception, but
+-- IEEE 854 is explicit that it is Invalid operation .. for
+-- remainder-near, anyway]
+dqrem107 remainder 0.0001 0 -> NaN Invalid_operation
+dqrem108 remainder 0.01 0 -> NaN Invalid_operation
+dqrem109 remainder 0.1 0 -> NaN Invalid_operation
+dqrem110 remainder 1 0 -> NaN Invalid_operation
+dqrem111 remainder 1 0.0 -> NaN Invalid_operation
+dqrem112 remainder 10 0.0 -> NaN Invalid_operation
+dqrem113 remainder 1E+100 0.0 -> NaN Invalid_operation
+dqrem114 remainder 1E+380 0 -> NaN Invalid_operation
+dqrem115 remainder 0.0001 -0 -> NaN Invalid_operation
+dqrem116 remainder 0.01 -0 -> NaN Invalid_operation
+dqrem119 remainder 0.1 -0 -> NaN Invalid_operation
+dqrem120 remainder 1 -0 -> NaN Invalid_operation
+dqrem121 remainder 1 -0.0 -> NaN Invalid_operation
+dqrem122 remainder 10 -0.0 -> NaN Invalid_operation
+dqrem123 remainder 1E+100 -0.0 -> NaN Invalid_operation
+dqrem124 remainder 1E+384 -0 -> NaN Invalid_operation
+-- and zeros on left
+dqrem130 remainder 0 1 -> 0
+dqrem131 remainder 0 -1 -> 0
+dqrem132 remainder 0.0 1 -> 0.0
+dqrem133 remainder 0.0 -1 -> 0.0
+dqrem134 remainder -0 1 -> -0
+dqrem135 remainder -0 -1 -> -0
+dqrem136 remainder -0.0 1 -> -0.0
+dqrem137 remainder -0.0 -1 -> -0.0
+
+-- 0.5ers
+dqrem143 remainder 0.5 2 -> 0.5
+dqrem144 remainder 0.5 2.1 -> 0.5
+dqrem145 remainder 0.5 2.01 -> 0.50
+dqrem146 remainder 0.5 2.001 -> 0.500
+dqrem147 remainder 0.50 2 -> 0.50
+dqrem148 remainder 0.50 2.01 -> 0.50
+dqrem149 remainder 0.50 2.001 -> 0.500
+
+-- steadies
+dqrem150 remainder 1 1 -> 0
+dqrem151 remainder 1 2 -> 1
+dqrem152 remainder 1 3 -> 1
+dqrem153 remainder 1 4 -> 1
+dqrem154 remainder 1 5 -> 1
+dqrem155 remainder 1 6 -> 1
+dqrem156 remainder 1 7 -> 1
+dqrem157 remainder 1 8 -> 1
+dqrem158 remainder 1 9 -> 1
+dqrem159 remainder 1 10 -> 1
+dqrem160 remainder 1 1 -> 0
+dqrem161 remainder 2 1 -> 0
+dqrem162 remainder 3 1 -> 0
+dqrem163 remainder 4 1 -> 0
+dqrem164 remainder 5 1 -> 0
+dqrem165 remainder 6 1 -> 0
+dqrem166 remainder 7 1 -> 0
+dqrem167 remainder 8 1 -> 0
+dqrem168 remainder 9 1 -> 0
+dqrem169 remainder 10 1 -> 0
+
+-- some differences from remainderNear
+dqrem171 remainder 0.4 1.020 -> 0.400
+dqrem172 remainder 0.50 1.020 -> 0.500
+dqrem173 remainder 0.51 1.020 -> 0.510
+dqrem174 remainder 0.52 1.020 -> 0.520
+dqrem175 remainder 0.6 1.020 -> 0.600
+
+-- More flavours of remainder by 0
+dqrem201 remainder 0 0 -> NaN Division_undefined
+dqrem202 remainder 0.0E5 0 -> NaN Division_undefined
+dqrem203 remainder 0.000 0 -> NaN Division_undefined
+dqrem204 remainder 0.0001 0 -> NaN Invalid_operation
+dqrem205 remainder 0.01 0 -> NaN Invalid_operation
+dqrem206 remainder 0.1 0 -> NaN Invalid_operation
+dqrem207 remainder 1 0 -> NaN Invalid_operation
+dqrem208 remainder 1 0.0 -> NaN Invalid_operation
+dqrem209 remainder 10 0.0 -> NaN Invalid_operation
+dqrem210 remainder 1E+100 0.0 -> NaN Invalid_operation
+dqrem211 remainder 1E+380 0 -> NaN Invalid_operation
+
+-- some differences from remainderNear
+dqrem231 remainder -0.4 1.020 -> -0.400
+dqrem232 remainder -0.50 1.020 -> -0.500
+dqrem233 remainder -0.51 1.020 -> -0.510
+dqrem234 remainder -0.52 1.020 -> -0.520
+dqrem235 remainder -0.6 1.020 -> -0.600
+
+-- high Xs
+dqrem240 remainder 1E+2 1.00 -> 0.00
+
+-- dqrem3xx are from DiagBigDecimal
+dqrem301 remainder 1 3 -> 1
+dqrem302 remainder 5 5 -> 0
+dqrem303 remainder 13 10 -> 3
+dqrem304 remainder 13 50 -> 13
+dqrem305 remainder 13 100 -> 13
+dqrem306 remainder 13 1000 -> 13
+dqrem307 remainder .13 1 -> 0.13
+dqrem308 remainder 0.133 1 -> 0.133
+dqrem309 remainder 0.1033 1 -> 0.1033
+dqrem310 remainder 1.033 1 -> 0.033
+dqrem311 remainder 10.33 1 -> 0.33
+dqrem312 remainder 10.33 10 -> 0.33
+dqrem313 remainder 103.3 1 -> 0.3
+dqrem314 remainder 133 10 -> 3
+dqrem315 remainder 1033 10 -> 3
+dqrem316 remainder 1033 50 -> 33
+dqrem317 remainder 101.0 3 -> 2.0
+dqrem318 remainder 102.0 3 -> 0.0
+dqrem319 remainder 103.0 3 -> 1.0
+dqrem320 remainder 2.40 1 -> 0.40
+dqrem321 remainder 2.400 1 -> 0.400
+dqrem322 remainder 2.4 1 -> 0.4
+dqrem323 remainder 2.4 2 -> 0.4
+dqrem324 remainder 2.400 2 -> 0.400
+dqrem325 remainder 1 0.3 -> 0.1
+dqrem326 remainder 1 0.30 -> 0.10
+dqrem327 remainder 1 0.300 -> 0.100
+dqrem328 remainder 1 0.3000 -> 0.1000
+dqrem329 remainder 1.0 0.3 -> 0.1
+dqrem330 remainder 1.00 0.3 -> 0.10
+dqrem331 remainder 1.000 0.3 -> 0.100
+dqrem332 remainder 1.0000 0.3 -> 0.1000
+dqrem333 remainder 0.5 2 -> 0.5
+dqrem334 remainder 0.5 2.1 -> 0.5
+dqrem335 remainder 0.5 2.01 -> 0.50
+dqrem336 remainder 0.5 2.001 -> 0.500
+dqrem337 remainder 0.50 2 -> 0.50
+dqrem338 remainder 0.50 2.01 -> 0.50
+dqrem339 remainder 0.50 2.001 -> 0.500
+
+dqrem340 remainder 0.5 0.5000001 -> 0.5000000
+dqrem341 remainder 0.5 0.50000001 -> 0.50000000
+dqrem342 remainder 0.5 0.500000001 -> 0.500000000
+dqrem343 remainder 0.5 0.5000000001 -> 0.5000000000
+dqrem344 remainder 0.5 0.50000000001 -> 0.50000000000
+dqrem345 remainder 0.5 0.4999999 -> 1E-7
+dqrem346 remainder 0.5 0.49999999 -> 1E-8
+dqrem347 remainder 0.5 0.499999999 -> 1E-9
+dqrem348 remainder 0.5 0.4999999999 -> 1E-10
+dqrem349 remainder 0.5 0.49999999999 -> 1E-11
+dqrem350 remainder 0.5 0.499999999999 -> 1E-12
+
+dqrem351 remainder 0.03 7 -> 0.03
+dqrem352 remainder 5 2 -> 1
+dqrem353 remainder 4.1 2 -> 0.1
+dqrem354 remainder 4.01 2 -> 0.01
+dqrem355 remainder 4.001 2 -> 0.001
+dqrem356 remainder 4.0001 2 -> 0.0001
+dqrem357 remainder 4.00001 2 -> 0.00001
+dqrem358 remainder 4.000001 2 -> 0.000001
+dqrem359 remainder 4.0000001 2 -> 1E-7
+
+dqrem360 remainder 1.2 0.7345 -> 0.4655
+dqrem361 remainder 0.8 12 -> 0.8
+dqrem362 remainder 0.8 0.2 -> 0.0
+dqrem363 remainder 0.8 0.3 -> 0.2
+dqrem364 remainder 0.800 12 -> 0.800
+dqrem365 remainder 0.800 1.7 -> 0.800
+dqrem366 remainder 2.400 2 -> 0.400
+
+dqrem371 remainder 2.400 2 -> 0.400
+
+dqrem381 remainder 12345 1 -> 0
+dqrem382 remainder 12345 1.0001 -> 0.7657
+dqrem383 remainder 12345 1.001 -> 0.668
+dqrem384 remainder 12345 1.01 -> 0.78
+dqrem385 remainder 12345 1.1 -> 0.8
+dqrem386 remainder 12355 4 -> 3
+dqrem387 remainder 12345 4 -> 1
+dqrem388 remainder 12355 4.0001 -> 2.6912
+dqrem389 remainder 12345 4.0001 -> 0.6914
+dqrem390 remainder 12345 4.9 -> 1.9
+dqrem391 remainder 12345 4.99 -> 4.73
+dqrem392 remainder 12345 4.999 -> 2.469
+dqrem393 remainder 12345 4.9999 -> 0.2469
+dqrem394 remainder 12345 5 -> 0
+dqrem395 remainder 12345 5.0001 -> 4.7532
+dqrem396 remainder 12345 5.001 -> 2.532
+dqrem397 remainder 12345 5.01 -> 0.36
+dqrem398 remainder 12345 5.1 -> 3.0
+
+-- the nasty division-by-1 cases
+dqrem401 remainder 0.5 1 -> 0.5
+dqrem402 remainder 0.55 1 -> 0.55
+dqrem403 remainder 0.555 1 -> 0.555
+dqrem404 remainder 0.5555 1 -> 0.5555
+dqrem405 remainder 0.55555 1 -> 0.55555
+dqrem406 remainder 0.555555 1 -> 0.555555
+dqrem407 remainder 0.5555555 1 -> 0.5555555
+dqrem408 remainder 0.55555555 1 -> 0.55555555
+dqrem409 remainder 0.555555555 1 -> 0.555555555
+
+-- folddowns
+dqrem421 remainder 1E+6144 1 -> NaN Division_impossible
+dqrem422 remainder 1E+6144 1E+6143 -> 0E+6111 Clamped
+dqrem423 remainder 1E+6144 2E+6143 -> 0E+6111 Clamped
+dqrem424 remainder 1E+6144 3E+6143 -> 1.00000000000000000000000000000000E+6143 Clamped
+dqrem425 remainder 1E+6144 4E+6143 -> 2.00000000000000000000000000000000E+6143 Clamped
+dqrem426 remainder 1E+6144 5E+6143 -> 0E+6111 Clamped
+dqrem427 remainder 1E+6144 6E+6143 -> 4.00000000000000000000000000000000E+6143 Clamped
+dqrem428 remainder 1E+6144 7E+6143 -> 3.00000000000000000000000000000000E+6143 Clamped
+dqrem429 remainder 1E+6144 8E+6143 -> 2.00000000000000000000000000000000E+6143 Clamped
+dqrem430 remainder 1E+6144 9E+6143 -> 1.00000000000000000000000000000000E+6143 Clamped
+-- tinies
+dqrem431 remainder 1E-6175 1E-6176 -> 0E-6176
+dqrem432 remainder 1E-6175 2E-6176 -> 0E-6176
+dqrem433 remainder 1E-6175 3E-6176 -> 1E-6176 Subnormal
+dqrem434 remainder 1E-6175 4E-6176 -> 2E-6176 Subnormal
+dqrem435 remainder 1E-6175 5E-6176 -> 0E-6176
+dqrem436 remainder 1E-6175 6E-6176 -> 4E-6176 Subnormal
+dqrem437 remainder 1E-6175 7E-6176 -> 3E-6176 Subnormal
+dqrem438 remainder 1E-6175 8E-6176 -> 2E-6176 Subnormal
+dqrem439 remainder 1E-6175 9E-6176 -> 1E-6176 Subnormal
+dqrem440 remainder 1E-6175 10E-6176 -> 0E-6176
+dqrem441 remainder 1E-6175 11E-6176 -> 1.0E-6175 Subnormal
+dqrem442 remainder 100E-6175 11E-6176 -> 1.0E-6175 Subnormal
+dqrem443 remainder 100E-6175 20E-6176 -> 0E-6176
+dqrem444 remainder 100E-6175 21E-6176 -> 1.3E-6175 Subnormal
+dqrem445 remainder 100E-6175 30E-6176 -> 1.0E-6175 Subnormal
+
+-- zero signs
+dqrem650 remainder 1 1 -> 0
+dqrem651 remainder -1 1 -> -0
+dqrem652 remainder 1 -1 -> 0
+dqrem653 remainder -1 -1 -> -0
+dqrem654 remainder 0 1 -> 0
+dqrem655 remainder -0 1 -> -0
+dqrem656 remainder 0 -1 -> 0
+dqrem657 remainder -0 -1 -> -0
+dqrem658 remainder 0.00 1 -> 0.00
+dqrem659 remainder -0.00 1 -> -0.00
+
+-- Specials
+dqrem680 remainder Inf -Inf -> NaN Invalid_operation
+dqrem681 remainder Inf -1000 -> NaN Invalid_operation
+dqrem682 remainder Inf -1 -> NaN Invalid_operation
+dqrem683 remainder Inf 0 -> NaN Invalid_operation
+dqrem684 remainder Inf -0 -> NaN Invalid_operation
+dqrem685 remainder Inf 1 -> NaN Invalid_operation
+dqrem686 remainder Inf 1000 -> NaN Invalid_operation
+dqrem687 remainder Inf Inf -> NaN Invalid_operation
+dqrem688 remainder -1000 Inf -> -1000
+dqrem689 remainder -Inf Inf -> NaN Invalid_operation
+dqrem691 remainder -1 Inf -> -1
+dqrem692 remainder 0 Inf -> 0
+dqrem693 remainder -0 Inf -> -0
+dqrem694 remainder 1 Inf -> 1
+dqrem695 remainder 1000 Inf -> 1000
+dqrem696 remainder Inf Inf -> NaN Invalid_operation
+
+dqrem700 remainder -Inf -Inf -> NaN Invalid_operation
+dqrem701 remainder -Inf -1000 -> NaN Invalid_operation
+dqrem702 remainder -Inf -1 -> NaN Invalid_operation
+dqrem703 remainder -Inf -0 -> NaN Invalid_operation
+dqrem704 remainder -Inf 0 -> NaN Invalid_operation
+dqrem705 remainder -Inf 1 -> NaN Invalid_operation
+dqrem706 remainder -Inf 1000 -> NaN Invalid_operation
+dqrem707 remainder -Inf Inf -> NaN Invalid_operation
+dqrem708 remainder -Inf -Inf -> NaN Invalid_operation
+dqrem709 remainder -1000 Inf -> -1000
+dqrem710 remainder -1 -Inf -> -1
+dqrem711 remainder -0 -Inf -> -0
+dqrem712 remainder 0 -Inf -> 0
+dqrem713 remainder 1 -Inf -> 1
+dqrem714 remainder 1000 -Inf -> 1000
+dqrem715 remainder Inf -Inf -> NaN Invalid_operation
+
+dqrem721 remainder NaN -Inf -> NaN
+dqrem722 remainder NaN -1000 -> NaN
+dqrem723 remainder NaN -1 -> NaN
+dqrem724 remainder NaN -0 -> NaN
+dqrem725 remainder -NaN 0 -> -NaN
+dqrem726 remainder NaN 1 -> NaN
+dqrem727 remainder NaN 1000 -> NaN
+dqrem728 remainder NaN Inf -> NaN
+dqrem729 remainder NaN -NaN -> NaN
+dqrem730 remainder -Inf NaN -> NaN
+dqrem731 remainder -1000 NaN -> NaN
+dqrem732 remainder -1 NaN -> NaN
+dqrem733 remainder -0 -NaN -> -NaN
+dqrem734 remainder 0 NaN -> NaN
+dqrem735 remainder 1 -NaN -> -NaN
+dqrem736 remainder 1000 NaN -> NaN
+dqrem737 remainder Inf NaN -> NaN
+
+dqrem741 remainder sNaN -Inf -> NaN Invalid_operation
+dqrem742 remainder sNaN -1000 -> NaN Invalid_operation
+dqrem743 remainder -sNaN -1 -> -NaN Invalid_operation
+dqrem744 remainder sNaN -0 -> NaN Invalid_operation
+dqrem745 remainder sNaN 0 -> NaN Invalid_operation
+dqrem746 remainder sNaN 1 -> NaN Invalid_operation
+dqrem747 remainder sNaN 1000 -> NaN Invalid_operation
+dqrem749 remainder sNaN NaN -> NaN Invalid_operation
+dqrem750 remainder sNaN sNaN -> NaN Invalid_operation
+dqrem751 remainder NaN sNaN -> NaN Invalid_operation
+dqrem752 remainder -Inf sNaN -> NaN Invalid_operation
+dqrem753 remainder -1000 sNaN -> NaN Invalid_operation
+dqrem754 remainder -1 sNaN -> NaN Invalid_operation
+dqrem755 remainder -0 sNaN -> NaN Invalid_operation
+dqrem756 remainder 0 sNaN -> NaN Invalid_operation
+dqrem757 remainder 1 sNaN -> NaN Invalid_operation
+dqrem758 remainder 1000 sNaN -> NaN Invalid_operation
+dqrem759 remainder Inf -sNaN -> -NaN Invalid_operation
+
+-- propaging NaNs
+dqrem760 remainder NaN1 NaN7 -> NaN1
+dqrem761 remainder sNaN2 NaN8 -> NaN2 Invalid_operation
+dqrem762 remainder NaN3 sNaN9 -> NaN9 Invalid_operation
+dqrem763 remainder sNaN4 sNaN10 -> NaN4 Invalid_operation
+dqrem764 remainder 15 NaN11 -> NaN11
+dqrem765 remainder NaN6 NaN12 -> NaN6
+dqrem766 remainder Inf NaN13 -> NaN13
+dqrem767 remainder NaN14 -Inf -> NaN14
+dqrem768 remainder 0 NaN15 -> NaN15
+dqrem769 remainder NaN16 -0 -> NaN16
+
+-- edge cases of impossible
+dqrem770 remainder 1234568888888887777777777890123456 10 -> 6
+dqrem771 remainder 1234568888888887777777777890123456 1 -> 0
+dqrem772 remainder 1234568888888887777777777890123456 0.1 -> NaN Division_impossible
+dqrem773 remainder 1234568888888887777777777890123456 0.01 -> NaN Division_impossible
+
+-- long operand checks
+dqrem801 remainder 12345678000 100 -> 0
+dqrem802 remainder 1 12345678000 -> 1
+dqrem803 remainder 1234567800 10 -> 0
+dqrem804 remainder 1 1234567800 -> 1
+dqrem805 remainder 1234567890 10 -> 0
+dqrem806 remainder 1 1234567890 -> 1
+dqrem807 remainder 1234567891 10 -> 1
+dqrem808 remainder 1 1234567891 -> 1
+dqrem809 remainder 12345678901 100 -> 1
+dqrem810 remainder 1 12345678901 -> 1
+dqrem811 remainder 1234567896 10 -> 6
+dqrem812 remainder 1 1234567896 -> 1
+
+dqrem821 remainder 12345678000 100 -> 0
+dqrem822 remainder 1 12345678000 -> 1
+dqrem823 remainder 1234567800 10 -> 0
+dqrem824 remainder 1 1234567800 -> 1
+dqrem825 remainder 1234567890 10 -> 0
+dqrem826 remainder 1 1234567890 -> 1
+dqrem827 remainder 1234567891 10 -> 1
+dqrem828 remainder 1 1234567891 -> 1
+dqrem829 remainder 12345678901 100 -> 1
+dqrem830 remainder 1 12345678901 -> 1
+dqrem831 remainder 1234567896 10 -> 6
+dqrem832 remainder 1 1234567896 -> 1
+
+-- from divideint
+dqrem840 remainder 100000000.0 1 -> 0.0
+dqrem841 remainder 100000000.4 1 -> 0.4
+dqrem842 remainder 100000000.5 1 -> 0.5
+dqrem843 remainder 100000000.9 1 -> 0.9
+dqrem844 remainder 100000000.999 1 -> 0.999
+dqrem850 remainder 100000003 5 -> 3
+dqrem851 remainder 10000003 5 -> 3
+dqrem852 remainder 1000003 5 -> 3
+dqrem853 remainder 100003 5 -> 3
+dqrem854 remainder 10003 5 -> 3
+dqrem855 remainder 1003 5 -> 3
+dqrem856 remainder 103 5 -> 3
+dqrem857 remainder 13 5 -> 3
+dqrem858 remainder 1 5 -> 1
+
+-- Vladimir's cases 1234567890123456
+dqrem860 remainder 123.0e1 1000000000000000 -> 1230
+dqrem861 remainder 1230 1000000000000000 -> 1230
+dqrem862 remainder 12.3e2 1000000000000000 -> 1230
+dqrem863 remainder 1.23e3 1000000000000000 -> 1230
+dqrem864 remainder 123e1 1000000000000000 -> 1230
+dqrem870 remainder 123e1 1000000000000000 -> 1230
+dqrem871 remainder 123e1 100000000000000 -> 1230
+dqrem872 remainder 123e1 10000000000000 -> 1230
+dqrem873 remainder 123e1 1000000000000 -> 1230
+dqrem874 remainder 123e1 100000000000 -> 1230
+dqrem875 remainder 123e1 10000000000 -> 1230
+dqrem876 remainder 123e1 1000000000 -> 1230
+dqrem877 remainder 123e1 100000000 -> 1230
+dqrem878 remainder 1230 100000000 -> 1230
+dqrem879 remainder 123e1 10000000 -> 1230
+dqrem880 remainder 123e1 1000000 -> 1230
+dqrem881 remainder 123e1 100000 -> 1230
+dqrem882 remainder 123e1 10000 -> 1230
+dqrem883 remainder 123e1 1000 -> 230
+dqrem884 remainder 123e1 100 -> 30
+dqrem885 remainder 123e1 10 -> 0
+dqrem886 remainder 123e1 1 -> 0
+
+dqrem890 remainder 123e1 2000000000000000 -> 1230
+dqrem891 remainder 123e1 200000000000000 -> 1230
+dqrem892 remainder 123e1 20000000000000 -> 1230
+dqrem893 remainder 123e1 2000000000000 -> 1230
+dqrem894 remainder 123e1 200000000000 -> 1230
+dqrem895 remainder 123e1 20000000000 -> 1230
+dqrem896 remainder 123e1 2000000000 -> 1230
+dqrem897 remainder 123e1 200000000 -> 1230
+dqrem899 remainder 123e1 20000000 -> 1230
+dqrem900 remainder 123e1 2000000 -> 1230
+dqrem901 remainder 123e1 200000 -> 1230
+dqrem902 remainder 123e1 20000 -> 1230
+dqrem903 remainder 123e1 2000 -> 1230
+dqrem904 remainder 123e1 200 -> 30
+dqrem905 remainder 123e1 20 -> 10
+dqrem906 remainder 123e1 2 -> 0
+
+dqrem910 remainder 123e1 5000000000000000 -> 1230
+dqrem911 remainder 123e1 500000000000000 -> 1230
+dqrem912 remainder 123e1 50000000000000 -> 1230
+dqrem913 remainder 123e1 5000000000000 -> 1230
+dqrem914 remainder 123e1 500000000000 -> 1230
+dqrem915 remainder 123e1 50000000000 -> 1230
+dqrem916 remainder 123e1 5000000000 -> 1230
+dqrem917 remainder 123e1 500000000 -> 1230
+dqrem919 remainder 123e1 50000000 -> 1230
+dqrem920 remainder 123e1 5000000 -> 1230
+dqrem921 remainder 123e1 500000 -> 1230
+dqrem922 remainder 123e1 50000 -> 1230
+dqrem923 remainder 123e1 5000 -> 1230
+dqrem924 remainder 123e1 500 -> 230
+dqrem925 remainder 123e1 50 -> 30
+dqrem926 remainder 123e1 5 -> 0
+
+dqrem930 remainder 123e1 9000000000000000 -> 1230
+dqrem931 remainder 123e1 900000000000000 -> 1230
+dqrem932 remainder 123e1 90000000000000 -> 1230
+dqrem933 remainder 123e1 9000000000000 -> 1230
+dqrem934 remainder 123e1 900000000000 -> 1230
+dqrem935 remainder 123e1 90000000000 -> 1230
+dqrem936 remainder 123e1 9000000000 -> 1230
+dqrem937 remainder 123e1 900000000 -> 1230
+dqrem939 remainder 123e1 90000000 -> 1230
+dqrem940 remainder 123e1 9000000 -> 1230
+dqrem941 remainder 123e1 900000 -> 1230
+dqrem942 remainder 123e1 90000 -> 1230
+dqrem943 remainder 123e1 9000 -> 1230
+dqrem944 remainder 123e1 900 -> 330
+dqrem945 remainder 123e1 90 -> 60
+dqrem946 remainder 123e1 9 -> 6
+
+dqrem950 remainder 123e1 1000000000000000 -> 1230
+dqrem961 remainder 123e1 2999999999999999 -> 1230
+dqrem962 remainder 123e1 3999999999999999 -> 1230
+dqrem963 remainder 123e1 4999999999999999 -> 1230
+dqrem964 remainder 123e1 5999999999999999 -> 1230
+dqrem965 remainder 123e1 6999999999999999 -> 1230
+dqrem966 remainder 123e1 7999999999999999 -> 1230
+dqrem967 remainder 123e1 8999999999999999 -> 1230
+dqrem968 remainder 123e1 9999999999999999 -> 1230
+dqrem969 remainder 123e1 9876543210987654 -> 1230
+
+dqrem980 remainder 123e1 1000E299 -> 1.23E+3 -- 123E+1 internally
+
+-- overflow and underflow tests [from divide]
+dqrem1051 remainder 1e+277 1e-311 -> NaN Division_impossible
+dqrem1052 remainder 1e+277 -1e-311 -> NaN Division_impossible
+dqrem1053 remainder -1e+277 1e-311 -> NaN Division_impossible
+dqrem1054 remainder -1e+277 -1e-311 -> NaN Division_impossible
+dqrem1055 remainder 1e-277 1e+311 -> 1E-277
+dqrem1056 remainder 1e-277 -1e+311 -> 1E-277
+dqrem1057 remainder -1e-277 1e+311 -> -1E-277
+dqrem1058 remainder -1e-277 -1e+311 -> -1E-277
+
+-- Gyuris example
+dqrem1070 remainder 8.336804418094040989630006819881709E-6143 8.336804418094040989630006819889000E-6143 -> 8.336804418094040989630006819881709E-6143
+
+-- Null tests
+dqrem1000 remainder 10 # -> NaN Invalid_operation
+dqrem1001 remainder # 10 -> NaN Invalid_operation
+
diff --git a/Lib/test/decimaltestdata/dqRemainderNear.decTest b/Lib/test/decimaltestdata/dqRemainderNear.decTest
new file mode 100644
index 0000000..b62b79f
--- /dev/null
+++ b/Lib/test/decimaltestdata/dqRemainderNear.decTest
@@ -0,0 +1,618 @@
+------------------------------------------------------------------------
+-- dqRemainderNear.decTest -- decQuad remainder-near --
+-- Copyright (c) IBM Corporation, 1981, 2007. All rights reserved. --
+------------------------------------------------------------------------
+-- Please see the document "General Decimal Arithmetic Testcases" --
+-- at http://www2.hursley.ibm.com/decimal for the description of --
+-- these testcases. --
+-- --
+-- These testcases are experimental ('beta' versions), and they --
+-- may contain errors. They are offered on an as-is basis. In --
+-- particular, achieving the same results as the tests here is not --
+-- a guarantee that an implementation complies with any Standard --
+-- or specification. The tests are not exhaustive. --
+-- --
+-- Please send comments, suggestions, and corrections to the author: --
+-- Mike Cowlishaw, IBM Fellow --
+-- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK --
+-- mfc@uk.ibm.com --
+------------------------------------------------------------------------
+version: 2.56
+
+extended: 1
+clamp: 1
+precision: 34
+maxExponent: 6144
+minExponent: -6143
+rounding: half_even
+
+-- sanity checks (as base, above)
+dqrmn001 remaindernear 1 1 -> 0
+dqrmn002 remaindernear 2 1 -> 0
+dqrmn003 remaindernear 1 2 -> 1
+dqrmn004 remaindernear 2 2 -> 0
+dqrmn005 remaindernear 0 1 -> 0
+dqrmn006 remaindernear 0 2 -> 0
+dqrmn007 remaindernear 1 3 -> 1
+dqrmn008 remaindernear 2 3 -> -1
+dqrmn009 remaindernear 3 3 -> 0
+
+dqrmn010 remaindernear 2.4 1 -> 0.4
+dqrmn011 remaindernear 2.4 -1 -> 0.4
+dqrmn012 remaindernear -2.4 1 -> -0.4
+dqrmn013 remaindernear -2.4 -1 -> -0.4
+dqrmn014 remaindernear 2.40 1 -> 0.40
+dqrmn015 remaindernear 2.400 1 -> 0.400
+dqrmn016 remaindernear 2.4 2 -> 0.4
+dqrmn017 remaindernear 2.400 2 -> 0.400
+dqrmn018 remaindernear 2. 2 -> 0
+dqrmn019 remaindernear 20 20 -> 0
+
+dqrmn020 remaindernear 187 187 -> 0
+dqrmn021 remaindernear 5 2 -> 1
+dqrmn022 remaindernear 5 2.0 -> 1.0
+dqrmn023 remaindernear 5 2.000 -> 1.000
+dqrmn024 remaindernear 5 0.200 -> 0.000
+dqrmn025 remaindernear 5 0.200 -> 0.000
+
+dqrmn030 remaindernear 1 2 -> 1
+dqrmn031 remaindernear 1 4 -> 1
+dqrmn032 remaindernear 1 8 -> 1
+
+dqrmn033 remaindernear 1 16 -> 1
+dqrmn034 remaindernear 1 32 -> 1
+dqrmn035 remaindernear 1 64 -> 1
+dqrmn040 remaindernear 1 -2 -> 1
+dqrmn041 remaindernear 1 -4 -> 1
+dqrmn042 remaindernear 1 -8 -> 1
+dqrmn043 remaindernear 1 -16 -> 1
+dqrmn044 remaindernear 1 -32 -> 1
+dqrmn045 remaindernear 1 -64 -> 1
+dqrmn050 remaindernear -1 2 -> -1
+dqrmn051 remaindernear -1 4 -> -1
+dqrmn052 remaindernear -1 8 -> -1
+dqrmn053 remaindernear -1 16 -> -1
+dqrmn054 remaindernear -1 32 -> -1
+dqrmn055 remaindernear -1 64 -> -1
+dqrmn060 remaindernear -1 -2 -> -1
+dqrmn061 remaindernear -1 -4 -> -1
+dqrmn062 remaindernear -1 -8 -> -1
+dqrmn063 remaindernear -1 -16 -> -1
+dqrmn064 remaindernear -1 -32 -> -1
+dqrmn065 remaindernear -1 -64 -> -1
+
+dqrmn066 remaindernear 9.9 1 -> -0.1
+dqrmn067 remaindernear 99.7 1 -> -0.3
+dqrmn068 remaindernear 999999999 1 -> 0
+dqrmn069 remaindernear 999999999.4 1 -> 0.4
+dqrmn070 remaindernear 999999999.5 1 -> -0.5
+dqrmn071 remaindernear 999999999.9 1 -> -0.1
+dqrmn072 remaindernear 999999999.999 1 -> -0.001
+dqrmn073 remaindernear 999999.999999 1 -> -0.000001
+dqrmn074 remaindernear 9 1 -> 0
+dqrmn075 remaindernear 9999999999999999 1 -> 0
+dqrmn076 remaindernear 9999999999999999 2 -> -1
+dqrmn077 remaindernear 9999999999999999 3 -> 0
+dqrmn078 remaindernear 9999999999999999 4 -> -1
+
+dqrmn080 remaindernear 0. 1 -> 0
+dqrmn081 remaindernear .0 1 -> 0.0
+dqrmn082 remaindernear 0.00 1 -> 0.00
+dqrmn083 remaindernear 0.00E+9 1 -> 0
+dqrmn084 remaindernear 0.00E+3 1 -> 0
+dqrmn085 remaindernear 0.00E+2 1 -> 0
+dqrmn086 remaindernear 0.00E+1 1 -> 0.0
+dqrmn087 remaindernear 0.00E+0 1 -> 0.00
+dqrmn088 remaindernear 0.00E-0 1 -> 0.00
+dqrmn089 remaindernear 0.00E-1 1 -> 0.000
+dqrmn090 remaindernear 0.00E-2 1 -> 0.0000
+dqrmn091 remaindernear 0.00E-3 1 -> 0.00000
+dqrmn092 remaindernear 0.00E-4 1 -> 0.000000
+dqrmn093 remaindernear 0.00E-5 1 -> 0E-7
+dqrmn094 remaindernear 0.00E-6 1 -> 0E-8
+dqrmn095 remaindernear 0.0000E-50 1 -> 0E-54
+
+-- Various flavours of remaindernear by 0
+dqrmn101 remaindernear 0 0 -> NaN Division_undefined
+dqrmn102 remaindernear 0 -0 -> NaN Division_undefined
+dqrmn103 remaindernear -0 0 -> NaN Division_undefined
+dqrmn104 remaindernear -0 -0 -> NaN Division_undefined
+dqrmn105 remaindernear 0.0E5 0 -> NaN Division_undefined
+dqrmn106 remaindernear 0.000 0 -> NaN Division_undefined
+-- [Some think this next group should be Division_by_zero exception, but
+-- IEEE 854 is explicit that it is Invalid operation .. for
+-- remainder-near, anyway]
+dqrmn107 remaindernear 0.0001 0 -> NaN Invalid_operation
+dqrmn108 remaindernear 0.01 0 -> NaN Invalid_operation
+dqrmn109 remaindernear 0.1 0 -> NaN Invalid_operation
+dqrmn110 remaindernear 1 0 -> NaN Invalid_operation
+dqrmn111 remaindernear 1 0.0 -> NaN Invalid_operation
+dqrmn112 remaindernear 10 0.0 -> NaN Invalid_operation
+dqrmn113 remaindernear 1E+100 0.0 -> NaN Invalid_operation
+dqrmn114 remaindernear 1E+380 0 -> NaN Invalid_operation
+dqrmn115 remaindernear 0.0001 -0 -> NaN Invalid_operation
+dqrmn116 remaindernear 0.01 -0 -> NaN Invalid_operation
+dqrmn119 remaindernear 0.1 -0 -> NaN Invalid_operation
+dqrmn120 remaindernear 1 -0 -> NaN Invalid_operation
+dqrmn121 remaindernear 1 -0.0 -> NaN Invalid_operation
+dqrmn122 remaindernear 10 -0.0 -> NaN Invalid_operation
+dqrmn123 remaindernear 1E+100 -0.0 -> NaN Invalid_operation
+dqrmn124 remaindernear 1E+384 -0 -> NaN Invalid_operation
+-- and zeros on left
+dqrmn130 remaindernear 0 1 -> 0
+dqrmn131 remaindernear 0 -1 -> 0
+dqrmn132 remaindernear 0.0 1 -> 0.0
+dqrmn133 remaindernear 0.0 -1 -> 0.0
+dqrmn134 remaindernear -0 1 -> -0
+dqrmn135 remaindernear -0 -1 -> -0
+dqrmn136 remaindernear -0.0 1 -> -0.0
+dqrmn137 remaindernear -0.0 -1 -> -0.0
+
+-- 0.5ers
+dqrmn143 remaindernear 0.5 2 -> 0.5
+dqrmn144 remaindernear 0.5 2.1 -> 0.5
+dqrmn145 remaindernear 0.5 2.01 -> 0.50
+dqrmn146 remaindernear 0.5 2.001 -> 0.500
+dqrmn147 remaindernear 0.50 2 -> 0.50
+dqrmn148 remaindernear 0.50 2.01 -> 0.50
+dqrmn149 remaindernear 0.50 2.001 -> 0.500
+
+-- steadies
+dqrmn150 remaindernear 1 1 -> 0
+dqrmn151 remaindernear 1 2 -> 1
+dqrmn152 remaindernear 1 3 -> 1
+dqrmn153 remaindernear 1 4 -> 1
+dqrmn154 remaindernear 1 5 -> 1
+dqrmn155 remaindernear 1 6 -> 1
+dqrmn156 remaindernear 1 7 -> 1
+dqrmn157 remaindernear 1 8 -> 1
+dqrmn158 remaindernear 1 9 -> 1
+dqrmn159 remaindernear 1 10 -> 1
+dqrmn160 remaindernear 1 1 -> 0
+dqrmn161 remaindernear 2 1 -> 0
+dqrmn162 remaindernear 3 1 -> 0
+dqrmn163 remaindernear 4 1 -> 0
+dqrmn164 remaindernear 5 1 -> 0
+dqrmn165 remaindernear 6 1 -> 0
+dqrmn166 remaindernear 7 1 -> 0
+dqrmn167 remaindernear 8 1 -> 0
+dqrmn168 remaindernear 9 1 -> 0
+dqrmn169 remaindernear 10 1 -> 0
+
+-- some differences from remainder
+dqrmn171 remaindernear 0.4 1.020 -> 0.400
+dqrmn172 remaindernear 0.50 1.020 -> 0.500
+dqrmn173 remaindernear 0.51 1.020 -> 0.510
+dqrmn174 remaindernear 0.52 1.020 -> -0.500
+dqrmn175 remaindernear 0.6 1.020 -> -0.420
+
+-- More flavours of remaindernear by 0
+dqrmn201 remaindernear 0 0 -> NaN Division_undefined
+dqrmn202 remaindernear 0.0E5 0 -> NaN Division_undefined
+dqrmn203 remaindernear 0.000 0 -> NaN Division_undefined
+dqrmn204 remaindernear 0.0001 0 -> NaN Invalid_operation
+dqrmn205 remaindernear 0.01 0 -> NaN Invalid_operation
+dqrmn206 remaindernear 0.1 0 -> NaN Invalid_operation
+dqrmn207 remaindernear 1 0 -> NaN Invalid_operation
+dqrmn208 remaindernear 1 0.0 -> NaN Invalid_operation
+dqrmn209 remaindernear 10 0.0 -> NaN Invalid_operation
+dqrmn210 remaindernear 1E+100 0.0 -> NaN Invalid_operation
+dqrmn211 remaindernear 1E+380 0 -> NaN Invalid_operation
+
+-- tests from the extended specification
+dqrmn221 remaindernear 2.1 3 -> -0.9
+dqrmn222 remaindernear 10 6 -> -2
+dqrmn223 remaindernear 10 3 -> 1
+dqrmn224 remaindernear -10 3 -> -1
+dqrmn225 remaindernear 10.2 1 -> 0.2
+dqrmn226 remaindernear 10 0.3 -> 0.1
+dqrmn227 remaindernear 3.6 1.3 -> -0.3
+
+-- some differences from remainder
+dqrmn231 remaindernear -0.4 1.020 -> -0.400
+dqrmn232 remaindernear -0.50 1.020 -> -0.500
+dqrmn233 remaindernear -0.51 1.020 -> -0.510
+dqrmn234 remaindernear -0.52 1.020 -> 0.500
+dqrmn235 remaindernear -0.6 1.020 -> 0.420
+
+-- high Xs
+dqrmn240 remaindernear 1E+2 1.00 -> 0.00
+
+-- dqrmn3xx are from DiagBigDecimal
+dqrmn301 remaindernear 1 3 -> 1
+dqrmn302 remaindernear 5 5 -> 0
+dqrmn303 remaindernear 13 10 -> 3
+dqrmn304 remaindernear 13 50 -> 13
+dqrmn305 remaindernear 13 100 -> 13
+dqrmn306 remaindernear 13 1000 -> 13
+dqrmn307 remaindernear .13 1 -> 0.13
+dqrmn308 remaindernear 0.133 1 -> 0.133
+dqrmn309 remaindernear 0.1033 1 -> 0.1033
+dqrmn310 remaindernear 1.033 1 -> 0.033
+dqrmn311 remaindernear 10.33 1 -> 0.33
+dqrmn312 remaindernear 10.33 10 -> 0.33
+dqrmn313 remaindernear 103.3 1 -> 0.3
+dqrmn314 remaindernear 133 10 -> 3
+dqrmn315 remaindernear 1033 10 -> 3
+dqrmn316 remaindernear 1033 50 -> -17
+dqrmn317 remaindernear 101.0 3 -> -1.0
+dqrmn318 remaindernear 102.0 3 -> 0.0
+dqrmn319 remaindernear 103.0 3 -> 1.0
+dqrmn320 remaindernear 2.40 1 -> 0.40
+dqrmn321 remaindernear 2.400 1 -> 0.400
+dqrmn322 remaindernear 2.4 1 -> 0.4
+dqrmn323 remaindernear 2.4 2 -> 0.4
+dqrmn324 remaindernear 2.400 2 -> 0.400
+dqrmn325 remaindernear 1 0.3 -> 0.1
+dqrmn326 remaindernear 1 0.30 -> 0.10
+dqrmn327 remaindernear 1 0.300 -> 0.100
+dqrmn328 remaindernear 1 0.3000 -> 0.1000
+dqrmn329 remaindernear 1.0 0.3 -> 0.1
+dqrmn330 remaindernear 1.00 0.3 -> 0.10
+dqrmn331 remaindernear 1.000 0.3 -> 0.100
+dqrmn332 remaindernear 1.0000 0.3 -> 0.1000
+dqrmn333 remaindernear 0.5 2 -> 0.5
+dqrmn334 remaindernear 0.5 2.1 -> 0.5
+dqrmn335 remaindernear 0.5 2.01 -> 0.50
+dqrmn336 remaindernear 0.5 2.001 -> 0.500
+dqrmn337 remaindernear 0.50 2 -> 0.50
+dqrmn338 remaindernear 0.50 2.01 -> 0.50
+dqrmn339 remaindernear 0.50 2.001 -> 0.500
+
+dqrmn340 remaindernear 0.5 0.5000001 -> -1E-7
+dqrmn341 remaindernear 0.5 0.50000001 -> -1E-8
+dqrmn342 remaindernear 0.5 0.500000001 -> -1E-9
+dqrmn343 remaindernear 0.5 0.5000000001 -> -1E-10
+dqrmn344 remaindernear 0.5 0.50000000001 -> -1E-11
+dqrmn345 remaindernear 0.5 0.4999999 -> 1E-7
+dqrmn346 remaindernear 0.5 0.49999999 -> 1E-8
+dqrmn347 remaindernear 0.5 0.499999999 -> 1E-9
+dqrmn348 remaindernear 0.5 0.4999999999 -> 1E-10
+dqrmn349 remaindernear 0.5 0.49999999999 -> 1E-11
+dqrmn350 remaindernear 0.5 0.499999999999 -> 1E-12
+
+dqrmn351 remaindernear 0.03 7 -> 0.03
+dqrmn352 remaindernear 5 2 -> 1
+dqrmn353 remaindernear 4.1 2 -> 0.1
+dqrmn354 remaindernear 4.01 2 -> 0.01
+dqrmn355 remaindernear 4.001 2 -> 0.001
+dqrmn356 remaindernear 4.0001 2 -> 0.0001
+dqrmn357 remaindernear 4.00001 2 -> 0.00001
+dqrmn358 remaindernear 4.000001 2 -> 0.000001
+dqrmn359 remaindernear 4.0000001 2 -> 1E-7
+
+dqrmn360 remaindernear 1.2 0.7345 -> -0.2690
+dqrmn361 remaindernear 0.8 12 -> 0.8
+dqrmn362 remaindernear 0.8 0.2 -> 0.0
+dqrmn363 remaindernear 0.8 0.3 -> -0.1
+dqrmn364 remaindernear 0.800 12 -> 0.800
+dqrmn365 remaindernear 0.800 1.7 -> 0.800
+dqrmn366 remaindernear 2.400 2 -> 0.400
+
+-- round to even
+dqrmn371 remaindernear 121 2 -> 1
+dqrmn372 remaindernear 122 2 -> 0
+dqrmn373 remaindernear 123 2 -> -1
+dqrmn374 remaindernear 124 2 -> 0
+dqrmn375 remaindernear 125 2 -> 1
+dqrmn376 remaindernear 126 2 -> 0
+dqrmn377 remaindernear 127 2 -> -1
+
+dqrmn381 remaindernear 12345 1 -> 0
+dqrmn382 remaindernear 12345 1.0001 -> -0.2344
+dqrmn383 remaindernear 12345 1.001 -> -0.333
+dqrmn384 remaindernear 12345 1.01 -> -0.23
+dqrmn385 remaindernear 12345 1.1 -> -0.3
+dqrmn386 remaindernear 12355 4 -> -1
+dqrmn387 remaindernear 12345 4 -> 1
+dqrmn388 remaindernear 12355 4.0001 -> -1.3089
+dqrmn389 remaindernear 12345 4.0001 -> 0.6914
+dqrmn390 remaindernear 12345 4.9 -> 1.9
+dqrmn391 remaindernear 12345 4.99 -> -0.26
+dqrmn392 remaindernear 12345 4.999 -> 2.469
+dqrmn393 remaindernear 12345 4.9999 -> 0.2469
+dqrmn394 remaindernear 12345 5 -> 0
+dqrmn395 remaindernear 12345 5.0001 -> -0.2469
+dqrmn396 remaindernear 12345 5.001 -> -2.469
+dqrmn397 remaindernear 12345 5.01 -> 0.36
+dqrmn398 remaindernear 12345 5.1 -> -2.1
+
+-- the nasty division-by-1 cases
+dqrmn401 remaindernear 0.4 1 -> 0.4
+dqrmn402 remaindernear 0.45 1 -> 0.45
+dqrmn403 remaindernear 0.455 1 -> 0.455
+dqrmn404 remaindernear 0.4555 1 -> 0.4555
+dqrmn405 remaindernear 0.45555 1 -> 0.45555
+dqrmn406 remaindernear 0.455555 1 -> 0.455555
+dqrmn407 remaindernear 0.4555555 1 -> 0.4555555
+dqrmn408 remaindernear 0.45555555 1 -> 0.45555555
+dqrmn409 remaindernear 0.455555555 1 -> 0.455555555
+-- with spill... [412 exercises sticktab loop]
+dqrmn411 remaindernear 0.5 1 -> 0.5
+dqrmn412 remaindernear 0.55 1 -> -0.45
+dqrmn413 remaindernear 0.555 1 -> -0.445
+dqrmn414 remaindernear 0.5555 1 -> -0.4445
+dqrmn415 remaindernear 0.55555 1 -> -0.44445
+dqrmn416 remaindernear 0.555555 1 -> -0.444445
+dqrmn417 remaindernear 0.5555555 1 -> -0.4444445
+dqrmn418 remaindernear 0.55555555 1 -> -0.44444445
+dqrmn419 remaindernear 0.555555555 1 -> -0.444444445
+
+-- folddowns
+dqrmn421 remaindernear 1E+6144 1 -> NaN Division_impossible
+dqrmn422 remaindernear 1E+6144 1E+6143 -> 0E+6111 Clamped
+dqrmn423 remaindernear 1E+6144 2E+6143 -> 0E+6111 Clamped
+dqrmn424 remaindernear 1E+6144 3E+6143 -> 1.00000000000000000000000000000000E+6143 Clamped
+dqrmn425 remaindernear 1E+6144 4E+6143 -> 2.00000000000000000000000000000000E+6143 Clamped
+dqrmn426 remaindernear 1E+6144 5E+6143 -> 0E+6111 Clamped
+dqrmn427 remaindernear 1E+6144 6E+6143 -> -2.00000000000000000000000000000000E+6143 Clamped
+dqrmn428 remaindernear 1E+6144 7E+6143 -> 3.00000000000000000000000000000000E+6143 Clamped
+dqrmn429 remaindernear 1E+6144 8E+6143 -> 2.00000000000000000000000000000000E+6143 Clamped
+dqrmn430 remaindernear 1E+6144 9E+6143 -> 1.00000000000000000000000000000000E+6143 Clamped
+-- tinies
+dqrmn431 remaindernear 1E-6175 1E-6176 -> 0E-6176
+dqrmn432 remaindernear 1E-6175 2E-6176 -> 0E-6176
+dqrmn433 remaindernear 1E-6175 3E-6176 -> 1E-6176 Subnormal
+dqrmn434 remaindernear 1E-6175 4E-6176 -> 2E-6176 Subnormal
+dqrmn435 remaindernear 1E-6175 5E-6176 -> 0E-6176
+dqrmn436 remaindernear 1E-6175 6E-6176 -> -2E-6176 Subnormal
+dqrmn437 remaindernear 1E-6175 7E-6176 -> 3E-6176 Subnormal
+dqrmn438 remaindernear 1E-6175 8E-6176 -> 2E-6176 Subnormal
+dqrmn439 remaindernear 1E-6175 9E-6176 -> 1E-6176 Subnormal
+dqrmn440 remaindernear 1E-6175 10E-6176 -> 0E-6176
+dqrmn441 remaindernear 1E-6175 11E-6176 -> -1E-6176 Subnormal
+dqrmn442 remaindernear 100E-6175 11E-6176 -> -1E-6176 Subnormal
+dqrmn443 remaindernear 100E-6175 20E-6176 -> 0E-6176
+dqrmn444 remaindernear 100E-6175 21E-6176 -> -8E-6176 Subnormal
+dqrmn445 remaindernear 100E-6175 30E-6176 -> 1.0E-6175 Subnormal
+
+-- zero signs
+dqrmn650 remaindernear 1 1 -> 0
+dqrmn651 remaindernear -1 1 -> -0
+dqrmn652 remaindernear 1 -1 -> 0
+dqrmn653 remaindernear -1 -1 -> -0
+dqrmn654 remaindernear 0 1 -> 0
+dqrmn655 remaindernear -0 1 -> -0
+dqrmn656 remaindernear 0 -1 -> 0
+dqrmn657 remaindernear -0 -1 -> -0
+dqrmn658 remaindernear 0.00 1 -> 0.00
+dqrmn659 remaindernear -0.00 1 -> -0.00
+
+-- Specials
+dqrmn680 remaindernear Inf -Inf -> NaN Invalid_operation
+dqrmn681 remaindernear Inf -1000 -> NaN Invalid_operation
+dqrmn682 remaindernear Inf -1 -> NaN Invalid_operation
+dqrmn683 remaindernear Inf 0 -> NaN Invalid_operation
+dqrmn684 remaindernear Inf -0 -> NaN Invalid_operation
+dqrmn685 remaindernear Inf 1 -> NaN Invalid_operation
+dqrmn686 remaindernear Inf 1000 -> NaN Invalid_operation
+dqrmn687 remaindernear Inf Inf -> NaN Invalid_operation
+dqrmn688 remaindernear -1000 Inf -> -1000
+dqrmn689 remaindernear -Inf Inf -> NaN Invalid_operation
+dqrmn691 remaindernear -1 Inf -> -1
+dqrmn692 remaindernear 0 Inf -> 0
+dqrmn693 remaindernear -0 Inf -> -0
+dqrmn694 remaindernear 1 Inf -> 1
+dqrmn695 remaindernear 1000 Inf -> 1000
+dqrmn696 remaindernear Inf Inf -> NaN Invalid_operation
+
+dqrmn700 remaindernear -Inf -Inf -> NaN Invalid_operation
+dqrmn701 remaindernear -Inf -1000 -> NaN Invalid_operation
+dqrmn702 remaindernear -Inf -1 -> NaN Invalid_operation
+dqrmn703 remaindernear -Inf -0 -> NaN Invalid_operation
+dqrmn704 remaindernear -Inf 0 -> NaN Invalid_operation
+dqrmn705 remaindernear -Inf 1 -> NaN Invalid_operation
+dqrmn706 remaindernear -Inf 1000 -> NaN Invalid_operation
+dqrmn707 remaindernear -Inf Inf -> NaN Invalid_operation
+dqrmn708 remaindernear -Inf -Inf -> NaN Invalid_operation
+dqrmn709 remaindernear -1000 Inf -> -1000
+dqrmn710 remaindernear -1 -Inf -> -1
+dqrmn711 remaindernear -0 -Inf -> -0
+dqrmn712 remaindernear 0 -Inf -> 0
+dqrmn713 remaindernear 1 -Inf -> 1
+dqrmn714 remaindernear 1000 -Inf -> 1000
+dqrmn715 remaindernear Inf -Inf -> NaN Invalid_operation
+
+dqrmn721 remaindernear NaN -Inf -> NaN
+dqrmn722 remaindernear NaN -1000 -> NaN
+dqrmn723 remaindernear NaN -1 -> NaN
+dqrmn724 remaindernear NaN -0 -> NaN
+dqrmn725 remaindernear -NaN 0 -> -NaN
+dqrmn726 remaindernear NaN 1 -> NaN
+dqrmn727 remaindernear NaN 1000 -> NaN
+dqrmn728 remaindernear NaN Inf -> NaN
+dqrmn729 remaindernear NaN -NaN -> NaN
+dqrmn730 remaindernear -Inf NaN -> NaN
+dqrmn731 remaindernear -1000 NaN -> NaN
+dqrmn732 remaindernear -1 NaN -> NaN
+dqrmn733 remaindernear -0 -NaN -> -NaN
+dqrmn734 remaindernear 0 NaN -> NaN
+dqrmn735 remaindernear 1 -NaN -> -NaN
+dqrmn736 remaindernear 1000 NaN -> NaN
+dqrmn737 remaindernear Inf NaN -> NaN
+
+dqrmn741 remaindernear sNaN -Inf -> NaN Invalid_operation
+dqrmn742 remaindernear sNaN -1000 -> NaN Invalid_operation
+dqrmn743 remaindernear -sNaN -1 -> -NaN Invalid_operation
+dqrmn744 remaindernear sNaN -0 -> NaN Invalid_operation
+dqrmn745 remaindernear sNaN 0 -> NaN Invalid_operation
+dqrmn746 remaindernear sNaN 1 -> NaN Invalid_operation
+dqrmn747 remaindernear sNaN 1000 -> NaN Invalid_operation
+dqrmn749 remaindernear sNaN NaN -> NaN Invalid_operation
+dqrmn750 remaindernear sNaN sNaN -> NaN Invalid_operation
+dqrmn751 remaindernear NaN sNaN -> NaN Invalid_operation
+dqrmn752 remaindernear -Inf sNaN -> NaN Invalid_operation
+dqrmn753 remaindernear -1000 sNaN -> NaN Invalid_operation
+dqrmn754 remaindernear -1 sNaN -> NaN Invalid_operation
+dqrmn755 remaindernear -0 sNaN -> NaN Invalid_operation
+dqrmn756 remaindernear 0 sNaN -> NaN Invalid_operation
+dqrmn757 remaindernear 1 sNaN -> NaN Invalid_operation
+dqrmn758 remaindernear 1000 sNaN -> NaN Invalid_operation
+dqrmn759 remaindernear Inf -sNaN -> -NaN Invalid_operation
+
+-- propaging NaNs
+dqrmn760 remaindernear NaN1 NaN7 -> NaN1
+dqrmn761 remaindernear sNaN2 NaN8 -> NaN2 Invalid_operation
+dqrmn762 remaindernear NaN3 sNaN9 -> NaN9 Invalid_operation
+dqrmn763 remaindernear sNaN4 sNaN10 -> NaN4 Invalid_operation
+dqrmn764 remaindernear 15 NaN11 -> NaN11
+dqrmn765 remaindernear NaN6 NaN12 -> NaN6
+dqrmn766 remaindernear Inf NaN13 -> NaN13
+dqrmn767 remaindernear NaN14 -Inf -> NaN14
+dqrmn768 remaindernear 0 NaN15 -> NaN15
+dqrmn769 remaindernear NaN16 -0 -> NaN16
+
+-- edge cases of impossible
+dqrmn770 remaindernear 1234500000000000000000067890123456 10 -> -4
+dqrmn771 remaindernear 1234500000000000000000067890123456 1 -> 0
+dqrmn772 remaindernear 1234500000000000000000067890123456 0.1 -> NaN Division_impossible
+dqrmn773 remaindernear 1234500000000000000000067890123456 0.01 -> NaN Division_impossible
+
+-- long operand checks
+dqrmn801 remaindernear 12345678000 100 -> 0
+dqrmn802 remaindernear 1 12345678000 -> 1
+dqrmn803 remaindernear 1234567800 10 -> 0
+dqrmn804 remaindernear 1 1234567800 -> 1
+dqrmn805 remaindernear 1234567890 10 -> 0
+dqrmn806 remaindernear 1 1234567890 -> 1
+dqrmn807 remaindernear 1234567891 10 -> 1
+dqrmn808 remaindernear 1 1234567891 -> 1
+dqrmn809 remaindernear 12345678901 100 -> 1
+dqrmn810 remaindernear 1 12345678901 -> 1
+dqrmn811 remaindernear 1234567896 10 -> -4
+dqrmn812 remaindernear 1 1234567896 -> 1
+
+dqrmn821 remaindernear 12345678000 100 -> 0
+dqrmn822 remaindernear 1 12345678000 -> 1
+dqrmn823 remaindernear 1234567800 10 -> 0
+dqrmn824 remaindernear 1 1234567800 -> 1
+dqrmn825 remaindernear 1234567890 10 -> 0
+dqrmn826 remaindernear 1 1234567890 -> 1
+dqrmn827 remaindernear 1234567891 10 -> 1
+dqrmn828 remaindernear 1 1234567891 -> 1
+dqrmn829 remaindernear 12345678901 100 -> 1
+dqrmn830 remaindernear 1 12345678901 -> 1
+dqrmn831 remaindernear 1234567896 10 -> -4
+dqrmn832 remaindernear 1 1234567896 -> 1
+
+-- from divideint
+dqrmn840 remaindernear 100000000.0 1 -> 0.0
+dqrmn841 remaindernear 100000000.4 1 -> 0.4
+dqrmn842 remaindernear 100000000.5 1 -> 0.5
+dqrmn843 remaindernear 100000000.9 1 -> -0.1
+dqrmn844 remaindernear 100000000.999 1 -> -0.001
+dqrmn850 remaindernear 100000003 5 -> -2
+dqrmn851 remaindernear 10000003 5 -> -2
+dqrmn852 remaindernear 1000003 5 -> -2
+dqrmn853 remaindernear 100003 5 -> -2
+dqrmn854 remaindernear 10003 5 -> -2
+dqrmn855 remaindernear 1003 5 -> -2
+dqrmn856 remaindernear 103 5 -> -2
+dqrmn857 remaindernear 13 5 -> -2
+dqrmn858 remaindernear 1 5 -> 1
+
+-- Vladimir's cases 1234567890123456
+dqrmn860 remaindernear 123.0e1 1000000000000000 -> 1230
+dqrmn861 remaindernear 1230 1000000000000000 -> 1230
+dqrmn862 remaindernear 12.3e2 1000000000000000 -> 1230
+dqrmn863 remaindernear 1.23e3 1000000000000000 -> 1230
+dqrmn864 remaindernear 123e1 1000000000000000 -> 1230
+dqrmn870 remaindernear 123e1 1000000000000000 -> 1230
+dqrmn871 remaindernear 123e1 100000000000000 -> 1230
+dqrmn872 remaindernear 123e1 10000000000000 -> 1230
+dqrmn873 remaindernear 123e1 1000000000000 -> 1230
+dqrmn874 remaindernear 123e1 100000000000 -> 1230
+dqrmn875 remaindernear 123e1 10000000000 -> 1230
+dqrmn876 remaindernear 123e1 1000000000 -> 1230
+dqrmn877 remaindernear 123e1 100000000 -> 1230
+dqrmn878 remaindernear 1230 100000000 -> 1230
+dqrmn879 remaindernear 123e1 10000000 -> 1230
+dqrmn880 remaindernear 123e1 1000000 -> 1230
+dqrmn881 remaindernear 123e1 100000 -> 1230
+dqrmn882 remaindernear 123e1 10000 -> 1230
+dqrmn883 remaindernear 123e1 1000 -> 230
+dqrmn884 remaindernear 123e1 100 -> 30
+dqrmn885 remaindernear 123e1 10 -> 0
+dqrmn886 remaindernear 123e1 1 -> 0
+
+dqrmn890 remaindernear 123e1 2000000000000000 -> 1230
+dqrmn891 remaindernear 123e1 200000000000000 -> 1230
+dqrmn892 remaindernear 123e1 20000000000000 -> 1230
+dqrmn893 remaindernear 123e1 2000000000000 -> 1230
+dqrmn894 remaindernear 123e1 200000000000 -> 1230
+dqrmn895 remaindernear 123e1 20000000000 -> 1230
+dqrmn896 remaindernear 123e1 2000000000 -> 1230
+dqrmn897 remaindernear 123e1 200000000 -> 1230
+dqrmn899 remaindernear 123e1 20000000 -> 1230
+dqrmn900 remaindernear 123e1 2000000 -> 1230
+dqrmn901 remaindernear 123e1 200000 -> 1230
+dqrmn902 remaindernear 123e1 20000 -> 1230
+dqrmn903 remaindernear 123e1 2000 -> -770
+dqrmn904 remaindernear 123e1 200 -> 30
+dqrmn905 remaindernear 123e1 20 -> -10
+dqrmn906 remaindernear 123e1 2 -> 0
+
+dqrmn910 remaindernear 123e1 5000000000000000 -> 1230
+dqrmn911 remaindernear 123e1 500000000000000 -> 1230
+dqrmn912 remaindernear 123e1 50000000000000 -> 1230
+dqrmn913 remaindernear 123e1 5000000000000 -> 1230
+dqrmn914 remaindernear 123e1 500000000000 -> 1230
+dqrmn915 remaindernear 123e1 50000000000 -> 1230
+dqrmn916 remaindernear 123e1 5000000000 -> 1230
+dqrmn917 remaindernear 123e1 500000000 -> 1230
+dqrmn919 remaindernear 123e1 50000000 -> 1230
+dqrmn920 remaindernear 123e1 5000000 -> 1230
+dqrmn921 remaindernear 123e1 500000 -> 1230
+dqrmn922 remaindernear 123e1 50000 -> 1230
+dqrmn923 remaindernear 123e1 5000 -> 1230
+dqrmn924 remaindernear 123e1 500 -> 230
+dqrmn925 remaindernear 123e1 50 -> -20
+dqrmn926 remaindernear 123e1 5 -> 0
+
+dqrmn930 remaindernear 123e1 9000000000000000 -> 1230
+dqrmn931 remaindernear 123e1 900000000000000 -> 1230
+dqrmn932 remaindernear 123e1 90000000000000 -> 1230
+dqrmn933 remaindernear 123e1 9000000000000 -> 1230
+dqrmn934 remaindernear 123e1 900000000000 -> 1230
+dqrmn935 remaindernear 123e1 90000000000 -> 1230
+dqrmn936 remaindernear 123e1 9000000000 -> 1230
+dqrmn937 remaindernear 123e1 900000000 -> 1230
+dqrmn939 remaindernear 123e1 90000000 -> 1230
+dqrmn940 remaindernear 123e1 9000000 -> 1230
+dqrmn941 remaindernear 123e1 900000 -> 1230
+dqrmn942 remaindernear 123e1 90000 -> 1230
+dqrmn943 remaindernear 123e1 9000 -> 1230
+dqrmn944 remaindernear 123e1 900 -> 330
+dqrmn945 remaindernear 123e1 90 -> -30
+dqrmn946 remaindernear 123e1 9 -> -3
+
+dqrmn950 remaindernear 123e1 1000000000000000 -> 1230
+dqrmn961 remaindernear 123e1 2999999999999999 -> 1230
+dqrmn962 remaindernear 123e1 3999999999999999 -> 1230
+dqrmn963 remaindernear 123e1 4999999999999999 -> 1230
+dqrmn964 remaindernear 123e1 5999999999999999 -> 1230
+dqrmn965 remaindernear 123e1 6999999999999999 -> 1230
+dqrmn966 remaindernear 123e1 7999999999999999 -> 1230
+dqrmn967 remaindernear 123e1 8999999999999999 -> 1230
+dqrmn968 remaindernear 123e1 9999999999999999 -> 1230
+dqrmn969 remaindernear 123e1 9876543210987654 -> 1230
+
+dqrmn980 remaindernear 123e1 1000E299 -> 1.23E+3 -- 123E+1 internally
+
+-- overflow and underflow tests [from divide]
+dqrmn1051 remaindernear 1e+277 1e-311 -> NaN Division_impossible
+dqrmn1052 remaindernear 1e+277 -1e-311 -> NaN Division_impossible
+dqrmn1053 remaindernear -1e+277 1e-311 -> NaN Division_impossible
+dqrmn1054 remaindernear -1e+277 -1e-311 -> NaN Division_impossible
+dqrmn1055 remaindernear 1e-277 1e+311 -> 1E-277
+dqrmn1056 remaindernear 1e-277 -1e+311 -> 1E-277
+dqrmn1057 remaindernear -1e-277 1e+311 -> -1E-277
+dqrmn1058 remaindernear -1e-277 -1e+311 -> -1E-277
+
+-- Gyuris example
+dqrmn1070 remainder 8.336804418094040989630006819881709E-6143 8.336804418094040989630006819889000E-6143 -> 8.336804418094040989630006819881709E-6143
+
+-- Null tests
+dqrmn1000 remaindernear 10 # -> NaN Invalid_operation
+dqrmn1001 remaindernear # 10 -> NaN Invalid_operation
+
diff --git a/Lib/test/decimaltestdata/dqRotate.decTest b/Lib/test/decimaltestdata/dqRotate.decTest
new file mode 100644
index 0000000..f21813c
--- /dev/null
+++ b/Lib/test/decimaltestdata/dqRotate.decTest
@@ -0,0 +1,298 @@
+------------------------------------------------------------------------
+-- dqRotate.decTest -- rotate decQuad coefficient left or right --
+-- Copyright (c) IBM Corporation, 1981, 2007. All rights reserved. --
+------------------------------------------------------------------------
+-- Please see the document "General Decimal Arithmetic Testcases" --
+-- at http://www2.hursley.ibm.com/decimal for the description of --
+-- these testcases. --
+-- --
+-- These testcases are experimental ('beta' versions), and they --
+-- may contain errors. They are offered on an as-is basis. In --
+-- particular, achieving the same results as the tests here is not --
+-- a guarantee that an implementation complies with any Standard --
+-- or specification. The tests are not exhaustive. --
+-- --
+-- Please send comments, suggestions, and corrections to the author: --
+-- Mike Cowlishaw, IBM Fellow --
+-- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK --
+-- mfc@uk.ibm.com --
+------------------------------------------------------------------------
+version: 2.56
+
+extended: 1
+clamp: 1
+precision: 34
+maxExponent: 6144
+minExponent: -6143
+rounding: half_even
+
+-- Sanity check
+dqrot001 rotate 0 0 -> 0
+dqrot002 rotate 0 2 -> 0
+dqrot003 rotate 1 2 -> 100
+dqrot004 rotate 1 33 -> 1000000000000000000000000000000000
+dqrot005 rotate 1 34 -> 1
+dqrot006 rotate 1 -1 -> 1000000000000000000000000000000000
+dqrot007 rotate 0 -2 -> 0
+dqrot008 rotate 1234567890123456789012345678901234 -1 -> 4123456789012345678901234567890123
+dqrot009 rotate 1234567890123456789012345678901234 -33 -> 2345678901234567890123456789012341
+dqrot010 rotate 1234567890123456789012345678901234 -34 -> 1234567890123456789012345678901234
+dqrot011 rotate 9934567890123456789012345678901234 -33 -> 9345678901234567890123456789012349
+dqrot012 rotate 9934567890123456789012345678901234 -34 -> 9934567890123456789012345678901234
+
+-- rhs must be an integer
+dqrot015 rotate 1 1.5 -> NaN Invalid_operation
+dqrot016 rotate 1 1.0 -> NaN Invalid_operation
+dqrot017 rotate 1 0.1 -> NaN Invalid_operation
+dqrot018 rotate 1 0.0 -> NaN Invalid_operation
+dqrot019 rotate 1 1E+1 -> NaN Invalid_operation
+dqrot020 rotate 1 1E+99 -> NaN Invalid_operation
+dqrot021 rotate 1 Inf -> NaN Invalid_operation
+dqrot022 rotate 1 -Inf -> NaN Invalid_operation
+-- and |rhs| <= precision
+dqrot025 rotate 1 -1000 -> NaN Invalid_operation
+dqrot026 rotate 1 -35 -> NaN Invalid_operation
+dqrot027 rotate 1 35 -> NaN Invalid_operation
+dqrot028 rotate 1 1000 -> NaN Invalid_operation
+
+-- full pattern
+dqrot030 rotate 1234567890123456789012345678901234 -34 -> 1234567890123456789012345678901234
+dqrot031 rotate 1234567890123456789012345678901234 -33 -> 2345678901234567890123456789012341
+dqrot032 rotate 1234567890123456789012345678901234 -32 -> 3456789012345678901234567890123412
+dqrot033 rotate 1234567890123456789012345678901234 -31 -> 4567890123456789012345678901234123
+dqrot034 rotate 1234567890123456789012345678901234 -30 -> 5678901234567890123456789012341234
+dqrot035 rotate 1234567890123456789012345678901234 -29 -> 6789012345678901234567890123412345
+dqrot036 rotate 1234567890123456789012345678901234 -28 -> 7890123456789012345678901234123456
+dqrot037 rotate 1234567890123456789012345678901234 -27 -> 8901234567890123456789012341234567
+dqrot038 rotate 1234567890123456789012345678901234 -26 -> 9012345678901234567890123412345678
+dqrot039 rotate 1234567890123456789012345678901234 -25 -> 123456789012345678901234123456789
+dqrot040 rotate 1234567890123456789012345678901234 -24 -> 1234567890123456789012341234567890
+dqrot041 rotate 1234567890123456789012345678901234 -23 -> 2345678901234567890123412345678901
+dqrot042 rotate 1234567890123456789012345678901234 -22 -> 3456789012345678901234123456789012
+dqrot043 rotate 1234567890123456789012345678901234 -21 -> 4567890123456789012341234567890123
+dqrot044 rotate 1234567890123456789012345678901234 -20 -> 5678901234567890123412345678901234
+dqrot045 rotate 1234567890123456789012345678901234 -19 -> 6789012345678901234123456789012345
+dqrot047 rotate 1234567890123456789012345678901234 -18 -> 7890123456789012341234567890123456
+dqrot048 rotate 1234567890123456789012345678901234 -17 -> 8901234567890123412345678901234567
+dqrot049 rotate 1234567890123456789012345678901234 -16 -> 9012345678901234123456789012345678
+dqrot050 rotate 1234567890123456789012345678901234 -15 -> 123456789012341234567890123456789
+dqrot051 rotate 1234567890123456789012345678901234 -14 -> 1234567890123412345678901234567890
+dqrot052 rotate 1234567890123456789012345678901234 -13 -> 2345678901234123456789012345678901
+dqrot053 rotate 1234567890123456789012345678901234 -12 -> 3456789012341234567890123456789012
+dqrot054 rotate 1234567890123456789012345678901234 -11 -> 4567890123412345678901234567890123
+dqrot055 rotate 1234567890123456789012345678901234 -10 -> 5678901234123456789012345678901234
+dqrot056 rotate 1234567890123456789012345678901234 -9 -> 6789012341234567890123456789012345
+dqrot057 rotate 1234567890123456789012345678901234 -8 -> 7890123412345678901234567890123456
+dqrot058 rotate 1234567890123456789012345678901234 -7 -> 8901234123456789012345678901234567
+dqrot059 rotate 1234567890123456789012345678901234 -6 -> 9012341234567890123456789012345678
+dqrot060 rotate 1234567890123456789012345678901234 -5 -> 123412345678901234567890123456789
+dqrot061 rotate 1234567890123456789012345678901234 -4 -> 1234123456789012345678901234567890
+dqrot062 rotate 1234567890123456789012345678901234 -3 -> 2341234567890123456789012345678901
+dqrot063 rotate 1234567890123456789012345678901234 -2 -> 3412345678901234567890123456789012
+dqrot064 rotate 1234567890123456789012345678901234 -1 -> 4123456789012345678901234567890123
+dqrot065 rotate 1234567890123456789012345678901234 -0 -> 1234567890123456789012345678901234
+
+dqrot066 rotate 1234567890123456789012345678901234 +0 -> 1234567890123456789012345678901234
+dqrot067 rotate 1234567890123456789012345678901234 +1 -> 2345678901234567890123456789012341
+dqrot068 rotate 1234567890123456789012345678901234 +2 -> 3456789012345678901234567890123412
+dqrot069 rotate 1234567890123456789012345678901234 +3 -> 4567890123456789012345678901234123
+dqrot070 rotate 1234567890123456789012345678901234 +4 -> 5678901234567890123456789012341234
+dqrot071 rotate 1234567890123456789012345678901234 +5 -> 6789012345678901234567890123412345
+dqrot072 rotate 1234567890123456789012345678901234 +6 -> 7890123456789012345678901234123456
+dqrot073 rotate 1234567890123456789012345678901234 +7 -> 8901234567890123456789012341234567
+dqrot074 rotate 1234567890123456789012345678901234 +8 -> 9012345678901234567890123412345678
+dqrot075 rotate 1234567890123456789012345678901234 +9 -> 123456789012345678901234123456789
+dqrot076 rotate 1234567890123456789012345678901234 +10 -> 1234567890123456789012341234567890
+dqrot077 rotate 1234567890123456789012345678901234 +11 -> 2345678901234567890123412345678901
+dqrot078 rotate 1234567890123456789012345678901234 +12 -> 3456789012345678901234123456789012
+dqrot079 rotate 1234567890123456789012345678901234 +13 -> 4567890123456789012341234567890123
+dqrot080 rotate 1234567890123456789012345678901234 +14 -> 5678901234567890123412345678901234
+dqrot081 rotate 1234567890123456789012345678901234 +15 -> 6789012345678901234123456789012345
+dqrot082 rotate 1234567890123456789012345678901234 +16 -> 7890123456789012341234567890123456
+dqrot083 rotate 1234567890123456789012345678901234 +17 -> 8901234567890123412345678901234567
+dqrot084 rotate 1234567890123456789012345678901234 +18 -> 9012345678901234123456789012345678
+dqrot085 rotate 1234567890123456789012345678901234 +19 -> 123456789012341234567890123456789
+dqrot086 rotate 1234567890123456789012345678901234 +20 -> 1234567890123412345678901234567890
+dqrot087 rotate 1234567890123456789012345678901234 +21 -> 2345678901234123456789012345678901
+dqrot088 rotate 1234567890123456789012345678901234 +22 -> 3456789012341234567890123456789012
+dqrot089 rotate 1234567890123456789012345678901234 +23 -> 4567890123412345678901234567890123
+dqrot090 rotate 1234567890123456789012345678901234 +24 -> 5678901234123456789012345678901234
+dqrot091 rotate 1234567890123456789012345678901234 +25 -> 6789012341234567890123456789012345
+dqrot092 rotate 1234567890123456789012345678901234 +26 -> 7890123412345678901234567890123456
+dqrot093 rotate 1234567890123456789012345678901234 +27 -> 8901234123456789012345678901234567
+dqrot094 rotate 1234567890123456789012345678901234 +28 -> 9012341234567890123456789012345678
+dqrot095 rotate 1234567890123456789012345678901234 +29 -> 123412345678901234567890123456789
+dqrot096 rotate 1234567890123456789012345678901234 +30 -> 1234123456789012345678901234567890
+dqrot097 rotate 1234567890123456789012345678901234 +31 -> 2341234567890123456789012345678901
+dqrot098 rotate 1234567890123456789012345678901234 +32 -> 3412345678901234567890123456789012
+dqrot099 rotate 1234567890123456789012345678901234 +33 -> 4123456789012345678901234567890123
+dqrot100 rotate 1234567890123456789012345678901234 +34 -> 1234567890123456789012345678901234
+
+-- zeros
+dqrot270 rotate 0E-10 +29 -> 0E-10
+dqrot271 rotate 0E-10 -29 -> 0E-10
+dqrot272 rotate 0.000 +29 -> 0.000
+dqrot273 rotate 0.000 -29 -> 0.000
+dqrot274 rotate 0E+10 +29 -> 0E+10
+dqrot275 rotate 0E+10 -29 -> 0E+10
+dqrot276 rotate -0E-10 +29 -> -0E-10
+dqrot277 rotate -0E-10 -29 -> -0E-10
+dqrot278 rotate -0.000 +29 -> -0.000
+dqrot279 rotate -0.000 -29 -> -0.000
+dqrot280 rotate -0E+10 +29 -> -0E+10
+dqrot281 rotate -0E+10 -29 -> -0E+10
+
+-- Nmax, Nmin, Ntiny
+dqrot141 rotate 9.999999999999999999999999999999999E+6144 -1 -> 9.999999999999999999999999999999999E+6144
+dqrot142 rotate 9.999999999999999999999999999999999E+6144 -33 -> 9.999999999999999999999999999999999E+6144
+dqrot143 rotate 9.999999999999999999999999999999999E+6144 1 -> 9.999999999999999999999999999999999E+6144
+dqrot144 rotate 9.999999999999999999999999999999999E+6144 33 -> 9.999999999999999999999999999999999E+6144
+dqrot145 rotate 1E-6143 -1 -> 1.000000000000000000000000000000000E-6110
+dqrot146 rotate 1E-6143 -33 -> 1.0E-6142
+dqrot147 rotate 1E-6143 1 -> 1.0E-6142
+dqrot148 rotate 1E-6143 33 -> 1.000000000000000000000000000000000E-6110
+dqrot151 rotate 1.000000000000000000000000000000000E-6143 -1 -> 1.00000000000000000000000000000000E-6144
+dqrot152 rotate 1.000000000000000000000000000000000E-6143 -33 -> 1E-6176
+dqrot153 rotate 1.000000000000000000000000000000000E-6143 1 -> 1E-6176
+dqrot154 rotate 1.000000000000000000000000000000000E-6143 33 -> 1.00000000000000000000000000000000E-6144
+dqrot155 rotate 9.000000000000000000000000000000000E-6143 -1 -> 9.00000000000000000000000000000000E-6144
+dqrot156 rotate 9.000000000000000000000000000000000E-6143 -33 -> 9E-6176
+dqrot157 rotate 9.000000000000000000000000000000000E-6143 1 -> 9E-6176
+dqrot158 rotate 9.000000000000000000000000000000000E-6143 33 -> 9.00000000000000000000000000000000E-6144
+dqrot160 rotate 1E-6176 -1 -> 1.000000000000000000000000000000000E-6143
+dqrot161 rotate 1E-6176 -33 -> 1.0E-6175
+dqrot162 rotate 1E-6176 1 -> 1.0E-6175
+dqrot163 rotate 1E-6176 33 -> 1.000000000000000000000000000000000E-6143
+-- negatives
+dqrot171 rotate -9.999999999999999999999999999999999E+6144 -1 -> -9.999999999999999999999999999999999E+6144
+dqrot172 rotate -9.999999999999999999999999999999999E+6144 -33 -> -9.999999999999999999999999999999999E+6144
+dqrot173 rotate -9.999999999999999999999999999999999E+6144 1 -> -9.999999999999999999999999999999999E+6144
+dqrot174 rotate -9.999999999999999999999999999999999E+6144 33 -> -9.999999999999999999999999999999999E+6144
+dqrot175 rotate -1E-6143 -1 -> -1.000000000000000000000000000000000E-6110
+dqrot176 rotate -1E-6143 -33 -> -1.0E-6142
+dqrot177 rotate -1E-6143 1 -> -1.0E-6142
+dqrot178 rotate -1E-6143 33 -> -1.000000000000000000000000000000000E-6110
+dqrot181 rotate -1.000000000000000000000000000000000E-6143 -1 -> -1.00000000000000000000000000000000E-6144
+dqrot182 rotate -1.000000000000000000000000000000000E-6143 -33 -> -1E-6176
+dqrot183 rotate -1.000000000000000000000000000000000E-6143 1 -> -1E-6176
+dqrot184 rotate -1.000000000000000000000000000000000E-6143 33 -> -1.00000000000000000000000000000000E-6144
+dqrot185 rotate -9.000000000000000000000000000000000E-6143 -1 -> -9.00000000000000000000000000000000E-6144
+dqrot186 rotate -9.000000000000000000000000000000000E-6143 -33 -> -9E-6176
+dqrot187 rotate -9.000000000000000000000000000000000E-6143 1 -> -9E-6176
+dqrot188 rotate -9.000000000000000000000000000000000E-6143 33 -> -9.00000000000000000000000000000000E-6144
+dqrot190 rotate -1E-6176 -1 -> -1.000000000000000000000000000000000E-6143
+dqrot191 rotate -1E-6176 -33 -> -1.0E-6175
+dqrot192 rotate -1E-6176 1 -> -1.0E-6175
+dqrot193 rotate -1E-6176 33 -> -1.000000000000000000000000000000000E-6143
+
+-- more negatives (of sanities)
+dqrot201 rotate -0 0 -> -0
+dqrot202 rotate -0 2 -> -0
+dqrot203 rotate -1 2 -> -100
+dqrot204 rotate -1 33 -> -1000000000000000000000000000000000
+dqrot205 rotate -1 34 -> -1
+dqrot206 rotate -1 -1 -> -1000000000000000000000000000000000
+dqrot207 rotate -0 -2 -> -0
+dqrot208 rotate -1234567890123456789012345678901234 -1 -> -4123456789012345678901234567890123
+dqrot209 rotate -1234567890123456789012345678901234 -33 -> -2345678901234567890123456789012341
+dqrot210 rotate -1234567890123456789012345678901234 -34 -> -1234567890123456789012345678901234
+dqrot211 rotate -9934567890123456789012345678901234 -33 -> -9345678901234567890123456789012349
+dqrot212 rotate -9934567890123456789012345678901234 -34 -> -9934567890123456789012345678901234
+
+
+-- Specials; NaNs are handled as usual
+dqrot781 rotate -Inf -8 -> -Infinity
+dqrot782 rotate -Inf -1 -> -Infinity
+dqrot783 rotate -Inf -0 -> -Infinity
+dqrot784 rotate -Inf 0 -> -Infinity
+dqrot785 rotate -Inf 1 -> -Infinity
+dqrot786 rotate -Inf 8 -> -Infinity
+dqrot787 rotate -1000 -Inf -> NaN Invalid_operation
+dqrot788 rotate -Inf -Inf -> NaN Invalid_operation
+dqrot789 rotate -1 -Inf -> NaN Invalid_operation
+dqrot790 rotate -0 -Inf -> NaN Invalid_operation
+dqrot791 rotate 0 -Inf -> NaN Invalid_operation
+dqrot792 rotate 1 -Inf -> NaN Invalid_operation
+dqrot793 rotate 1000 -Inf -> NaN Invalid_operation
+dqrot794 rotate Inf -Inf -> NaN Invalid_operation
+
+dqrot800 rotate Inf -Inf -> NaN Invalid_operation
+dqrot801 rotate Inf -8 -> Infinity
+dqrot802 rotate Inf -1 -> Infinity
+dqrot803 rotate Inf -0 -> Infinity
+dqrot804 rotate Inf 0 -> Infinity
+dqrot805 rotate Inf 1 -> Infinity
+dqrot806 rotate Inf 8 -> Infinity
+dqrot807 rotate Inf Inf -> NaN Invalid_operation
+dqrot808 rotate -1000 Inf -> NaN Invalid_operation
+dqrot809 rotate -Inf Inf -> NaN Invalid_operation
+dqrot810 rotate -1 Inf -> NaN Invalid_operation
+dqrot811 rotate -0 Inf -> NaN Invalid_operation
+dqrot812 rotate 0 Inf -> NaN Invalid_operation
+dqrot813 rotate 1 Inf -> NaN Invalid_operation
+dqrot814 rotate 1000 Inf -> NaN Invalid_operation
+dqrot815 rotate Inf Inf -> NaN Invalid_operation
+
+dqrot821 rotate NaN -Inf -> NaN
+dqrot822 rotate NaN -1000 -> NaN
+dqrot823 rotate NaN -1 -> NaN
+dqrot824 rotate NaN -0 -> NaN
+dqrot825 rotate NaN 0 -> NaN
+dqrot826 rotate NaN 1 -> NaN
+dqrot827 rotate NaN 1000 -> NaN
+dqrot828 rotate NaN Inf -> NaN
+dqrot829 rotate NaN NaN -> NaN
+dqrot830 rotate -Inf NaN -> NaN
+dqrot831 rotate -1000 NaN -> NaN
+dqrot832 rotate -1 NaN -> NaN
+dqrot833 rotate -0 NaN -> NaN
+dqrot834 rotate 0 NaN -> NaN
+dqrot835 rotate 1 NaN -> NaN
+dqrot836 rotate 1000 NaN -> NaN
+dqrot837 rotate Inf NaN -> NaN
+
+dqrot841 rotate sNaN -Inf -> NaN Invalid_operation
+dqrot842 rotate sNaN -1000 -> NaN Invalid_operation
+dqrot843 rotate sNaN -1 -> NaN Invalid_operation
+dqrot844 rotate sNaN -0 -> NaN Invalid_operation
+dqrot845 rotate sNaN 0 -> NaN Invalid_operation
+dqrot846 rotate sNaN 1 -> NaN Invalid_operation
+dqrot847 rotate sNaN 1000 -> NaN Invalid_operation
+dqrot848 rotate sNaN NaN -> NaN Invalid_operation
+dqrot849 rotate sNaN sNaN -> NaN Invalid_operation
+dqrot850 rotate NaN sNaN -> NaN Invalid_operation
+dqrot851 rotate -Inf sNaN -> NaN Invalid_operation
+dqrot852 rotate -1000 sNaN -> NaN Invalid_operation
+dqrot853 rotate -1 sNaN -> NaN Invalid_operation
+dqrot854 rotate -0 sNaN -> NaN Invalid_operation
+dqrot855 rotate 0 sNaN -> NaN Invalid_operation
+dqrot856 rotate 1 sNaN -> NaN Invalid_operation
+dqrot857 rotate 1000 sNaN -> NaN Invalid_operation
+dqrot858 rotate Inf sNaN -> NaN Invalid_operation
+dqrot859 rotate NaN sNaN -> NaN Invalid_operation
+
+-- propagating NaNs
+dqrot861 rotate NaN1 -Inf -> NaN1
+dqrot862 rotate +NaN2 -1000 -> NaN2
+dqrot863 rotate NaN3 1000 -> NaN3
+dqrot864 rotate NaN4 Inf -> NaN4
+dqrot865 rotate NaN5 +NaN6 -> NaN5
+dqrot866 rotate -Inf NaN7 -> NaN7
+dqrot867 rotate -1000 NaN8 -> NaN8
+dqrot868 rotate 1000 NaN9 -> NaN9
+dqrot869 rotate Inf +NaN10 -> NaN10
+dqrot871 rotate sNaN11 -Inf -> NaN11 Invalid_operation
+dqrot872 rotate sNaN12 -1000 -> NaN12 Invalid_operation
+dqrot873 rotate sNaN13 1000 -> NaN13 Invalid_operation
+dqrot874 rotate sNaN14 NaN17 -> NaN14 Invalid_operation
+dqrot875 rotate sNaN15 sNaN18 -> NaN15 Invalid_operation
+dqrot876 rotate NaN16 sNaN19 -> NaN19 Invalid_operation
+dqrot877 rotate -Inf +sNaN20 -> NaN20 Invalid_operation
+dqrot878 rotate -1000 sNaN21 -> NaN21 Invalid_operation
+dqrot879 rotate 1000 sNaN22 -> NaN22 Invalid_operation
+dqrot880 rotate Inf sNaN23 -> NaN23 Invalid_operation
+dqrot881 rotate +NaN25 +sNaN24 -> NaN24 Invalid_operation
+dqrot882 rotate -NaN26 NaN28 -> -NaN26
+dqrot883 rotate -sNaN27 sNaN29 -> -NaN27 Invalid_operation
+dqrot884 rotate 1000 -NaN30 -> -NaN30
+dqrot885 rotate 1000 -sNaN31 -> -NaN31 Invalid_operation
diff --git a/Lib/test/decimaltestdata/dqSameQuantum.decTest b/Lib/test/decimaltestdata/dqSameQuantum.decTest
new file mode 100644
index 0000000..e7264cb
--- /dev/null
+++ b/Lib/test/decimaltestdata/dqSameQuantum.decTest
@@ -0,0 +1,389 @@
+------------------------------------------------------------------------
+-- dqSameQuantum.decTest -- check decQuad quantums match --
+-- Copyright (c) IBM Corporation, 2001, 2007. All rights reserved. --
+------------------------------------------------------------------------
+-- Please see the document "General Decimal Arithmetic Testcases" --
+-- at http://www2.hursley.ibm.com/decimal for the description of --
+-- these testcases. --
+-- --
+-- These testcases are experimental ('beta' versions), and they --
+-- may contain errors. They are offered on an as-is basis. In --
+-- particular, achieving the same results as the tests here is not --
+-- a guarantee that an implementation complies with any Standard --
+-- or specification. The tests are not exhaustive. --
+-- --
+-- Please send comments, suggestions, and corrections to the author: --
+-- Mike Cowlishaw, IBM Fellow --
+-- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK --
+-- mfc@uk.ibm.com --
+------------------------------------------------------------------------
+version: 2.56
+
+-- All operands and results are decQuads.
+extended: 1
+clamp: 1
+precision: 34
+maxExponent: 6144
+minExponent: -6143
+rounding: half_even
+
+dqsamq001 samequantum 0 0 -> 1
+dqsamq002 samequantum 0 1 -> 1
+dqsamq003 samequantum 1 0 -> 1
+dqsamq004 samequantum 1 1 -> 1
+
+dqsamq011 samequantum 10 1E+1 -> 0
+dqsamq012 samequantum 10E+1 10E+1 -> 1
+dqsamq013 samequantum 100 10E+1 -> 0
+dqsamq014 samequantum 100 1E+2 -> 0
+dqsamq015 samequantum 0.1 1E-2 -> 0
+dqsamq016 samequantum 0.1 1E-1 -> 1
+dqsamq017 samequantum 0.1 1E-0 -> 0
+dqsamq018 samequantum 999 999 -> 1
+dqsamq019 samequantum 999E-1 99.9 -> 1
+dqsamq020 samequantum 111E-1 22.2 -> 1
+dqsamq021 samequantum 111E-1 1234.2 -> 1
+
+-- zeros
+dqsamq030 samequantum 0.0 1.1 -> 1
+dqsamq031 samequantum 0.0 1.11 -> 0
+dqsamq032 samequantum 0.0 0 -> 0
+dqsamq033 samequantum 0.0 0.0 -> 1
+dqsamq034 samequantum 0.0 0.00 -> 0
+dqsamq035 samequantum 0E+1 0E+0 -> 0
+dqsamq036 samequantum 0E+1 0E+1 -> 1
+dqsamq037 samequantum 0E+1 0E+2 -> 0
+dqsamq038 samequantum 0E-17 0E-16 -> 0
+dqsamq039 samequantum 0E-17 0E-17 -> 1
+dqsamq040 samequantum 0E-17 0E-18 -> 0
+dqsamq041 samequantum 0E-17 0.0E-15 -> 0
+dqsamq042 samequantum 0E-17 0.0E-16 -> 1
+dqsamq043 samequantum 0E-17 0.0E-17 -> 0
+dqsamq044 samequantum -0E-17 0.0E-16 -> 1
+dqsamq045 samequantum 0E-17 -0.0E-17 -> 0
+dqsamq046 samequantum 0E-17 -0.0E-16 -> 1
+dqsamq047 samequantum -0E-17 0.0E-17 -> 0
+dqsamq048 samequantum -0E-17 -0.0E-16 -> 1
+dqsamq049 samequantum -0E-17 -0.0E-17 -> 0
+
+-- Nmax, Nmin, Ntiny
+dqsamq051 samequantum 9.99999999999999999999999999999999E+6144 9.99999999999999999999999999999999E+6144 -> 1
+dqsamq052 samequantum 1E-6143 1E-6143 -> 1
+dqsamq053 samequantum 1.00000000000000000000000000000000E-6143 1.00000000000000000000000000000000E-6143 -> 1
+dqsamq054 samequantum 1E-6176 1E-6176 -> 1
+dqsamq055 samequantum 9.99999999999999999999999999999999E+6144 9.99999999999999999999999999999999E+6144 -> 1
+dqsamq056 samequantum 1E-6143 1E-6143 -> 1
+dqsamq057 samequantum 1.00000000000000000000000000000000E-6143 1.00000000000000000000000000000000E-6143 -> 1
+dqsamq058 samequantum 1E-6176 1E-6176 -> 1
+
+dqsamq061 samequantum -1E-6176 -1E-6176 -> 1
+dqsamq062 samequantum -1.00000000000000000000000000000000E-6143 -1.00000000000000000000000000000000E-6143 -> 1
+dqsamq063 samequantum -1E-6143 -1E-6143 -> 1
+dqsamq064 samequantum -9.99999999999999999999999999999999E+6144 -9.99999999999999999999999999999999E+6144 -> 1
+dqsamq065 samequantum -1E-6176 -1E-6176 -> 1
+dqsamq066 samequantum -1.00000000000000000000000000000000E-6143 -1.00000000000000000000000000000000E-6143 -> 1
+dqsamq067 samequantum -1E-6143 -1E-6143 -> 1
+dqsamq068 samequantum -9.99999999999999999999999999999999E+6144 -9.99999999999999999999999999999999E+6144 -> 1
+
+dqsamq071 samequantum -4E-6176 -1E-6176 -> 1
+dqsamq072 samequantum -4.00000000000000000000000000000000E-6143 -1.00000000000000000000000000004000E-6143 -> 1
+dqsamq073 samequantum -4E-6143 -1E-6143 -> 1
+dqsamq074 samequantum -4.99999999999999999999999999999999E+6144 -9.99949999999999999999999999999999E+6144 -> 1
+dqsamq075 samequantum -4E-6176 -1E-6176 -> 1
+dqsamq076 samequantum -4.00000000000000000000000000000000E-6143 -1.00400000000000000000000000000000E-6143 -> 1
+dqsamq077 samequantum -4E-6143 -1E-6143 -> 1
+dqsamq078 samequantum -4.99999999999999999999999999999999E+6144 -9.94999999999999999999999999999999E+6144 -> 1
+
+dqsamq081 samequantum -4E-1006 -1E-6176 -> 0
+dqsamq082 samequantum -4.00000000000000000000000000000000E-6143 -1.00004000000000000000000000000000E-6136 -> 0
+dqsamq083 samequantum -4E-6140 -1E-6143 -> 0
+dqsamq084 samequantum -4.99999999999999999999999999999999E+6144 -9.99949999999999999999999999999999E+6136 -> 0
+dqsamq085 samequantum -4E-1006 -1E-6176 -> 0
+dqsamq086 samequantum -4.00000000000000000000000000000000E-6143 -1.00400000000000000000000000000000E-6136 -> 0
+dqsamq087 samequantum -4E-6133 -1E-6143 -> 0
+dqsamq088 samequantum -4.99999999999999999999999999999999E+6144 -9.94999999999999999999999999999999E+6136 -> 0
+
+-- specials & combinations
+dqsamq0110 samequantum -Inf -Inf -> 1
+dqsamq0111 samequantum -Inf Inf -> 1
+dqsamq0112 samequantum -Inf NaN -> 0
+dqsamq0113 samequantum -Inf -7E+3 -> 0
+dqsamq0114 samequantum -Inf -7 -> 0
+dqsamq0115 samequantum -Inf -7E-3 -> 0
+dqsamq0116 samequantum -Inf -0E-3 -> 0
+dqsamq0117 samequantum -Inf -0 -> 0
+dqsamq0118 samequantum -Inf -0E+3 -> 0
+dqsamq0119 samequantum -Inf 0E-3 -> 0
+dqsamq0120 samequantum -Inf 0 -> 0
+dqsamq0121 samequantum -Inf 0E+3 -> 0
+dqsamq0122 samequantum -Inf 7E-3 -> 0
+dqsamq0123 samequantum -Inf 7 -> 0
+dqsamq0124 samequantum -Inf 7E+3 -> 0
+dqsamq0125 samequantum -Inf sNaN -> 0
+
+dqsamq0210 samequantum Inf -Inf -> 1
+dqsamq0211 samequantum Inf Inf -> 1
+dqsamq0212 samequantum Inf NaN -> 0
+dqsamq0213 samequantum Inf -7E+3 -> 0
+dqsamq0214 samequantum Inf -7 -> 0
+dqsamq0215 samequantum Inf -7E-3 -> 0
+dqsamq0216 samequantum Inf -0E-3 -> 0
+dqsamq0217 samequantum Inf -0 -> 0
+dqsamq0218 samequantum Inf -0E+3 -> 0
+dqsamq0219 samequantum Inf 0E-3 -> 0
+dqsamq0220 samequantum Inf 0 -> 0
+dqsamq0221 samequantum Inf 0E+3 -> 0
+dqsamq0222 samequantum Inf 7E-3 -> 0
+dqsamq0223 samequantum Inf 7 -> 0
+dqsamq0224 samequantum Inf 7E+3 -> 0
+dqsamq0225 samequantum Inf sNaN -> 0
+
+dqsamq0310 samequantum NaN -Inf -> 0
+dqsamq0311 samequantum NaN Inf -> 0
+dqsamq0312 samequantum NaN NaN -> 1
+dqsamq0313 samequantum NaN -7E+3 -> 0
+dqsamq0314 samequantum NaN -7 -> 0
+dqsamq0315 samequantum NaN -7E-3 -> 0
+dqsamq0316 samequantum NaN -0E-3 -> 0
+dqsamq0317 samequantum NaN -0 -> 0
+dqsamq0318 samequantum NaN -0E+3 -> 0
+dqsamq0319 samequantum NaN 0E-3 -> 0
+dqsamq0320 samequantum NaN 0 -> 0
+dqsamq0321 samequantum NaN 0E+3 -> 0
+dqsamq0322 samequantum NaN 7E-3 -> 0
+dqsamq0323 samequantum NaN 7 -> 0
+dqsamq0324 samequantum NaN 7E+3 -> 0
+dqsamq0325 samequantum NaN sNaN -> 1
+
+dqsamq0410 samequantum -7E+3 -Inf -> 0
+dqsamq0411 samequantum -7E+3 Inf -> 0
+dqsamq0412 samequantum -7E+3 NaN -> 0
+dqsamq0413 samequantum -7E+3 -7E+3 -> 1
+dqsamq0414 samequantum -7E+3 -7 -> 0
+dqsamq0415 samequantum -7E+3 -7E-3 -> 0
+dqsamq0416 samequantum -7E+3 -0E-3 -> 0
+dqsamq0417 samequantum -7E+3 -0 -> 0
+dqsamq0418 samequantum -7E+3 -0E+3 -> 1
+dqsamq0419 samequantum -7E+3 0E-3 -> 0
+dqsamq0420 samequantum -7E+3 0 -> 0
+dqsamq0421 samequantum -7E+3 0E+3 -> 1
+dqsamq0422 samequantum -7E+3 7E-3 -> 0
+dqsamq0423 samequantum -7E+3 7 -> 0
+dqsamq0424 samequantum -7E+3 7E+3 -> 1
+dqsamq0425 samequantum -7E+3 sNaN -> 0
+
+dqsamq0510 samequantum -7 -Inf -> 0
+dqsamq0511 samequantum -7 Inf -> 0
+dqsamq0512 samequantum -7 NaN -> 0
+dqsamq0513 samequantum -7 -7E+3 -> 0
+dqsamq0514 samequantum -7 -7 -> 1
+dqsamq0515 samequantum -7 -7E-3 -> 0
+dqsamq0516 samequantum -7 -0E-3 -> 0
+dqsamq0517 samequantum -7 -0 -> 1
+dqsamq0518 samequantum -7 -0E+3 -> 0
+dqsamq0519 samequantum -7 0E-3 -> 0
+dqsamq0520 samequantum -7 0 -> 1
+dqsamq0521 samequantum -7 0E+3 -> 0
+dqsamq0522 samequantum -7 7E-3 -> 0
+dqsamq0523 samequantum -7 7 -> 1
+dqsamq0524 samequantum -7 7E+3 -> 0
+dqsamq0525 samequantum -7 sNaN -> 0
+
+dqsamq0610 samequantum -7E-3 -Inf -> 0
+dqsamq0611 samequantum -7E-3 Inf -> 0
+dqsamq0612 samequantum -7E-3 NaN -> 0
+dqsamq0613 samequantum -7E-3 -7E+3 -> 0
+dqsamq0614 samequantum -7E-3 -7 -> 0
+dqsamq0615 samequantum -7E-3 -7E-3 -> 1
+dqsamq0616 samequantum -7E-3 -0E-3 -> 1
+dqsamq0617 samequantum -7E-3 -0 -> 0
+dqsamq0618 samequantum -7E-3 -0E+3 -> 0
+dqsamq0619 samequantum -7E-3 0E-3 -> 1
+dqsamq0620 samequantum -7E-3 0 -> 0
+dqsamq0621 samequantum -7E-3 0E+3 -> 0
+dqsamq0622 samequantum -7E-3 7E-3 -> 1
+dqsamq0623 samequantum -7E-3 7 -> 0
+dqsamq0624 samequantum -7E-3 7E+3 -> 0
+dqsamq0625 samequantum -7E-3 sNaN -> 0
+
+dqsamq0710 samequantum -0E-3 -Inf -> 0
+dqsamq0711 samequantum -0E-3 Inf -> 0
+dqsamq0712 samequantum -0E-3 NaN -> 0
+dqsamq0713 samequantum -0E-3 -7E+3 -> 0
+dqsamq0714 samequantum -0E-3 -7 -> 0
+dqsamq0715 samequantum -0E-3 -7E-3 -> 1
+dqsamq0716 samequantum -0E-3 -0E-3 -> 1
+dqsamq0717 samequantum -0E-3 -0 -> 0
+dqsamq0718 samequantum -0E-3 -0E+3 -> 0
+dqsamq0719 samequantum -0E-3 0E-3 -> 1
+dqsamq0720 samequantum -0E-3 0 -> 0
+dqsamq0721 samequantum -0E-3 0E+3 -> 0
+dqsamq0722 samequantum -0E-3 7E-3 -> 1
+dqsamq0723 samequantum -0E-3 7 -> 0
+dqsamq0724 samequantum -0E-3 7E+3 -> 0
+dqsamq0725 samequantum -0E-3 sNaN -> 0
+
+dqsamq0810 samequantum -0 -Inf -> 0
+dqsamq0811 samequantum -0 Inf -> 0
+dqsamq0812 samequantum -0 NaN -> 0
+dqsamq0813 samequantum -0 -7E+3 -> 0
+dqsamq0814 samequantum -0 -7 -> 1
+dqsamq0815 samequantum -0 -7E-3 -> 0
+dqsamq0816 samequantum -0 -0E-3 -> 0
+dqsamq0817 samequantum -0 -0 -> 1
+dqsamq0818 samequantum -0 -0E+3 -> 0
+dqsamq0819 samequantum -0 0E-3 -> 0
+dqsamq0820 samequantum -0 0 -> 1
+dqsamq0821 samequantum -0 0E+3 -> 0
+dqsamq0822 samequantum -0 7E-3 -> 0
+dqsamq0823 samequantum -0 7 -> 1
+dqsamq0824 samequantum -0 7E+3 -> 0
+dqsamq0825 samequantum -0 sNaN -> 0
+
+dqsamq0910 samequantum -0E+3 -Inf -> 0
+dqsamq0911 samequantum -0E+3 Inf -> 0
+dqsamq0912 samequantum -0E+3 NaN -> 0
+dqsamq0913 samequantum -0E+3 -7E+3 -> 1
+dqsamq0914 samequantum -0E+3 -7 -> 0
+dqsamq0915 samequantum -0E+3 -7E-3 -> 0
+dqsamq0916 samequantum -0E+3 -0E-3 -> 0
+dqsamq0917 samequantum -0E+3 -0 -> 0
+dqsamq0918 samequantum -0E+3 -0E+3 -> 1
+dqsamq0919 samequantum -0E+3 0E-3 -> 0
+dqsamq0920 samequantum -0E+3 0 -> 0
+dqsamq0921 samequantum -0E+3 0E+3 -> 1
+dqsamq0922 samequantum -0E+3 7E-3 -> 0
+dqsamq0923 samequantum -0E+3 7 -> 0
+dqsamq0924 samequantum -0E+3 7E+3 -> 1
+dqsamq0925 samequantum -0E+3 sNaN -> 0
+
+dqsamq1110 samequantum 0E-3 -Inf -> 0
+dqsamq1111 samequantum 0E-3 Inf -> 0
+dqsamq1112 samequantum 0E-3 NaN -> 0
+dqsamq1113 samequantum 0E-3 -7E+3 -> 0
+dqsamq1114 samequantum 0E-3 -7 -> 0
+dqsamq1115 samequantum 0E-3 -7E-3 -> 1
+dqsamq1116 samequantum 0E-3 -0E-3 -> 1
+dqsamq1117 samequantum 0E-3 -0 -> 0
+dqsamq1118 samequantum 0E-3 -0E+3 -> 0
+dqsamq1119 samequantum 0E-3 0E-3 -> 1
+dqsamq1120 samequantum 0E-3 0 -> 0
+dqsamq1121 samequantum 0E-3 0E+3 -> 0
+dqsamq1122 samequantum 0E-3 7E-3 -> 1
+dqsamq1123 samequantum 0E-3 7 -> 0
+dqsamq1124 samequantum 0E-3 7E+3 -> 0
+dqsamq1125 samequantum 0E-3 sNaN -> 0
+
+dqsamq1210 samequantum 0 -Inf -> 0
+dqsamq1211 samequantum 0 Inf -> 0
+dqsamq1212 samequantum 0 NaN -> 0
+dqsamq1213 samequantum 0 -7E+3 -> 0
+dqsamq1214 samequantum 0 -7 -> 1
+dqsamq1215 samequantum 0 -7E-3 -> 0
+dqsamq1216 samequantum 0 -0E-3 -> 0
+dqsamq1217 samequantum 0 -0 -> 1
+dqsamq1218 samequantum 0 -0E+3 -> 0
+dqsamq1219 samequantum 0 0E-3 -> 0
+dqsamq1220 samequantum 0 0 -> 1
+dqsamq1221 samequantum 0 0E+3 -> 0
+dqsamq1222 samequantum 0 7E-3 -> 0
+dqsamq1223 samequantum 0 7 -> 1
+dqsamq1224 samequantum 0 7E+3 -> 0
+dqsamq1225 samequantum 0 sNaN -> 0
+
+dqsamq1310 samequantum 0E+3 -Inf -> 0
+dqsamq1311 samequantum 0E+3 Inf -> 0
+dqsamq1312 samequantum 0E+3 NaN -> 0
+dqsamq1313 samequantum 0E+3 -7E+3 -> 1
+dqsamq1314 samequantum 0E+3 -7 -> 0
+dqsamq1315 samequantum 0E+3 -7E-3 -> 0
+dqsamq1316 samequantum 0E+3 -0E-3 -> 0
+dqsamq1317 samequantum 0E+3 -0 -> 0
+dqsamq1318 samequantum 0E+3 -0E+3 -> 1
+dqsamq1319 samequantum 0E+3 0E-3 -> 0
+dqsamq1320 samequantum 0E+3 0 -> 0
+dqsamq1321 samequantum 0E+3 0E+3 -> 1
+dqsamq1322 samequantum 0E+3 7E-3 -> 0
+dqsamq1323 samequantum 0E+3 7 -> 0
+dqsamq1324 samequantum 0E+3 7E+3 -> 1
+dqsamq1325 samequantum 0E+3 sNaN -> 0
+
+dqsamq1410 samequantum 7E-3 -Inf -> 0
+dqsamq1411 samequantum 7E-3 Inf -> 0
+dqsamq1412 samequantum 7E-3 NaN -> 0
+dqsamq1413 samequantum 7E-3 -7E+3 -> 0
+dqsamq1414 samequantum 7E-3 -7 -> 0
+dqsamq1415 samequantum 7E-3 -7E-3 -> 1
+dqsamq1416 samequantum 7E-3 -0E-3 -> 1
+dqsamq1417 samequantum 7E-3 -0 -> 0
+dqsamq1418 samequantum 7E-3 -0E+3 -> 0
+dqsamq1419 samequantum 7E-3 0E-3 -> 1
+dqsamq1420 samequantum 7E-3 0 -> 0
+dqsamq1421 samequantum 7E-3 0E+3 -> 0
+dqsamq1422 samequantum 7E-3 7E-3 -> 1
+dqsamq1423 samequantum 7E-3 7 -> 0
+dqsamq1424 samequantum 7E-3 7E+3 -> 0
+dqsamq1425 samequantum 7E-3 sNaN -> 0
+
+dqsamq1510 samequantum 7 -Inf -> 0
+dqsamq1511 samequantum 7 Inf -> 0
+dqsamq1512 samequantum 7 NaN -> 0
+dqsamq1513 samequantum 7 -7E+3 -> 0
+dqsamq1514 samequantum 7 -7 -> 1
+dqsamq1515 samequantum 7 -7E-3 -> 0
+dqsamq1516 samequantum 7 -0E-3 -> 0
+dqsamq1517 samequantum 7 -0 -> 1
+dqsamq1518 samequantum 7 -0E+3 -> 0
+dqsamq1519 samequantum 7 0E-3 -> 0
+dqsamq1520 samequantum 7 0 -> 1
+dqsamq1521 samequantum 7 0E+3 -> 0
+dqsamq1522 samequantum 7 7E-3 -> 0
+dqsamq1523 samequantum 7 7 -> 1
+dqsamq1524 samequantum 7 7E+3 -> 0
+dqsamq1525 samequantum 7 sNaN -> 0
+
+dqsamq1610 samequantum 7E+3 -Inf -> 0
+dqsamq1611 samequantum 7E+3 Inf -> 0
+dqsamq1612 samequantum 7E+3 NaN -> 0
+dqsamq1613 samequantum 7E+3 -7E+3 -> 1
+dqsamq1614 samequantum 7E+3 -7 -> 0
+dqsamq1615 samequantum 7E+3 -7E-3 -> 0
+dqsamq1616 samequantum 7E+3 -0E-3 -> 0
+dqsamq1617 samequantum 7E+3 -0 -> 0
+dqsamq1618 samequantum 7E+3 -0E+3 -> 1
+dqsamq1619 samequantum 7E+3 0E-3 -> 0
+dqsamq1620 samequantum 7E+3 0 -> 0
+dqsamq1621 samequantum 7E+3 0E+3 -> 1
+dqsamq1622 samequantum 7E+3 7E-3 -> 0
+dqsamq1623 samequantum 7E+3 7 -> 0
+dqsamq1624 samequantum 7E+3 7E+3 -> 1
+dqsamq1625 samequantum 7E+3 sNaN -> 0
+
+dqsamq1710 samequantum sNaN -Inf -> 0
+dqsamq1711 samequantum sNaN Inf -> 0
+dqsamq1712 samequantum sNaN NaN -> 1
+dqsamq1713 samequantum sNaN -7E+3 -> 0
+dqsamq1714 samequantum sNaN -7 -> 0
+dqsamq1715 samequantum sNaN -7E-3 -> 0
+dqsamq1716 samequantum sNaN -0E-3 -> 0
+dqsamq1717 samequantum sNaN -0 -> 0
+dqsamq1718 samequantum sNaN -0E+3 -> 0
+dqsamq1719 samequantum sNaN 0E-3 -> 0
+dqsamq1720 samequantum sNaN 0 -> 0
+dqsamq1721 samequantum sNaN 0E+3 -> 0
+dqsamq1722 samequantum sNaN 7E-3 -> 0
+dqsamq1723 samequantum sNaN 7 -> 0
+dqsamq1724 samequantum sNaN 7E+3 -> 0
+dqsamq1725 samequantum sNaN sNaN -> 1
+-- noisy NaNs
+dqsamq1730 samequantum sNaN3 sNaN3 -> 1
+dqsamq1731 samequantum sNaN3 sNaN4 -> 1
+dqsamq1732 samequantum NaN3 NaN3 -> 1
+dqsamq1733 samequantum NaN3 NaN4 -> 1
+dqsamq1734 samequantum sNaN3 3 -> 0
+dqsamq1735 samequantum NaN3 3 -> 0
+dqsamq1736 samequantum 4 sNaN4 -> 0
+dqsamq1737 samequantum 3 NaN3 -> 0
+dqsamq1738 samequantum Inf sNaN4 -> 0
+dqsamq1739 samequantum -Inf NaN3 -> 0
+
diff --git a/Lib/test/decimaltestdata/dqScaleB.decTest b/Lib/test/decimaltestdata/dqScaleB.decTest
new file mode 100644
index 0000000..88a3f9d
--- /dev/null
+++ b/Lib/test/decimaltestdata/dqScaleB.decTest
@@ -0,0 +1,260 @@
+------------------------------------------------------------------------
+-- dqScalebB.decTest -- scale a decQuad by powers of 10 --
+-- Copyright (c) IBM Corporation, 1981, 2007. All rights reserved. --
+------------------------------------------------------------------------
+-- Please see the document "General Decimal Arithmetic Testcases" --
+-- at http://www2.hursley.ibm.com/decimal for the description of --
+-- these testcases. --
+-- --
+-- These testcases are experimental ('beta' versions), and they --
+-- may contain errors. They are offered on an as-is basis. In --
+-- particular, achieving the same results as the tests here is not --
+-- a guarantee that an implementation complies with any Standard --
+-- or specification. The tests are not exhaustive. --
+-- --
+-- Please send comments, suggestions, and corrections to the author: --
+-- Mike Cowlishaw, IBM Fellow --
+-- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK --
+-- mfc@uk.ibm.com --
+------------------------------------------------------------------------
+version: 2.56
+
+extended: 1
+clamp: 1
+precision: 34
+maxExponent: 6144
+minExponent: -6143
+rounding: half_even
+
+-- Max |rhs| is 2*(6144+34) = 12356
+
+-- Sanity checks
+dqscb001 scaleb 7.50 10 -> 7.50E+10
+dqscb002 scaleb 7.50 3 -> 7.50E+3
+dqscb003 scaleb 7.50 2 -> 750
+dqscb004 scaleb 7.50 1 -> 75.0
+dqscb005 scaleb 7.50 0 -> 7.50
+dqscb006 scaleb 7.50 -1 -> 0.750
+dqscb007 scaleb 7.50 -2 -> 0.0750
+dqscb008 scaleb 7.50 -10 -> 7.50E-10
+dqscb009 scaleb -7.50 3 -> -7.50E+3
+dqscb010 scaleb -7.50 2 -> -750
+dqscb011 scaleb -7.50 1 -> -75.0
+dqscb012 scaleb -7.50 0 -> -7.50
+dqscb013 scaleb -7.50 -1 -> -0.750
+
+-- Infinities
+dqscb014 scaleb Infinity 1 -> Infinity
+dqscb015 scaleb -Infinity 2 -> -Infinity
+dqscb016 scaleb Infinity -1 -> Infinity
+dqscb017 scaleb -Infinity -2 -> -Infinity
+
+-- Next two are somewhat undefined in 754r; treat as non-integer
+dqscb018 scaleb 10 Infinity -> NaN Invalid_operation
+dqscb019 scaleb 10 -Infinity -> NaN Invalid_operation
+
+-- NaNs are undefined in 754r; assume usual processing
+-- NaNs, 0 payload
+dqscb021 scaleb NaN 1 -> NaN
+dqscb022 scaleb -NaN -1 -> -NaN
+dqscb023 scaleb sNaN 1 -> NaN Invalid_operation
+dqscb024 scaleb -sNaN 1 -> -NaN Invalid_operation
+dqscb025 scaleb 4 NaN -> NaN
+dqscb026 scaleb -Inf -NaN -> -NaN
+dqscb027 scaleb 4 sNaN -> NaN Invalid_operation
+dqscb028 scaleb Inf -sNaN -> -NaN Invalid_operation
+
+-- non-integer RHS
+dqscb030 scaleb 1.23 1 -> 12.3
+dqscb031 scaleb 1.23 1.00 -> NaN Invalid_operation
+dqscb032 scaleb 1.23 1.1 -> NaN Invalid_operation
+dqscb033 scaleb 1.23 1.01 -> NaN Invalid_operation
+dqscb034 scaleb 1.23 0.01 -> NaN Invalid_operation
+dqscb035 scaleb 1.23 0.11 -> NaN Invalid_operation
+dqscb036 scaleb 1.23 0.999999999 -> NaN Invalid_operation
+dqscb037 scaleb 1.23 -1 -> 0.123
+dqscb0614 scaleb 1.23 -1.00 -> NaN Invalid_operation
+dqscb039 scaleb 1.23 -1.1 -> NaN Invalid_operation
+dqscb040 scaleb 1.23 -1.01 -> NaN Invalid_operation
+dqscb041 scaleb 1.23 -0.01 -> NaN Invalid_operation
+dqscb042 scaleb 1.23 -0.11 -> NaN Invalid_operation
+dqscb043 scaleb 1.23 -0.999999999 -> NaN Invalid_operation
+dqscb044 scaleb 1.23 0.1 -> NaN Invalid_operation
+dqscb045 scaleb 1.23 1E+1 -> NaN Invalid_operation
+dqscb046 scaleb 1.23 1.1234E+6 -> NaN Invalid_operation
+dqscb047 scaleb 1.23 1.123E+4 -> NaN Invalid_operation
+
+-- out-of range RHS
+dqscb120 scaleb 1.23 12355 -> Infinity Overflow Inexact Rounded
+dqscb121 scaleb 1.23 12356 -> Infinity Overflow Inexact Rounded
+dqscb122 scaleb 1.23 12357 -> NaN Invalid_operation
+dqscb123 scaleb 1.23 12358 -> NaN Invalid_operation
+dqscb124 scaleb 1.23 -12355 -> 0E-6176 Underflow Subnormal Inexact Rounded Clamped
+dqscb125 scaleb 1.23 -12356 -> 0E-6176 Underflow Subnormal Inexact Rounded Clamped
+dqscb126 scaleb 1.23 -12357 -> NaN Invalid_operation
+dqscb127 scaleb 1.23 -12358 -> NaN Invalid_operation
+
+-- NaNs, non-0 payload
+-- propagating NaNs
+dqscb861 scaleb NaN01 -Inf -> NaN1
+dqscb862 scaleb -NaN02 -1000 -> -NaN2
+dqscb863 scaleb NaN03 1000 -> NaN3
+dqscb864 scaleb NaN04 Inf -> NaN4
+dqscb865 scaleb NaN05 NaN61 -> NaN5
+dqscb866 scaleb -Inf -NaN71 -> -NaN71
+dqscb867 scaleb -1000 NaN81 -> NaN81
+dqscb868 scaleb 1000 NaN91 -> NaN91
+dqscb869 scaleb Inf NaN101 -> NaN101
+dqscb871 scaleb sNaN011 -Inf -> NaN11 Invalid_operation
+dqscb872 scaleb sNaN012 -1000 -> NaN12 Invalid_operation
+dqscb873 scaleb -sNaN013 1000 -> -NaN13 Invalid_operation
+dqscb874 scaleb sNaN014 NaN171 -> NaN14 Invalid_operation
+dqscb875 scaleb sNaN015 sNaN181 -> NaN15 Invalid_operation
+dqscb876 scaleb NaN016 sNaN191 -> NaN191 Invalid_operation
+dqscb877 scaleb -Inf sNaN201 -> NaN201 Invalid_operation
+dqscb878 scaleb -1000 sNaN211 -> NaN211 Invalid_operation
+dqscb879 scaleb 1000 -sNaN221 -> -NaN221 Invalid_operation
+dqscb880 scaleb Inf sNaN231 -> NaN231 Invalid_operation
+dqscb881 scaleb NaN025 sNaN241 -> NaN241 Invalid_operation
+
+-- finites
+dqscb051 scaleb 7 -2 -> 0.07
+dqscb052 scaleb -7 -2 -> -0.07
+dqscb053 scaleb 75 -2 -> 0.75
+dqscb054 scaleb -75 -2 -> -0.75
+dqscb055 scaleb 7.50 -2 -> 0.0750
+dqscb056 scaleb -7.50 -2 -> -0.0750
+dqscb057 scaleb 7.500 -2 -> 0.07500
+dqscb058 scaleb -7.500 -2 -> -0.07500
+dqscb061 scaleb 7 -1 -> 0.7
+dqscb062 scaleb -7 -1 -> -0.7
+dqscb063 scaleb 75 -1 -> 7.5
+dqscb064 scaleb -75 -1 -> -7.5
+dqscb065 scaleb 7.50 -1 -> 0.750
+dqscb066 scaleb -7.50 -1 -> -0.750
+dqscb067 scaleb 7.500 -1 -> 0.7500
+dqscb068 scaleb -7.500 -1 -> -0.7500
+dqscb071 scaleb 7 0 -> 7
+dqscb072 scaleb -7 0 -> -7
+dqscb073 scaleb 75 0 -> 75
+dqscb074 scaleb -75 0 -> -75
+dqscb075 scaleb 7.50 0 -> 7.50
+dqscb076 scaleb -7.50 0 -> -7.50
+dqscb077 scaleb 7.500 0 -> 7.500
+dqscb078 scaleb -7.500 0 -> -7.500
+dqscb081 scaleb 7 1 -> 7E+1
+dqscb082 scaleb -7 1 -> -7E+1
+dqscb083 scaleb 75 1 -> 7.5E+2
+dqscb084 scaleb -75 1 -> -7.5E+2
+dqscb085 scaleb 7.50 1 -> 75.0
+dqscb086 scaleb -7.50 1 -> -75.0
+dqscb087 scaleb 7.500 1 -> 75.00
+dqscb088 scaleb -7.500 1 -> -75.00
+dqscb091 scaleb 7 2 -> 7E+2
+dqscb092 scaleb -7 2 -> -7E+2
+dqscb093 scaleb 75 2 -> 7.5E+3
+dqscb094 scaleb -75 2 -> -7.5E+3
+dqscb095 scaleb 7.50 2 -> 750
+dqscb096 scaleb -7.50 2 -> -750
+dqscb097 scaleb 7.500 2 -> 750.0
+dqscb098 scaleb -7.500 2 -> -750.0
+
+-- zeros
+dqscb111 scaleb 0 1 -> 0E+1
+dqscb112 scaleb -0 2 -> -0E+2
+dqscb113 scaleb 0E+4 3 -> 0E+7
+dqscb114 scaleb -0E+4 4 -> -0E+8
+dqscb115 scaleb 0.0000 5 -> 0E+1
+dqscb116 scaleb -0.0000 6 -> -0E+2
+dqscb117 scaleb 0E-141 7 -> 0E-134
+dqscb118 scaleb -0E-141 8 -> -0E-133
+
+-- Nmax, Nmin, Ntiny
+dqscb132 scaleb 9.999999999999999999999999999999999E+6144 +6144 -> Infinity Overflow Inexact Rounded
+dqscb133 scaleb 9.999999999999999999999999999999999E+6144 +10 -> Infinity Overflow Inexact Rounded
+dqscb134 scaleb 9.999999999999999999999999999999999E+6144 +1 -> Infinity Overflow Inexact Rounded
+dqscb135 scaleb 9.999999999999999999999999999999999E+6144 0 -> 9.999999999999999999999999999999999E+6144
+dqscb136 scaleb 9.999999999999999999999999999999999E+6144 -1 -> 9.999999999999999999999999999999999E+6143
+dqscb137 scaleb 1E-6143 +1 -> 1E-6142
+dqscb1614 scaleb 1E-6143 -0 -> 1E-6143
+dqscb139 scaleb 1E-6143 -1 -> 1E-6144 Subnormal
+dqscb140 scaleb 1.000000000000000000000000000000000E-6143 +1 -> 1.000000000000000000000000000000000E-6142
+dqscb141 scaleb 1.000000000000000000000000000000000E-6143 0 -> 1.000000000000000000000000000000000E-6143
+dqscb142 scaleb 1.000000000000000000000000000000000E-6143 -1 -> 1.00000000000000000000000000000000E-6144 Subnormal Rounded
+dqscb143 scaleb 1E-6176 +1 -> 1E-6175 Subnormal
+dqscb144 scaleb 1E-6176 -0 -> 1E-6176 Subnormal
+dqscb145 scaleb 1E-6176 -1 -> 0E-6176 Underflow Subnormal Inexact Rounded Clamped
+
+dqscb150 scaleb -1E-6176 +1 -> -1E-6175 Subnormal
+dqscb151 scaleb -1E-6176 -0 -> -1E-6176 Subnormal
+dqscb152 scaleb -1E-6176 -1 -> -0E-6176 Underflow Subnormal Inexact Rounded Clamped
+dqscb153 scaleb -1.000000000000000000000000000000000E-6143 +1 -> -1.000000000000000000000000000000000E-6142
+dqscb154 scaleb -1.000000000000000000000000000000000E-6143 +0 -> -1.000000000000000000000000000000000E-6143
+dqscb155 scaleb -1.000000000000000000000000000000000E-6143 -1 -> -1.00000000000000000000000000000000E-6144 Subnormal Rounded
+dqscb156 scaleb -1E-6143 +1 -> -1E-6142
+dqscb157 scaleb -1E-6143 -0 -> -1E-6143
+dqscb158 scaleb -1E-6143 -1 -> -1E-6144 Subnormal
+dqscb159 scaleb -9.999999999999999999999999999999999E+6144 +1 -> -Infinity Overflow Inexact Rounded
+dqscb160 scaleb -9.999999999999999999999999999999999E+6144 +0 -> -9.999999999999999999999999999999999E+6144
+dqscb161 scaleb -9.999999999999999999999999999999999E+6144 -1 -> -9.999999999999999999999999999999999E+6143
+dqscb162 scaleb -9E+6144 +1 -> -Infinity Overflow Inexact Rounded
+dqscb163 scaleb -1E+6144 +1 -> -Infinity Overflow Inexact Rounded
+
+-- some Origami
+-- (these check that overflow is being done correctly)
+dqscb171 scaleb 1000E+6109 +1 -> 1.000E+6113
+dqscb172 scaleb 1000E+6110 +1 -> 1.000E+6114
+dqscb173 scaleb 1000E+6111 +1 -> 1.0000E+6115 Clamped
+dqscb174 scaleb 1000E+6112 +1 -> 1.00000E+6116 Clamped
+dqscb175 scaleb 1000E+6113 +1 -> 1.000000E+6117 Clamped
+dqscb176 scaleb 1000E+6114 +1 -> 1.0000000E+6118 Clamped
+dqscb177 scaleb 1000E+6131 +1 -> 1.000000000000000000000000E+6135 Clamped
+dqscb178 scaleb 1000E+6132 +1 -> 1.0000000000000000000000000E+6136 Clamped
+dqscb179 scaleb 1000E+6133 +1 -> 1.00000000000000000000000000E+6137 Clamped
+dqscb180 scaleb 1000E+6134 +1 -> 1.000000000000000000000000000E+6138 Clamped
+dqscb181 scaleb 1000E+6135 +1 -> 1.0000000000000000000000000000E+6139 Clamped
+dqscb182 scaleb 1000E+6136 +1 -> 1.00000000000000000000000000000E+6140 Clamped
+dqscb183 scaleb 1000E+6137 +1 -> 1.000000000000000000000000000000E+6141 Clamped
+dqscb184 scaleb 1000E+6138 +1 -> 1.0000000000000000000000000000000E+6142 Clamped
+dqscb185 scaleb 1000E+6139 +1 -> 1.00000000000000000000000000000000E+6143 Clamped
+dqscb186 scaleb 1000E+6140 +1 -> 1.000000000000000000000000000000000E+6144 Clamped
+dqscb187 scaleb 1000E+6141 +1 -> Infinity Overflow Inexact Rounded
+
+-- and a few more subnormal truncations
+-- (these check that underflow is being done correctly)
+dqscb221 scaleb 1.000000000000000000000000000000000E-6143 0 -> 1.000000000000000000000000000000000E-6143
+dqscb222 scaleb 1.000000000000000000000000000000000E-6143 -1 -> 1.00000000000000000000000000000000E-6144 Subnormal Rounded
+dqscb223 scaleb 1.000000000000000000000000000000000E-6143 -2 -> 1.0000000000000000000000000000000E-6145 Subnormal Rounded
+dqscb224 scaleb 1.000000000000000000000000000000000E-6143 -3 -> 1.000000000000000000000000000000E-6146 Subnormal Rounded
+dqscb225 scaleb 1.000000000000000000000000000000000E-6143 -4 -> 1.00000000000000000000000000000E-6147 Subnormal Rounded
+dqscb226 scaleb 1.000000000000000000000000000000000E-6143 -5 -> 1.0000000000000000000000000000E-6148 Subnormal Rounded
+dqscb227 scaleb 1.000000000000000000000000000000000E-6143 -6 -> 1.000000000000000000000000000E-6149 Subnormal Rounded
+dqscb228 scaleb 1.000000000000000000000000000000000E-6143 -7 -> 1.00000000000000000000000000E-6150 Subnormal Rounded
+dqscb229 scaleb 1.000000000000000000000000000000000E-6143 -8 -> 1.0000000000000000000000000E-6151 Subnormal Rounded
+dqscb230 scaleb 1.000000000000000000000000000000000E-6143 -9 -> 1.000000000000000000000000E-6152 Subnormal Rounded
+dqscb231 scaleb 1.000000000000000000000000000000000E-6143 -10 -> 1.00000000000000000000000E-6153 Subnormal Rounded
+dqscb232 scaleb 1.000000000000000000000000000000000E-6143 -11 -> 1.0000000000000000000000E-6154 Subnormal Rounded
+dqscb233 scaleb 1.000000000000000000000000000000000E-6143 -12 -> 1.000000000000000000000E-6155 Subnormal Rounded
+dqscb234 scaleb 1.000000000000000000000000000000000E-6143 -13 -> 1.00000000000000000000E-6156 Subnormal Rounded
+dqscb235 scaleb 1.000000000000000000000000000000000E-6143 -14 -> 1.0000000000000000000E-6157 Subnormal Rounded
+dqscb236 scaleb 1.000000000000000000000000000000000E-6143 -15 -> 1.000000000000000000E-6158 Subnormal Rounded
+dqscb237 scaleb 1.000000000000000000000000000000000E-6143 -16 -> 1.00000000000000000E-6159 Subnormal Rounded
+dqscb238 scaleb 1.000000000000000000000000000000000E-6143 -17 -> 1.0000000000000000E-6160 Subnormal Rounded
+dqscb239 scaleb 1.000000000000000000000000000000000E-6143 -18 -> 1.000000000000000E-6161 Subnormal Rounded
+dqscb202 scaleb 1.000000000000000000000000000000000E-6143 -19 -> 1.00000000000000E-6162 Subnormal Rounded
+dqscb203 scaleb 1.000000000000000000000000000000000E-6143 -20 -> 1.0000000000000E-6163 Subnormal Rounded
+dqscb204 scaleb 1.000000000000000000000000000000000E-6143 -21 -> 1.000000000000E-6164 Subnormal Rounded
+dqscb205 scaleb 1.000000000000000000000000000000000E-6143 -22 -> 1.00000000000E-6165 Subnormal Rounded
+dqscb206 scaleb 1.000000000000000000000000000000000E-6143 -23 -> 1.0000000000E-6166 Subnormal Rounded
+dqscb207 scaleb 1.000000000000000000000000000000000E-6143 -24 -> 1.000000000E-6167 Subnormal Rounded
+dqscb208 scaleb 1.000000000000000000000000000000000E-6143 -25 -> 1.00000000E-6168 Subnormal Rounded
+dqscb209 scaleb 1.000000000000000000000000000000000E-6143 -26 -> 1.0000000E-6169 Subnormal Rounded
+dqscb210 scaleb 1.000000000000000000000000000000000E-6143 -27 -> 1.000000E-6170 Subnormal Rounded
+dqscb211 scaleb 1.000000000000000000000000000000000E-6143 -28 -> 1.00000E-6171 Subnormal Rounded
+dqscb212 scaleb 1.000000000000000000000000000000000E-6143 -29 -> 1.0000E-6172 Subnormal Rounded
+dqscb213 scaleb 1.000000000000000000000000000000000E-6143 -30 -> 1.000E-6173 Subnormal Rounded
+dqscb214 scaleb 1.000000000000000000000000000000000E-6143 -31 -> 1.00E-6174 Subnormal Rounded
+dqscb215 scaleb 1.000000000000000000000000000000000E-6143 -32 -> 1.0E-6175 Subnormal Rounded
+dqscb216 scaleb 1.000000000000000000000000000000000E-6143 -33 -> 1E-6176 Subnormal Rounded
+dqscb217 scaleb 1.000000000000000000000000000000000E-6143 -34 -> 0E-6176 Underflow Subnormal Inexact Rounded Clamped
+dqscb218 scaleb 1.000000000000000000000000000000000E-6143 -35 -> 0E-6176 Underflow Subnormal Inexact Rounded Clamped
diff --git a/Lib/test/decimaltestdata/dqShift.decTest b/Lib/test/decimaltestdata/dqShift.decTest
new file mode 100644
index 0000000..e728ec5
--- /dev/null
+++ b/Lib/test/decimaltestdata/dqShift.decTest
@@ -0,0 +1,298 @@
+------------------------------------------------------------------------
+-- dqShift.decTest -- shift decQuad coefficient left or right --
+-- Copyright (c) IBM Corporation, 1981, 2007. All rights reserved. --
+------------------------------------------------------------------------
+-- Please see the document "General Decimal Arithmetic Testcases" --
+-- at http://www2.hursley.ibm.com/decimal for the description of --
+-- these testcases. --
+-- --
+-- These testcases are experimental ('beta' versions), and they --
+-- may contain errors. They are offered on an as-is basis. In --
+-- particular, achieving the same results as the tests here is not --
+-- a guarantee that an implementation complies with any Standard --
+-- or specification. The tests are not exhaustive. --
+-- --
+-- Please send comments, suggestions, and corrections to the author: --
+-- Mike Cowlishaw, IBM Fellow --
+-- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK --
+-- mfc@uk.ibm.com --
+------------------------------------------------------------------------
+version: 2.56
+
+extended: 1
+clamp: 1
+precision: 34
+maxExponent: 6144
+minExponent: -6143
+rounding: half_even
+
+-- Sanity check
+dqshi001 shift 0 0 -> 0
+dqshi002 shift 0 2 -> 0
+dqshi003 shift 1 2 -> 100
+dqshi004 shift 1 33 -> 1000000000000000000000000000000000
+dqshi005 shift 1 34 -> 0
+dqshi006 shift 1 -1 -> 0
+dqshi007 shift 0 -2 -> 0
+dqshi008 shift 1234567890123456789012345678901234 -1 -> 123456789012345678901234567890123
+dqshi009 shift 1234567890123456789012345678901234 -33 -> 1
+dqshi010 shift 1234567890123456789012345678901234 -34 -> 0
+dqshi011 shift 9934567890123456789012345678901234 -33 -> 9
+dqshi012 shift 9934567890123456789012345678901234 -34 -> 0
+
+-- rhs must be an integer
+dqshi015 shift 1 1.5 -> NaN Invalid_operation
+dqshi016 shift 1 1.0 -> NaN Invalid_operation
+dqshi017 shift 1 0.1 -> NaN Invalid_operation
+dqshi018 shift 1 0.0 -> NaN Invalid_operation
+dqshi019 shift 1 1E+1 -> NaN Invalid_operation
+dqshi020 shift 1 1E+99 -> NaN Invalid_operation
+dqshi021 shift 1 Inf -> NaN Invalid_operation
+dqshi022 shift 1 -Inf -> NaN Invalid_operation
+-- and |rhs| <= precision
+dqshi025 shift 1 -1000 -> NaN Invalid_operation
+dqshi026 shift 1 -35 -> NaN Invalid_operation
+dqshi027 shift 1 35 -> NaN Invalid_operation
+dqshi028 shift 1 1000 -> NaN Invalid_operation
+
+-- full shifting pattern
+dqshi030 shift 1234567890123456789012345678901234 -34 -> 0
+dqshi031 shift 1234567890123456789012345678901234 -33 -> 1
+dqshi032 shift 1234567890123456789012345678901234 -32 -> 12
+dqshi033 shift 1234567890123456789012345678901234 -31 -> 123
+dqshi034 shift 1234567890123456789012345678901234 -30 -> 1234
+dqshi035 shift 1234567890123456789012345678901234 -29 -> 12345
+dqshi036 shift 1234567890123456789012345678901234 -28 -> 123456
+dqshi037 shift 1234567890123456789012345678901234 -27 -> 1234567
+dqshi038 shift 1234567890123456789012345678901234 -26 -> 12345678
+dqshi039 shift 1234567890123456789012345678901234 -25 -> 123456789
+dqshi040 shift 1234567890123456789012345678901234 -24 -> 1234567890
+dqshi041 shift 1234567890123456789012345678901234 -23 -> 12345678901
+dqshi042 shift 1234567890123456789012345678901234 -22 -> 123456789012
+dqshi043 shift 1234567890123456789012345678901234 -21 -> 1234567890123
+dqshi044 shift 1234567890123456789012345678901234 -20 -> 12345678901234
+dqshi045 shift 1234567890123456789012345678901234 -19 -> 123456789012345
+dqshi047 shift 1234567890123456789012345678901234 -18 -> 1234567890123456
+dqshi048 shift 1234567890123456789012345678901234 -17 -> 12345678901234567
+dqshi049 shift 1234567890123456789012345678901234 -16 -> 123456789012345678
+dqshi050 shift 1234567890123456789012345678901234 -15 -> 1234567890123456789
+dqshi051 shift 1234567890123456789012345678901234 -14 -> 12345678901234567890
+dqshi052 shift 1234567890123456789012345678901234 -13 -> 123456789012345678901
+dqshi053 shift 1234567890123456789012345678901234 -12 -> 1234567890123456789012
+dqshi054 shift 1234567890123456789012345678901234 -11 -> 12345678901234567890123
+dqshi055 shift 1234567890123456789012345678901234 -10 -> 123456789012345678901234
+dqshi056 shift 1234567890123456789012345678901234 -9 -> 1234567890123456789012345
+dqshi057 shift 1234567890123456789012345678901234 -8 -> 12345678901234567890123456
+dqshi058 shift 1234567890123456789012345678901234 -7 -> 123456789012345678901234567
+dqshi059 shift 1234567890123456789012345678901234 -6 -> 1234567890123456789012345678
+dqshi060 shift 1234567890123456789012345678901234 -5 -> 12345678901234567890123456789
+dqshi061 shift 1234567890123456789012345678901234 -4 -> 123456789012345678901234567890
+dqshi062 shift 1234567890123456789012345678901234 -3 -> 1234567890123456789012345678901
+dqshi063 shift 1234567890123456789012345678901234 -2 -> 12345678901234567890123456789012
+dqshi064 shift 1234567890123456789012345678901234 -1 -> 123456789012345678901234567890123
+dqshi065 shift 1234567890123456789012345678901234 -0 -> 1234567890123456789012345678901234
+
+dqshi066 shift 1234567890123456789012345678901234 +0 -> 1234567890123456789012345678901234
+dqshi067 shift 1234567890123456789012345678901234 +1 -> 2345678901234567890123456789012340
+dqshi068 shift 1234567890123456789012345678901234 +2 -> 3456789012345678901234567890123400
+dqshi069 shift 1234567890123456789012345678901234 +3 -> 4567890123456789012345678901234000
+dqshi070 shift 1234567890123456789012345678901234 +4 -> 5678901234567890123456789012340000
+dqshi071 shift 1234567890123456789012345678901234 +5 -> 6789012345678901234567890123400000
+dqshi072 shift 1234567890123456789012345678901234 +6 -> 7890123456789012345678901234000000
+dqshi073 shift 1234567890123456789012345678901234 +7 -> 8901234567890123456789012340000000
+dqshi074 shift 1234567890123456789012345678901234 +8 -> 9012345678901234567890123400000000
+dqshi075 shift 1234567890123456789012345678901234 +9 -> 123456789012345678901234000000000
+dqshi076 shift 1234567890123456789012345678901234 +10 -> 1234567890123456789012340000000000
+dqshi077 shift 1234567890123456789012345678901234 +11 -> 2345678901234567890123400000000000
+dqshi078 shift 1234567890123456789012345678901234 +12 -> 3456789012345678901234000000000000
+dqshi079 shift 1234567890123456789012345678901234 +13 -> 4567890123456789012340000000000000
+dqshi080 shift 1234567890123456789012345678901234 +14 -> 5678901234567890123400000000000000
+dqshi081 shift 1234567890123456789012345678901234 +15 -> 6789012345678901234000000000000000
+dqshi082 shift 1234567890123456789012345678901234 +16 -> 7890123456789012340000000000000000
+dqshi083 shift 1234567890123456789012345678901234 +17 -> 8901234567890123400000000000000000
+dqshi084 shift 1234567890123456789012345678901234 +18 -> 9012345678901234000000000000000000
+dqshi085 shift 1234567890123456789012345678901234 +19 -> 123456789012340000000000000000000
+dqshi086 shift 1234567890123456789012345678901234 +20 -> 1234567890123400000000000000000000
+dqshi087 shift 1234567890123456789012345678901234 +21 -> 2345678901234000000000000000000000
+dqshi088 shift 1234567890123456789012345678901234 +22 -> 3456789012340000000000000000000000
+dqshi089 shift 1234567890123456789012345678901234 +23 -> 4567890123400000000000000000000000
+dqshi090 shift 1234567890123456789012345678901234 +24 -> 5678901234000000000000000000000000
+dqshi091 shift 1234567890123456789012345678901234 +25 -> 6789012340000000000000000000000000
+dqshi092 shift 1234567890123456789012345678901234 +26 -> 7890123400000000000000000000000000
+dqshi093 shift 1234567890123456789012345678901234 +27 -> 8901234000000000000000000000000000
+dqshi094 shift 1234567890123456789012345678901234 +28 -> 9012340000000000000000000000000000
+dqshi095 shift 1234567890123456789012345678901234 +29 -> 123400000000000000000000000000000
+dqshi096 shift 1234567890123456789012345678901234 +30 -> 1234000000000000000000000000000000
+dqshi097 shift 1234567890123456789012345678901234 +31 -> 2340000000000000000000000000000000
+dqshi098 shift 1234567890123456789012345678901234 +32 -> 3400000000000000000000000000000000
+dqshi099 shift 1234567890123456789012345678901234 +33 -> 4000000000000000000000000000000000
+dqshi100 shift 1234567890123456789012345678901234 +34 -> 0
+
+-- zeros
+dqshi270 shift 0E-10 +29 -> 0E-10
+dqshi271 shift 0E-10 -29 -> 0E-10
+dqshi272 shift 0.000 +29 -> 0.000
+dqshi273 shift 0.000 -29 -> 0.000
+dqshi274 shift 0E+10 +29 -> 0E+10
+dqshi275 shift 0E+10 -29 -> 0E+10
+dqshi276 shift -0E-10 +29 -> -0E-10
+dqshi277 shift -0E-10 -29 -> -0E-10
+dqshi278 shift -0.000 +29 -> -0.000
+dqshi279 shift -0.000 -29 -> -0.000
+dqshi280 shift -0E+10 +29 -> -0E+10
+dqshi281 shift -0E+10 -29 -> -0E+10
+
+-- Nmax, Nmin, Ntiny
+dqshi141 shift 9.999999999999999999999999999999999E+6144 -1 -> 9.99999999999999999999999999999999E+6143
+dqshi142 shift 9.999999999999999999999999999999999E+6144 -33 -> 9E+6111
+dqshi143 shift 9.999999999999999999999999999999999E+6144 1 -> 9.999999999999999999999999999999990E+6144
+dqshi144 shift 9.999999999999999999999999999999999E+6144 33 -> 9.000000000000000000000000000000000E+6144
+dqshi145 shift 1E-6143 -1 -> 0E-6143
+dqshi146 shift 1E-6143 -33 -> 0E-6143
+dqshi147 shift 1E-6143 1 -> 1.0E-6142
+dqshi148 shift 1E-6143 33 -> 1.000000000000000000000000000000000E-6110
+dqshi151 shift 1.000000000000000000000000000000000E-6143 -1 -> 1.00000000000000000000000000000000E-6144
+dqshi152 shift 1.000000000000000000000000000000000E-6143 -33 -> 1E-6176
+dqshi153 shift 1.000000000000000000000000000000000E-6143 1 -> 0E-6176
+dqshi154 shift 1.000000000000000000000000000000000E-6143 33 -> 0E-6176
+dqshi155 shift 9.000000000000000000000000000000000E-6143 -1 -> 9.00000000000000000000000000000000E-6144
+dqshi156 shift 9.000000000000000000000000000000000E-6143 -33 -> 9E-6176
+dqshi157 shift 9.000000000000000000000000000000000E-6143 1 -> 0E-6176
+dqshi158 shift 9.000000000000000000000000000000000E-6143 33 -> 0E-6176
+dqshi160 shift 1E-6176 -1 -> 0E-6176
+dqshi161 shift 1E-6176 -33 -> 0E-6176
+dqshi162 shift 1E-6176 1 -> 1.0E-6175
+dqshi163 shift 1E-6176 33 -> 1.000000000000000000000000000000000E-6143
+-- negatives
+dqshi171 shift -9.999999999999999999999999999999999E+6144 -1 -> -9.99999999999999999999999999999999E+6143
+dqshi172 shift -9.999999999999999999999999999999999E+6144 -33 -> -9E+6111
+dqshi173 shift -9.999999999999999999999999999999999E+6144 1 -> -9.999999999999999999999999999999990E+6144
+dqshi174 shift -9.999999999999999999999999999999999E+6144 33 -> -9.000000000000000000000000000000000E+6144
+dqshi175 shift -1E-6143 -1 -> -0E-6143
+dqshi176 shift -1E-6143 -33 -> -0E-6143
+dqshi177 shift -1E-6143 1 -> -1.0E-6142
+dqshi178 shift -1E-6143 33 -> -1.000000000000000000000000000000000E-6110
+dqshi181 shift -1.000000000000000000000000000000000E-6143 -1 -> -1.00000000000000000000000000000000E-6144
+dqshi182 shift -1.000000000000000000000000000000000E-6143 -33 -> -1E-6176
+dqshi183 shift -1.000000000000000000000000000000000E-6143 1 -> -0E-6176
+dqshi184 shift -1.000000000000000000000000000000000E-6143 33 -> -0E-6176
+dqshi185 shift -9.000000000000000000000000000000000E-6143 -1 -> -9.00000000000000000000000000000000E-6144
+dqshi186 shift -9.000000000000000000000000000000000E-6143 -33 -> -9E-6176
+dqshi187 shift -9.000000000000000000000000000000000E-6143 1 -> -0E-6176
+dqshi188 shift -9.000000000000000000000000000000000E-6143 33 -> -0E-6176
+dqshi190 shift -1E-6176 -1 -> -0E-6176
+dqshi191 shift -1E-6176 -33 -> -0E-6176
+dqshi192 shift -1E-6176 1 -> -1.0E-6175
+dqshi193 shift -1E-6176 33 -> -1.000000000000000000000000000000000E-6143
+
+-- more negatives (of sanities)
+dqshi201 shift -0 0 -> -0
+dqshi202 shift -0 2 -> -0
+dqshi203 shift -1 2 -> -100
+dqshi204 shift -1 33 -> -1000000000000000000000000000000000
+dqshi205 shift -1 34 -> -0
+dqshi206 shift -1 -1 -> -0
+dqshi207 shift -0 -2 -> -0
+dqshi208 shift -1234567890123456789012345678901234 -1 -> -123456789012345678901234567890123
+dqshi209 shift -1234567890123456789012345678901234 -33 -> -1
+dqshi210 shift -1234567890123456789012345678901234 -34 -> -0
+dqshi211 shift -9934567890123456789012345678901234 -33 -> -9
+dqshi212 shift -9934567890123456789012345678901234 -34 -> -0
+
+
+-- Specials; NaNs are handled as usual
+dqshi781 shift -Inf -8 -> -Infinity
+dqshi782 shift -Inf -1 -> -Infinity
+dqshi783 shift -Inf -0 -> -Infinity
+dqshi784 shift -Inf 0 -> -Infinity
+dqshi785 shift -Inf 1 -> -Infinity
+dqshi786 shift -Inf 8 -> -Infinity
+dqshi787 shift -1000 -Inf -> NaN Invalid_operation
+dqshi788 shift -Inf -Inf -> NaN Invalid_operation
+dqshi789 shift -1 -Inf -> NaN Invalid_operation
+dqshi790 shift -0 -Inf -> NaN Invalid_operation
+dqshi791 shift 0 -Inf -> NaN Invalid_operation
+dqshi792 shift 1 -Inf -> NaN Invalid_operation
+dqshi793 shift 1000 -Inf -> NaN Invalid_operation
+dqshi794 shift Inf -Inf -> NaN Invalid_operation
+
+dqshi800 shift Inf -Inf -> NaN Invalid_operation
+dqshi801 shift Inf -8 -> Infinity
+dqshi802 shift Inf -1 -> Infinity
+dqshi803 shift Inf -0 -> Infinity
+dqshi804 shift Inf 0 -> Infinity
+dqshi805 shift Inf 1 -> Infinity
+dqshi806 shift Inf 8 -> Infinity
+dqshi807 shift Inf Inf -> NaN Invalid_operation
+dqshi808 shift -1000 Inf -> NaN Invalid_operation
+dqshi809 shift -Inf Inf -> NaN Invalid_operation
+dqshi810 shift -1 Inf -> NaN Invalid_operation
+dqshi811 shift -0 Inf -> NaN Invalid_operation
+dqshi812 shift 0 Inf -> NaN Invalid_operation
+dqshi813 shift 1 Inf -> NaN Invalid_operation
+dqshi814 shift 1000 Inf -> NaN Invalid_operation
+dqshi815 shift Inf Inf -> NaN Invalid_operation
+
+dqshi821 shift NaN -Inf -> NaN
+dqshi822 shift NaN -1000 -> NaN
+dqshi823 shift NaN -1 -> NaN
+dqshi824 shift NaN -0 -> NaN
+dqshi825 shift NaN 0 -> NaN
+dqshi826 shift NaN 1 -> NaN
+dqshi827 shift NaN 1000 -> NaN
+dqshi828 shift NaN Inf -> NaN
+dqshi829 shift NaN NaN -> NaN
+dqshi830 shift -Inf NaN -> NaN
+dqshi831 shift -1000 NaN -> NaN
+dqshi832 shift -1 NaN -> NaN
+dqshi833 shift -0 NaN -> NaN
+dqshi834 shift 0 NaN -> NaN
+dqshi835 shift 1 NaN -> NaN
+dqshi836 shift 1000 NaN -> NaN
+dqshi837 shift Inf NaN -> NaN
+
+dqshi841 shift sNaN -Inf -> NaN Invalid_operation
+dqshi842 shift sNaN -1000 -> NaN Invalid_operation
+dqshi843 shift sNaN -1 -> NaN Invalid_operation
+dqshi844 shift sNaN -0 -> NaN Invalid_operation
+dqshi845 shift sNaN 0 -> NaN Invalid_operation
+dqshi846 shift sNaN 1 -> NaN Invalid_operation
+dqshi847 shift sNaN 1000 -> NaN Invalid_operation
+dqshi848 shift sNaN NaN -> NaN Invalid_operation
+dqshi849 shift sNaN sNaN -> NaN Invalid_operation
+dqshi850 shift NaN sNaN -> NaN Invalid_operation
+dqshi851 shift -Inf sNaN -> NaN Invalid_operation
+dqshi852 shift -1000 sNaN -> NaN Invalid_operation
+dqshi853 shift -1 sNaN -> NaN Invalid_operation
+dqshi854 shift -0 sNaN -> NaN Invalid_operation
+dqshi855 shift 0 sNaN -> NaN Invalid_operation
+dqshi856 shift 1 sNaN -> NaN Invalid_operation
+dqshi857 shift 1000 sNaN -> NaN Invalid_operation
+dqshi858 shift Inf sNaN -> NaN Invalid_operation
+dqshi859 shift NaN sNaN -> NaN Invalid_operation
+
+-- propagating NaNs
+dqshi861 shift NaN1 -Inf -> NaN1
+dqshi862 shift +NaN2 -1000 -> NaN2
+dqshi863 shift NaN3 1000 -> NaN3
+dqshi864 shift NaN4 Inf -> NaN4
+dqshi865 shift NaN5 +NaN6 -> NaN5
+dqshi866 shift -Inf NaN7 -> NaN7
+dqshi867 shift -1000 NaN8 -> NaN8
+dqshi868 shift 1000 NaN9 -> NaN9
+dqshi869 shift Inf +NaN10 -> NaN10
+dqshi871 shift sNaN11 -Inf -> NaN11 Invalid_operation
+dqshi872 shift sNaN12 -1000 -> NaN12 Invalid_operation
+dqshi873 shift sNaN13 1000 -> NaN13 Invalid_operation
+dqshi874 shift sNaN14 NaN17 -> NaN14 Invalid_operation
+dqshi875 shift sNaN15 sNaN18 -> NaN15 Invalid_operation
+dqshi876 shift NaN16 sNaN19 -> NaN19 Invalid_operation
+dqshi877 shift -Inf +sNaN20 -> NaN20 Invalid_operation
+dqshi878 shift -1000 sNaN21 -> NaN21 Invalid_operation
+dqshi879 shift 1000 sNaN22 -> NaN22 Invalid_operation
+dqshi880 shift Inf sNaN23 -> NaN23 Invalid_operation
+dqshi881 shift +NaN25 +sNaN24 -> NaN24 Invalid_operation
+dqshi882 shift -NaN26 NaN28 -> -NaN26
+dqshi883 shift -sNaN27 sNaN29 -> -NaN27 Invalid_operation
+dqshi884 shift 1000 -NaN30 -> -NaN30
+dqshi885 shift 1000 -sNaN31 -> -NaN31 Invalid_operation
diff --git a/Lib/test/decimaltestdata/dqSubtract.decTest b/Lib/test/decimaltestdata/dqSubtract.decTest
new file mode 100644
index 0000000..923742c
--- /dev/null
+++ b/Lib/test/decimaltestdata/dqSubtract.decTest
@@ -0,0 +1,635 @@
+------------------------------------------------------------------------
+-- dqSubtract.decTest -- decQuad subtraction --
+-- Copyright (c) IBM Corporation, 1981, 2007. All rights reserved. --
+------------------------------------------------------------------------
+-- Please see the document "General Decimal Arithmetic Testcases" --
+-- at http://www2.hursley.ibm.com/decimal for the description of --
+-- these testcases. --
+-- --
+-- These testcases are experimental ('beta' versions), and they --
+-- may contain errors. They are offered on an as-is basis. In --
+-- particular, achieving the same results as the tests here is not --
+-- a guarantee that an implementation complies with any Standard --
+-- or specification. The tests are not exhaustive. --
+-- --
+-- Please send comments, suggestions, and corrections to the author: --
+-- Mike Cowlishaw, IBM Fellow --
+-- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK --
+-- mfc@uk.ibm.com --
+------------------------------------------------------------------------
+version: 2.56
+
+-- This set of tests are for decQuads only; all arguments are
+-- representable in a decQuad
+extended: 1
+clamp: 1
+precision: 34
+maxExponent: 6144
+minExponent: -6143
+rounding: half_even
+
+-- [first group are 'quick confidence check']
+dqsub001 subtract 0 0 -> '0'
+dqsub002 subtract 1 1 -> '0'
+dqsub003 subtract 1 2 -> '-1'
+dqsub004 subtract 2 1 -> '1'
+dqsub005 subtract 2 2 -> '0'
+dqsub006 subtract 3 2 -> '1'
+dqsub007 subtract 2 3 -> '-1'
+
+dqsub011 subtract -0 0 -> '-0'
+dqsub012 subtract -1 1 -> '-2'
+dqsub013 subtract -1 2 -> '-3'
+dqsub014 subtract -2 1 -> '-3'
+dqsub015 subtract -2 2 -> '-4'
+dqsub016 subtract -3 2 -> '-5'
+dqsub017 subtract -2 3 -> '-5'
+
+dqsub021 subtract 0 -0 -> '0'
+dqsub022 subtract 1 -1 -> '2'
+dqsub023 subtract 1 -2 -> '3'
+dqsub024 subtract 2 -1 -> '3'
+dqsub025 subtract 2 -2 -> '4'
+dqsub026 subtract 3 -2 -> '5'
+dqsub027 subtract 2 -3 -> '5'
+
+dqsub030 subtract 11 1 -> 10
+dqsub031 subtract 10 1 -> 9
+dqsub032 subtract 9 1 -> 8
+dqsub033 subtract 1 1 -> 0
+dqsub034 subtract 0 1 -> -1
+dqsub035 subtract -1 1 -> -2
+dqsub036 subtract -9 1 -> -10
+dqsub037 subtract -10 1 -> -11
+dqsub038 subtract -11 1 -> -12
+
+dqsub040 subtract '5.75' '3.3' -> '2.45'
+dqsub041 subtract '5' '-3' -> '8'
+dqsub042 subtract '-5' '-3' -> '-2'
+dqsub043 subtract '-7' '2.5' -> '-9.5'
+dqsub044 subtract '0.7' '0.3' -> '0.4'
+dqsub045 subtract '1.3' '0.3' -> '1.0'
+dqsub046 subtract '1.25' '1.25' -> '0.00'
+
+dqsub050 subtract '1.23456789' '1.00000000' -> '0.23456789'
+dqsub051 subtract '1.23456789' '1.00000089' -> '0.23456700'
+
+dqsub060 subtract '70' '10000e+34' -> '-1.000000000000000000000000000000000E+38' Inexact Rounded
+dqsub061 subtract '700' '10000e+34' -> '-1.000000000000000000000000000000000E+38' Inexact Rounded
+dqsub062 subtract '7000' '10000e+34' -> '-9.999999999999999999999999999999999E+37' Inexact Rounded
+dqsub063 subtract '70000' '10000e+34' -> '-9.999999999999999999999999999999993E+37' Rounded
+dqsub064 subtract '700000' '10000e+34' -> '-9.999999999999999999999999999999930E+37' Rounded
+ -- symmetry:
+dqsub065 subtract '10000e+34' '70' -> '1.000000000000000000000000000000000E+38' Inexact Rounded
+dqsub066 subtract '10000e+34' '700' -> '1.000000000000000000000000000000000E+38' Inexact Rounded
+dqsub067 subtract '10000e+34' '7000' -> '9.999999999999999999999999999999999E+37' Inexact Rounded
+dqsub068 subtract '10000e+34' '70000' -> '9.999999999999999999999999999999993E+37' Rounded
+dqsub069 subtract '10000e+34' '700000' -> '9.999999999999999999999999999999930E+37' Rounded
+
+ -- some of the next group are really constructor tests
+dqsub090 subtract '00.0' '0.0' -> '0.0'
+dqsub091 subtract '00.0' '0.00' -> '0.00'
+dqsub092 subtract '0.00' '00.0' -> '0.00'
+dqsub093 subtract '00.0' '0.00' -> '0.00'
+dqsub094 subtract '0.00' '00.0' -> '0.00'
+dqsub095 subtract '3' '.3' -> '2.7'
+dqsub096 subtract '3.' '.3' -> '2.7'
+dqsub097 subtract '3.0' '.3' -> '2.7'
+dqsub098 subtract '3.00' '.3' -> '2.70'
+dqsub099 subtract '3' '3' -> '0'
+dqsub100 subtract '3' '+3' -> '0'
+dqsub101 subtract '3' '-3' -> '6'
+dqsub102 subtract '3' '0.3' -> '2.7'
+dqsub103 subtract '3.' '0.3' -> '2.7'
+dqsub104 subtract '3.0' '0.3' -> '2.7'
+dqsub105 subtract '3.00' '0.3' -> '2.70'
+dqsub106 subtract '3' '3.0' -> '0.0'
+dqsub107 subtract '3' '+3.0' -> '0.0'
+dqsub108 subtract '3' '-3.0' -> '6.0'
+
+-- the above all from add; massaged and extended. Now some new ones...
+-- [particularly important for comparisons]
+-- NB: -xE-8 below were non-exponents pre-ANSI X3-274, and -1E-7 or 0E-7
+-- with input rounding.
+dqsub120 subtract '10.23456784' '10.23456789' -> '-5E-8'
+dqsub121 subtract '10.23456785' '10.23456789' -> '-4E-8'
+dqsub122 subtract '10.23456786' '10.23456789' -> '-3E-8'
+dqsub123 subtract '10.23456787' '10.23456789' -> '-2E-8'
+dqsub124 subtract '10.23456788' '10.23456789' -> '-1E-8'
+dqsub125 subtract '10.23456789' '10.23456789' -> '0E-8'
+dqsub126 subtract '10.23456790' '10.23456789' -> '1E-8'
+dqsub127 subtract '10.23456791' '10.23456789' -> '2E-8'
+dqsub128 subtract '10.23456792' '10.23456789' -> '3E-8'
+dqsub129 subtract '10.23456793' '10.23456789' -> '4E-8'
+dqsub130 subtract '10.23456794' '10.23456789' -> '5E-8'
+dqsub131 subtract '10.23456781' '10.23456786' -> '-5E-8'
+dqsub132 subtract '10.23456782' '10.23456786' -> '-4E-8'
+dqsub133 subtract '10.23456783' '10.23456786' -> '-3E-8'
+dqsub134 subtract '10.23456784' '10.23456786' -> '-2E-8'
+dqsub135 subtract '10.23456785' '10.23456786' -> '-1E-8'
+dqsub136 subtract '10.23456786' '10.23456786' -> '0E-8'
+dqsub137 subtract '10.23456787' '10.23456786' -> '1E-8'
+dqsub138 subtract '10.23456788' '10.23456786' -> '2E-8'
+dqsub139 subtract '10.23456789' '10.23456786' -> '3E-8'
+dqsub140 subtract '10.23456790' '10.23456786' -> '4E-8'
+dqsub141 subtract '10.23456791' '10.23456786' -> '5E-8'
+dqsub142 subtract '1' '0.999999999' -> '1E-9'
+dqsub143 subtract '0.999999999' '1' -> '-1E-9'
+dqsub144 subtract '-10.23456780' '-10.23456786' -> '6E-8'
+dqsub145 subtract '-10.23456790' '-10.23456786' -> '-4E-8'
+dqsub146 subtract '-10.23456791' '-10.23456786' -> '-5E-8'
+
+-- additional scaled arithmetic tests [0.97 problem]
+dqsub160 subtract '0' '.1' -> '-0.1'
+dqsub161 subtract '00' '.97983' -> '-0.97983'
+dqsub162 subtract '0' '.9' -> '-0.9'
+dqsub163 subtract '0' '0.102' -> '-0.102'
+dqsub164 subtract '0' '.4' -> '-0.4'
+dqsub165 subtract '0' '.307' -> '-0.307'
+dqsub166 subtract '0' '.43822' -> '-0.43822'
+dqsub167 subtract '0' '.911' -> '-0.911'
+dqsub168 subtract '.0' '.02' -> '-0.02'
+dqsub169 subtract '00' '.392' -> '-0.392'
+dqsub170 subtract '0' '.26' -> '-0.26'
+dqsub171 subtract '0' '0.51' -> '-0.51'
+dqsub172 subtract '0' '.2234' -> '-0.2234'
+dqsub173 subtract '0' '.2' -> '-0.2'
+dqsub174 subtract '.0' '.0008' -> '-0.0008'
+-- 0. on left
+dqsub180 subtract '0.0' '-.1' -> '0.1'
+dqsub181 subtract '0.00' '-.97983' -> '0.97983'
+dqsub182 subtract '0.0' '-.9' -> '0.9'
+dqsub183 subtract '0.0' '-0.102' -> '0.102'
+dqsub184 subtract '0.0' '-.4' -> '0.4'
+dqsub185 subtract '0.0' '-.307' -> '0.307'
+dqsub186 subtract '0.0' '-.43822' -> '0.43822'
+dqsub187 subtract '0.0' '-.911' -> '0.911'
+dqsub188 subtract '0.0' '-.02' -> '0.02'
+dqsub189 subtract '0.00' '-.392' -> '0.392'
+dqsub190 subtract '0.0' '-.26' -> '0.26'
+dqsub191 subtract '0.0' '-0.51' -> '0.51'
+dqsub192 subtract '0.0' '-.2234' -> '0.2234'
+dqsub193 subtract '0.0' '-.2' -> '0.2'
+dqsub194 subtract '0.0' '-.0008' -> '0.0008'
+-- negatives of same
+dqsub200 subtract '0' '-.1' -> '0.1'
+dqsub201 subtract '00' '-.97983' -> '0.97983'
+dqsub202 subtract '0' '-.9' -> '0.9'
+dqsub203 subtract '0' '-0.102' -> '0.102'
+dqsub204 subtract '0' '-.4' -> '0.4'
+dqsub205 subtract '0' '-.307' -> '0.307'
+dqsub206 subtract '0' '-.43822' -> '0.43822'
+dqsub207 subtract '0' '-.911' -> '0.911'
+dqsub208 subtract '.0' '-.02' -> '0.02'
+dqsub209 subtract '00' '-.392' -> '0.392'
+dqsub210 subtract '0' '-.26' -> '0.26'
+dqsub211 subtract '0' '-0.51' -> '0.51'
+dqsub212 subtract '0' '-.2234' -> '0.2234'
+dqsub213 subtract '0' '-.2' -> '0.2'
+dqsub214 subtract '.0' '-.0008' -> '0.0008'
+
+-- more fixed, LHS swaps [really the same as testcases under add]
+dqsub220 subtract '-56267E-12' 0 -> '-5.6267E-8'
+dqsub221 subtract '-56267E-11' 0 -> '-5.6267E-7'
+dqsub222 subtract '-56267E-10' 0 -> '-0.0000056267'
+dqsub223 subtract '-56267E-9' 0 -> '-0.000056267'
+dqsub224 subtract '-56267E-8' 0 -> '-0.00056267'
+dqsub225 subtract '-56267E-7' 0 -> '-0.0056267'
+dqsub226 subtract '-56267E-6' 0 -> '-0.056267'
+dqsub227 subtract '-56267E-5' 0 -> '-0.56267'
+dqsub228 subtract '-56267E-2' 0 -> '-562.67'
+dqsub229 subtract '-56267E-1' 0 -> '-5626.7'
+dqsub230 subtract '-56267E-0' 0 -> '-56267'
+-- symmetry ...
+dqsub240 subtract 0 '-56267E-12' -> '5.6267E-8'
+dqsub241 subtract 0 '-56267E-11' -> '5.6267E-7'
+dqsub242 subtract 0 '-56267E-10' -> '0.0000056267'
+dqsub243 subtract 0 '-56267E-9' -> '0.000056267'
+dqsub244 subtract 0 '-56267E-8' -> '0.00056267'
+dqsub245 subtract 0 '-56267E-7' -> '0.0056267'
+dqsub246 subtract 0 '-56267E-6' -> '0.056267'
+dqsub247 subtract 0 '-56267E-5' -> '0.56267'
+dqsub248 subtract 0 '-56267E-2' -> '562.67'
+dqsub249 subtract 0 '-56267E-1' -> '5626.7'
+dqsub250 subtract 0 '-56267E-0' -> '56267'
+
+-- now some more from the 'new' add
+dqsub301 subtract '1.23456789' '1.00000000' -> '0.23456789'
+dqsub302 subtract '1.23456789' '1.00000011' -> '0.23456778'
+
+-- some carrying effects
+dqsub321 subtract '0.9998' '0.0000' -> '0.9998'
+dqsub322 subtract '0.9998' '0.0001' -> '0.9997'
+dqsub323 subtract '0.9998' '0.0002' -> '0.9996'
+dqsub324 subtract '0.9998' '0.0003' -> '0.9995'
+dqsub325 subtract '0.9998' '-0.0000' -> '0.9998'
+dqsub326 subtract '0.9998' '-0.0001' -> '0.9999'
+dqsub327 subtract '0.9998' '-0.0002' -> '1.0000'
+dqsub328 subtract '0.9998' '-0.0003' -> '1.0001'
+
+-- internal boundaries
+dqsub346 subtract '10000e+9' '7' -> '9999999999993'
+dqsub347 subtract '10000e+9' '70' -> '9999999999930'
+dqsub348 subtract '10000e+9' '700' -> '9999999999300'
+dqsub349 subtract '10000e+9' '7000' -> '9999999993000'
+dqsub350 subtract '10000e+9' '70000' -> '9999999930000'
+dqsub351 subtract '10000e+9' '700000' -> '9999999300000'
+dqsub352 subtract '7' '10000e+9' -> '-9999999999993'
+dqsub353 subtract '70' '10000e+9' -> '-9999999999930'
+dqsub354 subtract '700' '10000e+9' -> '-9999999999300'
+dqsub355 subtract '7000' '10000e+9' -> '-9999999993000'
+dqsub356 subtract '70000' '10000e+9' -> '-9999999930000'
+dqsub357 subtract '700000' '10000e+9' -> '-9999999300000'
+
+-- zero preservation
+dqsub361 subtract 1 '0.0001' -> '0.9999'
+dqsub362 subtract 1 '0.00001' -> '0.99999'
+dqsub363 subtract 1 '0.000001' -> '0.999999'
+dqsub364 subtract 1 '0.0000000000000000000000000000000001' -> '0.9999999999999999999999999999999999'
+dqsub365 subtract 1 '0.00000000000000000000000000000000001' -> '1.000000000000000000000000000000000' Inexact Rounded
+dqsub366 subtract 1 '0.000000000000000000000000000000000001' -> '1.000000000000000000000000000000000' Inexact Rounded
+
+-- some funny zeros [in case of bad signum]
+dqsub370 subtract 1 0 -> 1
+dqsub371 subtract 1 0. -> 1
+dqsub372 subtract 1 .0 -> 1.0
+dqsub373 subtract 1 0.0 -> 1.0
+dqsub374 subtract 0 1 -> -1
+dqsub375 subtract 0. 1 -> -1
+dqsub376 subtract .0 1 -> -1.0
+dqsub377 subtract 0.0 1 -> -1.0
+
+-- leading 0 digit before round
+dqsub910 subtract -103519362 -51897955.3 -> -51621406.7
+dqsub911 subtract 159579.444 89827.5229 -> 69751.9211
+
+dqsub920 subtract 333.0000000000000000000000000123456 33.00000000000000000000000001234566 -> 299.9999999999999999999999999999999 Inexact Rounded
+dqsub921 subtract 333.0000000000000000000000000123456 33.00000000000000000000000001234565 -> 300.0000000000000000000000000000000 Inexact Rounded
+dqsub922 subtract 133.0000000000000000000000000123456 33.00000000000000000000000001234565 -> 99.99999999999999999999999999999995
+dqsub923 subtract 133.0000000000000000000000000123456 33.00000000000000000000000001234564 -> 99.99999999999999999999999999999996
+dqsub924 subtract 133.0000000000000000000000000123456 33.00000000000000000000000001234540 -> 100.0000000000000000000000000000002 Rounded
+dqsub925 subtract 133.0000000000000000000000000123456 43.00000000000000000000000001234560 -> 90.00000000000000000000000000000000
+dqsub926 subtract 133.0000000000000000000000000123456 43.00000000000000000000000001234561 -> 89.99999999999999999999999999999999
+dqsub927 subtract 133.0000000000000000000000000123456 43.00000000000000000000000001234566 -> 89.99999999999999999999999999999994
+dqsub928 subtract 101.0000000000000000000000000123456 91.00000000000000000000000001234566 -> 9.99999999999999999999999999999994
+dqsub929 subtract 101.0000000000000000000000000123456 99.00000000000000000000000001234566 -> 1.99999999999999999999999999999994
+
+-- more LHS swaps [were fixed]
+dqsub390 subtract '-56267E-10' 0 -> '-0.0000056267'
+dqsub391 subtract '-56267E-6' 0 -> '-0.056267'
+dqsub392 subtract '-56267E-5' 0 -> '-0.56267'
+dqsub393 subtract '-56267E-4' 0 -> '-5.6267'
+dqsub394 subtract '-56267E-3' 0 -> '-56.267'
+dqsub395 subtract '-56267E-2' 0 -> '-562.67'
+dqsub396 subtract '-56267E-1' 0 -> '-5626.7'
+dqsub397 subtract '-56267E-0' 0 -> '-56267'
+dqsub398 subtract '-5E-10' 0 -> '-5E-10'
+dqsub399 subtract '-5E-7' 0 -> '-5E-7'
+dqsub400 subtract '-5E-6' 0 -> '-0.000005'
+dqsub401 subtract '-5E-5' 0 -> '-0.00005'
+dqsub402 subtract '-5E-4' 0 -> '-0.0005'
+dqsub403 subtract '-5E-1' 0 -> '-0.5'
+dqsub404 subtract '-5E0' 0 -> '-5'
+dqsub405 subtract '-5E1' 0 -> '-50'
+dqsub406 subtract '-5E5' 0 -> '-500000'
+dqsub407 subtract '-5E33' 0 -> '-5000000000000000000000000000000000'
+dqsub408 subtract '-5E34' 0 -> '-5.000000000000000000000000000000000E+34' Rounded
+dqsub409 subtract '-5E35' 0 -> '-5.000000000000000000000000000000000E+35' Rounded
+dqsub410 subtract '-5E36' 0 -> '-5.000000000000000000000000000000000E+36' Rounded
+dqsub411 subtract '-5E100' 0 -> '-5.000000000000000000000000000000000E+100' Rounded
+
+-- more RHS swaps [were fixed]
+dqsub420 subtract 0 '-56267E-10' -> '0.0000056267'
+dqsub421 subtract 0 '-56267E-6' -> '0.056267'
+dqsub422 subtract 0 '-56267E-5' -> '0.56267'
+dqsub423 subtract 0 '-56267E-4' -> '5.6267'
+dqsub424 subtract 0 '-56267E-3' -> '56.267'
+dqsub425 subtract 0 '-56267E-2' -> '562.67'
+dqsub426 subtract 0 '-56267E-1' -> '5626.7'
+dqsub427 subtract 0 '-56267E-0' -> '56267'
+dqsub428 subtract 0 '-5E-10' -> '5E-10'
+dqsub429 subtract 0 '-5E-7' -> '5E-7'
+dqsub430 subtract 0 '-5E-6' -> '0.000005'
+dqsub431 subtract 0 '-5E-5' -> '0.00005'
+dqsub432 subtract 0 '-5E-4' -> '0.0005'
+dqsub433 subtract 0 '-5E-1' -> '0.5'
+dqsub434 subtract 0 '-5E0' -> '5'
+dqsub435 subtract 0 '-5E1' -> '50'
+dqsub436 subtract 0 '-5E5' -> '500000'
+dqsub437 subtract 0 '-5E33' -> '5000000000000000000000000000000000'
+dqsub438 subtract 0 '-5E34' -> '5.000000000000000000000000000000000E+34' Rounded
+dqsub439 subtract 0 '-5E35' -> '5.000000000000000000000000000000000E+35' Rounded
+dqsub440 subtract 0 '-5E36' -> '5.000000000000000000000000000000000E+36' Rounded
+dqsub441 subtract 0 '-5E100' -> '5.000000000000000000000000000000000E+100' Rounded
+
+
+-- try borderline precision, with carries, etc.
+dqsub461 subtract '1E+16' '1' -> '9999999999999999'
+dqsub462 subtract '1E+12' '-1.111' -> '1000000000001.111'
+dqsub463 subtract '1.111' '-1E+12' -> '1000000000001.111'
+dqsub464 subtract '-1' '-1E+16' -> '9999999999999999'
+dqsub465 subtract '7E+15' '1' -> '6999999999999999'
+dqsub466 subtract '7E+12' '-1.111' -> '7000000000001.111'
+dqsub467 subtract '1.111' '-7E+12' -> '7000000000001.111'
+dqsub468 subtract '-1' '-7E+15' -> '6999999999999999'
+
+-- 1234567890123456 1234567890123456 1 23456789012345
+dqsub470 subtract '0.4444444444444444444444444444444444' '-0.5555555555555555555555555555555563' -> '1.000000000000000000000000000000001' Inexact Rounded
+dqsub471 subtract '0.4444444444444444444444444444444444' '-0.5555555555555555555555555555555562' -> '1.000000000000000000000000000000001' Inexact Rounded
+dqsub472 subtract '0.4444444444444444444444444444444444' '-0.5555555555555555555555555555555561' -> '1.000000000000000000000000000000000' Inexact Rounded
+dqsub473 subtract '0.4444444444444444444444444444444444' '-0.5555555555555555555555555555555560' -> '1.000000000000000000000000000000000' Inexact Rounded
+dqsub474 subtract '0.4444444444444444444444444444444444' '-0.5555555555555555555555555555555559' -> '1.000000000000000000000000000000000' Inexact Rounded
+dqsub475 subtract '0.4444444444444444444444444444444444' '-0.5555555555555555555555555555555558' -> '1.000000000000000000000000000000000' Inexact Rounded
+dqsub476 subtract '0.4444444444444444444444444444444444' '-0.5555555555555555555555555555555557' -> '1.000000000000000000000000000000000' Inexact Rounded
+dqsub477 subtract '0.4444444444444444444444444444444444' '-0.5555555555555555555555555555555556' -> '1.000000000000000000000000000000000' Rounded
+dqsub478 subtract '0.4444444444444444444444444444444444' '-0.5555555555555555555555555555555555' -> '0.9999999999999999999999999999999999'
+dqsub479 subtract '0.4444444444444444444444444444444444' '-0.5555555555555555555555555555555554' -> '0.9999999999999999999999999999999998'
+dqsub480 subtract '0.4444444444444444444444444444444444' '-0.5555555555555555555555555555555553' -> '0.9999999999999999999999999999999997'
+dqsub481 subtract '0.4444444444444444444444444444444444' '-0.5555555555555555555555555555555552' -> '0.9999999999999999999999999999999996'
+dqsub482 subtract '0.4444444444444444444444444444444444' '-0.5555555555555555555555555555555551' -> '0.9999999999999999999999999999999995'
+dqsub483 subtract '0.4444444444444444444444444444444444' '-0.5555555555555555555555555555555550' -> '0.9999999999999999999999999999999994'
+
+-- and some more, including residue effects and different roundings
+rounding: half_up
+dqsub500 subtract '1231234555555555555555555567456789' 0 -> '1231234555555555555555555567456789'
+dqsub501 subtract '1231234555555555555555555567456789' 0.000000001 -> '1231234555555555555555555567456789' Inexact Rounded
+dqsub502 subtract '1231234555555555555555555567456789' 0.000001 -> '1231234555555555555555555567456789' Inexact Rounded
+dqsub503 subtract '1231234555555555555555555567456789' 0.1 -> '1231234555555555555555555567456789' Inexact Rounded
+dqsub504 subtract '1231234555555555555555555567456789' 0.4 -> '1231234555555555555555555567456789' Inexact Rounded
+dqsub505 subtract '1231234555555555555555555567456789' 0.49 -> '1231234555555555555555555567456789' Inexact Rounded
+dqsub506 subtract '1231234555555555555555555567456789' 0.499999 -> '1231234555555555555555555567456789' Inexact Rounded
+dqsub507 subtract '1231234555555555555555555567456789' 0.499999999 -> '1231234555555555555555555567456789' Inexact Rounded
+dqsub508 subtract '1231234555555555555555555567456789' 0.5 -> '1231234555555555555555555567456789' Inexact Rounded
+dqsub509 subtract '1231234555555555555555555567456789' 0.500000001 -> '1231234555555555555555555567456788' Inexact Rounded
+dqsub510 subtract '1231234555555555555555555567456789' 0.500001 -> '1231234555555555555555555567456788' Inexact Rounded
+dqsub511 subtract '1231234555555555555555555567456789' 0.51 -> '1231234555555555555555555567456788' Inexact Rounded
+dqsub512 subtract '1231234555555555555555555567456789' 0.6 -> '1231234555555555555555555567456788' Inexact Rounded
+dqsub513 subtract '1231234555555555555555555567456789' 0.9 -> '1231234555555555555555555567456788' Inexact Rounded
+dqsub514 subtract '1231234555555555555555555567456789' 0.99999 -> '1231234555555555555555555567456788' Inexact Rounded
+dqsub515 subtract '1231234555555555555555555567456789' 0.999999999 -> '1231234555555555555555555567456788' Inexact Rounded
+dqsub516 subtract '1231234555555555555555555567456789' 1 -> '1231234555555555555555555567456788'
+dqsub517 subtract '1231234555555555555555555567456789' 1.000000001 -> '1231234555555555555555555567456788' Inexact Rounded
+dqsub518 subtract '1231234555555555555555555567456789' 1.00001 -> '1231234555555555555555555567456788' Inexact Rounded
+dqsub519 subtract '1231234555555555555555555567456789' 1.1 -> '1231234555555555555555555567456788' Inexact Rounded
+
+rounding: half_even
+dqsub520 subtract '1231234555555555555555555567456789' 0 -> '1231234555555555555555555567456789'
+dqsub521 subtract '1231234555555555555555555567456789' 0.000000001 -> '1231234555555555555555555567456789' Inexact Rounded
+dqsub522 subtract '1231234555555555555555555567456789' 0.000001 -> '1231234555555555555555555567456789' Inexact Rounded
+dqsub523 subtract '1231234555555555555555555567456789' 0.1 -> '1231234555555555555555555567456789' Inexact Rounded
+dqsub524 subtract '1231234555555555555555555567456789' 0.4 -> '1231234555555555555555555567456789' Inexact Rounded
+dqsub525 subtract '1231234555555555555555555567456789' 0.49 -> '1231234555555555555555555567456789' Inexact Rounded
+dqsub526 subtract '1231234555555555555555555567456789' 0.499999 -> '1231234555555555555555555567456789' Inexact Rounded
+dqsub527 subtract '1231234555555555555555555567456789' 0.499999999 -> '1231234555555555555555555567456789' Inexact Rounded
+dqsub528 subtract '1231234555555555555555555567456789' 0.5 -> '1231234555555555555555555567456788' Inexact Rounded
+dqsub529 subtract '1231234555555555555555555567456789' 0.500000001 -> '1231234555555555555555555567456788' Inexact Rounded
+dqsub530 subtract '1231234555555555555555555567456789' 0.500001 -> '1231234555555555555555555567456788' Inexact Rounded
+dqsub531 subtract '1231234555555555555555555567456789' 0.51 -> '1231234555555555555555555567456788' Inexact Rounded
+dqsub532 subtract '1231234555555555555555555567456789' 0.6 -> '1231234555555555555555555567456788' Inexact Rounded
+dqsub533 subtract '1231234555555555555555555567456789' 0.9 -> '1231234555555555555555555567456788' Inexact Rounded
+dqsub534 subtract '1231234555555555555555555567456789' 0.99999 -> '1231234555555555555555555567456788' Inexact Rounded
+dqsub535 subtract '1231234555555555555555555567456789' 0.999999999 -> '1231234555555555555555555567456788' Inexact Rounded
+dqsub536 subtract '1231234555555555555555555567456789' 1 -> '1231234555555555555555555567456788'
+dqsub537 subtract '1231234555555555555555555567456789' 1.00000001 -> '1231234555555555555555555567456788' Inexact Rounded
+dqsub538 subtract '1231234555555555555555555567456789' 1.00001 -> '1231234555555555555555555567456788' Inexact Rounded
+dqsub539 subtract '1231234555555555555555555567456789' 1.1 -> '1231234555555555555555555567456788' Inexact Rounded
+-- critical few with even bottom digit...
+dqsub540 subtract '1231234555555555555555555567456788' 0.499999999 -> '1231234555555555555555555567456788' Inexact Rounded
+dqsub541 subtract '1231234555555555555555555567456788' 0.5 -> '1231234555555555555555555567456788' Inexact Rounded
+dqsub542 subtract '1231234555555555555555555567456788' 0.500000001 -> '1231234555555555555555555567456787' Inexact Rounded
+
+rounding: down
+dqsub550 subtract '1231234555555555555555555567456789' 0 -> '1231234555555555555555555567456789'
+dqsub551 subtract '1231234555555555555555555567456789' 0.000000001 -> '1231234555555555555555555567456788' Inexact Rounded
+dqsub552 subtract '1231234555555555555555555567456789' 0.000001 -> '1231234555555555555555555567456788' Inexact Rounded
+dqsub553 subtract '1231234555555555555555555567456789' 0.1 -> '1231234555555555555555555567456788' Inexact Rounded
+dqsub554 subtract '1231234555555555555555555567456789' 0.4 -> '1231234555555555555555555567456788' Inexact Rounded
+dqsub555 subtract '1231234555555555555555555567456789' 0.49 -> '1231234555555555555555555567456788' Inexact Rounded
+dqsub556 subtract '1231234555555555555555555567456789' 0.499999 -> '1231234555555555555555555567456788' Inexact Rounded
+dqsub557 subtract '1231234555555555555555555567456789' 0.499999999 -> '1231234555555555555555555567456788' Inexact Rounded
+dqsub558 subtract '1231234555555555555555555567456789' 0.5 -> '1231234555555555555555555567456788' Inexact Rounded
+dqsub559 subtract '1231234555555555555555555567456789' 0.500000001 -> '1231234555555555555555555567456788' Inexact Rounded
+dqsub560 subtract '1231234555555555555555555567456789' 0.500001 -> '1231234555555555555555555567456788' Inexact Rounded
+dqsub561 subtract '1231234555555555555555555567456789' 0.51 -> '1231234555555555555555555567456788' Inexact Rounded
+dqsub562 subtract '1231234555555555555555555567456789' 0.6 -> '1231234555555555555555555567456788' Inexact Rounded
+dqsub563 subtract '1231234555555555555555555567456789' 0.9 -> '1231234555555555555555555567456788' Inexact Rounded
+dqsub564 subtract '1231234555555555555555555567456789' 0.99999 -> '1231234555555555555555555567456788' Inexact Rounded
+dqsub565 subtract '1231234555555555555555555567456789' 0.999999999 -> '1231234555555555555555555567456788' Inexact Rounded
+dqsub566 subtract '1231234555555555555555555567456789' 1 -> '1231234555555555555555555567456788'
+dqsub567 subtract '1231234555555555555555555567456789' 1.00000001 -> '1231234555555555555555555567456787' Inexact Rounded
+dqsub568 subtract '1231234555555555555555555567456789' 1.00001 -> '1231234555555555555555555567456787' Inexact Rounded
+dqsub569 subtract '1231234555555555555555555567456789' 1.1 -> '1231234555555555555555555567456787' Inexact Rounded
+
+-- symmetry...
+rounding: half_up
+dqsub600 subtract 0 '1231234555555555555555555567456789' -> '-1231234555555555555555555567456789'
+dqsub601 subtract 0.000000001 '1231234555555555555555555567456789' -> '-1231234555555555555555555567456789' Inexact Rounded
+dqsub602 subtract 0.000001 '1231234555555555555555555567456789' -> '-1231234555555555555555555567456789' Inexact Rounded
+dqsub603 subtract 0.1 '1231234555555555555555555567456789' -> '-1231234555555555555555555567456789' Inexact Rounded
+dqsub604 subtract 0.4 '1231234555555555555555555567456789' -> '-1231234555555555555555555567456789' Inexact Rounded
+dqsub605 subtract 0.49 '1231234555555555555555555567456789' -> '-1231234555555555555555555567456789' Inexact Rounded
+dqsub606 subtract 0.499999 '1231234555555555555555555567456789' -> '-1231234555555555555555555567456789' Inexact Rounded
+dqsub607 subtract 0.499999999 '1231234555555555555555555567456789' -> '-1231234555555555555555555567456789' Inexact Rounded
+dqsub608 subtract 0.5 '1231234555555555555555555567456789' -> '-1231234555555555555555555567456789' Inexact Rounded
+dqsub609 subtract 0.500000001 '1231234555555555555555555567456789' -> '-1231234555555555555555555567456788' Inexact Rounded
+dqsub610 subtract 0.500001 '1231234555555555555555555567456789' -> '-1231234555555555555555555567456788' Inexact Rounded
+dqsub611 subtract 0.51 '1231234555555555555555555567456789' -> '-1231234555555555555555555567456788' Inexact Rounded
+dqsub612 subtract 0.6 '1231234555555555555555555567456789' -> '-1231234555555555555555555567456788' Inexact Rounded
+dqsub613 subtract 0.9 '1231234555555555555555555567456789' -> '-1231234555555555555555555567456788' Inexact Rounded
+dqsub614 subtract 0.99999 '1231234555555555555555555567456789' -> '-1231234555555555555555555567456788' Inexact Rounded
+dqsub615 subtract 0.999999999 '1231234555555555555555555567456789' -> '-1231234555555555555555555567456788' Inexact Rounded
+dqsub616 subtract 1 '1231234555555555555555555567456789' -> '-1231234555555555555555555567456788'
+dqsub617 subtract 1.000000001 '1231234555555555555555555567456789' -> '-1231234555555555555555555567456788' Inexact Rounded
+dqsub618 subtract 1.00001 '1231234555555555555555555567456789' -> '-1231234555555555555555555567456788' Inexact Rounded
+dqsub619 subtract 1.1 '1231234555555555555555555567456789' -> '-1231234555555555555555555567456788' Inexact Rounded
+
+rounding: half_even
+dqsub620 subtract 0 '1231234555555555555555555567456789' -> '-1231234555555555555555555567456789'
+dqsub621 subtract 0.000000001 '1231234555555555555555555567456789' -> '-1231234555555555555555555567456789' Inexact Rounded
+dqsub622 subtract 0.000001 '1231234555555555555555555567456789' -> '-1231234555555555555555555567456789' Inexact Rounded
+dqsub623 subtract 0.1 '1231234555555555555555555567456789' -> '-1231234555555555555555555567456789' Inexact Rounded
+dqsub624 subtract 0.4 '1231234555555555555555555567456789' -> '-1231234555555555555555555567456789' Inexact Rounded
+dqsub625 subtract 0.49 '1231234555555555555555555567456789' -> '-1231234555555555555555555567456789' Inexact Rounded
+dqsub626 subtract 0.499999 '1231234555555555555555555567456789' -> '-1231234555555555555555555567456789' Inexact Rounded
+dqsub627 subtract 0.499999999 '1231234555555555555555555567456789' -> '-1231234555555555555555555567456789' Inexact Rounded
+dqsub628 subtract 0.5 '1231234555555555555555555567456789' -> '-1231234555555555555555555567456788' Inexact Rounded
+dqsub629 subtract 0.500000001 '1231234555555555555555555567456789' -> '-1231234555555555555555555567456788' Inexact Rounded
+dqsub630 subtract 0.500001 '1231234555555555555555555567456789' -> '-1231234555555555555555555567456788' Inexact Rounded
+dqsub631 subtract 0.51 '1231234555555555555555555567456789' -> '-1231234555555555555555555567456788' Inexact Rounded
+dqsub632 subtract 0.6 '1231234555555555555555555567456789' -> '-1231234555555555555555555567456788' Inexact Rounded
+dqsub633 subtract 0.9 '1231234555555555555555555567456789' -> '-1231234555555555555555555567456788' Inexact Rounded
+dqsub634 subtract 0.99999 '1231234555555555555555555567456789' -> '-1231234555555555555555555567456788' Inexact Rounded
+dqsub635 subtract 0.999999999 '1231234555555555555555555567456789' -> '-1231234555555555555555555567456788' Inexact Rounded
+dqsub636 subtract 1 '1231234555555555555555555567456789' -> '-1231234555555555555555555567456788'
+dqsub637 subtract 1.00000001 '1231234555555555555555555567456789' -> '-1231234555555555555555555567456788' Inexact Rounded
+dqsub638 subtract 1.00001 '1231234555555555555555555567456789' -> '-1231234555555555555555555567456788' Inexact Rounded
+dqsub639 subtract 1.1 '1231234555555555555555555567456789' -> '-1231234555555555555555555567456788' Inexact Rounded
+-- critical few with even bottom digit...
+dqsub640 subtract 0.499999999 '1231234555555555555555555567456788' -> '-1231234555555555555555555567456788' Inexact Rounded
+dqsub641 subtract 0.5 '1231234555555555555555555567456788' -> '-1231234555555555555555555567456788' Inexact Rounded
+dqsub642 subtract 0.500000001 '1231234555555555555555555567456788' -> '-1231234555555555555555555567456787' Inexact Rounded
+
+rounding: down
+dqsub650 subtract 0 '1231234555555555555555555567456789' -> '-1231234555555555555555555567456789'
+dqsub651 subtract 0.000000001 '1231234555555555555555555567456789' -> '-1231234555555555555555555567456788' Inexact Rounded
+dqsub652 subtract 0.000001 '1231234555555555555555555567456789' -> '-1231234555555555555555555567456788' Inexact Rounded
+dqsub653 subtract 0.1 '1231234555555555555555555567456789' -> '-1231234555555555555555555567456788' Inexact Rounded
+dqsub654 subtract 0.4 '1231234555555555555555555567456789' -> '-1231234555555555555555555567456788' Inexact Rounded
+dqsub655 subtract 0.49 '1231234555555555555555555567456789' -> '-1231234555555555555555555567456788' Inexact Rounded
+dqsub656 subtract 0.499999 '1231234555555555555555555567456789' -> '-1231234555555555555555555567456788' Inexact Rounded
+dqsub657 subtract 0.499999999 '1231234555555555555555555567456789' -> '-1231234555555555555555555567456788' Inexact Rounded
+dqsub658 subtract 0.5 '1231234555555555555555555567456789' -> '-1231234555555555555555555567456788' Inexact Rounded
+dqsub659 subtract 0.500000001 '1231234555555555555555555567456789' -> '-1231234555555555555555555567456788' Inexact Rounded
+dqsub660 subtract 0.500001 '1231234555555555555555555567456789' -> '-1231234555555555555555555567456788' Inexact Rounded
+dqsub661 subtract 0.51 '1231234555555555555555555567456789' -> '-1231234555555555555555555567456788' Inexact Rounded
+dqsub662 subtract 0.6 '1231234555555555555555555567456789' -> '-1231234555555555555555555567456788' Inexact Rounded
+dqsub663 subtract 0.9 '1231234555555555555555555567456789' -> '-1231234555555555555555555567456788' Inexact Rounded
+dqsub664 subtract 0.99999 '1231234555555555555555555567456789' -> '-1231234555555555555555555567456788' Inexact Rounded
+dqsub665 subtract 0.999999999 '1231234555555555555555555567456789' -> '-1231234555555555555555555567456788' Inexact Rounded
+dqsub666 subtract 1 '1231234555555555555555555567456789' -> '-1231234555555555555555555567456788'
+dqsub667 subtract 1.00000001 '1231234555555555555555555567456789' -> '-1231234555555555555555555567456787' Inexact Rounded
+dqsub668 subtract 1.00001 '1231234555555555555555555567456789' -> '-1231234555555555555555555567456787' Inexact Rounded
+dqsub669 subtract 1.1 '1231234555555555555555555567456789' -> '-1231234555555555555555555567456787' Inexact Rounded
+
+
+-- lots of leading zeros in intermediate result, and showing effects of
+-- input rounding would have affected the following
+rounding: half_up
+dqsub670 subtract '1234567456789' '1234567456788.1' -> 0.9
+dqsub671 subtract '1234567456789' '1234567456788.9' -> 0.1
+dqsub672 subtract '1234567456789' '1234567456789.1' -> -0.1
+dqsub673 subtract '1234567456789' '1234567456789.5' -> -0.5
+dqsub674 subtract '1234567456789' '1234567456789.9' -> -0.9
+
+rounding: half_even
+dqsub680 subtract '1234567456789' '1234567456788.1' -> 0.9
+dqsub681 subtract '1234567456789' '1234567456788.9' -> 0.1
+dqsub682 subtract '1234567456789' '1234567456789.1' -> -0.1
+dqsub683 subtract '1234567456789' '1234567456789.5' -> -0.5
+dqsub684 subtract '1234567456789' '1234567456789.9' -> -0.9
+
+dqsub685 subtract '1234567456788' '1234567456787.1' -> 0.9
+dqsub686 subtract '1234567456788' '1234567456787.9' -> 0.1
+dqsub687 subtract '1234567456788' '1234567456788.1' -> -0.1
+dqsub688 subtract '1234567456788' '1234567456788.5' -> -0.5
+dqsub689 subtract '1234567456788' '1234567456788.9' -> -0.9
+
+rounding: down
+dqsub690 subtract '1234567456789' '1234567456788.1' -> 0.9
+dqsub691 subtract '1234567456789' '1234567456788.9' -> 0.1
+dqsub692 subtract '1234567456789' '1234567456789.1' -> -0.1
+dqsub693 subtract '1234567456789' '1234567456789.5' -> -0.5
+dqsub694 subtract '1234567456789' '1234567456789.9' -> -0.9
+
+-- Specials
+dqsub780 subtract -Inf Inf -> -Infinity
+dqsub781 subtract -Inf 1000 -> -Infinity
+dqsub782 subtract -Inf 1 -> -Infinity
+dqsub783 subtract -Inf -0 -> -Infinity
+dqsub784 subtract -Inf -1 -> -Infinity
+dqsub785 subtract -Inf -1000 -> -Infinity
+dqsub787 subtract -1000 Inf -> -Infinity
+dqsub788 subtract -Inf Inf -> -Infinity
+dqsub789 subtract -1 Inf -> -Infinity
+dqsub790 subtract 0 Inf -> -Infinity
+dqsub791 subtract 1 Inf -> -Infinity
+dqsub792 subtract 1000 Inf -> -Infinity
+
+dqsub800 subtract Inf Inf -> NaN Invalid_operation
+dqsub801 subtract Inf 1000 -> Infinity
+dqsub802 subtract Inf 1 -> Infinity
+dqsub803 subtract Inf 0 -> Infinity
+dqsub804 subtract Inf -0 -> Infinity
+dqsub805 subtract Inf -1 -> Infinity
+dqsub806 subtract Inf -1000 -> Infinity
+dqsub807 subtract Inf -Inf -> Infinity
+dqsub808 subtract -1000 -Inf -> Infinity
+dqsub809 subtract -Inf -Inf -> NaN Invalid_operation
+dqsub810 subtract -1 -Inf -> Infinity
+dqsub811 subtract -0 -Inf -> Infinity
+dqsub812 subtract 0 -Inf -> Infinity
+dqsub813 subtract 1 -Inf -> Infinity
+dqsub814 subtract 1000 -Inf -> Infinity
+dqsub815 subtract Inf -Inf -> Infinity
+
+dqsub821 subtract NaN Inf -> NaN
+dqsub822 subtract -NaN 1000 -> -NaN
+dqsub823 subtract NaN 1 -> NaN
+dqsub824 subtract NaN 0 -> NaN
+dqsub825 subtract NaN -0 -> NaN
+dqsub826 subtract NaN -1 -> NaN
+dqsub827 subtract NaN -1000 -> NaN
+dqsub828 subtract NaN -Inf -> NaN
+dqsub829 subtract -NaN NaN -> -NaN
+dqsub830 subtract -Inf NaN -> NaN
+dqsub831 subtract -1000 NaN -> NaN
+dqsub832 subtract -1 NaN -> NaN
+dqsub833 subtract -0 NaN -> NaN
+dqsub834 subtract 0 NaN -> NaN
+dqsub835 subtract 1 NaN -> NaN
+dqsub836 subtract 1000 -NaN -> -NaN
+dqsub837 subtract Inf NaN -> NaN
+
+dqsub841 subtract sNaN Inf -> NaN Invalid_operation
+dqsub842 subtract -sNaN 1000 -> -NaN Invalid_operation
+dqsub843 subtract sNaN 1 -> NaN Invalid_operation
+dqsub844 subtract sNaN 0 -> NaN Invalid_operation
+dqsub845 subtract sNaN -0 -> NaN Invalid_operation
+dqsub846 subtract sNaN -1 -> NaN Invalid_operation
+dqsub847 subtract sNaN -1000 -> NaN Invalid_operation
+dqsub848 subtract sNaN NaN -> NaN Invalid_operation
+dqsub849 subtract sNaN sNaN -> NaN Invalid_operation
+dqsub850 subtract NaN sNaN -> NaN Invalid_operation
+dqsub851 subtract -Inf -sNaN -> -NaN Invalid_operation
+dqsub852 subtract -1000 sNaN -> NaN Invalid_operation
+dqsub853 subtract -1 sNaN -> NaN Invalid_operation
+dqsub854 subtract -0 sNaN -> NaN Invalid_operation
+dqsub855 subtract 0 sNaN -> NaN Invalid_operation
+dqsub856 subtract 1 sNaN -> NaN Invalid_operation
+dqsub857 subtract 1000 sNaN -> NaN Invalid_operation
+dqsub858 subtract Inf sNaN -> NaN Invalid_operation
+dqsub859 subtract NaN sNaN -> NaN Invalid_operation
+
+-- propagating NaNs
+dqsub861 subtract NaN01 -Inf -> NaN1
+dqsub862 subtract -NaN02 -1000 -> -NaN2
+dqsub863 subtract NaN03 1000 -> NaN3
+dqsub864 subtract NaN04 Inf -> NaN4
+dqsub865 subtract NaN05 NaN61 -> NaN5
+dqsub866 subtract -Inf -NaN71 -> -NaN71
+dqsub867 subtract -1000 NaN81 -> NaN81
+dqsub868 subtract 1000 NaN91 -> NaN91
+dqsub869 subtract Inf NaN101 -> NaN101
+dqsub871 subtract sNaN011 -Inf -> NaN11 Invalid_operation
+dqsub872 subtract sNaN012 -1000 -> NaN12 Invalid_operation
+dqsub873 subtract -sNaN013 1000 -> -NaN13 Invalid_operation
+dqsub874 subtract sNaN014 NaN171 -> NaN14 Invalid_operation
+dqsub875 subtract sNaN015 sNaN181 -> NaN15 Invalid_operation
+dqsub876 subtract NaN016 sNaN191 -> NaN191 Invalid_operation
+dqsub877 subtract -Inf sNaN201 -> NaN201 Invalid_operation
+dqsub878 subtract -1000 sNaN211 -> NaN211 Invalid_operation
+dqsub879 subtract 1000 -sNaN221 -> -NaN221 Invalid_operation
+dqsub880 subtract Inf sNaN231 -> NaN231 Invalid_operation
+dqsub881 subtract NaN025 sNaN241 -> NaN241 Invalid_operation
+
+-- edge case spills
+dqsub901 subtract 2.E-3 1.002 -> -1.000
+dqsub902 subtract 2.0E-3 1.002 -> -1.0000
+dqsub903 subtract 2.00E-3 1.0020 -> -1.00000
+dqsub904 subtract 2.000E-3 1.00200 -> -1.000000
+dqsub905 subtract 2.0000E-3 1.002000 -> -1.0000000
+dqsub906 subtract 2.00000E-3 1.0020000 -> -1.00000000
+dqsub907 subtract 2.000000E-3 1.00200000 -> -1.000000000
+dqsub908 subtract 2.0000000E-3 1.002000000 -> -1.0000000000
+
+-- subnormals and overflows covered under Add
+
+-- Examples from SQL proposal (Krishna Kulkarni)
+dqsub1125 subtract 130E-2 120E-2 -> 0.10
+dqsub1126 subtract 130E-2 12E-1 -> 0.10
+dqsub1127 subtract 130E-2 1E0 -> 0.30
+dqsub1128 subtract 1E2 1E4 -> -9.9E+3
+
+-- Null tests
+dqsub9990 subtract 10 # -> NaN Invalid_operation
+dqsub9991 subtract # 10 -> NaN Invalid_operation
diff --git a/Lib/test/decimaltestdata/dqToIntegral.decTest b/Lib/test/decimaltestdata/dqToIntegral.decTest
new file mode 100644
index 0000000..ac50a4a
--- /dev/null
+++ b/Lib/test/decimaltestdata/dqToIntegral.decTest
@@ -0,0 +1,257 @@
+------------------------------------------------------------------------
+-- dqToIntegral.decTest -- round Quad to integral value --
+-- Copyright (c) IBM Corporation, 2001, 2007. All rights reserved. --
+------------------------------------------------------------------------
+-- Please see the document "General Decimal Arithmetic Testcases" --
+-- at http://www2.hursley.ibm.com/decimal for the description of --
+-- these testcases. --
+-- --
+-- These testcases are experimental ('beta' versions), and they --
+-- may contain errors. They are offered on an as-is basis. In --
+-- particular, achieving the same results as the tests here is not --
+-- a guarantee that an implementation complies with any Standard --
+-- or specification. The tests are not exhaustive. --
+-- --
+-- Please send comments, suggestions, and corrections to the author: --
+-- Mike Cowlishaw, IBM Fellow --
+-- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK --
+-- mfc@uk.ibm.com --
+------------------------------------------------------------------------
+version: 2.56
+
+-- This set of tests tests the extended specification 'round-to-integral
+-- value-exact' operations (from IEEE 854, later modified in 754r).
+-- All non-zero results are defined as being those from either copy or
+-- quantize, so those are assumed to have been tested extensively
+-- elsewhere; the tests here are for integrity, rounding mode, etc.
+-- Also, it is assumed the test harness will use these tests for both
+-- ToIntegralExact (which does set Inexact) and the fixed-name
+-- functions (which do not set Inexact).
+
+-- Note that decNumber implements an earlier definition of toIntegral
+-- which never sets Inexact; the decTest operator for that is called
+-- 'tointegral' instead of 'tointegralx'.
+
+extended: 1
+clamp: 1
+precision: 34
+maxExponent: 6144
+minExponent: -6143
+rounding: half_even
+
+dqintx001 tointegralx 0 -> 0
+dqintx002 tointegralx 0.0 -> 0
+dqintx003 tointegralx 0.1 -> 0 Inexact Rounded
+dqintx004 tointegralx 0.2 -> 0 Inexact Rounded
+dqintx005 tointegralx 0.3 -> 0 Inexact Rounded
+dqintx006 tointegralx 0.4 -> 0 Inexact Rounded
+dqintx007 tointegralx 0.5 -> 0 Inexact Rounded
+dqintx008 tointegralx 0.6 -> 1 Inexact Rounded
+dqintx009 tointegralx 0.7 -> 1 Inexact Rounded
+dqintx010 tointegralx 0.8 -> 1 Inexact Rounded
+dqintx011 tointegralx 0.9 -> 1 Inexact Rounded
+dqintx012 tointegralx 1 -> 1
+dqintx013 tointegralx 1.0 -> 1 Rounded
+dqintx014 tointegralx 1.1 -> 1 Inexact Rounded
+dqintx015 tointegralx 1.2 -> 1 Inexact Rounded
+dqintx016 tointegralx 1.3 -> 1 Inexact Rounded
+dqintx017 tointegralx 1.4 -> 1 Inexact Rounded
+dqintx018 tointegralx 1.5 -> 2 Inexact Rounded
+dqintx019 tointegralx 1.6 -> 2 Inexact Rounded
+dqintx020 tointegralx 1.7 -> 2 Inexact Rounded
+dqintx021 tointegralx 1.8 -> 2 Inexact Rounded
+dqintx022 tointegralx 1.9 -> 2 Inexact Rounded
+-- negatives
+dqintx031 tointegralx -0 -> -0
+dqintx032 tointegralx -0.0 -> -0
+dqintx033 tointegralx -0.1 -> -0 Inexact Rounded
+dqintx034 tointegralx -0.2 -> -0 Inexact Rounded
+dqintx035 tointegralx -0.3 -> -0 Inexact Rounded
+dqintx036 tointegralx -0.4 -> -0 Inexact Rounded
+dqintx037 tointegralx -0.5 -> -0 Inexact Rounded
+dqintx038 tointegralx -0.6 -> -1 Inexact Rounded
+dqintx039 tointegralx -0.7 -> -1 Inexact Rounded
+dqintx040 tointegralx -0.8 -> -1 Inexact Rounded
+dqintx041 tointegralx -0.9 -> -1 Inexact Rounded
+dqintx042 tointegralx -1 -> -1
+dqintx043 tointegralx -1.0 -> -1 Rounded
+dqintx044 tointegralx -1.1 -> -1 Inexact Rounded
+dqintx045 tointegralx -1.2 -> -1 Inexact Rounded
+dqintx046 tointegralx -1.3 -> -1 Inexact Rounded
+dqintx047 tointegralx -1.4 -> -1 Inexact Rounded
+dqintx048 tointegralx -1.5 -> -2 Inexact Rounded
+dqintx049 tointegralx -1.6 -> -2 Inexact Rounded
+dqintx050 tointegralx -1.7 -> -2 Inexact Rounded
+dqintx051 tointegralx -1.8 -> -2 Inexact Rounded
+dqintx052 tointegralx -1.9 -> -2 Inexact Rounded
+-- next two would be NaN using quantize(x, 0)
+dqintx053 tointegralx 10E+60 -> 1.0E+61
+dqintx054 tointegralx -10E+60 -> -1.0E+61
+
+-- numbers around precision
+dqintx060 tointegralx '56267E-17' -> '0' Inexact Rounded
+dqintx061 tointegralx '56267E-5' -> '1' Inexact Rounded
+dqintx062 tointegralx '56267E-2' -> '563' Inexact Rounded
+dqintx063 tointegralx '56267E-1' -> '5627' Inexact Rounded
+dqintx065 tointegralx '56267E-0' -> '56267'
+dqintx066 tointegralx '56267E+0' -> '56267'
+dqintx067 tointegralx '56267E+1' -> '5.6267E+5'
+dqintx068 tointegralx '56267E+9' -> '5.6267E+13'
+dqintx069 tointegralx '56267E+10' -> '5.6267E+14'
+dqintx070 tointegralx '56267E+11' -> '5.6267E+15'
+dqintx071 tointegralx '56267E+12' -> '5.6267E+16'
+dqintx072 tointegralx '56267E+13' -> '5.6267E+17'
+dqintx073 tointegralx '1.23E+96' -> '1.23E+96'
+dqintx074 tointegralx '1.23E+6144' -> #47ffd300000000000000000000000000 Clamped
+
+dqintx080 tointegralx '-56267E-10' -> '-0' Inexact Rounded
+dqintx081 tointegralx '-56267E-5' -> '-1' Inexact Rounded
+dqintx082 tointegralx '-56267E-2' -> '-563' Inexact Rounded
+dqintx083 tointegralx '-56267E-1' -> '-5627' Inexact Rounded
+dqintx085 tointegralx '-56267E-0' -> '-56267'
+dqintx086 tointegralx '-56267E+0' -> '-56267'
+dqintx087 tointegralx '-56267E+1' -> '-5.6267E+5'
+dqintx088 tointegralx '-56267E+9' -> '-5.6267E+13'
+dqintx089 tointegralx '-56267E+10' -> '-5.6267E+14'
+dqintx090 tointegralx '-56267E+11' -> '-5.6267E+15'
+dqintx091 tointegralx '-56267E+12' -> '-5.6267E+16'
+dqintx092 tointegralx '-56267E+13' -> '-5.6267E+17'
+dqintx093 tointegralx '-1.23E+96' -> '-1.23E+96'
+dqintx094 tointegralx '-1.23E+6144' -> #c7ffd300000000000000000000000000 Clamped
+
+-- subnormal inputs
+dqintx100 tointegralx 1E-299 -> 0 Inexact Rounded
+dqintx101 tointegralx 0.1E-299 -> 0 Inexact Rounded
+dqintx102 tointegralx 0.01E-299 -> 0 Inexact Rounded
+dqintx103 tointegralx 0E-299 -> 0
+
+-- specials and zeros
+dqintx120 tointegralx 'Inf' -> Infinity
+dqintx121 tointegralx '-Inf' -> -Infinity
+dqintx122 tointegralx NaN -> NaN
+dqintx123 tointegralx sNaN -> NaN Invalid_operation
+dqintx124 tointegralx 0 -> 0
+dqintx125 tointegralx -0 -> -0
+dqintx126 tointegralx 0.000 -> 0
+dqintx127 tointegralx 0.00 -> 0
+dqintx128 tointegralx 0.0 -> 0
+dqintx129 tointegralx 0 -> 0
+dqintx130 tointegralx 0E-3 -> 0
+dqintx131 tointegralx 0E-2 -> 0
+dqintx132 tointegralx 0E-1 -> 0
+dqintx133 tointegralx 0E-0 -> 0
+dqintx134 tointegralx 0E+1 -> 0E+1
+dqintx135 tointegralx 0E+2 -> 0E+2
+dqintx136 tointegralx 0E+3 -> 0E+3
+dqintx137 tointegralx 0E+4 -> 0E+4
+dqintx138 tointegralx 0E+5 -> 0E+5
+dqintx139 tointegralx -0.000 -> -0
+dqintx140 tointegralx -0.00 -> -0
+dqintx141 tointegralx -0.0 -> -0
+dqintx142 tointegralx -0 -> -0
+dqintx143 tointegralx -0E-3 -> -0
+dqintx144 tointegralx -0E-2 -> -0
+dqintx145 tointegralx -0E-1 -> -0
+dqintx146 tointegralx -0E-0 -> -0
+dqintx147 tointegralx -0E+1 -> -0E+1
+dqintx148 tointegralx -0E+2 -> -0E+2
+dqintx149 tointegralx -0E+3 -> -0E+3
+dqintx150 tointegralx -0E+4 -> -0E+4
+dqintx151 tointegralx -0E+5 -> -0E+5
+-- propagating NaNs
+dqintx152 tointegralx NaN808 -> NaN808
+dqintx153 tointegralx sNaN080 -> NaN80 Invalid_operation
+dqintx154 tointegralx -NaN808 -> -NaN808
+dqintx155 tointegralx -sNaN080 -> -NaN80 Invalid_operation
+dqintx156 tointegralx -NaN -> -NaN
+dqintx157 tointegralx -sNaN -> -NaN Invalid_operation
+
+-- examples
+rounding: half_up
+dqintx200 tointegralx 2.1 -> 2 Inexact Rounded
+dqintx201 tointegralx 100 -> 100
+dqintx202 tointegralx 100.0 -> 100 Rounded
+dqintx203 tointegralx 101.5 -> 102 Inexact Rounded
+dqintx204 tointegralx -101.5 -> -102 Inexact Rounded
+dqintx205 tointegralx 10E+5 -> 1.0E+6
+dqintx206 tointegralx 7.89E+77 -> 7.89E+77
+dqintx207 tointegralx -Inf -> -Infinity
+
+
+-- all rounding modes
+rounding: half_even
+dqintx210 tointegralx 55.5 -> 56 Inexact Rounded
+dqintx211 tointegralx 56.5 -> 56 Inexact Rounded
+dqintx212 tointegralx 57.5 -> 58 Inexact Rounded
+dqintx213 tointegralx -55.5 -> -56 Inexact Rounded
+dqintx214 tointegralx -56.5 -> -56 Inexact Rounded
+dqintx215 tointegralx -57.5 -> -58 Inexact Rounded
+
+rounding: half_up
+
+dqintx220 tointegralx 55.5 -> 56 Inexact Rounded
+dqintx221 tointegralx 56.5 -> 57 Inexact Rounded
+dqintx222 tointegralx 57.5 -> 58 Inexact Rounded
+dqintx223 tointegralx -55.5 -> -56 Inexact Rounded
+dqintx224 tointegralx -56.5 -> -57 Inexact Rounded
+dqintx225 tointegralx -57.5 -> -58 Inexact Rounded
+
+rounding: half_down
+
+dqintx230 tointegralx 55.5 -> 55 Inexact Rounded
+dqintx231 tointegralx 56.5 -> 56 Inexact Rounded
+dqintx232 tointegralx 57.5 -> 57 Inexact Rounded
+dqintx233 tointegralx -55.5 -> -55 Inexact Rounded
+dqintx234 tointegralx -56.5 -> -56 Inexact Rounded
+dqintx235 tointegralx -57.5 -> -57 Inexact Rounded
+
+rounding: up
+
+dqintx240 tointegralx 55.3 -> 56 Inexact Rounded
+dqintx241 tointegralx 56.3 -> 57 Inexact Rounded
+dqintx242 tointegralx 57.3 -> 58 Inexact Rounded
+dqintx243 tointegralx -55.3 -> -56 Inexact Rounded
+dqintx244 tointegralx -56.3 -> -57 Inexact Rounded
+dqintx245 tointegralx -57.3 -> -58 Inexact Rounded
+
+rounding: down
+
+dqintx250 tointegralx 55.7 -> 55 Inexact Rounded
+dqintx251 tointegralx 56.7 -> 56 Inexact Rounded
+dqintx252 tointegralx 57.7 -> 57 Inexact Rounded
+dqintx253 tointegralx -55.7 -> -55 Inexact Rounded
+dqintx254 tointegralx -56.7 -> -56 Inexact Rounded
+dqintx255 tointegralx -57.7 -> -57 Inexact Rounded
+
+rounding: ceiling
+
+dqintx260 tointegralx 55.3 -> 56 Inexact Rounded
+dqintx261 tointegralx 56.3 -> 57 Inexact Rounded
+dqintx262 tointegralx 57.3 -> 58 Inexact Rounded
+dqintx263 tointegralx -55.3 -> -55 Inexact Rounded
+dqintx264 tointegralx -56.3 -> -56 Inexact Rounded
+dqintx265 tointegralx -57.3 -> -57 Inexact Rounded
+
+rounding: floor
+
+dqintx270 tointegralx 55.7 -> 55 Inexact Rounded
+dqintx271 tointegralx 56.7 -> 56 Inexact Rounded
+dqintx272 tointegralx 57.7 -> 57 Inexact Rounded
+dqintx273 tointegralx -55.7 -> -56 Inexact Rounded
+dqintx274 tointegralx -56.7 -> -57 Inexact Rounded
+dqintx275 tointegralx -57.7 -> -58 Inexact Rounded
+
+-- Int and uInt32 edge values for testing conversions
+dqintx300 tointegralx -2147483646 -> -2147483646
+dqintx301 tointegralx -2147483647 -> -2147483647
+dqintx302 tointegralx -2147483648 -> -2147483648
+dqintx303 tointegralx -2147483649 -> -2147483649
+dqintx304 tointegralx 2147483646 -> 2147483646
+dqintx305 tointegralx 2147483647 -> 2147483647
+dqintx306 tointegralx 2147483648 -> 2147483648
+dqintx307 tointegralx 2147483649 -> 2147483649
+dqintx308 tointegralx 4294967294 -> 4294967294
+dqintx309 tointegralx 4294967295 -> 4294967295
+dqintx310 tointegralx 4294967296 -> 4294967296
+dqintx311 tointegralx 4294967297 -> 4294967297
+
diff --git a/Lib/test/decimaltestdata/dqXor.decTest b/Lib/test/decimaltestdata/dqXor.decTest
new file mode 100644
index 0000000..61bdbe2
--- /dev/null
+++ b/Lib/test/decimaltestdata/dqXor.decTest
@@ -0,0 +1,410 @@
+------------------------------------------------------------------------
+-- dqXor.decTest -- digitwise logical XOR for decQuads --
+-- Copyright (c) IBM Corporation, 1981, 2007. All rights reserved. --
+------------------------------------------------------------------------
+-- Please see the document "General Decimal Arithmetic Testcases" --
+-- at http://www2.hursley.ibm.com/decimal for the description of --
+-- these testcases. --
+-- --
+-- These testcases are experimental ('beta' versions), and they --
+-- may contain errors. They are offered on an as-is basis. In --
+-- particular, achieving the same results as the tests here is not --
+-- a guarantee that an implementation complies with any Standard --
+-- or specification. The tests are not exhaustive. --
+-- --
+-- Please send comments, suggestions, and corrections to the author: --
+-- Mike Cowlishaw, IBM Fellow --
+-- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK --
+-- mfc@uk.ibm.com --
+------------------------------------------------------------------------
+version: 2.56
+
+extended: 1
+clamp: 1
+precision: 34
+maxExponent: 6144
+minExponent: -6143
+rounding: half_even
+
+-- Sanity check (truth table)
+dqxor001 xor 0 0 -> 0
+dqxor002 xor 0 1 -> 1
+dqxor003 xor 1 0 -> 1
+dqxor004 xor 1 1 -> 0
+dqxor005 xor 1100 1010 -> 110
+-- and at msd and msd-1
+dqxor006 xor 0000000000000000000000000000000000 0000000000000000000000000000000000 -> 0
+dqxor007 xor 0000000000000000000000000000000000 1000000000000000000000000000000000 -> 1000000000000000000000000000000000
+dqxor008 xor 1000000000000000000000000000000000 0000000000000000000000000000000000 -> 1000000000000000000000000000000000
+dqxor009 xor 1000000000000000000000000000000000 1000000000000000000000000000000000 -> 0
+dqxor010 xor 0000000000000000000000000000000000 0000000000000000000000000000000000 -> 0
+dqxor011 xor 0000000000000000000000000000000000 0100000000000000000000000000000000 -> 100000000000000000000000000000000
+dqxor012 xor 0100000000000000000000000000000000 0000000000000000000000000000000000 -> 100000000000000000000000000000000
+dqxor013 xor 0100000000000000000000000000000000 0100000000000000000000000000000000 -> 0
+
+-- Various lengths
+-- 1234567890123456789012345678901234
+dqxor601 xor 0111111111111111111111111111111111 1111111111111111111111111111111111 -> 1000000000000000000000000000000000
+dqxor602 xor 1011111111111111111111111111111111 1111111111111111111111111111111111 -> 100000000000000000000000000000000
+dqxor603 xor 1101111111111111111111111111111111 1111111111111111111111111111111111 -> 10000000000000000000000000000000
+dqxor604 xor 1110111111111111111111111111111111 1111111111111111111111111111111111 -> 1000000000000000000000000000000
+dqxor605 xor 1111011111111111111111111111111111 1111111111111111111111111111111111 -> 100000000000000000000000000000
+dqxor606 xor 1111101111111111111111111111111111 1111111111111111111111111111111111 -> 10000000000000000000000000000
+dqxor607 xor 1111110111111111111111111111111111 1111111111111111111111111111111111 -> 1000000000000000000000000000
+dqxor608 xor 1111111011111111111111111111111111 1111111111111111111111111111111111 -> 100000000000000000000000000
+dqxor609 xor 1111111101111111111111111111111111 1111111111111111111111111111111111 -> 10000000000000000000000000
+dqxor610 xor 1111111110111111111111111111111111 1111111111111111111111111111111111 -> 1000000000000000000000000
+dqxor611 xor 1111111111011111111111111111111111 1111111111111111111111111111111111 -> 100000000000000000000000
+dqxor612 xor 1111111111101111111111111111111111 1111111111111111111111111111111111 -> 10000000000000000000000
+dqxor613 xor 1111111111110111111111111111111111 1111111111111111111111111111111111 -> 1000000000000000000000
+dqxor614 xor 1111111111111011111111111111111111 1111111111111111111111111111111111 -> 100000000000000000000
+dqxor615 xor 1111111111111101111111111111111111 1111111111111111111111111111111111 -> 10000000000000000000
+dqxor616 xor 1111111111111110111111111111111111 1111111111111111111111111111111111 -> 1000000000000000000
+dqxor617 xor 1111111111111111011111111111111111 1111111111111111111111111111111111 -> 100000000000000000
+dqxor618 xor 1111111111111111101111111111111111 1111111111111111111111111111111111 -> 10000000000000000
+dqxor619 xor 1111111111111111110111111111111111 1111111111111111111111111111111111 -> 1000000000000000
+dqxor620 xor 1111111111111111111011111111111111 1111111111111111111111111111111111 -> 100000000000000
+dqxor621 xor 1111111111111111111101111111111111 1111111111111111111111111111111111 -> 10000000000000
+dqxor622 xor 1111111111111111111110111111111111 1111111111111111111111111111111111 -> 1000000000000
+dqxor623 xor 1111111111111111111111011111111111 1111111111111111111111111111111111 -> 100000000000
+dqxor624 xor 1111111111111111111111101111111111 1111111111111111111111111111111111 -> 10000000000
+dqxor625 xor 1111111111111111111111110111111111 1111111111111111111111111111111111 -> 1000000000
+dqxor626 xor 1111111111111111111111111011111111 1111111111111111111111111111111111 -> 100000000
+dqxor627 xor 1111111111111111111111111101111111 1111111111111111111111111111111111 -> 10000000
+dqxor628 xor 1111111111111111111111111110111111 1111111111111111111111111111111111 -> 1000000
+dqxor629 xor 1111111111111111111111111111011111 1111111111111111111111111111111111 -> 100000
+dqxor630 xor 1111111111111111111111111111101111 1111111111111111111111111111111111 -> 10000
+dqxor631 xor 1111111111111111111111111111110111 1111111111111111111111111111111111 -> 1000
+dqxor632 xor 1111111111111111111111111111111011 1111111111111111111111111111111111 -> 100
+dqxor633 xor 1111111111111111111111111111111101 1111111111111111111111111111111111 -> 10
+dqxor634 xor 1111111111111111111111111111111110 1111111111111111111111111111111111 -> 1
+
+dqxor641 xor 1111111111111111111111111111111111 0111111111111111111111111111111111 -> 1000000000000000000000000000000000
+dqxor642 xor 1111111111111111111111111111111111 1011111111111111111111111111111111 -> 100000000000000000000000000000000
+dqxor643 xor 1111111111111111111111111111111111 1101111111111111111111111111111111 -> 10000000000000000000000000000000
+dqxor644 xor 1111111111111111111111111111111111 1110111111111111111111111111111111 -> 1000000000000000000000000000000
+dqxor645 xor 1111111111111111111111111111111111 1111011111111111111111111111111111 -> 100000000000000000000000000000
+dqxor646 xor 1111111111111111111111111111111111 1111101111111111111111111111111111 -> 10000000000000000000000000000
+dqxor647 xor 1111111111111111111111111111111111 1111110111111111111111111111111111 -> 1000000000000000000000000000
+dqxor648 xor 1111111111111111111111111111111111 1111111011111111111111111111111111 -> 100000000000000000000000000
+dqxor649 xor 1111111111111111111111111111111111 1111111101111111111111111111111111 -> 10000000000000000000000000
+dqxor650 xor 1111111111111111111111111111111111 1111111110111111111111111111111111 -> 1000000000000000000000000
+dqxor651 xor 1111111111111111111111111111111111 1111111111011111111111111111111111 -> 100000000000000000000000
+dqxor652 xor 1111111111111111111111111111111111 1111111111101111111111111111111111 -> 10000000000000000000000
+dqxor653 xor 1111111111111111111111111111111111 1111111111110111111111111111111111 -> 1000000000000000000000
+dqxor654 xor 1111111111111111111111111111111111 1111111111111011111111111111111111 -> 100000000000000000000
+dqxor655 xor 1111111111111111111111111111111111 1111111111111101111111111111111111 -> 10000000000000000000
+dqxor656 xor 1111111111111111111111111111111111 1111111111111110111111111111111111 -> 1000000000000000000
+dqxor657 xor 1111111111111111111111111111111111 1111111111111111011111111111111111 -> 100000000000000000
+dqxor658 xor 1111111111111111111111111111111111 1111111111111111101111111111111111 -> 10000000000000000
+dqxor659 xor 1111111111111111111111111111111111 1111111111111111110111111111111111 -> 1000000000000000
+dqxor660 xor 1111111111111111111111111111111111 1111111111111111111011111111111111 -> 100000000000000
+dqxor661 xor 1111111111111111111111111111111111 1111111111111111111101111111111111 -> 10000000000000
+dqxor662 xor 1111111111111111111111111111111111 1111111111111111111110111111111111 -> 1000000000000
+dqxor663 xor 1111111111111111111111111111111111 1111111111111111111111011111111111 -> 100000000000
+dqxor664 xor 1111111111111111111111111111111111 1111111111111111111111101111111111 -> 10000000000
+dqxor665 xor 1111111111111111111111111111111111 1111111111111111111111110111111111 -> 1000000000
+dqxor666 xor 1111111111111111111111111111111111 1111111111111111111111111011111111 -> 100000000
+dqxor667 xor 1111111111111111111111111111111111 1111111111111111111111111101111111 -> 10000000
+dqxor668 xor 1111111111111111111111111111111111 1111111111111111111111111110111111 -> 1000000
+dqxor669 xor 1111111111111111111111111111111111 1111111111111111111111111111011111 -> 100000
+dqxor670 xor 1111111111111111111111111111111111 1111111111111111111111111111101111 -> 10000
+dqxor671 xor 1111111111111111111111111111111111 1111111111111111111111111111110111 -> 1000
+dqxor672 xor 1111111111111111111111111111111111 1111111111111111111111111111111011 -> 100
+dqxor673 xor 1111111111111111111111111111111111 1111111111111111111111111111111101 -> 10
+dqxor674 xor 1111111111111111111111111111111111 1111111111111111111111111111111110 -> 1
+dqxor675 xor 0111111111111111111111111111111111 1111111111111111111111111111111110 -> 1000000000000000000000000000000001
+dqxor676 xor 1111111111111111111111111111111111 1111111111111111111111111111111110 -> 1
+
+
+dqxor021 xor 1111111110000000 1111111110000000 -> 0
+dqxor022 xor 111111110000000 111111110000000 -> 0
+dqxor023 xor 11111110000000 11111110000000 -> 0
+dqxor024 xor 1111110000000 1111110000000 -> 0
+dqxor025 xor 111110000000 111110000000 -> 0
+dqxor026 xor 11110000000 11110000000 -> 0
+dqxor027 xor 1110000000 1110000000 -> 0
+dqxor028 xor 110000000 110000000 -> 0
+dqxor029 xor 10000000 10000000 -> 0
+dqxor030 xor 1000000 1000000 -> 0
+dqxor031 xor 100000 100000 -> 0
+dqxor032 xor 10000 10000 -> 0
+dqxor033 xor 1000 1000 -> 0
+dqxor034 xor 100 100 -> 0
+dqxor035 xor 10 10 -> 0
+dqxor036 xor 1 1 -> 0
+
+dqxor040 xor 111111111 111111111111 -> 111000000000
+dqxor041 xor 11111111 111111111111 -> 111100000000
+dqxor042 xor 11111111 111111111 -> 100000000
+dqxor043 xor 1111111 100000010 -> 101111101
+dqxor044 xor 111111 100000100 -> 100111011
+dqxor045 xor 11111 100001000 -> 100010111
+dqxor046 xor 1111 100010000 -> 100011111
+dqxor047 xor 111 100100000 -> 100100111
+dqxor048 xor 11 101000000 -> 101000011
+dqxor049 xor 1 110000000 -> 110000001
+
+dqxor050 xor 1111111111 1 -> 1111111110
+dqxor051 xor 111111111 1 -> 111111110
+dqxor052 xor 11111111 1 -> 11111110
+dqxor053 xor 1111111 1 -> 1111110
+dqxor054 xor 111111 1 -> 111110
+dqxor055 xor 11111 1 -> 11110
+dqxor056 xor 1111 1 -> 1110
+dqxor057 xor 111 1 -> 110
+dqxor058 xor 11 1 -> 10
+dqxor059 xor 1 1 -> 0
+
+dqxor060 xor 1111111111 0 -> 1111111111
+dqxor061 xor 111111111 0 -> 111111111
+dqxor062 xor 11111111 0 -> 11111111
+dqxor063 xor 1111111 0 -> 1111111
+dqxor064 xor 111111 0 -> 111111
+dqxor065 xor 11111 0 -> 11111
+dqxor066 xor 1111 0 -> 1111
+dqxor067 xor 111 0 -> 111
+dqxor068 xor 11 0 -> 11
+dqxor069 xor 1 0 -> 1
+
+dqxor070 xor 1 1111111111 -> 1111111110
+dqxor071 xor 1 111111111 -> 111111110
+dqxor072 xor 1 11111111 -> 11111110
+dqxor073 xor 1 1111111 -> 1111110
+dqxor074 xor 1 111111 -> 111110
+dqxor075 xor 1 11111 -> 11110
+dqxor076 xor 1 1111 -> 1110
+dqxor077 xor 1 111 -> 110
+dqxor078 xor 1 11 -> 10
+dqxor079 xor 1 1 -> 0
+
+dqxor080 xor 0 1111111111 -> 1111111111
+dqxor081 xor 0 111111111 -> 111111111
+dqxor082 xor 0 11111111 -> 11111111
+dqxor083 xor 0 1111111 -> 1111111
+dqxor084 xor 0 111111 -> 111111
+dqxor085 xor 0 11111 -> 11111
+dqxor086 xor 0 1111 -> 1111
+dqxor087 xor 0 111 -> 111
+dqxor088 xor 0 11 -> 11
+dqxor089 xor 0 1 -> 1
+
+dqxor090 xor 011111111 111101111 -> 100010000
+dqxor091 xor 101111111 111101111 -> 10010000
+dqxor092 xor 110111111 111101111 -> 1010000
+dqxor093 xor 111011111 111101111 -> 110000
+dqxor094 xor 111101111 111101111 -> 0
+dqxor095 xor 111110111 111101111 -> 11000
+dqxor096 xor 111111011 111101111 -> 10100
+dqxor097 xor 111111101 111101111 -> 10010
+dqxor098 xor 111111110 111101111 -> 10001
+
+dqxor100 xor 111101111 011111111 -> 100010000
+dqxor101 xor 111101111 101111111 -> 10010000
+dqxor102 xor 111101111 110111111 -> 1010000
+dqxor103 xor 111101111 111011111 -> 110000
+dqxor104 xor 111101111 111101111 -> 0
+dqxor105 xor 111101111 111110111 -> 11000
+dqxor106 xor 111101111 111111011 -> 10100
+dqxor107 xor 111101111 111111101 -> 10010
+dqxor108 xor 111101111 111111110 -> 10001
+
+-- non-0/1 should not be accepted, nor should signs
+dqxor220 xor 111111112 111111111 -> NaN Invalid_operation
+dqxor221 xor 333333333 333333333 -> NaN Invalid_operation
+dqxor222 xor 555555555 555555555 -> NaN Invalid_operation
+dqxor223 xor 777777777 777777777 -> NaN Invalid_operation
+dqxor224 xor 999999999 999999999 -> NaN Invalid_operation
+dqxor225 xor 222222222 999999999 -> NaN Invalid_operation
+dqxor226 xor 444444444 999999999 -> NaN Invalid_operation
+dqxor227 xor 666666666 999999999 -> NaN Invalid_operation
+dqxor228 xor 888888888 999999999 -> NaN Invalid_operation
+dqxor229 xor 999999999 222222222 -> NaN Invalid_operation
+dqxor230 xor 999999999 444444444 -> NaN Invalid_operation
+dqxor231 xor 999999999 666666666 -> NaN Invalid_operation
+dqxor232 xor 999999999 888888888 -> NaN Invalid_operation
+-- a few randoms
+dqxor240 xor 567468689 -934981942 -> NaN Invalid_operation
+dqxor241 xor 567367689 934981942 -> NaN Invalid_operation
+dqxor242 xor -631917772 -706014634 -> NaN Invalid_operation
+dqxor243 xor -756253257 138579234 -> NaN Invalid_operation
+dqxor244 xor 835590149 567435400 -> NaN Invalid_operation
+-- test MSD
+dqxor250 xor 2000000111000111000111000000000000 1000000111000111000111000000000000 -> NaN Invalid_operation
+dqxor251 xor 7000000111000111000111000000000000 1000000111000111000111000000000000 -> NaN Invalid_operation
+dqxor252 xor 8000000111000111000111000000000000 1000000111000111000111000000000000 -> NaN Invalid_operation
+dqxor253 xor 9000000111000111000111000000000000 1000000111000111000111000000000000 -> NaN Invalid_operation
+dqxor254 xor 2000000111000111000111000000000000 0000000111000111000111000000000000 -> NaN Invalid_operation
+dqxor255 xor 7000000111000111000111000000000000 0000000111000111000111000000000000 -> NaN Invalid_operation
+dqxor256 xor 8000000111000111000111000000000000 0000000111000111000111000000000000 -> NaN Invalid_operation
+dqxor257 xor 9000000111000111000111000000000000 0000000111000111000111000000000000 -> NaN Invalid_operation
+dqxor258 xor 1000000111000111000111000000000000 2000000111000111000111000000000000 -> NaN Invalid_operation
+dqxor259 xor 1000000111000111000111000000000000 7000000111000111000111000000000000 -> NaN Invalid_operation
+dqxor260 xor 1000000111000111000111000000000000 8000000111000111000111000000000000 -> NaN Invalid_operation
+dqxor261 xor 1000000111000111000111000000000000 9000000111000111000111000000000000 -> NaN Invalid_operation
+dqxor262 xor 0000000111000111000111000000000000 2000000111000111000111000000000000 -> NaN Invalid_operation
+dqxor263 xor 0000000111000111000111000000000000 7000000111000111000111000000000000 -> NaN Invalid_operation
+dqxor264 xor 0000000111000111000111000000000000 8000000111000111000111000000000000 -> NaN Invalid_operation
+dqxor265 xor 0000000111000111000111000000000000 9000000111000111000111000000000000 -> NaN Invalid_operation
+-- test MSD-1
+dqxor270 xor 0200000111000111000111001000000000 1000000111000111000111100000000010 -> NaN Invalid_operation
+dqxor271 xor 0700000111000111000111000100000000 1000000111000111000111010000000100 -> NaN Invalid_operation
+dqxor272 xor 0800000111000111000111000010000000 1000000111000111000111001000001000 -> NaN Invalid_operation
+dqxor273 xor 0900000111000111000111000001000000 1000000111000111000111000100010000 -> NaN Invalid_operation
+dqxor274 xor 1000000111000111000111000000100000 0200000111000111000111000010100000 -> NaN Invalid_operation
+dqxor275 xor 1000000111000111000111000000010000 0700000111000111000111000001000000 -> NaN Invalid_operation
+dqxor276 xor 1000000111000111000111000000001000 0800000111000111000111000010100000 -> NaN Invalid_operation
+dqxor277 xor 1000000111000111000111000000000100 0900000111000111000111000000010000 -> NaN Invalid_operation
+-- test LSD
+dqxor280 xor 0010000111000111000111000000000002 1000000111000111000111000100000001 -> NaN Invalid_operation
+dqxor281 xor 0001000111000111000111000000000007 1000000111000111000111001000000011 -> NaN Invalid_operation
+dqxor282 xor 0000000111000111000111100000000008 1000000111000111000111010000000001 -> NaN Invalid_operation
+dqxor283 xor 0000000111000111000111010000000009 1000000111000111000111100000000001 -> NaN Invalid_operation
+dqxor284 xor 1000000111000111000111001000000000 0001000111000111000111000000000002 -> NaN Invalid_operation
+dqxor285 xor 1000000111000111000111000100000000 0010000111000111000111000000000007 -> NaN Invalid_operation
+dqxor286 xor 1000000111000111000111000010000000 0100000111000111000111000000000008 -> NaN Invalid_operation
+dqxor287 xor 1000000111000111000111000001000000 1000000111000111000111000000000009 -> NaN Invalid_operation
+-- test Middie
+dqxor288 xor 0010000111000111000111000020000000 1000000111000111000111001000000000 -> NaN Invalid_operation
+dqxor289 xor 0001000111000111000111000070000001 1000000111000111000111000100000000 -> NaN Invalid_operation
+dqxor290 xor 0000000111000111000111100080000010 1000000111000111000111000010000000 -> NaN Invalid_operation
+dqxor291 xor 0000000111000111000111010090000100 1000000111000111000111000001000000 -> NaN Invalid_operation
+dqxor292 xor 1000000111000111000111001000001000 0000000111000111000111000020100000 -> NaN Invalid_operation
+dqxor293 xor 1000000111000111000111000100010000 0000000111000111000111000070010000 -> NaN Invalid_operation
+dqxor294 xor 1000000111000111000111000010100000 0000000111000111000111000080001000 -> NaN Invalid_operation
+dqxor295 xor 1000000111000111000111000001000000 0000000111000111000111000090000100 -> NaN Invalid_operation
+-- signs
+dqxor296 xor -1000000111000111000111000001000000 -0000001110001110001110010000000100 -> NaN Invalid_operation
+dqxor297 xor -1000000111000111000111000001000000 0000001110001110001110000010000100 -> NaN Invalid_operation
+dqxor298 xor 1000000111000111000111000001000000 -0000001110001110001110001000000100 -> NaN Invalid_operation
+dqxor299 xor 1000000111000111000111000001000000 0000001110001110001110000011000100 -> 1000001001001001001001000010000100
+
+-- Nmax, Nmin, Ntiny-like
+dqxor331 xor 2 9.99999999E+999 -> NaN Invalid_operation
+dqxor332 xor 3 1E-999 -> NaN Invalid_operation
+dqxor333 xor 4 1.00000000E-2821 -> NaN Invalid_operation
+dqxor334 xor 5 1E-900 -> NaN Invalid_operation
+dqxor335 xor 6 -1E-900 -> NaN Invalid_operation
+dqxor336 xor 7 -1.00000000E-999 -> NaN Invalid_operation
+dqxor337 xor 8 -1E-999 -> NaN Invalid_operation
+dqxor338 xor 9 -9.99999999E+999 -> NaN Invalid_operation
+dqxor341 xor 9.99999999E+999 -18 -> NaN Invalid_operation
+dqxor342 xor 1E-999 01 -> NaN Invalid_operation
+dqxor343 xor 1.00000000E-999 -18 -> NaN Invalid_operation
+dqxor344 xor 1E-908 18 -> NaN Invalid_operation
+dqxor345 xor -1E-907 -10 -> NaN Invalid_operation
+dqxor346 xor -1.00000000E-999 18 -> NaN Invalid_operation
+dqxor347 xor -1E-999 10 -> NaN Invalid_operation
+dqxor348 xor -9.99999999E+2991 -18 -> NaN Invalid_operation
+
+-- A few other non-integers
+dqxor361 xor 1.0 1 -> NaN Invalid_operation
+dqxor362 xor 1E+1 1 -> NaN Invalid_operation
+dqxor363 xor 0.0 1 -> NaN Invalid_operation
+dqxor364 xor 0E+1 1 -> NaN Invalid_operation
+dqxor365 xor 9.9 1 -> NaN Invalid_operation
+dqxor366 xor 9E+1 1 -> NaN Invalid_operation
+dqxor371 xor 0 1.0 -> NaN Invalid_operation
+dqxor372 xor 0 1E+1 -> NaN Invalid_operation
+dqxor373 xor 0 0.0 -> NaN Invalid_operation
+dqxor374 xor 0 0E+1 -> NaN Invalid_operation
+dqxor375 xor 0 9.9 -> NaN Invalid_operation
+dqxor376 xor 0 9E+1 -> NaN Invalid_operation
+
+-- All Specials are in error
+dqxor780 xor -Inf -Inf -> NaN Invalid_operation
+dqxor781 xor -Inf -1000 -> NaN Invalid_operation
+dqxor782 xor -Inf -1 -> NaN Invalid_operation
+dqxor783 xor -Inf -0 -> NaN Invalid_operation
+dqxor784 xor -Inf 0 -> NaN Invalid_operation
+dqxor785 xor -Inf 1 -> NaN Invalid_operation
+dqxor786 xor -Inf 1000 -> NaN Invalid_operation
+dqxor787 xor -1000 -Inf -> NaN Invalid_operation
+dqxor788 xor -Inf -Inf -> NaN Invalid_operation
+dqxor789 xor -1 -Inf -> NaN Invalid_operation
+dqxor790 xor -0 -Inf -> NaN Invalid_operation
+dqxor791 xor 0 -Inf -> NaN Invalid_operation
+dqxor792 xor 1 -Inf -> NaN Invalid_operation
+dqxor793 xor 1000 -Inf -> NaN Invalid_operation
+dqxor794 xor Inf -Inf -> NaN Invalid_operation
+
+dqxor800 xor Inf -Inf -> NaN Invalid_operation
+dqxor801 xor Inf -1000 -> NaN Invalid_operation
+dqxor802 xor Inf -1 -> NaN Invalid_operation
+dqxor803 xor Inf -0 -> NaN Invalid_operation
+dqxor804 xor Inf 0 -> NaN Invalid_operation
+dqxor805 xor Inf 1 -> NaN Invalid_operation
+dqxor806 xor Inf 1000 -> NaN Invalid_operation
+dqxor807 xor Inf Inf -> NaN Invalid_operation
+dqxor808 xor -1000 Inf -> NaN Invalid_operation
+dqxor809 xor -Inf Inf -> NaN Invalid_operation
+dqxor810 xor -1 Inf -> NaN Invalid_operation
+dqxor811 xor -0 Inf -> NaN Invalid_operation
+dqxor812 xor 0 Inf -> NaN Invalid_operation
+dqxor813 xor 1 Inf -> NaN Invalid_operation
+dqxor814 xor 1000 Inf -> NaN Invalid_operation
+dqxor815 xor Inf Inf -> NaN Invalid_operation
+
+dqxor821 xor NaN -Inf -> NaN Invalid_operation
+dqxor822 xor NaN -1000 -> NaN Invalid_operation
+dqxor823 xor NaN -1 -> NaN Invalid_operation
+dqxor824 xor NaN -0 -> NaN Invalid_operation
+dqxor825 xor NaN 0 -> NaN Invalid_operation
+dqxor826 xor NaN 1 -> NaN Invalid_operation
+dqxor827 xor NaN 1000 -> NaN Invalid_operation
+dqxor828 xor NaN Inf -> NaN Invalid_operation
+dqxor829 xor NaN NaN -> NaN Invalid_operation
+dqxor830 xor -Inf NaN -> NaN Invalid_operation
+dqxor831 xor -1000 NaN -> NaN Invalid_operation
+dqxor832 xor -1 NaN -> NaN Invalid_operation
+dqxor833 xor -0 NaN -> NaN Invalid_operation
+dqxor834 xor 0 NaN -> NaN Invalid_operation
+dqxor835 xor 1 NaN -> NaN Invalid_operation
+dqxor836 xor 1000 NaN -> NaN Invalid_operation
+dqxor837 xor Inf NaN -> NaN Invalid_operation
+
+dqxor841 xor sNaN -Inf -> NaN Invalid_operation
+dqxor842 xor sNaN -1000 -> NaN Invalid_operation
+dqxor843 xor sNaN -1 -> NaN Invalid_operation
+dqxor844 xor sNaN -0 -> NaN Invalid_operation
+dqxor845 xor sNaN 0 -> NaN Invalid_operation
+dqxor846 xor sNaN 1 -> NaN Invalid_operation
+dqxor847 xor sNaN 1000 -> NaN Invalid_operation
+dqxor848 xor sNaN NaN -> NaN Invalid_operation
+dqxor849 xor sNaN sNaN -> NaN Invalid_operation
+dqxor850 xor NaN sNaN -> NaN Invalid_operation
+dqxor851 xor -Inf sNaN -> NaN Invalid_operation
+dqxor852 xor -1000 sNaN -> NaN Invalid_operation
+dqxor853 xor -1 sNaN -> NaN Invalid_operation
+dqxor854 xor -0 sNaN -> NaN Invalid_operation
+dqxor855 xor 0 sNaN -> NaN Invalid_operation
+dqxor856 xor 1 sNaN -> NaN Invalid_operation
+dqxor857 xor 1000 sNaN -> NaN Invalid_operation
+dqxor858 xor Inf sNaN -> NaN Invalid_operation
+dqxor859 xor NaN sNaN -> NaN Invalid_operation
+
+-- propagating NaNs
+dqxor861 xor NaN1 -Inf -> NaN Invalid_operation
+dqxor862 xor +NaN2 -1000 -> NaN Invalid_operation
+dqxor863 xor NaN3 1000 -> NaN Invalid_operation
+dqxor864 xor NaN4 Inf -> NaN Invalid_operation
+dqxor865 xor NaN5 +NaN6 -> NaN Invalid_operation
+dqxor866 xor -Inf NaN7 -> NaN Invalid_operation
+dqxor867 xor -1000 NaN8 -> NaN Invalid_operation
+dqxor868 xor 1000 NaN9 -> NaN Invalid_operation
+dqxor869 xor Inf +NaN10 -> NaN Invalid_operation
+dqxor871 xor sNaN11 -Inf -> NaN Invalid_operation
+dqxor872 xor sNaN12 -1000 -> NaN Invalid_operation
+dqxor873 xor sNaN13 1000 -> NaN Invalid_operation
+dqxor874 xor sNaN14 NaN17 -> NaN Invalid_operation
+dqxor875 xor sNaN15 sNaN18 -> NaN Invalid_operation
+dqxor876 xor NaN16 sNaN19 -> NaN Invalid_operation
+dqxor877 xor -Inf +sNaN20 -> NaN Invalid_operation
+dqxor878 xor -1000 sNaN21 -> NaN Invalid_operation
+dqxor879 xor 1000 sNaN22 -> NaN Invalid_operation
+dqxor880 xor Inf sNaN23 -> NaN Invalid_operation
+dqxor881 xor +NaN25 +sNaN24 -> NaN Invalid_operation
+dqxor882 xor -NaN26 NaN28 -> NaN Invalid_operation
+dqxor883 xor -sNaN27 sNaN29 -> NaN Invalid_operation
+dqxor884 xor 1000 -NaN30 -> NaN Invalid_operation
+dqxor885 xor 1000 -sNaN31 -> NaN Invalid_operation
diff --git a/Lib/test/decimaltestdata/dsBase.decTest b/Lib/test/decimaltestdata/dsBase.decTest
new file mode 100644
index 0000000..d0632fd
--- /dev/null
+++ b/Lib/test/decimaltestdata/dsBase.decTest
@@ -0,0 +1,1061 @@
+------------------------------------------------------------------------
+-- dsBase.decTest -- base decSingle <--> string conversions --
+-- Copyright (c) IBM Corporation, 1981, 2007. All rights reserved. --
+------------------------------------------------------------------------
+-- Please see the document "General Decimal Arithmetic Testcases" --
+-- at http://www2.hursley.ibm.com/decimal for the description of --
+-- these testcases. --
+-- --
+-- These testcases are experimental ('beta' versions), and they --
+-- may contain errors. They are offered on an as-is basis. In --
+-- particular, achieving the same results as the tests here is not --
+-- a guarantee that an implementation complies with any Standard --
+-- or specification. The tests are not exhaustive. --
+-- --
+-- Please send comments, suggestions, and corrections to the author: --
+-- Mike Cowlishaw, IBM Fellow --
+-- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK --
+-- mfc@uk.ibm.com --
+------------------------------------------------------------------------
+version: 2.56
+
+-- This file tests base conversions from string to a decimal number
+-- and back to a string (in Scientific form)
+
+-- Note that unlike other operations the operand is subject to rounding
+-- to conform to emax and precision settings (that is, numbers will
+-- conform to rules and exponent will be in permitted range). The
+-- 'left hand side', therefore, may have numbers that cannot be
+-- represented in a decSingle. Some testcases go to the limit of the
+-- next-wider format, and hence these testcases may also be used to
+-- test narrowing and widening operations.
+
+extended: 1
+clamp: 1
+precision: 7
+maxExponent: 96
+minExponent: -95
+rounding: half_even
+
+dsbas001 toSci 0 -> 0
+dsbas002 toSci 1 -> 1
+dsbas003 toSci 1.0 -> 1.0
+dsbas004 toSci 1.00 -> 1.00
+dsbas005 toSci 10 -> 10
+dsbas006 toSci 1000 -> 1000
+dsbas007 toSci 10.0 -> 10.0
+dsbas008 toSci 10.1 -> 10.1
+dsbas009 toSci 10.4 -> 10.4
+dsbas010 toSci 10.5 -> 10.5
+dsbas011 toSci 10.6 -> 10.6
+dsbas012 toSci 10.9 -> 10.9
+dsbas013 toSci 11.0 -> 11.0
+dsbas014 toSci 1.234 -> 1.234
+dsbas015 toSci 0.123 -> 0.123
+dsbas016 toSci 0.012 -> 0.012
+dsbas017 toSci -0 -> -0
+dsbas018 toSci -0.0 -> -0.0
+dsbas019 toSci -00.00 -> -0.00
+
+dsbas021 toSci -1 -> -1
+dsbas022 toSci -1.0 -> -1.0
+dsbas023 toSci -0.1 -> -0.1
+dsbas024 toSci -9.1 -> -9.1
+dsbas025 toSci -9.11 -> -9.11
+dsbas026 toSci -9.119 -> -9.119
+dsbas027 toSci -9.999 -> -9.999
+
+dsbas030 toSci '1234.567' -> '1234.567'
+dsbas031 toSci '1234.000' -> '1234.000'
+dsbas032 toSci '1234912' -> '1234912'
+dsbas033 toSci '0.00001234567' -> '0.00001234567'
+dsbas034 toSci '0.000001234567' -> '0.000001234567'
+dsbas035 toSci '0.0000001234567' -> '1.234567E-7'
+dsbas036 toSci '0.00000001234567' -> '1.234567E-8'
+
+dsbas037 toSci '0.1234564' -> '0.1234564'
+dsbas038 toSci '0.1234565' -> '0.1234565'
+
+-- test finite bounds (Negs of, then 0, Ntiny, Nmin, other, Nmax)
+dsbsn001 toSci -9.999999E+96 -> -9.999999E+96
+dsbsn002 toSci -1E-95 -> -1E-95
+dsbsn003 toSci -1E-101 -> -1E-101 Subnormal
+dsbsn004 toSci -0 -> -0
+dsbsn005 toSci +0 -> 0
+dsbsn006 toSci +1E-101 -> 1E-101 Subnormal
+dsbsn007 toSci +1E-95 -> 1E-95
+dsbsn008 toSci +9.999999E+96 -> 9.999999E+96
+
+-- String [many more examples are implicitly tested elsewhere]
+-- strings without E cannot generate E in result
+dsbas040 toSci "12" -> '12'
+dsbas041 toSci "-76" -> '-76'
+dsbas042 toSci "12.76" -> '12.76'
+dsbas043 toSci "+12.76" -> '12.76'
+dsbas044 toSci "012.76" -> '12.76'
+dsbas045 toSci "+0.003" -> '0.003'
+dsbas046 toSci "17." -> '17'
+dsbas047 toSci ".5" -> '0.5'
+dsbas048 toSci "044" -> '44'
+dsbas049 toSci "0044" -> '44'
+dsbas050 toSci "0.0005" -> '0.0005'
+dsbas051 toSci "00.00005" -> '0.00005'
+dsbas052 toSci "0.000005" -> '0.000005'
+dsbas053 toSci "0.0000050" -> '0.0000050'
+dsbas054 toSci "0.0000005" -> '5E-7'
+dsbas055 toSci "0.00000005" -> '5E-8'
+dsbas056 toSci "12678.54" -> '12678.54'
+dsbas057 toSci "2678.543" -> '2678.543'
+dsbas058 toSci "345678.5" -> '345678.5'
+dsbas059 toSci "0678.5432" -> '678.5432'
+dsbas060 toSci "678.5432" -> '678.5432'
+dsbas061 toSci "+678.5432" -> '678.5432'
+dsbas062 toSci "+0678.5432" -> '678.5432'
+dsbas063 toSci "+00678.5432" -> '678.5432'
+dsbas064 toSci "-678.5432" -> '-678.5432'
+dsbas065 toSci "-0678.5432" -> '-678.5432'
+dsbas066 toSci "-00678.5432" -> '-678.5432'
+-- examples
+dsbas067 toSci "5E-6" -> '0.000005'
+dsbas068 toSci "50E-7" -> '0.0000050'
+dsbas069 toSci "5E-7" -> '5E-7'
+
+-- [No exotics as no Unicode]
+
+-- rounded with dots in all (including edge) places
+dsbas071 toSci .1234567890123456 -> 0.1234568 Inexact Rounded
+dsbas072 toSci 1.234567890123456 -> 1.234568 Inexact Rounded
+dsbas073 toSci 12.34567890123456 -> 12.34568 Inexact Rounded
+dsbas074 toSci 123.4567890123456 -> 123.4568 Inexact Rounded
+dsbas075 toSci 1234.567890123456 -> 1234.568 Inexact Rounded
+dsbas076 toSci 12345.67890123456 -> 12345.68 Inexact Rounded
+dsbas077 toSci 123456.7890123456 -> 123456.8 Inexact Rounded
+dsbas078 toSci 1234567.890123456 -> 1234568 Inexact Rounded
+dsbas079 toSci 12345678.90123456 -> 1.234568E+7 Inexact Rounded
+dsbas080 toSci 123456789.0123456 -> 1.234568E+8 Inexact Rounded
+dsbas081 toSci 1234567890.123456 -> 1.234568E+9 Inexact Rounded
+dsbas082 toSci 12345678901.23456 -> 1.234568E+10 Inexact Rounded
+dsbas083 toSci 123456789012.3456 -> 1.234568E+11 Inexact Rounded
+dsbas084 toSci 1234567890123.456 -> 1.234568E+12 Inexact Rounded
+dsbas085 toSci 12345678901234.56 -> 1.234568E+13 Inexact Rounded
+dsbas086 toSci 123456789012345.6 -> 1.234568E+14 Inexact Rounded
+dsbas087 toSci 1234567890123456. -> 1.234568E+15 Inexact Rounded
+dsbas088 toSci 1234567890123456 -> 1.234568E+15 Inexact Rounded
+
+-- Numbers with E
+dsbas130 toSci "0.000E-1" -> '0.0000'
+dsbas131 toSci "0.000E-2" -> '0.00000'
+dsbas132 toSci "0.000E-3" -> '0.000000'
+dsbas133 toSci "0.000E-4" -> '0E-7'
+dsbas134 toSci "0.00E-2" -> '0.0000'
+dsbas135 toSci "0.00E-3" -> '0.00000'
+dsbas136 toSci "0.00E-4" -> '0.000000'
+dsbas137 toSci "0.00E-5" -> '0E-7'
+dsbas138 toSci "+0E+9" -> '0E+9'
+dsbas139 toSci "-0E+9" -> '-0E+9'
+dsbas140 toSci "1E+9" -> '1E+9'
+dsbas141 toSci "1e+09" -> '1E+9'
+dsbas142 toSci "1E+90" -> '1E+90'
+dsbas143 toSci "+1E+009" -> '1E+9'
+dsbas144 toSci "0E+9" -> '0E+9'
+dsbas145 toSci "1E+9" -> '1E+9'
+dsbas146 toSci "1E+09" -> '1E+9'
+dsbas147 toSci "1e+90" -> '1E+90'
+dsbas148 toSci "1E+009" -> '1E+9'
+dsbas149 toSci "000E+9" -> '0E+9'
+dsbas150 toSci "1E9" -> '1E+9'
+dsbas151 toSci "1e09" -> '1E+9'
+dsbas152 toSci "1E90" -> '1E+90'
+dsbas153 toSci "1E009" -> '1E+9'
+dsbas154 toSci "0E9" -> '0E+9'
+dsbas155 toSci "0.000e+0" -> '0.000'
+dsbas156 toSci "0.000E-1" -> '0.0000'
+dsbas157 toSci "4E+9" -> '4E+9'
+dsbas158 toSci "44E+9" -> '4.4E+10'
+dsbas159 toSci "0.73e-7" -> '7.3E-8'
+dsbas160 toSci "00E+9" -> '0E+9'
+dsbas161 toSci "00E-9" -> '0E-9'
+dsbas162 toSci "10E+9" -> '1.0E+10'
+dsbas163 toSci "10E+09" -> '1.0E+10'
+dsbas164 toSci "10e+90" -> '1.0E+91'
+dsbas165 toSci "10E+009" -> '1.0E+10'
+dsbas166 toSci "100e+9" -> '1.00E+11'
+dsbas167 toSci "100e+09" -> '1.00E+11'
+dsbas168 toSci "100E+90" -> '1.00E+92'
+dsbas169 toSci "100e+009" -> '1.00E+11'
+
+dsbas170 toSci "1.265" -> '1.265'
+dsbas171 toSci "1.265E-20" -> '1.265E-20'
+dsbas172 toSci "1.265E-8" -> '1.265E-8'
+dsbas173 toSci "1.265E-4" -> '0.0001265'
+dsbas174 toSci "1.265E-3" -> '0.001265'
+dsbas175 toSci "1.265E-2" -> '0.01265'
+dsbas176 toSci "1.265E-1" -> '0.1265'
+dsbas177 toSci "1.265E-0" -> '1.265'
+dsbas178 toSci "1.265E+1" -> '12.65'
+dsbas179 toSci "1.265E+2" -> '126.5'
+dsbas180 toSci "1.265E+3" -> '1265'
+dsbas181 toSci "1.265E+4" -> '1.265E+4'
+dsbas182 toSci "1.265E+8" -> '1.265E+8'
+dsbas183 toSci "1.265E+20" -> '1.265E+20'
+
+dsbas190 toSci "12.65" -> '12.65'
+dsbas191 toSci "12.65E-20" -> '1.265E-19'
+dsbas192 toSci "12.65E-8" -> '1.265E-7'
+dsbas193 toSci "12.65E-4" -> '0.001265'
+dsbas194 toSci "12.65E-3" -> '0.01265'
+dsbas195 toSci "12.65E-2" -> '0.1265'
+dsbas196 toSci "12.65E-1" -> '1.265'
+dsbas197 toSci "12.65E-0" -> '12.65'
+dsbas198 toSci "12.65E+1" -> '126.5'
+dsbas199 toSci "12.65E+2" -> '1265'
+dsbas200 toSci "12.65E+3" -> '1.265E+4'
+dsbas201 toSci "12.65E+4" -> '1.265E+5'
+dsbas202 toSci "12.65E+8" -> '1.265E+9'
+dsbas203 toSci "12.65E+20" -> '1.265E+21'
+
+dsbas210 toSci "126.5" -> '126.5'
+dsbas211 toSci "126.5E-20" -> '1.265E-18'
+dsbas212 toSci "126.5E-8" -> '0.000001265'
+dsbas213 toSci "126.5E-4" -> '0.01265'
+dsbas214 toSci "126.5E-3" -> '0.1265'
+dsbas215 toSci "126.5E-2" -> '1.265'
+dsbas216 toSci "126.5E-1" -> '12.65'
+dsbas217 toSci "126.5E-0" -> '126.5'
+dsbas218 toSci "126.5E+1" -> '1265'
+dsbas219 toSci "126.5E+2" -> '1.265E+4'
+dsbas220 toSci "126.5E+3" -> '1.265E+5'
+dsbas221 toSci "126.5E+4" -> '1.265E+6'
+dsbas222 toSci "126.5E+8" -> '1.265E+10'
+dsbas223 toSci "126.5E+20" -> '1.265E+22'
+
+dsbas230 toSci "1265" -> '1265'
+dsbas231 toSci "1265E-20" -> '1.265E-17'
+dsbas232 toSci "1265E-8" -> '0.00001265'
+dsbas233 toSci "1265E-4" -> '0.1265'
+dsbas234 toSci "1265E-3" -> '1.265'
+dsbas235 toSci "1265E-2" -> '12.65'
+dsbas236 toSci "1265E-1" -> '126.5'
+dsbas237 toSci "1265E-0" -> '1265'
+dsbas238 toSci "1265E+1" -> '1.265E+4'
+dsbas239 toSci "1265E+2" -> '1.265E+5'
+dsbas240 toSci "1265E+3" -> '1.265E+6'
+dsbas241 toSci "1265E+4" -> '1.265E+7'
+dsbas242 toSci "1265E+8" -> '1.265E+11'
+dsbas243 toSci "1265E+20" -> '1.265E+23'
+
+dsbas250 toSci "0.1265" -> '0.1265'
+dsbas251 toSci "0.1265E-20" -> '1.265E-21'
+dsbas252 toSci "0.1265E-8" -> '1.265E-9'
+dsbas253 toSci "0.1265E-4" -> '0.00001265'
+dsbas254 toSci "0.1265E-3" -> '0.0001265'
+dsbas255 toSci "0.1265E-2" -> '0.001265'
+dsbas256 toSci "0.1265E-1" -> '0.01265'
+dsbas257 toSci "0.1265E-0" -> '0.1265'
+dsbas258 toSci "0.1265E+1" -> '1.265'
+dsbas259 toSci "0.1265E+2" -> '12.65'
+dsbas260 toSci "0.1265E+3" -> '126.5'
+dsbas261 toSci "0.1265E+4" -> '1265'
+dsbas262 toSci "0.1265E+8" -> '1.265E+7'
+dsbas263 toSci "0.1265E+20" -> '1.265E+19'
+
+-- some more negative zeros [systematic tests below]
+dsbas290 toSci "-0.000E-1" -> '-0.0000'
+dsbas291 toSci "-0.000E-2" -> '-0.00000'
+dsbas292 toSci "-0.000E-3" -> '-0.000000'
+dsbas293 toSci "-0.000E-4" -> '-0E-7'
+dsbas294 toSci "-0.00E-2" -> '-0.0000'
+dsbas295 toSci "-0.00E-3" -> '-0.00000'
+dsbas296 toSci "-0.0E-2" -> '-0.000'
+dsbas297 toSci "-0.0E-3" -> '-0.0000'
+dsbas298 toSci "-0E-2" -> '-0.00'
+dsbas299 toSci "-0E-3" -> '-0.000'
+
+-- Engineering notation tests
+dsbas301 toSci 10e12 -> 1.0E+13
+dsbas302 toEng 10e12 -> 10E+12
+dsbas303 toSci 10e11 -> 1.0E+12
+dsbas304 toEng 10e11 -> 1.0E+12
+dsbas305 toSci 10e10 -> 1.0E+11
+dsbas306 toEng 10e10 -> 100E+9
+dsbas307 toSci 10e9 -> 1.0E+10
+dsbas308 toEng 10e9 -> 10E+9
+dsbas309 toSci 10e8 -> 1.0E+9
+dsbas310 toEng 10e8 -> 1.0E+9
+dsbas311 toSci 10e7 -> 1.0E+8
+dsbas312 toEng 10e7 -> 100E+6
+dsbas313 toSci 10e6 -> 1.0E+7
+dsbas314 toEng 10e6 -> 10E+6
+dsbas315 toSci 10e5 -> 1.0E+6
+dsbas316 toEng 10e5 -> 1.0E+6
+dsbas317 toSci 10e4 -> 1.0E+5
+dsbas318 toEng 10e4 -> 100E+3
+dsbas319 toSci 10e3 -> 1.0E+4
+dsbas320 toEng 10e3 -> 10E+3
+dsbas321 toSci 10e2 -> 1.0E+3
+dsbas322 toEng 10e2 -> 1.0E+3
+dsbas323 toSci 10e1 -> 1.0E+2
+dsbas324 toEng 10e1 -> 100
+dsbas325 toSci 10e0 -> 10
+dsbas326 toEng 10e0 -> 10
+dsbas327 toSci 10e-1 -> 1.0
+dsbas328 toEng 10e-1 -> 1.0
+dsbas329 toSci 10e-2 -> 0.10
+dsbas330 toEng 10e-2 -> 0.10
+dsbas331 toSci 10e-3 -> 0.010
+dsbas332 toEng 10e-3 -> 0.010
+dsbas333 toSci 10e-4 -> 0.0010
+dsbas334 toEng 10e-4 -> 0.0010
+dsbas335 toSci 10e-5 -> 0.00010
+dsbas336 toEng 10e-5 -> 0.00010
+dsbas337 toSci 10e-6 -> 0.000010
+dsbas338 toEng 10e-6 -> 0.000010
+dsbas339 toSci 10e-7 -> 0.0000010
+dsbas340 toEng 10e-7 -> 0.0000010
+dsbas341 toSci 10e-8 -> 1.0E-7
+dsbas342 toEng 10e-8 -> 100E-9
+dsbas343 toSci 10e-9 -> 1.0E-8
+dsbas344 toEng 10e-9 -> 10E-9
+dsbas345 toSci 10e-10 -> 1.0E-9
+dsbas346 toEng 10e-10 -> 1.0E-9
+dsbas347 toSci 10e-11 -> 1.0E-10
+dsbas348 toEng 10e-11 -> 100E-12
+dsbas349 toSci 10e-12 -> 1.0E-11
+dsbas350 toEng 10e-12 -> 10E-12
+dsbas351 toSci 10e-13 -> 1.0E-12
+dsbas352 toEng 10e-13 -> 1.0E-12
+
+dsbas361 toSci 7E12 -> 7E+12
+dsbas362 toEng 7E12 -> 7E+12
+dsbas363 toSci 7E11 -> 7E+11
+dsbas364 toEng 7E11 -> 700E+9
+dsbas365 toSci 7E10 -> 7E+10
+dsbas366 toEng 7E10 -> 70E+9
+dsbas367 toSci 7E9 -> 7E+9
+dsbas368 toEng 7E9 -> 7E+9
+dsbas369 toSci 7E8 -> 7E+8
+dsbas370 toEng 7E8 -> 700E+6
+dsbas371 toSci 7E7 -> 7E+7
+dsbas372 toEng 7E7 -> 70E+6
+dsbas373 toSci 7E6 -> 7E+6
+dsbas374 toEng 7E6 -> 7E+6
+dsbas375 toSci 7E5 -> 7E+5
+dsbas376 toEng 7E5 -> 700E+3
+dsbas377 toSci 7E4 -> 7E+4
+dsbas378 toEng 7E4 -> 70E+3
+dsbas379 toSci 7E3 -> 7E+3
+dsbas380 toEng 7E3 -> 7E+3
+dsbas381 toSci 7E2 -> 7E+2
+dsbas382 toEng 7E2 -> 700
+dsbas383 toSci 7E1 -> 7E+1
+dsbas384 toEng 7E1 -> 70
+dsbas385 toSci 7E0 -> 7
+dsbas386 toEng 7E0 -> 7
+dsbas387 toSci 7E-1 -> 0.7
+dsbas388 toEng 7E-1 -> 0.7
+dsbas389 toSci 7E-2 -> 0.07
+dsbas390 toEng 7E-2 -> 0.07
+dsbas391 toSci 7E-3 -> 0.007
+dsbas392 toEng 7E-3 -> 0.007
+dsbas393 toSci 7E-4 -> 0.0007
+dsbas394 toEng 7E-4 -> 0.0007
+dsbas395 toSci 7E-5 -> 0.00007
+dsbas396 toEng 7E-5 -> 0.00007
+dsbas397 toSci 7E-6 -> 0.000007
+dsbas398 toEng 7E-6 -> 0.000007
+dsbas399 toSci 7E-7 -> 7E-7
+dsbas400 toEng 7E-7 -> 700E-9
+dsbas401 toSci 7E-8 -> 7E-8
+dsbas402 toEng 7E-8 -> 70E-9
+dsbas403 toSci 7E-9 -> 7E-9
+dsbas404 toEng 7E-9 -> 7E-9
+dsbas405 toSci 7E-10 -> 7E-10
+dsbas406 toEng 7E-10 -> 700E-12
+dsbas407 toSci 7E-11 -> 7E-11
+dsbas408 toEng 7E-11 -> 70E-12
+dsbas409 toSci 7E-12 -> 7E-12
+dsbas410 toEng 7E-12 -> 7E-12
+dsbas411 toSci 7E-13 -> 7E-13
+dsbas412 toEng 7E-13 -> 700E-15
+
+-- Exacts remain exact up to precision ..
+dsbas420 toSci 100 -> 100
+dsbas422 toSci 1000 -> 1000
+dsbas424 toSci 999.9 -> 999.9
+dsbas426 toSci 1000.0 -> 1000.0
+dsbas428 toSci 1000.1 -> 1000.1
+dsbas430 toSci 10000 -> 10000
+dsbas432 toSci 1000 -> 1000
+dsbas434 toSci 10000 -> 10000
+dsbas436 toSci 100000 -> 100000
+dsbas438 toSci 1000000 -> 1000000
+dsbas440 toSci 10000000 -> 1.000000E+7 Rounded
+dsbas442 toSci 10000000 -> 1.000000E+7 Rounded
+dsbas444 toSci 10000003 -> 1.000000E+7 Rounded Inexact
+dsbas446 toSci 10000005 -> 1.000000E+7 Rounded Inexact
+dsbas448 toSci 100000050 -> 1.000000E+8 Rounded Inexact
+dsbas450 toSci 10000009 -> 1.000001E+7 Rounded Inexact
+dsbas452 toSci 100000000 -> 1.000000E+8 Rounded
+dsbas454 toSci 100000003 -> 1.000000E+8 Rounded Inexact
+dsbas456 toSci 100000005 -> 1.000000E+8 Rounded Inexact
+dsbas458 toSci 100000009 -> 1.000000E+8 Rounded Inexact
+dsbas460 toSci 1000000000 -> 1.000000E+9 Rounded
+dsbas462 toSci 1000000300 -> 1.000000E+9 Rounded Inexact
+dsbas464 toSci 1000000500 -> 1.000000E+9 Rounded Inexact
+dsbas466 toSci 1000000900 -> 1.000001E+9 Rounded Inexact
+dsbas468 toSci 10000000000 -> 1.000000E+10 Rounded
+dsbas470 toSci 10000003000 -> 1.000000E+10 Rounded Inexact
+dsbas472 toSci 10000005000 -> 1.000000E+10 Rounded Inexact
+dsbas474 toSci 10000009000 -> 1.000001E+10 Rounded Inexact
+
+-- check rounding modes heeded
+rounding: ceiling
+dsbsr401 toSci 1.1123450 -> 1.112345 Rounded
+dsbsr402 toSci 1.11234549 -> 1.112346 Rounded Inexact
+dsbsr403 toSci 1.11234550 -> 1.112346 Rounded Inexact
+dsbsr404 toSci 1.11234551 -> 1.112346 Rounded Inexact
+rounding: up
+dsbsr405 toSci 1.1123450 -> 1.112345 Rounded
+dsbsr406 toSci 1.11234549 -> 1.112346 Rounded Inexact
+dsbsr407 toSci 1.11234550 -> 1.112346 Rounded Inexact
+dsbsr408 toSci 1.11234551 -> 1.112346 Rounded Inexact
+rounding: floor
+dsbsr410 toSci 1.1123450 -> 1.112345 Rounded
+dsbsr411 toSci 1.11234549 -> 1.112345 Rounded Inexact
+dsbsr412 toSci 1.11234550 -> 1.112345 Rounded Inexact
+dsbsr413 toSci 1.11234551 -> 1.112345 Rounded Inexact
+rounding: half_down
+dsbsr415 toSci 1.1123450 -> 1.112345 Rounded
+dsbsr416 toSci 1.11234549 -> 1.112345 Rounded Inexact
+dsbsr417 toSci 1.11234550 -> 1.112345 Rounded Inexact
+dsbsr418 toSci 1.11234650 -> 1.112346 Rounded Inexact
+dsbsr419 toSci 1.11234551 -> 1.112346 Rounded Inexact
+rounding: half_even
+dsbsr421 toSci 1.1123450 -> 1.112345 Rounded
+dsbsr422 toSci 1.11234549 -> 1.112345 Rounded Inexact
+dsbsr423 toSci 1.11234550 -> 1.112346 Rounded Inexact
+dsbsr424 toSci 1.11234650 -> 1.112346 Rounded Inexact
+dsbsr425 toSci 1.11234551 -> 1.112346 Rounded Inexact
+rounding: down
+dsbsr426 toSci 1.1123450 -> 1.112345 Rounded
+dsbsr427 toSci 1.11234549 -> 1.112345 Rounded Inexact
+dsbsr428 toSci 1.11234550 -> 1.112345 Rounded Inexact
+dsbsr429 toSci 1.11234551 -> 1.112345 Rounded Inexact
+rounding: half_up
+dsbsr431 toSci 1.1123450 -> 1.112345 Rounded
+dsbsr432 toSci 1.11234549 -> 1.112345 Rounded Inexact
+dsbsr433 toSci 1.11234550 -> 1.112346 Rounded Inexact
+dsbsr434 toSci 1.11234650 -> 1.112347 Rounded Inexact
+dsbsr435 toSci 1.11234551 -> 1.112346 Rounded Inexact
+-- negatives
+rounding: ceiling
+dsbsr501 toSci -1.1123450 -> -1.112345 Rounded
+dsbsr502 toSci -1.11234549 -> -1.112345 Rounded Inexact
+dsbsr503 toSci -1.11234550 -> -1.112345 Rounded Inexact
+dsbsr504 toSci -1.11234551 -> -1.112345 Rounded Inexact
+rounding: up
+dsbsr505 toSci -1.1123450 -> -1.112345 Rounded
+dsbsr506 toSci -1.11234549 -> -1.112346 Rounded Inexact
+dsbsr507 toSci -1.11234550 -> -1.112346 Rounded Inexact
+dsbsr508 toSci -1.11234551 -> -1.112346 Rounded Inexact
+rounding: floor
+dsbsr510 toSci -1.1123450 -> -1.112345 Rounded
+dsbsr511 toSci -1.11234549 -> -1.112346 Rounded Inexact
+dsbsr512 toSci -1.11234550 -> -1.112346 Rounded Inexact
+dsbsr513 toSci -1.11234551 -> -1.112346 Rounded Inexact
+rounding: half_down
+dsbsr515 toSci -1.1123450 -> -1.112345 Rounded
+dsbsr516 toSci -1.11234549 -> -1.112345 Rounded Inexact
+dsbsr517 toSci -1.11234550 -> -1.112345 Rounded Inexact
+dsbsr518 toSci -1.11234650 -> -1.112346 Rounded Inexact
+dsbsr519 toSci -1.11234551 -> -1.112346 Rounded Inexact
+rounding: half_even
+dsbsr521 toSci -1.1123450 -> -1.112345 Rounded
+dsbsr522 toSci -1.11234549 -> -1.112345 Rounded Inexact
+dsbsr523 toSci -1.11234550 -> -1.112346 Rounded Inexact
+dsbsr524 toSci -1.11234650 -> -1.112346 Rounded Inexact
+dsbsr525 toSci -1.11234551 -> -1.112346 Rounded Inexact
+rounding: down
+dsbsr526 toSci -1.1123450 -> -1.112345 Rounded
+dsbsr527 toSci -1.11234549 -> -1.112345 Rounded Inexact
+dsbsr528 toSci -1.11234550 -> -1.112345 Rounded Inexact
+dsbsr529 toSci -1.11234551 -> -1.112345 Rounded Inexact
+rounding: half_up
+dsbsr531 toSci -1.1123450 -> -1.112345 Rounded
+dsbsr532 toSci -1.11234549 -> -1.112345 Rounded Inexact
+dsbsr533 toSci -1.11234550 -> -1.112346 Rounded Inexact
+dsbsr534 toSci -1.11234650 -> -1.112347 Rounded Inexact
+dsbsr535 toSci -1.11234551 -> -1.112346 Rounded Inexact
+
+rounding: half_even
+
+-- The 'baddies' tests from DiagBigDecimal, plus some new ones
+dsbas500 toSci '1..2' -> NaN Conversion_syntax
+dsbas501 toSci '.' -> NaN Conversion_syntax
+dsbas502 toSci '..' -> NaN Conversion_syntax
+dsbas503 toSci '++1' -> NaN Conversion_syntax
+dsbas504 toSci '--1' -> NaN Conversion_syntax
+dsbas505 toSci '-+1' -> NaN Conversion_syntax
+dsbas506 toSci '+-1' -> NaN Conversion_syntax
+dsbas507 toSci '12e' -> NaN Conversion_syntax
+dsbas508 toSci '12e++' -> NaN Conversion_syntax
+dsbas509 toSci '12f4' -> NaN Conversion_syntax
+dsbas510 toSci ' +1' -> NaN Conversion_syntax
+dsbas511 toSci '+ 1' -> NaN Conversion_syntax
+dsbas512 toSci '12 ' -> NaN Conversion_syntax
+dsbas513 toSci ' + 1' -> NaN Conversion_syntax
+dsbas514 toSci ' - 1 ' -> NaN Conversion_syntax
+dsbas515 toSci 'x' -> NaN Conversion_syntax
+dsbas516 toSci '-1-' -> NaN Conversion_syntax
+dsbas517 toSci '12-' -> NaN Conversion_syntax
+dsbas518 toSci '3+' -> NaN Conversion_syntax
+dsbas519 toSci '' -> NaN Conversion_syntax
+dsbas520 toSci '1e-' -> NaN Conversion_syntax
+dsbas521 toSci '7e99999a' -> NaN Conversion_syntax
+dsbas522 toSci '7e123567890x' -> NaN Conversion_syntax
+dsbas523 toSci '7e12356789012x' -> NaN Conversion_syntax
+dsbas524 toSci '' -> NaN Conversion_syntax
+dsbas525 toSci 'e100' -> NaN Conversion_syntax
+dsbas526 toSci '\u0e5a' -> NaN Conversion_syntax
+dsbas527 toSci '\u0b65' -> NaN Conversion_syntax
+dsbas528 toSci '123,65' -> NaN Conversion_syntax
+dsbas529 toSci '1.34.5' -> NaN Conversion_syntax
+dsbas530 toSci '.123.5' -> NaN Conversion_syntax
+dsbas531 toSci '01.35.' -> NaN Conversion_syntax
+dsbas532 toSci '01.35-' -> NaN Conversion_syntax
+dsbas533 toSci '0000..' -> NaN Conversion_syntax
+dsbas534 toSci '.0000.' -> NaN Conversion_syntax
+dsbas535 toSci '00..00' -> NaN Conversion_syntax
+dsbas536 toSci '111e*123' -> NaN Conversion_syntax
+dsbas537 toSci '111e123-' -> NaN Conversion_syntax
+dsbas538 toSci '111e+12+' -> NaN Conversion_syntax
+dsbas539 toSci '111e1-3-' -> NaN Conversion_syntax
+dsbas540 toSci '111e1*23' -> NaN Conversion_syntax
+dsbas541 toSci '111e1e+3' -> NaN Conversion_syntax
+dsbas542 toSci '1e1.0' -> NaN Conversion_syntax
+dsbas543 toSci '1e123e' -> NaN Conversion_syntax
+dsbas544 toSci 'ten' -> NaN Conversion_syntax
+dsbas545 toSci 'ONE' -> NaN Conversion_syntax
+dsbas546 toSci '1e.1' -> NaN Conversion_syntax
+dsbas547 toSci '1e1.' -> NaN Conversion_syntax
+dsbas548 toSci '1ee' -> NaN Conversion_syntax
+dsbas549 toSci 'e+1' -> NaN Conversion_syntax
+dsbas550 toSci '1.23.4' -> NaN Conversion_syntax
+dsbas551 toSci '1.2.1' -> NaN Conversion_syntax
+dsbas552 toSci '1E+1.2' -> NaN Conversion_syntax
+dsbas553 toSci '1E+1.2.3' -> NaN Conversion_syntax
+dsbas554 toSci '1E++1' -> NaN Conversion_syntax
+dsbas555 toSci '1E--1' -> NaN Conversion_syntax
+dsbas556 toSci '1E+-1' -> NaN Conversion_syntax
+dsbas557 toSci '1E-+1' -> NaN Conversion_syntax
+dsbas558 toSci '1E''1' -> NaN Conversion_syntax
+dsbas559 toSci "1E""1" -> NaN Conversion_syntax
+dsbas560 toSci "1E""""" -> NaN Conversion_syntax
+-- Near-specials
+dsbas561 toSci "qNaN" -> NaN Conversion_syntax
+dsbas562 toSci "NaNq" -> NaN Conversion_syntax
+dsbas563 toSci "NaNs" -> NaN Conversion_syntax
+dsbas564 toSci "Infi" -> NaN Conversion_syntax
+dsbas565 toSci "Infin" -> NaN Conversion_syntax
+dsbas566 toSci "Infini" -> NaN Conversion_syntax
+dsbas567 toSci "Infinit" -> NaN Conversion_syntax
+dsbas568 toSci "-Infinit" -> NaN Conversion_syntax
+dsbas569 toSci "0Inf" -> NaN Conversion_syntax
+dsbas570 toSci "9Inf" -> NaN Conversion_syntax
+dsbas571 toSci "-0Inf" -> NaN Conversion_syntax
+dsbas572 toSci "-9Inf" -> NaN Conversion_syntax
+dsbas573 toSci "-sNa" -> NaN Conversion_syntax
+dsbas574 toSci "xNaN" -> NaN Conversion_syntax
+dsbas575 toSci "0sNaN" -> NaN Conversion_syntax
+
+-- some baddies with dots and Es and dots and specials
+dsbas576 toSci 'e+1' -> NaN Conversion_syntax
+dsbas577 toSci '.e+1' -> NaN Conversion_syntax
+dsbas578 toSci '+.e+1' -> NaN Conversion_syntax
+dsbas579 toSci '-.e+' -> NaN Conversion_syntax
+dsbas580 toSci '-.e' -> NaN Conversion_syntax
+dsbas581 toSci 'E+1' -> NaN Conversion_syntax
+dsbas582 toSci '.E+1' -> NaN Conversion_syntax
+dsbas583 toSci '+.E+1' -> NaN Conversion_syntax
+dsbas584 toSci '-.E+' -> NaN Conversion_syntax
+dsbas585 toSci '-.E' -> NaN Conversion_syntax
+
+dsbas586 toSci '.NaN' -> NaN Conversion_syntax
+dsbas587 toSci '-.NaN' -> NaN Conversion_syntax
+dsbas588 toSci '+.sNaN' -> NaN Conversion_syntax
+dsbas589 toSci '+.Inf' -> NaN Conversion_syntax
+dsbas590 toSci '.Infinity' -> NaN Conversion_syntax
+
+-- Zeros
+dsbas601 toSci 0.000000000 -> 0E-9
+dsbas602 toSci 0.00000000 -> 0E-8
+dsbas603 toSci 0.0000000 -> 0E-7
+dsbas604 toSci 0.000000 -> 0.000000
+dsbas605 toSci 0.00000 -> 0.00000
+dsbas606 toSci 0.0000 -> 0.0000
+dsbas607 toSci 0.000 -> 0.000
+dsbas608 toSci 0.00 -> 0.00
+dsbas609 toSci 0.0 -> 0.0
+dsbas610 toSci .0 -> 0.0
+dsbas611 toSci 0. -> 0
+dsbas612 toSci -.0 -> -0.0
+dsbas613 toSci -0. -> -0
+dsbas614 toSci -0.0 -> -0.0
+dsbas615 toSci -0.00 -> -0.00
+dsbas616 toSci -0.000 -> -0.000
+dsbas617 toSci -0.0000 -> -0.0000
+dsbas618 toSci -0.00000 -> -0.00000
+dsbas619 toSci -0.000000 -> -0.000000
+dsbas620 toSci -0.0000000 -> -0E-7
+dsbas621 toSci -0.00000000 -> -0E-8
+dsbas622 toSci -0.000000000 -> -0E-9
+
+dsbas630 toSci 0.00E+0 -> 0.00
+dsbas631 toSci 0.00E+1 -> 0.0
+dsbas632 toSci 0.00E+2 -> 0
+dsbas633 toSci 0.00E+3 -> 0E+1
+dsbas634 toSci 0.00E+4 -> 0E+2
+dsbas635 toSci 0.00E+5 -> 0E+3
+dsbas636 toSci 0.00E+6 -> 0E+4
+dsbas637 toSci 0.00E+7 -> 0E+5
+dsbas638 toSci 0.00E+8 -> 0E+6
+dsbas639 toSci 0.00E+9 -> 0E+7
+
+dsbas640 toSci 0.0E+0 -> 0.0
+dsbas641 toSci 0.0E+1 -> 0
+dsbas642 toSci 0.0E+2 -> 0E+1
+dsbas643 toSci 0.0E+3 -> 0E+2
+dsbas644 toSci 0.0E+4 -> 0E+3
+dsbas645 toSci 0.0E+5 -> 0E+4
+dsbas646 toSci 0.0E+6 -> 0E+5
+dsbas647 toSci 0.0E+7 -> 0E+6
+dsbas648 toSci 0.0E+8 -> 0E+7
+dsbas649 toSci 0.0E+9 -> 0E+8
+
+dsbas650 toSci 0E+0 -> 0
+dsbas651 toSci 0E+1 -> 0E+1
+dsbas652 toSci 0E+2 -> 0E+2
+dsbas653 toSci 0E+3 -> 0E+3
+dsbas654 toSci 0E+4 -> 0E+4
+dsbas655 toSci 0E+5 -> 0E+5
+dsbas656 toSci 0E+6 -> 0E+6
+dsbas657 toSci 0E+7 -> 0E+7
+dsbas658 toSci 0E+8 -> 0E+8
+dsbas659 toSci 0E+9 -> 0E+9
+
+dsbas660 toSci 0.0E-0 -> 0.0
+dsbas661 toSci 0.0E-1 -> 0.00
+dsbas662 toSci 0.0E-2 -> 0.000
+dsbas663 toSci 0.0E-3 -> 0.0000
+dsbas664 toSci 0.0E-4 -> 0.00000
+dsbas665 toSci 0.0E-5 -> 0.000000
+dsbas666 toSci 0.0E-6 -> 0E-7
+dsbas667 toSci 0.0E-7 -> 0E-8
+dsbas668 toSci 0.0E-8 -> 0E-9
+dsbas669 toSci 0.0E-9 -> 0E-10
+
+dsbas670 toSci 0.00E-0 -> 0.00
+dsbas671 toSci 0.00E-1 -> 0.000
+dsbas672 toSci 0.00E-2 -> 0.0000
+dsbas673 toSci 0.00E-3 -> 0.00000
+dsbas674 toSci 0.00E-4 -> 0.000000
+dsbas675 toSci 0.00E-5 -> 0E-7
+dsbas676 toSci 0.00E-6 -> 0E-8
+dsbas677 toSci 0.00E-7 -> 0E-9
+dsbas678 toSci 0.00E-8 -> 0E-10
+dsbas679 toSci 0.00E-9 -> 0E-11
+
+dsbas680 toSci 000000. -> 0
+dsbas681 toSci 00000. -> 0
+dsbas682 toSci 0000. -> 0
+dsbas683 toSci 000. -> 0
+dsbas684 toSci 00. -> 0
+dsbas685 toSci 0. -> 0
+dsbas686 toSci +00000. -> 0
+dsbas687 toSci -00000. -> -0
+dsbas688 toSci +0. -> 0
+dsbas689 toSci -0. -> -0
+
+-- Specials
+dsbas700 toSci "NaN" -> NaN
+dsbas701 toSci "nan" -> NaN
+dsbas702 toSci "nAn" -> NaN
+dsbas703 toSci "NAN" -> NaN
+dsbas704 toSci "+NaN" -> NaN
+dsbas705 toSci "+nan" -> NaN
+dsbas706 toSci "+nAn" -> NaN
+dsbas707 toSci "+NAN" -> NaN
+dsbas708 toSci "-NaN" -> -NaN
+dsbas709 toSci "-nan" -> -NaN
+dsbas710 toSci "-nAn" -> -NaN
+dsbas711 toSci "-NAN" -> -NaN
+dsbas712 toSci 'NaN0' -> NaN
+dsbas713 toSci 'NaN1' -> NaN1
+dsbas714 toSci 'NaN12' -> NaN12
+dsbas715 toSci 'NaN123' -> NaN123
+dsbas716 toSci 'NaN1234' -> NaN1234
+dsbas717 toSci 'NaN01' -> NaN1
+dsbas718 toSci 'NaN012' -> NaN12
+dsbas719 toSci 'NaN0123' -> NaN123
+dsbas720 toSci 'NaN01234' -> NaN1234
+dsbas721 toSci 'NaN001' -> NaN1
+dsbas722 toSci 'NaN0012' -> NaN12
+dsbas723 toSci 'NaN00123' -> NaN123
+dsbas724 toSci 'NaN001234' -> NaN1234
+dsbas725 toSci 'NaN1234567890123456' -> NaN Conversion_syntax
+dsbas726 toSci 'NaN123e+1' -> NaN Conversion_syntax
+dsbas727 toSci 'NaN12.45' -> NaN Conversion_syntax
+dsbas728 toSci 'NaN-12' -> NaN Conversion_syntax
+dsbas729 toSci 'NaN+12' -> NaN Conversion_syntax
+
+dsbas730 toSci "sNaN" -> sNaN
+dsbas731 toSci "snan" -> sNaN
+dsbas732 toSci "SnAn" -> sNaN
+dsbas733 toSci "SNAN" -> sNaN
+dsbas734 toSci "+sNaN" -> sNaN
+dsbas735 toSci "+snan" -> sNaN
+dsbas736 toSci "+SnAn" -> sNaN
+dsbas737 toSci "+SNAN" -> sNaN
+dsbas738 toSci "-sNaN" -> -sNaN
+dsbas739 toSci "-snan" -> -sNaN
+dsbas740 toSci "-SnAn" -> -sNaN
+dsbas741 toSci "-SNAN" -> -sNaN
+dsbas742 toSci 'sNaN0000' -> sNaN
+dsbas743 toSci 'sNaN7' -> sNaN7
+dsbas744 toSci 'sNaN007234' -> sNaN7234
+dsbas745 toSci 'sNaN7234561234567890' -> NaN Conversion_syntax
+dsbas746 toSci 'sNaN72.45' -> NaN Conversion_syntax
+dsbas747 toSci 'sNaN-72' -> NaN Conversion_syntax
+
+dsbas748 toSci "Inf" -> Infinity
+dsbas749 toSci "inf" -> Infinity
+dsbas750 toSci "iNf" -> Infinity
+dsbas751 toSci "INF" -> Infinity
+dsbas752 toSci "+Inf" -> Infinity
+dsbas753 toSci "+inf" -> Infinity
+dsbas754 toSci "+iNf" -> Infinity
+dsbas755 toSci "+INF" -> Infinity
+dsbas756 toSci "-Inf" -> -Infinity
+dsbas757 toSci "-inf" -> -Infinity
+dsbas758 toSci "-iNf" -> -Infinity
+dsbas759 toSci "-INF" -> -Infinity
+
+dsbas760 toSci "Infinity" -> Infinity
+dsbas761 toSci "infinity" -> Infinity
+dsbas762 toSci "iNfInItY" -> Infinity
+dsbas763 toSci "INFINITY" -> Infinity
+dsbas764 toSci "+Infinity" -> Infinity
+dsbas765 toSci "+infinity" -> Infinity
+dsbas766 toSci "+iNfInItY" -> Infinity
+dsbas767 toSci "+INFINITY" -> Infinity
+dsbas768 toSci "-Infinity" -> -Infinity
+dsbas769 toSci "-infinity" -> -Infinity
+dsbas770 toSci "-iNfInItY" -> -Infinity
+dsbas771 toSci "-INFINITY" -> -Infinity
+
+-- Specials and zeros for toEng
+dsbast772 toEng "NaN" -> NaN
+dsbast773 toEng "-Infinity" -> -Infinity
+dsbast774 toEng "-sNaN" -> -sNaN
+dsbast775 toEng "-NaN" -> -NaN
+dsbast776 toEng "+Infinity" -> Infinity
+dsbast778 toEng "+sNaN" -> sNaN
+dsbast779 toEng "+NaN" -> NaN
+dsbast780 toEng "INFINITY" -> Infinity
+dsbast781 toEng "SNAN" -> sNaN
+dsbast782 toEng "NAN" -> NaN
+dsbast783 toEng "infinity" -> Infinity
+dsbast784 toEng "snan" -> sNaN
+dsbast785 toEng "nan" -> NaN
+dsbast786 toEng "InFINITY" -> Infinity
+dsbast787 toEng "SnAN" -> sNaN
+dsbast788 toEng "nAN" -> NaN
+dsbast789 toEng "iNfinity" -> Infinity
+dsbast790 toEng "sNan" -> sNaN
+dsbast791 toEng "Nan" -> NaN
+dsbast792 toEng "Infinity" -> Infinity
+dsbast793 toEng "sNaN" -> sNaN
+
+-- Zero toEng, etc.
+dsbast800 toEng 0e+1 -> "0.00E+3" -- doc example
+
+dsbast801 toEng 0.000000000 -> 0E-9
+dsbast802 toEng 0.00000000 -> 0.00E-6
+dsbast803 toEng 0.0000000 -> 0.0E-6
+dsbast804 toEng 0.000000 -> 0.000000
+dsbast805 toEng 0.00000 -> 0.00000
+dsbast806 toEng 0.0000 -> 0.0000
+dsbast807 toEng 0.000 -> 0.000
+dsbast808 toEng 0.00 -> 0.00
+dsbast809 toEng 0.0 -> 0.0
+dsbast810 toEng .0 -> 0.0
+dsbast811 toEng 0. -> 0
+dsbast812 toEng -.0 -> -0.0
+dsbast813 toEng -0. -> -0
+dsbast814 toEng -0.0 -> -0.0
+dsbast815 toEng -0.00 -> -0.00
+dsbast816 toEng -0.000 -> -0.000
+dsbast817 toEng -0.0000 -> -0.0000
+dsbast818 toEng -0.00000 -> -0.00000
+dsbast819 toEng -0.000000 -> -0.000000
+dsbast820 toEng -0.0000000 -> -0.0E-6
+dsbast821 toEng -0.00000000 -> -0.00E-6
+dsbast822 toEng -0.000000000 -> -0E-9
+
+dsbast830 toEng 0.00E+0 -> 0.00
+dsbast831 toEng 0.00E+1 -> 0.0
+dsbast832 toEng 0.00E+2 -> 0
+dsbast833 toEng 0.00E+3 -> 0.00E+3
+dsbast834 toEng 0.00E+4 -> 0.0E+3
+dsbast835 toEng 0.00E+5 -> 0E+3
+dsbast836 toEng 0.00E+6 -> 0.00E+6
+dsbast837 toEng 0.00E+7 -> 0.0E+6
+dsbast838 toEng 0.00E+8 -> 0E+6
+dsbast839 toEng 0.00E+9 -> 0.00E+9
+
+dsbast840 toEng 0.0E+0 -> 0.0
+dsbast841 toEng 0.0E+1 -> 0
+dsbast842 toEng 0.0E+2 -> 0.00E+3
+dsbast843 toEng 0.0E+3 -> 0.0E+3
+dsbast844 toEng 0.0E+4 -> 0E+3
+dsbast845 toEng 0.0E+5 -> 0.00E+6
+dsbast846 toEng 0.0E+6 -> 0.0E+6
+dsbast847 toEng 0.0E+7 -> 0E+6
+dsbast848 toEng 0.0E+8 -> 0.00E+9
+dsbast849 toEng 0.0E+9 -> 0.0E+9
+
+dsbast850 toEng 0E+0 -> 0
+dsbast851 toEng 0E+1 -> 0.00E+3
+dsbast852 toEng 0E+2 -> 0.0E+3
+dsbast853 toEng 0E+3 -> 0E+3
+dsbast854 toEng 0E+4 -> 0.00E+6
+dsbast855 toEng 0E+5 -> 0.0E+6
+dsbast856 toEng 0E+6 -> 0E+6
+dsbast857 toEng 0E+7 -> 0.00E+9
+dsbast858 toEng 0E+8 -> 0.0E+9
+dsbast859 toEng 0E+9 -> 0E+9
+
+dsbast860 toEng 0.0E-0 -> 0.0
+dsbast861 toEng 0.0E-1 -> 0.00
+dsbast862 toEng 0.0E-2 -> 0.000
+dsbast863 toEng 0.0E-3 -> 0.0000
+dsbast864 toEng 0.0E-4 -> 0.00000
+dsbast865 toEng 0.0E-5 -> 0.000000
+dsbast866 toEng 0.0E-6 -> 0.0E-6
+dsbast867 toEng 0.0E-7 -> 0.00E-6
+dsbast868 toEng 0.0E-8 -> 0E-9
+dsbast869 toEng 0.0E-9 -> 0.0E-9
+
+dsbast870 toEng 0.00E-0 -> 0.00
+dsbast871 toEng 0.00E-1 -> 0.000
+dsbast872 toEng 0.00E-2 -> 0.0000
+dsbast873 toEng 0.00E-3 -> 0.00000
+dsbast874 toEng 0.00E-4 -> 0.000000
+dsbast875 toEng 0.00E-5 -> 0.0E-6
+dsbast876 toEng 0.00E-6 -> 0.00E-6
+dsbast877 toEng 0.00E-7 -> 0E-9
+dsbast878 toEng 0.00E-8 -> 0.0E-9
+dsbast879 toEng 0.00E-9 -> 0.00E-9
+
+-- long input strings
+dsbas801 tosci '01234567' -> 1234567
+dsbas802 tosci '001234567' -> 1234567
+dsbas803 tosci '0001234567' -> 1234567
+dsbas804 tosci '00001234567' -> 1234567
+dsbas805 tosci '000001234567' -> 1234567
+dsbas806 tosci '0000001234567' -> 1234567
+dsbas807 tosci '00000001234567' -> 1234567
+dsbas808 tosci '000000001234567' -> 1234567
+dsbas809 tosci '0000000001234567' -> 1234567
+dsbas810 tosci '00000000001234567' -> 1234567
+
+dsbas811 tosci '0.1234567' -> 0.1234567
+dsbas812 tosci '0.01234567' -> 0.01234567
+dsbas813 tosci '0.001234567' -> 0.001234567
+dsbas814 tosci '0.0001234567' -> 0.0001234567
+dsbas815 tosci '0.00001234567' -> 0.00001234567
+dsbas816 tosci '0.000001234567' -> 0.000001234567
+dsbas817 tosci '0.0000001234567' -> 1.234567E-7
+dsbas818 tosci '0.00000001234567' -> 1.234567E-8
+dsbas819 tosci '0.000000001234567' -> 1.234567E-9
+dsbas820 tosci '0.0000000001234567' -> 1.234567E-10
+
+dsbas821 tosci '123456790' -> 1.234568E+8 Inexact Rounded
+dsbas822 tosci '1234567901' -> 1.234568E+9 Inexact Rounded
+dsbas823 tosci '12345679012' -> 1.234568E+10 Inexact Rounded
+dsbas824 tosci '123456790123' -> 1.234568E+11 Inexact Rounded
+dsbas825 tosci '1234567901234' -> 1.234568E+12 Inexact Rounded
+dsbas826 tosci '12345679012345' -> 1.234568E+13 Inexact Rounded
+dsbas827 tosci '123456790123456' -> 1.234568E+14 Inexact Rounded
+dsbas828 tosci '1234567901234567' -> 1.234568E+15 Inexact Rounded
+dsbas829 tosci '1234567890123456' -> 1.234568E+15 Inexact Rounded
+
+-- subnormals and overflows
+dsbas906 toSci '99e999999999' -> Infinity Overflow Inexact Rounded
+dsbas907 toSci '999e999999999' -> Infinity Overflow Inexact Rounded
+dsbas908 toSci '0.9e-999999999' -> 0E-101 Underflow Subnormal Inexact Rounded Clamped
+dsbas909 toSci '0.09e-999999999' -> 0E-101 Underflow Subnormal Inexact Rounded Clamped
+dsbas910 toSci '0.1e1000000000' -> Infinity Overflow Inexact Rounded
+dsbas911 toSci '10e-1000000000' -> 0E-101 Underflow Subnormal Inexact Rounded Clamped
+dsbas912 toSci '0.9e9999999999' -> Infinity Overflow Inexact Rounded
+dsbas913 toSci '99e-9999999999' -> 0E-101 Underflow Subnormal Inexact Rounded Clamped
+dsbas914 toSci '111e9999999999' -> Infinity Overflow Inexact Rounded
+dsbas915 toSci '1111e-9999999999' -> 0E-101 Underflow Subnormal Inexact Rounded Clamped
+dsbas916 toSci '1111e-99999999999' -> 0E-101 Underflow Subnormal Inexact Rounded Clamped
+dsbas917 toSci '7e1000000000' -> Infinity Overflow Inexact Rounded
+-- negatives the same
+dsbas918 toSci '-99e999999999' -> -Infinity Overflow Inexact Rounded
+dsbas919 toSci '-999e999999999' -> -Infinity Overflow Inexact Rounded
+dsbas920 toSci '-0.9e-999999999' -> -0E-101 Underflow Subnormal Inexact Rounded Clamped
+dsbas921 toSci '-0.09e-999999999' -> -0E-101 Underflow Subnormal Inexact Rounded Clamped
+dsbas922 toSci '-0.1e1000000000' -> -Infinity Overflow Inexact Rounded
+dsbas923 toSci '-10e-1000000000' -> -0E-101 Underflow Subnormal Inexact Rounded Clamped
+dsbas924 toSci '-0.9e9999999999' -> -Infinity Overflow Inexact Rounded
+dsbas925 toSci '-99e-9999999999' -> -0E-101 Underflow Subnormal Inexact Rounded Clamped
+dsbas926 toSci '-111e9999999999' -> -Infinity Overflow Inexact Rounded
+dsbas927 toSci '-1111e-9999999999' -> -0E-101 Underflow Subnormal Inexact Rounded Clamped
+dsbas928 toSci '-1111e-99999999999' -> -0E-101 Underflow Subnormal Inexact Rounded Clamped
+dsbas929 toSci '-7e1000000000' -> -Infinity Overflow Inexact Rounded
+
+-- overflow results at different rounding modes
+rounding: ceiling
+dsbas930 toSci '7e10000' -> Infinity Overflow Inexact Rounded
+dsbas931 toSci '-7e10000' -> -9.999999E+96 Overflow Inexact Rounded
+rounding: up
+dsbas932 toSci '7e10000' -> Infinity Overflow Inexact Rounded
+dsbas933 toSci '-7e10000' -> -Infinity Overflow Inexact Rounded
+rounding: down
+dsbas934 toSci '7e10000' -> 9.999999E+96 Overflow Inexact Rounded
+dsbas935 toSci '-7e10000' -> -9.999999E+96 Overflow Inexact Rounded
+rounding: floor
+dsbas936 toSci '7e10000' -> 9.999999E+96 Overflow Inexact Rounded
+dsbas937 toSci '-7e10000' -> -Infinity Overflow Inexact Rounded
+
+rounding: half_up
+dsbas938 toSci '7e10000' -> Infinity Overflow Inexact Rounded
+dsbas939 toSci '-7e10000' -> -Infinity Overflow Inexact Rounded
+rounding: half_even
+dsbas940 toSci '7e10000' -> Infinity Overflow Inexact Rounded
+dsbas941 toSci '-7e10000' -> -Infinity Overflow Inexact Rounded
+rounding: half_down
+dsbas942 toSci '7e10000' -> Infinity Overflow Inexact Rounded
+dsbas943 toSci '-7e10000' -> -Infinity Overflow Inexact Rounded
+
+rounding: half_even
+
+-- Now check 854/754r some subnormals and underflow to 0
+dsbem400 toSci 1.0000E-86 -> 1.0000E-86
+dsbem401 toSci 0.1E-97 -> 1E-98 Subnormal
+dsbem402 toSci 0.1000E-97 -> 1.000E-98 Subnormal
+dsbem403 toSci 0.0100E-97 -> 1.00E-99 Subnormal
+dsbem404 toSci 0.0010E-97 -> 1.0E-100 Subnormal
+dsbem405 toSci 0.0001E-97 -> 1E-101 Subnormal
+dsbem406 toSci 0.00010E-97 -> 1E-101 Subnormal Rounded
+dsbem407 toSci 0.00013E-97 -> 1E-101 Underflow Subnormal Inexact Rounded
+dsbem408 toSci 0.00015E-97 -> 2E-101 Underflow Subnormal Inexact Rounded
+dsbem409 toSci 0.00017E-97 -> 2E-101 Underflow Subnormal Inexact Rounded
+dsbem410 toSci 0.00023E-97 -> 2E-101 Underflow Subnormal Inexact Rounded
+dsbem411 toSci 0.00025E-97 -> 2E-101 Underflow Subnormal Inexact Rounded
+dsbem412 toSci 0.00027E-97 -> 3E-101 Underflow Subnormal Inexact Rounded
+dsbem413 toSci 0.000149E-97 -> 1E-101 Underflow Subnormal Inexact Rounded
+dsbem414 toSci 0.000150E-97 -> 2E-101 Underflow Subnormal Inexact Rounded
+dsbem415 toSci 0.000151E-97 -> 2E-101 Underflow Subnormal Inexact Rounded
+dsbem416 toSci 0.000249E-97 -> 2E-101 Underflow Subnormal Inexact Rounded
+dsbem417 toSci 0.000250E-97 -> 2E-101 Underflow Subnormal Inexact Rounded
+dsbem418 toSci 0.000251E-97 -> 3E-101 Underflow Subnormal Inexact Rounded
+dsbem419 toSci 0.00009E-97 -> 1E-101 Underflow Subnormal Inexact Rounded
+dsbem420 toSci 0.00005E-97 -> 0E-101 Underflow Subnormal Inexact Rounded Clamped
+dsbem421 toSci 0.00003E-97 -> 0E-101 Underflow Subnormal Inexact Rounded Clamped
+dsbem422 toSci 0.000009E-97 -> 0E-101 Underflow Subnormal Inexact Rounded Clamped
+dsbem423 toSci 0.000005E-97 -> 0E-101 Underflow Subnormal Inexact Rounded Clamped
+dsbem424 toSci 0.000003E-97 -> 0E-101 Underflow Subnormal Inexact Rounded Clamped
+
+dsbem425 toSci 0.001049E-97 -> 1.0E-100 Underflow Subnormal Inexact Rounded
+dsbem426 toSci 0.001050E-97 -> 1.0E-100 Underflow Subnormal Inexact Rounded
+dsbem427 toSci 0.001051E-97 -> 1.1E-100 Underflow Subnormal Inexact Rounded
+dsbem428 toSci 0.001149E-97 -> 1.1E-100 Underflow Subnormal Inexact Rounded
+dsbem429 toSci 0.001150E-97 -> 1.2E-100 Underflow Subnormal Inexact Rounded
+dsbem430 toSci 0.001151E-97 -> 1.2E-100 Underflow Subnormal Inexact Rounded
+
+dsbem432 toSci 0.010049E-97 -> 1.00E-99 Underflow Subnormal Inexact Rounded
+dsbem433 toSci 0.010050E-97 -> 1.00E-99 Underflow Subnormal Inexact Rounded
+dsbem434 toSci 0.010051E-97 -> 1.01E-99 Underflow Subnormal Inexact Rounded
+dsbem435 toSci 0.010149E-97 -> 1.01E-99 Underflow Subnormal Inexact Rounded
+dsbem436 toSci 0.010150E-97 -> 1.02E-99 Underflow Subnormal Inexact Rounded
+dsbem437 toSci 0.010151E-97 -> 1.02E-99 Underflow Subnormal Inexact Rounded
+
+dsbem440 toSci 0.10103E-97 -> 1.010E-98 Underflow Subnormal Inexact Rounded
+dsbem441 toSci 0.10105E-97 -> 1.010E-98 Underflow Subnormal Inexact Rounded
+dsbem442 toSci 0.10107E-97 -> 1.011E-98 Underflow Subnormal Inexact Rounded
+dsbem443 toSci 0.10113E-97 -> 1.011E-98 Underflow Subnormal Inexact Rounded
+dsbem444 toSci 0.10115E-97 -> 1.012E-98 Underflow Subnormal Inexact Rounded
+dsbem445 toSci 0.10117E-97 -> 1.012E-98 Underflow Subnormal Inexact Rounded
+
+dsbem450 toSci 1.10730E-98 -> 1.107E-98 Underflow Subnormal Inexact Rounded
+dsbem451 toSci 1.10750E-98 -> 1.108E-98 Underflow Subnormal Inexact Rounded
+dsbem452 toSci 1.10770E-98 -> 1.108E-98 Underflow Subnormal Inexact Rounded
+dsbem453 toSci 1.10830E-98 -> 1.108E-98 Underflow Subnormal Inexact Rounded
+dsbem454 toSci 1.10850E-98 -> 1.108E-98 Underflow Subnormal Inexact Rounded
+dsbem455 toSci 1.10870E-98 -> 1.109E-98 Underflow Subnormal Inexact Rounded
+
+-- make sure sign OK
+dsbem456 toSci -0.10103E-97 -> -1.010E-98 Underflow Subnormal Inexact Rounded
+dsbem457 toSci -0.10105E-97 -> -1.010E-98 Underflow Subnormal Inexact Rounded
+dsbem458 toSci -0.10107E-97 -> -1.011E-98 Underflow Subnormal Inexact Rounded
+dsbem459 toSci -0.10113E-97 -> -1.011E-98 Underflow Subnormal Inexact Rounded
+dsbem460 toSci -0.10115E-97 -> -1.012E-98 Underflow Subnormal Inexact Rounded
+dsbem461 toSci -0.10117E-97 -> -1.012E-98 Underflow Subnormal Inexact Rounded
+
+-- '999s' cases
+dsbem464 toSci 999999E-98 -> 9.99999E-93
+dsbem465 toSci 99999.0E-97 -> 9.99990E-93
+dsbem466 toSci 99999.E-97 -> 9.9999E-93
+dsbem467 toSci 9999.9E-97 -> 9.9999E-94
+dsbem468 toSci 999.99E-97 -> 9.9999E-95
+dsbem469 toSci 99.999E-97 -> 9.9999E-96 Subnormal
+dsbem470 toSci 9.9999E-97 -> 9.9999E-97 Subnormal
+dsbem471 toSci 0.99999E-97 -> 1.0000E-97 Underflow Subnormal Inexact Rounded
+dsbem472 toSci 0.099999E-97 -> 1.000E-98 Underflow Subnormal Inexact Rounded
+dsbem473 toSci 0.0099999E-97 -> 1.00E-99 Underflow Subnormal Inexact Rounded
+dsbem474 toSci 0.00099999E-97 -> 1.0E-100 Underflow Subnormal Inexact Rounded
+dsbem475 toSci 0.000099999E-97 -> 1E-101 Underflow Subnormal Inexact Rounded
+dsbem476 toSci 0.0000099999E-97 -> 0E-101 Underflow Subnormal Inexact Rounded Clamped
+dsbem477 toSci 0.00000099999E-97 -> 0E-101 Underflow Subnormal Inexact Rounded Clamped
+dsbem478 toSci 0.000000099999E-97 -> 0E-101 Underflow Subnormal Inexact Rounded Clamped
+
+-- Exponents with insignificant leading zeros
+dsbas1001 toSci 1e999999999 -> Infinity Overflow Inexact Rounded
+dsbas1002 toSci 1e0999999999 -> Infinity Overflow Inexact Rounded
+dsbas1003 toSci 1e00999999999 -> Infinity Overflow Inexact Rounded
+dsbas1004 toSci 1e000999999999 -> Infinity Overflow Inexact Rounded
+dsbas1005 toSci 1e000000000000999999999 -> Infinity Overflow Inexact Rounded
+dsbas1006 toSci 1e000000000001000000007 -> Infinity Overflow Inexact Rounded
+dsbas1007 toSci 1e-999999999 -> 0E-101 Underflow Subnormal Inexact Rounded Clamped
+dsbas1008 toSci 1e-0999999999 -> 0E-101 Underflow Subnormal Inexact Rounded Clamped
+dsbas1009 toSci 1e-00999999999 -> 0E-101 Underflow Subnormal Inexact Rounded Clamped
+dsbas1010 toSci 1e-000999999999 -> 0E-101 Underflow Subnormal Inexact Rounded Clamped
+dsbas1011 toSci 1e-000000000000999999999 -> 0E-101 Underflow Subnormal Inexact Rounded Clamped
+dsbas1012 toSci 1e-000000000001000000007 -> 0E-101 Underflow Subnormal Inexact Rounded Clamped
+
+-- check for double-rounded subnormals
+dsbas1041 toSci 1.1152444E-96 -> 1.11524E-96 Inexact Rounded Subnormal Underflow
+dsbas1042 toSci 1.1152445E-96 -> 1.11524E-96 Inexact Rounded Subnormal Underflow
+dsbas1043 toSci 1.1152446E-96 -> 1.11524E-96 Inexact Rounded Subnormal Underflow
+
+-- clamped zeros [see also clamp.decTest]
+dsbas1075 toSci 0e+10000 -> 0E+90 Clamped
+dsbas1076 toSci 0e-10000 -> 0E-101 Clamped
+dsbas1077 toSci -0e+10000 -> -0E+90 Clamped
+dsbas1078 toSci -0e-10000 -> -0E-101 Clamped
+
+-- extreme values from next-wider
+dsbas1101 toSci -9.999999999999999E+384 -> -Infinity Overflow Inexact Rounded
+dsbas1102 toSci -1E-383 -> -0E-101 Inexact Rounded Subnormal Underflow Clamped
+dsbas1103 toSci -1E-398 -> -0E-101 Inexact Rounded Subnormal Underflow Clamped
+dsbas1104 toSci -0 -> -0
+dsbas1105 toSci +0 -> 0
+dsbas1106 toSci +1E-398 -> 0E-101 Inexact Rounded Subnormal Underflow Clamped
+dsbas1107 toSci +1E-383 -> 0E-101 Inexact Rounded Subnormal Underflow Clamped
+dsbas1108 toSci +9.999999999999999E+384 -> Infinity Overflow Inexact Rounded
+
+
diff --git a/Lib/test/decimaltestdata/dsEncode.decTest b/Lib/test/decimaltestdata/dsEncode.decTest
new file mode 100644
index 0000000..185ddc7
--- /dev/null
+++ b/Lib/test/decimaltestdata/dsEncode.decTest
@@ -0,0 +1,369 @@
+------------------------------------------------------------------------
+-- dsEncode.decTest -- decimal four-byte format testcases --
+-- Copyright (c) IBM Corporation, 2000, 2007. All rights reserved. --
+------------------------------------------------------------------------
+-- Please see the document "General Decimal Arithmetic Testcases" --
+-- at http://www2.hursley.ibm.com/decimal for the description of --
+-- these testcases. --
+-- --
+-- These testcases are experimental ('beta' versions), and they --
+-- may contain errors. They are offered on an as-is basis. In --
+-- particular, achieving the same results as the tests here is not --
+-- a guarantee that an implementation complies with any Standard --
+-- or specification. The tests are not exhaustive. --
+-- --
+-- Please send comments, suggestions, and corrections to the author: --
+-- Mike Cowlishaw, IBM Fellow --
+-- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK --
+-- mfc@uk.ibm.com --
+------------------------------------------------------------------------
+-- [Previously called decimal32.decTest]
+version: 2.56
+
+-- This set of tests is for the four-byte concrete representation.
+-- Its characteristics are:
+--
+-- 1 bit sign
+-- 5 bits combination field
+-- 6 bits exponent continuation
+-- 20 bits coefficient continuation
+--
+-- Total exponent length 8 bits
+-- Total coefficient length 24 bits (7 digits)
+--
+-- Elimit = 191 (maximum encoded exponent)
+-- Emax = 96 (largest exponent value)
+-- Emin = -95 (smallest exponent value)
+-- bias = 101 (subtracted from encoded exponent) = -Etiny
+
+-- The testcases here have only exactly representable data on the
+-- 'left-hand-side'; rounding from strings is tested in 'base'
+-- testcase groups.
+
+extended: 1
+clamp: 1
+precision: 7
+rounding: half_up
+maxExponent: 96
+minExponent: -95
+
+-- General testcases
+-- (mostly derived from the Strawman 4 document and examples)
+decs001 apply #A23003D0 -> -7.50
+decs002 apply -7.50 -> #A23003D0
+-- derivative canonical plain strings
+decs003 apply #A26003D0 -> -7.50E+3
+decs004 apply -7.50E+3 -> #A26003D0
+decs005 apply #A25003D0 -> -750
+decs006 apply -750 -> #A25003D0
+decs007 apply #A24003D0 -> -75.0
+decs008 apply -75.0 -> #A24003D0
+decs009 apply #A22003D0 -> -0.750
+decs010 apply -0.750 -> #A22003D0
+decs011 apply #A21003D0 -> -0.0750
+decs012 apply -0.0750 -> #A21003D0
+decs013 apply #A1f003D0 -> -0.000750
+decs014 apply -0.000750 -> #A1f003D0
+decs015 apply #A1d003D0 -> -0.00000750
+decs016 apply -0.00000750 -> #A1d003D0
+decs017 apply #A1c003D0 -> -7.50E-7
+decs018 apply -7.50E-7 -> #A1c003D0
+
+-- Normality
+decs020 apply 1234567 -> #2654d2e7
+decs021 apply -1234567 -> #a654d2e7
+decs022 apply 1111111 -> #26524491
+
+-- Nmax and similar
+decs031 apply 9.999999E+96 -> #77f3fcff
+decs032 apply #77f3fcff -> 9.999999E+96
+decs033 apply 1.234567E+96 -> #47f4d2e7
+decs034 apply #47f4d2e7 -> 1.234567E+96
+-- fold-downs (more below)
+decs035 apply 1.23E+96 -> #47f4c000 Clamped
+decs036 apply #47f4c000 -> 1.230000E+96
+decs037 apply 1E+96 -> #47f00000 Clamped
+decs038 apply #47f00000 -> 1.000000E+96
+
+decs051 apply 12345 -> #225049c5
+decs052 apply #225049c5 -> 12345
+decs053 apply 1234 -> #22500534
+decs054 apply #22500534 -> 1234
+decs055 apply 123 -> #225000a3
+decs056 apply #225000a3 -> 123
+decs057 apply 12 -> #22500012
+decs058 apply #22500012 -> 12
+decs059 apply 1 -> #22500001
+decs060 apply #22500001 -> 1
+decs061 apply 1.23 -> #223000a3
+decs062 apply #223000a3 -> 1.23
+decs063 apply 123.45 -> #223049c5
+decs064 apply #223049c5 -> 123.45
+
+-- Nmin and below
+decs071 apply 1E-95 -> #00600001
+decs072 apply #00600001 -> 1E-95
+decs073 apply 1.000000E-95 -> #04000000
+decs074 apply #04000000 -> 1.000000E-95
+decs075 apply 1.000001E-95 -> #04000001
+decs076 apply #04000001 -> 1.000001E-95
+
+decs077 apply 0.100000E-95 -> #00020000 Subnormal
+decs07x apply 1.00000E-96 -> 1.00000E-96 Subnormal
+decs078 apply #00020000 -> 1.00000E-96 Subnormal
+decs079 apply 0.000010E-95 -> #00000010 Subnormal
+decs080 apply #00000010 -> 1.0E-100 Subnormal
+decs081 apply 0.000001E-95 -> #00000001 Subnormal
+decs082 apply #00000001 -> 1E-101 Subnormal
+decs083 apply 1e-101 -> #00000001 Subnormal
+decs084 apply #00000001 -> 1E-101 Subnormal
+decs08x apply 1e-101 -> 1E-101 Subnormal
+
+-- underflows cannot be tested; just check edge case
+decs090 apply 1e-101 -> #00000001 Subnormal
+
+-- same again, negatives --
+
+-- Nmax and similar
+decs122 apply -9.999999E+96 -> #f7f3fcff
+decs123 apply #f7f3fcff -> -9.999999E+96
+decs124 apply -1.234567E+96 -> #c7f4d2e7
+decs125 apply #c7f4d2e7 -> -1.234567E+96
+-- fold-downs (more below)
+decs130 apply -1.23E+96 -> #c7f4c000 Clamped
+decs131 apply #c7f4c000 -> -1.230000E+96
+decs132 apply -1E+96 -> #c7f00000 Clamped
+decs133 apply #c7f00000 -> -1.000000E+96
+
+decs151 apply -12345 -> #a25049c5
+decs152 apply #a25049c5 -> -12345
+decs153 apply -1234 -> #a2500534
+decs154 apply #a2500534 -> -1234
+decs155 apply -123 -> #a25000a3
+decs156 apply #a25000a3 -> -123
+decs157 apply -12 -> #a2500012
+decs158 apply #a2500012 -> -12
+decs159 apply -1 -> #a2500001
+decs160 apply #a2500001 -> -1
+decs161 apply -1.23 -> #a23000a3
+decs162 apply #a23000a3 -> -1.23
+decs163 apply -123.45 -> #a23049c5
+decs164 apply #a23049c5 -> -123.45
+
+-- Nmin and below
+decs171 apply -1E-95 -> #80600001
+decs172 apply #80600001 -> -1E-95
+decs173 apply -1.000000E-95 -> #84000000
+decs174 apply #84000000 -> -1.000000E-95
+decs175 apply -1.000001E-95 -> #84000001
+decs176 apply #84000001 -> -1.000001E-95
+
+decs177 apply -0.100000E-95 -> #80020000 Subnormal
+decs178 apply #80020000 -> -1.00000E-96 Subnormal
+decs179 apply -0.000010E-95 -> #80000010 Subnormal
+decs180 apply #80000010 -> -1.0E-100 Subnormal
+decs181 apply -0.000001E-95 -> #80000001 Subnormal
+decs182 apply #80000001 -> -1E-101 Subnormal
+decs183 apply -1e-101 -> #80000001 Subnormal
+decs184 apply #80000001 -> -1E-101 Subnormal
+
+-- underflow edge case
+decs190 apply -1e-101 -> #80000001 Subnormal
+
+-- zeros
+decs400 apply 0E-400 -> #00000000 Clamped
+decs401 apply 0E-101 -> #00000000
+decs402 apply #00000000 -> 0E-101
+decs403 apply 0.000000E-95 -> #00000000
+decs404 apply #00000000 -> 0E-101
+decs405 apply 0E-2 -> #22300000
+decs406 apply #22300000 -> 0.00
+decs407 apply 0 -> #22500000
+decs408 apply #22500000 -> 0
+decs409 apply 0E+3 -> #22800000
+decs410 apply #22800000 -> 0E+3
+decs411 apply 0E+90 -> #43f00000
+decs412 apply #43f00000 -> 0E+90
+-- clamped zeros...
+decs413 apply 0E+91 -> #43f00000 Clamped
+decs414 apply #43f00000 -> 0E+90
+decs415 apply 0E+96 -> #43f00000 Clamped
+decs416 apply #43f00000 -> 0E+90
+decs417 apply 0E+400 -> #43f00000 Clamped
+decs418 apply #43f00000 -> 0E+90
+
+-- negative zeros
+decs420 apply -0E-400 -> #80000000 Clamped
+decs421 apply -0E-101 -> #80000000
+decs422 apply #80000000 -> -0E-101
+decs423 apply -0.000000E-95 -> #80000000
+decs424 apply #80000000 -> -0E-101
+decs425 apply -0E-2 -> #a2300000
+decs426 apply #a2300000 -> -0.00
+decs427 apply -0 -> #a2500000
+decs428 apply #a2500000 -> -0
+decs429 apply -0E+3 -> #a2800000
+decs430 apply #a2800000 -> -0E+3
+decs431 apply -0E+90 -> #c3f00000
+decs432 apply #c3f00000 -> -0E+90
+-- clamped zeros...
+decs433 apply -0E+91 -> #c3f00000 Clamped
+decs434 apply #c3f00000 -> -0E+90
+decs435 apply -0E+96 -> #c3f00000 Clamped
+decs436 apply #c3f00000 -> -0E+90
+decs437 apply -0E+400 -> #c3f00000 Clamped
+decs438 apply #c3f00000 -> -0E+90
+
+-- Specials
+decs500 apply Infinity -> #78000000
+decs501 apply #78787878 -> #78000000
+decs502 apply #78000000 -> Infinity
+decs503 apply #79797979 -> #78000000
+decs504 apply #79000000 -> Infinity
+decs505 apply #7a7a7a7a -> #78000000
+decs506 apply #7a000000 -> Infinity
+decs507 apply #7b7b7b7b -> #78000000
+decs508 apply #7b000000 -> Infinity
+decs509 apply #7c7c7c7c -> #7c0c7c7c
+
+decs510 apply NaN -> #7c000000
+decs511 apply #7c000000 -> NaN
+decs512 apply #7d7d7d7d -> #7c0d7d7d
+decs513 apply #7d000000 -> NaN
+decs514 apply #7e7e7e7e -> #7e0e7c7e
+decs515 apply #7e000000 -> sNaN
+decs516 apply #7f7f7f7f -> #7e0f7c7f
+decs517 apply #7f000000 -> sNaN
+decs518 apply #7fffffff -> sNaN999999
+decs519 apply #7fffffff -> #7e03fcff
+
+decs520 apply -Infinity -> #f8000000
+decs521 apply #f8787878 -> #f8000000
+decs522 apply #f8000000 -> -Infinity
+decs523 apply #f9797979 -> #f8000000
+decs524 apply #f9000000 -> -Infinity
+decs525 apply #fa7a7a7a -> #f8000000
+decs526 apply #fa000000 -> -Infinity
+decs527 apply #fb7b7b7b -> #f8000000
+decs528 apply #fb000000 -> -Infinity
+
+decs529 apply -NaN -> #fc000000
+decs530 apply #fc7c7c7c -> #fc0c7c7c
+decs531 apply #fc000000 -> -NaN
+decs532 apply #fd7d7d7d -> #fc0d7d7d
+decs533 apply #fd000000 -> -NaN
+decs534 apply #fe7e7e7e -> #fe0e7c7e
+decs535 apply #fe000000 -> -sNaN
+decs536 apply #ff7f7f7f -> #fe0f7c7f
+decs537 apply #ff000000 -> -sNaN
+decs538 apply #ffffffff -> -sNaN999999
+decs539 apply #ffffffff -> #fe03fcff
+
+-- diagnostic NaNs
+decs540 apply NaN -> #7c000000
+decs541 apply NaN0 -> #7c000000
+decs542 apply NaN1 -> #7c000001
+decs543 apply NaN12 -> #7c000012
+decs544 apply NaN79 -> #7c000079
+decs545 apply NaN12345 -> #7c0049c5
+decs546 apply NaN123456 -> #7c028e56
+decs547 apply NaN799799 -> #7c0f7fdf
+decs548 apply NaN999999 -> #7c03fcff
+
+
+-- fold-down full sequence
+decs601 apply 1E+96 -> #47f00000 Clamped
+decs602 apply #47f00000 -> 1.000000E+96
+decs603 apply 1E+95 -> #43f20000 Clamped
+decs604 apply #43f20000 -> 1.00000E+95
+decs605 apply 1E+94 -> #43f04000 Clamped
+decs606 apply #43f04000 -> 1.0000E+94
+decs607 apply 1E+93 -> #43f00400 Clamped
+decs608 apply #43f00400 -> 1.000E+93
+decs609 apply 1E+92 -> #43f00080 Clamped
+decs610 apply #43f00080 -> 1.00E+92
+decs611 apply 1E+91 -> #43f00010 Clamped
+decs612 apply #43f00010 -> 1.0E+91
+decs613 apply 1E+90 -> #43f00001
+decs614 apply #43f00001 -> 1E+90
+
+
+-- Selected DPD codes
+decs700 apply #22500000 -> 0
+decs701 apply #22500009 -> 9
+decs702 apply #22500010 -> 10
+decs703 apply #22500019 -> 19
+decs704 apply #22500020 -> 20
+decs705 apply #22500029 -> 29
+decs706 apply #22500030 -> 30
+decs707 apply #22500039 -> 39
+decs708 apply #22500040 -> 40
+decs709 apply #22500049 -> 49
+decs710 apply #22500050 -> 50
+decs711 apply #22500059 -> 59
+decs712 apply #22500060 -> 60
+decs713 apply #22500069 -> 69
+decs714 apply #22500070 -> 70
+decs715 apply #22500071 -> 71
+decs716 apply #22500072 -> 72
+decs717 apply #22500073 -> 73
+decs718 apply #22500074 -> 74
+decs719 apply #22500075 -> 75
+decs720 apply #22500076 -> 76
+decs721 apply #22500077 -> 77
+decs722 apply #22500078 -> 78
+decs723 apply #22500079 -> 79
+
+decs730 apply #2250029e -> 994
+decs731 apply #2250029f -> 995
+decs732 apply #225002a0 -> 520
+decs733 apply #225002a1 -> 521
+
+-- DPD: one of each of the huffman groups
+decs740 apply #225003f7 -> 777
+decs741 apply #225003f8 -> 778
+decs742 apply #225003eb -> 787
+decs743 apply #2250037d -> 877
+decs744 apply #2250039f -> 997
+decs745 apply #225003bf -> 979
+decs746 apply #225003df -> 799
+decs747 apply #2250006e -> 888
+
+
+-- DPD all-highs cases (includes the 24 redundant codes)
+decs750 apply #2250006e -> 888
+decs751 apply #2250016e -> 888
+decs752 apply #2250026e -> 888
+decs753 apply #2250036e -> 888
+decs754 apply #2250006f -> 889
+decs755 apply #2250016f -> 889
+decs756 apply #2250026f -> 889
+decs757 apply #2250036f -> 889
+
+decs760 apply #2250007e -> 898
+decs761 apply #2250017e -> 898
+decs762 apply #2250027e -> 898
+decs763 apply #2250037e -> 898
+decs764 apply #2250007f -> 899
+decs765 apply #2250017f -> 899
+decs766 apply #2250027f -> 899
+decs767 apply #2250037f -> 899
+
+decs770 apply #225000ee -> 988
+decs771 apply #225001ee -> 988
+decs772 apply #225002ee -> 988
+decs773 apply #225003ee -> 988
+decs774 apply #225000ef -> 989
+decs775 apply #225001ef -> 989
+decs776 apply #225002ef -> 989
+decs777 apply #225003ef -> 989
+
+decs780 apply #225000fe -> 998
+decs781 apply #225001fe -> 998
+decs782 apply #225002fe -> 998
+decs783 apply #225003fe -> 998
+decs784 apply #225000ff -> 999
+decs785 apply #225001ff -> 999
+decs786 apply #225002ff -> 999
+decs787 apply #225003ff -> 999
+
diff --git a/Lib/test/decimaltestdata/exp.decTest b/Lib/test/decimaltestdata/exp.decTest
new file mode 100644
index 0000000..c07ed5a
--- /dev/null
+++ b/Lib/test/decimaltestdata/exp.decTest
@@ -0,0 +1,674 @@
+------------------------------------------------------------------------
+-- exp.decTest -- decimal natural exponentiation --
+-- Copyright (c) IBM Corporation, 2005, 2007. All rights reserved. --
+------------------------------------------------------------------------
+-- Please see the document "General Decimal Arithmetic Testcases" --
+-- at http://www2.hursley.ibm.com/decimal for the description of --
+-- these testcases. --
+-- --
+-- These testcases are experimental ('beta' versions), and they --
+-- may contain errors. They are offered on an as-is basis. In --
+-- particular, achieving the same results as the tests here is not --
+-- a guarantee that an implementation complies with any Standard --
+-- or specification. The tests are not exhaustive. --
+-- --
+-- Please send comments, suggestions, and corrections to the author: --
+-- Mike Cowlishaw, IBM Fellow --
+-- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK --
+-- mfc@uk.ibm.com --
+------------------------------------------------------------------------
+version: 2.56
+
+-- Tests of the exponential funtion. Currently all testcases here
+-- show results which are correctly rounded (within <= 0.5 ulp).
+
+extended: 1
+precision: 9
+rounding: half_even
+maxExponent: 384
+minexponent: -383
+
+-- basics (examples in specificiation, etc.)
+expx001 exp -Infinity -> 0
+expx002 exp -10 -> 0.0000453999298 Inexact Rounded
+expx003 exp -1 -> 0.367879441 Inexact Rounded
+expx004 exp 0 -> 1
+expx005 exp -0 -> 1
+expx006 exp 1 -> 2.71828183 Inexact Rounded
+expx007 exp 0.693147181 -> 2.00000000 Inexact Rounded
+expx008 exp 10 -> 22026.4658 Inexact Rounded
+expx009 exp +Infinity -> Infinity
+
+-- tiny edge cases
+precision: 7
+expx011 exp 0.1 -> 1.105171 Inexact Rounded
+expx012 exp 0.01 -> 1.010050 Inexact Rounded
+expx013 exp 0.001 -> 1.001001 Inexact Rounded
+expx014 exp 0.0001 -> 1.000100 Inexact Rounded
+expx015 exp 0.00001 -> 1.000010 Inexact Rounded
+expx016 exp 0.000001 -> 1.000001 Inexact Rounded
+expx017 exp 0.0000001 -> 1.000000 Inexact Rounded
+expx018 exp 0.0000003 -> 1.000000 Inexact Rounded
+expx019 exp 0.0000004 -> 1.000000 Inexact Rounded
+expx020 exp 0.0000005 -> 1.000001 Inexact Rounded
+expx021 exp 0.0000008 -> 1.000001 Inexact Rounded
+expx022 exp 0.0000009 -> 1.000001 Inexact Rounded
+expx023 exp 0.0000010 -> 1.000001 Inexact Rounded
+expx024 exp 0.0000011 -> 1.000001 Inexact Rounded
+expx025 exp 0.00000009 -> 1.000000 Inexact Rounded
+expx026 exp 0.00000005 -> 1.000000 Inexact Rounded
+expx027 exp 0.00000004 -> 1.000000 Inexact Rounded
+expx028 exp 0.00000001 -> 1.000000 Inexact Rounded
+
+-- and some more zeros
+expx030 exp 0.00000000 -> 1
+expx031 exp 0E+100 -> 1
+expx032 exp 0E-100 -> 1
+expx033 exp -0.00000000 -> 1
+expx034 exp -0E+100 -> 1
+expx035 exp -0E-100 -> 1
+
+-- basic e=0, e=1, e=2, e=4, e>=8 cases
+precision: 7
+expx041 exp 1 -> 2.718282 Inexact Rounded
+expx042 exp -1 -> 0.3678794 Inexact Rounded
+expx043 exp 10 -> 22026.47 Inexact Rounded
+expx044 exp -10 -> 0.00004539993 Inexact Rounded
+expx045 exp 100 -> 2.688117E+43 Inexact Rounded
+expx046 exp -100 -> 3.720076E-44 Inexact Rounded
+expx047 exp 1000 -> Infinity Overflow Inexact Rounded
+expx048 exp -1000 -> 0E-389 Underflow Inexact Rounded Clamped Subnormal
+expx049 exp 100000000 -> Infinity Overflow Inexact Rounded
+expx050 exp -100000000 -> 0E-389 Underflow Inexact Rounded Clamped Subnormal
+
+-- miscellanea
+-- similar to 'VF bug' test, at 17, but with last digit corrected for decimal
+precision: 16
+expx055 exp -5.42410311287441459172E+2 -> 2.717658486884572E-236 Inexact Rounded
+-- result from NetRexx/Java prototype -> 2.7176584868845721117677929628617246054459644711108E-236
+-- result from Rexx (series) version -> 2.717658486884572111767792962861724605446E-236
+precision: 17
+expx056 exp -5.42410311287441459172E+2 -> 2.7176584868845721E-236 Inexact Rounded
+precision: 18
+expx057 exp -5.42410311287441459172E+2 -> 2.71765848688457211E-236 Inexact Rounded
+precision: 19
+expx058 exp -5.42410311287441459172E+2 -> 2.717658486884572112E-236 Inexact Rounded
+precision: 20
+expx059 exp -5.42410311287441459172E+2 -> 2.7176584868845721118E-236 Inexact Rounded
+
+-- rounding in areas of ..500.., ..499.., ..100.., ..999.. sequences
+precision: 50
+expx101 exp -9E-8 -> 0.99999991000000404999987850000273374995079250073811 Inexact Rounded
+precision: 31
+expx102 exp -9E-8 -> 0.9999999100000040499998785000027 Inexact Rounded
+precision: 30
+expx103 exp -9E-8 -> 0.999999910000004049999878500003 Inexact Rounded
+precision: 29
+expx104 exp -9E-8 -> 0.99999991000000404999987850000 Inexact Rounded
+precision: 28
+expx105 exp -9E-8 -> 0.9999999100000040499998785000 Inexact Rounded
+precision: 27
+expx106 exp -9E-8 -> 0.999999910000004049999878500 Inexact Rounded
+precision: 26
+expx107 exp -9E-8 -> 0.99999991000000404999987850 Inexact Rounded
+precision: 25
+expx108 exp -9E-8 -> 0.9999999100000040499998785 Inexact Rounded
+precision: 24
+expx109 exp -9E-8 -> 0.999999910000004049999879 Inexact Rounded
+precision: 23
+expx110 exp -9E-8 -> 0.99999991000000404999988 Inexact Rounded
+precision: 22
+expx111 exp -9E-8 -> 0.9999999100000040499999 Inexact Rounded
+precision: 21
+expx112 exp -9E-8 -> 0.999999910000004050000 Inexact Rounded
+precision: 20
+expx113 exp -9E-8 -> 0.99999991000000405000 Inexact Rounded
+precision: 19
+expx114 exp -9E-8 -> 0.9999999100000040500 Inexact Rounded
+precision: 18
+expx115 exp -9E-8 -> 0.999999910000004050 Inexact Rounded
+precision: 17
+expx116 exp -9E-8 -> 0.99999991000000405 Inexact Rounded
+precision: 16
+expx117 exp -9E-8 -> 0.9999999100000040 Inexact Rounded
+precision: 15
+expx118 exp -9E-8 -> 0.999999910000004 Inexact Rounded
+precision: 14
+expx119 exp -9E-8 -> 0.99999991000000 Inexact Rounded
+precision: 13
+expx120 exp -9E-8 -> 0.9999999100000 Inexact Rounded
+precision: 12
+expx121 exp -9E-8 -> 0.999999910000 Inexact Rounded
+precision: 11
+expx122 exp -9E-8 -> 0.99999991000 Inexact Rounded
+precision: 10
+expx123 exp -9E-8 -> 0.9999999100 Inexact Rounded
+precision: 9
+expx124 exp -9E-8 -> 0.999999910 Inexact Rounded
+precision: 8
+expx125 exp -9E-8 -> 0.99999991 Inexact Rounded
+precision: 7
+expx126 exp -9E-8 -> 0.9999999 Inexact Rounded
+precision: 6
+expx127 exp -9E-8 -> 1.00000 Inexact Rounded
+precision: 5
+expx128 exp -9E-8 -> 1.0000 Inexact Rounded
+precision: 4
+expx129 exp -9E-8 -> 1.000 Inexact Rounded
+precision: 3
+expx130 exp -9E-8 -> 1.00 Inexact Rounded
+precision: 2
+expx131 exp -9E-8 -> 1.0 Inexact Rounded
+precision: 1
+expx132 exp -9E-8 -> 1 Inexact Rounded
+
+
+-- sanity checks, with iteration counts [normalized so 0<=|x|<1]
+precision: 50
+
+expx210 exp 0 -> 1
+-- iterations: 2
+expx211 exp -1E-40 -> 0.99999999999999999999999999999999999999990000000000 Inexact Rounded
+-- iterations: 8
+expx212 exp -9E-7 -> 0.99999910000040499987850002733749507925073811240510 Inexact Rounded
+-- iterations: 6
+expx213 exp -9E-8 -> 0.99999991000000404999987850000273374995079250073811 Inexact Rounded
+-- iterations: 15
+expx214 exp -0.003 -> 0.99700449550337297601206623409756091074177480489845 Inexact Rounded
+-- iterations: 14
+expx215 exp -0.001 -> 0.99900049983337499166805535716765597470235590236008 Inexact Rounded
+-- iterations: 26
+expx216 exp -0.1 -> 0.90483741803595957316424905944643662119470536098040 Inexact Rounded
+-- iterations: 39
+expx217 exp -0.7 -> 0.49658530379140951470480009339752896170766716571182 Inexact Rounded
+-- iterations: 41
+expx218 exp -0.9 -> 0.40656965974059911188345423964562598783370337617038 Inexact Rounded
+-- iterations: 43
+expx219 exp -0.99 -> 0.37157669102204569053152411990820138691802885490501 Inexact Rounded
+-- iterations: 26
+expx220 exp -1 -> 0.36787944117144232159552377016146086744581113103177 Inexact Rounded
+-- iterations: 26
+expx221 exp -1.01 -> 0.36421897957152331975704629563734548959589139192482 Inexact Rounded
+-- iterations: 27
+expx222 exp -1.1 -> 0.33287108369807955328884690643131552161247952156921 Inexact Rounded
+-- iterations: 28
+expx223 exp -1.5 -> 0.22313016014842982893328047076401252134217162936108 Inexact Rounded
+-- iterations: 30
+expx224 exp -2 -> 0.13533528323661269189399949497248440340763154590958 Inexact Rounded
+-- iterations: 36
+expx225 exp -5 -> 0.0067379469990854670966360484231484242488495850273551 Inexact Rounded
+-- iterations: 26
+expx226 exp -10 -> 0.000045399929762484851535591515560550610237918088866565 Inexact Rounded
+-- iterations: 28
+expx227 exp -14 -> 8.3152871910356788406398514256526229460765836498457E-7 Inexact Rounded
+-- iterations: 29
+expx228 exp -15 -> 3.0590232050182578837147949770228963937082078081856E-7 Inexact Rounded
+-- iterations: 30
+expx233 exp 0 -> 1
+-- iterations: 2
+expx234 exp 1E-40 -> 1.0000000000000000000000000000000000000001000000000 Inexact Rounded
+-- iterations: 7
+expx235 exp 9E-7 -> 1.0000009000004050001215000273375049207507381125949 Inexact Rounded
+-- iterations: 6
+expx236 exp 9E-8 -> 1.0000000900000040500001215000027337500492075007381 Inexact Rounded
+-- iterations: 15
+expx237 exp 0.003 -> 1.0030045045033770260129340913489002053318727195619 Inexact Rounded
+-- iterations: 13
+expx238 exp 0.001 -> 1.0010005001667083416680557539930583115630762005807 Inexact Rounded
+-- iterations: 25
+expx239 exp 0.1 -> 1.1051709180756476248117078264902466682245471947375 Inexact Rounded
+-- iterations: 38
+expx240 exp 0.7 -> 2.0137527074704765216245493885830652700175423941459 Inexact Rounded
+-- iterations: 41
+expx241 exp 0.9 -> 2.4596031111569496638001265636024706954217723064401 Inexact Rounded
+-- iterations: 42
+expx242 exp 0.99 -> 2.6912344723492622890998794040710139721802931841030 Inexact Rounded
+-- iterations: 26
+expx243 exp 1 -> 2.7182818284590452353602874713526624977572470937000 Inexact Rounded
+-- iterations: 26
+expx244 exp 1.01 -> 2.7456010150169164939897763166603876240737508195960 Inexact Rounded
+-- iterations: 26
+expx245 exp 1.1 -> 3.0041660239464331120584079535886723932826810260163 Inexact Rounded
+-- iterations: 28
+expx246 exp 1.5 -> 4.4816890703380648226020554601192758190057498683697 Inexact Rounded
+-- iterations: 29
+expx247 exp 2 -> 7.3890560989306502272304274605750078131803155705518 Inexact Rounded
+-- iterations: 36
+expx248 exp 5 -> 148.41315910257660342111558004055227962348766759388 Inexact Rounded
+-- iterations: 26
+expx249 exp 10 -> 22026.465794806716516957900645284244366353512618557 Inexact Rounded
+-- iterations: 28
+expx250 exp 14 -> 1202604.2841647767777492367707678594494124865433761 Inexact Rounded
+-- iterations: 28
+expx251 exp 15 -> 3269017.3724721106393018550460917213155057385438200 Inexact Rounded
+-- iterations: 29
+
+-- a biggie [result verified 3 ways]
+precision: 250
+expx260 exp 1 -> 2.718281828459045235360287471352662497757247093699959574966967627724076630353547594571382178525166427427466391932003059921817413596629043572900334295260595630738132328627943490763233829880753195251019011573834187930702154089149934884167509244761460668 Inexact Rounded
+
+-- extreme range boundaries
+precision: 16
+maxExponent: 999999
+minExponent: -999999
+-- Ntiny boundary
+expx290 exp -2302618.022332529 -> 0E-1000014 Underflow Subnormal Inexact Rounded Clamped
+expx291 exp -2302618.022332528 -> 1E-1000014 Underflow Subnormal Inexact Rounded
+-- Nmax/10 and Nmax boundary
+expx292 exp 2302582.790408952 -> 9.999999993100277E+999998 Inexact Rounded
+expx293 exp 2302582.790408953 -> 1.000000000310028E+999999 Inexact Rounded
+expx294 exp 2302585.092993946 -> 9.999999003159870E+999999 Inexact Rounded
+expx295 exp 2302585.092994036 -> 9.999999903159821E+999999 Inexact Rounded
+expx296 exp 2302585.092994045 -> 9.999999993159820E+999999 Inexact Rounded
+expx297 exp 2302585.092994046 -> Infinity Overflow Inexact Rounded
+
+-- 0<-x<<1 effects
+precision: 30
+expx320 exp -4.9999999999999E-8 -> 0.999999950000001250000979166617 Inexact Rounded
+expx321 exp -5.0000000000000E-8 -> 0.999999950000001249999979166667 Inexact Rounded
+expx322 exp -5.0000000000001E-8 -> 0.999999950000001249998979166717 Inexact Rounded
+precision: 20
+expx323 exp -4.9999999999999E-8 -> 0.99999995000000125000 Inexact Rounded
+expx324 exp -5.0000000000000E-8 -> 0.99999995000000125000 Inexact Rounded
+expx325 exp -5.0000000000001E-8 -> 0.99999995000000125000 Inexact Rounded
+precision: 14
+expx326 exp -4.9999999999999E-8 -> 0.99999995000000 Inexact Rounded
+expx327 exp -5.0000000000000E-8 -> 0.99999995000000 Inexact Rounded
+expx328 exp -5.0000000000001E-8 -> 0.99999995000000 Inexact Rounded
+-- overprecise and 0<-x<<1
+precision: 8
+expx330 exp -4.9999999999999E-8 -> 0.99999995 Inexact Rounded
+expx331 exp -5.0000000000000E-8 -> 0.99999995 Inexact Rounded
+expx332 exp -5.0000000000001E-8 -> 0.99999995 Inexact Rounded
+precision: 7
+expx333 exp -4.9999999999999E-8 -> 1.000000 Inexact Rounded
+expx334 exp -5.0000000000000E-8 -> 1.000000 Inexact Rounded
+expx335 exp -5.0000000000001E-8 -> 1.000000 Inexact Rounded
+precision: 3
+expx336 exp -4.9999999999999E-8 -> 1.00 Inexact Rounded
+expx337 exp -5.0000000000000E-8 -> 1.00 Inexact Rounded
+expx338 exp -5.0000000000001E-8 -> 1.00 Inexact Rounded
+
+-- 0<x<<1 effects
+precision: 30
+expx340 exp 4.9999999999999E-8 -> 1.00000005000000124999902083328 Inexact Rounded
+expx341 exp 5.0000000000000E-8 -> 1.00000005000000125000002083333 Inexact Rounded
+expx342 exp 5.0000000000001E-8 -> 1.00000005000000125000102083338 Inexact Rounded
+precision: 20
+expx343 exp 4.9999999999999E-8 -> 1.0000000500000012500 Inexact Rounded
+expx344 exp 5.0000000000000E-8 -> 1.0000000500000012500 Inexact Rounded
+expx345 exp 5.0000000000001E-8 -> 1.0000000500000012500 Inexact Rounded
+precision: 14
+expx346 exp 4.9999999999999E-8 -> 1.0000000500000 Inexact Rounded
+expx347 exp 5.0000000000000E-8 -> 1.0000000500000 Inexact Rounded
+expx348 exp 5.0000000000001E-8 -> 1.0000000500000 Inexact Rounded
+-- overprecise and 0<x<<1
+precision: 8
+expx350 exp 4.9999999999999E-8 -> 1.0000001 Inexact Rounded
+expx351 exp 5.0000000000000E-8 -> 1.0000001 Inexact Rounded
+expx352 exp 5.0000000000001E-8 -> 1.0000001 Inexact Rounded
+precision: 7
+expx353 exp 4.9999999999999E-8 -> 1.000000 Inexact Rounded
+expx354 exp 5.0000000000000E-8 -> 1.000000 Inexact Rounded
+expx355 exp 5.0000000000001E-8 -> 1.000000 Inexact Rounded
+precision: 3
+expx356 exp 4.9999999999999E-8 -> 1.00 Inexact Rounded
+expx357 exp 5.0000000000000E-8 -> 1.00 Inexact Rounded
+expx358 exp 5.0000000000001E-8 -> 1.00 Inexact Rounded
+
+-- cases near 1 -- 1 2345678901234567890
+precision: 20
+expx401 exp 0.99999999999996 -> 2.7182818284589365041 Inexact Rounded
+expx402 exp 0.99999999999997 -> 2.7182818284589636869 Inexact Rounded
+expx403 exp 0.99999999999998 -> 2.7182818284589908697 Inexact Rounded
+expx404 exp 0.99999999999999 -> 2.7182818284590180525 Inexact Rounded
+expx405 exp 1.0000000000000 -> 2.7182818284590452354 Inexact Rounded
+expx406 exp 1.0000000000001 -> 2.7182818284593170635 Inexact Rounded
+expx407 exp 1.0000000000002 -> 2.7182818284595888917 Inexact Rounded
+precision: 14
+expx411 exp 0.99999999999996 -> 2.7182818284589 Inexact Rounded
+expx412 exp 0.99999999999997 -> 2.7182818284590 Inexact Rounded
+expx413 exp 0.99999999999998 -> 2.7182818284590 Inexact Rounded
+expx414 exp 0.99999999999999 -> 2.7182818284590 Inexact Rounded
+expx415 exp 1.0000000000000 -> 2.7182818284590 Inexact Rounded
+expx416 exp 1.0000000000001 -> 2.7182818284593 Inexact Rounded
+expx417 exp 1.0000000000002 -> 2.7182818284596 Inexact Rounded
+-- overprecise...
+precision: 7
+expx421 exp 0.99999999999996 -> 2.718282 Inexact Rounded
+expx422 exp 0.99999999999997 -> 2.718282 Inexact Rounded
+expx423 exp 0.99999999999998 -> 2.718282 Inexact Rounded
+expx424 exp 0.99999999999999 -> 2.718282 Inexact Rounded
+expx425 exp 1.0000000000001 -> 2.718282 Inexact Rounded
+expx426 exp 1.0000000000002 -> 2.718282 Inexact Rounded
+expx427 exp 1.0000000000003 -> 2.718282 Inexact Rounded
+precision: 2
+expx431 exp 0.99999999999996 -> 2.7 Inexact Rounded
+expx432 exp 0.99999999999997 -> 2.7 Inexact Rounded
+expx433 exp 0.99999999999998 -> 2.7 Inexact Rounded
+expx434 exp 0.99999999999999 -> 2.7 Inexact Rounded
+expx435 exp 1.0000000000001 -> 2.7 Inexact Rounded
+expx436 exp 1.0000000000002 -> 2.7 Inexact Rounded
+expx437 exp 1.0000000000003 -> 2.7 Inexact Rounded
+
+-- basics at low precisions
+precision: 3
+expx501 exp -Infinity -> 0
+expx502 exp -10 -> 0.0000454 Inexact Rounded
+expx503 exp -1 -> 0.368 Inexact Rounded
+expx504 exp 0 -> 1
+expx505 exp -0 -> 1
+expx506 exp 1 -> 2.72 Inexact Rounded
+expx507 exp 0.693147181 -> 2.00 Inexact Rounded
+expx508 exp 10 -> 2.20E+4 Inexact Rounded
+expx509 exp +Infinity -> Infinity
+precision: 2
+expx511 exp -Infinity -> 0
+expx512 exp -10 -> 0.000045 Inexact Rounded
+expx513 exp -1 -> 0.37 Inexact Rounded
+expx514 exp 0 -> 1
+expx515 exp -0 -> 1
+expx516 exp 1 -> 2.7 Inexact Rounded
+expx517 exp 0.693147181 -> 2.0 Inexact Rounded
+expx518 exp 10 -> 2.2E+4 Inexact Rounded
+expx519 exp +Infinity -> Infinity
+precision: 1
+expx521 exp -Infinity -> 0
+expx522 exp -10 -> 0.00005 Inexact Rounded
+expx523 exp -1 -> 0.4 Inexact Rounded
+expx524 exp 0 -> 1
+expx525 exp -0 -> 1
+expx526 exp 1 -> 3 Inexact Rounded
+expx527 exp 0.693147181 -> 2 Inexact Rounded
+expx528 exp 10 -> 2E+4 Inexact Rounded
+expx529 exp +Infinity -> Infinity
+
+-- overflows, including some overprecise borderlines
+precision: 7
+maxExponent: 384
+minExponent: -383
+expx701 exp 1000000000 -> Infinity Overflow Inexact Rounded
+expx702 exp 100000000 -> Infinity Overflow Inexact Rounded
+expx703 exp 10000000 -> Infinity Overflow Inexact Rounded
+expx704 exp 1000000 -> Infinity Overflow Inexact Rounded
+expx705 exp 100000 -> Infinity Overflow Inexact Rounded
+expx706 exp 10000 -> Infinity Overflow Inexact Rounded
+expx707 exp 1000 -> Infinity Overflow Inexact Rounded
+expx708 exp 886.4952608 -> Infinity Overflow Inexact Rounded
+expx709 exp 886.4952607 -> 9.999999E+384 Inexact Rounded
+expx710 exp 886.49527 -> Infinity Overflow Inexact Rounded
+expx711 exp 886.49526 -> 9.999992E+384 Inexact Rounded
+precision: 16
+expx721 exp 886.4952608027075883 -> Infinity Overflow Inexact Rounded
+expx722 exp 886.4952608027075882 -> 9.999999999999999E+384 Inexact Rounded
+expx723 exp 886.49526080270759 -> Infinity Overflow Inexact Rounded
+expx724 exp 886.49526080270758 -> 9.999999999999917E+384 Inexact Rounded
+expx725 exp 886.4952608027076 -> Infinity Overflow Inexact Rounded
+expx726 exp 886.4952608027075 -> 9.999999999999117E+384 Inexact Rounded
+-- and by special request ...
+precision: 15
+expx731 exp 886.495260802708 -> Infinity Overflow Inexact Rounded
+expx732 exp 886.495260802707 -> 9.99999999999412E+384 Inexact Rounded
+expx733 exp 886.495260802706 -> 9.99999999998412E+384 Inexact Rounded
+maxExponent: 999
+minExponent: -999
+expx735 exp 2302.58509299405 -> Infinity Overflow Inexact Rounded
+expx736 exp 2302.58509299404 -> 9.99999999994316E+999 Inexact Rounded
+expx737 exp 2302.58509299403 -> 9.99999999984316E+999 Inexact Rounded
+
+-- subnormals and underflows, including underflow-to-zero edge point
+precision: 7
+maxExponent: 384
+minExponent: -383
+expx751 exp -1000000000 -> 0E-389 Underflow Inexact Rounded Clamped Subnormal
+expx752 exp -100000000 -> 0E-389 Underflow Inexact Rounded Clamped Subnormal
+expx753 exp -10000000 -> 0E-389 Underflow Inexact Rounded Clamped Subnormal
+expx754 exp -1000000 -> 0E-389 Underflow Inexact Rounded Clamped Subnormal
+expx755 exp -100000 -> 0E-389 Underflow Inexact Rounded Clamped Subnormal
+expx756 exp -10000 -> 0E-389 Underflow Inexact Rounded Clamped Subnormal
+expx757 exp -1000 -> 0E-389 Underflow Inexact Rounded Clamped Subnormal
+expx758 exp -881.89009 -> 1.000001E-383 Inexact Rounded
+expx759 exp -881.8901 -> 9.99991E-384 Inexact Rounded Underflow Subnormal
+expx760 exp -885 -> 4.4605E-385 Inexact Rounded Underflow Subnormal
+expx761 exp -888 -> 2.221E-386 Inexact Rounded Underflow Subnormal
+expx762 exp -890 -> 3.01E-387 Inexact Rounded Underflow Subnormal
+expx763 exp -892.9 -> 1.7E-388 Inexact Rounded Underflow Subnormal
+expx764 exp -893 -> 1.5E-388 Inexact Rounded Underflow Subnormal
+expx765 exp -893.5 -> 9E-389 Inexact Rounded Underflow Subnormal
+expx766 exp -895.7056 -> 1E-389 Inexact Rounded Underflow Subnormal
+expx769 exp -895.8 -> 1E-389 Inexact Rounded Underflow Subnormal
+expx770 exp -895.73 -> 1E-389 Inexact Rounded Underflow Subnormal
+expx771 exp -896.3987 -> 1E-389 Inexact Rounded Underflow Subnormal
+expx772 exp -896.3988 -> 0E-389 Inexact Rounded Underflow Subnormal Clamped
+expx773 exp -898.0081 -> 0E-389 Inexact Rounded Underflow Subnormal Clamped
+expx774 exp -898.0082 -> 0E-389 Inexact Rounded Underflow Subnormal Clamped
+
+-- special values
+maxexponent: 999
+minexponent: -999
+expx820 exp Inf -> Infinity
+expx821 exp -Inf -> 0
+expx822 exp NaN -> NaN
+expx823 exp sNaN -> NaN Invalid_operation
+-- propagating NaNs
+expx824 exp sNaN123 -> NaN123 Invalid_operation
+expx825 exp -sNaN321 -> -NaN321 Invalid_operation
+expx826 exp NaN456 -> NaN456
+expx827 exp -NaN654 -> -NaN654
+expx828 exp NaN1 -> NaN1
+
+-- Invalid operations due to restrictions
+-- [next two probably skipped by most test harnesses]
+precision: 100000000
+expx901 exp -Infinity -> NaN Invalid_context
+precision: 99999999
+expx902 exp -Infinity -> NaN Invalid_context
+
+precision: 9
+maxExponent: 1000000
+minExponent: -999999
+expx903 exp -Infinity -> NaN Invalid_context
+maxExponent: 999999
+minExponent: -999999
+expx904 exp -Infinity -> 0
+maxExponent: 999999
+minExponent: -1000000
+expx905 exp -Infinity -> NaN Invalid_context
+maxExponent: 999999
+minExponent: -999998
+expx906 exp -Infinity -> 0
+
+--
+maxExponent: 384
+minExponent: -383
+precision: 16
+rounding: half_even
+
+-- Null test
+expx900 exp # -> NaN Invalid_operation
+
+
+-- Randoms P=50, within 0-999
+Precision: 50
+maxExponent: 384
+minExponent: -383
+expx1501 exp 656.35397950590285612266095596539934213943872885728 -> 1.1243757610640319783611178528839652672062820040314E+285 Inexact Rounded
+expx1502 exp 0.93620571093652800225038550600780322831236082781471 -> 2.5502865130986176689199711857825771311178046842009 Inexact Rounded
+expx1503 exp 0.00000000000000008340785856601514714183373874105791 -> 1.0000000000000000834078585660151506202691740252512 Inexact Rounded
+expx1504 exp 0.00009174057262887789625745574686545163168788456203 -> 1.0000917447809239005146722341251524081006051473273 Inexact Rounded
+expx1505 exp 33.909116897973797735657751591014926629051117541243 -> 532773181025002.03543618901306726495870476617232229 Inexact Rounded
+expx1506 exp 0.00000740470413004406592124575295278456936809587311 -> 1.0000074047315449333590066395670306135567889210814 Inexact Rounded
+expx1507 exp 0.00000000000124854922222108802453746922483071445492 -> 1.0000000000012485492222218674621176239911424968263 Inexact Rounded
+expx1508 exp 4.1793280674155659794286951159430651258356014391382 -> 65.321946520147199404199787811336860087975118278185 Inexact Rounded
+expx1509 exp 485.43595745460655893746179890255529919221550201686 -> 6.6398403920459617255950476953129377459845366585463E+210 Inexact Rounded
+expx1510 exp 0.00000000003547259806590856032527875157830328156597 -> 1.0000000000354725980665377129320589406715000685515 Inexact Rounded
+expx1511 exp 0.00000000000000759621497339104047930616478635042678 -> 1.0000000000000075962149733910693305471257715463887 Inexact Rounded
+expx1512 exp 9.7959168821760339304571595474480640286072720233796 -> 17960.261146042955179164303653412650751681436352437 Inexact Rounded
+expx1513 exp 0.00000000566642006258290526783901451194943164535581 -> 1.0000000056664200786370634609832438815665249347650 Inexact Rounded
+expx1514 exp 741.29888791134298194088827572374718940925820027354 -> 8.7501694006317332808128946666402622432064923198731E+321 Inexact Rounded
+expx1515 exp 032.75573003552517668808529099897153710887014947935 -> 168125196578678.17725841108617955904425345631092339 Inexact Rounded
+expx1516 exp 42.333700726429333308594265553422902463737399437644 -> 2428245675864172475.4681119493045657797309369672012 Inexact Rounded
+expx1517 exp 0.00000000000000559682616876491888197609158802835798 -> 1.0000000000000055968261687649345442076732739577049 Inexact Rounded
+expx1518 exp 0.00000000000080703688668280193584758300973549486312 -> 1.0000000000008070368866831275901158164321867914342 Inexact Rounded
+expx1519 exp 640.72396012796509482382712891709072570653606838251 -> 1.8318094990683394229304133068983914236995326891045E+278 Inexact Rounded
+expx1520 exp 0.00000000000000509458922167631071416948112219512224 -> 1.0000000000000050945892216763236915891499324358556 Inexact Rounded
+expx1521 exp 6.7670394314315206378625221583973414660727960241395 -> 868.73613012822031367806248697092884415119568271315 Inexact Rounded
+expx1522 exp 04.823217407412963506638267226891024138054783122548 -> 124.36457929588837129731821077586705505565904205366 Inexact Rounded
+expx1523 exp 193.51307878701196403991208482520115359690106143615 -> 1.1006830872854715677390914655452261550768957576034E+84 Inexact Rounded
+expx1524 exp 5.7307749038303650539200345901210497015617393970463 -> 308.20800743106843083522721523715645950574866495196 Inexact Rounded
+expx1525 exp 0.00000000000095217825199797965200541169123743500267 -> 1.0000000000009521782519984329737172007991390381273 Inexact Rounded
+expx1526 exp 0.00027131440949183370966393682617930153495028919140 -> 1.0002713512185751022906058160480606598754913607364 Inexact Rounded
+expx1527 exp 0.00000000064503059114680682343002315662069272707123 -> 1.0000000006450305913548390552323517403613135496633 Inexact Rounded
+expx1528 exp 0.00000000000000095616643506527288866235238548440593 -> 1.0000000000000009561664350652733457894781582009094 Inexact Rounded
+expx1529 exp 0.00000000000000086449942811678650244459550252743433 -> 1.0000000000000008644994281167868761242261096529986 Inexact Rounded
+expx1530 exp 0.06223488355635359965683053157729204988381887621850 -> 1.0642122813392406657789688931838919323826250630831 Inexact Rounded
+expx1531 exp 0.00000400710807804429435502657131912308680674057053 -> 1.0000040071161065125925620890019319832127863559260 Inexact Rounded
+expx1532 exp 85.522796894744576211573232055494551429297878413017 -> 13870073686404228452757799770251085177.853337368935 Inexact Rounded
+expx1533 exp 9.1496720811363678696938036379756663548353399954363 -> 9411.3537122832743386783597629161763057370034495157 Inexact Rounded
+expx1534 exp 8.2215705240788294472944382056330516738577785177942 -> 3720.3406813383076953899654701615084425598377758189 Inexact Rounded
+expx1535 exp 0.00000000015772064569640613142823203726821076239561 -> 1.0000000001577206457088440324683315788358926129830 Inexact Rounded
+expx1536 exp 0.58179346473959531432624153576883440625538017532480 -> 1.7892445018275360163797022372655837188423194863605 Inexact Rounded
+expx1537 exp 33.555726197149525061455517784870570470833498096559 -> 374168069896324.62578073148993526626307095854407952 Inexact Rounded
+expx1538 exp 9.7898079803906215094140010009583375537259810398659 -> 17850.878119912208888217100998019986634620368538426 Inexact Rounded
+expx1539 exp 89.157697327174521542502447953032536541038636966347 -> 525649152320166503771224149330448089550.67293829227 Inexact Rounded
+expx1540 exp 25.022947600123328912029051897171319573322888514885 -> 73676343442.952517824345431437683153304645851960524 Inexact Rounded
+
+-- exp(1) at 34
+Precision: 34
+expx1200 exp 1 -> 2.718281828459045235360287471352662 Inexact Rounded
+
+-- Randoms P=34, within 0-999
+Precision: 34
+maxExponent: 6144
+minExponent: -6143
+expx1201 exp 309.5948855821510212996700645087188 -> 2.853319692901387521201738015050724E+134 Inexact Rounded
+expx1202 exp 9.936543068706211420422803962680164 -> 20672.15839203171877476511093276022 Inexact Rounded
+expx1203 exp 6.307870323881505684429839491707908 -> 548.8747777054637296137277391754665 Inexact Rounded
+expx1204 exp 0.0003543281389438420535201308282503 -> 1.000354390920573746164733350843155 Inexact Rounded
+expx1205 exp 0.0000037087453363918375598394920229 -> 1.000003708752213796324841920189323 Inexact Rounded
+expx1206 exp 0.0020432312687512438040222444116585 -> 1.002045320088164826013561630975308 Inexact Rounded
+expx1207 exp 6.856313340032177672550343216129586 -> 949.8587981604144147983589660524396 Inexact Rounded
+expx1208 exp 0.0000000000402094928333815643326418 -> 1.000000000040209492834189965989612 Inexact Rounded
+expx1209 exp 0.0049610784722412117632647003545839 -> 1.004973404997901987039589029277833 Inexact Rounded
+expx1210 exp 0.0000891471883724066909746786702686 -> 1.000089151162101085412780088266699 Inexact Rounded
+expx1211 exp 08.59979170376061890684723211112566 -> 5430.528314920905714615339273738097 Inexact Rounded
+expx1212 exp 9.473117039341003854872778112752590 -> 13005.36234331224953460055897913917 Inexact Rounded
+expx1213 exp 0.0999060724692207648429969999310118 -> 1.105067116975190602296052700726802 Inexact Rounded
+expx1214 exp 0.0000000927804533555877884082269247 -> 1.000000092780457659694183954740772 Inexact Rounded
+expx1215 exp 0.0376578583872889916298772818265677 -> 1.038375900489771946477857818447556 Inexact Rounded
+expx1216 exp 261.6896411697539524911536116712307 -> 4.470613562127465095241600174941460E+113 Inexact Rounded
+expx1217 exp 0.0709997423269162980875824213889626 -> 1.073580949235407949417814485533172 Inexact Rounded
+expx1218 exp 0.0000000444605583295169895235658731 -> 1.000000044460559317887627657593900 Inexact Rounded
+expx1219 exp 0.0000021224072854777512281369815185 -> 1.000002122409537785687390631070906 Inexact Rounded
+expx1220 exp 547.5174462574156885473558485475052 -> 6.078629247383807942612114579728672E+237 Inexact Rounded
+expx1221 exp 0.0000009067598041615192002339844670 -> 1.000000906760215268314680115374387 Inexact Rounded
+expx1222 exp 0.0316476500308065365803455533244603 -> 1.032153761880187977658387961769034 Inexact Rounded
+expx1223 exp 84.46160530377645101833996706384473 -> 4.799644995897968383503269871697856E+36 Inexact Rounded
+expx1224 exp 0.0000000000520599740290848018904145 -> 1.000000000052059974030439922338393 Inexact Rounded
+expx1225 exp 0.0000006748530640093620665651726708 -> 1.000000674853291722742292331812997 Inexact Rounded
+expx1226 exp 0.0000000116853119761042020507916169 -> 1.000000011685312044377460306165203 Inexact Rounded
+expx1227 exp 0.0022593818094258636727616886693280 -> 1.002261936135876893707094845543461 Inexact Rounded
+expx1228 exp 0.0029398857673478912249856509667517 -> 1.002944211469495086813087651287012 Inexact Rounded
+expx1229 exp 0.7511480029928802775376270557636963 -> 2.119431734510320169806976569366789 Inexact Rounded
+expx1230 exp 174.9431952176750671150886423048447 -> 9.481222305374955011464619468044051E+75 Inexact Rounded
+expx1231 exp 0.0000810612451694136129199895164424 -> 1.000081064530720924186615149646920 Inexact Rounded
+expx1232 exp 51.06888989702669288180946272499035 -> 15098613888619165073959.89896018749 Inexact Rounded
+expx1233 exp 0.0000000005992887599437093651494510 -> 1.000000000599288760123282874082758 Inexact Rounded
+expx1234 exp 714.8549046761054856311108828903972 -> 2.867744544891081117381595080480784E+310 Inexact Rounded
+expx1235 exp 0.0000000004468247802990643645607110 -> 1.000000000446824780398890556720233 Inexact Rounded
+expx1236 exp 831.5818151589890366323551672043709 -> 1.417077409182624969435938062261655E+361 Inexact Rounded
+expx1237 exp 0.0000000006868323825179605747108044 -> 1.000000000686832382753829935602454 Inexact Rounded
+expx1238 exp 0.0000001306740266408976840228440255 -> 1.000000130674035178748675187648098 Inexact Rounded
+expx1239 exp 0.3182210609022267704811502412335163 -> 1.374680115667798185758927247894859 Inexact Rounded
+expx1240 exp 0.0147741234179104437440264644295501 -> 1.014883800239950682628277534839222 Inexact Rounded
+
+-- Randoms P=16, within 0-99
+Precision: 16
+maxExponent: 384
+minExponent: -383
+expx1101 exp 8.473011527013724 -> 4783.900643969246 Inexact Rounded
+expx1102 exp 0.0000055753022764 -> 1.000005575317818 Inexact Rounded
+expx1103 exp 0.0000323474114482 -> 1.000032347934631 Inexact Rounded
+expx1104 exp 64.54374138544166 -> 1.073966476173531E+28 Inexact Rounded
+expx1105 exp 90.47203246416569 -> 1.956610887250643E+39 Inexact Rounded
+expx1106 exp 9.299931532342757 -> 10937.27033325227 Inexact Rounded
+expx1107 exp 8.759678437852203 -> 6372.062234495381 Inexact Rounded
+expx1108 exp 0.0000931755127172 -> 1.000093179853690 Inexact Rounded
+expx1109 exp 0.0000028101158373 -> 1.000002810119786 Inexact Rounded
+expx1110 exp 0.0000008008130919 -> 1.000000800813413 Inexact Rounded
+expx1111 exp 8.339771722299049 -> 4187.133803081878 Inexact Rounded
+expx1112 exp 0.0026140497995474 -> 1.002617469406750 Inexact Rounded
+expx1113 exp 0.7478033356261771 -> 2.112354781975418 Inexact Rounded
+expx1114 exp 51.77663761827966 -> 3.064135801120365E+22 Inexact Rounded
+expx1115 exp 0.1524989783061012 -> 1.164741272084955 Inexact Rounded
+expx1116 exp 0.0066298798669219 -> 1.006651906170791 Inexact Rounded
+expx1117 exp 9.955141865534960 -> 21060.23334287038 Inexact Rounded
+expx1118 exp 92.34503059198483 -> 1.273318993481226E+40 Inexact Rounded
+expx1119 exp 0.0000709388677346 -> 1.000070941383956 Inexact Rounded
+expx1120 exp 79.12883036433204 -> 2.318538899389243E+34 Inexact Rounded
+expx1121 exp 0.0000090881548873 -> 1.000009088196185 Inexact Rounded
+expx1122 exp 0.0424828809603411 -> 1.043398194245720 Inexact Rounded
+expx1123 exp 0.8009035891427416 -> 2.227552811933310 Inexact Rounded
+expx1124 exp 8.825786167283102 -> 6807.540455289995 Inexact Rounded
+expx1125 exp 1.535457249746275 -> 4.643448260146849 Inexact Rounded
+expx1126 exp 69.02254254355800 -> 9.464754500670653E+29 Inexact Rounded
+expx1127 exp 0.0007050554368713 -> 1.000705304046880 Inexact Rounded
+expx1128 exp 0.0000081206549504 -> 1.000008120687923 Inexact Rounded
+expx1129 exp 0.621774854641137 -> 1.862230298554903 Inexact Rounded
+expx1130 exp 3.847629031404354 -> 46.88177613568203 Inexact Rounded
+expx1131 exp 24.81250184697732 -> 59694268456.19966 Inexact Rounded
+expx1132 exp 5.107546500516044 -> 165.2643809755670 Inexact Rounded
+expx1133 exp 79.17810943951986 -> 2.435656372541360E+34 Inexact Rounded
+expx1134 exp 0.0051394695667015 -> 1.005152699295301 Inexact Rounded
+expx1135 exp 57.44504488501725 -> 8.872908566929688E+24 Inexact Rounded
+expx1136 exp 0.0000508388968036 -> 1.000050840189122 Inexact Rounded
+expx1137 exp 69.71309932148997 -> 1.888053740693541E+30 Inexact Rounded
+expx1138 exp 0.0064183412981502 -> 1.006438982988835 Inexact Rounded
+expx1139 exp 9.346991220814677 -> 11464.27802035082 Inexact Rounded
+expx1140 exp 33.09087139999152 -> 235062229168763.5 Inexact Rounded
+
+-- Randoms P=7, within 0-9
+Precision: 7
+maxExponent: 96
+minExponent: -95
+expx1001 exp 2.395441 -> 10.97304 Inexact Rounded
+expx1002 exp 0.6406779 -> 1.897767 Inexact Rounded
+expx1003 exp 0.5618218 -> 1.753865 Inexact Rounded
+expx1004 exp 3.055120 -> 21.22373 Inexact Rounded
+expx1005 exp 1.536792 -> 4.649650 Inexact Rounded
+expx1006 exp 0.0801591 -> 1.083459 Inexact Rounded
+expx1007 exp 0.0966875 -> 1.101516 Inexact Rounded
+expx1008 exp 0.0646761 -> 1.066813 Inexact Rounded
+expx1009 exp 0.0095670 -> 1.009613 Inexact Rounded
+expx1010 exp 2.956859 -> 19.23745 Inexact Rounded
+expx1011 exp 7.504679 -> 1816.522 Inexact Rounded
+expx1012 exp 0.0045259 -> 1.004536 Inexact Rounded
+expx1013 exp 3.810071 -> 45.15364 Inexact Rounded
+expx1014 exp 1.502390 -> 4.492413 Inexact Rounded
+expx1015 exp 0.0321523 -> 1.032675 Inexact Rounded
+expx1016 exp 0.0057214 -> 1.005738 Inexact Rounded
+expx1017 exp 9.811445 -> 18241.33 Inexact Rounded
+expx1018 exp 3.245249 -> 25.66810 Inexact Rounded
+expx1019 exp 0.3189742 -> 1.375716 Inexact Rounded
+expx1020 exp 0.8621610 -> 2.368273 Inexact Rounded
+expx1021 exp 0.0122511 -> 1.012326 Inexact Rounded
+expx1022 exp 2.202088 -> 9.043877 Inexact Rounded
+expx1023 exp 8.778203 -> 6491.202 Inexact Rounded
+expx1024 exp 0.1896279 -> 1.208800 Inexact Rounded
+expx1025 exp 0.4510947 -> 1.570030 Inexact Rounded
+expx1026 exp 0.276413 -> 1.318392 Inexact Rounded
+expx1027 exp 4.490067 -> 89.12742 Inexact Rounded
+expx1028 exp 0.0439786 -> 1.044960 Inexact Rounded
+expx1029 exp 0.8168245 -> 2.263301 Inexact Rounded
+expx1030 exp 0.0391658 -> 1.039943 Inexact Rounded
+expx1031 exp 9.261816 -> 10528.24 Inexact Rounded
+expx1032 exp 9.611186 -> 14930.87 Inexact Rounded
+expx1033 exp 9.118125 -> 9119.087 Inexact Rounded
+expx1034 exp 9.469083 -> 12953.00 Inexact Rounded
+expx1035 exp 0.0499983 -> 1.051269 Inexact Rounded
+expx1036 exp 0.0050746 -> 1.005087 Inexact Rounded
+expx1037 exp 0.0014696 -> 1.001471 Inexact Rounded
+expx1038 exp 9.138494 -> 9306.739 Inexact Rounded
+expx1039 exp 0.0065436 -> 1.006565 Inexact Rounded
+expx1040 exp 0.7284803 -> 2.071930 Inexact Rounded
+
diff --git a/Lib/test/decimaltestdata/extra.decTest b/Lib/test/decimaltestdata/extra.decTest
new file mode 100644
index 0000000..36f2a97
--- /dev/null
+++ b/Lib/test/decimaltestdata/extra.decTest
@@ -0,0 +1,567 @@
+version: ?.??
+
+extended: 1
+rounding: half_even
+
+-- testing folddown and clamping
+maxexponent: 9
+minexponent: -9
+precision: 6
+clamp: 1
+extr0000 apply 1E+11 -> Infinity Overflow Inexact Rounded
+extr0001 apply 1E+10 -> Infinity Overflow Inexact Rounded
+extr0002 apply 1E+9 -> 1.00000E+9 Clamped
+extr0003 apply 1E+8 -> 1.0000E+8 Clamped
+extr0004 apply 1E+7 -> 1.000E+7 Clamped
+extr0005 apply 1E+6 -> 1.00E+6 Clamped
+extr0006 apply 1E+5 -> 1.0E+5 Clamped
+extr0007 apply 1E+4 -> 1E+4
+extr0008 apply 1E+3 -> 1E+3
+extr0009 apply 1E+2 -> 1E+2
+extr0010 apply 1E+1 -> 1E+1
+extr0011 apply 1 -> 1
+extr0012 apply 1E-1 -> 0.1
+extr0013 apply 1E-2 -> 0.01
+extr0014 apply 1E-3 -> 0.001
+extr0015 apply 1E-4 -> 0.0001
+extr0016 apply 1E-5 -> 0.00001
+extr0017 apply 1E-6 -> 0.000001
+extr0018 apply 1E-7 -> 1E-7
+extr0019 apply 1E-8 -> 1E-8
+extr0020 apply 1E-9 -> 1E-9
+extr0021 apply 1E-10 -> 1E-10 Subnormal
+extr0022 apply 1E-11 -> 1E-11 Subnormal
+extr0023 apply 1E-12 -> 1E-12 Subnormal
+extr0024 apply 1E-13 -> 1E-13 Subnormal
+extr0025 apply 1E-14 -> 1E-14 Subnormal
+extr0026 apply 1E-15 -> 0E-14 Inexact Rounded Subnormal Underflow Clamped
+extr0027 apply 1E-16 -> 0E-14 Inexact Rounded Subnormal Underflow Clamped
+clamp: 0
+
+-- large precision, small minimum and maximum exponent; in this case
+-- it's possible that folddown is required on a subnormal result
+maxexponent: 9
+minexponent: -9
+precision: 24
+clamp: 1
+extr0100 apply 1E+11 -> Infinity Overflow Inexact Rounded
+extr0101 apply 1E+10 -> Infinity Overflow Inexact Rounded
+extr0102 apply 1E+9 -> 1000000000.00000000000000 Clamped
+extr0103 apply 1E+8 -> 100000000.00000000000000 Clamped
+extr0104 apply 1E+7 -> 10000000.00000000000000 Clamped
+extr0105 apply 1E+6 -> 1000000.00000000000000 Clamped
+extr0106 apply 1E+5 -> 100000.00000000000000 Clamped
+extr0107 apply 1E+4 -> 10000.00000000000000 Clamped
+extr0108 apply 1E+3 -> 1000.00000000000000 Clamped
+extr0109 apply 1E+2 -> 100.00000000000000 Clamped
+extr0110 apply 1E+1 -> 10.00000000000000 Clamped
+extr0111 apply 1 -> 1.00000000000000 Clamped
+extr0112 apply 1E-1 -> 0.10000000000000 Clamped
+extr0113 apply 1E-2 -> 0.01000000000000 Clamped
+extr0114 apply 1E-3 -> 0.00100000000000 Clamped
+extr0115 apply 1E-4 -> 0.00010000000000 Clamped
+extr0116 apply 1E-5 -> 0.00001000000000 Clamped
+extr0117 apply 1E-6 -> 0.00000100000000 Clamped
+extr0118 apply 1E-7 -> 1.0000000E-7 Clamped
+extr0119 apply 1E-8 -> 1.000000E-8 Clamped
+extr0120 apply 1E-9 -> 1.00000E-9 Clamped
+extr0121 apply 1E-10 -> 1.0000E-10 Subnormal Clamped
+extr0122 apply 1E-11 -> 1.000E-11 Subnormal Clamped
+extr0123 apply 1E-12 -> 1.00E-12 Subnormal Clamped
+extr0124 apply 1E-13 -> 1.0E-13 Subnormal Clamped
+extr0125 apply 1E-14 -> 1E-14 Subnormal
+extr0126 apply 1E-15 -> 1E-15 Subnormal
+extr0127 apply 1E-16 -> 1E-16 Subnormal
+extr0128 apply 1E-17 -> 1E-17 Subnormal
+extr0129 apply 1E-18 -> 1E-18 Subnormal
+extr0130 apply 1E-19 -> 1E-19 Subnormal
+extr0131 apply 1E-20 -> 1E-20 Subnormal
+extr0132 apply 1E-21 -> 1E-21 Subnormal
+extr0133 apply 1E-22 -> 1E-22 Subnormal
+extr0134 apply 1E-23 -> 1E-23 Subnormal
+extr0135 apply 1E-24 -> 1E-24 Subnormal
+extr0136 apply 1E-25 -> 1E-25 Subnormal
+extr0137 apply 1E-26 -> 1E-26 Subnormal
+extr0138 apply 1E-27 -> 1E-27 Subnormal
+extr0139 apply 1E-28 -> 1E-28 Subnormal
+extr0140 apply 1E-29 -> 1E-29 Subnormal
+extr0141 apply 1E-30 -> 1E-30 Subnormal
+extr0142 apply 1E-31 -> 1E-31 Subnormal
+extr0143 apply 1E-32 -> 1E-32 Subnormal
+extr0144 apply 1E-33 -> 0E-32 Inexact Rounded Subnormal Underflow Clamped
+extr0145 apply 1E-34 -> 0E-32 Inexact Rounded Subnormal Underflow Clamped
+clamp: 0
+
+-- some buggy addition cases from Python 2.5.x
+maxexponent: 999
+minexponent: -999
+precision: 6
+extr1000 add 0E+1000 0E+2000 -> 0E+999 Clamped
+extr1001 add 0E+1004 0E+1001 -> 0E+999 Clamped
+clamp: 1
+extr1002 add 0E+1000 0E+1000 -> 0E+994 Clamped
+clamp: 0
+extr1003 add 0E+1000 0E-1005 -> 0E-1004 Clamped
+extr1004 add 0E-1006 0 -> 0E-1004 Clamped
+extr1005 add 1E+1000 -1E+1000 -> 0E+999 Clamped
+extr1006 add -3.1E+1004 3.1E+1004 -> 0E+999 Clamped
+clamp: 1
+extr1007 add 1E+998 -1E+998 -> 0E+994 Clamped
+clamp: 0
+extr1008 add 2E-1005 -2E-1005 -> 0E-1004 Clamped
+extr1009 add -3.1E-1005 3.1E-1005 -> 0E-1004 Clamped
+
+precision: 3
+extr1010 add 99949.9 0.200000 -> 1.00E+5 Inexact Rounded
+extr1011 add 99949.9 0.100000 -> 1.00E+5 Inexact Rounded
+extr1012 add 99849.9 0.200000 -> 9.99E+4 Inexact Rounded
+extr1013 add 99849.9 0.100000 -> 9.98E+4 Inexact Rounded
+extr1014 add 1.0149 0.00011 -> 1.02 Inexact Rounded
+extr1015 add 1.0149 0.00010 -> 1.02 Inexact Rounded
+extr1016 add 1.0149 0.00009 -> 1.01 Inexact Rounded
+extr1017 add 1.0049 0.00011 -> 1.01 Inexact Rounded
+extr1018 add 1.0049 0.00010 -> 1.00 Inexact Rounded
+extr1019 add 1.0049 0.00009 -> 1.00 Inexact Rounded
+rounding: down
+extr1020 add 99999.9 0.200000 -> 1.00E+5 Inexact Rounded
+extr1021 add 99999.8 0.200000 -> 1.00E+5 Rounded
+extr1022 add 99999.7 0.200000 -> 9.99E+4 Inexact Rounded
+rounding: half_even
+
+-- a bug in _rescale caused the following to fail in Python 2.5.1
+maxexponent: 999
+minexponent: -999
+precision: 6
+extr1100 add 0E+1000 1E+1000 -> Infinity Overflow Inexact Rounded
+extr1101 remainder 1E+1000 2E+1000 -> Infinity Overflow Inexact Rounded
+
+-- tests for scaleb in case where input precision > context precision.
+-- Result should be rounded. (This isn't totally clear from the
+-- specification, but the treatment of underflow in the testcases
+-- suggests that rounding should occur in general. Furthermore, it's
+-- the way that the reference implementation behaves.)
+maxexponent: 999
+minexponent: -999
+precision: 3
+extr1200 scaleb 1234 1 -> 1.23E+4 Inexact Rounded
+extr1201 scaleb 5678 0 -> 5.68E+3 Inexact Rounded
+extr1202 scaleb -9105 -1 -> -910 Inexact Rounded
+
+-- Invalid operation from 0 * infinity in fma
+-- takes precedence over a third-argument sNaN
+extr1300 fma 0 Inf sNaN123 -> NaN Invalid_operation
+extr1301 fma Inf 0 sNaN456 -> NaN Invalid_operation
+extr1302 fma 0E123 -Inf sNaN789 -> NaN Invalid_operation
+extr1302 fma -Inf 0E-456 sNaN148 -> NaN Invalid_operation
+
+------------------------------------------------------------------------
+-- The following tests (pwmx0 through pwmx440) are for the --
+-- three-argument version of power: --
+-- --
+-- pow(x, y, z) := x**y % z --
+-- --
+-- Note that the three-argument version of power is *not* part of --
+-- the IBM General Decimal Arithmetic specification. Questions --
+-- about it, or about these testcases, should go to one of the --
+-- Python decimal authors. --
+------------------------------------------------------------------------
+
+extended: 1
+precision: 9
+rounding: down
+maxExponent: 999
+minExponent: -999
+
+-- Small numbers
+-- Note that power(0, 0, m) is an error for any m
+pwmx0 power 0 -0 1 -> NaN Invalid_operation
+pwmx1 power 0 -0 2 -> NaN Invalid_operation
+pwmx2 power 0 -0 3 -> NaN Invalid_operation
+pwmx3 power 0 -0 4 -> NaN Invalid_operation
+pwmx4 power 0 -0 -1 -> NaN Invalid_operation
+pwmx5 power 0 -0 -2 -> NaN Invalid_operation
+pwmx6 power 0 0 1 -> NaN Invalid_operation
+pwmx7 power 0 0 2 -> NaN Invalid_operation
+pwmx8 power 0 0 3 -> NaN Invalid_operation
+pwmx9 power 0 0 4 -> NaN Invalid_operation
+pwmx10 power 0 0 -1 -> NaN Invalid_operation
+pwmx11 power 0 0 -2 -> NaN Invalid_operation
+pwmx12 power 0 1 1 -> 0
+pwmx13 power 0 1 2 -> 0
+pwmx14 power 0 1 3 -> 0
+pwmx15 power 0 1 4 -> 0
+pwmx16 power 0 1 -1 -> 0
+pwmx17 power 0 1 -2 -> 0
+pwmx18 power 0 2 1 -> 0
+pwmx19 power 0 2 2 -> 0
+pwmx20 power 0 2 3 -> 0
+pwmx21 power 0 2 4 -> 0
+pwmx22 power 0 2 -1 -> 0
+pwmx23 power 0 2 -2 -> 0
+pwmx24 power 0 3 1 -> 0
+pwmx25 power 0 3 2 -> 0
+pwmx26 power 0 3 3 -> 0
+pwmx27 power 0 3 4 -> 0
+pwmx28 power 0 3 -1 -> 0
+pwmx29 power 0 3 -2 -> 0
+pwmx30 power 0 4 1 -> 0
+pwmx31 power 0 4 2 -> 0
+pwmx32 power 0 4 3 -> 0
+pwmx33 power 0 4 4 -> 0
+pwmx34 power 0 4 -1 -> 0
+pwmx35 power 0 4 -2 -> 0
+pwmx36 power 0 5 1 -> 0
+pwmx37 power 0 5 2 -> 0
+pwmx38 power 0 5 3 -> 0
+pwmx39 power 0 5 4 -> 0
+pwmx40 power 0 5 -1 -> 0
+pwmx41 power 0 5 -2 -> 0
+pwmx42 power 1 -0 1 -> 0
+pwmx43 power 1 -0 2 -> 1
+pwmx44 power 1 -0 3 -> 1
+pwmx45 power 1 -0 4 -> 1
+pwmx46 power 1 -0 -1 -> 0
+pwmx47 power 1 -0 -2 -> 1
+pwmx48 power 1 0 1 -> 0
+pwmx49 power 1 0 2 -> 1
+pwmx50 power 1 0 3 -> 1
+pwmx51 power 1 0 4 -> 1
+pwmx52 power 1 0 -1 -> 0
+pwmx53 power 1 0 -2 -> 1
+pwmx54 power 1 1 1 -> 0
+pwmx55 power 1 1 2 -> 1
+pwmx56 power 1 1 3 -> 1
+pwmx57 power 1 1 4 -> 1
+pwmx58 power 1 1 -1 -> 0
+pwmx59 power 1 1 -2 -> 1
+pwmx60 power 1 2 1 -> 0
+pwmx61 power 1 2 2 -> 1
+pwmx62 power 1 2 3 -> 1
+pwmx63 power 1 2 4 -> 1
+pwmx64 power 1 2 -1 -> 0
+pwmx65 power 1 2 -2 -> 1
+pwmx66 power 1 3 1 -> 0
+pwmx67 power 1 3 2 -> 1
+pwmx68 power 1 3 3 -> 1
+pwmx69 power 1 3 4 -> 1
+pwmx70 power 1 3 -1 -> 0
+pwmx71 power 1 3 -2 -> 1
+pwmx72 power 1 4 1 -> 0
+pwmx73 power 1 4 2 -> 1
+pwmx74 power 1 4 3 -> 1
+pwmx75 power 1 4 4 -> 1
+pwmx76 power 1 4 -1 -> 0
+pwmx77 power 1 4 -2 -> 1
+pwmx78 power 1 5 1 -> 0
+pwmx79 power 1 5 2 -> 1
+pwmx80 power 1 5 3 -> 1
+pwmx81 power 1 5 4 -> 1
+pwmx82 power 1 5 -1 -> 0
+pwmx83 power 1 5 -2 -> 1
+pwmx84 power 2 -0 1 -> 0
+pwmx85 power 2 -0 2 -> 1
+pwmx86 power 2 -0 3 -> 1
+pwmx87 power 2 -0 4 -> 1
+pwmx88 power 2 -0 -1 -> 0
+pwmx89 power 2 -0 -2 -> 1
+pwmx90 power 2 0 1 -> 0
+pwmx91 power 2 0 2 -> 1
+pwmx92 power 2 0 3 -> 1
+pwmx93 power 2 0 4 -> 1
+pwmx94 power 2 0 -1 -> 0
+pwmx95 power 2 0 -2 -> 1
+pwmx96 power 2 1 1 -> 0
+pwmx97 power 2 1 2 -> 0
+pwmx98 power 2 1 3 -> 2
+pwmx99 power 2 1 4 -> 2
+pwmx100 power 2 1 -1 -> 0
+pwmx101 power 2 1 -2 -> 0
+pwmx102 power 2 2 1 -> 0
+pwmx103 power 2 2 2 -> 0
+pwmx104 power 2 2 3 -> 1
+pwmx105 power 2 2 4 -> 0
+pwmx106 power 2 2 -1 -> 0
+pwmx107 power 2 2 -2 -> 0
+pwmx108 power 2 3 1 -> 0
+pwmx109 power 2 3 2 -> 0
+pwmx110 power 2 3 3 -> 2
+pwmx111 power 2 3 4 -> 0
+pwmx112 power 2 3 -1 -> 0
+pwmx113 power 2 3 -2 -> 0
+pwmx114 power 2 4 1 -> 0
+pwmx115 power 2 4 2 -> 0
+pwmx116 power 2 4 3 -> 1
+pwmx117 power 2 4 4 -> 0
+pwmx118 power 2 4 -1 -> 0
+pwmx119 power 2 4 -2 -> 0
+pwmx120 power 2 5 1 -> 0
+pwmx121 power 2 5 2 -> 0
+pwmx122 power 2 5 3 -> 2
+pwmx123 power 2 5 4 -> 0
+pwmx124 power 2 5 -1 -> 0
+pwmx125 power 2 5 -2 -> 0
+pwmx126 power 3 -0 1 -> 0
+pwmx127 power 3 -0 2 -> 1
+pwmx128 power 3 -0 3 -> 1
+pwmx129 power 3 -0 4 -> 1
+pwmx130 power 3 -0 -1 -> 0
+pwmx131 power 3 -0 -2 -> 1
+pwmx132 power 3 0 1 -> 0
+pwmx133 power 3 0 2 -> 1
+pwmx134 power 3 0 3 -> 1
+pwmx135 power 3 0 4 -> 1
+pwmx136 power 3 0 -1 -> 0
+pwmx137 power 3 0 -2 -> 1
+pwmx138 power 3 1 1 -> 0
+pwmx139 power 3 1 2 -> 1
+pwmx140 power 3 1 3 -> 0
+pwmx141 power 3 1 4 -> 3
+pwmx142 power 3 1 -1 -> 0
+pwmx143 power 3 1 -2 -> 1
+pwmx144 power 3 2 1 -> 0
+pwmx145 power 3 2 2 -> 1
+pwmx146 power 3 2 3 -> 0
+pwmx147 power 3 2 4 -> 1
+pwmx148 power 3 2 -1 -> 0
+pwmx149 power 3 2 -2 -> 1
+pwmx150 power 3 3 1 -> 0
+pwmx151 power 3 3 2 -> 1
+pwmx152 power 3 3 3 -> 0
+pwmx153 power 3 3 4 -> 3
+pwmx154 power 3 3 -1 -> 0
+pwmx155 power 3 3 -2 -> 1
+pwmx156 power 3 4 1 -> 0
+pwmx157 power 3 4 2 -> 1
+pwmx158 power 3 4 3 -> 0
+pwmx159 power 3 4 4 -> 1
+pwmx160 power 3 4 -1 -> 0
+pwmx161 power 3 4 -2 -> 1
+pwmx162 power 3 5 1 -> 0
+pwmx163 power 3 5 2 -> 1
+pwmx164 power 3 5 3 -> 0
+pwmx165 power 3 5 4 -> 3
+pwmx166 power 3 5 -1 -> 0
+pwmx167 power 3 5 -2 -> 1
+pwmx168 power -0 -0 1 -> NaN Invalid_operation
+pwmx169 power -0 -0 2 -> NaN Invalid_operation
+pwmx170 power -0 -0 3 -> NaN Invalid_operation
+pwmx171 power -0 -0 4 -> NaN Invalid_operation
+pwmx172 power -0 -0 -1 -> NaN Invalid_operation
+pwmx173 power -0 -0 -2 -> NaN Invalid_operation
+pwmx174 power -0 0 1 -> NaN Invalid_operation
+pwmx175 power -0 0 2 -> NaN Invalid_operation
+pwmx176 power -0 0 3 -> NaN Invalid_operation
+pwmx177 power -0 0 4 -> NaN Invalid_operation
+pwmx178 power -0 0 -1 -> NaN Invalid_operation
+pwmx179 power -0 0 -2 -> NaN Invalid_operation
+pwmx180 power -0 1 1 -> -0
+pwmx181 power -0 1 2 -> -0
+pwmx182 power -0 1 3 -> -0
+pwmx183 power -0 1 4 -> -0
+pwmx184 power -0 1 -1 -> -0
+pwmx185 power -0 1 -2 -> -0
+pwmx186 power -0 2 1 -> 0
+pwmx187 power -0 2 2 -> 0
+pwmx188 power -0 2 3 -> 0
+pwmx189 power -0 2 4 -> 0
+pwmx190 power -0 2 -1 -> 0
+pwmx191 power -0 2 -2 -> 0
+pwmx192 power -0 3 1 -> -0
+pwmx193 power -0 3 2 -> -0
+pwmx194 power -0 3 3 -> -0
+pwmx195 power -0 3 4 -> -0
+pwmx196 power -0 3 -1 -> -0
+pwmx197 power -0 3 -2 -> -0
+pwmx198 power -0 4 1 -> 0
+pwmx199 power -0 4 2 -> 0
+pwmx200 power -0 4 3 -> 0
+pwmx201 power -0 4 4 -> 0
+pwmx202 power -0 4 -1 -> 0
+pwmx203 power -0 4 -2 -> 0
+pwmx204 power -0 5 1 -> -0
+pwmx205 power -0 5 2 -> -0
+pwmx206 power -0 5 3 -> -0
+pwmx207 power -0 5 4 -> -0
+pwmx208 power -0 5 -1 -> -0
+pwmx209 power -0 5 -2 -> -0
+pwmx210 power -1 -0 1 -> 0
+pwmx211 power -1 -0 2 -> 1
+pwmx212 power -1 -0 3 -> 1
+pwmx213 power -1 -0 4 -> 1
+pwmx214 power -1 -0 -1 -> 0
+pwmx215 power -1 -0 -2 -> 1
+pwmx216 power -1 0 1 -> 0
+pwmx217 power -1 0 2 -> 1
+pwmx218 power -1 0 3 -> 1
+pwmx219 power -1 0 4 -> 1
+pwmx220 power -1 0 -1 -> 0
+pwmx221 power -1 0 -2 -> 1
+pwmx222 power -1 1 1 -> -0
+pwmx223 power -1 1 2 -> -1
+pwmx224 power -1 1 3 -> -1
+pwmx225 power -1 1 4 -> -1
+pwmx226 power -1 1 -1 -> -0
+pwmx227 power -1 1 -2 -> -1
+pwmx228 power -1 2 1 -> 0
+pwmx229 power -1 2 2 -> 1
+pwmx230 power -1 2 3 -> 1
+pwmx231 power -1 2 4 -> 1
+pwmx232 power -1 2 -1 -> 0
+pwmx233 power -1 2 -2 -> 1
+pwmx234 power -1 3 1 -> -0
+pwmx235 power -1 3 2 -> -1
+pwmx236 power -1 3 3 -> -1
+pwmx237 power -1 3 4 -> -1
+pwmx238 power -1 3 -1 -> -0
+pwmx239 power -1 3 -2 -> -1
+pwmx240 power -1 4 1 -> 0
+pwmx241 power -1 4 2 -> 1
+pwmx242 power -1 4 3 -> 1
+pwmx243 power -1 4 4 -> 1
+pwmx244 power -1 4 -1 -> 0
+pwmx245 power -1 4 -2 -> 1
+pwmx246 power -1 5 1 -> -0
+pwmx247 power -1 5 2 -> -1
+pwmx248 power -1 5 3 -> -1
+pwmx249 power -1 5 4 -> -1
+pwmx250 power -1 5 -1 -> -0
+pwmx251 power -1 5 -2 -> -1
+
+-- Randomly chosen larger values
+pwmx252 power 0 4 7 -> 0
+pwmx253 power -4 5 -9 -> -7
+pwmx254 power -5 4 -9 -> 4
+pwmx255 power -50 29 2 -> -0
+pwmx256 power -1 83 3 -> -1
+pwmx257 power -55 65 -75 -> -25
+pwmx258 power -613 151 -302 -> -9
+pwmx259 power 551 23 -35 -> 31
+pwmx260 power 51 142 942 -> 9
+pwmx261 power 6886 9204 -6091 -> 5034
+pwmx262 power 3057 5890 -3 -> 0
+pwmx263 power 56 4438 5365 -> 521
+pwmx264 power 96237 35669 -46669 -> 30717
+pwmx265 power 40011 34375 -57611 -> 625
+pwmx266 power 44317 38493 -12196 -> 11081
+pwmx267 power -282368 895633 -235870 -> -220928
+pwmx268 power 77328 852553 -405529 -> 129173
+pwmx269 power -929659 855713 650348 -> -90803
+pwmx270 power 907057 6574309 4924768 -> 3018257
+pwmx271 power -2887757 3198492 -5864352 -> 3440113
+pwmx272 power -247310 657371 -7415739 -> -1301840
+pwmx273 power -8399046 45334087 -22395020 -> -18515896
+pwmx274 power 79621397 4850236 1486555 -> 928706
+pwmx275 power 96012251 27971901 69609031 -> 50028729
+pwmx276 power -907335481 74127986 582330017 -> 51527187
+pwmx277 power -141192960 821063826 -260877928 -> 112318560
+pwmx278 power -501711702 934355994 82135143 -> 66586995
+pwmx279 power -9256358075 8900900138 -467222031 -> 95800246
+pwmx280 power -7031964291 1751257483 -935334498 -> -607626609
+pwmx281 power 8494314971 8740197252 107522491 -> 17373655
+pwmx282 power 88306216890 87477374166 -23498076 -> 15129528
+pwmx283 power -33939432478 7170196239 22133583 -> -11017036
+pwmx284 power 19466222767 30410710614 305752056 -> 191509537
+pwmx285 power -864942494008 370558899638 346688856 -> 56956768
+pwmx286 power -525406225603 345700226898 237163621 -> 56789534
+pwmx287 power 464612215955 312474621651 -329485700 -> 1853975
+pwmx288 power -1664283031244 3774474669855 919022867 -> -516034520
+pwmx289 power -3472438506913 7407327549995 -451206854 -> -74594761
+pwmx290 power -4223662152949 6891069279069 499843503 -> -80135290
+pwmx291 power -44022119276816 8168266170326 569679509 -> 375734475
+pwmx292 power -66195891207902 12532690555875 -243262129 -> -113186833
+pwmx293 power -69039911263164 52726605857673 360625196 -> -268662748
+pwmx294 power -299010116699208 885092589359231 -731310123 -> -104103765
+pwmx295 power -202495776299758 501159122943145 -686234870 -> -135511878
+pwmx296 power -595411478087676 836269270472481 -214614901 -> -183440819
+pwmx297 power -139555381056229 1324808520020507 -228944738 -> -218991473
+pwmx298 power 7846356250770543 1798045051036814 -101028985 -> 7805179
+pwmx299 power -4298015862709415 604966944844209 880212893 -> -87408671
+pwmx300 power -37384897538910893 76022206995659295 -930512842 -> -697757157
+pwmx301 power 82166659028005443 23375408251767704 817270700 -> 770697001
+pwmx302 power 97420301198165641 72213282983416924 947519716 -> 610711721
+pwmx303 power 913382043453243607 449681707248500262 211135545 -> 79544899
+pwmx304 power -313823613418052171 534579409610142937 -943062968 -> -446001379
+pwmx305 power -928106516894494093 760020177330116509 -50043994 -> -46010575
+pwmx306 power 4692146601679439796 4565354511806767804 -667339075 -> 480272081
+pwmx307 power 9722256633509177930 7276568791860505790 792675321 -> 182879752
+pwmx308 power 8689899484830064228 429082967129615261 -844555637 -> 270374557
+
+-- All inputs must be integers
+pwmx309 power 2.1 3 1 -> NaN Invalid_operation
+pwmx310 power 0.4 1 5 -> NaN Invalid_operation
+pwmx311 power 2 3.1 5 -> NaN Invalid_operation
+pwmx312 power 13 -1.2 10 -> NaN Invalid_operation
+pwmx313 power 2 3 5.1 -> NaN Invalid_operation
+
+-- Second argument must be nonnegative (-0 is okay)
+pwmx314 power 2 -3 5 -> NaN Invalid_operation
+pwmx315 power 7 -1 1 -> NaN Invalid_operation
+pwmx316 power 0 -2 6 -> NaN Invalid_operation
+
+-- Third argument must be nonzero
+pwmx317 power 13 1003 0 -> NaN Invalid_operation
+pwmx318 power 1 0 0E+987 -> NaN Invalid_operation
+pwmx319 power 0 2 -0 -> NaN Invalid_operation
+
+-- Integers are fine, no matter how they're expressed
+pwmx320 power 13.0 117.00 1E+2 -> 33
+pwmx321 power -2E+3 1.1E+10 -12323 -> 4811
+pwmx322 power 20 0E-300 143 -> 1
+pwmx323 power -20 -0E+1005 1179 -> 1
+pwmx324 power 0E-1001 17 5.6E+4 -> 0
+
+-- Modulus must not exceed precision
+pwmx325 power 0 1 1234567890 -> NaN Invalid_operation
+pwmx326 power 1 0 1000000000 -> NaN Invalid_operation
+pwmx327 power -23 5 -1000000000 -> NaN Invalid_operation
+pwmx328 power 41557 213 -999999999 -> 47650456
+pwmx329 power -2134 199 999999997 -> -946957912
+
+-- Huge base shouldn't present any problems
+pwmx330 power 1.23E+123456791 10123898 17291065 -> 5674045
+
+-- Large exponent, may be slow
+-- (if second argument is 1En then expect O(n) running time)
+pwmx331 power 1000288896 9.87E+12347 93379908 -> 43224924
+
+-- Triple NaN propagation (adapted from examples in fma.decTest)
+pwmx400 power NaN2 NaN3 NaN5 -> NaN2
+pwmx401 power 1 NaN3 NaN5 -> NaN3
+pwmx402 power 1 1 NaN5 -> NaN5
+pwmx403 power sNaN1 sNaN2 sNaN3 -> NaN1 Invalid_operation
+pwmx404 power 1 sNaN2 sNaN3 -> NaN2 Invalid_operation
+pwmx405 power 1 1 sNaN3 -> NaN3 Invalid_operation
+pwmx406 power sNaN1 sNaN2 sNaN3 -> NaN1 Invalid_operation
+pwmx407 power NaN7 sNaN2 sNaN3 -> NaN2 Invalid_operation
+pwmx408 power NaN7 NaN5 sNaN3 -> NaN3 Invalid_operation
+
+-- Infinities not allowed
+pwmx410 power Inf 1 1 -> NaN Invalid_operation
+pwmx411 power 1 Inf 1 -> NaN Invalid_operation
+pwmx412 power 1 1 Inf -> NaN Invalid_operation
+pwmx413 power -Inf 1 1 -> NaN Invalid_operation
+pwmx414 power 1 -Inf 1 -> NaN Invalid_operation
+pwmx415 power 1 1 -Inf -> NaN Invalid_operation
+
+-- Just for fun: 1729 is a Carmichael number
+pwmx420 power 0 1728 1729 -> 0
+pwmx421 power 1 1728 1729 -> 1
+pwmx422 power 2 1728 1729 -> 1
+pwmx423 power 3 1728 1729 -> 1
+pwmx424 power 4 1728 1729 -> 1
+pwmx425 power 5 1728 1729 -> 1
+pwmx426 power 6 1728 1729 -> 1
+pwmx427 power 7 1728 1729 -> 742
+pwmx428 power 8 1728 1729 -> 1
+pwmx429 power 9 1728 1729 -> 1
+pwmx430 power 10 1728 1729 -> 1
+pwmx431 power 11 1728 1729 -> 1
+pwmx432 power 12 1728 1729 -> 1
+pwmx433 power 13 1728 1729 -> 533
+pwmx434 power 14 1728 1729 -> 742
+pwmx435 power 15 1728 1729 -> 1
+pwmx436 power 16 1728 1729 -> 1
+pwmx437 power 17 1728 1729 -> 1
+pwmx438 power 18 1728 1729 -> 1
+pwmx439 power 19 1728 1729 -> 456
+pwmx440 power 20 1728 1729 -> 1
diff --git a/Lib/test/decimaltestdata/fma.decTest b/Lib/test/decimaltestdata/fma.decTest
new file mode 100644
index 0000000..aa4c0ba
--- /dev/null
+++ b/Lib/test/decimaltestdata/fma.decTest
@@ -0,0 +1,3426 @@
+------------------------------------------------------------------------
+-- fma.decTest -- decimal fused multiply add --
+-- Copyright (c) IBM Corporation, 1981, 2007. All rights reserved. --
+------------------------------------------------------------------------
+-- Please see the document "General Decimal Arithmetic Testcases" --
+-- at http://www2.hursley.ibm.com/decimal for the description of --
+-- these testcases. --
+-- --
+-- These testcases are experimental ('beta' versions), and they --
+-- may contain errors. They are offered on an as-is basis. In --
+-- particular, achieving the same results as the tests here is not --
+-- a guarantee that an implementation complies with any Standard --
+-- or specification. The tests are not exhaustive. --
+-- --
+-- Please send comments, suggestions, and corrections to the author: --
+-- Mike Cowlishaw, IBM Fellow --
+-- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK --
+-- mfc@uk.ibm.com --
+------------------------------------------------------------------------
+version: 2.56
+
+extended: 1
+precision: 9
+rounding: half_up
+maxExponent: 384
+minexponent: -383
+
+-- These tests comprese three parts:
+-- 1. Sanity checks and other three-operand tests (especially those
+-- where the fused operation makes a difference)
+-- 2. Multiply tests (third operand is neutral zero [0E+emax])
+-- 3. Addition tests (first operand is 1)
+-- The multiply and addition tests are extensive because FMA may have
+-- its own dedicated multiplication or addition routine(s), and they
+-- also inherently check the left-to-right properties.
+
+-- Sanity checks
+fmax0001 fma 1 1 1 -> 2
+fmax0002 fma 1 1 2 -> 3
+fmax0003 fma 2 2 3 -> 7
+fmax0004 fma 9 9 9 -> 90
+fmax0005 fma -1 1 1 -> 0
+fmax0006 fma -1 1 2 -> 1
+fmax0007 fma -2 2 3 -> -1
+fmax0008 fma -9 9 9 -> -72
+fmax0011 fma 1 -1 1 -> 0
+fmax0012 fma 1 -1 2 -> 1
+fmax0013 fma 2 -2 3 -> -1
+fmax0014 fma 9 -9 9 -> -72
+fmax0015 fma 1 1 -1 -> 0
+fmax0016 fma 1 1 -2 -> -1
+fmax0017 fma 2 2 -3 -> 1
+fmax0018 fma 9 9 -9 -> 72
+fmax0019 fma 3 5 7 -> 22
+fmax0029 fma 3 -5 7 -> -8
+
+-- non-integer exacts
+fma0100 fma 25.2 63.6 -438 -> 1164.72
+fma0101 fma 0.301 0.380 334 -> 334.114380
+fma0102 fma 49.2 -4.8 23.3 -> -212.86
+fma0103 fma 4.22 0.079 -94.6 -> -94.26662
+fma0104 fma 903 0.797 0.887 -> 720.578
+fma0105 fma 6.13 -161 65.9 -> -921.03
+fma0106 fma 28.2 727 5.45 -> 20506.85
+fma0107 fma 4 605 688 -> 3108
+fma0108 fma 93.3 0.19 0.226 -> 17.953
+fma0109 fma 0.169 -341 5.61 -> -52.019
+fma0110 fma -72.2 30 -51.2 -> -2217.2
+fma0111 fma -0.409 13 20.4 -> 15.083
+fma0112 fma 317 77.0 19.0 -> 24428.0
+fma0113 fma 47 6.58 1.62 -> 310.88
+fma0114 fma 1.36 0.984 0.493 -> 1.83124
+fma0115 fma 72.7 274 1.56 -> 19921.36
+fma0116 fma 335 847 83 -> 283828
+fma0117 fma 666 0.247 25.4 -> 189.902
+fma0118 fma -3.87 3.06 78.0 -> 66.1578
+fma0119 fma 0.742 192 35.6 -> 178.064
+fma0120 fma -91.6 5.29 0.153 -> -484.411
+
+-- cases where result is different from separate multiply + add; each
+-- is preceded by the result of unfused multiply and add
+-- [this is about 20% of all similar cases in general]
+-- 888565290 1557.96930 -86087.7578 -> 1.38435735E+12
+fma0201 fma 888565290 1557.96930 -86087.7578 -> 1.38435736E+12 Inexact Rounded
+-- -85519342.9 735155419 42010431 -> -6.28700084E+16
+fma0205 fma -85519342.9 735155419 42010431 -> -6.28700083E+16 Inexact Rounded
+-- -98025.5 -294603.472 10414348.2 -> 2.88890669E+10
+fma0208 fma -98025.5 -294603.472 10414348.2 -> 2.88890670E+10 Inexact Rounded
+-- 5967627.39 83526540.6 498494.810 -> 4.98455271E+14
+fma0211 fma 5967627.39 83526540.6 498494.810 -> 4.98455272E+14 Inexact Rounded
+-- 3456.9433 874.39518 197866.615 -> 3220601.18
+fma0216 fma 3456.9433 874.39518 197866.615 -> 3220601.17 Inexact Rounded
+-- 62769.8287 2096.98927 48.420317 -> 131627705
+fma0218 fma 62769.8287 2096.98927 48.420317 -> 131627706 Inexact Rounded
+-- -68.81500 59961113.9 -8988862 -> -4.13521291E+9
+fma0219 fma -68.81500 59961113.9 -8988862 -> -4.13521292E+9 Inexact Rounded
+-- 2126341.02 63491.5152 302427455 -> 1.35307040E+11
+fma0226 fma 2126341.02 63491.5152 302427455 -> 1.35307041E+11 Inexact Rounded
+
+
+-- Infinite combinations
+fmax0800 fma Inf Inf Inf -> Infinity
+fmax0801 fma Inf Inf -Inf -> NaN Invalid_operation
+fmax0802 fma Inf -Inf Inf -> NaN Invalid_operation
+fmax0803 fma Inf -Inf -Inf -> -Infinity
+fmax0804 fma -Inf Inf Inf -> NaN Invalid_operation
+fmax0805 fma -Inf Inf -Inf -> -Infinity
+fmax0806 fma -Inf -Inf Inf -> Infinity
+fmax0807 fma -Inf -Inf -Inf -> NaN Invalid_operation
+fmax0808 fma -Inf 0 1 -> NaN Invalid_operation
+fmax0809 fma -Inf 0 NaN -> NaN Invalid_operation
+
+-- Triple NaN propagation
+fmax0900 fma NaN2 NaN3 NaN5 -> NaN2
+fmax0901 fma 0 NaN3 NaN5 -> NaN3
+fmax0902 fma 0 0 NaN5 -> NaN5
+-- first sNaN wins (consider qNaN from earlier sNaN being
+-- overridden by an sNaN in third operand)
+fmax0903 fma sNaN1 sNaN2 sNaN3 -> NaN1 Invalid_operation
+fmax0904 fma 0 sNaN2 sNaN3 -> NaN2 Invalid_operation
+fmax0905 fma 0 0 sNaN3 -> NaN3 Invalid_operation
+fmax0906 fma sNaN1 sNaN2 sNaN3 -> NaN1 Invalid_operation
+fmax0907 fma NaN7 sNaN2 sNaN3 -> NaN2 Invalid_operation
+fmax0908 fma NaN7 NaN5 sNaN3 -> NaN3 Invalid_operation
+
+-- MULTIPLICATION TESTS ------------------------------------------------
+-- sanity checks (as base, above)
+fmax2000 fma 2 2 0E+999999 -> 4
+fmax2001 fma 2 3 0E+999999 -> 6
+fmax2002 fma 5 1 0E+999999 -> 5
+fmax2003 fma 5 2 0E+999999 -> 10
+fmax2004 fma 1.20 2 0E+999999 -> 2.40
+fmax2005 fma 1.20 0 0E+999999 -> 0.00
+fmax2006 fma 1.20 -2 0E+999999 -> -2.40
+fmax2007 fma -1.20 2 0E+999999 -> -2.40
+fmax2008 fma -1.20 0 0E+999999 -> 0.00
+fmax2009 fma -1.20 -2 0E+999999 -> 2.40
+fmax2010 fma 5.09 7.1 0E+999999 -> 36.139
+fmax2011 fma 2.5 4 0E+999999 -> 10.0
+fmax2012 fma 2.50 4 0E+999999 -> 10.00
+fmax2013 fma 1.23456789 1.00000000 0E+999999 -> 1.23456789 Rounded
+fmax2014 fma 9.999999999 9.999999999 0E+999999 -> 100.000000 Inexact Rounded
+fmax2015 fma 2.50 4 0E+999999 -> 10.00
+precision: 6
+fmax2016 fma 2.50 4 0E+999999 -> 10.00
+fmax2017 fma 9.999999 9.999999 0E+999999 -> 100.000 Inexact Rounded
+fmax2018 fma 9.999999 -9.999999 0E+999999 -> -100.000 Inexact Rounded
+fmax2019 fma -9.999999 9.999999 0E+999999 -> -100.000 Inexact Rounded
+fmax2020 fma -9.999999 -9.999999 0E+999999 -> 100.000 Inexact Rounded
+
+-- 1999.12.21: next one is a edge case if intermediate longs are used
+precision: 15
+fmax2059 fma 999999999999 9765625 0E+999999 -> 9.76562499999023E+18 Inexact Rounded
+precision: 30
+fmax2160 fma 999999999999 9765625 0E+999999 -> 9765624999990234375
+precision: 9
+-----
+
+-- zeros, etc.
+fmax2021 fma 0 0 0E+999999 -> 0
+fmax2022 fma 0 -0 0E+999999 -> 0
+fmax2023 fma -0 0 0E+999999 -> 0
+fmax2024 fma -0 -0 0E+999999 -> 0
+fmax2025 fma -0.0 -0.0 0E+999999 -> 0.00
+fmax2026 fma -0.0 -0.0 0E+999999 -> 0.00
+fmax2027 fma -0.0 -0.0 0E+999999 -> 0.00
+fmax2028 fma -0.0 -0.0 0E+999999 -> 0.00
+fmax2030 fma 5.00 1E-3 0E+999999 -> 0.00500
+fmax2031 fma 00.00 0.000 0E+999999 -> 0.00000
+fmax2032 fma 00.00 0E-3 0E+999999 -> 0.00000 -- rhs is 0
+fmax2033 fma 0E-3 00.00 0E+999999 -> 0.00000 -- lhs is 0
+fmax2034 fma -5.00 1E-3 0E+999999 -> -0.00500
+fmax2035 fma -00.00 0.000 0E+999999 -> 0.00000
+fmax2036 fma -00.00 0E-3 0E+999999 -> 0.00000 -- rhs is 0
+fmax2037 fma -0E-3 00.00 0E+999999 -> 0.00000 -- lhs is 0
+fmax2038 fma 5.00 -1E-3 0E+999999 -> -0.00500
+fmax2039 fma 00.00 -0.000 0E+999999 -> 0.00000
+fmax2040 fma 00.00 -0E-3 0E+999999 -> 0.00000 -- rhs is 0
+fmax2041 fma 0E-3 -00.00 0E+999999 -> 0.00000 -- lhs is 0
+fmax2042 fma -5.00 -1E-3 0E+999999 -> 0.00500
+fmax2043 fma -00.00 -0.000 0E+999999 -> 0.00000
+fmax2044 fma -00.00 -0E-3 0E+999999 -> 0.00000 -- rhs is 0
+fmax2045 fma -0E-3 -00.00 0E+999999 -> 0.00000 -- lhs is 0
+
+-- examples from decarith multiply
+fmax2050 fma 1.20 3 0E+999999 -> 3.60
+fmax2051 fma 7 3 0E+999999 -> 21
+fmax2052 fma 0.9 0.8 0E+999999 -> 0.72
+fmax2053 fma 0.9 -0 0E+999999 -> 0.0
+fmax2054 fma 654321 654321 0E+999999 -> 4.28135971E+11 Inexact Rounded
+
+fmax2060 fma 123.45 1e7 0E+999999 -> 1.2345E+9
+fmax2061 fma 123.45 1e8 0E+999999 -> 1.2345E+10
+fmax2062 fma 123.45 1e+9 0E+999999 -> 1.2345E+11
+fmax2063 fma 123.45 1e10 0E+999999 -> 1.2345E+12
+fmax2064 fma 123.45 1e11 0E+999999 -> 1.2345E+13
+fmax2065 fma 123.45 1e12 0E+999999 -> 1.2345E+14
+fmax2066 fma 123.45 1e13 0E+999999 -> 1.2345E+15
+
+
+-- test some intermediate lengths
+precision: 9
+fmax2080 fma 0.1 123456789 0E+999999 -> 12345678.9
+fmax2081 fma 0.1 1234567891 0E+999999 -> 123456789 Inexact Rounded
+fmax2082 fma 0.1 12345678912 0E+999999 -> 1.23456789E+9 Inexact Rounded
+fmax2083 fma 0.1 12345678912345 0E+999999 -> 1.23456789E+12 Inexact Rounded
+fmax2084 fma 0.1 123456789 0E+999999 -> 12345678.9
+precision: 8
+fmax2085 fma 0.1 12345678912 0E+999999 -> 1.2345679E+9 Inexact Rounded
+fmax2086 fma 0.1 12345678912345 0E+999999 -> 1.2345679E+12 Inexact Rounded
+precision: 7
+fmax2087 fma 0.1 12345678912 0E+999999 -> 1.234568E+9 Inexact Rounded
+fmax2088 fma 0.1 12345678912345 0E+999999 -> 1.234568E+12 Inexact Rounded
+
+precision: 9
+fmax2090 fma 123456789 0.1 0E+999999 -> 12345678.9
+fmax2091 fma 1234567891 0.1 0E+999999 -> 123456789 Inexact Rounded
+fmax2092 fma 12345678912 0.1 0E+999999 -> 1.23456789E+9 Inexact Rounded
+fmax2093 fma 12345678912345 0.1 0E+999999 -> 1.23456789E+12 Inexact Rounded
+fmax2094 fma 123456789 0.1 0E+999999 -> 12345678.9
+precision: 8
+fmax2095 fma 12345678912 0.1 0E+999999 -> 1.2345679E+9 Inexact Rounded
+fmax2096 fma 12345678912345 0.1 0E+999999 -> 1.2345679E+12 Inexact Rounded
+precision: 7
+fmax2097 fma 12345678912 0.1 0E+999999 -> 1.234568E+9 Inexact Rounded
+fmax2098 fma 12345678912345 0.1 0E+999999 -> 1.234568E+12 Inexact Rounded
+
+-- test some more edge cases and carries
+maxexponent: 9999
+minexponent: -9999
+precision: 33
+fmax2101 fma 9 9 0E+999999 -> 81
+fmax2102 fma 9 90 0E+999999 -> 810
+fmax2103 fma 9 900 0E+999999 -> 8100
+fmax2104 fma 9 9000 0E+999999 -> 81000
+fmax2105 fma 9 90000 0E+999999 -> 810000
+fmax2106 fma 9 900000 0E+999999 -> 8100000
+fmax2107 fma 9 9000000 0E+999999 -> 81000000
+fmax2108 fma 9 90000000 0E+999999 -> 810000000
+fmax2109 fma 9 900000000 0E+999999 -> 8100000000
+fmax2110 fma 9 9000000000 0E+999999 -> 81000000000
+fmax2111 fma 9 90000000000 0E+999999 -> 810000000000
+fmax2112 fma 9 900000000000 0E+999999 -> 8100000000000
+fmax2113 fma 9 9000000000000 0E+999999 -> 81000000000000
+fmax2114 fma 9 90000000000000 0E+999999 -> 810000000000000
+fmax2115 fma 9 900000000000000 0E+999999 -> 8100000000000000
+fmax2116 fma 9 9000000000000000 0E+999999 -> 81000000000000000
+fmax2117 fma 9 90000000000000000 0E+999999 -> 810000000000000000
+fmax2118 fma 9 900000000000000000 0E+999999 -> 8100000000000000000
+fmax2119 fma 9 9000000000000000000 0E+999999 -> 81000000000000000000
+fmax2120 fma 9 90000000000000000000 0E+999999 -> 810000000000000000000
+fmax2121 fma 9 900000000000000000000 0E+999999 -> 8100000000000000000000
+fmax2122 fma 9 9000000000000000000000 0E+999999 -> 81000000000000000000000
+fmax2123 fma 9 90000000000000000000000 0E+999999 -> 810000000000000000000000
+-- test some more edge cases without carries
+fmax2131 fma 3 3 0E+999999 -> 9
+fmax2132 fma 3 30 0E+999999 -> 90
+fmax2133 fma 3 300 0E+999999 -> 900
+fmax2134 fma 3 3000 0E+999999 -> 9000
+fmax2135 fma 3 30000 0E+999999 -> 90000
+fmax2136 fma 3 300000 0E+999999 -> 900000
+fmax2137 fma 3 3000000 0E+999999 -> 9000000
+fmax2138 fma 3 30000000 0E+999999 -> 90000000
+fmax2139 fma 3 300000000 0E+999999 -> 900000000
+fmax2140 fma 3 3000000000 0E+999999 -> 9000000000
+fmax2141 fma 3 30000000000 0E+999999 -> 90000000000
+fmax2142 fma 3 300000000000 0E+999999 -> 900000000000
+fmax2143 fma 3 3000000000000 0E+999999 -> 9000000000000
+fmax2144 fma 3 30000000000000 0E+999999 -> 90000000000000
+fmax2145 fma 3 300000000000000 0E+999999 -> 900000000000000
+fmax2146 fma 3 3000000000000000 0E+999999 -> 9000000000000000
+fmax2147 fma 3 30000000000000000 0E+999999 -> 90000000000000000
+fmax2148 fma 3 300000000000000000 0E+999999 -> 900000000000000000
+fmax2149 fma 3 3000000000000000000 0E+999999 -> 9000000000000000000
+fmax2150 fma 3 30000000000000000000 0E+999999 -> 90000000000000000000
+fmax2151 fma 3 300000000000000000000 0E+999999 -> 900000000000000000000
+fmax2152 fma 3 3000000000000000000000 0E+999999 -> 9000000000000000000000
+fmax2153 fma 3 30000000000000000000000 0E+999999 -> 90000000000000000000000
+
+maxexponent: 999999
+minexponent: -999999
+precision: 9
+-- test some cases that are close to exponent overflow/underflow
+fmax2170 fma 1 9e999999 0E+999999 -> 9E+999999
+fmax2171 fma 1 9.9e999999 0E+999999 -> 9.9E+999999
+fmax2172 fma 1 9.99e999999 0E+999999 -> 9.99E+999999
+fmax2173 fma 9e999999 1 0E+999999 -> 9E+999999
+fmax2174 fma 9.9e999999 1 0E+999999 -> 9.9E+999999
+fmax2176 fma 9.99e999999 1 0E+999999 -> 9.99E+999999
+fmax2177 fma 1 9.99999e999999 0E+999999 -> 9.99999E+999999
+fmax2178 fma 9.99999e999999 1 0E+999999 -> 9.99999E+999999
+
+fmax2180 fma 0.1 9e-999998 0E+999999 -> 9E-999999
+fmax2181 fma 0.1 99e-999998 0E+999999 -> 9.9E-999998
+fmax2182 fma 0.1 999e-999998 0E+999999 -> 9.99E-999997
+
+fmax2183 fma 0.1 9e-999998 0E+999999 -> 9E-999999
+fmax2184 fma 0.1 99e-999998 0E+999999 -> 9.9E-999998
+fmax2185 fma 0.1 999e-999998 0E+999999 -> 9.99E-999997
+fmax2186 fma 0.1 999e-999997 0E+999999 -> 9.99E-999996
+fmax2187 fma 0.1 9999e-999997 0E+999999 -> 9.999E-999995
+fmax2188 fma 0.1 99999e-999997 0E+999999 -> 9.9999E-999994
+
+fmax2190 fma 1 9e-999998 0E+999999 -> 9E-999998
+fmax2191 fma 1 99e-999998 0E+999999 -> 9.9E-999997
+fmax2192 fma 1 999e-999998 0E+999999 -> 9.99E-999996
+fmax2193 fma 9e-999998 1 0E+999999 -> 9E-999998
+fmax2194 fma 99e-999998 1 0E+999999 -> 9.9E-999997
+fmax2195 fma 999e-999998 1 0E+999999 -> 9.99E-999996
+
+-- long operand triangle
+precision: 33
+fmax2246 fma 30269.587755640502150977251770554 4.8046009735990873395936309640543 0E+999999 -> 145433.290801193369671916511992830 Inexact Rounded
+precision: 32
+fmax2247 fma 30269.587755640502150977251770554 4.8046009735990873395936309640543 0E+999999 -> 145433.29080119336967191651199283 Inexact Rounded
+precision: 31
+fmax2248 fma 30269.587755640502150977251770554 4.8046009735990873395936309640543 0E+999999 -> 145433.2908011933696719165119928 Inexact Rounded
+precision: 30
+fmax2249 fma 30269.587755640502150977251770554 4.8046009735990873395936309640543 0E+999999 -> 145433.290801193369671916511993 Inexact Rounded
+precision: 29
+fmax2250 fma 30269.587755640502150977251770554 4.8046009735990873395936309640543 0E+999999 -> 145433.29080119336967191651199 Inexact Rounded
+precision: 28
+fmax2251 fma 30269.587755640502150977251770554 4.8046009735990873395936309640543 0E+999999 -> 145433.2908011933696719165120 Inexact Rounded
+precision: 27
+fmax2252 fma 30269.587755640502150977251770554 4.8046009735990873395936309640543 0E+999999 -> 145433.290801193369671916512 Inexact Rounded
+precision: 26
+fmax2253 fma 30269.587755640502150977251770554 4.8046009735990873395936309640543 0E+999999 -> 145433.29080119336967191651 Inexact Rounded
+precision: 25
+fmax2254 fma 30269.587755640502150977251770554 4.8046009735990873395936309640543 0E+999999 -> 145433.2908011933696719165 Inexact Rounded
+precision: 24
+fmax2255 fma 30269.587755640502150977251770554 4.8046009735990873395936309640543 0E+999999 -> 145433.290801193369671917 Inexact Rounded
+precision: 23
+fmax2256 fma 30269.587755640502150977251770554 4.8046009735990873395936309640543 0E+999999 -> 145433.29080119336967192 Inexact Rounded
+precision: 22
+fmax2257 fma 30269.587755640502150977251770554 4.8046009735990873395936309640543 0E+999999 -> 145433.2908011933696719 Inexact Rounded
+precision: 21
+fmax2258 fma 30269.587755640502150977251770554 4.8046009735990873395936309640543 0E+999999 -> 145433.290801193369672 Inexact Rounded
+precision: 20
+fmax2259 fma 30269.587755640502150977251770554 4.8046009735990873395936309640543 0E+999999 -> 145433.29080119336967 Inexact Rounded
+precision: 19
+fmax2260 fma 30269.587755640502150977251770554 4.8046009735990873395936309640543 0E+999999 -> 145433.2908011933697 Inexact Rounded
+precision: 18
+fmax2261 fma 30269.587755640502150977251770554 4.8046009735990873395936309640543 0E+999999 -> 145433.290801193370 Inexact Rounded
+precision: 17
+fmax2262 fma 30269.587755640502150977251770554 4.8046009735990873395936309640543 0E+999999 -> 145433.29080119337 Inexact Rounded
+precision: 16
+fmax2263 fma 30269.587755640502150977251770554 4.8046009735990873395936309640543 0E+999999 -> 145433.2908011934 Inexact Rounded
+precision: 15
+fmax2264 fma 30269.587755640502150977251770554 4.8046009735990873395936309640543 0E+999999 -> 145433.290801193 Inexact Rounded
+precision: 14
+fmax2265 fma 30269.587755640502150977251770554 4.8046009735990873395936309640543 0E+999999 -> 145433.29080119 Inexact Rounded
+precision: 13
+fmax2266 fma 30269.587755640502150977251770554 4.8046009735990873395936309640543 0E+999999 -> 145433.2908012 Inexact Rounded
+precision: 12
+fmax2267 fma 30269.587755640502150977251770554 4.8046009735990873395936309640543 0E+999999 -> 145433.290801 Inexact Rounded
+precision: 11
+fmax2268 fma 30269.587755640502150977251770554 4.8046009735990873395936309640543 0E+999999 -> 145433.29080 Inexact Rounded
+precision: 10
+fmax2269 fma 30269.587755640502150977251770554 4.8046009735990873395936309640543 0E+999999 -> 145433.2908 Inexact Rounded
+precision: 9
+fmax2270 fma 30269.587755640502150977251770554 4.8046009735990873395936309640543 0E+999999 -> 145433.291 Inexact Rounded
+precision: 8
+fmax2271 fma 30269.587755640502150977251770554 4.8046009735990873395936309640543 0E+999999 -> 145433.29 Inexact Rounded
+precision: 7
+fmax2272 fma 30269.587755640502150977251770554 4.8046009735990873395936309640543 0E+999999 -> 145433.3 Inexact Rounded
+precision: 6
+fmax2273 fma 30269.587755640502150977251770554 4.8046009735990873395936309640543 0E+999999 -> 145433 Inexact Rounded
+precision: 5
+fmax2274 fma 30269.587755640502150977251770554 4.8046009735990873395936309640543 0E+999999 -> 1.4543E+5 Inexact Rounded
+precision: 4
+fmax2275 fma 30269.587755640502150977251770554 4.8046009735990873395936309640543 0E+999999 -> 1.454E+5 Inexact Rounded
+precision: 3
+fmax2276 fma 30269.587755640502150977251770554 4.8046009735990873395936309640543 0E+999999 -> 1.45E+5 Inexact Rounded
+precision: 2
+fmax2277 fma 30269.587755640502150977251770554 4.8046009735990873395936309640543 0E+999999 -> 1.5E+5 Inexact Rounded
+precision: 1
+fmax2278 fma 30269.587755640502150977251770554 4.8046009735990873395936309640543 0E+999999 -> 1E+5 Inexact Rounded
+
+-- test some edge cases with exact rounding
+maxexponent: 9999
+minexponent: -9999
+precision: 9
+fmax2301 fma 9 9 0E+999999 -> 81
+fmax2302 fma 9 90 0E+999999 -> 810
+fmax2303 fma 9 900 0E+999999 -> 8100
+fmax2304 fma 9 9000 0E+999999 -> 81000
+fmax2305 fma 9 90000 0E+999999 -> 810000
+fmax2306 fma 9 900000 0E+999999 -> 8100000
+fmax2307 fma 9 9000000 0E+999999 -> 81000000
+fmax2308 fma 9 90000000 0E+999999 -> 810000000
+fmax2309 fma 9 900000000 0E+999999 -> 8.10000000E+9 Rounded
+fmax2310 fma 9 9000000000 0E+999999 -> 8.10000000E+10 Rounded
+fmax2311 fma 9 90000000000 0E+999999 -> 8.10000000E+11 Rounded
+fmax2312 fma 9 900000000000 0E+999999 -> 8.10000000E+12 Rounded
+fmax2313 fma 9 9000000000000 0E+999999 -> 8.10000000E+13 Rounded
+fmax2314 fma 9 90000000000000 0E+999999 -> 8.10000000E+14 Rounded
+fmax2315 fma 9 900000000000000 0E+999999 -> 8.10000000E+15 Rounded
+fmax2316 fma 9 9000000000000000 0E+999999 -> 8.10000000E+16 Rounded
+fmax2317 fma 9 90000000000000000 0E+999999 -> 8.10000000E+17 Rounded
+fmax2318 fma 9 900000000000000000 0E+999999 -> 8.10000000E+18 Rounded
+fmax2319 fma 9 9000000000000000000 0E+999999 -> 8.10000000E+19 Rounded
+fmax2320 fma 9 90000000000000000000 0E+999999 -> 8.10000000E+20 Rounded
+fmax2321 fma 9 900000000000000000000 0E+999999 -> 8.10000000E+21 Rounded
+fmax2322 fma 9 9000000000000000000000 0E+999999 -> 8.10000000E+22 Rounded
+fmax2323 fma 9 90000000000000000000000 0E+999999 -> 8.10000000E+23 Rounded
+
+-- fastpath breakers
+precision: 29
+fmax2330 fma 1.491824697641270317824852952837224 1.105170918075647624811707826490246514675628614562883537345747603 0E+999999 -> 1.6487212707001281468486507878 Inexact Rounded
+precision: 55
+fmax2331 fma 0.8958341352965282506768545828765117803873717284891040428 0.8958341352965282506768545828765117803873717284891040428 0E+999999 -> 0.8025187979624784829842553829934069955890983696752228299 Inexact Rounded
+
+
+-- tryzeros cases
+precision: 7
+rounding: half_up
+maxExponent: 92
+minexponent: -92
+fmax2504 fma 0E-60 1000E-60 0E+999999 -> 0E-98 Clamped
+fmax2505 fma 100E+60 0E+60 0E+999999 -> 0E+92 Clamped
+
+-- mixed with zeros
+maxexponent: 999999
+minexponent: -999999
+precision: 9
+fmax2541 fma 0 -1 0E+999999 -> 0
+fmax2542 fma -0 -1 0E+999999 -> 0
+fmax2543 fma 0 1 0E+999999 -> 0
+fmax2544 fma -0 1 0E+999999 -> 0
+fmax2545 fma -1 0 0E+999999 -> 0
+fmax2546 fma -1 -0 0E+999999 -> 0
+fmax2547 fma 1 0 0E+999999 -> 0
+fmax2548 fma 1 -0 0E+999999 -> 0
+
+fmax2551 fma 0.0 -1 0E+999999 -> 0.0
+fmax2552 fma -0.0 -1 0E+999999 -> 0.0
+fmax2553 fma 0.0 1 0E+999999 -> 0.0
+fmax2554 fma -0.0 1 0E+999999 -> 0.0
+fmax2555 fma -1.0 0 0E+999999 -> 0.0
+fmax2556 fma -1.0 -0 0E+999999 -> 0.0
+fmax2557 fma 1.0 0 0E+999999 -> 0.0
+fmax2558 fma 1.0 -0 0E+999999 -> 0.0
+
+fmax2561 fma 0 -1.0 0E+999999 -> 0.0
+fmax2562 fma -0 -1.0 0E+999999 -> 0.0
+fmax2563 fma 0 1.0 0E+999999 -> 0.0
+fmax2564 fma -0 1.0 0E+999999 -> 0.0
+fmax2565 fma -1 0.0 0E+999999 -> 0.0
+fmax2566 fma -1 -0.0 0E+999999 -> 0.0
+fmax2567 fma 1 0.0 0E+999999 -> 0.0
+fmax2568 fma 1 -0.0 0E+999999 -> 0.0
+
+fmax2571 fma 0.0 -1.0 0E+999999 -> 0.00
+fmax2572 fma -0.0 -1.0 0E+999999 -> 0.00
+fmax2573 fma 0.0 1.0 0E+999999 -> 0.00
+fmax2574 fma -0.0 1.0 0E+999999 -> 0.00
+fmax2575 fma -1.0 0.0 0E+999999 -> 0.00
+fmax2576 fma -1.0 -0.0 0E+999999 -> 0.00
+fmax2577 fma 1.0 0.0 0E+999999 -> 0.00
+fmax2578 fma 1.0 -0.0 0E+999999 -> 0.00
+
+
+-- Specials
+fmax2580 fma Inf -Inf 0E+999999 -> -Infinity
+fmax2581 fma Inf -1000 0E+999999 -> -Infinity
+fmax2582 fma Inf -1 0E+999999 -> -Infinity
+fmax2583 fma Inf -0 0E+999999 -> NaN Invalid_operation
+fmax2584 fma Inf 0 0E+999999 -> NaN Invalid_operation
+fmax2585 fma Inf 1 0E+999999 -> Infinity
+fmax2586 fma Inf 1000 0E+999999 -> Infinity
+fmax2587 fma Inf Inf 0E+999999 -> Infinity
+fmax2588 fma -1000 Inf 0E+999999 -> -Infinity
+fmax2589 fma -Inf Inf 0E+999999 -> -Infinity
+fmax2590 fma -1 Inf 0E+999999 -> -Infinity
+fmax2591 fma -0 Inf 0E+999999 -> NaN Invalid_operation
+fmax2592 fma 0 Inf 0E+999999 -> NaN Invalid_operation
+fmax2593 fma 1 Inf 0E+999999 -> Infinity
+fmax2594 fma 1000 Inf 0E+999999 -> Infinity
+fmax2595 fma Inf Inf 0E+999999 -> Infinity
+
+fmax2600 fma -Inf -Inf 0E+999999 -> Infinity
+fmax2601 fma -Inf -1000 0E+999999 -> Infinity
+fmax2602 fma -Inf -1 0E+999999 -> Infinity
+fmax2603 fma -Inf -0 0E+999999 -> NaN Invalid_operation
+fmax2604 fma -Inf 0 0E+999999 -> NaN Invalid_operation
+fmax2605 fma -Inf 1 0E+999999 -> -Infinity
+fmax2606 fma -Inf 1000 0E+999999 -> -Infinity
+fmax2607 fma -Inf Inf 0E+999999 -> -Infinity
+fmax2608 fma -1000 Inf 0E+999999 -> -Infinity
+fmax2609 fma -Inf -Inf 0E+999999 -> Infinity
+fmax2610 fma -1 -Inf 0E+999999 -> Infinity
+fmax2611 fma -0 -Inf 0E+999999 -> NaN Invalid_operation
+fmax2612 fma 0 -Inf 0E+999999 -> NaN Invalid_operation
+fmax2613 fma 1 -Inf 0E+999999 -> -Infinity
+fmax2614 fma 1000 -Inf 0E+999999 -> -Infinity
+fmax2615 fma Inf -Inf 0E+999999 -> -Infinity
+
+fmax2621 fma NaN -Inf 0E+999999 -> NaN
+fmax2622 fma NaN -1000 0E+999999 -> NaN
+fmax2623 fma NaN -1 0E+999999 -> NaN
+fmax2624 fma NaN -0 0E+999999 -> NaN
+fmax2625 fma NaN 0 0E+999999 -> NaN
+fmax2626 fma NaN 1 0E+999999 -> NaN
+fmax2627 fma NaN 1000 0E+999999 -> NaN
+fmax2628 fma NaN Inf 0E+999999 -> NaN
+fmax2629 fma NaN NaN 0E+999999 -> NaN
+fmax2630 fma -Inf NaN 0E+999999 -> NaN
+fmax2631 fma -1000 NaN 0E+999999 -> NaN
+fmax2632 fma -1 NaN 0E+999999 -> NaN
+fmax2633 fma -0 NaN 0E+999999 -> NaN
+fmax2634 fma 0 NaN 0E+999999 -> NaN
+fmax2635 fma 1 NaN 0E+999999 -> NaN
+fmax2636 fma 1000 NaN 0E+999999 -> NaN
+fmax2637 fma Inf NaN 0E+999999 -> NaN
+
+fmax2641 fma sNaN -Inf 0E+999999 -> NaN Invalid_operation
+fmax2642 fma sNaN -1000 0E+999999 -> NaN Invalid_operation
+fmax2643 fma sNaN -1 0E+999999 -> NaN Invalid_operation
+fmax2644 fma sNaN -0 0E+999999 -> NaN Invalid_operation
+fmax2645 fma sNaN 0 0E+999999 -> NaN Invalid_operation
+fmax2646 fma sNaN 1 0E+999999 -> NaN Invalid_operation
+fmax2647 fma sNaN 1000 0E+999999 -> NaN Invalid_operation
+fmax2648 fma sNaN NaN 0E+999999 -> NaN Invalid_operation
+fmax2649 fma sNaN sNaN 0E+999999 -> NaN Invalid_operation
+fmax2650 fma NaN sNaN 0E+999999 -> NaN Invalid_operation
+fmax2651 fma -Inf sNaN 0E+999999 -> NaN Invalid_operation
+fmax2652 fma -1000 sNaN 0E+999999 -> NaN Invalid_operation
+fmax2653 fma -1 sNaN 0E+999999 -> NaN Invalid_operation
+fmax2654 fma -0 sNaN 0E+999999 -> NaN Invalid_operation
+fmax2655 fma 0 sNaN 0E+999999 -> NaN Invalid_operation
+fmax2656 fma 1 sNaN 0E+999999 -> NaN Invalid_operation
+fmax2657 fma 1000 sNaN 0E+999999 -> NaN Invalid_operation
+fmax2658 fma Inf sNaN 0E+999999 -> NaN Invalid_operation
+fmax2659 fma NaN sNaN 0E+999999 -> NaN Invalid_operation
+
+-- propagating NaNs
+fmax2661 fma NaN9 -Inf 0E+999999 -> NaN9
+fmax2662 fma NaN8 999 0E+999999 -> NaN8
+fmax2663 fma NaN71 Inf 0E+999999 -> NaN71
+fmax2664 fma NaN6 NaN5 0E+999999 -> NaN6
+fmax2665 fma -Inf NaN4 0E+999999 -> NaN4
+fmax2666 fma -999 NaN33 0E+999999 -> NaN33
+fmax2667 fma Inf NaN2 0E+999999 -> NaN2
+
+fmax2671 fma sNaN99 -Inf 0E+999999 -> NaN99 Invalid_operation
+fmax2672 fma sNaN98 -11 0E+999999 -> NaN98 Invalid_operation
+fmax2673 fma sNaN97 NaN 0E+999999 -> NaN97 Invalid_operation
+fmax2674 fma sNaN16 sNaN94 0E+999999 -> NaN16 Invalid_operation
+fmax2675 fma NaN95 sNaN93 0E+999999 -> NaN93 Invalid_operation
+fmax2676 fma -Inf sNaN92 0E+999999 -> NaN92 Invalid_operation
+fmax2677 fma 088 sNaN91 0E+999999 -> NaN91 Invalid_operation
+fmax2678 fma Inf sNaN90 0E+999999 -> NaN90 Invalid_operation
+fmax2679 fma NaN sNaN89 0E+999999 -> NaN89 Invalid_operation
+
+fmax2681 fma -NaN9 -Inf 0E+999999 -> -NaN9
+fmax2682 fma -NaN8 999 0E+999999 -> -NaN8
+fmax2683 fma -NaN71 Inf 0E+999999 -> -NaN71
+fmax2684 fma -NaN6 -NaN5 0E+999999 -> -NaN6
+fmax2685 fma -Inf -NaN4 0E+999999 -> -NaN4
+fmax2686 fma -999 -NaN33 0E+999999 -> -NaN33
+fmax2687 fma Inf -NaN2 0E+999999 -> -NaN2
+
+fmax2691 fma -sNaN99 -Inf 0E+999999 -> -NaN99 Invalid_operation
+fmax2692 fma -sNaN98 -11 0E+999999 -> -NaN98 Invalid_operation
+fmax2693 fma -sNaN97 NaN 0E+999999 -> -NaN97 Invalid_operation
+fmax2694 fma -sNaN16 -sNaN94 0E+999999 -> -NaN16 Invalid_operation
+fmax2695 fma -NaN95 -sNaN93 0E+999999 -> -NaN93 Invalid_operation
+fmax2696 fma -Inf -sNaN92 0E+999999 -> -NaN92 Invalid_operation
+fmax2697 fma 088 -sNaN91 0E+999999 -> -NaN91 Invalid_operation
+fmax2698 fma Inf -sNaN90 0E+999999 -> -NaN90 Invalid_operation
+fmax2699 fma -NaN -sNaN89 0E+999999 -> -NaN89 Invalid_operation
+
+fmax2701 fma -NaN -Inf 0E+999999 -> -NaN
+fmax2702 fma -NaN 999 0E+999999 -> -NaN
+fmax2703 fma -NaN Inf 0E+999999 -> -NaN
+fmax2704 fma -NaN -NaN 0E+999999 -> -NaN
+fmax2705 fma -Inf -NaN0 0E+999999 -> -NaN
+fmax2706 fma -999 -NaN 0E+999999 -> -NaN
+fmax2707 fma Inf -NaN 0E+999999 -> -NaN
+
+fmax2711 fma -sNaN -Inf 0E+999999 -> -NaN Invalid_operation
+fmax2712 fma -sNaN -11 0E+999999 -> -NaN Invalid_operation
+fmax2713 fma -sNaN00 NaN 0E+999999 -> -NaN Invalid_operation
+fmax2714 fma -sNaN -sNaN 0E+999999 -> -NaN Invalid_operation
+fmax2715 fma -NaN -sNaN 0E+999999 -> -NaN Invalid_operation
+fmax2716 fma -Inf -sNaN 0E+999999 -> -NaN Invalid_operation
+fmax2717 fma 088 -sNaN 0E+999999 -> -NaN Invalid_operation
+fmax2718 fma Inf -sNaN 0E+999999 -> -NaN Invalid_operation
+fmax2719 fma -NaN -sNaN 0E+999999 -> -NaN Invalid_operation
+
+-- overflow and underflow tests .. note subnormal results
+maxexponent: 999999
+minexponent: -999999
+fmax2730 fma +1.23456789012345E-0 9E+999999 0E+999999 -> Infinity Inexact Overflow Rounded
+fmax2731 fma 9E+999999 +1.23456789012345E-0 0E+999999 -> Infinity Inexact Overflow Rounded
+fmax2732 fma +0.100 9E-999999 0E+999999 -> 9.00E-1000000 Subnormal
+fmax2733 fma 9E-999999 +0.100 0E+999999 -> 9.00E-1000000 Subnormal
+fmax2735 fma -1.23456789012345E-0 9E+999999 0E+999999 -> -Infinity Inexact Overflow Rounded
+fmax2736 fma 9E+999999 -1.23456789012345E-0 0E+999999 -> -Infinity Inexact Overflow Rounded
+fmax2737 fma -0.100 9E-999999 0E+999999 -> -9.00E-1000000 Subnormal
+fmax2738 fma 9E-999999 -0.100 0E+999999 -> -9.00E-1000000 Subnormal
+
+-- signs
+fmax2751 fma 1e+777777 1e+411111 0E+999999 -> Infinity Overflow Inexact Rounded
+fmax2752 fma 1e+777777 -1e+411111 0E+999999 -> -Infinity Overflow Inexact Rounded
+fmax2753 fma -1e+777777 1e+411111 0E+999999 -> -Infinity Overflow Inexact Rounded
+fmax2754 fma -1e+777777 -1e+411111 0E+999999 -> Infinity Overflow Inexact Rounded
+fmax2755 fma 1e-777777 1e-411111 0E+999999 -> 0E-1000007 Underflow Subnormal Inexact Rounded Clamped
+fmax2756 fma 1e-777777 -1e-411111 0E+999999 -> -0E-1000007 Underflow Subnormal Inexact Rounded Clamped
+fmax2757 fma -1e-777777 1e-411111 0E+999999 -> -0E-1000007 Underflow Subnormal Inexact Rounded Clamped
+fmax2758 fma -1e-777777 -1e-411111 0E+999999 -> 0E-1000007 Underflow Subnormal Inexact Rounded Clamped
+
+-- 'subnormal' boundary (all hard underflow or overflow in base arithemtic)
+precision: 9
+fmax2760 fma 1e-600000 1e-400001 0E+999999 -> 1E-1000001 Subnormal
+fmax2761 fma 1e-600000 1e-400002 0E+999999 -> 1E-1000002 Subnormal
+fmax2762 fma 1e-600000 1e-400003 0E+999999 -> 1E-1000003 Subnormal
+fmax2763 fma 1e-600000 1e-400004 0E+999999 -> 1E-1000004 Subnormal
+fmax2764 fma 1e-600000 1e-400005 0E+999999 -> 1E-1000005 Subnormal
+fmax2765 fma 1e-600000 1e-400006 0E+999999 -> 1E-1000006 Subnormal
+fmax2766 fma 1e-600000 1e-400007 0E+999999 -> 1E-1000007 Subnormal
+fmax2767 fma 1e-600000 1e-400008 0E+999999 -> 0E-1000007 Underflow Subnormal Inexact Rounded Clamped
+fmax2768 fma 1e-600000 1e-400009 0E+999999 -> 0E-1000007 Underflow Subnormal Inexact Rounded Clamped
+fmax2769 fma 1e-600000 1e-400010 0E+999999 -> 0E-1000007 Underflow Subnormal Inexact Rounded Clamped
+-- [no equivalent of 'subnormal' for overflow]
+fmax2770 fma 1e+600000 1e+400001 0E+999999 -> Infinity Overflow Inexact Rounded
+fmax2771 fma 1e+600000 1e+400002 0E+999999 -> Infinity Overflow Inexact Rounded
+fmax2772 fma 1e+600000 1e+400003 0E+999999 -> Infinity Overflow Inexact Rounded
+fmax2773 fma 1e+600000 1e+400004 0E+999999 -> Infinity Overflow Inexact Rounded
+fmax2774 fma 1e+600000 1e+400005 0E+999999 -> Infinity Overflow Inexact Rounded
+fmax2775 fma 1e+600000 1e+400006 0E+999999 -> Infinity Overflow Inexact Rounded
+fmax2776 fma 1e+600000 1e+400007 0E+999999 -> Infinity Overflow Inexact Rounded
+fmax2777 fma 1e+600000 1e+400008 0E+999999 -> Infinity Overflow Inexact Rounded
+fmax2778 fma 1e+600000 1e+400009 0E+999999 -> Infinity Overflow Inexact Rounded
+fmax2779 fma 1e+600000 1e+400010 0E+999999 -> Infinity Overflow Inexact Rounded
+
+-- 'subnormal' test edge condition at higher precisions
+precision: 99
+fmax2780 fma 1e-600000 1e-400007 0E+999999 -> 1E-1000007 Subnormal
+fmax2781 fma 1e-600000 1e-400008 0E+999999 -> 1E-1000008 Subnormal
+fmax2782 fma 1e-600000 1e-400097 0E+999999 -> 1E-1000097 Subnormal
+fmax2783 fma 1e-600000 1e-400098 0E+999999 -> 0E-1000097 Underflow Subnormal Inexact Rounded Clamped
+precision: 999
+fmax2784 fma 1e-600000 1e-400997 0E+999999 -> 1E-1000997 Subnormal
+fmax2785 fma 1e-600000 1e-400998 0E+999999 -> 0E-1000997 Underflow Subnormal Inexact Rounded Clamped
+
+-- test subnormals rounding
+precision: 5
+maxExponent: 999
+minexponent: -999
+rounding: half_even
+
+fmax2801 fma 1.0000E-999 1 0E+999999 -> 1.0000E-999
+fmax2802 fma 1.000E-999 1e-1 0E+999999 -> 1.000E-1000 Subnormal
+fmax2803 fma 1.00E-999 1e-2 0E+999999 -> 1.00E-1001 Subnormal
+fmax2804 fma 1.0E-999 1e-3 0E+999999 -> 1.0E-1002 Subnormal
+fmax2805 fma 1.0E-999 1e-4 0E+999999 -> 1E-1003 Subnormal Rounded
+fmax2806 fma 1.3E-999 1e-4 0E+999999 -> 1E-1003 Underflow Subnormal Inexact Rounded
+fmax2807 fma 1.5E-999 1e-4 0E+999999 -> 2E-1003 Underflow Subnormal Inexact Rounded
+fmax2808 fma 1.7E-999 1e-4 0E+999999 -> 2E-1003 Underflow Subnormal Inexact Rounded
+fmax2809 fma 2.3E-999 1e-4 0E+999999 -> 2E-1003 Underflow Subnormal Inexact Rounded
+fmax2810 fma 2.5E-999 1e-4 0E+999999 -> 2E-1003 Underflow Subnormal Inexact Rounded
+fmax2811 fma 2.7E-999 1e-4 0E+999999 -> 3E-1003 Underflow Subnormal Inexact Rounded
+fmax2812 fma 1.49E-999 1e-4 0E+999999 -> 1E-1003 Underflow Subnormal Inexact Rounded
+fmax2813 fma 1.50E-999 1e-4 0E+999999 -> 2E-1003 Underflow Subnormal Inexact Rounded
+fmax2814 fma 1.51E-999 1e-4 0E+999999 -> 2E-1003 Underflow Subnormal Inexact Rounded
+fmax2815 fma 2.49E-999 1e-4 0E+999999 -> 2E-1003 Underflow Subnormal Inexact Rounded
+fmax2816 fma 2.50E-999 1e-4 0E+999999 -> 2E-1003 Underflow Subnormal Inexact Rounded
+fmax2817 fma 2.51E-999 1e-4 0E+999999 -> 3E-1003 Underflow Subnormal Inexact Rounded
+
+fmax2818 fma 1E-999 1e-4 0E+999999 -> 1E-1003 Subnormal
+fmax2819 fma 3E-999 1e-5 0E+999999 -> 0E-1003 Underflow Subnormal Inexact Rounded Clamped
+fmax2820 fma 5E-999 1e-5 0E+999999 -> 0E-1003 Underflow Subnormal Inexact Rounded Clamped
+fmax2821 fma 7E-999 1e-5 0E+999999 -> 1E-1003 Underflow Subnormal Inexact Rounded
+fmax2822 fma 9E-999 1e-5 0E+999999 -> 1E-1003 Underflow Subnormal Inexact Rounded
+fmax2823 fma 9.9E-999 1e-5 0E+999999 -> 1E-1003 Underflow Subnormal Inexact Rounded
+
+fmax2824 fma 1E-999 -1e-4 0E+999999 -> -1E-1003 Subnormal
+fmax2825 fma 3E-999 -1e-5 0E+999999 -> -0E-1003 Underflow Subnormal Inexact Rounded Clamped
+fmax2826 fma -5E-999 1e-5 0E+999999 -> -0E-1003 Underflow Subnormal Inexact Rounded Clamped
+fmax2827 fma 7E-999 -1e-5 0E+999999 -> -1E-1003 Underflow Subnormal Inexact Rounded
+fmax2828 fma -9E-999 1e-5 0E+999999 -> -1E-1003 Underflow Subnormal Inexact Rounded
+fmax2829 fma 9.9E-999 -1e-5 0E+999999 -> -1E-1003 Underflow Subnormal Inexact Rounded
+fmax2830 fma 3.0E-999 -1e-5 0E+999999 -> -0E-1003 Underflow Subnormal Inexact Rounded Clamped
+
+fmax2831 fma 1.0E-501 1e-501 0E+999999 -> 1.0E-1002 Subnormal
+fmax2832 fma 2.0E-501 2e-501 0E+999999 -> 4.0E-1002 Subnormal
+fmax2833 fma 4.0E-501 4e-501 0E+999999 -> 1.60E-1001 Subnormal
+fmax2834 fma 10.0E-501 10e-501 0E+999999 -> 1.000E-1000 Subnormal
+fmax2835 fma 30.0E-501 30e-501 0E+999999 -> 9.000E-1000 Subnormal
+fmax2836 fma 40.0E-501 40e-501 0E+999999 -> 1.6000E-999
+
+-- squares
+fmax2840 fma 1E-502 1e-502 0E+999999 -> 0E-1003 Underflow Subnormal Inexact Rounded Clamped
+fmax2841 fma 1E-501 1e-501 0E+999999 -> 1E-1002 Subnormal
+fmax2842 fma 2E-501 2e-501 0E+999999 -> 4E-1002 Subnormal
+fmax2843 fma 4E-501 4e-501 0E+999999 -> 1.6E-1001 Subnormal
+fmax2844 fma 10E-501 10e-501 0E+999999 -> 1.00E-1000 Subnormal
+fmax2845 fma 30E-501 30e-501 0E+999999 -> 9.00E-1000 Subnormal
+fmax2846 fma 40E-501 40e-501 0E+999999 -> 1.600E-999
+
+-- cubes
+fmax2850 fma 1E-670 1e-335 0E+999999 -> 0E-1003 Underflow Subnormal Inexact Rounded Clamped
+fmax2851 fma 1E-668 1e-334 0E+999999 -> 1E-1002 Subnormal
+fmax2852 fma 4E-668 2e-334 0E+999999 -> 8E-1002 Subnormal
+fmax2853 fma 9E-668 3e-334 0E+999999 -> 2.7E-1001 Subnormal
+fmax2854 fma 16E-668 4e-334 0E+999999 -> 6.4E-1001 Subnormal
+fmax2855 fma 25E-668 5e-334 0E+999999 -> 1.25E-1000 Subnormal
+fmax2856 fma 10E-668 100e-334 0E+999999 -> 1.000E-999
+
+-- test derived from result of 0.099 ** 999 at 15 digits with unlimited exponent
+precision: 19
+fmax2860 fma 6636851557994578716E-520 6636851557994578716E-520 0E+999999 -> 4.40477986028551E-1003 Underflow Subnormal Inexact Rounded
+
+-- Long operand overflow may be a different path
+precision: 3
+maxExponent: 999999
+minexponent: -999999
+fmax2870 fma 1 9.999E+999999 0E+999999 -> Infinity Inexact Overflow Rounded
+fmax2871 fma 1 -9.999E+999999 0E+999999 -> -Infinity Inexact Overflow Rounded
+fmax2872 fma 9.999E+999999 1 0E+999999 -> Infinity Inexact Overflow Rounded
+fmax2873 fma -9.999E+999999 1 0E+999999 -> -Infinity Inexact Overflow Rounded
+
+-- check for double-rounded subnormals
+precision: 5
+maxexponent: 79
+minexponent: -79
+fmax2881 fma 1.2347E-40 1.2347E-40 0E+999999 -> 1.524E-80 Inexact Rounded Subnormal Underflow
+fmax2882 fma 1.234E-40 1.234E-40 0E+999999 -> 1.523E-80 Inexact Rounded Subnormal Underflow
+fmax2883 fma 1.23E-40 1.23E-40 0E+999999 -> 1.513E-80 Inexact Rounded Subnormal Underflow
+fmax2884 fma 1.2E-40 1.2E-40 0E+999999 -> 1.44E-80 Subnormal
+fmax2885 fma 1.2E-40 1.2E-41 0E+999999 -> 1.44E-81 Subnormal
+fmax2886 fma 1.2E-40 1.2E-42 0E+999999 -> 1.4E-82 Subnormal Inexact Rounded Underflow
+fmax2887 fma 1.2E-40 1.3E-42 0E+999999 -> 1.6E-82 Subnormal Inexact Rounded Underflow
+fmax2888 fma 1.3E-40 1.3E-42 0E+999999 -> 1.7E-82 Subnormal Inexact Rounded Underflow
+fmax2889 fma 1.3E-40 1.3E-43 0E+999999 -> 2E-83 Subnormal Inexact Rounded Underflow
+fmax2890 fma 1.3E-41 1.3E-43 0E+999999 -> 0E-83 Clamped Subnormal Inexact Rounded Underflow
+
+fmax2891 fma 1.2345E-39 1.234E-40 0E+999999 -> 1.5234E-79 Inexact Rounded
+fmax2892 fma 1.23456E-39 1.234E-40 0E+999999 -> 1.5234E-79 Inexact Rounded
+fmax2893 fma 1.2345E-40 1.234E-40 0E+999999 -> 1.523E-80 Inexact Rounded Subnormal Underflow
+fmax2894 fma 1.23456E-40 1.234E-40 0E+999999 -> 1.523E-80 Inexact Rounded Subnormal Underflow
+fmax2895 fma 1.2345E-41 1.234E-40 0E+999999 -> 1.52E-81 Inexact Rounded Subnormal Underflow
+fmax2896 fma 1.23456E-41 1.234E-40 0E+999999 -> 1.52E-81 Inexact Rounded Subnormal Underflow
+
+-- Now explore the case where we get a normal result with Underflow
+precision: 16
+rounding: half_up
+maxExponent: 384
+minExponent: -383
+
+fmax2900 fma 0.3000000000E-191 0.3000000000E-191 0E+999999 -> 9.00000000000000E-384 Subnormal Rounded
+fmax2901 fma 0.3000000001E-191 0.3000000001E-191 0E+999999 -> 9.00000000600000E-384 Underflow Inexact Subnormal Rounded
+fmax2902 fma 9.999999999999999E-383 0.0999999999999 0E+999999 -> 9.99999999999000E-384 Underflow Inexact Subnormal Rounded
+fmax2903 fma 9.999999999999999E-383 0.09999999999999 0E+999999 -> 9.99999999999900E-384 Underflow Inexact Subnormal Rounded
+fmax2904 fma 9.999999999999999E-383 0.099999999999999 0E+999999 -> 9.99999999999990E-384 Underflow Inexact Subnormal Rounded
+fmax2905 fma 9.999999999999999E-383 0.0999999999999999 0E+999999 -> 9.99999999999999E-384 Underflow Inexact Subnormal Rounded
+-- prove operands are exact
+fmax2906 fma 9.999999999999999E-383 1 0E+999999 -> 9.999999999999999E-383
+fmax2907 fma 1 0.09999999999999999 0E+999999 -> 0.09999999999999999
+-- the next rounds to Nmin
+fmax2908 fma 9.999999999999999E-383 0.09999999999999999 0E+999999 -> 1.000000000000000E-383 Underflow Inexact Subnormal Rounded
+fmax2909 fma 9.999999999999999E-383 0.099999999999999999 0E+999999 -> 1.000000000000000E-383 Underflow Inexact Subnormal Rounded
+fmax2910 fma 9.999999999999999E-383 0.0999999999999999999 0E+999999 -> 1.000000000000000E-383 Underflow Inexact Subnormal Rounded
+fmax2911 fma 9.999999999999999E-383 0.09999999999999999999 0E+999999 -> 1.000000000000000E-383 Underflow Inexact Subnormal Rounded
+
+-- Examples from SQL proposal (Krishna Kulkarni)
+precision: 34
+rounding: half_up
+maxExponent: 6144
+minExponent: -6143
+fmax2921 fma 130E-2 120E-2 0E+999999 -> 1.5600
+fmax2922 fma 130E-2 12E-1 0E+999999 -> 1.560
+fmax2923 fma 130E-2 1E0 0E+999999 -> 1.30
+
+-- Null tests
+fmax2990 fma # 10 0E+999999 -> NaN Invalid_operation
+fmax2991 fma 10 # 0E+999999 -> NaN Invalid_operation
+
+-- ADDITION TESTS ------------------------------------------------------
+precision: 9
+rounding: half_up
+maxExponent: 384
+minexponent: -383
+
+-- [first group are 'quick confidence check']
+fmax3001 fma 1 1 1 -> 2
+fmax3002 fma 1 2 3 -> 5
+fmax3003 fma 1 '5.75' '3.3' -> 9.05
+fmax3004 fma 1 '5' '-3' -> 2
+fmax3005 fma 1 '-5' '-3' -> -8
+fmax3006 fma 1 '-7' '2.5' -> -4.5
+fmax3007 fma 1 '0.7' '0.3' -> 1.0
+fmax3008 fma 1 '1.25' '1.25' -> 2.50
+fmax3009 fma 1 '1.23456789' '1.00000000' -> '2.23456789'
+fmax3010 fma 1 '1.23456789' '1.00000011' -> '2.23456800'
+
+fmax3011 fma 1 '0.4444444444' '0.5555555555' -> '1.00000000' Inexact Rounded
+fmax3012 fma 1 '0.4444444440' '0.5555555555' -> '1.00000000' Inexact Rounded
+fmax3013 fma 1 '0.4444444444' '0.5555555550' -> '0.999999999' Inexact Rounded
+fmax3014 fma 1 '0.44444444449' '0' -> '0.444444444' Inexact Rounded
+fmax3015 fma 1 '0.444444444499' '0' -> '0.444444444' Inexact Rounded
+fmax3016 fma 1 '0.4444444444999' '0' -> '0.444444444' Inexact Rounded
+fmax3017 fma 1 '0.4444444445000' '0' -> '0.444444445' Inexact Rounded
+fmax3018 fma 1 '0.4444444445001' '0' -> '0.444444445' Inexact Rounded
+fmax3019 fma 1 '0.444444444501' '0' -> '0.444444445' Inexact Rounded
+fmax3020 fma 1 '0.44444444451' '0' -> '0.444444445' Inexact Rounded
+
+fmax3021 fma 1 0 1 -> 1
+fmax3022 fma 1 1 1 -> 2
+fmax3023 fma 1 2 1 -> 3
+fmax3024 fma 1 3 1 -> 4
+fmax3025 fma 1 4 1 -> 5
+fmax3026 fma 1 5 1 -> 6
+fmax3027 fma 1 6 1 -> 7
+fmax3028 fma 1 7 1 -> 8
+fmax3029 fma 1 8 1 -> 9
+fmax3030 fma 1 9 1 -> 10
+
+-- some carrying effects
+fmax3031 fma 1 '0.9998' '0.0000' -> '0.9998'
+fmax3032 fma 1 '0.9998' '0.0001' -> '0.9999'
+fmax3033 fma 1 '0.9998' '0.0002' -> '1.0000'
+fmax3034 fma 1 '0.9998' '0.0003' -> '1.0001'
+
+fmax3035 fma 1 '70' '10000e+9' -> '1.00000000E+13' Inexact Rounded
+fmax3036 fma 1 '700' '10000e+9' -> '1.00000000E+13' Inexact Rounded
+fmax3037 fma 1 '7000' '10000e+9' -> '1.00000000E+13' Inexact Rounded
+fmax3038 fma 1 '70000' '10000e+9' -> '1.00000001E+13' Inexact Rounded
+fmax3039 fma 1 '700000' '10000e+9' -> '1.00000007E+13' Rounded
+
+-- symmetry:
+fmax3040 fma 1 '10000e+9' '70' -> '1.00000000E+13' Inexact Rounded
+fmax3041 fma 1 '10000e+9' '700' -> '1.00000000E+13' Inexact Rounded
+fmax3042 fma 1 '10000e+9' '7000' -> '1.00000000E+13' Inexact Rounded
+fmax3044 fma 1 '10000e+9' '70000' -> '1.00000001E+13' Inexact Rounded
+fmax3045 fma 1 '10000e+9' '700000' -> '1.00000007E+13' Rounded
+
+-- same, higher precision
+precision: 15
+fmax3046 fma 1 '10000e+9' '7' -> '10000000000007'
+fmax3047 fma 1 '10000e+9' '70' -> '10000000000070'
+fmax3048 fma 1 '10000e+9' '700' -> '10000000000700'
+fmax3049 fma 1 '10000e+9' '7000' -> '10000000007000'
+fmax3050 fma 1 '10000e+9' '70000' -> '10000000070000'
+fmax3051 fma 1 '10000e+9' '700000' -> '10000000700000'
+fmax3052 fma 1 '10000e+9' '7000000' -> '10000007000000'
+
+-- examples from decarith
+fmax3053 fma 1 '12' '7.00' -> '19.00'
+fmax3054 fma 1 '1.3' '-1.07' -> '0.23'
+fmax3055 fma 1 '1.3' '-1.30' -> '0.00'
+fmax3056 fma 1 '1.3' '-2.07' -> '-0.77'
+fmax3057 fma 1 '1E+2' '1E+4' -> '1.01E+4'
+
+-- zero preservation
+precision: 6
+fmax3060 fma 1 '10000e+9' '70000' -> '1.00000E+13' Inexact Rounded
+fmax3061 fma 1 1 '0.0001' -> '1.0001'
+fmax3062 fma 1 1 '0.00001' -> '1.00001'
+fmax3063 fma 1 1 '0.000001' -> '1.00000' Inexact Rounded
+fmax3064 fma 1 1 '0.0000001' -> '1.00000' Inexact Rounded
+fmax3065 fma 1 1 '0.00000001' -> '1.00000' Inexact Rounded
+
+-- some funny zeros [in case of bad signum]
+fmax3070 fma 1 1 0 -> 1
+fmax3071 fma 1 1 0. -> 1
+fmax3072 fma 1 1 .0 -> 1.0
+fmax3073 fma 1 1 0.0 -> 1.0
+fmax3074 fma 1 1 0.00 -> 1.00
+fmax3075 fma 1 0 1 -> 1
+fmax3076 fma 1 0. 1 -> 1
+fmax3077 fma 1 .0 1 -> 1.0
+fmax3078 fma 1 0.0 1 -> 1.0
+fmax3079 fma 1 0.00 1 -> 1.00
+
+precision: 9
+
+-- some carries
+fmax3080 fma 1 999999998 1 -> 999999999
+fmax3081 fma 1 999999999 1 -> 1.00000000E+9 Rounded
+fmax3082 fma 1 99999999 1 -> 100000000
+fmax3083 fma 1 9999999 1 -> 10000000
+fmax3084 fma 1 999999 1 -> 1000000
+fmax3085 fma 1 99999 1 -> 100000
+fmax3086 fma 1 9999 1 -> 10000
+fmax3087 fma 1 999 1 -> 1000
+fmax3088 fma 1 99 1 -> 100
+fmax3089 fma 1 9 1 -> 10
+
+
+-- more LHS swaps
+fmax3090 fma 1 '-56267E-10' 0 -> '-0.0000056267'
+fmax3091 fma 1 '-56267E-6' 0 -> '-0.056267'
+fmax3092 fma 1 '-56267E-5' 0 -> '-0.56267'
+fmax3093 fma 1 '-56267E-4' 0 -> '-5.6267'
+fmax3094 fma 1 '-56267E-3' 0 -> '-56.267'
+fmax3095 fma 1 '-56267E-2' 0 -> '-562.67'
+fmax3096 fma 1 '-56267E-1' 0 -> '-5626.7'
+fmax3097 fma 1 '-56267E-0' 0 -> '-56267'
+fmax3098 fma 1 '-5E-10' 0 -> '-5E-10'
+fmax3099 fma 1 '-5E-7' 0 -> '-5E-7'
+fmax3100 fma 1 '-5E-6' 0 -> '-0.000005'
+fmax3101 fma 1 '-5E-5' 0 -> '-0.00005'
+fmax3102 fma 1 '-5E-4' 0 -> '-0.0005'
+fmax3103 fma 1 '-5E-1' 0 -> '-0.5'
+fmax3104 fma 1 '-5E0' 0 -> '-5'
+fmax3105 fma 1 '-5E1' 0 -> '-50'
+fmax3106 fma 1 '-5E5' 0 -> '-500000'
+fmax3107 fma 1 '-5E8' 0 -> '-500000000'
+fmax3108 fma 1 '-5E9' 0 -> '-5.00000000E+9' Rounded
+fmax3109 fma 1 '-5E10' 0 -> '-5.00000000E+10' Rounded
+fmax3110 fma 1 '-5E11' 0 -> '-5.00000000E+11' Rounded
+fmax3111 fma 1 '-5E100' 0 -> '-5.00000000E+100' Rounded
+
+-- more RHS swaps
+fmax3113 fma 1 0 '-56267E-10' -> '-0.0000056267'
+fmax3114 fma 1 0 '-56267E-6' -> '-0.056267'
+fmax3116 fma 1 0 '-56267E-5' -> '-0.56267'
+fmax3117 fma 1 0 '-56267E-4' -> '-5.6267'
+fmax3119 fma 1 0 '-56267E-3' -> '-56.267'
+fmax3120 fma 1 0 '-56267E-2' -> '-562.67'
+fmax3121 fma 1 0 '-56267E-1' -> '-5626.7'
+fmax3122 fma 1 0 '-56267E-0' -> '-56267'
+fmax3123 fma 1 0 '-5E-10' -> '-5E-10'
+fmax3124 fma 1 0 '-5E-7' -> '-5E-7'
+fmax3125 fma 1 0 '-5E-6' -> '-0.000005'
+fmax3126 fma 1 0 '-5E-5' -> '-0.00005'
+fmax3127 fma 1 0 '-5E-4' -> '-0.0005'
+fmax3128 fma 1 0 '-5E-1' -> '-0.5'
+fmax3129 fma 1 0 '-5E0' -> '-5'
+fmax3130 fma 1 0 '-5E1' -> '-50'
+fmax3131 fma 1 0 '-5E5' -> '-500000'
+fmax3132 fma 1 0 '-5E8' -> '-500000000'
+fmax3133 fma 1 0 '-5E9' -> '-5.00000000E+9' Rounded
+fmax3134 fma 1 0 '-5E10' -> '-5.00000000E+10' Rounded
+fmax3135 fma 1 0 '-5E11' -> '-5.00000000E+11' Rounded
+fmax3136 fma 1 0 '-5E100' -> '-5.00000000E+100' Rounded
+
+-- related
+fmax3137 fma 1 1 '0E-12' -> '1.00000000' Rounded
+fmax3138 fma 1 -1 '0E-12' -> '-1.00000000' Rounded
+fmax3139 fma 1 '0E-12' 1 -> '1.00000000' Rounded
+fmax3140 fma 1 '0E-12' -1 -> '-1.00000000' Rounded
+fmax3141 fma 1 1E+4 0.0000 -> '10000.0000'
+fmax3142 fma 1 1E+4 0.00000 -> '10000.0000' Rounded
+fmax3143 fma 1 0.000 1E+5 -> '100000.000'
+fmax3144 fma 1 0.0000 1E+5 -> '100000.000' Rounded
+
+-- [some of the next group are really constructor tests]
+fmax3146 fma 1 '00.0' 0 -> '0.0'
+fmax3147 fma 1 '0.00' 0 -> '0.00'
+fmax3148 fma 1 0 '0.00' -> '0.00'
+fmax3149 fma 1 0 '00.0' -> '0.0'
+fmax3150 fma 1 '00.0' '0.00' -> '0.00'
+fmax3151 fma 1 '0.00' '00.0' -> '0.00'
+fmax3152 fma 1 '3' '.3' -> '3.3'
+fmax3153 fma 1 '3.' '.3' -> '3.3'
+fmax3154 fma 1 '3.0' '.3' -> '3.3'
+fmax3155 fma 1 '3.00' '.3' -> '3.30'
+fmax3156 fma 1 '3' '3' -> '6'
+fmax3157 fma 1 '3' '+3' -> '6'
+fmax3158 fma 1 '3' '-3' -> '0'
+fmax3159 fma 1 '0.3' '-0.3' -> '0.0'
+fmax3160 fma 1 '0.03' '-0.03' -> '0.00'
+
+-- try borderline precision, with carries, etc.
+precision: 15
+fmax3161 fma 1 '1E+12' '-1' -> '999999999999'
+fmax3162 fma 1 '1E+12' '1.11' -> '1000000000001.11'
+fmax3163 fma 1 '1.11' '1E+12' -> '1000000000001.11'
+fmax3164 fma 1 '-1' '1E+12' -> '999999999999'
+fmax3165 fma 1 '7E+12' '-1' -> '6999999999999'
+fmax3166 fma 1 '7E+12' '1.11' -> '7000000000001.11'
+fmax3167 fma 1 '1.11' '7E+12' -> '7000000000001.11'
+fmax3168 fma 1 '-1' '7E+12' -> '6999999999999'
+
+-- 123456789012345 123456789012345 1 23456789012345
+fmax3170 fma 1 '0.444444444444444' '0.555555555555563' -> '1.00000000000001' Inexact Rounded
+fmax3171 fma 1 '0.444444444444444' '0.555555555555562' -> '1.00000000000001' Inexact Rounded
+fmax3172 fma 1 '0.444444444444444' '0.555555555555561' -> '1.00000000000001' Inexact Rounded
+fmax3173 fma 1 '0.444444444444444' '0.555555555555560' -> '1.00000000000000' Inexact Rounded
+fmax3174 fma 1 '0.444444444444444' '0.555555555555559' -> '1.00000000000000' Inexact Rounded
+fmax3175 fma 1 '0.444444444444444' '0.555555555555558' -> '1.00000000000000' Inexact Rounded
+fmax3176 fma 1 '0.444444444444444' '0.555555555555557' -> '1.00000000000000' Inexact Rounded
+fmax3177 fma 1 '0.444444444444444' '0.555555555555556' -> '1.00000000000000' Rounded
+fmax3178 fma 1 '0.444444444444444' '0.555555555555555' -> '0.999999999999999'
+fmax3179 fma 1 '0.444444444444444' '0.555555555555554' -> '0.999999999999998'
+fmax3180 fma 1 '0.444444444444444' '0.555555555555553' -> '0.999999999999997'
+fmax3181 fma 1 '0.444444444444444' '0.555555555555552' -> '0.999999999999996'
+fmax3182 fma 1 '0.444444444444444' '0.555555555555551' -> '0.999999999999995'
+fmax3183 fma 1 '0.444444444444444' '0.555555555555550' -> '0.999999999999994'
+
+-- and some more, including residue effects and different roundings
+precision: 9
+rounding: half_up
+fmax3200 fma 1 '123456789' 0 -> '123456789'
+fmax3201 fma 1 '123456789' 0.000000001 -> '123456789' Inexact Rounded
+fmax3202 fma 1 '123456789' 0.000001 -> '123456789' Inexact Rounded
+fmax3203 fma 1 '123456789' 0.1 -> '123456789' Inexact Rounded
+fmax3204 fma 1 '123456789' 0.4 -> '123456789' Inexact Rounded
+fmax3205 fma 1 '123456789' 0.49 -> '123456789' Inexact Rounded
+fmax3206 fma 1 '123456789' 0.499999 -> '123456789' Inexact Rounded
+fmax3207 fma 1 '123456789' 0.499999999 -> '123456789' Inexact Rounded
+fmax3208 fma 1 '123456789' 0.5 -> '123456790' Inexact Rounded
+fmax3209 fma 1 '123456789' 0.500000001 -> '123456790' Inexact Rounded
+fmax3210 fma 1 '123456789' 0.500001 -> '123456790' Inexact Rounded
+fmax3211 fma 1 '123456789' 0.51 -> '123456790' Inexact Rounded
+fmax3212 fma 1 '123456789' 0.6 -> '123456790' Inexact Rounded
+fmax3213 fma 1 '123456789' 0.9 -> '123456790' Inexact Rounded
+fmax3214 fma 1 '123456789' 0.99999 -> '123456790' Inexact Rounded
+fmax3215 fma 1 '123456789' 0.999999999 -> '123456790' Inexact Rounded
+fmax3216 fma 1 '123456789' 1 -> '123456790'
+fmax3217 fma 1 '123456789' 1.000000001 -> '123456790' Inexact Rounded
+fmax3218 fma 1 '123456789' 1.00001 -> '123456790' Inexact Rounded
+fmax3219 fma 1 '123456789' 1.1 -> '123456790' Inexact Rounded
+
+rounding: half_even
+fmax3220 fma 1 '123456789' 0 -> '123456789'
+fmax3221 fma 1 '123456789' 0.000000001 -> '123456789' Inexact Rounded
+fmax3222 fma 1 '123456789' 0.000001 -> '123456789' Inexact Rounded
+fmax3223 fma 1 '123456789' 0.1 -> '123456789' Inexact Rounded
+fmax3224 fma 1 '123456789' 0.4 -> '123456789' Inexact Rounded
+fmax3225 fma 1 '123456789' 0.49 -> '123456789' Inexact Rounded
+fmax3226 fma 1 '123456789' 0.499999 -> '123456789' Inexact Rounded
+fmax3227 fma 1 '123456789' 0.499999999 -> '123456789' Inexact Rounded
+fmax3228 fma 1 '123456789' 0.5 -> '123456790' Inexact Rounded
+fmax3229 fma 1 '123456789' 0.500000001 -> '123456790' Inexact Rounded
+fmax3230 fma 1 '123456789' 0.500001 -> '123456790' Inexact Rounded
+fmax3231 fma 1 '123456789' 0.51 -> '123456790' Inexact Rounded
+fmax3232 fma 1 '123456789' 0.6 -> '123456790' Inexact Rounded
+fmax3233 fma 1 '123456789' 0.9 -> '123456790' Inexact Rounded
+fmax3234 fma 1 '123456789' 0.99999 -> '123456790' Inexact Rounded
+fmax3235 fma 1 '123456789' 0.999999999 -> '123456790' Inexact Rounded
+fmax3236 fma 1 '123456789' 1 -> '123456790'
+fmax3237 fma 1 '123456789' 1.00000001 -> '123456790' Inexact Rounded
+fmax3238 fma 1 '123456789' 1.00001 -> '123456790' Inexact Rounded
+fmax3239 fma 1 '123456789' 1.1 -> '123456790' Inexact Rounded
+-- critical few with even bottom digit...
+fmax3240 fma 1 '123456788' 0.499999999 -> '123456788' Inexact Rounded
+fmax3241 fma 1 '123456788' 0.5 -> '123456788' Inexact Rounded
+fmax3242 fma 1 '123456788' 0.500000001 -> '123456789' Inexact Rounded
+
+rounding: down
+fmax3250 fma 1 '123456789' 0 -> '123456789'
+fmax3251 fma 1 '123456789' 0.000000001 -> '123456789' Inexact Rounded
+fmax3252 fma 1 '123456789' 0.000001 -> '123456789' Inexact Rounded
+fmax3253 fma 1 '123456789' 0.1 -> '123456789' Inexact Rounded
+fmax3254 fma 1 '123456789' 0.4 -> '123456789' Inexact Rounded
+fmax3255 fma 1 '123456789' 0.49 -> '123456789' Inexact Rounded
+fmax3256 fma 1 '123456789' 0.499999 -> '123456789' Inexact Rounded
+fmax3257 fma 1 '123456789' 0.499999999 -> '123456789' Inexact Rounded
+fmax3258 fma 1 '123456789' 0.5 -> '123456789' Inexact Rounded
+fmax3259 fma 1 '123456789' 0.500000001 -> '123456789' Inexact Rounded
+fmax3260 fma 1 '123456789' 0.500001 -> '123456789' Inexact Rounded
+fmax3261 fma 1 '123456789' 0.51 -> '123456789' Inexact Rounded
+fmax3262 fma 1 '123456789' 0.6 -> '123456789' Inexact Rounded
+fmax3263 fma 1 '123456789' 0.9 -> '123456789' Inexact Rounded
+fmax3264 fma 1 '123456789' 0.99999 -> '123456789' Inexact Rounded
+fmax3265 fma 1 '123456789' 0.999999999 -> '123456789' Inexact Rounded
+fmax3266 fma 1 '123456789' 1 -> '123456790'
+fmax3267 fma 1 '123456789' 1.00000001 -> '123456790' Inexact Rounded
+fmax3268 fma 1 '123456789' 1.00001 -> '123456790' Inexact Rounded
+fmax3269 fma 1 '123456789' 1.1 -> '123456790' Inexact Rounded
+
+-- input preparation tests (operands should not be rounded)
+precision: 3
+rounding: half_up
+
+fmax3270 fma 1 '12345678900000' 9999999999999 -> '2.23E+13' Inexact Rounded
+fmax3271 fma 1 '9999999999999' 12345678900000 -> '2.23E+13' Inexact Rounded
+
+fmax3272 fma 1 '12E+3' '3444' -> '1.54E+4' Inexact Rounded
+fmax3273 fma 1 '12E+3' '3446' -> '1.54E+4' Inexact Rounded
+fmax3274 fma 1 '12E+3' '3449.9' -> '1.54E+4' Inexact Rounded
+fmax3275 fma 1 '12E+3' '3450.0' -> '1.55E+4' Inexact Rounded
+fmax3276 fma 1 '12E+3' '3450.1' -> '1.55E+4' Inexact Rounded
+fmax3277 fma 1 '12E+3' '3454' -> '1.55E+4' Inexact Rounded
+fmax3278 fma 1 '12E+3' '3456' -> '1.55E+4' Inexact Rounded
+
+fmax3281 fma 1 '3444' '12E+3' -> '1.54E+4' Inexact Rounded
+fmax3282 fma 1 '3446' '12E+3' -> '1.54E+4' Inexact Rounded
+fmax3283 fma 1 '3449.9' '12E+3' -> '1.54E+4' Inexact Rounded
+fmax3284 fma 1 '3450.0' '12E+3' -> '1.55E+4' Inexact Rounded
+fmax3285 fma 1 '3450.1' '12E+3' -> '1.55E+4' Inexact Rounded
+fmax3286 fma 1 '3454' '12E+3' -> '1.55E+4' Inexact Rounded
+fmax3287 fma 1 '3456' '12E+3' -> '1.55E+4' Inexact Rounded
+
+rounding: half_down
+fmax3291 fma 1 '3444' '12E+3' -> '1.54E+4' Inexact Rounded
+fmax3292 fma 1 '3446' '12E+3' -> '1.54E+4' Inexact Rounded
+fmax3293 fma 1 '3449.9' '12E+3' -> '1.54E+4' Inexact Rounded
+fmax3294 fma 1 '3450.0' '12E+3' -> '1.54E+4' Inexact Rounded
+fmax3295 fma 1 '3450.1' '12E+3' -> '1.55E+4' Inexact Rounded
+fmax3296 fma 1 '3454' '12E+3' -> '1.55E+4' Inexact Rounded
+fmax3297 fma 1 '3456' '12E+3' -> '1.55E+4' Inexact Rounded
+
+-- 1 in last place tests
+rounding: half_up
+fmax3301 fma 1 -1 1 -> 0
+fmax3302 fma 1 0 1 -> 1
+fmax3303 fma 1 1 1 -> 2
+fmax3304 fma 1 12 1 -> 13
+fmax3305 fma 1 98 1 -> 99
+fmax3306 fma 1 99 1 -> 100
+fmax3307 fma 1 100 1 -> 101
+fmax3308 fma 1 101 1 -> 102
+fmax3309 fma 1 -1 -1 -> -2
+fmax3310 fma 1 0 -1 -> -1
+fmax3311 fma 1 1 -1 -> 0
+fmax3312 fma 1 12 -1 -> 11
+fmax3313 fma 1 98 -1 -> 97
+fmax3314 fma 1 99 -1 -> 98
+fmax3315 fma 1 100 -1 -> 99
+fmax3316 fma 1 101 -1 -> 100
+
+fmax3321 fma 1 -0.01 0.01 -> 0.00
+fmax3322 fma 1 0.00 0.01 -> 0.01
+fmax3323 fma 1 0.01 0.01 -> 0.02
+fmax3324 fma 1 0.12 0.01 -> 0.13
+fmax3325 fma 1 0.98 0.01 -> 0.99
+fmax3326 fma 1 0.99 0.01 -> 1.00
+fmax3327 fma 1 1.00 0.01 -> 1.01
+fmax3328 fma 1 1.01 0.01 -> 1.02
+fmax3329 fma 1 -0.01 -0.01 -> -0.02
+fmax3330 fma 1 0.00 -0.01 -> -0.01
+fmax3331 fma 1 0.01 -0.01 -> 0.00
+fmax3332 fma 1 0.12 -0.01 -> 0.11
+fmax3333 fma 1 0.98 -0.01 -> 0.97
+fmax3334 fma 1 0.99 -0.01 -> 0.98
+fmax3335 fma 1 1.00 -0.01 -> 0.99
+fmax3336 fma 1 1.01 -0.01 -> 1.00
+
+-- some more cases where fma 1 ing 0 affects the coefficient
+precision: 9
+fmax3340 fma 1 1E+3 0 -> 1000
+fmax3341 fma 1 1E+8 0 -> 100000000
+fmax3342 fma 1 1E+9 0 -> 1.00000000E+9 Rounded
+fmax3343 fma 1 1E+10 0 -> 1.00000000E+10 Rounded
+-- which simply follow from these cases ...
+fmax3344 fma 1 1E+3 1 -> 1001
+fmax3345 fma 1 1E+8 1 -> 100000001
+fmax3346 fma 1 1E+9 1 -> 1.00000000E+9 Inexact Rounded
+fmax3347 fma 1 1E+10 1 -> 1.00000000E+10 Inexact Rounded
+fmax3348 fma 1 1E+3 7 -> 1007
+fmax3349 fma 1 1E+8 7 -> 100000007
+fmax3350 fma 1 1E+9 7 -> 1.00000001E+9 Inexact Rounded
+fmax3351 fma 1 1E+10 7 -> 1.00000000E+10 Inexact Rounded
+
+-- tryzeros cases
+precision: 7
+rounding: half_up
+maxExponent: 92
+minexponent: -92
+fmax3361 fma 1 0E+50 10000E+1 -> 1.0000E+5
+fmax3362 fma 1 10000E+1 0E-50 -> 100000.0 Rounded
+fmax3363 fma 1 10000E+1 10000E-50 -> 100000.0 Rounded Inexact
+fmax3364 fma 1 9.999999E+92 -9.999999E+92 -> 0E+86
+
+-- a curiosity from JSR 13 testing
+rounding: half_down
+precision: 10
+fmax3370 fma 1 99999999 81512 -> 100081511
+precision: 6
+fmax3371 fma 1 99999999 81512 -> 1.00082E+8 Rounded Inexact
+rounding: half_up
+precision: 10
+fmax3372 fma 1 99999999 81512 -> 100081511
+precision: 6
+fmax3373 fma 1 99999999 81512 -> 1.00082E+8 Rounded Inexact
+rounding: half_even
+precision: 10
+fmax3374 fma 1 99999999 81512 -> 100081511
+precision: 6
+fmax3375 fma 1 99999999 81512 -> 1.00082E+8 Rounded Inexact
+
+-- ulp replacement tests
+precision: 9
+maxexponent: 999999
+minexponent: -999999
+fmax3400 fma 1 1 77e-7 -> 1.0000077
+fmax3401 fma 1 1 77e-8 -> 1.00000077
+fmax3402 fma 1 1 77e-9 -> 1.00000008 Inexact Rounded
+fmax3403 fma 1 1 77e-10 -> 1.00000001 Inexact Rounded
+fmax3404 fma 1 1 77e-11 -> 1.00000000 Inexact Rounded
+fmax3405 fma 1 1 77e-12 -> 1.00000000 Inexact Rounded
+fmax3406 fma 1 1 77e-999 -> 1.00000000 Inexact Rounded
+fmax3407 fma 1 1 77e-999999 -> 1.00000000 Inexact Rounded
+
+fmax3410 fma 1 10 77e-7 -> 10.0000077
+fmax3411 fma 1 10 77e-8 -> 10.0000008 Inexact Rounded
+fmax3412 fma 1 10 77e-9 -> 10.0000001 Inexact Rounded
+fmax3413 fma 1 10 77e-10 -> 10.0000000 Inexact Rounded
+fmax3414 fma 1 10 77e-11 -> 10.0000000 Inexact Rounded
+fmax3415 fma 1 10 77e-12 -> 10.0000000 Inexact Rounded
+fmax3416 fma 1 10 77e-999 -> 10.0000000 Inexact Rounded
+fmax3417 fma 1 10 77e-999999 -> 10.0000000 Inexact Rounded
+
+fmax3420 fma 1 77e-7 1 -> 1.0000077
+fmax3421 fma 1 77e-8 1 -> 1.00000077
+fmax3422 fma 1 77e-9 1 -> 1.00000008 Inexact Rounded
+fmax3423 fma 1 77e-10 1 -> 1.00000001 Inexact Rounded
+fmax3424 fma 1 77e-11 1 -> 1.00000000 Inexact Rounded
+fmax3425 fma 1 77e-12 1 -> 1.00000000 Inexact Rounded
+fmax3426 fma 1 77e-999 1 -> 1.00000000 Inexact Rounded
+fmax3427 fma 1 77e-999999 1 -> 1.00000000 Inexact Rounded
+
+fmax3430 fma 1 77e-7 10 -> 10.0000077
+fmax3431 fma 1 77e-8 10 -> 10.0000008 Inexact Rounded
+fmax3432 fma 1 77e-9 10 -> 10.0000001 Inexact Rounded
+fmax3433 fma 1 77e-10 10 -> 10.0000000 Inexact Rounded
+fmax3434 fma 1 77e-11 10 -> 10.0000000 Inexact Rounded
+fmax3435 fma 1 77e-12 10 -> 10.0000000 Inexact Rounded
+fmax3436 fma 1 77e-999 10 -> 10.0000000 Inexact Rounded
+fmax3437 fma 1 77e-999999 10 -> 10.0000000 Inexact Rounded
+
+-- negative ulps
+fmax3440 fma 1 1 -77e-7 -> 0.9999923
+fmax3441 fma 1 1 -77e-8 -> 0.99999923
+fmax3442 fma 1 1 -77e-9 -> 0.999999923
+fmax3443 fma 1 1 -77e-10 -> 0.999999992 Inexact Rounded
+fmax3444 fma 1 1 -77e-11 -> 0.999999999 Inexact Rounded
+fmax3445 fma 1 1 -77e-12 -> 1.00000000 Inexact Rounded
+fmax3446 fma 1 1 -77e-999 -> 1.00000000 Inexact Rounded
+fmax3447 fma 1 1 -77e-999999 -> 1.00000000 Inexact Rounded
+
+fmax3450 fma 1 10 -77e-7 -> 9.9999923
+fmax3451 fma 1 10 -77e-8 -> 9.99999923
+fmax3452 fma 1 10 -77e-9 -> 9.99999992 Inexact Rounded
+fmax3453 fma 1 10 -77e-10 -> 9.99999999 Inexact Rounded
+fmax3454 fma 1 10 -77e-11 -> 10.0000000 Inexact Rounded
+fmax3455 fma 1 10 -77e-12 -> 10.0000000 Inexact Rounded
+fmax3456 fma 1 10 -77e-999 -> 10.0000000 Inexact Rounded
+fmax3457 fma 1 10 -77e-999999 -> 10.0000000 Inexact Rounded
+
+fmax3460 fma 1 -77e-7 1 -> 0.9999923
+fmax3461 fma 1 -77e-8 1 -> 0.99999923
+fmax3462 fma 1 -77e-9 1 -> 0.999999923
+fmax3463 fma 1 -77e-10 1 -> 0.999999992 Inexact Rounded
+fmax3464 fma 1 -77e-11 1 -> 0.999999999 Inexact Rounded
+fmax3465 fma 1 -77e-12 1 -> 1.00000000 Inexact Rounded
+fmax3466 fma 1 -77e-999 1 -> 1.00000000 Inexact Rounded
+fmax3467 fma 1 -77e-999999 1 -> 1.00000000 Inexact Rounded
+
+fmax3470 fma 1 -77e-7 10 -> 9.9999923
+fmax3471 fma 1 -77e-8 10 -> 9.99999923
+fmax3472 fma 1 -77e-9 10 -> 9.99999992 Inexact Rounded
+fmax3473 fma 1 -77e-10 10 -> 9.99999999 Inexact Rounded
+fmax3474 fma 1 -77e-11 10 -> 10.0000000 Inexact Rounded
+fmax3475 fma 1 -77e-12 10 -> 10.0000000 Inexact Rounded
+fmax3476 fma 1 -77e-999 10 -> 10.0000000 Inexact Rounded
+fmax3477 fma 1 -77e-999999 10 -> 10.0000000 Inexact Rounded
+
+-- negative ulps
+fmax3480 fma 1 -1 77e-7 -> -0.9999923
+fmax3481 fma 1 -1 77e-8 -> -0.99999923
+fmax3482 fma 1 -1 77e-9 -> -0.999999923
+fmax3483 fma 1 -1 77e-10 -> -0.999999992 Inexact Rounded
+fmax3484 fma 1 -1 77e-11 -> -0.999999999 Inexact Rounded
+fmax3485 fma 1 -1 77e-12 -> -1.00000000 Inexact Rounded
+fmax3486 fma 1 -1 77e-999 -> -1.00000000 Inexact Rounded
+fmax3487 fma 1 -1 77e-999999 -> -1.00000000 Inexact Rounded
+
+fmax3490 fma 1 -10 77e-7 -> -9.9999923
+fmax3491 fma 1 -10 77e-8 -> -9.99999923
+fmax3492 fma 1 -10 77e-9 -> -9.99999992 Inexact Rounded
+fmax3493 fma 1 -10 77e-10 -> -9.99999999 Inexact Rounded
+fmax3494 fma 1 -10 77e-11 -> -10.0000000 Inexact Rounded
+fmax3495 fma 1 -10 77e-12 -> -10.0000000 Inexact Rounded
+fmax3496 fma 1 -10 77e-999 -> -10.0000000 Inexact Rounded
+fmax3497 fma 1 -10 77e-999999 -> -10.0000000 Inexact Rounded
+
+fmax3500 fma 1 77e-7 -1 -> -0.9999923
+fmax3501 fma 1 77e-8 -1 -> -0.99999923
+fmax3502 fma 1 77e-9 -1 -> -0.999999923
+fmax3503 fma 1 77e-10 -1 -> -0.999999992 Inexact Rounded
+fmax3504 fma 1 77e-11 -1 -> -0.999999999 Inexact Rounded
+fmax3505 fma 1 77e-12 -1 -> -1.00000000 Inexact Rounded
+fmax3506 fma 1 77e-999 -1 -> -1.00000000 Inexact Rounded
+fmax3507 fma 1 77e-999999 -1 -> -1.00000000 Inexact Rounded
+
+fmax3510 fma 1 77e-7 -10 -> -9.9999923
+fmax3511 fma 1 77e-8 -10 -> -9.99999923
+fmax3512 fma 1 77e-9 -10 -> -9.99999992 Inexact Rounded
+fmax3513 fma 1 77e-10 -10 -> -9.99999999 Inexact Rounded
+fmax3514 fma 1 77e-11 -10 -> -10.0000000 Inexact Rounded
+fmax3515 fma 1 77e-12 -10 -> -10.0000000 Inexact Rounded
+fmax3516 fma 1 77e-999 -10 -> -10.0000000 Inexact Rounded
+fmax3517 fma 1 77e-999999 -10 -> -10.0000000 Inexact Rounded
+
+
+-- long operands
+maxexponent: 999
+minexponent: -999
+precision: 9
+fmax3521 fma 1 12345678000 0 -> 1.23456780E+10 Rounded
+fmax3522 fma 1 0 12345678000 -> 1.23456780E+10 Rounded
+fmax3523 fma 1 1234567800 0 -> 1.23456780E+9 Rounded
+fmax3524 fma 1 0 1234567800 -> 1.23456780E+9 Rounded
+fmax3525 fma 1 1234567890 0 -> 1.23456789E+9 Rounded
+fmax3526 fma 1 0 1234567890 -> 1.23456789E+9 Rounded
+fmax3527 fma 1 1234567891 0 -> 1.23456789E+9 Inexact Rounded
+fmax3528 fma 1 0 1234567891 -> 1.23456789E+9 Inexact Rounded
+fmax3529 fma 1 12345678901 0 -> 1.23456789E+10 Inexact Rounded
+fmax3530 fma 1 0 12345678901 -> 1.23456789E+10 Inexact Rounded
+fmax3531 fma 1 1234567896 0 -> 1.23456790E+9 Inexact Rounded
+fmax3532 fma 1 0 1234567896 -> 1.23456790E+9 Inexact Rounded
+
+precision: 15
+-- still checking
+fmax3541 fma 1 12345678000 0 -> 12345678000
+fmax3542 fma 1 0 12345678000 -> 12345678000
+fmax3543 fma 1 1234567800 0 -> 1234567800
+fmax3544 fma 1 0 1234567800 -> 1234567800
+fmax3545 fma 1 1234567890 0 -> 1234567890
+fmax3546 fma 1 0 1234567890 -> 1234567890
+fmax3547 fma 1 1234567891 0 -> 1234567891
+fmax3548 fma 1 0 1234567891 -> 1234567891
+fmax3549 fma 1 12345678901 0 -> 12345678901
+fmax3550 fma 1 0 12345678901 -> 12345678901
+fmax3551 fma 1 1234567896 0 -> 1234567896
+fmax3552 fma 1 0 1234567896 -> 1234567896
+
+-- verify a query
+precision: 16
+maxExponent: +394
+minExponent: -393
+rounding: down
+fmax3561 fma 1 1e-398 9.000000000000000E+384 -> 9.000000000000000E+384 Inexact Rounded
+fmax3562 fma 1 0 9.000000000000000E+384 -> 9.000000000000000E+384 Rounded
+-- and using decimal64 bounds...
+precision: 16
+maxExponent: +384
+minExponent: -383
+rounding: down
+fmax3563 fma 1 1e-388 9.000000000000000E+374 -> 9.000000000000000E+374 Inexact Rounded
+fmax3564 fma 1 0 9.000000000000000E+374 -> 9.000000000000000E+374 Rounded
+
+
+-- some more residue effects with extreme rounding
+precision: 9
+rounding: half_up
+fmax3601 fma 1 123456789 0.000001 -> 123456789 Inexact Rounded
+rounding: half_even
+fmax3602 fma 1 123456789 0.000001 -> 123456789 Inexact Rounded
+rounding: half_down
+fmax3603 fma 1 123456789 0.000001 -> 123456789 Inexact Rounded
+rounding: floor
+fmax3604 fma 1 123456789 0.000001 -> 123456789 Inexact Rounded
+rounding: ceiling
+fmax3605 fma 1 123456789 0.000001 -> 123456790 Inexact Rounded
+rounding: up
+fmax3606 fma 1 123456789 0.000001 -> 123456790 Inexact Rounded
+rounding: down
+fmax3607 fma 1 123456789 0.000001 -> 123456789 Inexact Rounded
+
+rounding: half_up
+fmax3611 fma 1 123456789 -0.000001 -> 123456789 Inexact Rounded
+rounding: half_even
+fmax3612 fma 1 123456789 -0.000001 -> 123456789 Inexact Rounded
+rounding: half_down
+fmax3613 fma 1 123456789 -0.000001 -> 123456789 Inexact Rounded
+rounding: floor
+fmax3614 fma 1 123456789 -0.000001 -> 123456788 Inexact Rounded
+rounding: ceiling
+fmax3615 fma 1 123456789 -0.000001 -> 123456789 Inexact Rounded
+rounding: up
+fmax3616 fma 1 123456789 -0.000001 -> 123456789 Inexact Rounded
+rounding: down
+fmax3617 fma 1 123456789 -0.000001 -> 123456788 Inexact Rounded
+
+rounding: half_up
+fmax3621 fma 1 123456789 0.499999 -> 123456789 Inexact Rounded
+rounding: half_even
+fmax3622 fma 1 123456789 0.499999 -> 123456789 Inexact Rounded
+rounding: half_down
+fmax3623 fma 1 123456789 0.499999 -> 123456789 Inexact Rounded
+rounding: floor
+fmax3624 fma 1 123456789 0.499999 -> 123456789 Inexact Rounded
+rounding: ceiling
+fmax3625 fma 1 123456789 0.499999 -> 123456790 Inexact Rounded
+rounding: up
+fmax3626 fma 1 123456789 0.499999 -> 123456790 Inexact Rounded
+rounding: down
+fmax3627 fma 1 123456789 0.499999 -> 123456789 Inexact Rounded
+
+rounding: half_up
+fmax3631 fma 1 123456789 -0.499999 -> 123456789 Inexact Rounded
+rounding: half_even
+fmax3632 fma 1 123456789 -0.499999 -> 123456789 Inexact Rounded
+rounding: half_down
+fmax3633 fma 1 123456789 -0.499999 -> 123456789 Inexact Rounded
+rounding: floor
+fmax3634 fma 1 123456789 -0.499999 -> 123456788 Inexact Rounded
+rounding: ceiling
+fmax3635 fma 1 123456789 -0.499999 -> 123456789 Inexact Rounded
+rounding: up
+fmax3636 fma 1 123456789 -0.499999 -> 123456789 Inexact Rounded
+rounding: down
+fmax3637 fma 1 123456789 -0.499999 -> 123456788 Inexact Rounded
+
+rounding: half_up
+fmax3641 fma 1 123456789 0.500001 -> 123456790 Inexact Rounded
+rounding: half_even
+fmax3642 fma 1 123456789 0.500001 -> 123456790 Inexact Rounded
+rounding: half_down
+fmax3643 fma 1 123456789 0.500001 -> 123456790 Inexact Rounded
+rounding: floor
+fmax3644 fma 1 123456789 0.500001 -> 123456789 Inexact Rounded
+rounding: ceiling
+fmax3645 fma 1 123456789 0.500001 -> 123456790 Inexact Rounded
+rounding: up
+fmax3646 fma 1 123456789 0.500001 -> 123456790 Inexact Rounded
+rounding: down
+fmax3647 fma 1 123456789 0.500001 -> 123456789 Inexact Rounded
+
+rounding: half_up
+fmax3651 fma 1 123456789 -0.500001 -> 123456788 Inexact Rounded
+rounding: half_even
+fmax3652 fma 1 123456789 -0.500001 -> 123456788 Inexact Rounded
+rounding: half_down
+fmax3653 fma 1 123456789 -0.500001 -> 123456788 Inexact Rounded
+rounding: floor
+fmax3654 fma 1 123456789 -0.500001 -> 123456788 Inexact Rounded
+rounding: ceiling
+fmax3655 fma 1 123456789 -0.500001 -> 123456789 Inexact Rounded
+rounding: up
+fmax3656 fma 1 123456789 -0.500001 -> 123456789 Inexact Rounded
+rounding: down
+fmax3657 fma 1 123456789 -0.500001 -> 123456788 Inexact Rounded
+
+-- long operand triangle
+rounding: half_up
+precision: 37
+fmax3660 fma 1 98471198160.56524417578665886060 -23994.14313393939743548945165462 -> 98471174166.42211023638922337114834538
+precision: 36
+fmax3661 fma 1 98471198160.56524417578665886060 -23994.14313393939743548945165462 -> 98471174166.4221102363892233711483454 Inexact Rounded
+precision: 35
+fmax3662 fma 1 98471198160.56524417578665886060 -23994.14313393939743548945165462 -> 98471174166.422110236389223371148345 Inexact Rounded
+precision: 34
+fmax3663 fma 1 98471198160.56524417578665886060 -23994.14313393939743548945165462 -> 98471174166.42211023638922337114835 Inexact Rounded
+precision: 33
+fmax3664 fma 1 98471198160.56524417578665886060 -23994.14313393939743548945165462 -> 98471174166.4221102363892233711483 Inexact Rounded
+precision: 32
+fmax3665 fma 1 98471198160.56524417578665886060 -23994.14313393939743548945165462 -> 98471174166.422110236389223371148 Inexact Rounded
+precision: 31
+fmax3666 fma 1 98471198160.56524417578665886060 -23994.14313393939743548945165462 -> 98471174166.42211023638922337115 Inexact Rounded
+precision: 30
+fmax3667 fma 1 98471198160.56524417578665886060 -23994.14313393939743548945165462 -> 98471174166.4221102363892233711 Inexact Rounded
+precision: 29
+fmax3668 fma 1 98471198160.56524417578665886060 -23994.14313393939743548945165462 -> 98471174166.422110236389223371 Inexact Rounded
+precision: 28
+fmax3669 fma 1 98471198160.56524417578665886060 -23994.14313393939743548945165462 -> 98471174166.42211023638922337 Inexact Rounded
+precision: 27
+fmax3670 fma 1 98471198160.56524417578665886060 -23994.14313393939743548945165462 -> 98471174166.4221102363892234 Inexact Rounded
+precision: 26
+fmax3671 fma 1 98471198160.56524417578665886060 -23994.14313393939743548945165462 -> 98471174166.422110236389223 Inexact Rounded
+precision: 25
+fmax3672 fma 1 98471198160.56524417578665886060 -23994.14313393939743548945165462 -> 98471174166.42211023638922 Inexact Rounded
+precision: 24
+fmax3673 fma 1 98471198160.56524417578665886060 -23994.14313393939743548945165462 -> 98471174166.4221102363892 Inexact Rounded
+precision: 23
+fmax3674 fma 1 98471198160.56524417578665886060 -23994.14313393939743548945165462 -> 98471174166.422110236389 Inexact Rounded
+precision: 22
+fmax3675 fma 1 98471198160.56524417578665886060 -23994.14313393939743548945165462 -> 98471174166.42211023639 Inexact Rounded
+precision: 21
+fmax3676 fma 1 98471198160.56524417578665886060 -23994.14313393939743548945165462 -> 98471174166.4221102364 Inexact Rounded
+precision: 20
+fmax3677 fma 1 98471198160.56524417578665886060 -23994.14313393939743548945165462 -> 98471174166.422110236 Inexact Rounded
+precision: 19
+fmax3678 fma 1 98471198160.56524417578665886060 -23994.14313393939743548945165462 -> 98471174166.42211024 Inexact Rounded
+precision: 18
+fmax3679 fma 1 98471198160.56524417578665886060 -23994.14313393939743548945165462 -> 98471174166.4221102 Inexact Rounded
+precision: 17
+fmax3680 fma 1 98471198160.56524417578665886060 -23994.14313393939743548945165462 -> 98471174166.422110 Inexact Rounded
+precision: 16
+fmax3681 fma 1 98471198160.56524417578665886060 -23994.14313393939743548945165462 -> 98471174166.42211 Inexact Rounded
+precision: 15
+fmax3682 fma 1 98471198160.56524417578665886060 -23994.14313393939743548945165462 -> 98471174166.4221 Inexact Rounded
+precision: 14
+fmax3683 fma 1 98471198160.56524417578665886060 -23994.14313393939743548945165462 -> 98471174166.422 Inexact Rounded
+precision: 13
+fmax3684 fma 1 98471198160.56524417578665886060 -23994.14313393939743548945165462 -> 98471174166.42 Inexact Rounded
+precision: 12
+fmax3685 fma 1 98471198160.56524417578665886060 -23994.14313393939743548945165462 -> 98471174166.4 Inexact Rounded
+precision: 11
+fmax3686 fma 1 98471198160.56524417578665886060 -23994.14313393939743548945165462 -> 98471174166 Inexact Rounded
+precision: 10
+fmax3687 fma 1 98471198160.56524417578665886060 -23994.14313393939743548945165462 -> 9.847117417E+10 Inexact Rounded
+precision: 9
+fmax3688 fma 1 98471198160.56524417578665886060 -23994.14313393939743548945165462 -> 9.84711742E+10 Inexact Rounded
+precision: 8
+fmax3689 fma 1 98471198160.56524417578665886060 -23994.14313393939743548945165462 -> 9.8471174E+10 Inexact Rounded
+precision: 7
+fmax3690 fma 1 98471198160.56524417578665886060 -23994.14313393939743548945165462 -> 9.847117E+10 Inexact Rounded
+precision: 6
+fmax3691 fma 1 98471198160.56524417578665886060 -23994.14313393939743548945165462 -> 9.84712E+10 Inexact Rounded
+precision: 5
+fmax3692 fma 1 98471198160.56524417578665886060 -23994.14313393939743548945165462 -> 9.8471E+10 Inexact Rounded
+precision: 4
+fmax3693 fma 1 98471198160.56524417578665886060 -23994.14313393939743548945165462 -> 9.847E+10 Inexact Rounded
+precision: 3
+fmax3694 fma 1 98471198160.56524417578665886060 -23994.14313393939743548945165462 -> 9.85E+10 Inexact Rounded
+precision: 2
+fmax3695 fma 1 98471198160.56524417578665886060 -23994.14313393939743548945165462 -> 9.8E+10 Inexact Rounded
+precision: 1
+fmax3696 fma 1 98471198160.56524417578665886060 -23994.14313393939743548945165462 -> 1E+11 Inexact Rounded
+
+-- more zeros, etc.
+rounding: half_up
+precision: 9
+
+fmax3701 fma 1 5.00 1.00E-3 -> 5.00100
+fmax3702 fma 1 00.00 0.000 -> 0.000
+fmax3703 fma 1 00.00 0E-3 -> 0.000
+fmax3704 fma 1 0E-3 00.00 -> 0.000
+
+fmax3710 fma 1 0E+3 00.00 -> 0.00
+fmax3711 fma 1 0E+3 00.0 -> 0.0
+fmax3712 fma 1 0E+3 00. -> 0
+fmax3713 fma 1 0E+3 00.E+1 -> 0E+1
+fmax3714 fma 1 0E+3 00.E+2 -> 0E+2
+fmax3715 fma 1 0E+3 00.E+3 -> 0E+3
+fmax3716 fma 1 0E+3 00.E+4 -> 0E+3
+fmax3717 fma 1 0E+3 00.E+5 -> 0E+3
+fmax3718 fma 1 0E+3 -00.0 -> 0.0
+fmax3719 fma 1 0E+3 -00. -> 0
+fmax3731 fma 1 0E+3 -00.E+1 -> 0E+1
+
+fmax3720 fma 1 00.00 0E+3 -> 0.00
+fmax3721 fma 1 00.0 0E+3 -> 0.0
+fmax3722 fma 1 00. 0E+3 -> 0
+fmax3723 fma 1 00.E+1 0E+3 -> 0E+1
+fmax3724 fma 1 00.E+2 0E+3 -> 0E+2
+fmax3725 fma 1 00.E+3 0E+3 -> 0E+3
+fmax3726 fma 1 00.E+4 0E+3 -> 0E+3
+fmax3727 fma 1 00.E+5 0E+3 -> 0E+3
+fmax3728 fma 1 -00.00 0E+3 -> 0.00
+fmax3729 fma 1 -00.0 0E+3 -> 0.0
+fmax3730 fma 1 -00. 0E+3 -> 0
+
+fmax3732 fma 1 0 0 -> 0
+fmax3733 fma 1 0 -0 -> 0
+fmax3734 fma 1 -0 0 -> 0
+fmax3735 fma 1 -0 -0 -> -0 -- IEEE 854 special case
+
+fmax3736 fma 1 1 -1 -> 0
+fmax3737 fma 1 -1 -1 -> -2
+fmax3738 fma 1 1 1 -> 2
+fmax3739 fma 1 -1 1 -> 0
+
+fmax3741 fma 1 0 -1 -> -1
+fmax3742 fma 1 -0 -1 -> -1
+fmax3743 fma 1 0 1 -> 1
+fmax3744 fma 1 -0 1 -> 1
+fmax3745 fma 1 -1 0 -> -1
+fmax3746 fma 1 -1 -0 -> -1
+fmax3747 fma 1 1 0 -> 1
+fmax3748 fma 1 1 -0 -> 1
+
+fmax3751 fma 1 0.0 -1 -> -1.0
+fmax3752 fma 1 -0.0 -1 -> -1.0
+fmax3753 fma 1 0.0 1 -> 1.0
+fmax3754 fma 1 -0.0 1 -> 1.0
+fmax3755 fma 1 -1.0 0 -> -1.0
+fmax3756 fma 1 -1.0 -0 -> -1.0
+fmax3757 fma 1 1.0 0 -> 1.0
+fmax3758 fma 1 1.0 -0 -> 1.0
+
+fmax3761 fma 1 0 -1.0 -> -1.0
+fmax3762 fma 1 -0 -1.0 -> -1.0
+fmax3763 fma 1 0 1.0 -> 1.0
+fmax3764 fma 1 -0 1.0 -> 1.0
+fmax3765 fma 1 -1 0.0 -> -1.0
+fmax3766 fma 1 -1 -0.0 -> -1.0
+fmax3767 fma 1 1 0.0 -> 1.0
+fmax3768 fma 1 1 -0.0 -> 1.0
+
+fmax3771 fma 1 0.0 -1.0 -> -1.0
+fmax3772 fma 1 -0.0 -1.0 -> -1.0
+fmax3773 fma 1 0.0 1.0 -> 1.0
+fmax3774 fma 1 -0.0 1.0 -> 1.0
+fmax3775 fma 1 -1.0 0.0 -> -1.0
+fmax3776 fma 1 -1.0 -0.0 -> -1.0
+fmax3777 fma 1 1.0 0.0 -> 1.0
+fmax3778 fma 1 1.0 -0.0 -> 1.0
+
+-- Specials
+fmax3780 fma 1 -Inf -Inf -> -Infinity
+fmax3781 fma 1 -Inf -1000 -> -Infinity
+fmax3782 fma 1 -Inf -1 -> -Infinity
+fmax3783 fma 1 -Inf -0 -> -Infinity
+fmax3784 fma 1 -Inf 0 -> -Infinity
+fmax3785 fma 1 -Inf 1 -> -Infinity
+fmax3786 fma 1 -Inf 1000 -> -Infinity
+fmax3787 fma 1 -1000 -Inf -> -Infinity
+fmax3788 fma 1 -Inf -Inf -> -Infinity
+fmax3789 fma 1 -1 -Inf -> -Infinity
+fmax3790 fma 1 -0 -Inf -> -Infinity
+fmax3791 fma 1 0 -Inf -> -Infinity
+fmax3792 fma 1 1 -Inf -> -Infinity
+fmax3793 fma 1 1000 -Inf -> -Infinity
+fmax3794 fma 1 Inf -Inf -> NaN Invalid_operation
+
+fmax3800 fma 1 Inf -Inf -> NaN Invalid_operation
+fmax3801 fma 1 Inf -1000 -> Infinity
+fmax3802 fma 1 Inf -1 -> Infinity
+fmax3803 fma 1 Inf -0 -> Infinity
+fmax3804 fma 1 Inf 0 -> Infinity
+fmax3805 fma 1 Inf 1 -> Infinity
+fmax3806 fma 1 Inf 1000 -> Infinity
+fmax3807 fma 1 Inf Inf -> Infinity
+fmax3808 fma 1 -1000 Inf -> Infinity
+fmax3809 fma 1 -Inf Inf -> NaN Invalid_operation
+fmax3810 fma 1 -1 Inf -> Infinity
+fmax3811 fma 1 -0 Inf -> Infinity
+fmax3812 fma 1 0 Inf -> Infinity
+fmax3813 fma 1 1 Inf -> Infinity
+fmax3814 fma 1 1000 Inf -> Infinity
+fmax3815 fma 1 Inf Inf -> Infinity
+
+fmax3821 fma 1 NaN -Inf -> NaN
+fmax3822 fma 1 NaN -1000 -> NaN
+fmax3823 fma 1 NaN -1 -> NaN
+fmax3824 fma 1 NaN -0 -> NaN
+fmax3825 fma 1 NaN 0 -> NaN
+fmax3826 fma 1 NaN 1 -> NaN
+fmax3827 fma 1 NaN 1000 -> NaN
+fmax3828 fma 1 NaN Inf -> NaN
+fmax3829 fma 1 NaN NaN -> NaN
+fmax3830 fma 1 -Inf NaN -> NaN
+fmax3831 fma 1 -1000 NaN -> NaN
+fmax3832 fma 1 -1 NaN -> NaN
+fmax3833 fma 1 -0 NaN -> NaN
+fmax3834 fma 1 0 NaN -> NaN
+fmax3835 fma 1 1 NaN -> NaN
+fmax3836 fma 1 1000 NaN -> NaN
+fmax3837 fma 1 Inf NaN -> NaN
+
+fmax3841 fma 1 sNaN -Inf -> NaN Invalid_operation
+fmax3842 fma 1 sNaN -1000 -> NaN Invalid_operation
+fmax3843 fma 1 sNaN -1 -> NaN Invalid_operation
+fmax3844 fma 1 sNaN -0 -> NaN Invalid_operation
+fmax3845 fma 1 sNaN 0 -> NaN Invalid_operation
+fmax3846 fma 1 sNaN 1 -> NaN Invalid_operation
+fmax3847 fma 1 sNaN 1000 -> NaN Invalid_operation
+fmax3848 fma 1 sNaN NaN -> NaN Invalid_operation
+fmax3849 fma 1 sNaN sNaN -> NaN Invalid_operation
+fmax3850 fma 1 NaN sNaN -> NaN Invalid_operation
+fmax3851 fma 1 -Inf sNaN -> NaN Invalid_operation
+fmax3852 fma 1 -1000 sNaN -> NaN Invalid_operation
+fmax3853 fma 1 -1 sNaN -> NaN Invalid_operation
+fmax3854 fma 1 -0 sNaN -> NaN Invalid_operation
+fmax3855 fma 1 0 sNaN -> NaN Invalid_operation
+fmax3856 fma 1 1 sNaN -> NaN Invalid_operation
+fmax3857 fma 1 1000 sNaN -> NaN Invalid_operation
+fmax3858 fma 1 Inf sNaN -> NaN Invalid_operation
+fmax3859 fma 1 NaN sNaN -> NaN Invalid_operation
+
+-- propagating NaNs
+fmax3861 fma 1 NaN1 -Inf -> NaN1
+fmax3862 fma 1 +NaN2 -1000 -> NaN2
+fmax3863 fma 1 NaN3 1000 -> NaN3
+fmax3864 fma 1 NaN4 Inf -> NaN4
+fmax3865 fma 1 NaN5 +NaN6 -> NaN5
+fmax3866 fma 1 -Inf NaN7 -> NaN7
+fmax3867 fma 1 -1000 NaN8 -> NaN8
+fmax3868 fma 1 1000 NaN9 -> NaN9
+fmax3869 fma 1 Inf +NaN10 -> NaN10
+fmax3871 fma 1 sNaN11 -Inf -> NaN11 Invalid_operation
+fmax3872 fma 1 sNaN12 -1000 -> NaN12 Invalid_operation
+fmax3873 fma 1 sNaN13 1000 -> NaN13 Invalid_operation
+fmax3874 fma 1 sNaN14 NaN17 -> NaN14 Invalid_operation
+fmax3875 fma 1 sNaN15 sNaN18 -> NaN15 Invalid_operation
+fmax3876 fma 1 NaN16 sNaN19 -> NaN19 Invalid_operation
+fmax3877 fma 1 -Inf +sNaN20 -> NaN20 Invalid_operation
+fmax3878 fma 1 -1000 sNaN21 -> NaN21 Invalid_operation
+fmax3879 fma 1 1000 sNaN22 -> NaN22 Invalid_operation
+fmax3880 fma 1 Inf sNaN23 -> NaN23 Invalid_operation
+fmax3881 fma 1 +NaN25 +sNaN24 -> NaN24 Invalid_operation
+fmax3882 fma 1 -NaN26 NaN28 -> -NaN26
+fmax3883 fma 1 -sNaN27 sNaN29 -> -NaN27 Invalid_operation
+fmax3884 fma 1 1000 -NaN30 -> -NaN30
+fmax3885 fma 1 1000 -sNaN31 -> -NaN31 Invalid_operation
+
+-- overflow, underflow and subnormal tests
+maxexponent: 999999
+minexponent: -999999
+precision: 9
+fmax3890 fma 1 1E+999999 9E+999999 -> Infinity Overflow Inexact Rounded
+fmax3891 fma 1 9E+999999 1E+999999 -> Infinity Overflow Inexact Rounded
+fmax3892 fma 1 -1.1E-999999 1E-999999 -> -1E-1000000 Subnormal
+fmax3893 fma 1 1E-999999 -1.1e-999999 -> -1E-1000000 Subnormal
+fmax3894 fma 1 -1.0001E-999999 1E-999999 -> -1E-1000003 Subnormal
+fmax3895 fma 1 1E-999999 -1.0001e-999999 -> -1E-1000003 Subnormal
+fmax3896 fma 1 -1E+999999 -9E+999999 -> -Infinity Overflow Inexact Rounded
+fmax3897 fma 1 -9E+999999 -1E+999999 -> -Infinity Overflow Inexact Rounded
+fmax3898 fma 1 +1.1E-999999 -1E-999999 -> 1E-1000000 Subnormal
+fmax3899 fma 1 -1E-999999 +1.1e-999999 -> 1E-1000000 Subnormal
+fmax3900 fma 1 +1.0001E-999999 -1E-999999 -> 1E-1000003 Subnormal
+fmax3901 fma 1 -1E-999999 +1.0001e-999999 -> 1E-1000003 Subnormal
+fmax3902 fma 1 -1E+999999 +9E+999999 -> 8E+999999
+fmax3903 fma 1 -9E+999999 +1E+999999 -> -8E+999999
+
+precision: 3
+fmax3904 fma 1 0 -9.999E+999999 -> -Infinity Inexact Overflow Rounded
+fmax3905 fma 1 -9.999E+999999 0 -> -Infinity Inexact Overflow Rounded
+fmax3906 fma 1 0 9.999E+999999 -> Infinity Inexact Overflow Rounded
+fmax3907 fma 1 9.999E+999999 0 -> Infinity Inexact Overflow Rounded
+
+precision: 3
+maxexponent: 999
+minexponent: -999
+fmax3910 fma 1 1.00E-999 0 -> 1.00E-999
+fmax3911 fma 1 0.1E-999 0 -> 1E-1000 Subnormal
+fmax3912 fma 1 0.10E-999 0 -> 1.0E-1000 Subnormal
+fmax3913 fma 1 0.100E-999 0 -> 1.0E-1000 Subnormal Rounded
+fmax3914 fma 1 0.01E-999 0 -> 1E-1001 Subnormal
+-- next is rounded to Nmin
+fmax3915 fma 1 0.999E-999 0 -> 1.00E-999 Inexact Rounded Subnormal Underflow
+fmax3916 fma 1 0.099E-999 0 -> 1.0E-1000 Inexact Rounded Subnormal Underflow
+fmax3917 fma 1 0.009E-999 0 -> 1E-1001 Inexact Rounded Subnormal Underflow
+fmax3918 fma 1 0.001E-999 0 -> 0E-1001 Inexact Rounded Subnormal Underflow Clamped
+fmax3919 fma 1 0.0009E-999 0 -> 0E-1001 Inexact Rounded Subnormal Underflow Clamped
+fmax3920 fma 1 0.0001E-999 0 -> 0E-1001 Inexact Rounded Subnormal Underflow Clamped
+
+fmax3930 fma 1 -1.00E-999 0 -> -1.00E-999
+fmax3931 fma 1 -0.1E-999 0 -> -1E-1000 Subnormal
+fmax3932 fma 1 -0.10E-999 0 -> -1.0E-1000 Subnormal
+fmax3933 fma 1 -0.100E-999 0 -> -1.0E-1000 Subnormal Rounded
+fmax3934 fma 1 -0.01E-999 0 -> -1E-1001 Subnormal
+-- next is rounded to Nmin
+fmax3935 fma 1 -0.999E-999 0 -> -1.00E-999 Inexact Rounded Subnormal Underflow
+fmax3936 fma 1 -0.099E-999 0 -> -1.0E-1000 Inexact Rounded Subnormal Underflow
+fmax3937 fma 1 -0.009E-999 0 -> -1E-1001 Inexact Rounded Subnormal Underflow
+fmax3938 fma 1 -0.001E-999 0 -> -0E-1001 Inexact Rounded Subnormal Underflow Clamped
+fmax3939 fma 1 -0.0009E-999 0 -> -0E-1001 Inexact Rounded Subnormal Underflow Clamped
+fmax3940 fma 1 -0.0001E-999 0 -> -0E-1001 Inexact Rounded Subnormal Underflow Clamped
+
+-- some non-zero subnormal fma 1 s
+fmax3950 fma 1 1.00E-999 0.1E-999 -> 1.10E-999
+fmax3951 fma 1 0.1E-999 0.1E-999 -> 2E-1000 Subnormal
+fmax3952 fma 1 0.10E-999 0.1E-999 -> 2.0E-1000 Subnormal
+fmax3953 fma 1 0.100E-999 0.1E-999 -> 2.0E-1000 Subnormal Rounded
+fmax3954 fma 1 0.01E-999 0.1E-999 -> 1.1E-1000 Subnormal
+fmax3955 fma 1 0.999E-999 0.1E-999 -> 1.10E-999 Inexact Rounded
+fmax3956 fma 1 0.099E-999 0.1E-999 -> 2.0E-1000 Inexact Rounded Subnormal Underflow
+fmax3957 fma 1 0.009E-999 0.1E-999 -> 1.1E-1000 Inexact Rounded Subnormal Underflow
+fmax3958 fma 1 0.001E-999 0.1E-999 -> 1.0E-1000 Inexact Rounded Subnormal Underflow
+fmax3959 fma 1 0.0009E-999 0.1E-999 -> 1.0E-1000 Inexact Rounded Subnormal Underflow
+fmax3960 fma 1 0.0001E-999 0.1E-999 -> 1.0E-1000 Inexact Rounded Subnormal Underflow
+-- negatives...
+fmax3961 fma 1 1.00E-999 -0.1E-999 -> 9.0E-1000 Subnormal
+fmax3962 fma 1 0.1E-999 -0.1E-999 -> 0E-1000
+fmax3963 fma 1 0.10E-999 -0.1E-999 -> 0E-1001
+fmax3964 fma 1 0.100E-999 -0.1E-999 -> 0E-1001 Clamped
+fmax3965 fma 1 0.01E-999 -0.1E-999 -> -9E-1001 Subnormal
+fmax3966 fma 1 0.999E-999 -0.1E-999 -> 9.0E-1000 Inexact Rounded Subnormal Underflow
+fmax3967 fma 1 0.099E-999 -0.1E-999 -> -0E-1001 Inexact Rounded Subnormal Underflow Clamped
+fmax3968 fma 1 0.009E-999 -0.1E-999 -> -9E-1001 Inexact Rounded Subnormal Underflow
+fmax3969 fma 1 0.001E-999 -0.1E-999 -> -1.0E-1000 Inexact Rounded Subnormal Underflow
+fmax3970 fma 1 0.0009E-999 -0.1E-999 -> -1.0E-1000 Inexact Rounded Subnormal Underflow
+fmax3971 fma 1 0.0001E-999 -0.1E-999 -> -1.0E-1000 Inexact Rounded Subnormal Underflow
+
+-- some 'real' numbers
+maxExponent: 384
+minExponent: -383
+precision: 8
+fmax3566 fma 1 99999061735E-394 0E-394 -> 9.999906E-384 Inexact Rounded Underflow Subnormal
+precision: 7
+fmax3567 fma 1 99999061735E-394 0E-394 -> 9.99991E-384 Inexact Rounded Underflow Subnormal
+precision: 6
+fmax3568 fma 1 99999061735E-394 0E-394 -> 9.9999E-384 Inexact Rounded Underflow Subnormal
+
+-- now the case where we can get underflow but the result is normal
+-- [note this can't happen if the operands are also bounded, as we
+-- cannot represent 1E-399, for example]
+precision: 16
+rounding: half_up
+maxExponent: 384
+minExponent: -383
+
+fmax3571 fma 1 1E-383 0 -> 1E-383
+fmax3572 fma 1 1E-384 0 -> 1E-384 Subnormal
+fmax3573 fma 1 1E-383 1E-384 -> 1.1E-383
+fmax3574 subtract 1E-383 1E-384 -> 9E-384 Subnormal
+
+-- Here we explore the boundary of rounding a subnormal to Nmin
+fmax3575 subtract 1E-383 1E-398 -> 9.99999999999999E-384 Subnormal
+fmax3576 subtract 1E-383 1E-398 -> 9.99999999999999E-384 Subnormal
+fmax3577 subtract 1E-383 1E-399 -> 1.000000000000000E-383 Underflow Inexact Subnormal Rounded
+fmax3578 subtract 1E-383 1E-400 -> 1.000000000000000E-383 Underflow Inexact Subnormal Rounded
+fmax3579 subtract 1E-383 1E-401 -> 1.000000000000000E-383 Underflow Inexact Subnormal Rounded
+fmax3580 subtract 1E-383 1E-402 -> 1.000000000000000E-383 Underflow Inexact Subnormal Rounded
+
+-- check for double-rounded subnormals
+precision: 5
+maxexponent: 79
+minexponent: -79
+-- Add: lhs and rhs 0
+fmax31001 fma 1 1.52444E-80 0 -> 1.524E-80 Inexact Rounded Subnormal Underflow
+fmax31002 fma 1 1.52445E-80 0 -> 1.524E-80 Inexact Rounded Subnormal Underflow
+fmax31003 fma 1 1.52446E-80 0 -> 1.524E-80 Inexact Rounded Subnormal Underflow
+fmax31004 fma 1 0 1.52444E-80 -> 1.524E-80 Inexact Rounded Subnormal Underflow
+fmax31005 fma 1 0 1.52445E-80 -> 1.524E-80 Inexact Rounded Subnormal Underflow
+fmax31006 fma 1 0 1.52446E-80 -> 1.524E-80 Inexact Rounded Subnormal Underflow
+
+-- Add: lhs >> rhs and vice versa
+fmax31011 fma 1 1.52444E-80 1E-100 -> 1.524E-80 Inexact Rounded Subnormal Underflow
+fmax31012 fma 1 1.52445E-80 1E-100 -> 1.524E-80 Inexact Rounded Subnormal Underflow
+fmax31013 fma 1 1.52446E-80 1E-100 -> 1.524E-80 Inexact Rounded Subnormal Underflow
+fmax31014 fma 1 1E-100 1.52444E-80 -> 1.524E-80 Inexact Rounded Subnormal Underflow
+fmax31015 fma 1 1E-100 1.52445E-80 -> 1.524E-80 Inexact Rounded Subnormal Underflow
+fmax31016 fma 1 1E-100 1.52446E-80 -> 1.524E-80 Inexact Rounded Subnormal Underflow
+
+-- Add: lhs + rhs fma 1 ition carried out
+fmax31021 fma 1 1.52443E-80 1.00001E-80 -> 2.524E-80 Inexact Rounded Subnormal Underflow
+fmax31022 fma 1 1.52444E-80 1.00001E-80 -> 2.524E-80 Inexact Rounded Subnormal Underflow
+fmax31023 fma 1 1.52445E-80 1.00001E-80 -> 2.524E-80 Inexact Rounded Subnormal Underflow
+fmax31024 fma 1 1.00001E-80 1.52443E-80 -> 2.524E-80 Inexact Rounded Subnormal Underflow
+fmax31025 fma 1 1.00001E-80 1.52444E-80 -> 2.524E-80 Inexact Rounded Subnormal Underflow
+fmax31026 fma 1 1.00001E-80 1.52445E-80 -> 2.524E-80 Inexact Rounded Subnormal Underflow
+
+-- And for round down full and subnormal results
+precision: 16
+maxExponent: +384
+minExponent: -383
+rounding: down
+
+fmax31100 fma 1 1e+2 -1e-383 -> 99.99999999999999 Rounded Inexact
+fmax31101 fma 1 1e+1 -1e-383 -> 9.999999999999999 Rounded Inexact
+fmax31103 fma 1 +1 -1e-383 -> 0.9999999999999999 Rounded Inexact
+fmax31104 fma 1 1e-1 -1e-383 -> 0.09999999999999999 Rounded Inexact
+fmax31105 fma 1 1e-2 -1e-383 -> 0.009999999999999999 Rounded Inexact
+fmax31106 fma 1 1e-3 -1e-383 -> 0.0009999999999999999 Rounded Inexact
+fmax31107 fma 1 1e-4 -1e-383 -> 0.00009999999999999999 Rounded Inexact
+fmax31108 fma 1 1e-5 -1e-383 -> 0.000009999999999999999 Rounded Inexact
+fmax31109 fma 1 1e-6 -1e-383 -> 9.999999999999999E-7 Rounded Inexact
+
+rounding: ceiling
+fmax31110 fma 1 -1e+2 +1e-383 -> -99.99999999999999 Rounded Inexact
+fmax31111 fma 1 -1e+1 +1e-383 -> -9.999999999999999 Rounded Inexact
+fmax31113 fma 1 -1 +1e-383 -> -0.9999999999999999 Rounded Inexact
+fmax31114 fma 1 -1e-1 +1e-383 -> -0.09999999999999999 Rounded Inexact
+fmax31115 fma 1 -1e-2 +1e-383 -> -0.009999999999999999 Rounded Inexact
+fmax31116 fma 1 -1e-3 +1e-383 -> -0.0009999999999999999 Rounded Inexact
+fmax31117 fma 1 -1e-4 +1e-383 -> -0.00009999999999999999 Rounded Inexact
+fmax31118 fma 1 -1e-5 +1e-383 -> -0.000009999999999999999 Rounded Inexact
+fmax31119 fma 1 -1e-6 +1e-383 -> -9.999999999999999E-7 Rounded Inexact
+
+rounding: down
+precision: 7
+maxExponent: +96
+minExponent: -95
+fmax31130 fma 1 1 -1e-200 -> 0.9999999 Rounded Inexact
+-- subnormal boundary
+fmax31131 fma 1 1.000000E-94 -1e-200 -> 9.999999E-95 Rounded Inexact
+fmax31132 fma 1 1.000001E-95 -1e-200 -> 1.000000E-95 Rounded Inexact
+fmax31133 fma 1 1.000000E-95 -1e-200 -> 9.99999E-96 Rounded Inexact Subnormal Underflow
+fmax31134 fma 1 0.999999E-95 -1e-200 -> 9.99998E-96 Rounded Inexact Subnormal Underflow
+fmax31135 fma 1 0.001000E-95 -1e-200 -> 9.99E-99 Rounded Inexact Subnormal Underflow
+fmax31136 fma 1 0.000999E-95 -1e-200 -> 9.98E-99 Rounded Inexact Subnormal Underflow
+fmax31137 fma 1 1.000000E-95 -1e-101 -> 9.99999E-96 Subnormal
+fmax31138 fma 1 10000E-101 -1e-200 -> 9.999E-98 Subnormal Inexact Rounded Underflow
+fmax31139 fma 1 1000E-101 -1e-200 -> 9.99E-99 Subnormal Inexact Rounded Underflow
+fmax31140 fma 1 100E-101 -1e-200 -> 9.9E-100 Subnormal Inexact Rounded Underflow
+fmax31141 fma 1 10E-101 -1e-200 -> 9E-101 Subnormal Inexact Rounded Underflow
+fmax31142 fma 1 1E-101 -1e-200 -> 0E-101 Subnormal Inexact Rounded Underflow Clamped
+fmax31143 fma 1 0E-101 -1e-200 -> -0E-101 Subnormal Inexact Rounded Underflow Clamped
+fmax31144 fma 1 1E-102 -1e-200 -> 0E-101 Subnormal Inexact Rounded Underflow Clamped
+
+fmax31151 fma 1 10000E-102 -1e-200 -> 9.99E-99 Subnormal Inexact Rounded Underflow
+fmax31152 fma 1 1000E-102 -1e-200 -> 9.9E-100 Subnormal Inexact Rounded Underflow
+fmax31153 fma 1 100E-102 -1e-200 -> 9E-101 Subnormal Inexact Rounded Underflow
+fmax31154 fma 1 10E-102 -1e-200 -> 0E-101 Subnormal Inexact Rounded Underflow Clamped
+fmax31155 fma 1 1E-102 -1e-200 -> 0E-101 Subnormal Inexact Rounded Underflow Clamped
+fmax31156 fma 1 0E-102 -1e-200 -> -0E-101 Subnormal Inexact Rounded Underflow Clamped
+fmax31157 fma 1 1E-103 -1e-200 -> 0E-101 Subnormal Inexact Rounded Underflow Clamped
+
+fmax31160 fma 1 100E-105 -1e-101 -> -0E-101 Subnormal Inexact Rounded Underflow Clamped
+fmax31161 fma 1 100E-105 -1e-201 -> 0E-101 Subnormal Inexact Rounded Underflow Clamped
+
+-- tests based on Gunnar Degnbol's edge case
+precision: 15
+rounding: half_up
+maxExponent: 384
+minexponent: -383
+
+fmax31200 fma 1 1E15 -0.5 -> 1.00000000000000E+15 Inexact Rounded
+fmax31201 fma 1 1E15 -0.50 -> 1.00000000000000E+15 Inexact Rounded
+fmax31210 fma 1 1E15 -0.51 -> 999999999999999 Inexact Rounded
+fmax31211 fma 1 1E15 -0.501 -> 999999999999999 Inexact Rounded
+fmax31212 fma 1 1E15 -0.5001 -> 999999999999999 Inexact Rounded
+fmax31213 fma 1 1E15 -0.50001 -> 999999999999999 Inexact Rounded
+fmax31214 fma 1 1E15 -0.500001 -> 999999999999999 Inexact Rounded
+fmax31215 fma 1 1E15 -0.5000001 -> 999999999999999 Inexact Rounded
+fmax31216 fma 1 1E15 -0.50000001 -> 999999999999999 Inexact Rounded
+fmax31217 fma 1 1E15 -0.500000001 -> 999999999999999 Inexact Rounded
+fmax31218 fma 1 1E15 -0.5000000001 -> 999999999999999 Inexact Rounded
+fmax31219 fma 1 1E15 -0.50000000001 -> 999999999999999 Inexact Rounded
+fmax31220 fma 1 1E15 -0.500000000001 -> 999999999999999 Inexact Rounded
+fmax31221 fma 1 1E15 -0.5000000000001 -> 999999999999999 Inexact Rounded
+fmax31222 fma 1 1E15 -0.50000000000001 -> 999999999999999 Inexact Rounded
+fmax31223 fma 1 1E15 -0.500000000000001 -> 999999999999999 Inexact Rounded
+fmax31224 fma 1 1E15 -0.5000000000000001 -> 999999999999999 Inexact Rounded
+fmax31225 fma 1 1E15 -0.5000000000000000 -> 1.00000000000000E+15 Inexact Rounded
+fmax31230 fma 1 1E15 -5000000.000000001 -> 999999995000000 Inexact Rounded
+
+precision: 16
+
+fmax31300 fma 1 1E16 -0.5 -> 1.000000000000000E+16 Inexact Rounded
+fmax31310 fma 1 1E16 -0.51 -> 9999999999999999 Inexact Rounded
+fmax31311 fma 1 1E16 -0.501 -> 9999999999999999 Inexact Rounded
+fmax31312 fma 1 1E16 -0.5001 -> 9999999999999999 Inexact Rounded
+fmax31313 fma 1 1E16 -0.50001 -> 9999999999999999 Inexact Rounded
+fmax31314 fma 1 1E16 -0.500001 -> 9999999999999999 Inexact Rounded
+fmax31315 fma 1 1E16 -0.5000001 -> 9999999999999999 Inexact Rounded
+fmax31316 fma 1 1E16 -0.50000001 -> 9999999999999999 Inexact Rounded
+fmax31317 fma 1 1E16 -0.500000001 -> 9999999999999999 Inexact Rounded
+fmax31318 fma 1 1E16 -0.5000000001 -> 9999999999999999 Inexact Rounded
+fmax31319 fma 1 1E16 -0.50000000001 -> 9999999999999999 Inexact Rounded
+fmax31320 fma 1 1E16 -0.500000000001 -> 9999999999999999 Inexact Rounded
+fmax31321 fma 1 1E16 -0.5000000000001 -> 9999999999999999 Inexact Rounded
+fmax31322 fma 1 1E16 -0.50000000000001 -> 9999999999999999 Inexact Rounded
+fmax31323 fma 1 1E16 -0.500000000000001 -> 9999999999999999 Inexact Rounded
+fmax31324 fma 1 1E16 -0.5000000000000001 -> 9999999999999999 Inexact Rounded
+fmax31325 fma 1 1E16 -0.5000000000000000 -> 1.000000000000000E+16 Inexact Rounded
+fmax31326 fma 1 1E16 -0.500000000000000 -> 1.000000000000000E+16 Inexact Rounded
+fmax31327 fma 1 1E16 -0.50000000000000 -> 1.000000000000000E+16 Inexact Rounded
+fmax31328 fma 1 1E16 -0.5000000000000 -> 1.000000000000000E+16 Inexact Rounded
+fmax31329 fma 1 1E16 -0.500000000000 -> 1.000000000000000E+16 Inexact Rounded
+fmax31330 fma 1 1E16 -0.50000000000 -> 1.000000000000000E+16 Inexact Rounded
+fmax31331 fma 1 1E16 -0.5000000000 -> 1.000000000000000E+16 Inexact Rounded
+fmax31332 fma 1 1E16 -0.500000000 -> 1.000000000000000E+16 Inexact Rounded
+fmax31333 fma 1 1E16 -0.50000000 -> 1.000000000000000E+16 Inexact Rounded
+fmax31334 fma 1 1E16 -0.5000000 -> 1.000000000000000E+16 Inexact Rounded
+fmax31335 fma 1 1E16 -0.500000 -> 1.000000000000000E+16 Inexact Rounded
+fmax31336 fma 1 1E16 -0.50000 -> 1.000000000000000E+16 Inexact Rounded
+fmax31337 fma 1 1E16 -0.5000 -> 1.000000000000000E+16 Inexact Rounded
+fmax31338 fma 1 1E16 -0.500 -> 1.000000000000000E+16 Inexact Rounded
+fmax31339 fma 1 1E16 -0.50 -> 1.000000000000000E+16 Inexact Rounded
+
+fmax31340 fma 1 1E16 -5000000.000010001 -> 9999999995000000 Inexact Rounded
+fmax31341 fma 1 1E16 -5000000.000000001 -> 9999999995000000 Inexact Rounded
+
+fmax31349 fma 1 9999999999999999 0.4 -> 9999999999999999 Inexact Rounded
+fmax31350 fma 1 9999999999999999 0.49 -> 9999999999999999 Inexact Rounded
+fmax31351 fma 1 9999999999999999 0.499 -> 9999999999999999 Inexact Rounded
+fmax31352 fma 1 9999999999999999 0.4999 -> 9999999999999999 Inexact Rounded
+fmax31353 fma 1 9999999999999999 0.49999 -> 9999999999999999 Inexact Rounded
+fmax31354 fma 1 9999999999999999 0.499999 -> 9999999999999999 Inexact Rounded
+fmax31355 fma 1 9999999999999999 0.4999999 -> 9999999999999999 Inexact Rounded
+fmax31356 fma 1 9999999999999999 0.49999999 -> 9999999999999999 Inexact Rounded
+fmax31357 fma 1 9999999999999999 0.499999999 -> 9999999999999999 Inexact Rounded
+fmax31358 fma 1 9999999999999999 0.4999999999 -> 9999999999999999 Inexact Rounded
+fmax31359 fma 1 9999999999999999 0.49999999999 -> 9999999999999999 Inexact Rounded
+fmax31360 fma 1 9999999999999999 0.499999999999 -> 9999999999999999 Inexact Rounded
+fmax31361 fma 1 9999999999999999 0.4999999999999 -> 9999999999999999 Inexact Rounded
+fmax31362 fma 1 9999999999999999 0.49999999999999 -> 9999999999999999 Inexact Rounded
+fmax31363 fma 1 9999999999999999 0.499999999999999 -> 9999999999999999 Inexact Rounded
+fmax31364 fma 1 9999999999999999 0.4999999999999999 -> 9999999999999999 Inexact Rounded
+fmax31365 fma 1 9999999999999999 0.5000000000000000 -> 1.000000000000000E+16 Inexact Rounded
+fmax31367 fma 1 9999999999999999 0.500000000000000 -> 1.000000000000000E+16 Inexact Rounded
+fmax31368 fma 1 9999999999999999 0.50000000000000 -> 1.000000000000000E+16 Inexact Rounded
+fmax31369 fma 1 9999999999999999 0.5000000000000 -> 1.000000000000000E+16 Inexact Rounded
+fmax31370 fma 1 9999999999999999 0.500000000000 -> 1.000000000000000E+16 Inexact Rounded
+fmax31371 fma 1 9999999999999999 0.50000000000 -> 1.000000000000000E+16 Inexact Rounded
+fmax31372 fma 1 9999999999999999 0.5000000000 -> 1.000000000000000E+16 Inexact Rounded
+fmax31373 fma 1 9999999999999999 0.500000000 -> 1.000000000000000E+16 Inexact Rounded
+fmax31374 fma 1 9999999999999999 0.50000000 -> 1.000000000000000E+16 Inexact Rounded
+fmax31375 fma 1 9999999999999999 0.5000000 -> 1.000000000000000E+16 Inexact Rounded
+fmax31376 fma 1 9999999999999999 0.500000 -> 1.000000000000000E+16 Inexact Rounded
+fmax31377 fma 1 9999999999999999 0.50000 -> 1.000000000000000E+16 Inexact Rounded
+fmax31378 fma 1 9999999999999999 0.5000 -> 1.000000000000000E+16 Inexact Rounded
+fmax31379 fma 1 9999999999999999 0.500 -> 1.000000000000000E+16 Inexact Rounded
+fmax31380 fma 1 9999999999999999 0.50 -> 1.000000000000000E+16 Inexact Rounded
+fmax31381 fma 1 9999999999999999 0.5 -> 1.000000000000000E+16 Inexact Rounded
+fmax31382 fma 1 9999999999999999 0.5000000000000001 -> 1.000000000000000E+16 Inexact Rounded
+fmax31383 fma 1 9999999999999999 0.500000000000001 -> 1.000000000000000E+16 Inexact Rounded
+fmax31384 fma 1 9999999999999999 0.50000000000001 -> 1.000000000000000E+16 Inexact Rounded
+fmax31385 fma 1 9999999999999999 0.5000000000001 -> 1.000000000000000E+16 Inexact Rounded
+fmax31386 fma 1 9999999999999999 0.500000000001 -> 1.000000000000000E+16 Inexact Rounded
+fmax31387 fma 1 9999999999999999 0.50000000001 -> 1.000000000000000E+16 Inexact Rounded
+fmax31388 fma 1 9999999999999999 0.5000000001 -> 1.000000000000000E+16 Inexact Rounded
+fmax31389 fma 1 9999999999999999 0.500000001 -> 1.000000000000000E+16 Inexact Rounded
+fmax31390 fma 1 9999999999999999 0.50000001 -> 1.000000000000000E+16 Inexact Rounded
+fmax31391 fma 1 9999999999999999 0.5000001 -> 1.000000000000000E+16 Inexact Rounded
+fmax31392 fma 1 9999999999999999 0.500001 -> 1.000000000000000E+16 Inexact Rounded
+fmax31393 fma 1 9999999999999999 0.50001 -> 1.000000000000000E+16 Inexact Rounded
+fmax31394 fma 1 9999999999999999 0.5001 -> 1.000000000000000E+16 Inexact Rounded
+fmax31395 fma 1 9999999999999999 0.501 -> 1.000000000000000E+16 Inexact Rounded
+fmax31396 fma 1 9999999999999999 0.51 -> 1.000000000000000E+16 Inexact Rounded
+
+-- More GD edge cases, where difference between the unadjusted
+-- exponents is larger than the maximum precision and one side is 0
+precision: 15
+rounding: half_up
+maxExponent: 384
+minexponent: -383
+
+fmax31400 fma 1 0 1.23456789012345 -> 1.23456789012345
+fmax31401 fma 1 0 1.23456789012345E-1 -> 0.123456789012345
+fmax31402 fma 1 0 1.23456789012345E-2 -> 0.0123456789012345
+fmax31403 fma 1 0 1.23456789012345E-3 -> 0.00123456789012345
+fmax31404 fma 1 0 1.23456789012345E-4 -> 0.000123456789012345
+fmax31405 fma 1 0 1.23456789012345E-5 -> 0.0000123456789012345
+fmax31406 fma 1 0 1.23456789012345E-6 -> 0.00000123456789012345
+fmax31407 fma 1 0 1.23456789012345E-7 -> 1.23456789012345E-7
+fmax31408 fma 1 0 1.23456789012345E-8 -> 1.23456789012345E-8
+fmax31409 fma 1 0 1.23456789012345E-9 -> 1.23456789012345E-9
+fmax31410 fma 1 0 1.23456789012345E-10 -> 1.23456789012345E-10
+fmax31411 fma 1 0 1.23456789012345E-11 -> 1.23456789012345E-11
+fmax31412 fma 1 0 1.23456789012345E-12 -> 1.23456789012345E-12
+fmax31413 fma 1 0 1.23456789012345E-13 -> 1.23456789012345E-13
+fmax31414 fma 1 0 1.23456789012345E-14 -> 1.23456789012345E-14
+fmax31415 fma 1 0 1.23456789012345E-15 -> 1.23456789012345E-15
+fmax31416 fma 1 0 1.23456789012345E-16 -> 1.23456789012345E-16
+fmax31417 fma 1 0 1.23456789012345E-17 -> 1.23456789012345E-17
+fmax31418 fma 1 0 1.23456789012345E-18 -> 1.23456789012345E-18
+fmax31419 fma 1 0 1.23456789012345E-19 -> 1.23456789012345E-19
+
+-- same, precision 16..
+precision: 16
+fmax31420 fma 1 0 1.123456789012345 -> 1.123456789012345
+fmax31421 fma 1 0 1.123456789012345E-1 -> 0.1123456789012345
+fmax31422 fma 1 0 1.123456789012345E-2 -> 0.01123456789012345
+fmax31423 fma 1 0 1.123456789012345E-3 -> 0.001123456789012345
+fmax31424 fma 1 0 1.123456789012345E-4 -> 0.0001123456789012345
+fmax31425 fma 1 0 1.123456789012345E-5 -> 0.00001123456789012345
+fmax31426 fma 1 0 1.123456789012345E-6 -> 0.000001123456789012345
+fmax31427 fma 1 0 1.123456789012345E-7 -> 1.123456789012345E-7
+fmax31428 fma 1 0 1.123456789012345E-8 -> 1.123456789012345E-8
+fmax31429 fma 1 0 1.123456789012345E-9 -> 1.123456789012345E-9
+fmax31430 fma 1 0 1.123456789012345E-10 -> 1.123456789012345E-10
+fmax31431 fma 1 0 1.123456789012345E-11 -> 1.123456789012345E-11
+fmax31432 fma 1 0 1.123456789012345E-12 -> 1.123456789012345E-12
+fmax31433 fma 1 0 1.123456789012345E-13 -> 1.123456789012345E-13
+fmax31434 fma 1 0 1.123456789012345E-14 -> 1.123456789012345E-14
+fmax31435 fma 1 0 1.123456789012345E-15 -> 1.123456789012345E-15
+fmax31436 fma 1 0 1.123456789012345E-16 -> 1.123456789012345E-16
+fmax31437 fma 1 0 1.123456789012345E-17 -> 1.123456789012345E-17
+fmax31438 fma 1 0 1.123456789012345E-18 -> 1.123456789012345E-18
+fmax31439 fma 1 0 1.123456789012345E-19 -> 1.123456789012345E-19
+
+-- same, reversed 0
+fmax31440 fma 1 1.123456789012345 0 -> 1.123456789012345
+fmax31441 fma 1 1.123456789012345E-1 0 -> 0.1123456789012345
+fmax31442 fma 1 1.123456789012345E-2 0 -> 0.01123456789012345
+fmax31443 fma 1 1.123456789012345E-3 0 -> 0.001123456789012345
+fmax31444 fma 1 1.123456789012345E-4 0 -> 0.0001123456789012345
+fmax31445 fma 1 1.123456789012345E-5 0 -> 0.00001123456789012345
+fmax31446 fma 1 1.123456789012345E-6 0 -> 0.000001123456789012345
+fmax31447 fma 1 1.123456789012345E-7 0 -> 1.123456789012345E-7
+fmax31448 fma 1 1.123456789012345E-8 0 -> 1.123456789012345E-8
+fmax31449 fma 1 1.123456789012345E-9 0 -> 1.123456789012345E-9
+fmax31450 fma 1 1.123456789012345E-10 0 -> 1.123456789012345E-10
+fmax31451 fma 1 1.123456789012345E-11 0 -> 1.123456789012345E-11
+fmax31452 fma 1 1.123456789012345E-12 0 -> 1.123456789012345E-12
+fmax31453 fma 1 1.123456789012345E-13 0 -> 1.123456789012345E-13
+fmax31454 fma 1 1.123456789012345E-14 0 -> 1.123456789012345E-14
+fmax31455 fma 1 1.123456789012345E-15 0 -> 1.123456789012345E-15
+fmax31456 fma 1 1.123456789012345E-16 0 -> 1.123456789012345E-16
+fmax31457 fma 1 1.123456789012345E-17 0 -> 1.123456789012345E-17
+fmax31458 fma 1 1.123456789012345E-18 0 -> 1.123456789012345E-18
+fmax31459 fma 1 1.123456789012345E-19 0 -> 1.123456789012345E-19
+
+-- same, Es on the 0
+fmax31460 fma 1 1.123456789012345 0E-0 -> 1.123456789012345
+fmax31461 fma 1 1.123456789012345 0E-1 -> 1.123456789012345
+fmax31462 fma 1 1.123456789012345 0E-2 -> 1.123456789012345
+fmax31463 fma 1 1.123456789012345 0E-3 -> 1.123456789012345
+fmax31464 fma 1 1.123456789012345 0E-4 -> 1.123456789012345
+fmax31465 fma 1 1.123456789012345 0E-5 -> 1.123456789012345
+fmax31466 fma 1 1.123456789012345 0E-6 -> 1.123456789012345
+fmax31467 fma 1 1.123456789012345 0E-7 -> 1.123456789012345
+fmax31468 fma 1 1.123456789012345 0E-8 -> 1.123456789012345
+fmax31469 fma 1 1.123456789012345 0E-9 -> 1.123456789012345
+fmax31470 fma 1 1.123456789012345 0E-10 -> 1.123456789012345
+fmax31471 fma 1 1.123456789012345 0E-11 -> 1.123456789012345
+fmax31472 fma 1 1.123456789012345 0E-12 -> 1.123456789012345
+fmax31473 fma 1 1.123456789012345 0E-13 -> 1.123456789012345
+fmax31474 fma 1 1.123456789012345 0E-14 -> 1.123456789012345
+fmax31475 fma 1 1.123456789012345 0E-15 -> 1.123456789012345
+-- next four flag Rounded because the 0 extends the result
+fmax31476 fma 1 1.123456789012345 0E-16 -> 1.123456789012345 Rounded
+fmax31477 fma 1 1.123456789012345 0E-17 -> 1.123456789012345 Rounded
+fmax31478 fma 1 1.123456789012345 0E-18 -> 1.123456789012345 Rounded
+fmax31479 fma 1 1.123456789012345 0E-19 -> 1.123456789012345 Rounded
+
+-- sum of two opposite-sign operands is exactly 0 and floor => -0
+precision: 16
+maxExponent: 384
+minexponent: -383
+
+rounding: half_up
+-- exact zeros from zeros
+fmax31500 fma 1 0 0E-19 -> 0E-19
+fmax31501 fma 1 -0 0E-19 -> 0E-19
+fmax31502 fma 1 0 -0E-19 -> 0E-19
+fmax31503 fma 1 -0 -0E-19 -> -0E-19
+fmax31504 fma 1 0E-400 0E-19 -> 0E-398 Clamped
+fmax31505 fma 1 -0E-400 0E-19 -> 0E-398 Clamped
+fmax31506 fma 1 0E-400 -0E-19 -> 0E-398 Clamped
+fmax31507 fma 1 -0E-400 -0E-19 -> -0E-398 Clamped
+-- inexact zeros
+fmax31511 fma 1 1E-401 1E-400 -> 0E-398 Subnormal Inexact Rounded Underflow Clamped
+fmax31512 fma 1 -1E-401 1E-400 -> 0E-398 Subnormal Inexact Rounded Underflow Clamped
+fmax31513 fma 1 1E-401 -1E-400 -> -0E-398 Subnormal Inexact Rounded Underflow Clamped
+fmax31514 fma 1 -1E-401 -1E-400 -> -0E-398 Subnormal Inexact Rounded Underflow Clamped
+-- some exact zeros from non-zeros
+fmax31515 fma 1 1E-401 1E-401 -> 0E-398 Subnormal Inexact Rounded Underflow Clamped
+fmax31516 fma 1 -1E-401 1E-401 -> 0E-398 Clamped
+fmax31517 fma 1 1E-401 -1E-401 -> 0E-398 Clamped
+fmax31518 fma 1 -1E-401 -1E-401 -> -0E-398 Subnormal Inexact Rounded Underflow Clamped
+
+rounding: half_down
+-- exact zeros from zeros
+fmax31520 fma 1 0 0E-19 -> 0E-19
+fmax31521 fma 1 -0 0E-19 -> 0E-19
+fmax31522 fma 1 0 -0E-19 -> 0E-19
+fmax31523 fma 1 -0 -0E-19 -> -0E-19
+fmax31524 fma 1 0E-400 0E-19 -> 0E-398 Clamped
+fmax31525 fma 1 -0E-400 0E-19 -> 0E-398 Clamped
+fmax31526 fma 1 0E-400 -0E-19 -> 0E-398 Clamped
+fmax31527 fma 1 -0E-400 -0E-19 -> -0E-398 Clamped
+-- inexact zeros
+fmax31531 fma 1 1E-401 1E-400 -> 0E-398 Subnormal Inexact Rounded Underflow Clamped
+fmax31532 fma 1 -1E-401 1E-400 -> 0E-398 Subnormal Inexact Rounded Underflow Clamped
+fmax31533 fma 1 1E-401 -1E-400 -> -0E-398 Subnormal Inexact Rounded Underflow Clamped
+fmax31534 fma 1 -1E-401 -1E-400 -> -0E-398 Subnormal Inexact Rounded Underflow Clamped
+-- some exact zeros from non-zeros
+fmax31535 fma 1 1E-401 1E-401 -> 0E-398 Subnormal Inexact Rounded Underflow Clamped
+fmax31536 fma 1 -1E-401 1E-401 -> 0E-398 Clamped
+fmax31537 fma 1 1E-401 -1E-401 -> 0E-398 Clamped
+fmax31538 fma 1 -1E-401 -1E-401 -> -0E-398 Subnormal Inexact Rounded Underflow Clamped
+
+rounding: half_even
+-- exact zeros from zeros
+fmax31540 fma 1 0 0E-19 -> 0E-19
+fmax31541 fma 1 -0 0E-19 -> 0E-19
+fmax31542 fma 1 0 -0E-19 -> 0E-19
+fmax31543 fma 1 -0 -0E-19 -> -0E-19
+fmax31544 fma 1 0E-400 0E-19 -> 0E-398 Clamped
+fmax31545 fma 1 -0E-400 0E-19 -> 0E-398 Clamped
+fmax31546 fma 1 0E-400 -0E-19 -> 0E-398 Clamped
+fmax31547 fma 1 -0E-400 -0E-19 -> -0E-398 Clamped
+-- inexact zeros
+fmax31551 fma 1 1E-401 1E-400 -> 0E-398 Subnormal Inexact Rounded Underflow Clamped
+fmax31552 fma 1 -1E-401 1E-400 -> 0E-398 Subnormal Inexact Rounded Underflow Clamped
+fmax31553 fma 1 1E-401 -1E-400 -> -0E-398 Subnormal Inexact Rounded Underflow Clamped
+fmax31554 fma 1 -1E-401 -1E-400 -> -0E-398 Subnormal Inexact Rounded Underflow Clamped
+-- some exact zeros from non-zeros
+fmax31555 fma 1 1E-401 1E-401 -> 0E-398 Subnormal Inexact Rounded Underflow Clamped
+fmax31556 fma 1 -1E-401 1E-401 -> 0E-398 Clamped
+fmax31557 fma 1 1E-401 -1E-401 -> 0E-398 Clamped
+fmax31558 fma 1 -1E-401 -1E-401 -> -0E-398 Subnormal Inexact Rounded Underflow Clamped
+
+rounding: up
+-- exact zeros from zeros
+fmax31560 fma 1 0 0E-19 -> 0E-19
+fmax31561 fma 1 -0 0E-19 -> 0E-19
+fmax31562 fma 1 0 -0E-19 -> 0E-19
+fmax31563 fma 1 -0 -0E-19 -> -0E-19
+fmax31564 fma 1 0E-400 0E-19 -> 0E-398 Clamped
+fmax31565 fma 1 -0E-400 0E-19 -> 0E-398 Clamped
+fmax31566 fma 1 0E-400 -0E-19 -> 0E-398 Clamped
+fmax31567 fma 1 -0E-400 -0E-19 -> -0E-398 Clamped
+-- inexact zeros
+fmax31571 fma 1 1E-401 1E-400 -> 1E-398 Subnormal Inexact Rounded Underflow
+fmax31572 fma 1 -1E-401 1E-400 -> 1E-398 Subnormal Inexact Rounded Underflow
+fmax31573 fma 1 1E-401 -1E-400 -> -1E-398 Subnormal Inexact Rounded Underflow
+fmax31574 fma 1 -1E-401 -1E-400 -> -1E-398 Subnormal Inexact Rounded Underflow
+-- some exact zeros from non-zeros
+fmax31575 fma 1 1E-401 1E-401 -> 1E-398 Subnormal Inexact Rounded Underflow
+fmax31576 fma 1 -1E-401 1E-401 -> 0E-398 Clamped
+fmax31577 fma 1 1E-401 -1E-401 -> 0E-398 Clamped
+fmax31578 fma 1 -1E-401 -1E-401 -> -1E-398 Subnormal Inexact Rounded Underflow
+
+rounding: down
+-- exact zeros from zeros
+fmax31580 fma 1 0 0E-19 -> 0E-19
+fmax31581 fma 1 -0 0E-19 -> 0E-19
+fmax31582 fma 1 0 -0E-19 -> 0E-19
+fmax31583 fma 1 -0 -0E-19 -> -0E-19
+fmax31584 fma 1 0E-400 0E-19 -> 0E-398 Clamped
+fmax31585 fma 1 -0E-400 0E-19 -> 0E-398 Clamped
+fmax31586 fma 1 0E-400 -0E-19 -> 0E-398 Clamped
+fmax31587 fma 1 -0E-400 -0E-19 -> -0E-398 Clamped
+-- inexact zeros
+fmax31591 fma 1 1E-401 1E-400 -> 0E-398 Subnormal Inexact Rounded Underflow Clamped
+fmax31592 fma 1 -1E-401 1E-400 -> 0E-398 Subnormal Inexact Rounded Underflow Clamped
+fmax31593 fma 1 1E-401 -1E-400 -> -0E-398 Subnormal Inexact Rounded Underflow Clamped
+fmax31594 fma 1 -1E-401 -1E-400 -> -0E-398 Subnormal Inexact Rounded Underflow Clamped
+-- some exact zeros from non-zeros
+fmax31595 fma 1 1E-401 1E-401 -> 0E-398 Subnormal Inexact Rounded Underflow Clamped
+fmax31596 fma 1 -1E-401 1E-401 -> 0E-398 Clamped
+fmax31597 fma 1 1E-401 -1E-401 -> 0E-398 Clamped
+fmax31598 fma 1 -1E-401 -1E-401 -> -0E-398 Subnormal Inexact Rounded Underflow Clamped
+
+rounding: ceiling
+-- exact zeros from zeros
+fmax31600 fma 1 0 0E-19 -> 0E-19
+fmax31601 fma 1 -0 0E-19 -> 0E-19
+fmax31602 fma 1 0 -0E-19 -> 0E-19
+fmax31603 fma 1 -0 -0E-19 -> -0E-19
+fmax31604 fma 1 0E-400 0E-19 -> 0E-398 Clamped
+fmax31605 fma 1 -0E-400 0E-19 -> 0E-398 Clamped
+fmax31606 fma 1 0E-400 -0E-19 -> 0E-398 Clamped
+fmax31607 fma 1 -0E-400 -0E-19 -> -0E-398 Clamped
+-- inexact zeros
+fmax31611 fma 1 1E-401 1E-400 -> 1E-398 Subnormal Inexact Rounded Underflow
+fmax31612 fma 1 -1E-401 1E-400 -> 1E-398 Subnormal Inexact Rounded Underflow
+fmax31613 fma 1 1E-401 -1E-400 -> -0E-398 Subnormal Inexact Rounded Underflow Clamped
+fmax31614 fma 1 -1E-401 -1E-400 -> -0E-398 Subnormal Inexact Rounded Underflow Clamped
+-- some exact zeros from non-zeros
+fmax31615 fma 1 1E-401 1E-401 -> 1E-398 Subnormal Inexact Rounded Underflow
+fmax31616 fma 1 -1E-401 1E-401 -> 0E-398 Clamped
+fmax31617 fma 1 1E-401 -1E-401 -> 0E-398 Clamped
+fmax31618 fma 1 -1E-401 -1E-401 -> -0E-398 Subnormal Inexact Rounded Underflow Clamped
+
+-- and the extra-special ugly case; unusual minuses marked by -- *
+rounding: floor
+-- exact zeros from zeros
+fmax31620 fma 1 0 0E-19 -> 0E-19
+fmax31621 fma 1 -0 0E-19 -> -0E-19 -- *
+fmax31622 fma 1 0 -0E-19 -> -0E-19 -- *
+fmax31623 fma 1 -0 -0E-19 -> -0E-19
+fmax31624 fma 1 0E-400 0E-19 -> 0E-398 Clamped
+fmax31625 fma 1 -0E-400 0E-19 -> -0E-398 Clamped -- *
+fmax31626 fma 1 0E-400 -0E-19 -> -0E-398 Clamped -- *
+fmax31627 fma 1 -0E-400 -0E-19 -> -0E-398 Clamped
+-- inexact zeros
+fmax31631 fma 1 1E-401 1E-400 -> 0E-398 Subnormal Inexact Rounded Underflow Clamped
+fmax31632 fma 1 -1E-401 1E-400 -> 0E-398 Subnormal Inexact Rounded Underflow Clamped
+fmax31633 fma 1 1E-401 -1E-400 -> -1E-398 Subnormal Inexact Rounded Underflow
+fmax31634 fma 1 -1E-401 -1E-400 -> -1E-398 Subnormal Inexact Rounded Underflow
+-- some exact zeros from non-zeros
+fmax31635 fma 1 1E-401 1E-401 -> 0E-398 Subnormal Inexact Rounded Underflow Clamped
+fmax31636 fma 1 -1E-401 1E-401 -> -0E-398 Clamped -- *
+fmax31637 fma 1 1E-401 -1E-401 -> -0E-398 Clamped -- *
+fmax31638 fma 1 -1E-401 -1E-401 -> -1E-398 Subnormal Inexact Rounded Underflow
+
+-- BigDecimal problem testcases 2006.01.23
+precision: 16
+maxExponent: 384
+minexponent: -383
+
+rounding: down
+precision: 7
+fmax31651 fma 1 10001E+2 -2E+1 -> 1.00008E+6
+precision: 6
+fmax31652 fma 1 10001E+2 -2E+1 -> 1.00008E+6
+precision: 5
+fmax31653 fma 1 10001E+2 -2E+1 -> 1.0000E+6 Inexact Rounded
+precision: 4
+fmax31654 fma 1 10001E+2 -2E+1 -> 1.000E+6 Inexact Rounded
+precision: 3
+fmax31655 fma 1 10001E+2 -2E+1 -> 1.00E+6 Inexact Rounded
+precision: 2
+fmax31656 fma 1 10001E+2 -2E+1 -> 1.0E+6 Inexact Rounded
+precision: 1
+fmax31657 fma 1 10001E+2 -2E+1 -> 1E+6 Inexact Rounded
+
+rounding: half_even
+precision: 7
+fmax31661 fma 1 10001E+2 -2E+1 -> 1.00008E+6
+precision: 6
+fmax31662 fma 1 10001E+2 -2E+1 -> 1.00008E+6
+precision: 5
+fmax31663 fma 1 10001E+2 -2E+1 -> 1.0001E+6 Inexact Rounded
+precision: 4
+fmax31664 fma 1 10001E+2 -2E+1 -> 1.000E+6 Inexact Rounded
+precision: 3
+fmax31665 fma 1 10001E+2 -2E+1 -> 1.00E+6 Inexact Rounded
+precision: 2
+fmax31666 fma 1 10001E+2 -2E+1 -> 1.0E+6 Inexact Rounded
+precision: 1
+fmax31667 fma 1 10001E+2 -2E+1 -> 1E+6 Inexact Rounded
+
+rounding: up
+precision: 7
+fmax31671 fma 1 10001E+2 -2E+1 -> 1.00008E+6
+precision: 6
+fmax31672 fma 1 10001E+2 -2E+1 -> 1.00008E+6
+precision: 5
+fmax31673 fma 1 10001E+2 -2E+1 -> 1.0001E+6 Inexact Rounded
+precision: 4
+fmax31674 fma 1 10001E+2 -2E+1 -> 1.001E+6 Inexact Rounded
+precision: 3
+fmax31675 fma 1 10001E+2 -2E+1 -> 1.01E+6 Inexact Rounded
+precision: 2
+fmax31676 fma 1 10001E+2 -2E+1 -> 1.1E+6 Inexact Rounded
+precision: 1
+fmax31677 fma 1 10001E+2 -2E+1 -> 2E+6 Inexact Rounded
+
+precision: 34
+rounding: half_up
+maxExponent: 6144
+minExponent: -6143
+-- Examples from SQL proposal (Krishna Kulkarni)
+fmax31701 fma 1 130E-2 120E-2 -> 2.50
+fmax31702 fma 1 130E-2 12E-1 -> 2.50
+fmax31703 fma 1 130E-2 1E0 -> 2.30
+fmax31704 fma 1 1E2 1E4 -> 1.01E+4
+fmax31705 subtract 130E-2 120E-2 -> 0.10
+fmax31706 subtract 130E-2 12E-1 -> 0.10
+fmax31707 subtract 130E-2 1E0 -> 0.30
+fmax31708 subtract 1E2 1E4 -> -9.9E+3
+
+------------------------------------------------------------------------
+-- Same as above, using decimal64 default parameters --
+------------------------------------------------------------------------
+precision: 16
+rounding: half_even
+maxExponent: 384
+minexponent: -383
+
+-- [first group are 'quick confidence check']
+fmax36001 fma 1 1 1 -> 2
+fmax36002 fma 1 2 3 -> 5
+fmax36003 fma 1 '5.75' '3.3' -> 9.05
+fmax36004 fma 1 '5' '-3' -> 2
+fmax36005 fma 1 '-5' '-3' -> -8
+fmax36006 fma 1 '-7' '2.5' -> -4.5
+fmax36007 fma 1 '0.7' '0.3' -> 1.0
+fmax36008 fma 1 '1.25' '1.25' -> 2.50
+fmax36009 fma 1 '1.23456789' '1.00000000' -> '2.23456789'
+fmax36010 fma 1 '1.23456789' '1.00000011' -> '2.23456800'
+
+fmax36011 fma 1 '0.44444444444444444' '0.55555555555555555' -> '1.000000000000000' Inexact Rounded
+fmax36012 fma 1 '0.44444444444444440' '0.55555555555555555' -> '1.000000000000000' Inexact Rounded
+fmax36013 fma 1 '0.44444444444444444' '0.55555555555555550' -> '0.9999999999999999' Inexact Rounded
+fmax36014 fma 1 '0.444444444444444449' '0' -> '0.4444444444444444' Inexact Rounded
+fmax36015 fma 1 '0.4444444444444444499' '0' -> '0.4444444444444444' Inexact Rounded
+fmax36016 fma 1 '0.44444444444444444999' '0' -> '0.4444444444444444' Inexact Rounded
+fmax36017 fma 1 '0.44444444444444445000' '0' -> '0.4444444444444444' Inexact Rounded
+fmax36018 fma 1 '0.44444444444444445001' '0' -> '0.4444444444444445' Inexact Rounded
+fmax36019 fma 1 '0.4444444444444444501' '0' -> '0.4444444444444445' Inexact Rounded
+fmax36020 fma 1 '0.444444444444444451' '0' -> '0.4444444444444445' Inexact Rounded
+
+fmax36021 fma 1 0 1 -> 1
+fmax36022 fma 1 1 1 -> 2
+fmax36023 fma 1 2 1 -> 3
+fmax36024 fma 1 3 1 -> 4
+fmax36025 fma 1 4 1 -> 5
+fmax36026 fma 1 5 1 -> 6
+fmax36027 fma 1 6 1 -> 7
+fmax36028 fma 1 7 1 -> 8
+fmax36029 fma 1 8 1 -> 9
+fmax36030 fma 1 9 1 -> 10
+
+-- some carrying effects
+fmax36031 fma 1 '0.9998' '0.0000' -> '0.9998'
+fmax36032 fma 1 '0.9998' '0.0001' -> '0.9999'
+fmax36033 fma 1 '0.9998' '0.0002' -> '1.0000'
+fmax36034 fma 1 '0.9998' '0.0003' -> '1.0001'
+
+fmax36035 fma 1 '70' '10000e+16' -> '1.000000000000000E+20' Inexact Rounded
+fmax36036 fma 1 '700' '10000e+16' -> '1.000000000000000E+20' Inexact Rounded
+fmax36037 fma 1 '7000' '10000e+16' -> '1.000000000000000E+20' Inexact Rounded
+fmax36038 fma 1 '70000' '10000e+16' -> '1.000000000000001E+20' Inexact Rounded
+fmax36039 fma 1 '700000' '10000e+16' -> '1.000000000000007E+20' Rounded
+
+-- symmetry:
+fmax36040 fma 1 '10000e+16' '70' -> '1.000000000000000E+20' Inexact Rounded
+fmax36041 fma 1 '10000e+16' '700' -> '1.000000000000000E+20' Inexact Rounded
+fmax36042 fma 1 '10000e+16' '7000' -> '1.000000000000000E+20' Inexact Rounded
+fmax36044 fma 1 '10000e+16' '70000' -> '1.000000000000001E+20' Inexact Rounded
+fmax36045 fma 1 '10000e+16' '700000' -> '1.000000000000007E+20' Rounded
+
+fmax36046 fma 1 '10000e+9' '7' -> '10000000000007'
+fmax36047 fma 1 '10000e+9' '70' -> '10000000000070'
+fmax36048 fma 1 '10000e+9' '700' -> '10000000000700'
+fmax36049 fma 1 '10000e+9' '7000' -> '10000000007000'
+fmax36050 fma 1 '10000e+9' '70000' -> '10000000070000'
+fmax36051 fma 1 '10000e+9' '700000' -> '10000000700000'
+
+-- examples from decarith
+fmax36053 fma 1 '12' '7.00' -> '19.00'
+fmax36054 fma 1 '1.3' '-1.07' -> '0.23'
+fmax36055 fma 1 '1.3' '-1.30' -> '0.00'
+fmax36056 fma 1 '1.3' '-2.07' -> '-0.77'
+fmax36057 fma 1 '1E+2' '1E+4' -> '1.01E+4'
+
+-- from above
+fmax36061 fma 1 1 '0.1' -> '1.1'
+fmax36062 fma 1 1 '0.01' -> '1.01'
+fmax36063 fma 1 1 '0.001' -> '1.001'
+fmax36064 fma 1 1 '0.0001' -> '1.0001'
+fmax36065 fma 1 1 '0.00001' -> '1.00001'
+fmax36066 fma 1 1 '0.000001' -> '1.000001'
+fmax36067 fma 1 1 '0.0000001' -> '1.0000001'
+fmax36068 fma 1 1 '0.00000001' -> '1.00000001'
+
+-- some funny zeros [in case of bad signum]
+fmax36070 fma 1 1 0 -> 1
+fmax36071 fma 1 1 0. -> 1
+fmax36072 fma 1 1 .0 -> 1.0
+fmax36073 fma 1 1 0.0 -> 1.0
+fmax36074 fma 1 1 0.00 -> 1.00
+fmax36075 fma 1 0 1 -> 1
+fmax36076 fma 1 0. 1 -> 1
+fmax36077 fma 1 .0 1 -> 1.0
+fmax36078 fma 1 0.0 1 -> 1.0
+fmax36079 fma 1 0.00 1 -> 1.00
+
+-- some carries
+fmax36080 fma 1 9999999999999998 1 -> 9999999999999999
+fmax36081 fma 1 9999999999999999 1 -> 1.000000000000000E+16 Rounded
+fmax36082 fma 1 999999999999999 1 -> 1000000000000000
+fmax36083 fma 1 9999999999999 1 -> 10000000000000
+fmax36084 fma 1 99999999999 1 -> 100000000000
+fmax36085 fma 1 999999999 1 -> 1000000000
+fmax36086 fma 1 9999999 1 -> 10000000
+fmax36087 fma 1 99999 1 -> 100000
+fmax36088 fma 1 999 1 -> 1000
+fmax36089 fma 1 9 1 -> 10
+
+
+-- more LHS swaps
+fmax36090 fma 1 '-56267E-10' 0 -> '-0.0000056267'
+fmax36091 fma 1 '-56267E-6' 0 -> '-0.056267'
+fmax36092 fma 1 '-56267E-5' 0 -> '-0.56267'
+fmax36093 fma 1 '-56267E-4' 0 -> '-5.6267'
+fmax36094 fma 1 '-56267E-3' 0 -> '-56.267'
+fmax36095 fma 1 '-56267E-2' 0 -> '-562.67'
+fmax36096 fma 1 '-56267E-1' 0 -> '-5626.7'
+fmax36097 fma 1 '-56267E-0' 0 -> '-56267'
+fmax36098 fma 1 '-5E-10' 0 -> '-5E-10'
+fmax36099 fma 1 '-5E-7' 0 -> '-5E-7'
+fmax36100 fma 1 '-5E-6' 0 -> '-0.000005'
+fmax36101 fma 1 '-5E-5' 0 -> '-0.00005'
+fmax36102 fma 1 '-5E-4' 0 -> '-0.0005'
+fmax36103 fma 1 '-5E-1' 0 -> '-0.5'
+fmax36104 fma 1 '-5E0' 0 -> '-5'
+fmax36105 fma 1 '-5E1' 0 -> '-50'
+fmax36106 fma 1 '-5E5' 0 -> '-500000'
+fmax36107 fma 1 '-5E15' 0 -> '-5000000000000000'
+fmax36108 fma 1 '-5E16' 0 -> '-5.000000000000000E+16' Rounded
+fmax36109 fma 1 '-5E17' 0 -> '-5.000000000000000E+17' Rounded
+fmax36110 fma 1 '-5E18' 0 -> '-5.000000000000000E+18' Rounded
+fmax36111 fma 1 '-5E100' 0 -> '-5.000000000000000E+100' Rounded
+
+-- more RHS swaps
+fmax36113 fma 1 0 '-56267E-10' -> '-0.0000056267'
+fmax36114 fma 1 0 '-56267E-6' -> '-0.056267'
+fmax36116 fma 1 0 '-56267E-5' -> '-0.56267'
+fmax36117 fma 1 0 '-56267E-4' -> '-5.6267'
+fmax36119 fma 1 0 '-56267E-3' -> '-56.267'
+fmax36120 fma 1 0 '-56267E-2' -> '-562.67'
+fmax36121 fma 1 0 '-56267E-1' -> '-5626.7'
+fmax36122 fma 1 0 '-56267E-0' -> '-56267'
+fmax36123 fma 1 0 '-5E-10' -> '-5E-10'
+fmax36124 fma 1 0 '-5E-7' -> '-5E-7'
+fmax36125 fma 1 0 '-5E-6' -> '-0.000005'
+fmax36126 fma 1 0 '-5E-5' -> '-0.00005'
+fmax36127 fma 1 0 '-5E-4' -> '-0.0005'
+fmax36128 fma 1 0 '-5E-1' -> '-0.5'
+fmax36129 fma 1 0 '-5E0' -> '-5'
+fmax36130 fma 1 0 '-5E1' -> '-50'
+fmax36131 fma 1 0 '-5E5' -> '-500000'
+fmax36132 fma 1 0 '-5E15' -> '-5000000000000000'
+fmax36133 fma 1 0 '-5E16' -> '-5.000000000000000E+16' Rounded
+fmax36134 fma 1 0 '-5E17' -> '-5.000000000000000E+17' Rounded
+fmax36135 fma 1 0 '-5E18' -> '-5.000000000000000E+18' Rounded
+fmax36136 fma 1 0 '-5E100' -> '-5.000000000000000E+100' Rounded
+
+-- related
+fmax36137 fma 1 1 '0E-19' -> '1.000000000000000' Rounded
+fmax36138 fma 1 -1 '0E-19' -> '-1.000000000000000' Rounded
+fmax36139 fma 1 '0E-19' 1 -> '1.000000000000000' Rounded
+fmax36140 fma 1 '0E-19' -1 -> '-1.000000000000000' Rounded
+fmax36141 fma 1 1E+11 0.0000 -> '100000000000.0000'
+fmax36142 fma 1 1E+11 0.00000 -> '100000000000.0000' Rounded
+fmax36143 fma 1 0.000 1E+12 -> '1000000000000.000'
+fmax36144 fma 1 0.0000 1E+12 -> '1000000000000.000' Rounded
+
+-- [some of the next group are really constructor tests]
+fmax36146 fma 1 '00.0' 0 -> '0.0'
+fmax36147 fma 1 '0.00' 0 -> '0.00'
+fmax36148 fma 1 0 '0.00' -> '0.00'
+fmax36149 fma 1 0 '00.0' -> '0.0'
+fmax36150 fma 1 '00.0' '0.00' -> '0.00'
+fmax36151 fma 1 '0.00' '00.0' -> '0.00'
+fmax36152 fma 1 '3' '.3' -> '3.3'
+fmax36153 fma 1 '3.' '.3' -> '3.3'
+fmax36154 fma 1 '3.0' '.3' -> '3.3'
+fmax36155 fma 1 '3.00' '.3' -> '3.30'
+fmax36156 fma 1 '3' '3' -> '6'
+fmax36157 fma 1 '3' '+3' -> '6'
+fmax36158 fma 1 '3' '-3' -> '0'
+fmax36159 fma 1 '0.3' '-0.3' -> '0.0'
+fmax36160 fma 1 '0.03' '-0.03' -> '0.00'
+
+-- try borderline precision, with carries, etc.
+fmax36161 fma 1 '1E+13' '-1' -> '9999999999999'
+fmax36162 fma 1 '1E+13' '1.11' -> '10000000000001.11'
+fmax36163 fma 1 '1.11' '1E+13' -> '10000000000001.11'
+fmax36164 fma 1 '-1' '1E+13' -> '9999999999999'
+fmax36165 fma 1 '7E+13' '-1' -> '69999999999999'
+fmax36166 fma 1 '7E+13' '1.11' -> '70000000000001.11'
+fmax36167 fma 1 '1.11' '7E+13' -> '70000000000001.11'
+fmax36168 fma 1 '-1' '7E+13' -> '69999999999999'
+
+-- 1234567890123456 1234567890123456 1 234567890123456
+fmax36170 fma 1 '0.4444444444444444' '0.5555555555555563' -> '1.000000000000001' Inexact Rounded
+fmax36171 fma 1 '0.4444444444444444' '0.5555555555555562' -> '1.000000000000001' Inexact Rounded
+fmax36172 fma 1 '0.4444444444444444' '0.5555555555555561' -> '1.000000000000000' Inexact Rounded
+fmax36173 fma 1 '0.4444444444444444' '0.5555555555555560' -> '1.000000000000000' Inexact Rounded
+fmax36174 fma 1 '0.4444444444444444' '0.5555555555555559' -> '1.000000000000000' Inexact Rounded
+fmax36175 fma 1 '0.4444444444444444' '0.5555555555555558' -> '1.000000000000000' Inexact Rounded
+fmax36176 fma 1 '0.4444444444444444' '0.5555555555555557' -> '1.000000000000000' Inexact Rounded
+fmax36177 fma 1 '0.4444444444444444' '0.5555555555555556' -> '1.000000000000000' Rounded
+fmax36178 fma 1 '0.4444444444444444' '0.5555555555555555' -> '0.9999999999999999'
+fmax36179 fma 1 '0.4444444444444444' '0.5555555555555554' -> '0.9999999999999998'
+fmax36180 fma 1 '0.4444444444444444' '0.5555555555555553' -> '0.9999999999999997'
+fmax36181 fma 1 '0.4444444444444444' '0.5555555555555552' -> '0.9999999999999996'
+fmax36182 fma 1 '0.4444444444444444' '0.5555555555555551' -> '0.9999999999999995'
+fmax36183 fma 1 '0.4444444444444444' '0.5555555555555550' -> '0.9999999999999994'
+
+-- and some more, including residue effects and different roundings
+rounding: half_up
+fmax36200 fma 1 '6543210123456789' 0 -> '6543210123456789'
+fmax36201 fma 1 '6543210123456789' 0.000000001 -> '6543210123456789' Inexact Rounded
+fmax36202 fma 1 '6543210123456789' 0.000001 -> '6543210123456789' Inexact Rounded
+fmax36203 fma 1 '6543210123456789' 0.1 -> '6543210123456789' Inexact Rounded
+fmax36204 fma 1 '6543210123456789' 0.4 -> '6543210123456789' Inexact Rounded
+fmax36205 fma 1 '6543210123456789' 0.49 -> '6543210123456789' Inexact Rounded
+fmax36206 fma 1 '6543210123456789' 0.499999 -> '6543210123456789' Inexact Rounded
+fmax36207 fma 1 '6543210123456789' 0.499999 -> '6543210123456789' Inexact Rounded
+fmax36208 fma 1 '6543210123456789' 0.5 -> '6543210123456790' Inexact Rounded
+fmax36209 fma 1 '6543210123456789' 0.500000001 -> '6543210123456790' Inexact Rounded
+fmax36210 fma 1 '6543210123456789' 0.500001 -> '6543210123456790' Inexact Rounded
+fmax36211 fma 1 '6543210123456789' 0.51 -> '6543210123456790' Inexact Rounded
+fmax36212 fma 1 '6543210123456789' 0.6 -> '6543210123456790' Inexact Rounded
+fmax36213 fma 1 '6543210123456789' 0.9 -> '6543210123456790' Inexact Rounded
+fmax36214 fma 1 '6543210123456789' 0.99999 -> '6543210123456790' Inexact Rounded
+fmax36215 fma 1 '6543210123456789' 0.999999 -> '6543210123456790' Inexact Rounded
+fmax36216 fma 1 '6543210123456789' 1 -> '6543210123456790'
+fmax36217 fma 1 '6543210123456789' 1.000000001 -> '6543210123456790' Inexact Rounded
+fmax36218 fma 1 '6543210123456789' 1.00001 -> '6543210123456790' Inexact Rounded
+fmax36219 fma 1 '6543210123456789' 1.1 -> '6543210123456790' Inexact Rounded
+
+rounding: half_even
+fmax36220 fma 1 '6543210123456789' 0 -> '6543210123456789'
+fmax36221 fma 1 '6543210123456789' 0.000000001 -> '6543210123456789' Inexact Rounded
+fmax36222 fma 1 '6543210123456789' 0.000001 -> '6543210123456789' Inexact Rounded
+fmax36223 fma 1 '6543210123456789' 0.1 -> '6543210123456789' Inexact Rounded
+fmax36224 fma 1 '6543210123456789' 0.4 -> '6543210123456789' Inexact Rounded
+fmax36225 fma 1 '6543210123456789' 0.49 -> '6543210123456789' Inexact Rounded
+fmax36226 fma 1 '6543210123456789' 0.499999 -> '6543210123456789' Inexact Rounded
+fmax36227 fma 1 '6543210123456789' 0.499999 -> '6543210123456789' Inexact Rounded
+fmax36228 fma 1 '6543210123456789' 0.5 -> '6543210123456790' Inexact Rounded
+fmax36229 fma 1 '6543210123456789' 0.500000001 -> '6543210123456790' Inexact Rounded
+fmax36230 fma 1 '6543210123456789' 0.500001 -> '6543210123456790' Inexact Rounded
+fmax36231 fma 1 '6543210123456789' 0.51 -> '6543210123456790' Inexact Rounded
+fmax36232 fma 1 '6543210123456789' 0.6 -> '6543210123456790' Inexact Rounded
+fmax36233 fma 1 '6543210123456789' 0.9 -> '6543210123456790' Inexact Rounded
+fmax36234 fma 1 '6543210123456789' 0.99999 -> '6543210123456790' Inexact Rounded
+fmax36235 fma 1 '6543210123456789' 0.999999 -> '6543210123456790' Inexact Rounded
+fmax36236 fma 1 '6543210123456789' 1 -> '6543210123456790'
+fmax36237 fma 1 '6543210123456789' 1.00000001 -> '6543210123456790' Inexact Rounded
+fmax36238 fma 1 '6543210123456789' 1.00001 -> '6543210123456790' Inexact Rounded
+fmax36239 fma 1 '6543210123456789' 1.1 -> '6543210123456790' Inexact Rounded
+-- critical few with even bottom digit...
+fmax36240 fma 1 '6543210123456788' 0.499999 -> '6543210123456788' Inexact Rounded
+fmax36241 fma 1 '6543210123456788' 0.5 -> '6543210123456788' Inexact Rounded
+fmax36242 fma 1 '6543210123456788' 0.500000001 -> '6543210123456789' Inexact Rounded
+
+rounding: down
+fmax36250 fma 1 '6543210123456789' 0 -> '6543210123456789'
+fmax36251 fma 1 '6543210123456789' 0.000000001 -> '6543210123456789' Inexact Rounded
+fmax36252 fma 1 '6543210123456789' 0.000001 -> '6543210123456789' Inexact Rounded
+fmax36253 fma 1 '6543210123456789' 0.1 -> '6543210123456789' Inexact Rounded
+fmax36254 fma 1 '6543210123456789' 0.4 -> '6543210123456789' Inexact Rounded
+fmax36255 fma 1 '6543210123456789' 0.49 -> '6543210123456789' Inexact Rounded
+fmax36256 fma 1 '6543210123456789' 0.499999 -> '6543210123456789' Inexact Rounded
+fmax36257 fma 1 '6543210123456789' 0.499999 -> '6543210123456789' Inexact Rounded
+fmax36258 fma 1 '6543210123456789' 0.5 -> '6543210123456789' Inexact Rounded
+fmax36259 fma 1 '6543210123456789' 0.500000001 -> '6543210123456789' Inexact Rounded
+fmax36260 fma 1 '6543210123456789' 0.500001 -> '6543210123456789' Inexact Rounded
+fmax36261 fma 1 '6543210123456789' 0.51 -> '6543210123456789' Inexact Rounded
+fmax36262 fma 1 '6543210123456789' 0.6 -> '6543210123456789' Inexact Rounded
+fmax36263 fma 1 '6543210123456789' 0.9 -> '6543210123456789' Inexact Rounded
+fmax36264 fma 1 '6543210123456789' 0.99999 -> '6543210123456789' Inexact Rounded
+fmax36265 fma 1 '6543210123456789' 0.999999 -> '6543210123456789' Inexact Rounded
+fmax36266 fma 1 '6543210123456789' 1 -> '6543210123456790'
+fmax36267 fma 1 '6543210123456789' 1.00000001 -> '6543210123456790' Inexact Rounded
+fmax36268 fma 1 '6543210123456789' 1.00001 -> '6543210123456790' Inexact Rounded
+fmax36269 fma 1 '6543210123456789' 1.1 -> '6543210123456790' Inexact Rounded
+
+-- 1 in last place tests
+rounding: half_even
+fmax36301 fma 1 -1 1 -> 0
+fmax36302 fma 1 0 1 -> 1
+fmax36303 fma 1 1 1 -> 2
+fmax36304 fma 1 12 1 -> 13
+fmax36305 fma 1 98 1 -> 99
+fmax36306 fma 1 99 1 -> 100
+fmax36307 fma 1 100 1 -> 101
+fmax36308 fma 1 101 1 -> 102
+fmax36309 fma 1 -1 -1 -> -2
+fmax36310 fma 1 0 -1 -> -1
+fmax36311 fma 1 1 -1 -> 0
+fmax36312 fma 1 12 -1 -> 11
+fmax36313 fma 1 98 -1 -> 97
+fmax36314 fma 1 99 -1 -> 98
+fmax36315 fma 1 100 -1 -> 99
+fmax36316 fma 1 101 -1 -> 100
+
+fmax36321 fma 1 -0.01 0.01 -> 0.00
+fmax36322 fma 1 0.00 0.01 -> 0.01
+fmax36323 fma 1 0.01 0.01 -> 0.02
+fmax36324 fma 1 0.12 0.01 -> 0.13
+fmax36325 fma 1 0.98 0.01 -> 0.99
+fmax36326 fma 1 0.99 0.01 -> 1.00
+fmax36327 fma 1 1.00 0.01 -> 1.01
+fmax36328 fma 1 1.01 0.01 -> 1.02
+fmax36329 fma 1 -0.01 -0.01 -> -0.02
+fmax36330 fma 1 0.00 -0.01 -> -0.01
+fmax36331 fma 1 0.01 -0.01 -> 0.00
+fmax36332 fma 1 0.12 -0.01 -> 0.11
+fmax36333 fma 1 0.98 -0.01 -> 0.97
+fmax36334 fma 1 0.99 -0.01 -> 0.98
+fmax36335 fma 1 1.00 -0.01 -> 0.99
+fmax36336 fma 1 1.01 -0.01 -> 1.00
+
+-- some more cases where fma 1 ing 0 affects the coefficient
+fmax36340 fma 1 1E+3 0 -> 1000
+fmax36341 fma 1 1E+15 0 -> 1000000000000000
+fmax36342 fma 1 1E+16 0 -> 1.000000000000000E+16 Rounded
+fmax36343 fma 1 1E+17 0 -> 1.000000000000000E+17 Rounded
+-- which simply follow from these cases ...
+fmax36344 fma 1 1E+3 1 -> 1001
+fmax36345 fma 1 1E+15 1 -> 1000000000000001
+fmax36346 fma 1 1E+16 1 -> 1.000000000000000E+16 Inexact Rounded
+fmax36347 fma 1 1E+17 1 -> 1.000000000000000E+17 Inexact Rounded
+fmax36348 fma 1 1E+3 7 -> 1007
+fmax36349 fma 1 1E+15 7 -> 1000000000000007
+fmax36350 fma 1 1E+16 7 -> 1.000000000000001E+16 Inexact Rounded
+fmax36351 fma 1 1E+17 7 -> 1.000000000000000E+17 Inexact Rounded
+
+-- tryzeros cases
+fmax36361 fma 1 0E+50 10000E+1 -> 1.0000E+5
+fmax36362 fma 1 10000E+1 0E-50 -> 100000.0000000000 Rounded
+fmax36363 fma 1 10000E+1 10000E-50 -> 100000.0000000000 Rounded Inexact
+fmax36364 fma 1 12.34 0e-398 -> 12.34000000000000 Rounded
+
+-- ulp replacement tests
+fmax36400 fma 1 1 77e-14 -> 1.00000000000077
+fmax36401 fma 1 1 77e-15 -> 1.000000000000077
+fmax36402 fma 1 1 77e-16 -> 1.000000000000008 Inexact Rounded
+fmax36403 fma 1 1 77e-17 -> 1.000000000000001 Inexact Rounded
+fmax36404 fma 1 1 77e-18 -> 1.000000000000000 Inexact Rounded
+fmax36405 fma 1 1 77e-19 -> 1.000000000000000 Inexact Rounded
+fmax36406 fma 1 1 77e-99 -> 1.000000000000000 Inexact Rounded
+
+fmax36410 fma 1 10 77e-14 -> 10.00000000000077
+fmax36411 fma 1 10 77e-15 -> 10.00000000000008 Inexact Rounded
+fmax36412 fma 1 10 77e-16 -> 10.00000000000001 Inexact Rounded
+fmax36413 fma 1 10 77e-17 -> 10.00000000000000 Inexact Rounded
+fmax36414 fma 1 10 77e-18 -> 10.00000000000000 Inexact Rounded
+fmax36415 fma 1 10 77e-19 -> 10.00000000000000 Inexact Rounded
+fmax36416 fma 1 10 77e-99 -> 10.00000000000000 Inexact Rounded
+
+fmax36420 fma 1 77e-14 1 -> 1.00000000000077
+fmax36421 fma 1 77e-15 1 -> 1.000000000000077
+fmax36422 fma 1 77e-16 1 -> 1.000000000000008 Inexact Rounded
+fmax36423 fma 1 77e-17 1 -> 1.000000000000001 Inexact Rounded
+fmax36424 fma 1 77e-18 1 -> 1.000000000000000 Inexact Rounded
+fmax36425 fma 1 77e-19 1 -> 1.000000000000000 Inexact Rounded
+fmax36426 fma 1 77e-99 1 -> 1.000000000000000 Inexact Rounded
+
+fmax36430 fma 1 77e-14 10 -> 10.00000000000077
+fmax36431 fma 1 77e-15 10 -> 10.00000000000008 Inexact Rounded
+fmax36432 fma 1 77e-16 10 -> 10.00000000000001 Inexact Rounded
+fmax36433 fma 1 77e-17 10 -> 10.00000000000000 Inexact Rounded
+fmax36434 fma 1 77e-18 10 -> 10.00000000000000 Inexact Rounded
+fmax36435 fma 1 77e-19 10 -> 10.00000000000000 Inexact Rounded
+fmax36436 fma 1 77e-99 10 -> 10.00000000000000 Inexact Rounded
+
+-- negative ulps
+fmax36440 fma 1 1 -77e-14 -> 0.99999999999923
+fmax36441 fma 1 1 -77e-15 -> 0.999999999999923
+fmax36442 fma 1 1 -77e-16 -> 0.9999999999999923
+fmax36443 fma 1 1 -77e-17 -> 0.9999999999999992 Inexact Rounded
+fmax36444 fma 1 1 -77e-18 -> 0.9999999999999999 Inexact Rounded
+fmax36445 fma 1 1 -77e-19 -> 1.000000000000000 Inexact Rounded
+fmax36446 fma 1 1 -77e-99 -> 1.000000000000000 Inexact Rounded
+
+fmax36450 fma 1 10 -77e-14 -> 9.99999999999923
+fmax36451 fma 1 10 -77e-15 -> 9.999999999999923
+fmax36452 fma 1 10 -77e-16 -> 9.999999999999992 Inexact Rounded
+fmax36453 fma 1 10 -77e-17 -> 9.999999999999999 Inexact Rounded
+fmax36454 fma 1 10 -77e-18 -> 10.00000000000000 Inexact Rounded
+fmax36455 fma 1 10 -77e-19 -> 10.00000000000000 Inexact Rounded
+fmax36456 fma 1 10 -77e-99 -> 10.00000000000000 Inexact Rounded
+
+fmax36460 fma 1 -77e-14 1 -> 0.99999999999923
+fmax36461 fma 1 -77e-15 1 -> 0.999999999999923
+fmax36462 fma 1 -77e-16 1 -> 0.9999999999999923
+fmax36463 fma 1 -77e-17 1 -> 0.9999999999999992 Inexact Rounded
+fmax36464 fma 1 -77e-18 1 -> 0.9999999999999999 Inexact Rounded
+fmax36465 fma 1 -77e-19 1 -> 1.000000000000000 Inexact Rounded
+fmax36466 fma 1 -77e-99 1 -> 1.000000000000000 Inexact Rounded
+
+fmax36470 fma 1 -77e-14 10 -> 9.99999999999923
+fmax36471 fma 1 -77e-15 10 -> 9.999999999999923
+fmax36472 fma 1 -77e-16 10 -> 9.999999999999992 Inexact Rounded
+fmax36473 fma 1 -77e-17 10 -> 9.999999999999999 Inexact Rounded
+fmax36474 fma 1 -77e-18 10 -> 10.00000000000000 Inexact Rounded
+fmax36475 fma 1 -77e-19 10 -> 10.00000000000000 Inexact Rounded
+fmax36476 fma 1 -77e-99 10 -> 10.00000000000000 Inexact Rounded
+
+-- negative ulps
+fmax36480 fma 1 -1 77e-14 -> -0.99999999999923
+fmax36481 fma 1 -1 77e-15 -> -0.999999999999923
+fmax36482 fma 1 -1 77e-16 -> -0.9999999999999923
+fmax36483 fma 1 -1 77e-17 -> -0.9999999999999992 Inexact Rounded
+fmax36484 fma 1 -1 77e-18 -> -0.9999999999999999 Inexact Rounded
+fmax36485 fma 1 -1 77e-19 -> -1.000000000000000 Inexact Rounded
+fmax36486 fma 1 -1 77e-99 -> -1.000000000000000 Inexact Rounded
+
+fmax36490 fma 1 -10 77e-14 -> -9.99999999999923
+fmax36491 fma 1 -10 77e-15 -> -9.999999999999923
+fmax36492 fma 1 -10 77e-16 -> -9.999999999999992 Inexact Rounded
+fmax36493 fma 1 -10 77e-17 -> -9.999999999999999 Inexact Rounded
+fmax36494 fma 1 -10 77e-18 -> -10.00000000000000 Inexact Rounded
+fmax36495 fma 1 -10 77e-19 -> -10.00000000000000 Inexact Rounded
+fmax36496 fma 1 -10 77e-99 -> -10.00000000000000 Inexact Rounded
+
+fmax36500 fma 1 77e-14 -1 -> -0.99999999999923
+fmax36501 fma 1 77e-15 -1 -> -0.999999999999923
+fmax36502 fma 1 77e-16 -1 -> -0.9999999999999923
+fmax36503 fma 1 77e-17 -1 -> -0.9999999999999992 Inexact Rounded
+fmax36504 fma 1 77e-18 -1 -> -0.9999999999999999 Inexact Rounded
+fmax36505 fma 1 77e-19 -1 -> -1.000000000000000 Inexact Rounded
+fmax36506 fma 1 77e-99 -1 -> -1.000000000000000 Inexact Rounded
+
+fmax36510 fma 1 77e-14 -10 -> -9.99999999999923
+fmax36511 fma 1 77e-15 -10 -> -9.999999999999923
+fmax36512 fma 1 77e-16 -10 -> -9.999999999999992 Inexact Rounded
+fmax36513 fma 1 77e-17 -10 -> -9.999999999999999 Inexact Rounded
+fmax36514 fma 1 77e-18 -10 -> -10.00000000000000 Inexact Rounded
+fmax36515 fma 1 77e-19 -10 -> -10.00000000000000 Inexact Rounded
+fmax36516 fma 1 77e-99 -10 -> -10.00000000000000 Inexact Rounded
+
+
+-- long operands
+fmax36521 fma 1 101234562345678000 0 -> 1.012345623456780E+17 Rounded
+fmax36522 fma 1 0 101234562345678000 -> 1.012345623456780E+17 Rounded
+fmax36523 fma 1 10123456234567800 0 -> 1.012345623456780E+16 Rounded
+fmax36524 fma 1 0 10123456234567800 -> 1.012345623456780E+16 Rounded
+fmax36525 fma 1 10123456234567890 0 -> 1.012345623456789E+16 Rounded
+fmax36526 fma 1 0 10123456234567890 -> 1.012345623456789E+16 Rounded
+fmax36527 fma 1 10123456234567891 0 -> 1.012345623456789E+16 Inexact Rounded
+fmax36528 fma 1 0 10123456234567891 -> 1.012345623456789E+16 Inexact Rounded
+fmax36529 fma 1 101234562345678901 0 -> 1.012345623456789E+17 Inexact Rounded
+fmax36530 fma 1 0 101234562345678901 -> 1.012345623456789E+17 Inexact Rounded
+fmax36531 fma 1 10123456234567896 0 -> 1.012345623456790E+16 Inexact Rounded
+fmax36532 fma 1 0 10123456234567896 -> 1.012345623456790E+16 Inexact Rounded
+
+-- verify a query
+rounding: down
+fmax36561 fma 1 1e-398 9.000000000000000E+384 -> 9.000000000000000E+384 Inexact Rounded
+fmax36562 fma 1 0 9.000000000000000E+384 -> 9.000000000000000E+384 Rounded
+-- and using decimal64 bounds...
+rounding: down
+fmax36563 fma 1 1e-388 9.000000000000000E+374 -> 9.000000000000000E+374 Inexact Rounded
+fmax36564 fma 1 0 9.000000000000000E+374 -> 9.000000000000000E+374 Rounded
+
+-- more zeros, etc.
+rounding: half_even
+
+fmax36701 fma 1 5.00 1.00E-3 -> 5.00100
+fmax36702 fma 1 00.00 0.000 -> 0.000
+fmax36703 fma 1 00.00 0E-3 -> 0.000
+fmax36704 fma 1 0E-3 00.00 -> 0.000
+
+fmax36710 fma 1 0E+3 00.00 -> 0.00
+fmax36711 fma 1 0E+3 00.0 -> 0.0
+fmax36712 fma 1 0E+3 00. -> 0
+fmax36713 fma 1 0E+3 00.E+1 -> 0E+1
+fmax36714 fma 1 0E+3 00.E+2 -> 0E+2
+fmax36715 fma 1 0E+3 00.E+3 -> 0E+3
+fmax36716 fma 1 0E+3 00.E+4 -> 0E+3
+fmax36717 fma 1 0E+3 00.E+5 -> 0E+3
+fmax36718 fma 1 0E+3 -00.0 -> 0.0
+fmax36719 fma 1 0E+3 -00. -> 0
+fmax36731 fma 1 0E+3 -00.E+1 -> 0E+1
+
+fmax36720 fma 1 00.00 0E+3 -> 0.00
+fmax36721 fma 1 00.0 0E+3 -> 0.0
+fmax36722 fma 1 00. 0E+3 -> 0
+fmax36723 fma 1 00.E+1 0E+3 -> 0E+1
+fmax36724 fma 1 00.E+2 0E+3 -> 0E+2
+fmax36725 fma 1 00.E+3 0E+3 -> 0E+3
+fmax36726 fma 1 00.E+4 0E+3 -> 0E+3
+fmax36727 fma 1 00.E+5 0E+3 -> 0E+3
+fmax36728 fma 1 -00.00 0E+3 -> 0.00
+fmax36729 fma 1 -00.0 0E+3 -> 0.0
+fmax36730 fma 1 -00. 0E+3 -> 0
+
+fmax36732 fma 1 0 0 -> 0
+fmax36733 fma 1 0 -0 -> 0
+fmax36734 fma 1 -0 0 -> 0
+fmax36735 fma 1 -0 -0 -> -0 -- IEEE 854 special case
+
+fmax36736 fma 1 1 -1 -> 0
+fmax36737 fma 1 -1 -1 -> -2
+fmax36738 fma 1 1 1 -> 2
+fmax36739 fma 1 -1 1 -> 0
+
+fmax36741 fma 1 0 -1 -> -1
+fmax36742 fma 1 -0 -1 -> -1
+fmax36743 fma 1 0 1 -> 1
+fmax36744 fma 1 -0 1 -> 1
+fmax36745 fma 1 -1 0 -> -1
+fmax36746 fma 1 -1 -0 -> -1
+fmax36747 fma 1 1 0 -> 1
+fmax36748 fma 1 1 -0 -> 1
+
+fmax36751 fma 1 0.0 -1 -> -1.0
+fmax36752 fma 1 -0.0 -1 -> -1.0
+fmax36753 fma 1 0.0 1 -> 1.0
+fmax36754 fma 1 -0.0 1 -> 1.0
+fmax36755 fma 1 -1.0 0 -> -1.0
+fmax36756 fma 1 -1.0 -0 -> -1.0
+fmax36757 fma 1 1.0 0 -> 1.0
+fmax36758 fma 1 1.0 -0 -> 1.0
+
+fmax36761 fma 1 0 -1.0 -> -1.0
+fmax36762 fma 1 -0 -1.0 -> -1.0
+fmax36763 fma 1 0 1.0 -> 1.0
+fmax36764 fma 1 -0 1.0 -> 1.0
+fmax36765 fma 1 -1 0.0 -> -1.0
+fmax36766 fma 1 -1 -0.0 -> -1.0
+fmax36767 fma 1 1 0.0 -> 1.0
+fmax36768 fma 1 1 -0.0 -> 1.0
+
+fmax36771 fma 1 0.0 -1.0 -> -1.0
+fmax36772 fma 1 -0.0 -1.0 -> -1.0
+fmax36773 fma 1 0.0 1.0 -> 1.0
+fmax36774 fma 1 -0.0 1.0 -> 1.0
+fmax36775 fma 1 -1.0 0.0 -> -1.0
+fmax36776 fma 1 -1.0 -0.0 -> -1.0
+fmax36777 fma 1 1.0 0.0 -> 1.0
+fmax36778 fma 1 1.0 -0.0 -> 1.0
+
+-- Specials
+fmax36780 fma 1 -Inf -Inf -> -Infinity
+fmax36781 fma 1 -Inf -1000 -> -Infinity
+fmax36782 fma 1 -Inf -1 -> -Infinity
+fmax36783 fma 1 -Inf -0 -> -Infinity
+fmax36784 fma 1 -Inf 0 -> -Infinity
+fmax36785 fma 1 -Inf 1 -> -Infinity
+fmax36786 fma 1 -Inf 1000 -> -Infinity
+fmax36787 fma 1 -1000 -Inf -> -Infinity
+fmax36788 fma 1 -Inf -Inf -> -Infinity
+fmax36789 fma 1 -1 -Inf -> -Infinity
+fmax36790 fma 1 -0 -Inf -> -Infinity
+fmax36791 fma 1 0 -Inf -> -Infinity
+fmax36792 fma 1 1 -Inf -> -Infinity
+fmax36793 fma 1 1000 -Inf -> -Infinity
+fmax36794 fma 1 Inf -Inf -> NaN Invalid_operation
+
+fmax36800 fma 1 Inf -Inf -> NaN Invalid_operation
+fmax36801 fma 1 Inf -1000 -> Infinity
+fmax36802 fma 1 Inf -1 -> Infinity
+fmax36803 fma 1 Inf -0 -> Infinity
+fmax36804 fma 1 Inf 0 -> Infinity
+fmax36805 fma 1 Inf 1 -> Infinity
+fmax36806 fma 1 Inf 1000 -> Infinity
+fmax36807 fma 1 Inf Inf -> Infinity
+fmax36808 fma 1 -1000 Inf -> Infinity
+fmax36809 fma 1 -Inf Inf -> NaN Invalid_operation
+fmax36810 fma 1 -1 Inf -> Infinity
+fmax36811 fma 1 -0 Inf -> Infinity
+fmax36812 fma 1 0 Inf -> Infinity
+fmax36813 fma 1 1 Inf -> Infinity
+fmax36814 fma 1 1000 Inf -> Infinity
+fmax36815 fma 1 Inf Inf -> Infinity
+
+fmax36821 fma 1 NaN -Inf -> NaN
+fmax36822 fma 1 NaN -1000 -> NaN
+fmax36823 fma 1 NaN -1 -> NaN
+fmax36824 fma 1 NaN -0 -> NaN
+fmax36825 fma 1 NaN 0 -> NaN
+fmax36826 fma 1 NaN 1 -> NaN
+fmax36827 fma 1 NaN 1000 -> NaN
+fmax36828 fma 1 NaN Inf -> NaN
+fmax36829 fma 1 NaN NaN -> NaN
+fmax36830 fma 1 -Inf NaN -> NaN
+fmax36831 fma 1 -1000 NaN -> NaN
+fmax36832 fma 1 -1 NaN -> NaN
+fmax36833 fma 1 -0 NaN -> NaN
+fmax36834 fma 1 0 NaN -> NaN
+fmax36835 fma 1 1 NaN -> NaN
+fmax36836 fma 1 1000 NaN -> NaN
+fmax36837 fma 1 Inf NaN -> NaN
+
+fmax36841 fma 1 sNaN -Inf -> NaN Invalid_operation
+fmax36842 fma 1 sNaN -1000 -> NaN Invalid_operation
+fmax36843 fma 1 sNaN -1 -> NaN Invalid_operation
+fmax36844 fma 1 sNaN -0 -> NaN Invalid_operation
+fmax36845 fma 1 sNaN 0 -> NaN Invalid_operation
+fmax36846 fma 1 sNaN 1 -> NaN Invalid_operation
+fmax36847 fma 1 sNaN 1000 -> NaN Invalid_operation
+fmax36848 fma 1 sNaN NaN -> NaN Invalid_operation
+fmax36849 fma 1 sNaN sNaN -> NaN Invalid_operation
+fmax36850 fma 1 NaN sNaN -> NaN Invalid_operation
+fmax36851 fma 1 -Inf sNaN -> NaN Invalid_operation
+fmax36852 fma 1 -1000 sNaN -> NaN Invalid_operation
+fmax36853 fma 1 -1 sNaN -> NaN Invalid_operation
+fmax36854 fma 1 -0 sNaN -> NaN Invalid_operation
+fmax36855 fma 1 0 sNaN -> NaN Invalid_operation
+fmax36856 fma 1 1 sNaN -> NaN Invalid_operation
+fmax36857 fma 1 1000 sNaN -> NaN Invalid_operation
+fmax36858 fma 1 Inf sNaN -> NaN Invalid_operation
+fmax36859 fma 1 NaN sNaN -> NaN Invalid_operation
+
+-- propagating NaNs
+fmax36861 fma 1 NaN1 -Inf -> NaN1
+fmax36862 fma 1 +NaN2 -1000 -> NaN2
+fmax36863 fma 1 NaN3 1000 -> NaN3
+fmax36864 fma 1 NaN4 Inf -> NaN4
+fmax36865 fma 1 NaN5 +NaN6 -> NaN5
+fmax36866 fma 1 -Inf NaN7 -> NaN7
+fmax36867 fma 1 -1000 NaN8 -> NaN8
+fmax36868 fma 1 1000 NaN9 -> NaN9
+fmax36869 fma 1 Inf +NaN10 -> NaN10
+fmax36871 fma 1 sNaN11 -Inf -> NaN11 Invalid_operation
+fmax36872 fma 1 sNaN12 -1000 -> NaN12 Invalid_operation
+fmax36873 fma 1 sNaN13 1000 -> NaN13 Invalid_operation
+fmax36874 fma 1 sNaN14 NaN17 -> NaN14 Invalid_operation
+fmax36875 fma 1 sNaN15 sNaN18 -> NaN15 Invalid_operation
+fmax36876 fma 1 NaN16 sNaN19 -> NaN19 Invalid_operation
+fmax36877 fma 1 -Inf +sNaN20 -> NaN20 Invalid_operation
+fmax36878 fma 1 -1000 sNaN21 -> NaN21 Invalid_operation
+fmax36879 fma 1 1000 sNaN22 -> NaN22 Invalid_operation
+fmax36880 fma 1 Inf sNaN23 -> NaN23 Invalid_operation
+fmax36881 fma 1 +NaN25 +sNaN24 -> NaN24 Invalid_operation
+fmax36882 fma 1 -NaN26 NaN28 -> -NaN26
+fmax36883 fma 1 -sNaN27 sNaN29 -> -NaN27 Invalid_operation
+fmax36884 fma 1 1000 -NaN30 -> -NaN30
+fmax36885 fma 1 1000 -sNaN31 -> -NaN31 Invalid_operation
+
+-- now the case where we can get underflow but the result is normal
+-- [note this can't happen if the operands are also bounded, as we
+-- cannot represent 1E-399, for example]
+
+fmax36571 fma 1 1E-383 0 -> 1E-383
+fmax36572 fma 1 1E-384 0 -> 1E-384 Subnormal
+fmax36573 fma 1 1E-383 1E-384 -> 1.1E-383
+fmax36574 subtract 1E-383 1E-384 -> 9E-384 Subnormal
+
+-- Here we explore the boundary of rounding a subnormal to Nmin
+fmax36575 subtract 1E-383 1E-398 -> 9.99999999999999E-384 Subnormal
+fmax36576 subtract 1E-383 1E-398 -> 9.99999999999999E-384 Subnormal
+fmax36577 subtract 1E-383 1E-399 -> 1.000000000000000E-383 Underflow Inexact Subnormal Rounded
+fmax36578 subtract 1E-383 1E-400 -> 1.000000000000000E-383 Underflow Inexact Subnormal Rounded
+fmax36579 subtract 1E-383 1E-401 -> 1.000000000000000E-383 Underflow Inexact Subnormal Rounded
+fmax36580 subtract 1E-383 1E-402 -> 1.000000000000000E-383 Underflow Inexact Subnormal Rounded
+
+-- check overflow edge case
+-- 1234567890123456
+fmax36972 apply 9.999999999999999E+384 -> 9.999999999999999E+384
+fmax36973 fma 1 9.999999999999999E+384 1 -> 9.999999999999999E+384 Inexact Rounded
+fmax36974 fma 1 9999999999999999E+369 1 -> 9.999999999999999E+384 Inexact Rounded
+fmax36975 fma 1 9999999999999999E+369 1E+369 -> Infinity Overflow Inexact Rounded
+fmax36976 fma 1 9999999999999999E+369 9E+368 -> Infinity Overflow Inexact Rounded
+fmax36977 fma 1 9999999999999999E+369 8E+368 -> Infinity Overflow Inexact Rounded
+fmax36978 fma 1 9999999999999999E+369 7E+368 -> Infinity Overflow Inexact Rounded
+fmax36979 fma 1 9999999999999999E+369 6E+368 -> Infinity Overflow Inexact Rounded
+fmax36980 fma 1 9999999999999999E+369 5E+368 -> Infinity Overflow Inexact Rounded
+fmax36981 fma 1 9999999999999999E+369 4E+368 -> 9.999999999999999E+384 Inexact Rounded
+fmax36982 fma 1 9999999999999999E+369 3E+368 -> 9.999999999999999E+384 Inexact Rounded
+fmax36983 fma 1 9999999999999999E+369 2E+368 -> 9.999999999999999E+384 Inexact Rounded
+fmax36984 fma 1 9999999999999999E+369 1E+368 -> 9.999999999999999E+384 Inexact Rounded
+
+fmax36985 apply -9.999999999999999E+384 -> -9.999999999999999E+384
+fmax36986 fma 1 -9.999999999999999E+384 -1 -> -9.999999999999999E+384 Inexact Rounded
+fmax36987 fma 1 -9999999999999999E+369 -1 -> -9.999999999999999E+384 Inexact Rounded
+fmax36988 fma 1 -9999999999999999E+369 -1E+369 -> -Infinity Overflow Inexact Rounded
+fmax36989 fma 1 -9999999999999999E+369 -9E+368 -> -Infinity Overflow Inexact Rounded
+fmax36990 fma 1 -9999999999999999E+369 -8E+368 -> -Infinity Overflow Inexact Rounded
+fmax36991 fma 1 -9999999999999999E+369 -7E+368 -> -Infinity Overflow Inexact Rounded
+fmax36992 fma 1 -9999999999999999E+369 -6E+368 -> -Infinity Overflow Inexact Rounded
+fmax36993 fma 1 -9999999999999999E+369 -5E+368 -> -Infinity Overflow Inexact Rounded
+fmax36994 fma 1 -9999999999999999E+369 -4E+368 -> -9.999999999999999E+384 Inexact Rounded
+fmax36995 fma 1 -9999999999999999E+369 -3E+368 -> -9.999999999999999E+384 Inexact Rounded
+fmax36996 fma 1 -9999999999999999E+369 -2E+368 -> -9.999999999999999E+384 Inexact Rounded
+fmax36997 fma 1 -9999999999999999E+369 -1E+368 -> -9.999999999999999E+384 Inexact Rounded
+
+-- And for round down full and subnormal results
+rounding: down
+fmax361100 fma 1 1e+2 -1e-383 -> 99.99999999999999 Rounded Inexact
+fmax361101 fma 1 1e+1 -1e-383 -> 9.999999999999999 Rounded Inexact
+fmax361103 fma 1 +1 -1e-383 -> 0.9999999999999999 Rounded Inexact
+fmax361104 fma 1 1e-1 -1e-383 -> 0.09999999999999999 Rounded Inexact
+fmax361105 fma 1 1e-2 -1e-383 -> 0.009999999999999999 Rounded Inexact
+fmax361106 fma 1 1e-3 -1e-383 -> 0.0009999999999999999 Rounded Inexact
+fmax361107 fma 1 1e-4 -1e-383 -> 0.00009999999999999999 Rounded Inexact
+fmax361108 fma 1 1e-5 -1e-383 -> 0.000009999999999999999 Rounded Inexact
+fmax361109 fma 1 1e-6 -1e-383 -> 9.999999999999999E-7 Rounded Inexact
+
+rounding: ceiling
+fmax361110 fma 1 -1e+2 +1e-383 -> -99.99999999999999 Rounded Inexact
+fmax361111 fma 1 -1e+1 +1e-383 -> -9.999999999999999 Rounded Inexact
+fmax361113 fma 1 -1 +1e-383 -> -0.9999999999999999 Rounded Inexact
+fmax361114 fma 1 -1e-1 +1e-383 -> -0.09999999999999999 Rounded Inexact
+fmax361115 fma 1 -1e-2 +1e-383 -> -0.009999999999999999 Rounded Inexact
+fmax361116 fma 1 -1e-3 +1e-383 -> -0.0009999999999999999 Rounded Inexact
+fmax361117 fma 1 -1e-4 +1e-383 -> -0.00009999999999999999 Rounded Inexact
+fmax361118 fma 1 -1e-5 +1e-383 -> -0.000009999999999999999 Rounded Inexact
+fmax361119 fma 1 -1e-6 +1e-383 -> -9.999999999999999E-7 Rounded Inexact
+
+-- tests based on Gunnar Degnbol's edge case
+rounding: half_even
+
+fmax361300 fma 1 1E16 -0.5 -> 1.000000000000000E+16 Inexact Rounded
+fmax361310 fma 1 1E16 -0.51 -> 9999999999999999 Inexact Rounded
+fmax361311 fma 1 1E16 -0.501 -> 9999999999999999 Inexact Rounded
+fmax361312 fma 1 1E16 -0.5001 -> 9999999999999999 Inexact Rounded
+fmax361313 fma 1 1E16 -0.50001 -> 9999999999999999 Inexact Rounded
+fmax361314 fma 1 1E16 -0.500001 -> 9999999999999999 Inexact Rounded
+fmax361315 fma 1 1E16 -0.5000001 -> 9999999999999999 Inexact Rounded
+fmax361316 fma 1 1E16 -0.50000001 -> 9999999999999999 Inexact Rounded
+fmax361317 fma 1 1E16 -0.500000001 -> 9999999999999999 Inexact Rounded
+fmax361318 fma 1 1E16 -0.5000000001 -> 9999999999999999 Inexact Rounded
+fmax361319 fma 1 1E16 -0.50000000001 -> 9999999999999999 Inexact Rounded
+fmax361320 fma 1 1E16 -0.500000000001 -> 9999999999999999 Inexact Rounded
+fmax361321 fma 1 1E16 -0.5000000000001 -> 9999999999999999 Inexact Rounded
+fmax361322 fma 1 1E16 -0.50000000000001 -> 9999999999999999 Inexact Rounded
+fmax361323 fma 1 1E16 -0.500000000000001 -> 9999999999999999 Inexact Rounded
+fmax361324 fma 1 1E16 -0.5000000000000001 -> 9999999999999999 Inexact Rounded
+fmax361325 fma 1 1E16 -0.5000000000000000 -> 1.000000000000000E+16 Inexact Rounded
+fmax361326 fma 1 1E16 -0.500000000000000 -> 1.000000000000000E+16 Inexact Rounded
+fmax361327 fma 1 1E16 -0.50000000000000 -> 1.000000000000000E+16 Inexact Rounded
+fmax361328 fma 1 1E16 -0.5000000000000 -> 1.000000000000000E+16 Inexact Rounded
+fmax361329 fma 1 1E16 -0.500000000000 -> 1.000000000000000E+16 Inexact Rounded
+fmax361330 fma 1 1E16 -0.50000000000 -> 1.000000000000000E+16 Inexact Rounded
+fmax361331 fma 1 1E16 -0.5000000000 -> 1.000000000000000E+16 Inexact Rounded
+fmax361332 fma 1 1E16 -0.500000000 -> 1.000000000000000E+16 Inexact Rounded
+fmax361333 fma 1 1E16 -0.50000000 -> 1.000000000000000E+16 Inexact Rounded
+fmax361334 fma 1 1E16 -0.5000000 -> 1.000000000000000E+16 Inexact Rounded
+fmax361335 fma 1 1E16 -0.500000 -> 1.000000000000000E+16 Inexact Rounded
+fmax361336 fma 1 1E16 -0.50000 -> 1.000000000000000E+16 Inexact Rounded
+fmax361337 fma 1 1E16 -0.5000 -> 1.000000000000000E+16 Inexact Rounded
+fmax361338 fma 1 1E16 -0.500 -> 1.000000000000000E+16 Inexact Rounded
+fmax361339 fma 1 1E16 -0.50 -> 1.000000000000000E+16 Inexact Rounded
+
+fmax361340 fma 1 1E16 -5000000.000010001 -> 9999999995000000 Inexact Rounded
+fmax361341 fma 1 1E16 -5000000.000000001 -> 9999999995000000 Inexact Rounded
+
+fmax361349 fma 1 9999999999999999 0.4 -> 9999999999999999 Inexact Rounded
+fmax361350 fma 1 9999999999999999 0.49 -> 9999999999999999 Inexact Rounded
+fmax361351 fma 1 9999999999999999 0.499 -> 9999999999999999 Inexact Rounded
+fmax361352 fma 1 9999999999999999 0.4999 -> 9999999999999999 Inexact Rounded
+fmax361353 fma 1 9999999999999999 0.49999 -> 9999999999999999 Inexact Rounded
+fmax361354 fma 1 9999999999999999 0.499999 -> 9999999999999999 Inexact Rounded
+fmax361355 fma 1 9999999999999999 0.4999999 -> 9999999999999999 Inexact Rounded
+fmax361356 fma 1 9999999999999999 0.49999999 -> 9999999999999999 Inexact Rounded
+fmax361357 fma 1 9999999999999999 0.499999999 -> 9999999999999999 Inexact Rounded
+fmax361358 fma 1 9999999999999999 0.4999999999 -> 9999999999999999 Inexact Rounded
+fmax361359 fma 1 9999999999999999 0.49999999999 -> 9999999999999999 Inexact Rounded
+fmax361360 fma 1 9999999999999999 0.499999999999 -> 9999999999999999 Inexact Rounded
+fmax361361 fma 1 9999999999999999 0.4999999999999 -> 9999999999999999 Inexact Rounded
+fmax361362 fma 1 9999999999999999 0.49999999999999 -> 9999999999999999 Inexact Rounded
+fmax361363 fma 1 9999999999999999 0.499999999999999 -> 9999999999999999 Inexact Rounded
+fmax361364 fma 1 9999999999999999 0.4999999999999999 -> 9999999999999999 Inexact Rounded
+fmax361365 fma 1 9999999999999999 0.5000000000000000 -> 1.000000000000000E+16 Inexact Rounded
+fmax361367 fma 1 9999999999999999 0.500000000000000 -> 1.000000000000000E+16 Inexact Rounded
+fmax361368 fma 1 9999999999999999 0.50000000000000 -> 1.000000000000000E+16 Inexact Rounded
+fmax361369 fma 1 9999999999999999 0.5000000000000 -> 1.000000000000000E+16 Inexact Rounded
+fmax361370 fma 1 9999999999999999 0.500000000000 -> 1.000000000000000E+16 Inexact Rounded
+fmax361371 fma 1 9999999999999999 0.50000000000 -> 1.000000000000000E+16 Inexact Rounded
+fmax361372 fma 1 9999999999999999 0.5000000000 -> 1.000000000000000E+16 Inexact Rounded
+fmax361373 fma 1 9999999999999999 0.500000000 -> 1.000000000000000E+16 Inexact Rounded
+fmax361374 fma 1 9999999999999999 0.50000000 -> 1.000000000000000E+16 Inexact Rounded
+fmax361375 fma 1 9999999999999999 0.5000000 -> 1.000000000000000E+16 Inexact Rounded
+fmax361376 fma 1 9999999999999999 0.500000 -> 1.000000000000000E+16 Inexact Rounded
+fmax361377 fma 1 9999999999999999 0.50000 -> 1.000000000000000E+16 Inexact Rounded
+fmax361378 fma 1 9999999999999999 0.5000 -> 1.000000000000000E+16 Inexact Rounded
+fmax361379 fma 1 9999999999999999 0.500 -> 1.000000000000000E+16 Inexact Rounded
+fmax361380 fma 1 9999999999999999 0.50 -> 1.000000000000000E+16 Inexact Rounded
+fmax361381 fma 1 9999999999999999 0.5 -> 1.000000000000000E+16 Inexact Rounded
+fmax361382 fma 1 9999999999999999 0.5000000000000001 -> 1.000000000000000E+16 Inexact Rounded
+fmax361383 fma 1 9999999999999999 0.500000000000001 -> 1.000000000000000E+16 Inexact Rounded
+fmax361384 fma 1 9999999999999999 0.50000000000001 -> 1.000000000000000E+16 Inexact Rounded
+fmax361385 fma 1 9999999999999999 0.5000000000001 -> 1.000000000000000E+16 Inexact Rounded
+fmax361386 fma 1 9999999999999999 0.500000000001 -> 1.000000000000000E+16 Inexact Rounded
+fmax361387 fma 1 9999999999999999 0.50000000001 -> 1.000000000000000E+16 Inexact Rounded
+fmax361388 fma 1 9999999999999999 0.5000000001 -> 1.000000000000000E+16 Inexact Rounded
+fmax361389 fma 1 9999999999999999 0.500000001 -> 1.000000000000000E+16 Inexact Rounded
+fmax361390 fma 1 9999999999999999 0.50000001 -> 1.000000000000000E+16 Inexact Rounded
+fmax361391 fma 1 9999999999999999 0.5000001 -> 1.000000000000000E+16 Inexact Rounded
+fmax361392 fma 1 9999999999999999 0.500001 -> 1.000000000000000E+16 Inexact Rounded
+fmax361393 fma 1 9999999999999999 0.50001 -> 1.000000000000000E+16 Inexact Rounded
+fmax361394 fma 1 9999999999999999 0.5001 -> 1.000000000000000E+16 Inexact Rounded
+fmax361395 fma 1 9999999999999999 0.501 -> 1.000000000000000E+16 Inexact Rounded
+fmax361396 fma 1 9999999999999999 0.51 -> 1.000000000000000E+16 Inexact Rounded
+
+-- More GD edge cases, where difference between the unadjusted
+-- exponents is larger than the maximum precision and one side is 0
+fmax361420 fma 1 0 1.123456789012345 -> 1.123456789012345
+fmax361421 fma 1 0 1.123456789012345E-1 -> 0.1123456789012345
+fmax361422 fma 1 0 1.123456789012345E-2 -> 0.01123456789012345
+fmax361423 fma 1 0 1.123456789012345E-3 -> 0.001123456789012345
+fmax361424 fma 1 0 1.123456789012345E-4 -> 0.0001123456789012345
+fmax361425 fma 1 0 1.123456789012345E-5 -> 0.00001123456789012345
+fmax361426 fma 1 0 1.123456789012345E-6 -> 0.000001123456789012345
+fmax361427 fma 1 0 1.123456789012345E-7 -> 1.123456789012345E-7
+fmax361428 fma 1 0 1.123456789012345E-8 -> 1.123456789012345E-8
+fmax361429 fma 1 0 1.123456789012345E-9 -> 1.123456789012345E-9
+fmax361430 fma 1 0 1.123456789012345E-10 -> 1.123456789012345E-10
+fmax361431 fma 1 0 1.123456789012345E-11 -> 1.123456789012345E-11
+fmax361432 fma 1 0 1.123456789012345E-12 -> 1.123456789012345E-12
+fmax361433 fma 1 0 1.123456789012345E-13 -> 1.123456789012345E-13
+fmax361434 fma 1 0 1.123456789012345E-14 -> 1.123456789012345E-14
+fmax361435 fma 1 0 1.123456789012345E-15 -> 1.123456789012345E-15
+fmax361436 fma 1 0 1.123456789012345E-16 -> 1.123456789012345E-16
+fmax361437 fma 1 0 1.123456789012345E-17 -> 1.123456789012345E-17
+fmax361438 fma 1 0 1.123456789012345E-18 -> 1.123456789012345E-18
+fmax361439 fma 1 0 1.123456789012345E-19 -> 1.123456789012345E-19
+
+-- same, reversed 0
+fmax361440 fma 1 1.123456789012345 0 -> 1.123456789012345
+fmax361441 fma 1 1.123456789012345E-1 0 -> 0.1123456789012345
+fmax361442 fma 1 1.123456789012345E-2 0 -> 0.01123456789012345
+fmax361443 fma 1 1.123456789012345E-3 0 -> 0.001123456789012345
+fmax361444 fma 1 1.123456789012345E-4 0 -> 0.0001123456789012345
+fmax361445 fma 1 1.123456789012345E-5 0 -> 0.00001123456789012345
+fmax361446 fma 1 1.123456789012345E-6 0 -> 0.000001123456789012345
+fmax361447 fma 1 1.123456789012345E-7 0 -> 1.123456789012345E-7
+fmax361448 fma 1 1.123456789012345E-8 0 -> 1.123456789012345E-8
+fmax361449 fma 1 1.123456789012345E-9 0 -> 1.123456789012345E-9
+fmax361450 fma 1 1.123456789012345E-10 0 -> 1.123456789012345E-10
+fmax361451 fma 1 1.123456789012345E-11 0 -> 1.123456789012345E-11
+fmax361452 fma 1 1.123456789012345E-12 0 -> 1.123456789012345E-12
+fmax361453 fma 1 1.123456789012345E-13 0 -> 1.123456789012345E-13
+fmax361454 fma 1 1.123456789012345E-14 0 -> 1.123456789012345E-14
+fmax361455 fma 1 1.123456789012345E-15 0 -> 1.123456789012345E-15
+fmax361456 fma 1 1.123456789012345E-16 0 -> 1.123456789012345E-16
+fmax361457 fma 1 1.123456789012345E-17 0 -> 1.123456789012345E-17
+fmax361458 fma 1 1.123456789012345E-18 0 -> 1.123456789012345E-18
+fmax361459 fma 1 1.123456789012345E-19 0 -> 1.123456789012345E-19
+
+-- same, Es on the 0
+fmax361460 fma 1 1.123456789012345 0E-0 -> 1.123456789012345
+fmax361461 fma 1 1.123456789012345 0E-1 -> 1.123456789012345
+fmax361462 fma 1 1.123456789012345 0E-2 -> 1.123456789012345
+fmax361463 fma 1 1.123456789012345 0E-3 -> 1.123456789012345
+fmax361464 fma 1 1.123456789012345 0E-4 -> 1.123456789012345
+fmax361465 fma 1 1.123456789012345 0E-5 -> 1.123456789012345
+fmax361466 fma 1 1.123456789012345 0E-6 -> 1.123456789012345
+fmax361467 fma 1 1.123456789012345 0E-7 -> 1.123456789012345
+fmax361468 fma 1 1.123456789012345 0E-8 -> 1.123456789012345
+fmax361469 fma 1 1.123456789012345 0E-9 -> 1.123456789012345
+fmax361470 fma 1 1.123456789012345 0E-10 -> 1.123456789012345
+fmax361471 fma 1 1.123456789012345 0E-11 -> 1.123456789012345
+fmax361472 fma 1 1.123456789012345 0E-12 -> 1.123456789012345
+fmax361473 fma 1 1.123456789012345 0E-13 -> 1.123456789012345
+fmax361474 fma 1 1.123456789012345 0E-14 -> 1.123456789012345
+fmax361475 fma 1 1.123456789012345 0E-15 -> 1.123456789012345
+-- next four flag Rounded because the 0 extends the result
+fmax361476 fma 1 1.123456789012345 0E-16 -> 1.123456789012345 Rounded
+fmax361477 fma 1 1.123456789012345 0E-17 -> 1.123456789012345 Rounded
+fmax361478 fma 1 1.123456789012345 0E-18 -> 1.123456789012345 Rounded
+fmax361479 fma 1 1.123456789012345 0E-19 -> 1.123456789012345 Rounded
+
+-- sum of two opposite-sign operands is exactly 0 and floor => -0
+rounding: half_up
+-- exact zeros from zeros
+fmax361500 fma 1 0 0E-19 -> 0E-19
+fmax361501 fma 1 -0 0E-19 -> 0E-19
+fmax361502 fma 1 0 -0E-19 -> 0E-19
+fmax361503 fma 1 -0 -0E-19 -> -0E-19
+fmax361504 fma 1 0E-400 0E-19 -> 0E-398 Clamped
+fmax361505 fma 1 -0E-400 0E-19 -> 0E-398 Clamped
+fmax361506 fma 1 0E-400 -0E-19 -> 0E-398 Clamped
+fmax361507 fma 1 -0E-400 -0E-19 -> -0E-398 Clamped
+-- inexact zeros
+fmax361511 fma 1 1E-401 1E-400 -> 0E-398 Subnormal Inexact Rounded Underflow Clamped
+fmax361512 fma 1 -1E-401 1E-400 -> 0E-398 Subnormal Inexact Rounded Underflow Clamped
+fmax361513 fma 1 1E-401 -1E-400 -> -0E-398 Subnormal Inexact Rounded Underflow Clamped
+fmax361514 fma 1 -1E-401 -1E-400 -> -0E-398 Subnormal Inexact Rounded Underflow Clamped
+-- some exact zeros from non-zeros
+fmax361515 fma 1 1E-401 1E-401 -> 0E-398 Subnormal Inexact Rounded Underflow Clamped
+fmax361516 fma 1 -1E-401 1E-401 -> 0E-398 Clamped
+fmax361517 fma 1 1E-401 -1E-401 -> 0E-398 Clamped
+fmax361518 fma 1 -1E-401 -1E-401 -> -0E-398 Subnormal Inexact Rounded Underflow Clamped
+
+rounding: half_down
+-- exact zeros from zeros
+fmax361520 fma 1 0 0E-19 -> 0E-19
+fmax361521 fma 1 -0 0E-19 -> 0E-19
+fmax361522 fma 1 0 -0E-19 -> 0E-19
+fmax361523 fma 1 -0 -0E-19 -> -0E-19
+fmax361524 fma 1 0E-400 0E-19 -> 0E-398 Clamped
+fmax361525 fma 1 -0E-400 0E-19 -> 0E-398 Clamped
+fmax361526 fma 1 0E-400 -0E-19 -> 0E-398 Clamped
+fmax361527 fma 1 -0E-400 -0E-19 -> -0E-398 Clamped
+-- inexact zeros
+fmax361531 fma 1 1E-401 1E-400 -> 0E-398 Subnormal Inexact Rounded Underflow Clamped
+fmax361532 fma 1 -1E-401 1E-400 -> 0E-398 Subnormal Inexact Rounded Underflow Clamped
+fmax361533 fma 1 1E-401 -1E-400 -> -0E-398 Subnormal Inexact Rounded Underflow Clamped
+fmax361534 fma 1 -1E-401 -1E-400 -> -0E-398 Subnormal Inexact Rounded Underflow Clamped
+-- some exact zeros from non-zeros
+fmax361535 fma 1 1E-401 1E-401 -> 0E-398 Subnormal Inexact Rounded Underflow Clamped
+fmax361536 fma 1 -1E-401 1E-401 -> 0E-398 Clamped
+fmax361537 fma 1 1E-401 -1E-401 -> 0E-398 Clamped
+fmax361538 fma 1 -1E-401 -1E-401 -> -0E-398 Subnormal Inexact Rounded Underflow Clamped
+
+rounding: half_even
+-- exact zeros from zeros
+fmax361540 fma 1 0 0E-19 -> 0E-19
+fmax361541 fma 1 -0 0E-19 -> 0E-19
+fmax361542 fma 1 0 -0E-19 -> 0E-19
+fmax361543 fma 1 -0 -0E-19 -> -0E-19
+fmax361544 fma 1 0E-400 0E-19 -> 0E-398 Clamped
+fmax361545 fma 1 -0E-400 0E-19 -> 0E-398 Clamped
+fmax361546 fma 1 0E-400 -0E-19 -> 0E-398 Clamped
+fmax361547 fma 1 -0E-400 -0E-19 -> -0E-398 Clamped
+-- inexact zeros
+fmax361551 fma 1 1E-401 1E-400 -> 0E-398 Subnormal Inexact Rounded Underflow Clamped
+fmax361552 fma 1 -1E-401 1E-400 -> 0E-398 Subnormal Inexact Rounded Underflow Clamped
+fmax361553 fma 1 1E-401 -1E-400 -> -0E-398 Subnormal Inexact Rounded Underflow Clamped
+fmax361554 fma 1 -1E-401 -1E-400 -> -0E-398 Subnormal Inexact Rounded Underflow Clamped
+-- some exact zeros from non-zeros
+fmax361555 fma 1 1E-401 1E-401 -> 0E-398 Subnormal Inexact Rounded Underflow Clamped
+fmax361556 fma 1 -1E-401 1E-401 -> 0E-398 Clamped
+fmax361557 fma 1 1E-401 -1E-401 -> 0E-398 Clamped
+fmax361558 fma 1 -1E-401 -1E-401 -> -0E-398 Subnormal Inexact Rounded Underflow Clamped
+
+rounding: up
+-- exact zeros from zeros
+fmax361560 fma 1 0 0E-19 -> 0E-19
+fmax361561 fma 1 -0 0E-19 -> 0E-19
+fmax361562 fma 1 0 -0E-19 -> 0E-19
+fmax361563 fma 1 -0 -0E-19 -> -0E-19
+fmax361564 fma 1 0E-400 0E-19 -> 0E-398 Clamped
+fmax361565 fma 1 -0E-400 0E-19 -> 0E-398 Clamped
+fmax361566 fma 1 0E-400 -0E-19 -> 0E-398 Clamped
+fmax361567 fma 1 -0E-400 -0E-19 -> -0E-398 Clamped
+-- inexact zeros
+fmax361571 fma 1 1E-401 1E-400 -> 1E-398 Subnormal Inexact Rounded Underflow
+fmax361572 fma 1 -1E-401 1E-400 -> 1E-398 Subnormal Inexact Rounded Underflow
+fmax361573 fma 1 1E-401 -1E-400 -> -1E-398 Subnormal Inexact Rounded Underflow
+fmax361574 fma 1 -1E-401 -1E-400 -> -1E-398 Subnormal Inexact Rounded Underflow
+-- some exact zeros from non-zeros
+fmax361575 fma 1 1E-401 1E-401 -> 1E-398 Subnormal Inexact Rounded Underflow
+fmax361576 fma 1 -1E-401 1E-401 -> 0E-398 Clamped
+fmax361577 fma 1 1E-401 -1E-401 -> 0E-398 Clamped
+fmax361578 fma 1 -1E-401 -1E-401 -> -1E-398 Subnormal Inexact Rounded Underflow
+
+rounding: down
+-- exact zeros from zeros
+fmax361580 fma 1 0 0E-19 -> 0E-19
+fmax361581 fma 1 -0 0E-19 -> 0E-19
+fmax361582 fma 1 0 -0E-19 -> 0E-19
+fmax361583 fma 1 -0 -0E-19 -> -0E-19
+fmax361584 fma 1 0E-400 0E-19 -> 0E-398 Clamped
+fmax361585 fma 1 -0E-400 0E-19 -> 0E-398 Clamped
+fmax361586 fma 1 0E-400 -0E-19 -> 0E-398 Clamped
+fmax361587 fma 1 -0E-400 -0E-19 -> -0E-398 Clamped
+-- inexact zeros
+fmax361591 fma 1 1E-401 1E-400 -> 0E-398 Subnormal Inexact Rounded Underflow Clamped
+fmax361592 fma 1 -1E-401 1E-400 -> 0E-398 Subnormal Inexact Rounded Underflow Clamped
+fmax361593 fma 1 1E-401 -1E-400 -> -0E-398 Subnormal Inexact Rounded Underflow Clamped
+fmax361594 fma 1 -1E-401 -1E-400 -> -0E-398 Subnormal Inexact Rounded Underflow Clamped
+-- some exact zeros from non-zeros
+fmax361595 fma 1 1E-401 1E-401 -> 0E-398 Subnormal Inexact Rounded Underflow Clamped
+fmax361596 fma 1 -1E-401 1E-401 -> 0E-398 Clamped
+fmax361597 fma 1 1E-401 -1E-401 -> 0E-398 Clamped
+fmax361598 fma 1 -1E-401 -1E-401 -> -0E-398 Subnormal Inexact Rounded Underflow Clamped
+
+rounding: ceiling
+-- exact zeros from zeros
+fmax361600 fma 1 0 0E-19 -> 0E-19
+fmax361601 fma 1 -0 0E-19 -> 0E-19
+fmax361602 fma 1 0 -0E-19 -> 0E-19
+fmax361603 fma 1 -0 -0E-19 -> -0E-19
+fmax361604 fma 1 0E-400 0E-19 -> 0E-398 Clamped
+fmax361605 fma 1 -0E-400 0E-19 -> 0E-398 Clamped
+fmax361606 fma 1 0E-400 -0E-19 -> 0E-398 Clamped
+fmax361607 fma 1 -0E-400 -0E-19 -> -0E-398 Clamped
+-- inexact zeros
+fmax361611 fma 1 1E-401 1E-400 -> 1E-398 Subnormal Inexact Rounded Underflow
+fmax361612 fma 1 -1E-401 1E-400 -> 1E-398 Subnormal Inexact Rounded Underflow
+fmax361613 fma 1 1E-401 -1E-400 -> -0E-398 Subnormal Inexact Rounded Underflow Clamped
+fmax361614 fma 1 -1E-401 -1E-400 -> -0E-398 Subnormal Inexact Rounded Underflow Clamped
+-- some exact zeros from non-zeros
+fmax361615 fma 1 1E-401 1E-401 -> 1E-398 Subnormal Inexact Rounded Underflow
+fmax361616 fma 1 -1E-401 1E-401 -> 0E-398 Clamped
+fmax361617 fma 1 1E-401 -1E-401 -> 0E-398 Clamped
+fmax361618 fma 1 -1E-401 -1E-401 -> -0E-398 Subnormal Inexact Rounded Underflow Clamped
+
+-- and the extra-special ugly case; unusual minuses marked by -- *
+rounding: floor
+-- exact zeros from zeros
+fmax361620 fma 1 0 0E-19 -> 0E-19
+fmax361621 fma 1 -0 0E-19 -> -0E-19 -- *
+fmax361622 fma 1 0 -0E-19 -> -0E-19 -- *
+fmax361623 fma 1 -0 -0E-19 -> -0E-19
+fmax361624 fma 1 0E-400 0E-19 -> 0E-398 Clamped
+fmax361625 fma 1 -0E-400 0E-19 -> -0E-398 Clamped -- *
+fmax361626 fma 1 0E-400 -0E-19 -> -0E-398 Clamped -- *
+fmax361627 fma 1 -0E-400 -0E-19 -> -0E-398 Clamped
+-- inexact zeros
+fmax361631 fma 1 1E-401 1E-400 -> 0E-398 Subnormal Inexact Rounded Underflow Clamped
+fmax361632 fma 1 -1E-401 1E-400 -> 0E-398 Subnormal Inexact Rounded Underflow Clamped
+fmax361633 fma 1 1E-401 -1E-400 -> -1E-398 Subnormal Inexact Rounded Underflow
+fmax361634 fma 1 -1E-401 -1E-400 -> -1E-398 Subnormal Inexact Rounded Underflow
+-- some exact zeros from non-zeros
+fmax361635 fma 1 1E-401 1E-401 -> 0E-398 Subnormal Inexact Rounded Underflow Clamped
+fmax361636 fma 1 -1E-401 1E-401 -> -0E-398 Clamped -- *
+fmax361637 fma 1 1E-401 -1E-401 -> -0E-398 Clamped -- *
+fmax361638 fma 1 -1E-401 -1E-401 -> -1E-398 Subnormal Inexact Rounded Underflow
+
+-- Examples from SQL proposal (Krishna Kulkarni)
+fmax361701 fma 1 130E-2 120E-2 -> 2.50
+fmax361702 fma 1 130E-2 12E-1 -> 2.50
+fmax361703 fma 1 130E-2 1E0 -> 2.30
+fmax361704 fma 1 1E2 1E4 -> 1.01E+4
+fmax361705 subtract 130E-2 120E-2 -> 0.10
+fmax361706 subtract 130E-2 12E-1 -> 0.10
+fmax361707 subtract 130E-2 1E0 -> 0.30
+fmax361708 subtract 1E2 1E4 -> -9.9E+3
+
+-- Gappy coefficients; check residue handling even with full coefficient gap
+rounding: half_even
+
+fmax362001 fma 1 1234567890123456 1 -> 1234567890123457
+fmax362002 fma 1 1234567890123456 0.6 -> 1234567890123457 Inexact Rounded
+fmax362003 fma 1 1234567890123456 0.06 -> 1234567890123456 Inexact Rounded
+fmax362004 fma 1 1234567890123456 6E-3 -> 1234567890123456 Inexact Rounded
+fmax362005 fma 1 1234567890123456 6E-4 -> 1234567890123456 Inexact Rounded
+fmax362006 fma 1 1234567890123456 6E-5 -> 1234567890123456 Inexact Rounded
+fmax362007 fma 1 1234567890123456 6E-6 -> 1234567890123456 Inexact Rounded
+fmax362008 fma 1 1234567890123456 6E-7 -> 1234567890123456 Inexact Rounded
+fmax362009 fma 1 1234567890123456 6E-8 -> 1234567890123456 Inexact Rounded
+fmax362010 fma 1 1234567890123456 6E-9 -> 1234567890123456 Inexact Rounded
+fmax362011 fma 1 1234567890123456 6E-10 -> 1234567890123456 Inexact Rounded
+fmax362012 fma 1 1234567890123456 6E-11 -> 1234567890123456 Inexact Rounded
+fmax362013 fma 1 1234567890123456 6E-12 -> 1234567890123456 Inexact Rounded
+fmax362014 fma 1 1234567890123456 6E-13 -> 1234567890123456 Inexact Rounded
+fmax362015 fma 1 1234567890123456 6E-14 -> 1234567890123456 Inexact Rounded
+fmax362016 fma 1 1234567890123456 6E-15 -> 1234567890123456 Inexact Rounded
+fmax362017 fma 1 1234567890123456 6E-16 -> 1234567890123456 Inexact Rounded
+fmax362018 fma 1 1234567890123456 6E-17 -> 1234567890123456 Inexact Rounded
+fmax362019 fma 1 1234567890123456 6E-18 -> 1234567890123456 Inexact Rounded
+fmax362020 fma 1 1234567890123456 6E-19 -> 1234567890123456 Inexact Rounded
+fmax362021 fma 1 1234567890123456 6E-20 -> 1234567890123456 Inexact Rounded
+
+-- widening second argument at gap
+fmax362030 fma 1 12345678 1 -> 12345679
+fmax362031 fma 1 12345678 0.1 -> 12345678.1
+fmax362032 fma 1 12345678 0.12 -> 12345678.12
+fmax362033 fma 1 12345678 0.123 -> 12345678.123
+fmax362034 fma 1 12345678 0.1234 -> 12345678.1234
+fmax362035 fma 1 12345678 0.12345 -> 12345678.12345
+fmax362036 fma 1 12345678 0.123456 -> 12345678.123456
+fmax362037 fma 1 12345678 0.1234567 -> 12345678.1234567
+fmax362038 fma 1 12345678 0.12345678 -> 12345678.12345678
+fmax362039 fma 1 12345678 0.123456789 -> 12345678.12345679 Inexact Rounded
+fmax362040 fma 1 12345678 0.123456785 -> 12345678.12345678 Inexact Rounded
+fmax362041 fma 1 12345678 0.1234567850 -> 12345678.12345678 Inexact Rounded
+fmax362042 fma 1 12345678 0.1234567851 -> 12345678.12345679 Inexact Rounded
+fmax362043 fma 1 12345678 0.12345678501 -> 12345678.12345679 Inexact Rounded
+fmax362044 fma 1 12345678 0.123456785001 -> 12345678.12345679 Inexact Rounded
+fmax362045 fma 1 12345678 0.1234567850001 -> 12345678.12345679 Inexact Rounded
+fmax362046 fma 1 12345678 0.12345678500001 -> 12345678.12345679 Inexact Rounded
+fmax362047 fma 1 12345678 0.123456785000001 -> 12345678.12345679 Inexact Rounded
+fmax362048 fma 1 12345678 0.1234567850000001 -> 12345678.12345679 Inexact Rounded
+fmax362049 fma 1 12345678 0.1234567850000000 -> 12345678.12345678 Inexact Rounded
+-- 90123456
+rounding: half_even
+fmax362050 fma 1 12345678 0.0234567750000000 -> 12345678.02345678 Inexact Rounded
+fmax362051 fma 1 12345678 0.0034567750000000 -> 12345678.00345678 Inexact Rounded
+fmax362052 fma 1 12345678 0.0004567750000000 -> 12345678.00045678 Inexact Rounded
+fmax362053 fma 1 12345678 0.0000567750000000 -> 12345678.00005678 Inexact Rounded
+fmax362054 fma 1 12345678 0.0000067750000000 -> 12345678.00000678 Inexact Rounded
+fmax362055 fma 1 12345678 0.0000007750000000 -> 12345678.00000078 Inexact Rounded
+fmax362056 fma 1 12345678 0.0000000750000000 -> 12345678.00000008 Inexact Rounded
+fmax362057 fma 1 12345678 0.0000000050000000 -> 12345678.00000000 Inexact Rounded
+fmax362060 fma 1 12345678 0.0234567750000001 -> 12345678.02345678 Inexact Rounded
+fmax362061 fma 1 12345678 0.0034567750000001 -> 12345678.00345678 Inexact Rounded
+fmax362062 fma 1 12345678 0.0004567750000001 -> 12345678.00045678 Inexact Rounded
+fmax362063 fma 1 12345678 0.0000567750000001 -> 12345678.00005678 Inexact Rounded
+fmax362064 fma 1 12345678 0.0000067750000001 -> 12345678.00000678 Inexact Rounded
+fmax362065 fma 1 12345678 0.0000007750000001 -> 12345678.00000078 Inexact Rounded
+fmax362066 fma 1 12345678 0.0000000750000001 -> 12345678.00000008 Inexact Rounded
+fmax362067 fma 1 12345678 0.0000000050000001 -> 12345678.00000001 Inexact Rounded
+-- far-out residues (full coefficient gap is 16+15 digits)
+rounding: up
+fmax362070 fma 1 12345678 1E-8 -> 12345678.00000001
+fmax362071 fma 1 12345678 1E-9 -> 12345678.00000001 Inexact Rounded
+fmax362072 fma 1 12345678 1E-10 -> 12345678.00000001 Inexact Rounded
+fmax362073 fma 1 12345678 1E-11 -> 12345678.00000001 Inexact Rounded
+fmax362074 fma 1 12345678 1E-12 -> 12345678.00000001 Inexact Rounded
+fmax362075 fma 1 12345678 1E-13 -> 12345678.00000001 Inexact Rounded
+fmax362076 fma 1 12345678 1E-14 -> 12345678.00000001 Inexact Rounded
+fmax362077 fma 1 12345678 1E-15 -> 12345678.00000001 Inexact Rounded
+fmax362078 fma 1 12345678 1E-16 -> 12345678.00000001 Inexact Rounded
+fmax362079 fma 1 12345678 1E-17 -> 12345678.00000001 Inexact Rounded
+fmax362080 fma 1 12345678 1E-18 -> 12345678.00000001 Inexact Rounded
+fmax362081 fma 1 12345678 1E-19 -> 12345678.00000001 Inexact Rounded
+fmax362082 fma 1 12345678 1E-20 -> 12345678.00000001 Inexact Rounded
+fmax362083 fma 1 12345678 1E-25 -> 12345678.00000001 Inexact Rounded
+fmax362084 fma 1 12345678 1E-30 -> 12345678.00000001 Inexact Rounded
+fmax362085 fma 1 12345678 1E-31 -> 12345678.00000001 Inexact Rounded
+fmax362086 fma 1 12345678 1E-32 -> 12345678.00000001 Inexact Rounded
+fmax362087 fma 1 12345678 1E-33 -> 12345678.00000001 Inexact Rounded
+fmax362088 fma 1 12345678 1E-34 -> 12345678.00000001 Inexact Rounded
+fmax362089 fma 1 12345678 1E-35 -> 12345678.00000001 Inexact Rounded
+
+-- payload decapitate x3
+precision: 5
+fmax363000 fma 1 1 sNaN1234567890 -> NaN67890 Invalid_operation
+fmax363001 fma 1 -sNaN1234512345 1 -> -NaN12345 Invalid_operation
+fmax363002 fma sNaN1234554321 1 1 -> NaN54321 Invalid_operation
+
+-- Null tests
+fmax39990 fma 1 10 # -> NaN Invalid_operation
+fmax39991 fma 1 # 10 -> NaN Invalid_operation
diff --git a/Lib/test/decimaltestdata/inexact.decTest b/Lib/test/decimaltestdata/inexact.decTest
index 3c435bd..b61c85a 100644
--- a/Lib/test/decimaltestdata/inexact.decTest
+++ b/Lib/test/decimaltestdata/inexact.decTest
@@ -1,6 +1,6 @@
------------------------------------------------------------------------
-- inexact.decTest -- decimal inexact and rounded edge cases --
--- Copyright (c) IBM Corporation, 1981, 2003. All rights reserved. --
+-- Copyright (c) IBM Corporation, 1981, 2007. All rights reserved. --
------------------------------------------------------------------------
-- Please see the document "General Decimal Arithmetic Testcases" --
-- at http://www2.hursley.ibm.com/decimal for the description of --
@@ -17,7 +17,7 @@
-- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK --
-- mfc@uk.ibm.com --
------------------------------------------------------------------------
-version: 2.39
+version: 2.56
extended: 1
precision: 9
diff --git a/Lib/test/decimaltestdata/invert.decTest b/Lib/test/decimaltestdata/invert.decTest
new file mode 100644
index 0000000..19fdeeb
--- /dev/null
+++ b/Lib/test/decimaltestdata/invert.decTest
@@ -0,0 +1,176 @@
+------------------------------------------------------------------------
+-- invert.decTest -- digitwise logical INVERT --
+-- Copyright (c) IBM Corporation, 1981, 2007. All rights reserved. --
+------------------------------------------------------------------------
+-- Please see the document "General Decimal Arithmetic Testcases" --
+-- at http://www2.hursley.ibm.com/decimal for the description of --
+-- these testcases. --
+-- --
+-- These testcases are experimental ('beta' versions), and they --
+-- may contain errors. They are offered on an as-is basis. In --
+-- particular, achieving the same results as the tests here is not --
+-- a guarantee that an implementation complies with any Standard --
+-- or specification. The tests are not exhaustive. --
+-- --
+-- Please send comments, suggestions, and corrections to the author: --
+-- Mike Cowlishaw, IBM Fellow --
+-- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK --
+-- mfc@uk.ibm.com --
+------------------------------------------------------------------------
+version: 2.56
+
+extended: 1
+precision: 9
+rounding: half_up
+maxExponent: 999
+minExponent: -999
+
+-- Sanity check (truth table), and examples from decArith
+invx001 invert 0 -> 111111111
+invx002 invert 1 -> 111111110
+invx003 invert 10 -> 111111101
+invx004 invert 111111111 -> 0
+invx005 invert 000000000 -> 111111111
+invx006 invert 101010101 -> '10101010'
+-- and at msd and msd-1
+invx007 invert 000000000 -> 111111111
+invx009 invert 100000000 -> 11111111
+invx011 invert 000000000 -> 111111111
+invx013 invert 010000000 -> 101111111
+
+-- Various lengths
+-- 123456789 123456789
+invx021 invert 111111111 -> 0
+invx022 invert 111111111111 -> 0
+invx023 invert 11111111 -> 100000000
+invx025 invert 1111111 -> 110000000
+invx026 invert 111111 -> 111000000
+invx027 invert 11111 -> 111100000
+invx028 invert 1111 -> 111110000
+invx029 invert 111 -> 111111000
+invx031 invert 11 -> 111111100
+invx032 invert 1 -> 111111110
+invx033 invert 111111111111 -> 0
+invx034 invert 11111111111 -> 0
+invx035 invert 1111111111 -> 0
+invx036 invert 111111111 -> 0
+
+invx080 invert 011111111 -> 100000000
+invx081 invert 101111111 -> 10000000
+invx082 invert 110111111 -> 1000000
+invx083 invert 111011111 -> 100000
+invx084 invert 111101111 -> 10000
+invx085 invert 111110111 -> 1000
+invx086 invert 111111011 -> 100
+invx087 invert 111111101 -> 10
+invx088 invert 111111110 -> 1
+invx089 invert 011111011 -> 100000100
+invx090 invert 101111101 -> 10000010
+invx091 invert 110111110 -> 1000001
+invx092 invert 111011101 -> 100010
+invx093 invert 111101011 -> 10100
+invx094 invert 111110111 -> 1000
+invx095 invert 111101011 -> 10100
+invx096 invert 111011101 -> 100010
+invx097 invert 110111110 -> 1000001
+invx098 invert 101111101 -> 10000010
+invx099 invert 011111011 -> 100000100
+
+-- non-0/1 should not be accepted, nor should signs
+invx220 invert 111111112 -> NaN Invalid_operation
+invx221 invert 333333333 -> NaN Invalid_operation
+invx222 invert 555555555 -> NaN Invalid_operation
+invx223 invert 777777777 -> NaN Invalid_operation
+invx224 invert 999999999 -> NaN Invalid_operation
+invx225 invert 222222222 -> NaN Invalid_operation
+invx226 invert 444444444 -> NaN Invalid_operation
+invx227 invert 666666666 -> NaN Invalid_operation
+invx228 invert 888888888 -> NaN Invalid_operation
+invx229 invert 999999999 -> NaN Invalid_operation
+invx230 invert 999999999 -> NaN Invalid_operation
+invx231 invert 999999999 -> NaN Invalid_operation
+invx232 invert 999999999 -> NaN Invalid_operation
+-- a few randoms
+invx240 invert 567468689 -> NaN Invalid_operation
+invx241 invert 567367689 -> NaN Invalid_operation
+invx242 invert -631917772 -> NaN Invalid_operation
+invx243 invert -756253257 -> NaN Invalid_operation
+invx244 invert 835590149 -> NaN Invalid_operation
+-- test MSD
+invx250 invert 200000000 -> NaN Invalid_operation
+invx251 invert 300000000 -> NaN Invalid_operation
+invx252 invert 400000000 -> NaN Invalid_operation
+invx253 invert 500000000 -> NaN Invalid_operation
+invx254 invert 600000000 -> NaN Invalid_operation
+invx255 invert 700000000 -> NaN Invalid_operation
+invx256 invert 800000000 -> NaN Invalid_operation
+invx257 invert 900000000 -> NaN Invalid_operation
+-- test MSD-1
+invx270 invert 021000000 -> NaN Invalid_operation
+invx271 invert 030100000 -> NaN Invalid_operation
+invx272 invert 040010000 -> NaN Invalid_operation
+invx273 invert 050001000 -> NaN Invalid_operation
+invx274 invert 160000100 -> NaN Invalid_operation
+invx275 invert 170000010 -> NaN Invalid_operation
+invx276 invert 180000000 -> NaN Invalid_operation
+invx277 invert 190000000 -> NaN Invalid_operation
+-- test LSD
+invx280 invert 000000002 -> NaN Invalid_operation
+invx281 invert 000000003 -> NaN Invalid_operation
+invx282 invert 000000004 -> NaN Invalid_operation
+invx283 invert 000000005 -> NaN Invalid_operation
+invx284 invert 101000006 -> NaN Invalid_operation
+invx285 invert 100100007 -> NaN Invalid_operation
+invx286 invert 100010008 -> NaN Invalid_operation
+invx287 invert 100001009 -> NaN Invalid_operation
+-- test Middie
+invx288 invert 000020000 -> NaN Invalid_operation
+invx289 invert 000030001 -> NaN Invalid_operation
+invx290 invert 000040000 -> NaN Invalid_operation
+invx291 invert 000050000 -> NaN Invalid_operation
+invx292 invert 101060000 -> NaN Invalid_operation
+invx293 invert 100170010 -> NaN Invalid_operation
+invx294 invert 100080100 -> NaN Invalid_operation
+invx295 invert 100091000 -> NaN Invalid_operation
+-- signs
+invx296 invert -100001000 -> NaN Invalid_operation
+invx299 invert 100001000 -> 11110111
+
+-- Nmax, Nmin, Ntiny
+invx341 invert 9.99999999E+999 -> NaN Invalid_operation
+invx342 invert 1E-999 -> NaN Invalid_operation
+invx343 invert 1.00000000E-999 -> NaN Invalid_operation
+invx344 invert 1E-1007 -> NaN Invalid_operation
+invx345 invert -1E-1007 -> NaN Invalid_operation
+invx346 invert -1.00000000E-999 -> NaN Invalid_operation
+invx347 invert -1E-999 -> NaN Invalid_operation
+invx348 invert -9.99999999E+999 -> NaN Invalid_operation
+
+-- A few other non-integers
+invx361 invert 1.0 -> NaN Invalid_operation
+invx362 invert 1E+1 -> NaN Invalid_operation
+invx363 invert 0.0 -> NaN Invalid_operation
+invx364 invert 0E+1 -> NaN Invalid_operation
+invx365 invert 9.9 -> NaN Invalid_operation
+invx366 invert 9E+1 -> NaN Invalid_operation
+
+-- All Specials are in error
+invx788 invert -Inf -> NaN Invalid_operation
+invx794 invert Inf -> NaN Invalid_operation
+invx821 invert NaN -> NaN Invalid_operation
+invx841 invert sNaN -> NaN Invalid_operation
+-- propagating NaNs
+invx861 invert NaN1 -> NaN Invalid_operation
+invx862 invert +NaN2 -> NaN Invalid_operation
+invx863 invert NaN3 -> NaN Invalid_operation
+invx864 invert NaN4 -> NaN Invalid_operation
+invx865 invert NaN5 -> NaN Invalid_operation
+invx871 invert sNaN11 -> NaN Invalid_operation
+invx872 invert sNaN12 -> NaN Invalid_operation
+invx873 invert sNaN13 -> NaN Invalid_operation
+invx874 invert sNaN14 -> NaN Invalid_operation
+invx875 invert sNaN15 -> NaN Invalid_operation
+invx876 invert NaN16 -> NaN Invalid_operation
+invx881 invert +NaN25 -> NaN Invalid_operation
+invx882 invert -NaN26 -> NaN Invalid_operation
+invx883 invert -sNaN27 -> NaN Invalid_operation
diff --git a/Lib/test/decimaltestdata/ln.decTest b/Lib/test/decimaltestdata/ln.decTest
new file mode 100644
index 0000000..44ae4d2
--- /dev/null
+++ b/Lib/test/decimaltestdata/ln.decTest
@@ -0,0 +1,611 @@
+------------------------------------------------------------------------
+-- ln.decTest -- decimal natural logarithm --
+-- Copyright (c) IBM Corporation, 2005, 2007. All rights reserved. --
+------------------------------------------------------------------------
+-- Please see the document "General Decimal Arithmetic Testcases" --
+-- at http://www2.hursley.ibm.com/decimal for the description of --
+-- these testcases. --
+-- --
+-- These testcases are experimental ('beta' versions), and they --
+-- may contain errors. They are offered on an as-is basis. In --
+-- particular, achieving the same results as the tests here is not --
+-- a guarantee that an implementation complies with any Standard --
+-- or specification. The tests are not exhaustive. --
+-- --
+-- Please send comments, suggestions, and corrections to the author: --
+-- Mike Cowlishaw, IBM Fellow --
+-- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK --
+-- mfc@uk.ibm.com --
+------------------------------------------------------------------------
+version: 2.56
+
+extended: 1
+precision: 16
+rounding: half_even
+maxExponent: 384
+minexponent: -383
+
+-- basics (examples in specification)
+precision: 9
+lnxs001 ln 0 -> -Infinity
+lnxs002 ln 1.000 -> 0
+lnxs003 ln 2.71828183 -> 1.00000000 Inexact Rounded
+lnxs004 ln 10 -> 2.30258509 Inexact Rounded
+lnxs005 ln +Infinity -> Infinity
+
+
+-- basics
+precision: 16
+lnx0001 ln 0 -> -Infinity
+lnx0002 ln 1E-9 -> -20.72326583694641 Inexact Rounded
+lnx0003 ln 0.0007 -> -7.264430222920869 Inexact Rounded
+lnx0004 ln 0.1 -> -2.302585092994046 Inexact Rounded
+lnx0005 ln 0.7 -> -0.3566749439387324 Inexact Rounded
+lnx0006 ln 1 -> 0
+lnx0007 ln 1.000 -> 0
+lnx0008 ln 1.5 -> 0.4054651081081644 Inexact Rounded
+lnx0009 ln 2 -> 0.6931471805599453 Inexact Rounded
+lnx0010 ln 2.718281828459045 -> 0.9999999999999999 Inexact Rounded
+lnx0011 ln 2.718281828459046 -> 1.000000000000000 Inexact Rounded
+lnx0012 ln 2.718281828459047 -> 1.000000000000001 Inexact Rounded
+lnx0013 ln 10 -> 2.302585092994046 Inexact Rounded
+lnx0014 ln 10.5 -> 2.351375257163478 Inexact Rounded
+lnx0015 ln 9999 -> 9.210240366975849 Inexact Rounded
+lnx0016 ln 1E6 -> 13.81551055796427 Inexact Rounded
+lnx0017 ln 1E+9 -> 20.72326583694641 Inexact Rounded
+lnx0018 ln +Infinity -> Infinity
+
+-- notable cases
+-- negatives
+lnx0021 ln -1E-9 -> NaN Invalid_operation
+lnx0022 ln -0.0007 -> NaN Invalid_operation
+lnx0023 ln -0.1 -> NaN Invalid_operation
+lnx0024 ln -0.7 -> NaN Invalid_operation
+lnx0025 ln -1 -> NaN Invalid_operation
+lnx0026 ln -1.5 -> NaN Invalid_operation
+lnx0027 ln -2 -> NaN Invalid_operation
+lnx0029 ln -10.5 -> NaN Invalid_operation
+lnx0028 ln -9999 -> NaN Invalid_operation
+lnx0030 ln -2.718281828459045 -> NaN Invalid_operation
+lnx0031 ln -2.718281828459046 -> NaN Invalid_operation
+lnx0032 ln -0 -> -Infinity
+lnx0033 ln -0E+17 -> -Infinity
+lnx0034 ln -0E-17 -> -Infinity
+-- other zeros
+lnx0041 ln 0 -> -Infinity
+lnx0042 ln 0E+17 -> -Infinity
+lnx0043 ln 0E-17 -> -Infinity
+-- infinities
+lnx0045 ln -Infinity -> NaN Invalid_operation
+lnx0046 ln +Infinity -> Infinity
+-- ones
+lnx0050 ln 1 -> 0
+lnx0051 ln 1.0 -> 0
+lnx0052 ln 1.000000000000000 -> 0
+lnx0053 ln 1.000000000000000000 -> 0
+
+-- lower precision basics
+Precision: 7
+lnx0101 ln 0 -> -Infinity
+lnx0102 ln 1E-9 -> -20.72327 Inexact Rounded
+lnx0103 ln 0.0007 -> -7.264430 Inexact Rounded
+lnx0104 ln 0.1 -> -2.302585 Inexact Rounded
+lnx0105 ln 0.7 -> -0.3566749 Inexact Rounded
+lnx0106 ln 1 -> 0
+lnx0107 ln 1.5 -> 0.4054651 Inexact Rounded
+lnx0108 ln 2 -> 0.6931472 Inexact Rounded
+lnx0109 ln 2.718281828459045 -> 1.000000 Inexact Rounded
+lnx0110 ln 2.718281828459046 -> 1.000000 Inexact Rounded
+lnx0111 ln 2.718281828459047 -> 1.000000 Inexact Rounded
+lnx0112 ln 10 -> 2.302585 Inexact Rounded
+lnx0113 ln 10.5 -> 2.351375 Inexact Rounded
+lnx0114 ln 9999 -> 9.210240 Inexact Rounded
+lnx0115 ln 1E6 -> 13.81551 Inexact Rounded
+lnx0116 ln 1E+9 -> 20.72327 Inexact Rounded
+lnx0117 ln +Infinity -> Infinity
+Precision: 2
+lnx0121 ln 0 -> -Infinity
+lnx0122 ln 1E-9 -> -21 Inexact Rounded
+lnx0123 ln 0.0007 -> -7.3 Inexact Rounded
+lnx0124 ln 0.1 -> -2.3 Inexact Rounded
+lnx0125 ln 0.7 -> -0.36 Inexact Rounded
+lnx0126 ln 1 -> 0
+lnx0127 ln 1.5 -> 0.41 Inexact Rounded
+lnx0128 ln 2 -> 0.69 Inexact Rounded
+lnx0129 ln 2.718281828459045 -> 1.0 Inexact Rounded
+lnx0130 ln 2.718281828459046 -> 1.0 Inexact Rounded
+lnx0131 ln 2.718281828459047 -> 1.0 Inexact Rounded
+lnx0132 ln 10 -> 2.3 Inexact Rounded
+lnx0133 ln 10.5 -> 2.4 Inexact Rounded
+lnx0134 ln 9999 -> 9.2 Inexact Rounded
+lnx0135 ln 1E6 -> 14 Inexact Rounded
+lnx0136 ln 1E+9 -> 21 Inexact Rounded
+lnx0137 ln +Infinity -> Infinity
+Precision: 1
+lnx0141 ln 0 -> -Infinity
+lnx0142 ln 1E-9 -> -2E+1 Inexact Rounded
+lnx0143 ln 0.0007 -> -7 Inexact Rounded
+lnx0144 ln 0.1 -> -2 Inexact Rounded
+lnx0145 ln 0.7 -> -0.4 Inexact Rounded
+lnx0146 ln 1 -> 0
+lnx0147 ln 1.5 -> 0.4 Inexact Rounded
+lnx0148 ln 2 -> 0.7 Inexact Rounded
+lnx0149 ln 2.718281828459045 -> 1 Inexact Rounded
+lnx0150 ln 2.718281828459046 -> 1 Inexact Rounded
+lnx0151 ln 2.718281828459047 -> 1 Inexact Rounded
+lnx0152 ln 10 -> 2 Inexact Rounded
+lnx0153 ln 10.5 -> 2 Inexact Rounded
+lnx0154 ln 9999 -> 9 Inexact Rounded
+lnx0155 ln 1E6 -> 1E+1 Inexact Rounded
+lnx0156 ln 1E+9 -> 2E+1 Inexact Rounded
+lnx0157 ln +Infinity -> Infinity
+
+-- group low-precision ln(1)s:
+precision: 1
+lnx0161 ln 1 -> 0
+precision: 2
+lnx0162 ln 1 -> 0
+precision: 3
+lnx0163 ln 1 -> 0
+precision: 4
+lnx0164 ln 1 -> 0
+precision: 5
+lnx0165 ln 1 -> 0
+precision: 6
+lnx0166 ln 1 -> 0
+precision: 7
+lnx0167 ln 1 -> 0
+precision: 8
+lnx0168 ln 1 -> 0
+
+-- edge-test ln(2) and ln(10) in case of lookasides
+precision: 45
+lnx201 ln 2 -> 0.693147180559945309417232121458176568075500134 Inexact Rounded
+lnx202 ln 10 -> 2.30258509299404568401799145468436420760110149 Inexact Rounded
+precision: 44
+lnx203 ln 2 -> 0.69314718055994530941723212145817656807550013 Inexact Rounded
+lnx204 ln 10 -> 2.3025850929940456840179914546843642076011015 Inexact Rounded
+precision: 43
+lnx205 ln 2 -> 0.6931471805599453094172321214581765680755001 Inexact Rounded
+lnx206 ln 10 -> 2.302585092994045684017991454684364207601101 Inexact Rounded
+precision: 42
+lnx207 ln 2 -> 0.693147180559945309417232121458176568075500 Inexact Rounded
+lnx208 ln 10 -> 2.30258509299404568401799145468436420760110 Inexact Rounded
+precision: 41
+lnx209 ln 2 -> 0.69314718055994530941723212145817656807550 Inexact Rounded
+lnx210 ln 10 -> 2.3025850929940456840179914546843642076011 Inexact Rounded
+precision: 40
+lnx211 ln 2 -> 0.6931471805599453094172321214581765680755 Inexact Rounded
+lnx212 ln 10 -> 2.302585092994045684017991454684364207601 Inexact Rounded
+precision: 39
+lnx213 ln 2 -> 0.693147180559945309417232121458176568076 Inexact Rounded
+lnx214 ln 10 -> 2.30258509299404568401799145468436420760 Inexact Rounded
+precision: 38
+lnx215 ln 2 -> 0.69314718055994530941723212145817656808 Inexact Rounded
+lnx216 ln 10 -> 2.3025850929940456840179914546843642076 Inexact Rounded
+precision: 37
+lnx217 ln 2 -> 0.6931471805599453094172321214581765681 Inexact Rounded
+lnx218 ln 10 -> 2.302585092994045684017991454684364208 Inexact Rounded
+precision: 36
+lnx219 ln 2 -> 0.693147180559945309417232121458176568 Inexact Rounded
+lnx220 ln 10 -> 2.30258509299404568401799145468436421 Inexact Rounded
+precision: 35
+lnx221 ln 2 -> 0.69314718055994530941723212145817657 Inexact Rounded
+lnx222 ln 10 -> 2.3025850929940456840179914546843642 Inexact Rounded
+precision: 34
+lnx223 ln 2 -> 0.6931471805599453094172321214581766 Inexact Rounded
+lnx224 ln 10 -> 2.302585092994045684017991454684364 Inexact Rounded
+precision: 33
+lnx225 ln 2 -> 0.693147180559945309417232121458177 Inexact Rounded
+lnx226 ln 10 -> 2.30258509299404568401799145468436 Inexact Rounded
+precision: 32
+lnx227 ln 2 -> 0.69314718055994530941723212145818 Inexact Rounded
+lnx228 ln 10 -> 2.3025850929940456840179914546844 Inexact Rounded
+precision: 31
+lnx229 ln 2 -> 0.6931471805599453094172321214582 Inexact Rounded
+lnx230 ln 10 -> 2.302585092994045684017991454684 Inexact Rounded
+precision: 30
+lnx231 ln 2 -> 0.693147180559945309417232121458 Inexact Rounded
+lnx232 ln 10 -> 2.30258509299404568401799145468 Inexact Rounded
+
+-- extreme input range values
+maxExponent: 384
+minExponent: -383
+Precision: 16
+
+lnx0901 ln 1e-400 -> -921.0340371976183 Inexact Rounded
+lnx0902 ln 1e+400 -> 921.0340371976183 Inexact Rounded
+lnx0903 ln 1e-999999 -> -2302582.790408953 Inexact Rounded
+lnx0904 ln 1e+999999 -> 2302582.790408953 Inexact Rounded
+lnx0905 ln 1e-1000013 -> -2302615.026600255 Inexact Rounded
+lnx0906 ln 2e-1000013 -> -2302614.333453074 Inexact Rounded
+
+lnx0910 ln 9.999999e+999999 -> 2302585.092993946 Inexact Rounded
+lnx0911 ln 9.9999999e+999999 -> 2302585.092994036 Inexact Rounded
+lnx0912 ln 9.99999999e+999999 -> 2302585.092994045 Inexact Rounded
+lnx0913 ln 9.999999999e+999999 -> 2302585.092994046 Inexact Rounded
+lnx0914 ln 9.999999999999e+999999 -> 2302585.092994046 Inexact Rounded
+lnx0915 ln 9.999999999999999e+999999 -> 2302585.092994046 Inexact Rounded
+lnx0916 ln 9.999999999999999999999999e+999999 -> 2302585.092994046 Inexact Rounded
+
+-- randoms
+-- P=50, within 0-999
+Precision: 50
+maxExponent: 384
+minExponent: -383
+lnx1501 ln 0.00098800906574486388604608477869812518857023768951 -> -6.9198186844033787995945147836955586009548513043689 Inexact Rounded
+lnx1502 ln 158.15866624664623070184595045304145949900714987827 -> 5.0635987458895647454907806507503825602758392287684 Inexact Rounded
+lnx1503 ln 0.00565661412059571925040285814021799775249288309321 -> -5.1749297776760632102047540300491550931651318975237 Inexact Rounded
+lnx1504 ln 0.00000006914232532620489602008402091666547903180607 -> -16.487098770877825308138976818688771638172333034347 Inexact Rounded
+lnx1505 ln 0.00025380374621297657504661540749355251231770070723 -> -8.2789492423005003205242162741569033124260321954589 Inexact Rounded
+lnx1506 ln 83.033654063877426261108592599182418953442677554806 -> 4.4192459962647137976949249810815698465031609843669 Inexact Rounded
+lnx1507 ln 0.00000000416863228092481651627734668440663678118729 -> -19.295677845122141772791294599714950175284915666430 Inexact Rounded
+lnx1508 ln 0.00000140847873187820570181214271960511080523457669 -> -13.473000349581967189668305314384952251556809480339 Inexact Rounded
+lnx1509 ln 66.176106555181527101630351127583944689752069132522 -> 4.1923194696232505883666171116966137694013431504252 Inexact Rounded
+lnx1510 ln 0.00000000000009899043487403590900111602024562297908 -> -29.943753166877840985821508112917991506656545174163 Inexact Rounded
+lnx1511 ln 0.00000000000324618296721747097510453388683912733569 -> -26.453541281444586819009546418577507163362590139422 Inexact Rounded
+lnx1512 ln 72.646968818463546449499147579023555008392860423385 -> 4.2856116660689646882852128853423566276718230426479 Inexact Rounded
+lnx1513 ln 0.00000000000000066755483124635612574263153825990523 -> -34.942910142802769319262875080398852491588707172483 Inexact Rounded
+lnx1514 ln 61.002910447202398204114909451851111424657671911002 -> 4.1109215752843377323363182051446177066434038096529 Inexact Rounded
+lnx1515 ln 917.06917611331980999227893584010544542312239174774 -> 6.8211829068303114128752453661946446979787826282907 Inexact Rounded
+lnx1516 ln 0.00000000170823794883673083358549749078972003965194 -> -20.187803436976150477297246666771626827057191023004 Inexact Rounded
+lnx1517 ln 0.53731767845358224445809761315159249898566542910649 -> -0.62116577939968409211736413628236285160048357000961 Inexact Rounded
+lnx1518 ln 0.00000000000000008965291392882804161299758708033373 -> -36.950585970980857376081265073276303670820056916206 Inexact Rounded
+lnx1519 ln 0.00000000006990244916026429904498278982530170295668 -> -23.383920429244457578373523508427783144589480420753 Inexact Rounded
+lnx1520 ln 4.0312542977070300070506064666536478373801988540614 -> 1.3940775676592451945795752796421391871302024763305 Inexact Rounded
+lnx1521 ln 271.84991311551875601432518819562391699324632396423 -> 5.6052501239873862517916679747146539808077431873478 Inexact Rounded
+lnx1522 ln 7.4118671629373864667229445746862314443895404818689 -> 2.0030823863706344628239147639318289961917060121141 Inexact Rounded
+lnx1523 ln 0.00000000000002026311452625364905357321664186034258 -> -31.529974180054438792043856877314043794320951134754 Inexact Rounded
+lnx1524 ln 0.00000000000009563398651261756952398250624737809347 -> -29.978248130576972953141284136962670021368834792579 Inexact Rounded
+lnx1525 ln 0.00000000009556772669409858653026558223465197808991 -> -23.071185939748285541228206161472956661196956741186 Inexact Rounded
+lnx1526 ln 6.8441648298027301292342057248737326152250794026761 -> 1.9233964395801946597272589473417948024361005082908 Inexact Rounded
+lnx1527 ln 0.00000000000073059699884439979394945822035704264577 -> -27.944914388353724718836101828677771967128509603158 Inexact Rounded
+lnx1528 ln 0.00000000000000002610078280419082263138064745416787 -> -38.184566367516207885573773320135965798717120735115 Inexact Rounded
+lnx1529 ln 0.00000000000000000150259517166294243088546806083283 -> -41.039337946266676108538170837580051699618334928421 Inexact Rounded
+lnx1530 ln 0.00000000000000087919160541714580707181969708502091 -> -34.667528818827671507514319744047440696187358676848 Inexact Rounded
+lnx1531 ln 0.00000000000395726725120787763271849577708068584598 -> -26.255467416961357741818735787226671938678424748431 Inexact Rounded
+lnx1532 ln 0.00000000002014334901669366218018377213150715938355 -> -24.628146955635359035289123027319969201693737159108 Inexact Rounded
+lnx1533 ln 0.00000008097927101101093117753938766241442896030637 -> -16.329072628469715178637178365710373398203190937454 Inexact Rounded
+lnx1534 ln 0.00000000000017115834162632864392039668116243984176 -> -29.396187292434898225453626794459285157263177528034 Inexact Rounded
+lnx1535 ln 0.39168317593866334087305459933723864294857086105035 -> -0.93730199062757240485836637306785037368746737693029 Inexact Rounded
+lnx1536 ln 79.335036798971515026519630103325369729637514127617 -> 4.3736798570287828823772149735170431010616961976965 Inexact Rounded
+lnx1537 ln 0.00000000000000056004952129926137413602116591493625 -> -35.118506463181870020730685884333000241039028127213 Inexact Rounded
+lnx1538 ln 0.00000006006035907843890918832481099660639553666078 -> -16.627915795747112566532705974853114454405010472043 Inexact Rounded
+lnx1539 ln 0.00000000085242024937414906371333826574632450587590 -> -20.882941460268101080186482230657774997273494107221 Inexact Rounded
+lnx1540 ln 0.00000000000043671099499262350316173246550771951561 -> -28.459504757285639221776305968469058854558726593945 Inexact Rounded
+
+-- P=34, within 0-999
+Precision: 34
+lnx1201 ln 0.0086732880815927182997566810334394 -> -4.747507311920844752486938187973721 Inexact Rounded
+lnx1202 ln 0.0007104103693460260609792222569854 -> -7.249667769903503023005549250347695 Inexact Rounded
+lnx1203 ln 786.8398945385105190697541493392742 -> 6.668024790031836340471824147010546 Inexact Rounded
+lnx1204 ln 0.7723073620282687656895190171967399 -> -0.2583726708506850868786816238217326 Inexact Rounded
+lnx1205 ln 0.0061057951517197631287183938412200 -> -5.098516933918797347064454103742635 Inexact Rounded
+lnx1206 ln 0.6181379708184393730103917562498745 -> -0.4810435926903365087463387760350021 Inexact Rounded
+lnx1207 ln 09.13888261229039989110753389096760 -> 2.212538125507975574509563027696021 Inexact Rounded
+lnx1208 ln 802.0105417063143696497292158147174 -> 6.687121752052341737234832203350214 Inexact Rounded
+lnx1209 ln 778.7749710387773713523028497333058 -> 6.657722135126935472086625031413031 Inexact Rounded
+lnx1210 ln 0.0024457295895346502513567679390616 -> -6.013411799940245345321348290398517 Inexact Rounded
+lnx1211 ln 0.0000511296947872828310338864217860 -> -9.881145118237281798081573131711636 Inexact Rounded
+lnx1212 ln 0.0000246803508602554924938685155658 -> -10.60950314264825661825360971430218 Inexact Rounded
+lnx1213 ln 9.027898199253511668242977766616082 -> 2.200319582778899029786017830557293 Inexact Rounded
+lnx1214 ln 0.0991812396542505631850692800904188 -> -2.310806398964672258823043180400384 Inexact Rounded
+lnx1215 ln 0.0000000000070238810143028811223924 -> -25.68170519961636647174714538290075 Inexact Rounded
+lnx1216 ln 2.630101665342826494730394729313167 -> 0.9670225014664367465128243039749559 Inexact Rounded
+lnx1217 ln 0.0056878928594359587691526063254683 -> -5.169415422904037819736637399445096 Inexact Rounded
+lnx1218 ln 567.3436047121057843908106573095590 -> 6.340965124964258486463444360787970 Inexact Rounded
+lnx1219 ln 1.199291248124655996614605745649725 -> 0.1817307557425911805765087755675657 Inexact Rounded
+lnx1220 ln 25.02050448582031098696267479135557 -> 3.219695668137659139544178905459317 Inexact Rounded
+lnx1221 ln 0.0000000000009939597023558756961300 -> -27.63707972996537636504396558259058 Inexact Rounded
+lnx1222 ln 0.0000007988551670159429716506430403 -> -14.04008617542597230988198612376415 Inexact Rounded
+lnx1223 ln 4.681515800176129184873770605589795 -> 1.543621946415383338972124445445748 Inexact Rounded
+lnx1224 ln 15.95126669161103011206658749345781 -> 2.769538242479483539275986395443539 Inexact Rounded
+lnx1225 ln 0.0301626783922211213675457279076066 -> -3.501149933677283341023932281826341 Inexact Rounded
+lnx1226 ln 000.0040544064881821770528475185674 -> -5.507950967557021671647165889608324 Inexact Rounded
+lnx1227 ln 29.01617095935593792095913785100360 -> 3.367853293862745651888450004473297 Inexact Rounded
+lnx1228 ln 78.01836167344736733024804243195323 -> 4.356944205055768575987781375003992 Inexact Rounded
+lnx1229 ln 0.0000000096545319316965321158634893 -> -18.45583840160965814462095477365013 Inexact Rounded
+lnx1230 ln 97.95475237720579752770587185074428 -> 4.584505661612812742208619358214729 Inexact Rounded
+lnx1231 ln 528.0609262050423246402564228432371 -> 6.269211667589138113396583894315956 Inexact Rounded
+lnx1232 ln 0.0000002250064349732969696660452972 -> -15.30713683526963996712167701738724 Inexact Rounded
+lnx1233 ln 47.97063637767998658567199049725754 -> 3.870589081585660692195989854842372 Inexact Rounded
+lnx1234 ln 0.0005394311344541432318853513414361 -> -7.524995428393925934087126702974121 Inexact Rounded
+lnx1235 ln 0.0000000090973385649567471674972633 -> -18.51528393158931783447035004125791 Inexact Rounded
+lnx1236 ln 0.0000000000238776490227576197317977 -> -24.45807828188389561331158879207262 Inexact Rounded
+lnx1237 ln 0.0000236587000231921532145326218758 -> -10.65177964499823314952429277979034 Inexact Rounded
+lnx1238 ln 499.1277448846130709827154556125942 -> 6.212862064761427967461188083514774 Inexact Rounded
+lnx1239 ln 0.0000003960192300284787663712417647 -> -14.74180306619298548093697608293284 Inexact Rounded
+lnx1240 ln 41.08268350829477451667228892495136 -> 3.715586706887278039173584859218960 Inexact Rounded
+
+-- P=16, within 0-99
+Precision: 16
+lnx1101 ln 7.964875261033948 -> 2.075041282352241 Inexact Rounded
+lnx1102 ln 13.54527396845394 -> 2.606037701870263 Inexact Rounded
+lnx1103 ln 0.0008026554341331 -> -7.127585034321814 Inexact Rounded
+lnx1104 ln 0.0000030582233261 -> -12.69767642300625 Inexact Rounded
+lnx1105 ln 0.0004477497509672 -> -7.711276073210766 Inexact Rounded
+lnx1106 ln 7.616268622474371 -> 2.030286567675148 Inexact Rounded
+lnx1107 ln 51.58329925806381 -> 3.943197962309569 Inexact Rounded
+lnx1108 ln 0.0018197497951263 -> -6.309056262549345 Inexact Rounded
+lnx1109 ln 2.956282457072984 -> 1.083932552334575 Inexact Rounded
+lnx1110 ln 0.3843325579189906 -> -0.9562470649400558 Inexact Rounded
+lnx1111 ln 0.0074466329265663 -> -4.899993304919237 Inexact Rounded
+lnx1112 ln 0.0003372478532993 -> -7.994692428206378 Inexact Rounded
+lnx1113 ln 0.0084792263167809 -> -4.770136069569271 Inexact Rounded
+lnx1114 ln 5.926756998151102 -> 1.779477182834305 Inexact Rounded
+lnx1115 ln 9.025699152180897 -> 2.200075969604119 Inexact Rounded
+lnx1116 ln 1.910124643533526 -> 0.6471684983238183 Inexact Rounded
+lnx1117 ln 0.8158922711411020 -> -0.2034729533939387 Inexact Rounded
+lnx1118 ln 0.0067080016475322 -> -5.004454189414139 Inexact Rounded
+lnx1119 ln 0.0047583242092716 -> -5.347859729601094 Inexact Rounded
+lnx1120 ln 0.0386647411641339 -> -3.252827175263113 Inexact Rounded
+lnx1121 ln 0.0050226427841761 -> -5.293799032774131 Inexact Rounded
+lnx1122 ln 6.927937541637261 -> 1.935562155866906 Inexact Rounded
+lnx1123 ln 0.0000095745343513 -> -11.55640365579814 Inexact Rounded
+lnx1124 ln 1.602465492956538 -> 0.4715433763243936 Inexact Rounded
+lnx1125 ln 38.98415625087535 -> 3.663155313610213 Inexact Rounded
+lnx1126 ln 5.343182042276734 -> 1.675821363568112 Inexact Rounded
+lnx1127 ln 55.89763703245816 -> 4.023522107934110 Inexact Rounded
+lnx1128 ln 0.7445257810280847 -> -0.2950077988101030 Inexact Rounded
+lnx1129 ln 1.631407314946094 -> 0.4894430257201248 Inexact Rounded
+lnx1130 ln 0.0005462451932602 -> -7.512442611116852 Inexact Rounded
+lnx1131 ln 0.0000864173269362 -> -9.356322359017317 Inexact Rounded
+lnx1132 ln 5.227161719132849 -> 1.653868438439637 Inexact Rounded
+lnx1133 ln 60.57078466941998 -> 4.103812675662452 Inexact Rounded
+lnx1134 ln 0.0992864325333160 -> -2.309746348350318 Inexact Rounded
+lnx1135 ln 09.48564268447325 -> 2.249779359074983 Inexact Rounded
+lnx1136 ln 0.0036106089355634 -> -5.623878840650787 Inexact Rounded
+lnx1137 ln 1.805176865587172 -> 0.5906585734593707 Inexact Rounded
+lnx1138 ln 62.59363259642255 -> 4.136663557220559 Inexact Rounded
+lnx1139 ln 4.373828261137201 -> 1.475638657912000 Inexact Rounded
+lnx1140 ln 0.994483524148738 -> -0.005531747794938690 Inexact Rounded
+
+-- P=7, within 0-9
+Precision: 7
+lnx1001 ln 0.0912025 -> -2.394673 Inexact Rounded
+lnx1002 ln 0.9728626 -> -0.02751242 Inexact Rounded
+lnx1003 ln 0.3886032 -> -0.9451965 Inexact Rounded
+lnx1004 ln 8.798639 -> 2.174597 Inexact Rounded
+lnx1005 ln 2.459121 -> 0.8998040 Inexact Rounded
+lnx1006 ln 2.013193 -> 0.6997220 Inexact Rounded
+lnx1007 ln 9.064857 -> 2.204405 Inexact Rounded
+lnx1008 ln 5.796417 -> 1.757240 Inexact Rounded
+lnx1009 ln 0.1143471 -> -2.168517 Inexact Rounded
+lnx1010 ln 0.5341542 -> -0.6270707 Inexact Rounded
+lnx1011 ln 6.693781 -> 1.901179 Inexact Rounded
+lnx1012 ln 0.0081779 -> -4.806320 Inexact Rounded
+lnx1013 ln 8.313616 -> 2.117895 Inexact Rounded
+lnx1014 ln 3.486925 -> 1.249020 Inexact Rounded
+lnx1015 ln 0.1801401 -> -1.714020 Inexact Rounded
+lnx1016 ln 0.5227148 -> -0.6487193 Inexact Rounded
+lnx1017 ln 7.818111 -> 2.056443 Inexact Rounded
+lnx1018 ln 0.0870671 -> -2.441076 Inexact Rounded
+lnx1019 ln 8.153966 -> 2.098504 Inexact Rounded
+lnx1020 ln 2.040975 -> 0.7134276 Inexact Rounded
+lnx1021 ln 1.481642 -> 0.3931509 Inexact Rounded
+lnx1022 ln 0.2610123 -> -1.343188 Inexact Rounded
+lnx1023 ln 0.466723 -> -0.7620193 Inexact Rounded
+lnx1024 ln 0.0518756 -> -2.958907 Inexact Rounded
+lnx1025 ln 2.056410 -> 0.7209617 Inexact Rounded
+lnx1026 ln 0.181522 -> -1.706378 Inexact Rounded
+lnx1027 ln 0.515551 -> -0.6625190 Inexact Rounded
+lnx1028 ln 8.425089 -> 2.131214 Inexact Rounded
+lnx1029 ln 2.077091 -> 0.7309684 Inexact Rounded
+lnx1030 ln 6.212705 -> 1.826596 Inexact Rounded
+lnx1031 ln 5.729343 -> 1.745601 Inexact Rounded
+lnx1032 ln 4.831251 -> 1.575105 Inexact Rounded
+lnx1033 ln 2.029760 -> 0.7079176 Inexact Rounded
+lnx1034 ln 8.615060 -> 2.153512 Inexact Rounded
+lnx1035 ln 0.0611511 -> -2.794407 Inexact Rounded
+lnx1036 ln 5.195269 -> 1.647748 Inexact Rounded
+lnx1037 ln 9.617686 -> 2.263604 Inexact Rounded
+lnx1038 ln 0.0049382 -> -5.310754 Inexact Rounded
+lnx1039 ln 2.786840 -> 1.024908 Inexact Rounded
+lnx1040 ln 0.0091073 -> -4.698679 Inexact Rounded
+
+-- from here 3-digit tests are based on reverse exp tests
+precision: 9
+rounding: half_even
+maxExponent: 384
+minexponent: -383
+
+lnx001 ln 0 -> -Infinity
+lnx002 ln 0.367879441 -> -1.00000000 Inexact Rounded
+lnx003 ln 1 -> 0
+lnx005 ln 2.71828183 -> 1.00000000 Inexact Rounded
+lnx006 ln 2.00000000 -> 0.693147181 Inexact Rounded
+lnx007 ln +Infinity -> Infinity
+
+-- tiny edge cases
+precision: 7
+lnx011 ln 1.105171 -> 0.1000001 Inexact Rounded
+lnx012 ln 1.010050 -> 0.009999835 Inexact Rounded
+lnx013 ln 1.000010 -> 0.000009999950 Inexact Rounded
+lnx014 ln 1.000001 -> 9.999995E-7 Inexact Rounded
+lnx015 ln 1.000000 -> 0
+
+-- basic e=0, e=1, e=2, e=4, e>=8 cases
+precision: 7
+lnx041 ln 2.718282 -> 1.000000 Inexact Rounded
+lnx042 ln 0.3678794 -> -1.000000 Inexact Rounded
+lnx043 ln 22026.47 -> 10.00000 Inexact Rounded
+lnx044 ln 0.00004539993 -> -10.00000 Inexact Rounded
+lnx045 ln 2.688117E+43 -> 100.0000 Inexact Rounded
+lnx046 ln 3.720076E-44 -> -100.0000 Inexact Rounded
+lnx047 ln Infinity -> Infinity
+lnx048 ln 0E-389 -> -Infinity
+
+-- miscellanea
+precision: 16
+lnx055 ln 2.717658486884572E-236 -> -542.4103112874415 Inexact Rounded
+precision: 17
+lnx056 ln 2.7176584868845721E-236 -> -542.41031128744146 Inexact Rounded
+precision: 18
+lnx057 ln 2.71765848688457211E-236 -> -542.410311287441459 Inexact Rounded
+precision: 19
+lnx058 ln 2.717658486884572112E-236 -> -542.4103112874414592 Inexact Rounded
+precision: 20
+lnx059 ln 2.7176584868845721118E-236 -> -542.41031128744145917 Inexact Rounded
+
+-- inputs ending in ..500.., ..499.., ..100.., ..999.. sequences
+precision: 50
+lnx102 ln 0.9999999100000040499998785000027 -> -9.0000000000000000000000033749953829996446124861750E-8 Inexact Rounded
+precision: 30
+lnx103 ln 0.999999910000004049999878500003 -> -8.99999999999999999999997337499E-8 Inexact Rounded
+precision: 29
+lnx104 ln 0.99999991000000404999987850000 -> -9.0000000000000000000002733750E-8 Inexact Rounded
+precision: 28
+lnx105 ln 0.9999999100000040499998785000 -> -9.000000000000000000000273375E-8 Inexact Rounded
+precision: 27
+lnx106 ln 0.999999910000004049999878500 -> -9.00000000000000000000027338E-8 Inexact Rounded
+precision: 26
+lnx107 ln 0.99999991000000404999987850 -> -9.0000000000000000000002734E-8 Inexact Rounded
+precision: 25
+lnx108 ln 0.9999999100000040499998785 -> -9.000000000000000000000273E-8 Inexact Rounded
+precision: 24
+lnx109 ln 0.999999910000004049999879 -> -8.99999999999999995000027E-8 Inexact Rounded
+precision: 23
+lnx110 ln 0.99999991000000404999988 -> -8.9999999999999998500003E-8 Inexact Rounded
+precision: 22
+lnx111 ln 0.9999999100000040499999 -> -8.999999999999997850000E-8 Inexact Rounded
+precision: 21
+lnx112 ln 0.999999910000004050000 -> -8.99999999999998785000E-8 Inexact Rounded
+precision: 20
+lnx113 ln 0.99999991000000405000 -> -8.9999999999999878500E-8 Inexact Rounded
+precision: 19
+lnx114 ln 0.9999999100000040500 -> -8.999999999999987850E-8 Inexact Rounded
+precision: 18
+lnx115 ln 0.999999910000004050 -> -8.99999999999998785E-8 Inexact Rounded
+-- next may be a > 0.5ulp case; a more precise answer is:
+-- -8.99999999999998784999918E-8
+precision: 17
+lnx116 ln 0.99999991000000405 -> -8.9999999999999878E-8 Inexact Rounded
+precision: 16
+lnx117 ln 0.9999999100000040 -> -9.000000004999988E-8 Inexact Rounded
+precision: 15
+lnx118 ln 0.999999910000004 -> -9.00000000499999E-8 Inexact Rounded
+precision: 14
+lnx119 ln 0.99999991000000 -> -9.0000004050000E-8 Inexact Rounded
+precision: 13
+lnx120 ln 0.9999999100000 -> -9.000000405000E-8 Inexact Rounded
+precision: 12
+lnx121 ln 0.999999910000 -> -9.00000040500E-8 Inexact Rounded
+precision: 11
+lnx122 ln 0.99999991000 -> -9.0000004050E-8 Inexact Rounded
+precision: 10
+lnx123 ln 0.9999999100 -> -9.000000405E-8 Inexact Rounded
+precision: 9
+lnx124 ln 0.999999910 -> -9.00000041E-8 Inexact Rounded
+precision: 8
+lnx125 ln 0.99999991 -> -9.0000004E-8 Inexact Rounded
+precision: 7
+lnx126 ln 0.9999999 -> -1.000000E-7 Inexact Rounded
+precision: 16
+lnx126b ln 0.9999999 -> -1.000000050000003E-7 Inexact Rounded
+precision: 6
+lnx127 ln 0.999999 -> -0.00000100000 Inexact Rounded
+precision: 5
+lnx128 ln 0.99999 -> -0.000010000 Inexact Rounded
+precision: 4
+lnx129 ln 0.9999 -> -0.0001000 Inexact Rounded
+precision: 3
+lnx130 ln 0.999 -> -0.00100 Inexact Rounded
+precision: 2
+lnx131 ln 0.99 -> -0.010 Inexact Rounded
+precision: 1
+lnx132 ln 0.9 -> -0.1 Inexact Rounded
+
+
+-- cases near 1 -- 1 2345678901234567890
+precision: 20
+lnx401 ln 2.7182818284589365041 -> 0.99999999999996000000 Inexact Rounded
+lnx402 ln 2.7182818284589636869 -> 0.99999999999997000000 Inexact Rounded
+lnx403 ln 2.7182818284589908697 -> 0.99999999999997999999 Inexact Rounded
+lnx404 ln 2.7182818284590180525 -> 0.99999999999998999998 Inexact Rounded
+lnx405 ln 2.7182818284590452354 -> 1.0000000000000000000 Inexact Rounded
+lnx406 ln 2.7182818284593170635 -> 1.0000000000001000000 Inexact Rounded
+lnx407 ln 2.7182818284595888917 -> 1.0000000000002000000 Inexact Rounded
+precision: 14
+lnx411 ln 2.7182818284589 -> 0.99999999999995 Inexact Rounded
+lnx413 ln 2.7182818284590 -> 0.99999999999998 Inexact Rounded
+lnx416 ln 2.7182818284591 -> 1.0000000000000 Inexact Rounded
+lnx417 ln 2.7182818284592 -> 1.0000000000001 Inexact Rounded
+
+-- overflows, including some exp overprecise borderlines
+precision: 7
+maxExponent: 384
+minExponent: -383
+lnx709 ln 9.999999E+384 -> 886.4953 Inexact Rounded
+lnx711 ln 9.999992E+384 -> 886.4953 Inexact Rounded
+precision: 16
+lnx722 ln 9.999999999999999E+384 -> 886.4952608027076 Inexact Rounded
+lnx724 ln 9.999999999999917E+384 -> 886.4952608027076 Inexact Rounded
+lnx726 ln 9.999999999999117E+384 -> 886.4952608027075 Inexact Rounded
+-- and more...
+precision: 15
+maxExponent: 999
+minExponent: -999
+lnx731 ln 9.99999999999999E+999 -> 2302.58509299405 Inexact Rounded
+-- next may be a > 0.5ulp case; a more precise answer is:
+-- 2302.58509299404495001799145442
+lnx732 ln 9.99999999999266E+999 -> 2302.58509299404 Inexact Rounded
+lnx733 ln 9.99999999999265E+999 -> 2302.58509299404 Inexact Rounded
+lnx734 ln 9.99999999999264E+999 -> 2302.58509299404 Inexact Rounded
+
+-- subnormals and underflows for exp, including underflow-to-zero edge point
+precision: 7
+maxExponent: 384
+minExponent: -383
+lnx751 ln 0E-389 -> -Infinity
+lnx758 ln 1.000001E-383 -> -881.8901 Inexact Rounded
+lnx759 ln 9.99991E-384 -> -881.8901 Inexact Rounded
+lnx760 ln 4.4605E-385 -> -885.0000 Inexact Rounded
+lnx761 ln 2.221E-386 -> -887.9999 Inexact Rounded
+lnx762 ln 3.01E-387 -> -889.9985 Inexact Rounded
+lnx763 ln 1.7E-388 -> -892.8724 Inexact Rounded
+lnx764 ln 1.5E-388 -> -892.9976 Inexact Rounded
+lnx765 ln 9E-389 -> -893.5084 Inexact Rounded
+lnx766 ln 1E-389 -> -895.7056 Inexact Rounded
+lnx774 ln 0E-389 -> -Infinity
+
+-- special values
+lnx820 ln Infinity -> Infinity
+lnx821 ln 0 -> -Infinity
+lnx822 ln NaN -> NaN
+lnx823 ln sNaN -> NaN Invalid_operation
+-- propagating NaNs
+lnx824 ln sNaN123 -> NaN123 Invalid_operation
+lnx825 ln -sNaN321 -> -NaN321 Invalid_operation
+lnx826 ln NaN456 -> NaN456
+lnx827 ln -NaN654 -> -NaN654
+lnx828 ln NaN1 -> NaN1
+
+-- Invalid operations due to restrictions
+-- [next two probably skipped by most test harnesses]
+precision: 100000000
+lnx901 ln 1 -> NaN Invalid_context
+precision: 99999999
+lnx902 ln 0 -> NaN Invalid_context
+
+precision: 9
+maxExponent: 1000000
+minExponent: -999999
+lnx903 ln 1 -> NaN Invalid_context
+maxExponent: 999999
+minExponent: -999999
+lnx904 ln 0 -> -Infinity
+maxExponent: 999999
+minExponent: -1000000
+lnx905 ln 1 -> NaN Invalid_context
+maxExponent: 999999
+minExponent: -999998
+lnx906 ln 0 -> -Infinity
+
+-- payload decapitate
+precision: 5
+lnx910 ln -sNaN1234567890 -> -NaN67890 Invalid_operation
+
+-- Null test
+lnx900 ln # -> NaN Invalid_operation
+
+
diff --git a/Lib/test/decimaltestdata/log10.decTest b/Lib/test/decimaltestdata/log10.decTest
new file mode 100644
index 0000000..9841acb
--- /dev/null
+++ b/Lib/test/decimaltestdata/log10.decTest
@@ -0,0 +1,551 @@
+------------------------------------------------------------------------
+-- log10.decTest -- decimal logarithm in base 10 --
+-- Copyright (c) IBM Corporation, 2005, 2007. All rights reserved. --
+------------------------------------------------------------------------
+-- Please see the document "General Decimal Arithmetic Testcases" --
+-- at http://www2.hursley.ibm.com/decimal for the description of --
+-- these testcases. --
+-- --
+-- These testcases are experimental ('beta' versions), and they --
+-- may contain errors. They are offered on an as-is basis. In --
+-- particular, achieving the same results as the tests here is not --
+-- a guarantee that an implementation complies with any Standard --
+-- or specification. The tests are not exhaustive. --
+-- --
+-- Please send comments, suggestions, and corrections to the author: --
+-- Mike Cowlishaw, IBM Fellow --
+-- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK --
+-- mfc@uk.ibm.com --
+------------------------------------------------------------------------
+version: 2.56
+
+-- This emphasises the testing of notable cases, as they will often
+-- have unusual paths (especially the 10**n results).
+
+extended: 1
+precision: 16
+rounding: half_even
+maxExponent: 384
+minexponent: -383
+
+-- examples in specification
+precision: 9
+logxs000 log10 0 -> -Infinity
+logxs001 log10 0.001 -> -3
+logxs002 log10 1 -> 0
+logxs003 log10 2 -> 0.301029996 Inexact Rounded
+logxs004 log10 10 -> 1
+logxs005 log10 70 -> 1.84509804 Inexact Rounded
+logxs006 log10 +Infinity -> Infinity
+
+
+-- basics (examples in specification, etc.)
+precision: 16
+logx0000 log10 0 -> -Infinity
+logx0001 log10 7E-1000 -> -999.1549019599857 Inexact Rounded
+logx0002 log10 1.1E-9 -> -8.958607314841775 Inexact Rounded
+logx0003 log10 0.0007 -> -3.154901959985743 Inexact Rounded
+logx0004 log10 0.11 -> -0.9586073148417750 Inexact Rounded
+logx0005 log10 0.7 -> -0.1549019599857432 Inexact Rounded
+logx0006 log10 1 -> 0
+logx0007 log10 1.5 -> 0.1760912590556812 Inexact Rounded
+logx0008 log10 2 -> 0.3010299956639812 Inexact Rounded
+logx0009 log10 2.718281828459045 -> 0.4342944819032518 Inexact Rounded
+logx0010 log10 2.718281828459046 -> 0.4342944819032519 Inexact Rounded
+logx0011 log10 2.718281828459047 -> 0.4342944819032521 Inexact Rounded
+logx0012 log10 7 -> 0.8450980400142568 Inexact Rounded
+logx0013 log10 10 -> 1
+logx0014 log10 10.5 -> 1.021189299069938 Inexact Rounded
+logx0015 log10 11 -> 1.041392685158225 Inexact Rounded
+logx0016 log10 70 -> 1.845098040014257 Inexact Rounded
+logx0017 log10 9999 -> 3.999956568380192 Inexact Rounded
+logx0018 log10 1.21E6 -> 6.082785370316450 Inexact Rounded
+logx0019 log10 1.1E+9 -> 9.041392685158225 Inexact Rounded
+logx0020 log10 7E+1000 -> 1000.845098040014 Inexact Rounded
+logx0021 log10 +Infinity -> Infinity
+
+-- notable cases
+-- negatives
+logx0031 log10 -1E-9 -> NaN Invalid_operation
+logx0032 log10 -0.0007 -> NaN Invalid_operation
+logx0033 log10 -0.1 -> NaN Invalid_operation
+logx0034 log10 -0.7 -> NaN Invalid_operation
+logx0035 log10 -1 -> NaN Invalid_operation
+logx0036 log10 -1.5 -> NaN Invalid_operation
+logx0037 log10 -2 -> NaN Invalid_operation
+logx0038 log10 -10.5 -> NaN Invalid_operation
+logx0039 log10 -10.5 -> NaN Invalid_operation
+logx0040 log10 -9999 -> NaN Invalid_operation
+logx0041 log10 -10 -> NaN Invalid_operation
+logx0042 log10 -0 -> -Infinity
+logx0043 log10 -0E+17 -> -Infinity
+logx0044 log10 -0E-17 -> -Infinity
+-- other zeros
+logx0051 log10 0 -> -Infinity
+logx0052 log10 0E+17 -> -Infinity
+logx0053 log10 0E-17 -> -Infinity
+-- infinities
+logx0055 log10 -Infinity -> NaN Invalid_operation
+logx0056 log10 +Infinity -> Infinity
+-- ones
+logx0061 log10 1 -> 0
+logx0062 log10 1.0 -> 0
+logx0063 log10 1.000000000000000 -> 0
+logx0064 log10 1.000000000000000000 -> 0
+
+-- notable cases -- exact powers of 10
+logx1100 log10 1 -> 0
+logx1101 log10 10 -> 1
+logx1102 log10 100 -> 2
+logx1103 log10 1000 -> 3
+logx1104 log10 10000 -> 4
+logx1105 log10 100000 -> 5
+logx1106 log10 1000000 -> 6
+logx1107 log10 10000000 -> 7
+logx1108 log10 100000000 -> 8
+logx1109 log10 1000000000 -> 9
+logx1110 log10 10000000000 -> 10
+logx1111 log10 100000000000 -> 11
+logx1112 log10 1000000000000 -> 12
+logx1113 log10 0.00000000001 -> -11
+logx1114 log10 0.0000000001 -> -10
+logx1115 log10 0.000000001 -> -9
+logx1116 log10 0.00000001 -> -8
+logx1117 log10 0.0000001 -> -7
+logx1118 log10 0.000001 -> -6
+logx1119 log10 0.00001 -> -5
+logx1120 log10 0.0001 -> -4
+logx1121 log10 0.001 -> -3
+logx1122 log10 0.01 -> -2
+logx1123 log10 0.1 -> -1
+logx1124 log10 1E-99 -> -99
+logx1125 log10 1E-100 -> -100
+logx1126 log10 1E-383 -> -383
+
+-- check normally exact cases round properly
+precision: 1
+logx1141 log10 10000000000 -> 1E+1 Rounded
+logx1142 log10 1000000000000 -> 1E+1 Inexact Rounded
+logx1143 log10 1E+100 -> 1E+2 Rounded
+logx1144 log10 1E+123 -> 1E+2 Inexact Rounded
+logx1145 log10 1E+126 -> 1E+2 Inexact Rounded
+logx1146 log10 1E+916 -> 9E+2 Inexact Rounded
+logx1147 log10 1E+999 -> 1E+3 Inexact Rounded
+
+precision: 2
+logx1151 log10 10000000000 -> 10
+logx1152 log10 1000000000000 -> 12
+logx1153 log10 1E+100 -> 1.0E+2 Rounded
+logx1154 log10 1E+123 -> 1.2E+2 Inexact Rounded
+logx1155 log10 1E+126 -> 1.3E+2 Inexact Rounded
+logx1156 log10 1E+916 -> 9.2E+2 Inexact Rounded
+logx1157 log10 1E+999 -> 1.0E+3 Inexact Rounded
+-- some half-way point rounds, other cases, and negatives
+logx1158 log10 1E+125 -> 1.2E+2 Inexact Rounded
+logx1159 log10 1E+135 -> 1.4E+2 Inexact Rounded
+logx1160 log10 1E+129 -> 1.3E+2 Inexact Rounded
+logx1161 log10 1E+131 -> 1.3E+2 Inexact Rounded
+logx1162 log10 1E-123 -> -1.2E+2 Inexact Rounded
+logx1163 log10 1E-126 -> -1.3E+2 Inexact Rounded
+logx1164 log10 1E-916 -> -9.2E+2 Inexact Rounded
+logx1165 log10 1E-999 -> -1.0E+3 Inexact Rounded
+logx1166 log10 1E-125 -> -1.2E+2 Inexact Rounded
+logx1167 log10 1E-135 -> -1.4E+2 Inexact Rounded
+logx1168 log10 1E-129 -> -1.3E+2 Inexact Rounded
+logx1169 log10 1E-131 -> -1.3E+2 Inexact Rounded
+
+precision: 3
+logx1171 log10 10000000000 -> 10
+logx1172 log10 1000000000000 -> 12
+logx1173 log10 1E+100 -> 100
+logx1174 log10 1E+123 -> 123
+logx1175 log10 1E+126 -> 126
+logx1176 log10 1E+916 -> 916
+logx1177 log10 1E+999 -> 999
+
+-- log10(2) .. tests both ln(2) and ln(10) constants, too
+precision: 50
+logx1201 log10 2 -> 0.30102999566398119521373889472449302676818988146211 Inexact Rounded
+logx1202 log10 2.000 -> 0.30102999566398119521373889472449302676818988146211 Inexact Rounded
+logx1203 log10 0.2E1 -> 0.30102999566398119521373889472449302676818988146211 Inexact Rounded
+precision: 49
+logx1204 log10 2 -> 0.3010299956639811952137388947244930267681898814621 Inexact Rounded
+precision: 48
+logx1205 log10 2 -> 0.301029995663981195213738894724493026768189881462 Inexact Rounded
+precision: 47
+logx1206 log10 2 -> 0.30102999566398119521373889472449302676818988146 Inexact Rounded
+precision: 46
+logx1207 log10 2 -> 0.3010299956639811952137388947244930267681898815 Inexact Rounded
+precision: 45
+logx1208 log10 2 -> 0.301029995663981195213738894724493026768189881 Inexact Rounded
+precision: 44
+logx1209 log10 2 -> 0.30102999566398119521373889472449302676818988 Inexact Rounded
+precision: 43
+logx1210 log10 2 -> 0.3010299956639811952137388947244930267681899 Inexact Rounded
+precision: 42
+logx1211 log10 2 -> 0.301029995663981195213738894724493026768190 Inexact Rounded
+precision: 41
+logx1212 log10 2 -> 0.30102999566398119521373889472449302676819 Inexact Rounded
+precision: 40
+logx1213 log10 2 -> 0.3010299956639811952137388947244930267682 Inexact Rounded
+precision: 39
+logx1214 log10 2 -> 0.301029995663981195213738894724493026768 Inexact Rounded
+precision: 38
+logx1215 log10 2 -> 0.30102999566398119521373889472449302677 Inexact Rounded
+precision: 37
+logx1216 log10 2 -> 0.3010299956639811952137388947244930268 Inexact Rounded
+precision: 36
+logx1217 log10 2 -> 0.301029995663981195213738894724493027 Inexact Rounded
+precision: 35
+logx1218 log10 2 -> 0.30102999566398119521373889472449303 Inexact Rounded
+precision: 34
+logx1219 log10 2 -> 0.3010299956639811952137388947244930 Inexact Rounded
+precision: 33
+logx1220 log10 2 -> 0.301029995663981195213738894724493 Inexact Rounded
+precision: 32
+logx1221 log10 2 -> 0.30102999566398119521373889472449 Inexact Rounded
+precision: 31
+logx1222 log10 2 -> 0.3010299956639811952137388947245 Inexact Rounded
+precision: 30
+logx1223 log10 2 -> 0.301029995663981195213738894724 Inexact Rounded
+precision: 29
+logx1224 log10 2 -> 0.30102999566398119521373889472 Inexact Rounded
+precision: 28
+logx1225 log10 2 -> 0.3010299956639811952137388947 Inexact Rounded
+precision: 27
+logx1226 log10 2 -> 0.301029995663981195213738895 Inexact Rounded
+precision: 26
+logx1227 log10 2 -> 0.30102999566398119521373889 Inexact Rounded
+precision: 25
+logx1228 log10 2 -> 0.3010299956639811952137389 Inexact Rounded
+precision: 24
+logx1229 log10 2 -> 0.301029995663981195213739 Inexact Rounded
+precision: 23
+logx1230 log10 2 -> 0.30102999566398119521374 Inexact Rounded
+precision: 22
+logx1231 log10 2 -> 0.3010299956639811952137 Inexact Rounded
+precision: 21
+logx1232 log10 2 -> 0.301029995663981195214 Inexact Rounded
+precision: 20
+logx1233 log10 2 -> 0.30102999566398119521 Inexact Rounded
+precision: 19
+logx1234 log10 2 -> 0.3010299956639811952 Inexact Rounded
+precision: 18
+logx1235 log10 2 -> 0.301029995663981195 Inexact Rounded
+precision: 17
+logx1236 log10 2 -> 0.30102999566398120 Inexact Rounded
+precision: 16
+logx1237 log10 2 -> 0.3010299956639812 Inexact Rounded
+precision: 15
+logx1238 log10 2 -> 0.301029995663981 Inexact Rounded
+precision: 14
+logx1239 log10 2 -> 0.30102999566398 Inexact Rounded
+precision: 13
+logx1240 log10 2 -> 0.3010299956640 Inexact Rounded
+precision: 12
+logx1241 log10 2 -> 0.301029995664 Inexact Rounded
+precision: 11
+logx1242 log10 2 -> 0.30102999566 Inexact Rounded
+precision: 10
+logx1243 log10 2 -> 0.3010299957 Inexact Rounded
+precision: 9
+logx1244 log10 2 -> 0.301029996 Inexact Rounded
+precision: 8
+logx1245 log10 2 -> 0.30103000 Inexact Rounded
+precision: 7
+logx1246 log10 2 -> 0.3010300 Inexact Rounded
+precision: 6
+logx1247 log10 2 -> 0.301030 Inexact Rounded
+precision: 5
+logx1248 log10 2 -> 0.30103 Inexact Rounded
+precision: 4
+logx1249 log10 2 -> 0.3010 Inexact Rounded
+precision: 3
+logx1250 log10 2 -> 0.301 Inexact Rounded
+precision: 2
+logx1251 log10 2 -> 0.30 Inexact Rounded
+precision: 1
+logx1252 log10 2 -> 0.3 Inexact Rounded
+
+maxExponent: 384
+minExponent: -383
+precision: 16
+rounding: half_even
+
+-- More close-to-e, etc., tests
+precision: 34
+logx1301 log10 2.718281828459045235360287471352661 -> 0.4342944819032518276511289189166048 Inexact Rounded
+logx1302 log10 2.718281828459045235360287471352662 -> 0.4342944819032518276511289189166050 Inexact Rounded
+logx1303 log10 2.718281828459045235360287471352663 -> 0.4342944819032518276511289189166052 Inexact Rounded
+logx1304 log10 0.99999999999999999999999999999999 -> -4.342944819032518276511289189166073E-33 Inexact Rounded
+logx1305 log10 0.999999999999999999999999999999999 -> -4.342944819032518276511289189166053E-34 Inexact Rounded
+logx1306 log10 0.9999999999999999999999999999999999 -> -4.342944819032518276511289189166051E-35 Inexact Rounded
+logx1307 log10 1.000000000000000000000000000000000 -> 0
+logx1308 log10 1.0000000000000000000000000000000001 -> 4.342944819032518276511289189166051E-35 Inexact Rounded
+logx1309 log10 1.000000000000000000000000000000001 -> 4.342944819032518276511289189166049E-34 Inexact Rounded
+logx1310 log10 1.00000000000000000000000000000001 -> 4.342944819032518276511289189166029E-33 Inexact Rounded
+-- lower p
+precision: 7
+logx1320 log10 0.999999 -> -4.342947E-7 Inexact Rounded
+logx1321 log10 0.9999999 -> -4.342945E-8 Inexact Rounded
+logx1322 log10 0.99999999 -> -4.342945E-9 Inexact Rounded
+logx1323 log10 0.999999999 -> -4.342945E-10 Inexact Rounded
+logx1324 log10 1.00000000 -> 0
+logx1325 log10 1.00000001 -> 4.342945E-9 Inexact Rounded
+logx1326 log10 1.0000001 -> 4.342945E-8 Inexact Rounded
+logx1327 log10 1.000001 -> 4.342943E-7 Inexact Rounded
+
+-- near 10^3
+precision: 9
+logx1331 log10 999.9999998 -> 3.00000000 Inexact Rounded
+logx1332 log10 999.9999999 -> 3.00000000 Inexact Rounded
+logx1333 log10 1000.000000 -> 3
+logx1334 log10 1000.000001 -> 3.00000000 Inexact Rounded
+logx1335 log10 1000.000002 -> 3.00000000 Inexact Rounded
+precision: 16
+logx1341 log10 999.9999998 -> 2.999999999913141 Inexact Rounded
+logx1342 log10 999.9999999 -> 2.999999999956571 Inexact Rounded
+logx1343 log10 1000.000000 -> 3
+logx1344 log10 1000.000001 -> 3.000000000434294 Inexact Rounded
+logx1345 log10 1000.000002 -> 3.000000000868589 Inexact Rounded
+
+-- suggestions from Ilan Nehama
+logx1400 log10 10E-3 -> -2
+logx1401 log10 10E-2 -> -1
+logx1402 log10 100E-2 -> 0
+logx1403 log10 1000E-2 -> 1
+logx1404 log10 10000E-2 -> 2
+logx1405 log10 10E-1 -> 0
+logx1406 log10 100E-1 -> 1
+logx1407 log10 1000E-1 -> 2
+logx1408 log10 10000E-1 -> 3
+logx1409 log10 10E0 -> 1
+logx1410 log10 100E0 -> 2
+logx1411 log10 1000E0 -> 3
+logx1412 log10 10000E0 -> 4
+logx1413 log10 10E1 -> 2
+logx1414 log10 100E1 -> 3
+logx1415 log10 1000E1 -> 4
+logx1416 log10 10000E1 -> 5
+logx1417 log10 10E2 -> 3
+logx1418 log10 100E2 -> 4
+logx1419 log10 1000E2 -> 5
+logx1420 log10 10000E2 -> 6
+
+-- Randoms
+-- P=50, within 0-9999
+Precision: 50
+logx2501 log10 0.00035448001667968141775891246991912655961163345904 -> -3.4504082425411775290864053318247274944685586188505 Inexact Rounded
+logx2502 log10 70.636455726424311228255338637935330826995136597644 -> 1.8490288998408492045793070255302335558140975719247 Inexact Rounded
+logx2503 log10 0.00000000000000233550362473821889060812804063040169 -> -14.631619454343834858023578299142866557717904223667 Inexact Rounded
+logx2504 log10 97.783628621523244679901260358286898958832135433764 -> 1.9902661493224219517897657964362571690592734407330 Inexact Rounded
+logx2505 log10 0062.2377135315858392802612812022807838599572017342 -> 1.7940536293085066199287632725026837018486533544141 Inexact Rounded
+logx2506 log10 6.3767634652071053619977602804724129652981747879532 -> 0.80460030789825961615100163576080761326857374098644 Inexact Rounded
+logx2507 log10 63.297088981313278529306533814195068850532666658798 -> 1.8013837373724427092417170149098614410849353839673 Inexact Rounded
+logx2508 log10 0.00000077239693316881797717820110898167721602299187 -> -6.1121594592718550613773886241951966264826760310047 Inexact Rounded
+logx2509 log10 0.00000003953580359780185534830572461922527831395002 -> -7.4030094293833847136252547069905477213541787177561 Inexact Rounded
+logx2510 log10 754.62905817369989169188998111527272688791544577204 -> 2.8777335243761300047758534304371912099958057545416 Inexact Rounded
+logx2511 log10 0.00000048360378410241428936607147056283282849158312 -> -6.3155103095309353457604038397980091650760346334512 Inexact Rounded
+logx2512 log10 0.00007509037583645612577196104591672080542932166089 -> -4.1244157219700166314012344705538088030592896111026 Inexact Rounded
+logx2513 log10 0.00000000000705475944638915053419839063567898092064 -> -11.151517790256466048553810002525868198178167950377 Inexact Rounded
+logx2514 log10 9.6210300460497657917445410947099633479609165120661 -> 0.98322157093260978206633922877716078683518617768411 Inexact Rounded
+logx2515 log10 0.00000000050150361386555527496607245976120864985611 -> -9.2997259330798261040411086835563234390934934629340 Inexact Rounded
+logx2516 log10 098.24754029731994125797723545333677604490074810751 -> 1.9923216862874337077795278629351060819105679670633 Inexact Rounded
+logx2517 log10 7.5091998150046994320441463854301624742491015752980 -> 0.87559366078005924080766469158763499725414024128781 Inexact Rounded
+logx2518 log10 0.00000000000079540571273330075193668596942268542425 -> -12.099411294165176028817305108475326325006250936963 Inexact Rounded
+logx2519 log10 0.00000042395034799555215782907515074134154915491701 -> -6.3726850039125381134069450802108893075604464135297 Inexact Rounded
+logx2520 log10 56.683376304674355481905023145238799909301732694982 -> 1.7534557107853480435703421826077606250636580091754 Inexact Rounded
+logx2521 log10 48.734033811444195070807606721517169810438049581227 -> 1.6878323602741065190942654710049433808208291564049 Inexact Rounded
+logx2522 log10 0.00074830310930046865009851706989430228561880221063 -> -3.1259224502209974082223667712016445572431791920618 Inexact Rounded
+logx2523 log10 36.677348885111593384020836720396262497122708598359 -> 1.5643979364260796086754530282302605477567469395425 Inexact Rounded
+logx2524 log10 0.00000000000000004495678560480432858812419145833744 -> -16.347204748239740510014320630363244015916029619561 Inexact Rounded
+logx2525 log10 9509.5854013650642799374159131940108748594774307104 -> 3.9781615829916326741100166519726824430945406302661 Inexact Rounded
+logx2526 log10 0.07834891268689177014044454793608715276615743819097 -> -1.1059670262197643147805517398621288897669876996348 Inexact Rounded
+logx2527 log10 0.00000029584529880706128444454688454999032801904794 -> -6.5289353275814043710076526920566721570375026917206 Inexact Rounded
+logx2528 log10 3.0713496544497618098794332787772186176981011904294 -> 0.48732926103896828546424341029492468100431414072994 Inexact Rounded
+logx2529 log10 352.66392670788816474407442785460803833927136413943 -> 2.5473610388199562714709836398243933320284077008314 Inexact Rounded
+logx2530 log10 0.00304743125181876267210516527361742185617091801650 -> -2.5160660830163981967774124745311497447050056400207 Inexact Rounded
+logx2531 log10 0.00000076120535894952136499250364604538117729437183 -> -6.1184981629047051532448413863950776496652483019415 Inexact Rounded
+logx2532 log10 769.88795978534353052965286195053735007473187735815 -> 2.8864275277862652709986498581064117950288798222100 Inexact Rounded
+logx2533 log10 0.00000000000000041297494808612226304619570016336188 -> -15.384076292745415917510668454361868659468669804710 Inexact Rounded
+logx2534 log10 860.88864595714426940247940960258558876903741966974 -> 2.9349469800554277915920278090647283233440859155176 Inexact Rounded
+logx2535 log10 5839.0328812994787235900178587371051096898683972444 -> 3.7663409208972392569269125539438874737147906238543 Inexact Rounded
+logx2536 log10 0.00000028532710151284840471670497112821201598377841 -> -6.5446569753514027675878879843238065488490618159490 Inexact Rounded
+logx2537 log10 0.00000000000000009734490059931638483445631835651581 -> -16.011686794011271135978633880864278692254243106931 Inexact Rounded
+logx2538 log10 5.8610949526439529489252302463450302981511714144330 -> 0.76797875722452549281028552067645732490929361952278 Inexact Rounded
+logx2539 log10 6.6282432221115923372151148990137179611977576327206 -> 0.82139843639227213211012044000785757267155736071361 Inexact Rounded
+logx2540 log10 0.00000000001994071862386846626954819923923344413454 -> -10.700259194632339980266559224447212260115021637626 Inexact Rounded
+
+-- P=34, within 0-9999
+Precision: 34
+logx2201 log10 1.522513203889714179088327328864183 -> 0.1825610677098896250496651330492109 Inexact Rounded
+logx2202 log10 0.171123774769717316154080888930404 -> -0.7666896483548462582461898092764408 Inexact Rounded
+logx2203 log10 0.0000000997467236251714283104963838 -> -7.001101360652518274271569010312115 Inexact Rounded
+logx2204 log10 0.0008856103624122479769647543468633 -> -3.052757310476070891830490327138190 Inexact Rounded
+logx2205 log10 1.938274868738032930709498221236758 -> 0.2874153648259449520201536171714594 Inexact Rounded
+logx2206 log10 479.5667847823826713082613445010097 -> 2.680849095850361068709165157286435 Inexact Rounded
+logx2207 log10 8856.136599178820202141823157336804 -> 3.947244306584767101480454261950559 Inexact Rounded
+logx2208 log10 0.0000911026318801903982642871344858 -> -4.040469076434979398438617464033826 Inexact Rounded
+logx2209 log10 0.0000000000017271112650427414732630 -> -11.76267968314038748995178212654921 Inexact Rounded
+logx2210 log10 6.962605370078885647639503548229695 -> 0.8427717807200322352686396925992250 Inexact Rounded
+logx2211 log10 0.3354804428992793132855923541692781 -> -0.4743327923012159170967636070844834 Inexact Rounded
+logx2212 log10 2.079864257474859008252165836663504 -> 0.3180349916198059046812506741388856 Inexact Rounded
+logx2213 log10 2805.479529292939499220276986621988 -> 3.448007104139974344565978780624744 Inexact Rounded
+logx2214 log10 66.45731133034187374557028537213949 -> 1.822542767005644041661520936223086 Inexact Rounded
+logx2215 log10 0.0000001206521261762681738274822835 -> -6.918465020390216969561494755767318 Inexact Rounded
+logx2216 log10 0.0000000001884891916264401160472381 -> -9.724713548119065386091933007528633 Inexact Rounded
+logx2217 log10 0.0000015467279551726326581314582759 -> -5.810586065070435383755759514608738 Inexact Rounded
+logx2218 log10 0.0090776316728068586744633914135952 -> -2.042027442843745884503280954390114 Inexact Rounded
+logx2219 log10 0.0000000000024541106528713393740030 -> -11.61010585935635713090119156069479 Inexact Rounded
+logx2220 log10 14.12936879385863410081087750645856 -> 1.150122760895466989841057385742662 Inexact Rounded
+logx2221 log10 0.0000036912481831392922922647231392 -> -5.432826753789892283556211380824203 Inexact Rounded
+logx2222 log10 0.0000000004067477525420424270138734 -> -9.390674838050073122857868012475060 Inexact Rounded
+logx2223 log10 7080.122562705399744969319589806194 -> 3.850040775747103318724330047546916 Inexact Rounded
+logx2224 log10 261.3491411363679209175524790255725 -> 2.417221077227536319655699517530855 Inexact Rounded
+logx2225 log10 003.9945581449915240094728380041494 -> 0.6014687471531988260823066997845691 Inexact Rounded
+logx2226 log10 0.0000000000583549164588495206767840 -> -10.23392254834182677023231713519341 Inexact Rounded
+logx2227 log10 9567.961832607240278342761088487484 -> 3.980819434211107631569386147016368 Inexact Rounded
+logx2228 log10 06.26592979160342972777219828867033 -> 0.7969855243966221408595024012574729 Inexact Rounded
+logx2229 log10 0.0000000000589847046598067273287319 -> -10.22926059078206218717755253582907 Inexact Rounded
+logx2230 log10 567.9388648235589204769442863724997 -> 2.754301589058313576472380262907638 Inexact Rounded
+logx2231 log10 039.7790325480037778918162264883415 -> 1.599654216592019199639285308997886 Inexact Rounded
+logx2232 log10 0.0000000005123951921894162149817207 -> -9.290394953898862694847327137242690 Inexact Rounded
+logx2233 log10 0.0000000000038500999723636904276723 -> -11.41452799337924056186867324854691 Inexact Rounded
+logx2234 log10 0.0006726500658977759825616537935864 -> -3.172210810922768725687671849421792 Inexact Rounded
+logx2235 log10 260.2400250475967528429943779126507 -> 2.415374092073799204236801383070064 Inexact Rounded
+logx2236 log10 0.0000000006101942339385102585042548 -> -9.214531900562046557191261226632509 Inexact Rounded
+logx2237 log10 0.0000000010846867501382746760066557 -> -8.964695664883282406359874242387236 Inexact Rounded
+logx2238 log10 60.24078375568814769010333711509928 -> 1.779890613567084253168373266648922 Inexact Rounded
+logx2239 log10 0.0012058738711757669337600252986093 -> -2.918698115012605915753728220896010 Inexact Rounded
+logx2240 log10 230.9450930197841600611503095185600 -> 2.363508739056822846742942599628966 Inexact Rounded
+
+-- P=16, within 0-999
+Precision: 16
+logx2101 log10 0.0072067119605184 -> -2.142262835573038 Inexact Rounded
+logx2102 log10 503.6828482226624 -> 2.702157162195652 Inexact Rounded
+logx2103 log10 64.96074447821815 -> 1.812650993464174 Inexact Rounded
+logx2104 log10 48.75408597467246 -> 1.688011018842600 Inexact Rounded
+logx2105 log10 0.0329009839269587 -> -1.482791113975280 Inexact Rounded
+logx2106 log10 223.5320415060633 -> 2.349339784523410 Inexact Rounded
+logx2107 log10 73.12765002292194 -> 1.864081617476268 Inexact Rounded
+logx2108 log10 487.3749378358509 -> 2.687863192802252 Inexact Rounded
+logx2109 log10 0.0000019671987621 -> -5.706151757557926 Inexact Rounded
+logx2110 log10 0.0570680660609784 -> -1.243606844697873 Inexact Rounded
+logx2111 log10 33.10311638788998 -> 1.519868880976773 Inexact Rounded
+logx2112 log10 0.0687382699187077 -> -1.162801402868185 Inexact Rounded
+logx2113 log10 258.9416193626484 -> 2.413201859654145 Inexact Rounded
+logx2114 log10 0.0005306100136736 -> -3.275224558269725 Inexact Rounded
+logx2115 log10 65.78490393408572 -> 1.818126244825109 Inexact Rounded
+logx2116 log10 504.2328842073510 -> 2.702631165346958 Inexact Rounded
+logx2117 log10 9.417432755815027 -> 0.9739325278524503 Inexact Rounded
+logx2118 log10 006.7054835355498 -> 0.8264301004947640 Inexact Rounded
+logx2119 log10 0.0917012272363915 -> -1.037624852133399 Inexact Rounded
+logx2120 log10 5.959404385244921 -> 0.7752028561953401 Inexact Rounded
+logx2121 log10 0.0001209759148486 -> -3.917301084968903 Inexact Rounded
+logx2122 log10 0.0004706112139838 -> -3.327337728428039 Inexact Rounded
+logx2123 log10 0.0069700457377046 -> -2.156764372035771 Inexact Rounded
+logx2124 log10 0.5155584569852619 -> -0.2877220847805025 Inexact Rounded
+logx2125 log10 88.06005885607414 -> 1.944778971389913 Inexact Rounded
+logx2126 log10 0.0448240038219866 -> -1.348489353509709 Inexact Rounded
+logx2127 log10 3.419622484059565 -> 0.5339781639101145 Inexact Rounded
+logx2128 log10 5.171123353858721 -> 0.7135848977142854 Inexact Rounded
+logx2129 log10 0.0002133188319807 -> -3.670970802945872 Inexact Rounded
+logx2130 log10 46.21086703136966 -> 1.664744117045149 Inexact Rounded
+logx2131 log10 0.0000631053714415 -> -4.199933672639880 Inexact Rounded
+logx2132 log10 78.66019196870698 -> 1.895755001962469 Inexact Rounded
+logx2133 log10 0.0007152278351188 -> -3.145555592082297 Inexact Rounded
+logx2134 log10 45.52509819928536 -> 1.658250891256892 Inexact Rounded
+logx2135 log10 0.0000703227795740 -> -4.152903971697183 Inexact Rounded
+logx2136 log10 26.24438641426669 -> 1.419036423550599 Inexact Rounded
+logx2137 log10 0.0000044654829535 -> -5.350131564166817 Inexact Rounded
+logx2138 log10 0.7360702733062529 -> -0.1330807211893611 Inexact Rounded
+logx2139 log10 8.417059176469655 -> 0.9251603805112778 Inexact Rounded
+logx2140 log10 0.0002926570767968 -> -3.533640969664818 Inexact Rounded
+
+-- P=7, within 0-99
+Precision: 7
+logx2001 log10 57.26089 -> 1.757858 Inexact Rounded
+logx2002 log10 0.0575421 -> -1.240014 Inexact Rounded
+logx2003 log10 0.5918465 -> -0.2277909 Inexact Rounded
+logx2004 log10 0.0068776 -> -2.162563 Inexact Rounded
+logx2005 log10 0.0066833 -> -2.175009 Inexact Rounded
+logx2006 log10 9.926963 -> 0.9968164 Inexact Rounded
+logx2007 log10 0.0041852 -> -2.378284 Inexact Rounded
+logx2008 log10 84.15412 -> 1.925075 Inexact Rounded
+logx2009 log10 2.466856 -> 0.3921438 Inexact Rounded
+logx2010 log10 0.0058047 -> -2.236220 Inexact Rounded
+logx2011 log10 9.885154 -> 0.9949834 Inexact Rounded
+logx2012 log10 0.6667654 -> -0.1760269 Inexact Rounded
+logx2013 log10 34.65736 -> 1.539795 Inexact Rounded
+logx2014 log10 0.0026884 -> -2.570506 Inexact Rounded
+logx2015 log10 0.0432767 -> -1.363746 Inexact Rounded
+logx2016 log10 66.01407 -> 1.819637 Inexact Rounded
+logx2017 log10 0.0070572 -> -2.151368 Inexact Rounded
+logx2018 log10 0.0731613 -> -1.135719 Inexact Rounded
+logx2019 log10 9.838983 -> 0.9929502 Inexact Rounded
+logx2020 log10 15.89696 -> 1.201314 Inexact Rounded
+logx2021 log10 8.459247 -> 0.9273317 Inexact Rounded
+logx2022 log10 0.0010873 -> -2.963651 Inexact Rounded
+logx2023 log10 0.6498619 -> -0.1871789 Inexact Rounded
+logx2024 log10 0.0847008 -> -1.072112 Inexact Rounded
+logx2025 log10 0.0075489 -> -2.122116 Inexact Rounded
+logx2026 log10 51.11152 -> 1.708519 Inexact Rounded
+logx2027 log10 0.7233866 -> -0.1406295 Inexact Rounded
+logx2028 log10 2.254721 -> 0.3530928 Inexact Rounded
+logx2029 log10 6.568444 -> 0.8174625 Inexact Rounded
+logx2030 log10 83.72639 -> 1.922862 Inexact Rounded
+logx2031 log10 6.720585 -> 0.8274071 Inexact Rounded
+logx2032 log10 87.90366 -> 1.944007 Inexact Rounded
+logx2033 log10 0.0433324 -> -1.363187 Inexact Rounded
+logx2034 log10 34.63912 -> 1.539567 Inexact Rounded
+logx2035 log10 0.8089059 -> -0.09210200 Inexact Rounded
+logx2036 log10 7.793405 -> 0.8917272 Inexact Rounded
+logx2037 log10 0.0041757 -> -2.379271 Inexact Rounded
+logx2038 log10 7.135417 -> 0.8534194 Inexact Rounded
+logx2039 log10 12.49570 -> 1.096761 Inexact Rounded
+logx2040 log10 6.356276 -> 0.8032027 Inexact Rounded
+
+--------
+maxExponent: 384
+minExponent: -383
+precision: 16
+rounding: half_even
+
+-- special values
+logx820 log10 Infinity -> Infinity
+logx821 log10 0 -> -Infinity
+logx822 log10 NaN -> NaN
+logx823 log10 sNaN -> NaN Invalid_operation
+-- propagating NaNs
+logx824 log10 sNaN123 -> NaN123 Invalid_operation
+logx825 log10 -sNaN321 -> -NaN321 Invalid_operation
+logx826 log10 NaN456 -> NaN456
+logx827 log10 -NaN654 -> -NaN654
+logx828 log10 NaN1 -> NaN1
+
+
+-- Invalid operations due to restrictions
+-- [next two probably skipped by most test harnesses]
+precision: 100000000
+logx901 log10 1 -> NaN Invalid_context
+precision: 99999999
+logx902 log10 0 -> NaN Invalid_context
+
+precision: 9
+maxExponent: 1000000
+minExponent: -999999
+logx903 log10 1 -> NaN Invalid_context
+maxExponent: 999999
+minExponent: -999999
+logx904 log10 0 -> -Infinity
+maxExponent: 999999
+minExponent: -1000000
+logx905 log10 1 -> NaN Invalid_context
+maxExponent: 999999
+minExponent: -999998
+logx906 log10 0 -> -Infinity
+
+-- Null test
+logx900 log10 # -> NaN Invalid_operation
+
+
diff --git a/Lib/test/decimaltestdata/logb.decTest b/Lib/test/decimaltestdata/logb.decTest
new file mode 100644
index 0000000..577f7a4
--- /dev/null
+++ b/Lib/test/decimaltestdata/logb.decTest
@@ -0,0 +1,162 @@
+------------------------------------------------------------------------
+-- logb.decTest -- return integral adjusted exponent as per 754r --
+-- Copyright (c) IBM Corporation, 2005, 2007. All rights reserved. --
+------------------------------------------------------------------------
+-- Please see the document "General Decimal Arithmetic Testcases" --
+-- at http://www2.hursley.ibm.com/decimal for the description of --
+-- these testcases. --
+-- --
+-- These testcases are experimental ('beta' versions), and they --
+-- may contain errors. They are offered on an as-is basis. In --
+-- particular, achieving the same results as the tests here is not --
+-- a guarantee that an implementation complies with any Standard --
+-- or specification. The tests are not exhaustive. --
+-- --
+-- Please send comments, suggestions, and corrections to the author: --
+-- Mike Cowlishaw, IBM Fellow --
+-- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK --
+-- mfc@uk.ibm.com --
+------------------------------------------------------------------------
+version: 2.56
+
+-- This emphasises the testing of notable cases, as they will often
+-- have unusual paths (especially the 10**n results).
+
+extended: 1
+rounding: half_even
+maxExponent: 999
+minexponent: -999
+
+-- basics & examples
+precision: 9
+logbx001 logb 0 -> -Infinity Division_by_zero
+logbx002 logb 1E-999 -> -999
+logbx003 logb 9E-999 -> -999
+logbx004 logb 0.001 -> -3
+logbx005 logb 0.03 -> -2
+logbx006 logb 1 -> 0
+logbx007 logb 2 -> 0
+logbx008 logb 2.5 -> 0
+logbx009 logb 2.50 -> 0
+logbx010 logb 10 -> 1
+logbx011 logb 70 -> 1
+logbx012 logb 100 -> 2
+logbx013 logb 250 -> 2
+logbx014 logb +Infinity -> Infinity
+
+-- negatives are treated as positives
+logbx021 logb -0 -> -Infinity Division_by_zero
+logbx022 logb -1E-999 -> -999
+logbx023 logb -9E-999 -> -999
+logbx024 logb -0.001 -> -3
+logbx025 logb -1 -> 0
+logbx026 logb -2 -> 0
+logbx027 logb -10 -> 1
+logbx028 logb -70 -> 1
+logbx029 logb -100 -> 2
+logbx030 logb -100000000 -> 8
+logbx031 logb -Infinity -> Infinity
+
+-- zeros
+logbx111 logb 0 -> -Infinity Division_by_zero
+logbx112 logb -0 -> -Infinity Division_by_zero
+logbx113 logb 0E+4 -> -Infinity Division_by_zero
+logbx114 logb -0E+4 -> -Infinity Division_by_zero
+logbx115 logb 0.0000 -> -Infinity Division_by_zero
+logbx116 logb -0.0000 -> -Infinity Division_by_zero
+logbx117 logb 0E-141 -> -Infinity Division_by_zero
+logbx118 logb -0E-141 -> -Infinity Division_by_zero
+
+-- full coefficients, alternating bits
+logbx121 logb 268268268 -> 8
+logbx122 logb -268268268 -> 8
+logbx123 logb 134134134 -> 8
+logbx124 logb -134134134 -> 8
+
+-- Nmax, Nmin, Ntiny
+logbx131 logb 9.99999999E+999 -> 999
+logbx132 logb 1E-999 -> -999
+logbx133 logb 1.00000000E-999 -> -999
+logbx134 logb 1E-1007 -> -1007
+
+logbx135 logb -1E-1007 -> -1007
+logbx136 logb -1.00000000E-999 -> -999
+logbx137 logb -1E-999 -> -999
+logbx138 logb -9.99999999E+999 -> 999
+
+-- ones
+logbx0061 logb 1 -> 0
+logbx0062 logb 1.0 -> 0
+logbx0063 logb 1.000000000000000 -> 0
+logbx0064 logb 1.000000000000000000 -> 0
+
+-- notable cases -- exact powers of 10
+logbx1100 logb 1 -> 0
+logbx1101 logb 10 -> 1
+logbx1102 logb 100 -> 2
+logbx1103 logb 1000 -> 3
+logbx1104 logb 10000 -> 4
+logbx1105 logb 100000 -> 5
+logbx1106 logb 1000000 -> 6
+logbx1107 logb 10000000 -> 7
+logbx1108 logb 100000000 -> 8
+logbx1109 logb 1000000000 -> 9
+logbx1110 logb 10000000000 -> 10
+logbx1111 logb 100000000000 -> 11
+logbx1112 logb 1000000000000 -> 12
+logbx1113 logb 0.00000000001 -> -11
+logbx1114 logb 0.0000000001 -> -10
+logbx1115 logb 0.000000001 -> -9
+logbx1116 logb 0.00000001 -> -8
+logbx1117 logb 0.0000001 -> -7
+logbx1118 logb 0.000001 -> -6
+logbx1119 logb 0.00001 -> -5
+logbx1120 logb 0.0001 -> -4
+logbx1121 logb 0.001 -> -3
+logbx1122 logb 0.01 -> -2
+logbx1123 logb 0.1 -> -1
+logbx1124 logb 1E-99 -> -99
+logbx1125 logb 1E-100 -> -100
+logbx1126 logb 1E-383 -> -383
+logbx1127 logb 1E-999 -> -999
+
+-- suggestions from Ilan Nehama
+logbx1400 logb 10E-3 -> -2
+logbx1401 logb 10E-2 -> -1
+logbx1402 logb 100E-2 -> 0
+logbx1403 logb 1000E-2 -> 1
+logbx1404 logb 10000E-2 -> 2
+logbx1405 logb 10E-1 -> 0
+logbx1406 logb 100E-1 -> 1
+logbx1407 logb 1000E-1 -> 2
+logbx1408 logb 10000E-1 -> 3
+logbx1409 logb 10E0 -> 1
+logbx1410 logb 100E0 -> 2
+logbx1411 logb 1000E0 -> 3
+logbx1412 logb 10000E0 -> 4
+logbx1413 logb 10E1 -> 2
+logbx1414 logb 100E1 -> 3
+logbx1415 logb 1000E1 -> 4
+logbx1416 logb 10000E1 -> 5
+logbx1417 logb 10E2 -> 3
+logbx1418 logb 100E2 -> 4
+logbx1419 logb 1000E2 -> 5
+logbx1420 logb 10000E2 -> 6
+
+-- special values
+logbx820 logb Infinity -> Infinity
+logbx821 logb -Infinity -> Infinity
+logbx822 logb 0 -> -Infinity Division_by_zero
+logbx823 logb NaN -> NaN
+logbx824 logb sNaN -> NaN Invalid_operation
+-- propagating NaNs
+logbx825 logb sNaN123 -> NaN123 Invalid_operation
+logbx826 logb -sNaN321 -> -NaN321 Invalid_operation
+logbx827 logb NaN456 -> NaN456
+logbx828 logb -NaN654 -> -NaN654
+logbx829 logb NaN1 -> NaN1
+
+-- Null test
+logbx900 logb # -> NaN Invalid_operation
+
+
diff --git a/Lib/test/decimaltestdata/max.decTest b/Lib/test/decimaltestdata/max.decTest
index 9798ae2..88d0b5e 100644
--- a/Lib/test/decimaltestdata/max.decTest
+++ b/Lib/test/decimaltestdata/max.decTest
@@ -1,6 +1,6 @@
------------------------------------------------------------------------
-- max.decTest -- decimal maximum --
--- Copyright (c) IBM Corporation, 1981, 2004. All rights reserved. --
+-- Copyright (c) IBM Corporation, 1981, 2007. All rights reserved. --
------------------------------------------------------------------------
-- Please see the document "General Decimal Arithmetic Testcases" --
-- at http://www2.hursley.ibm.com/decimal for the description of --
@@ -17,7 +17,7 @@
-- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK --
-- mfc@uk.ibm.com --
------------------------------------------------------------------------
-version: 2.39
+version: 2.56
-- we assume that base comparison is tested in compare.decTest, so
-- these mainly cover special cases and rounding
@@ -331,6 +331,33 @@ maxx465 max -1E+3 1000 -> 1000
maxx466 max -1000 -1E+3 -> -1000
maxx467 max -1E+3 -1000 -> -1000
+-- rounding (results treated as though plus)
+maxexponent: 999999999
+minexponent: -999999999
+precision: 3
+
+maxx470 max 1 .5 -> 1
+maxx471 max 10 5 -> 10
+maxx472 max 100 50 -> 100
+maxx473 max 1000 500 -> 1.00E+3 Rounded
+maxx474 max 10000 5000 -> 1.00E+4 Rounded
+maxx475 max 6 .5 -> 6
+maxx476 max 66 5 -> 66
+maxx477 max 666 50 -> 666
+maxx478 max 6666 500 -> 6.67E+3 Rounded Inexact
+maxx479 max 66666 5000 -> 6.67E+4 Rounded Inexact
+maxx480 max 33333 5000 -> 3.33E+4 Rounded Inexact
+maxx481 max .5 1 -> 1
+maxx482 max .5 10 -> 10
+maxx483 max .5 100 -> 100
+maxx484 max .5 1000 -> 1.00E+3 Rounded
+maxx485 max .5 10000 -> 1.00E+4 Rounded
+maxx486 max .5 6 -> 6
+maxx487 max .5 66 -> 66
+maxx488 max .5 666 -> 666
+maxx489 max .5 6666 -> 6.67E+3 Rounded Inexact
+maxx490 max .5 66666 -> 6.67E+4 Rounded Inexact
+maxx491 max .5 33333 -> 3.33E+4 Rounded Inexact
-- overflow tests
maxexponent: 999999999
@@ -348,13 +375,13 @@ maxx511 max 0.1E-999 0 -> 1E-1000 Subnormal
maxx512 max 0.10E-999 0 -> 1.0E-1000 Subnormal
maxx513 max 0.100E-999 0 -> 1.0E-1000 Subnormal Rounded
maxx514 max 0.01E-999 0 -> 1E-1001 Subnormal
--- next is rounded to Emin
+-- next is rounded to Nmin
maxx515 max 0.999E-999 0 -> 1.00E-999 Inexact Rounded Subnormal Underflow
maxx516 max 0.099E-999 0 -> 1.0E-1000 Inexact Rounded Subnormal Underflow
maxx517 max 0.009E-999 0 -> 1E-1001 Inexact Rounded Subnormal Underflow
-maxx518 max 0.001E-999 0 -> 0E-1001 Inexact Rounded Subnormal Underflow
-maxx519 max 0.0009E-999 0 -> 0E-1001 Inexact Rounded Subnormal Underflow
-maxx520 max 0.0001E-999 0 -> 0E-1001 Inexact Rounded Subnormal Underflow
+maxx518 max 0.001E-999 0 -> 0E-1001 Inexact Rounded Subnormal Underflow Clamped
+maxx519 max 0.0009E-999 0 -> 0E-1001 Inexact Rounded Subnormal Underflow Clamped
+maxx520 max 0.0001E-999 0 -> 0E-1001 Inexact Rounded Subnormal Underflow Clamped
maxx530 max -1.00E-999 0 -> 0
maxx531 max -0.1E-999 0 -> 0
@@ -368,6 +395,27 @@ maxx538 max -0.001E-999 0 -> 0
maxx539 max -0.0009E-999 0 -> 0
maxx540 max -0.0001E-999 0 -> 0
+-- misalignment traps for little-endian
+precision: 9
+maxx551 max 1.0 0.1 -> 1.0
+maxx552 max 0.1 1.0 -> 1.0
+maxx553 max 10.0 0.1 -> 10.0
+maxx554 max 0.1 10.0 -> 10.0
+maxx555 max 100 1.0 -> 100
+maxx556 max 1.0 100 -> 100
+maxx557 max 1000 10.0 -> 1000
+maxx558 max 10.0 1000 -> 1000
+maxx559 max 10000 100.0 -> 10000
+maxx560 max 100.0 10000 -> 10000
+maxx661 max 100000 1000.0 -> 100000
+maxx662 max 1000.0 100000 -> 100000
+maxx663 max 1000000 10000.0 -> 1000000
+maxx664 max 10000.0 1000000 -> 1000000
+
+-- payload decapitate
+precision: 5
+maxx670 max 11 -sNaN12345678901 -> -NaN78901 Invalid_operation
+
-- Null tests
maxx900 max 10 # -> NaN Invalid_operation
maxx901 max # 10 -> NaN Invalid_operation
diff --git a/Lib/test/decimaltestdata/maxmag.decTest b/Lib/test/decimaltestdata/maxmag.decTest
new file mode 100644
index 0000000..b14d015
--- /dev/null
+++ b/Lib/test/decimaltestdata/maxmag.decTest
@@ -0,0 +1,404 @@
+------------------------------------------------------------------------
+-- maxmag.decTest -- decimal maximum by magnitude --
+-- Copyright (c) IBM Corporation, 1981, 2007. All rights reserved. --
+------------------------------------------------------------------------
+-- Please see the document "General Decimal Arithmetic Testcases" --
+-- at http://www2.hursley.ibm.com/decimal for the description of --
+-- these testcases. --
+-- --
+-- These testcases are experimental ('beta' versions), and they --
+-- may contain errors. They are offered on an as-is basis. In --
+-- particular, achieving the same results as the tests here is not --
+-- a guarantee that an implementation complies with any Standard --
+-- or specification. The tests are not exhaustive. --
+-- --
+-- Please send comments, suggestions, and corrections to the author: --
+-- Mike Cowlishaw, IBM Fellow --
+-- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK --
+-- mfc@uk.ibm.com --
+------------------------------------------------------------------------
+version: 2.56
+
+-- we assume that base comparison is tested in compare.decTest, so
+-- these mainly cover special cases and rounding
+
+extended: 1
+precision: 9
+rounding: half_up
+maxExponent: 384
+minexponent: -383
+
+-- sanity checks
+mxgx001 maxmag -2 -2 -> -2
+mxgx002 maxmag -2 -1 -> -2
+mxgx003 maxmag -2 0 -> -2
+mxgx004 maxmag -2 1 -> -2
+mxgx005 maxmag -2 2 -> 2
+mxgx006 maxmag -1 -2 -> -2
+mxgx007 maxmag -1 -1 -> -1
+mxgx008 maxmag -1 0 -> -1
+mxgx009 maxmag -1 1 -> 1
+mxgx010 maxmag -1 2 -> 2
+mxgx011 maxmag 0 -2 -> -2
+mxgx012 maxmag 0 -1 -> -1
+mxgx013 maxmag 0 0 -> 0
+mxgx014 maxmag 0 1 -> 1
+mxgx015 maxmag 0 2 -> 2
+mxgx016 maxmag 1 -2 -> -2
+mxgx017 maxmag 1 -1 -> 1
+mxgx018 maxmag 1 0 -> 1
+mxgx019 maxmag 1 1 -> 1
+mxgx020 maxmag 1 2 -> 2
+mxgx021 maxmag 2 -2 -> 2
+mxgx022 maxmag 2 -1 -> 2
+mxgx023 maxmag 2 0 -> 2
+mxgx025 maxmag 2 1 -> 2
+mxgx026 maxmag 2 2 -> 2
+
+-- extended zeros
+mxgx030 maxmag 0 0 -> 0
+mxgx031 maxmag 0 -0 -> 0
+mxgx032 maxmag 0 -0.0 -> 0
+mxgx033 maxmag 0 0.0 -> 0
+mxgx034 maxmag -0 0 -> 0 -- note: -0 = 0, but 0 chosen
+mxgx035 maxmag -0 -0 -> -0
+mxgx036 maxmag -0 -0.0 -> -0.0
+mxgx037 maxmag -0 0.0 -> 0.0
+mxgx038 maxmag 0.0 0 -> 0
+mxgx039 maxmag 0.0 -0 -> 0.0
+mxgx040 maxmag 0.0 -0.0 -> 0.0
+mxgx041 maxmag 0.0 0.0 -> 0.0
+mxgx042 maxmag -0.0 0 -> 0
+mxgx043 maxmag -0.0 -0 -> -0.0
+mxgx044 maxmag -0.0 -0.0 -> -0.0
+mxgx045 maxmag -0.0 0.0 -> 0.0
+
+mxgx050 maxmag -0E1 0E1 -> 0E+1
+mxgx051 maxmag -0E2 0E2 -> 0E+2
+mxgx052 maxmag -0E2 0E1 -> 0E+1
+mxgx053 maxmag -0E1 0E2 -> 0E+2
+mxgx054 maxmag 0E1 -0E1 -> 0E+1
+mxgx055 maxmag 0E2 -0E2 -> 0E+2
+mxgx056 maxmag 0E2 -0E1 -> 0E+2
+mxgx057 maxmag 0E1 -0E2 -> 0E+1
+
+mxgx058 maxmag 0E1 0E1 -> 0E+1
+mxgx059 maxmag 0E2 0E2 -> 0E+2
+mxgx060 maxmag 0E2 0E1 -> 0E+2
+mxgx061 maxmag 0E1 0E2 -> 0E+2
+mxgx062 maxmag -0E1 -0E1 -> -0E+1
+mxgx063 maxmag -0E2 -0E2 -> -0E+2
+mxgx064 maxmag -0E2 -0E1 -> -0E+1
+mxgx065 maxmag -0E1 -0E2 -> -0E+1
+
+-- Specials
+precision: 9
+mxgx090 maxmag Inf -Inf -> Infinity
+mxgx091 maxmag Inf -1000 -> Infinity
+mxgx092 maxmag Inf -1 -> Infinity
+mxgx093 maxmag Inf -0 -> Infinity
+mxgx094 maxmag Inf 0 -> Infinity
+mxgx095 maxmag Inf 1 -> Infinity
+mxgx096 maxmag Inf 1000 -> Infinity
+mxgx097 maxmag Inf Inf -> Infinity
+mxgx098 maxmag -1000 Inf -> Infinity
+mxgx099 maxmag -Inf Inf -> Infinity
+mxgx100 maxmag -1 Inf -> Infinity
+mxgx101 maxmag -0 Inf -> Infinity
+mxgx102 maxmag 0 Inf -> Infinity
+mxgx103 maxmag 1 Inf -> Infinity
+mxgx104 maxmag 1000 Inf -> Infinity
+mxgx105 maxmag Inf Inf -> Infinity
+
+mxgx120 maxmag -Inf -Inf -> -Infinity
+mxgx121 maxmag -Inf -1000 -> -Infinity
+mxgx122 maxmag -Inf -1 -> -Infinity
+mxgx123 maxmag -Inf -0 -> -Infinity
+mxgx124 maxmag -Inf 0 -> -Infinity
+mxgx125 maxmag -Inf 1 -> -Infinity
+mxgx126 maxmag -Inf 1000 -> -Infinity
+mxgx127 maxmag -Inf Inf -> Infinity
+mxgx128 maxmag -Inf -Inf -> -Infinity
+mxgx129 maxmag -1000 -Inf -> -Infinity
+mxgx130 maxmag -1 -Inf -> -Infinity
+mxgx131 maxmag -0 -Inf -> -Infinity
+mxgx132 maxmag 0 -Inf -> -Infinity
+mxgx133 maxmag 1 -Inf -> -Infinity
+mxgx134 maxmag 1000 -Inf -> -Infinity
+mxgx135 maxmag Inf -Inf -> Infinity
+
+-- 2004.08.02 754r chooses number over NaN in mixed cases
+mxgx141 maxmag NaN -Inf -> -Infinity
+mxgx142 maxmag NaN -1000 -> -1000
+mxgx143 maxmag NaN -1 -> -1
+mxgx144 maxmag NaN -0 -> -0
+mxgx145 maxmag NaN 0 -> 0
+mxgx146 maxmag NaN 1 -> 1
+mxgx147 maxmag NaN 1000 -> 1000
+mxgx148 maxmag NaN Inf -> Infinity
+mxgx149 maxmag NaN NaN -> NaN
+mxgx150 maxmag -Inf NaN -> -Infinity
+mxgx151 maxmag -1000 NaN -> -1000
+mxgx152 maxmag -1 NaN -> -1
+mxgx153 maxmag -0 NaN -> -0
+mxgx154 maxmag 0 NaN -> 0
+mxgx155 maxmag 1 NaN -> 1
+mxgx156 maxmag 1000 NaN -> 1000
+mxgx157 maxmag Inf NaN -> Infinity
+
+mxgx161 maxmag sNaN -Inf -> NaN Invalid_operation
+mxgx162 maxmag sNaN -1000 -> NaN Invalid_operation
+mxgx163 maxmag sNaN -1 -> NaN Invalid_operation
+mxgx164 maxmag sNaN -0 -> NaN Invalid_operation
+mxgx165 maxmag sNaN 0 -> NaN Invalid_operation
+mxgx166 maxmag sNaN 1 -> NaN Invalid_operation
+mxgx167 maxmag sNaN 1000 -> NaN Invalid_operation
+mxgx168 maxmag sNaN NaN -> NaN Invalid_operation
+mxgx169 maxmag sNaN sNaN -> NaN Invalid_operation
+mxgx170 maxmag NaN sNaN -> NaN Invalid_operation
+mxgx171 maxmag -Inf sNaN -> NaN Invalid_operation
+mxgx172 maxmag -1000 sNaN -> NaN Invalid_operation
+mxgx173 maxmag -1 sNaN -> NaN Invalid_operation
+mxgx174 maxmag -0 sNaN -> NaN Invalid_operation
+mxgx175 maxmag 0 sNaN -> NaN Invalid_operation
+mxgx176 maxmag 1 sNaN -> NaN Invalid_operation
+mxgx177 maxmag 1000 sNaN -> NaN Invalid_operation
+mxgx178 maxmag Inf sNaN -> NaN Invalid_operation
+mxgx179 maxmag NaN sNaN -> NaN Invalid_operation
+
+-- propagating NaNs
+mxgx181 maxmag NaN9 -Inf -> -Infinity
+mxgx182 maxmag NaN8 9 -> 9
+mxgx183 maxmag -NaN7 Inf -> Infinity
+
+mxgx184 maxmag -NaN1 NaN11 -> -NaN1
+mxgx185 maxmag NaN2 NaN12 -> NaN2
+mxgx186 maxmag -NaN13 -NaN7 -> -NaN13
+mxgx187 maxmag NaN14 -NaN5 -> NaN14
+
+mxgx188 maxmag -Inf NaN4 -> -Infinity
+mxgx189 maxmag -9 -NaN3 -> -9
+mxgx190 maxmag Inf NaN2 -> Infinity
+
+mxgx191 maxmag sNaN99 -Inf -> NaN99 Invalid_operation
+mxgx192 maxmag sNaN98 -1 -> NaN98 Invalid_operation
+mxgx193 maxmag -sNaN97 NaN -> -NaN97 Invalid_operation
+mxgx194 maxmag sNaN96 sNaN94 -> NaN96 Invalid_operation
+mxgx195 maxmag NaN95 sNaN93 -> NaN93 Invalid_operation
+mxgx196 maxmag -Inf sNaN92 -> NaN92 Invalid_operation
+mxgx197 maxmag 0 sNaN91 -> NaN91 Invalid_operation
+mxgx198 maxmag Inf -sNaN90 -> -NaN90 Invalid_operation
+mxgx199 maxmag NaN sNaN89 -> NaN89 Invalid_operation
+
+-- rounding checks
+maxexponent: 999
+minexponent: -999
+precision: 9
+mxgx201 maxmag 12345678000 1 -> 1.23456780E+10 Rounded
+mxgx202 maxmag 1 12345678000 -> 1.23456780E+10 Rounded
+mxgx203 maxmag 1234567800 1 -> 1.23456780E+9 Rounded
+mxgx204 maxmag 1 1234567800 -> 1.23456780E+9 Rounded
+mxgx205 maxmag 1234567890 1 -> 1.23456789E+9 Rounded
+mxgx206 maxmag 1 1234567890 -> 1.23456789E+9 Rounded
+mxgx207 maxmag 1234567891 1 -> 1.23456789E+9 Inexact Rounded
+mxgx208 maxmag 1 1234567891 -> 1.23456789E+9 Inexact Rounded
+mxgx209 maxmag 12345678901 1 -> 1.23456789E+10 Inexact Rounded
+mxgx210 maxmag 1 12345678901 -> 1.23456789E+10 Inexact Rounded
+mxgx211 maxmag 1234567896 1 -> 1.23456790E+9 Inexact Rounded
+mxgx212 maxmag 1 1234567896 -> 1.23456790E+9 Inexact Rounded
+mxgx213 maxmag -1234567891 1 -> -1.23456789E+9 Inexact Rounded
+mxgx214 maxmag 1 -1234567891 -> -1.23456789E+9 Inexact Rounded
+mxgx215 maxmag -12345678901 1 -> -1.23456789E+10 Inexact Rounded
+mxgx216 maxmag 1 -12345678901 -> -1.23456789E+10 Inexact Rounded
+mxgx217 maxmag -1234567896 1 -> -1.23456790E+9 Inexact Rounded
+mxgx218 maxmag 1 -1234567896 -> -1.23456790E+9 Inexact Rounded
+
+precision: 15
+mxgx221 maxmag 12345678000 1 -> 12345678000
+mxgx222 maxmag 1 12345678000 -> 12345678000
+mxgx223 maxmag 1234567800 1 -> 1234567800
+mxgx224 maxmag 1 1234567800 -> 1234567800
+mxgx225 maxmag 1234567890 1 -> 1234567890
+mxgx226 maxmag 1 1234567890 -> 1234567890
+mxgx227 maxmag 1234567891 1 -> 1234567891
+mxgx228 maxmag 1 1234567891 -> 1234567891
+mxgx229 maxmag 12345678901 1 -> 12345678901
+mxgx230 maxmag 1 12345678901 -> 12345678901
+mxgx231 maxmag 1234567896 1 -> 1234567896
+mxgx232 maxmag 1 1234567896 -> 1234567896
+mxgx233 maxmag -1234567891 1 -> -1234567891
+mxgx234 maxmag 1 -1234567891 -> -1234567891
+mxgx235 maxmag -12345678901 1 -> -12345678901
+mxgx236 maxmag 1 -12345678901 -> -12345678901
+mxgx237 maxmag -1234567896 1 -> -1234567896
+mxgx238 maxmag 1 -1234567896 -> -1234567896
+
+-- from examples
+mxgx280 maxmag '3' '2' -> '3'
+mxgx281 maxmag '-10' '3' -> '-10'
+mxgx282 maxmag '1.0' '1' -> '1'
+mxgx283 maxmag '1' '1.0' -> '1'
+mxgx284 maxmag '7' 'NaN' -> '7'
+
+-- overflow and underflow tests ...
+maxExponent: 999999999
+minexponent: -999999999
+mxgx330 maxmag +1.23456789012345E-0 9E+999999999 -> 9E+999999999
+mxgx331 maxmag 9E+999999999 +1.23456789012345E-0 -> 9E+999999999
+mxgx332 maxmag +0.100 9E-999999999 -> 0.100
+mxgx333 maxmag 9E-999999999 +0.100 -> 0.100
+mxgx335 maxmag -1.23456789012345E-0 9E+999999999 -> 9E+999999999
+mxgx336 maxmag 9E+999999999 -1.23456789012345E-0 -> 9E+999999999
+mxgx337 maxmag -0.100 9E-999999999 -> -0.100
+mxgx338 maxmag 9E-999999999 -0.100 -> -0.100
+
+mxgx339 maxmag 1e-599999999 1e-400000001 -> 1E-400000001
+mxgx340 maxmag 1e-599999999 1e-400000000 -> 1E-400000000
+mxgx341 maxmag 1e-600000000 1e-400000000 -> 1E-400000000
+mxgx342 maxmag 9e-999999998 0.01 -> 0.01
+mxgx343 maxmag 9e-999999998 0.1 -> 0.1
+mxgx344 maxmag 0.01 9e-999999998 -> 0.01
+mxgx345 maxmag 1e599999999 1e400000001 -> 1E+599999999
+mxgx346 maxmag 1e599999999 1e400000000 -> 1E+599999999
+mxgx347 maxmag 1e600000000 1e400000000 -> 1E+600000000
+mxgx348 maxmag 9e999999998 100 -> 9E+999999998
+mxgx349 maxmag 9e999999998 10 -> 9E+999999998
+mxgx350 maxmag 100 9e999999998 -> 9E+999999998
+-- signs
+mxgx351 maxmag 1e+777777777 1e+411111111 -> 1E+777777777
+mxgx352 maxmag 1e+777777777 -1e+411111111 -> 1E+777777777
+mxgx353 maxmag -1e+777777777 1e+411111111 -> -1E+777777777
+mxgx354 maxmag -1e+777777777 -1e+411111111 -> -1E+777777777
+mxgx355 maxmag 1e-777777777 1e-411111111 -> 1E-411111111
+mxgx356 maxmag 1e-777777777 -1e-411111111 -> -1E-411111111
+mxgx357 maxmag -1e-777777777 1e-411111111 -> 1E-411111111
+mxgx358 maxmag -1e-777777777 -1e-411111111 -> -1E-411111111
+
+-- expanded list from min/max 754r purple prose
+-- [explicit tests for exponent ordering]
+mxgx401 maxmag Inf 1.1 -> Infinity
+mxgx402 maxmag 1.1 1 -> 1.1
+mxgx403 maxmag 1 1.0 -> 1
+mxgx404 maxmag 1.0 0.1 -> 1.0
+mxgx405 maxmag 0.1 0.10 -> 0.1
+mxgx406 maxmag 0.10 0.100 -> 0.10
+mxgx407 maxmag 0.10 0 -> 0.10
+mxgx408 maxmag 0 0.0 -> 0
+mxgx409 maxmag 0.0 -0 -> 0.0
+mxgx410 maxmag 0.0 -0.0 -> 0.0
+mxgx411 maxmag 0.00 -0.0 -> 0.00
+mxgx412 maxmag 0.0 -0.00 -> 0.0
+mxgx413 maxmag 0 -0.0 -> 0
+mxgx414 maxmag 0 -0 -> 0
+mxgx415 maxmag -0.0 -0 -> -0.0
+mxgx416 maxmag -0 -0.100 -> -0.100
+mxgx417 maxmag -0.100 -0.10 -> -0.100
+mxgx418 maxmag -0.10 -0.1 -> -0.10
+mxgx419 maxmag -0.1 -1.0 -> -1.0
+mxgx420 maxmag -1.0 -1 -> -1.0
+mxgx421 maxmag -1 -1.1 -> -1.1
+mxgx423 maxmag -1.1 -Inf -> -Infinity
+-- same with operands reversed
+mxgx431 maxmag 1.1 Inf -> Infinity
+mxgx432 maxmag 1 1.1 -> 1.1
+mxgx433 maxmag 1.0 1 -> 1
+mxgx434 maxmag 0.1 1.0 -> 1.0
+mxgx435 maxmag 0.10 0.1 -> 0.1
+mxgx436 maxmag 0.100 0.10 -> 0.10
+mxgx437 maxmag 0 0.10 -> 0.10
+mxgx438 maxmag 0.0 0 -> 0
+mxgx439 maxmag -0 0.0 -> 0.0
+mxgx440 maxmag -0.0 0.0 -> 0.0
+mxgx441 maxmag -0.0 0.00 -> 0.00
+mxgx442 maxmag -0.00 0.0 -> 0.0
+mxgx443 maxmag -0.0 0 -> 0
+mxgx444 maxmag -0 0 -> 0
+mxgx445 maxmag -0 -0.0 -> -0.0
+mxgx446 maxmag -0.100 -0 -> -0.100
+mxgx447 maxmag -0.10 -0.100 -> -0.100
+mxgx448 maxmag -0.1 -0.10 -> -0.10
+mxgx449 maxmag -1.0 -0.1 -> -1.0
+mxgx450 maxmag -1 -1.0 -> -1.0
+mxgx451 maxmag -1.1 -1 -> -1.1
+mxgx453 maxmag -Inf -1.1 -> -Infinity
+-- largies
+mxgx460 maxmag 1000 1E+3 -> 1E+3
+mxgx461 maxmag 1E+3 1000 -> 1E+3
+mxgx462 maxmag 1000 -1E+3 -> 1000
+mxgx463 maxmag 1E+3 -1000 -> 1E+3
+mxgx464 maxmag -1000 1E+3 -> 1E+3
+mxgx465 maxmag -1E+3 1000 -> 1000
+mxgx466 maxmag -1000 -1E+3 -> -1000
+mxgx467 maxmag -1E+3 -1000 -> -1000
+
+-- rounding (results treated as though plus)
+maxexponent: 999999999
+minexponent: -999999999
+precision: 3
+
+mxgx470 maxmag 1 .5 -> 1
+mxgx471 maxmag 10 5 -> 10
+mxgx472 maxmag 100 50 -> 100
+mxgx473 maxmag 1000 500 -> 1.00E+3 Rounded
+mxgx474 maxmag 10000 5000 -> 1.00E+4 Rounded
+mxgx475 maxmag 6 .5 -> 6
+mxgx476 maxmag 66 5 -> 66
+mxgx477 maxmag 666 50 -> 666
+mxgx478 maxmag 6666 500 -> 6.67E+3 Rounded Inexact
+mxgx479 maxmag 66666 5000 -> 6.67E+4 Rounded Inexact
+mxgx480 maxmag 33333 5000 -> 3.33E+4 Rounded Inexact
+mxgx481 maxmag .5 1 -> 1
+mxgx482 maxmag .5 10 -> 10
+mxgx483 maxmag .5 100 -> 100
+mxgx484 maxmag .5 1000 -> 1.00E+3 Rounded
+mxgx485 maxmag .5 10000 -> 1.00E+4 Rounded
+mxgx486 maxmag .5 6 -> 6
+mxgx487 maxmag .5 66 -> 66
+mxgx488 maxmag .5 666 -> 666
+mxgx489 maxmag .5 6666 -> 6.67E+3 Rounded Inexact
+mxgx490 maxmag .5 66666 -> 6.67E+4 Rounded Inexact
+mxgx491 maxmag .5 33333 -> 3.33E+4 Rounded Inexact
+
+-- overflow tests
+maxexponent: 999999999
+minexponent: -999999999
+precision: 3
+mxgx500 maxmag 9.999E+999999999 0 -> Infinity Inexact Overflow Rounded
+mxgx501 maxmag -9.999E+999999999 0 -> -Infinity Inexact Overflow Rounded
+
+-- subnormals and underflow
+precision: 3
+maxexponent: 999
+minexponent: -999
+mxgx510 maxmag 1.00E-999 0 -> 1.00E-999
+mxgx511 maxmag 0.1E-999 0 -> 1E-1000 Subnormal
+mxgx512 maxmag 0.10E-999 0 -> 1.0E-1000 Subnormal
+mxgx513 maxmag 0.100E-999 0 -> 1.0E-1000 Subnormal Rounded
+mxgx514 maxmag 0.01E-999 0 -> 1E-1001 Subnormal
+-- next is rounded to Nmin
+mxgx515 maxmag 0.999E-999 0 -> 1.00E-999 Inexact Rounded Subnormal Underflow
+mxgx516 maxmag 0.099E-999 0 -> 1.0E-1000 Inexact Rounded Subnormal Underflow
+mxgx517 maxmag 0.009E-999 0 -> 1E-1001 Inexact Rounded Subnormal Underflow
+mxgx518 maxmag 0.001E-999 0 -> 0E-1001 Inexact Rounded Subnormal Underflow Clamped
+mxgx519 maxmag 0.0009E-999 0 -> 0E-1001 Inexact Rounded Subnormal Underflow Clamped
+mxgx520 maxmag 0.0001E-999 0 -> 0E-1001 Inexact Rounded Subnormal Underflow Clamped
+
+mxgx530 maxmag -1.00E-999 0 -> -1.00E-999
+mxgx531 maxmag -0.1E-999 0 -> -1E-1000 Subnormal
+mxgx532 maxmag -0.10E-999 0 -> -1.0E-1000 Subnormal
+mxgx533 maxmag -0.100E-999 0 -> -1.0E-1000 Subnormal Rounded
+mxgx534 maxmag -0.01E-999 0 -> -1E-1001 Subnormal
+-- next is rounded to -Nmin
+mxgx535 maxmag -0.999E-999 0 -> -1.00E-999 Inexact Rounded Subnormal Underflow
+mxgx536 maxmag -0.099E-999 0 -> -1.0E-1000 Inexact Rounded Subnormal Underflow
+mxgx537 maxmag -0.009E-999 0 -> -1E-1001 Inexact Rounded Subnormal Underflow
+mxgx538 maxmag -0.001E-999 0 -> -0E-1001 Inexact Rounded Subnormal Underflow Clamped
+mxgx539 maxmag -0.0009E-999 0 -> -0E-1001 Inexact Rounded Subnormal Underflow Clamped
+mxgx540 maxmag -0.0001E-999 0 -> -0E-1001 Inexact Rounded Subnormal Underflow Clamped
+
+-- Null tests
+mxgx900 maxmag 10 # -> NaN Invalid_operation
+mxgx901 maxmag # 10 -> NaN Invalid_operation
+
+
+
diff --git a/Lib/test/decimaltestdata/min.decTest b/Lib/test/decimaltestdata/min.decTest
index 6046401..345e3eb 100644
--- a/Lib/test/decimaltestdata/min.decTest
+++ b/Lib/test/decimaltestdata/min.decTest
@@ -1,6 +1,6 @@
------------------------------------------------------------------------
-- min.decTest -- decimal minimum --
--- Copyright (c) IBM Corporation, 1981, 2004. All rights reserved. --
+-- Copyright (c) IBM Corporation, 1981, 2007. All rights reserved. --
------------------------------------------------------------------------
-- Please see the document "General Decimal Arithmetic Testcases" --
-- at http://www2.hursley.ibm.com/decimal for the description of --
@@ -17,7 +17,7 @@
-- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK --
-- mfc@uk.ibm.com --
------------------------------------------------------------------------
-version: 2.39
+version: 2.56
-- we assume that base comparison is tested in compare.decTest, so
-- these mainly cover special cases and rounding
@@ -320,6 +320,34 @@ mnmx465 min -1E+3 1000 -> -1E+3
mnmx466 min -1000 -1E+3 -> -1E+3
mnmx467 min -1E+3 -1000 -> -1E+3
+-- rounding (results treated as though plus)
+maxexponent: 999999999
+minexponent: -999999999
+precision: 3
+
+mnmx470 min 1 5 -> 1
+mnmx471 min 10 50 -> 10
+mnmx472 min 100 500 -> 100
+mnmx473 min 1000 5000 -> 1.00E+3 Rounded
+mnmx474 min 10000 50000 -> 1.00E+4 Rounded
+mnmx475 min 6 50 -> 6
+mnmx476 min 66 500 -> 66
+mnmx477 min 666 5000 -> 666
+mnmx478 min 6666 50000 -> 6.67E+3 Rounded Inexact
+mnmx479 min 66666 500000 -> 6.67E+4 Rounded Inexact
+mnmx480 min 33333 500000 -> 3.33E+4 Rounded Inexact
+mnmx481 min 75401 1 -> 1
+mnmx482 min 75402 10 -> 10
+mnmx483 min 75403 100 -> 100
+mnmx484 min 75404 1000 -> 1.00E+3 Rounded
+mnmx485 min 75405 10000 -> 1.00E+4 Rounded
+mnmx486 min 75406 6 -> 6
+mnmx487 min 75407 66 -> 66
+mnmx488 min 75408 666 -> 666
+mnmx489 min 75409 6666 -> 6.67E+3 Rounded Inexact
+mnmx490 min 75410 66666 -> 6.67E+4 Rounded Inexact
+mnmx491 min 75411 33333 -> 3.33E+4 Rounded Inexact
+
-- overflow tests
maxexponent: 999999999
@@ -349,14 +377,30 @@ mnmx531 min -0.1E-999 0 -> -1E-1000 Subnormal
mnmx532 min -0.10E-999 0 -> -1.0E-1000 Subnormal
mnmx533 min -0.100E-999 0 -> -1.0E-1000 Subnormal Rounded
mnmx534 min -0.01E-999 0 -> -1E-1001 Subnormal
--- next is rounded to Emin
+-- next is rounded to Nmin
mnmx535 min -0.999E-999 0 -> -1.00E-999 Inexact Rounded Subnormal Underflow
mnmx536 min -0.099E-999 0 -> -1.0E-1000 Inexact Rounded Subnormal Underflow
mnmx537 min -0.009E-999 0 -> -1E-1001 Inexact Rounded Subnormal Underflow
-mnmx538 min -0.001E-999 0 -> -0E-1001 Inexact Rounded Subnormal Underflow
-mnmx539 min -0.0009E-999 0 -> -0E-1001 Inexact Rounded Subnormal Underflow
-mnmx540 min -0.0001E-999 0 -> -0E-1001 Inexact Rounded Subnormal Underflow
+mnmx538 min -0.001E-999 0 -> -0E-1001 Inexact Rounded Subnormal Underflow Clamped
+mnmx539 min -0.0009E-999 0 -> -0E-1001 Inexact Rounded Subnormal Underflow Clamped
+mnmx540 min -0.0001E-999 0 -> -0E-1001 Inexact Rounded Subnormal Underflow Clamped
+-- misalignment traps for little-endian
+precision: 9
+mnmx551 min 1.0 0.1 -> 0.1
+mnmx552 min 0.1 1.0 -> 0.1
+mnmx553 min 10.0 0.1 -> 0.1
+mnmx554 min 0.1 10.0 -> 0.1
+mnmx555 min 100 1.0 -> 1.0
+mnmx556 min 1.0 100 -> 1.0
+mnmx557 min 1000 10.0 -> 10.0
+mnmx558 min 10.0 1000 -> 10.0
+mnmx559 min 10000 100.0 -> 100.0
+mnmx560 min 100.0 10000 -> 100.0
+mnmx561 min 100000 1000.0 -> 1000.0
+mnmx562 min 1000.0 100000 -> 1000.0
+mnmx563 min 1000000 10000.0 -> 10000.0
+mnmx564 min 10000.0 1000000 -> 10000.0
-- Null tests
mnm900 min 10 # -> NaN Invalid_operation
diff --git a/Lib/test/decimaltestdata/minmag.decTest b/Lib/test/decimaltestdata/minmag.decTest
new file mode 100644
index 0000000..fa9d927
--- /dev/null
+++ b/Lib/test/decimaltestdata/minmag.decTest
@@ -0,0 +1,390 @@
+------------------------------------------------------------------------
+-- minmag.decTest -- decimal minimum by magnitude --
+-- Copyright (c) IBM Corporation, 1981, 2007. All rights reserved. --
+------------------------------------------------------------------------
+-- Please see the document "General Decimal Arithmetic Testcases" --
+-- at http://www2.hursley.ibm.com/decimal for the description of --
+-- these testcases. --
+-- --
+-- These testcases are experimental ('beta' versions), and they --
+-- may contain errors. They are offered on an as-is basis. In --
+-- particular, achieving the same results as the tests here is not --
+-- a guarantee that an implementation complies with any Standard --
+-- or specification. The tests are not exhaustive. --
+-- --
+-- Please send comments, suggestions, and corrections to the author: --
+-- Mike Cowlishaw, IBM Fellow --
+-- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK --
+-- mfc@uk.ibm.com --
+------------------------------------------------------------------------
+version: 2.56
+
+-- we assume that base comparison is tested in compare.decTest, so
+-- these mainly cover special cases and rounding
+
+extended: 1
+precision: 9
+rounding: half_up
+maxExponent: 384
+minexponent: -383
+
+-- sanity checks
+mngx001 minmag -2 -2 -> -2
+mngx002 minmag -2 -1 -> -1
+mngx003 minmag -2 0 -> 0
+mngx004 minmag -2 1 -> 1
+mngx005 minmag -2 2 -> -2
+mngx006 minmag -1 -2 -> -1
+mngx007 minmag -1 -1 -> -1
+mngx008 minmag -1 0 -> 0
+mngx009 minmag -1 1 -> -1
+mngx010 minmag -1 2 -> -1
+mngx011 minmag 0 -2 -> 0
+mngx012 minmag 0 -1 -> 0
+mngx013 minmag 0 0 -> 0
+mngx014 minmag 0 1 -> 0
+mngx015 minmag 0 2 -> 0
+mngx016 minmag 1 -2 -> 1
+mngx017 minmag 1 -1 -> -1
+mngx018 minmag 1 0 -> 0
+mngx019 minmag 1 1 -> 1
+mngx020 minmag 1 2 -> 1
+mngx021 minmag 2 -2 -> -2
+mngx022 minmag 2 -1 -> -1
+mngx023 minmag 2 0 -> 0
+mngx025 minmag 2 1 -> 1
+mngx026 minmag 2 2 -> 2
+
+-- extended zeros
+mngx030 minmag 0 0 -> 0
+mngx031 minmag 0 -0 -> -0
+mngx032 minmag 0 -0.0 -> -0.0
+mngx033 minmag 0 0.0 -> 0.0
+mngx034 minmag -0 0 -> -0
+mngx035 minmag -0 -0 -> -0
+mngx036 minmag -0 -0.0 -> -0
+mngx037 minmag -0 0.0 -> -0
+mngx038 minmag 0.0 0 -> 0.0
+mngx039 minmag 0.0 -0 -> -0
+mngx040 minmag 0.0 -0.0 -> -0.0
+mngx041 minmag 0.0 0.0 -> 0.0
+mngx042 minmag -0.0 0 -> -0.0
+mngx043 minmag -0.0 -0 -> -0
+mngx044 minmag -0.0 -0.0 -> -0.0
+mngx045 minmag -0.0 0.0 -> -0.0
+
+mngx046 minmag 0E1 -0E1 -> -0E+1
+mngx047 minmag -0E1 0E2 -> -0E+1
+mngx048 minmag 0E2 0E1 -> 0E+1
+mngx049 minmag 0E1 0E2 -> 0E+1
+mngx050 minmag -0E3 -0E2 -> -0E+3
+mngx051 minmag -0E2 -0E3 -> -0E+3
+
+-- Specials
+precision: 9
+mngx090 minmag Inf -Inf -> -Infinity
+mngx091 minmag Inf -1000 -> -1000
+mngx092 minmag Inf -1 -> -1
+mngx093 minmag Inf -0 -> -0
+mngx094 minmag Inf 0 -> 0
+mngx095 minmag Inf 1 -> 1
+mngx096 minmag Inf 1000 -> 1000
+mngx097 minmag Inf Inf -> Infinity
+mngx098 minmag -1000 Inf -> -1000
+mngx099 minmag -Inf Inf -> -Infinity
+mngx100 minmag -1 Inf -> -1
+mngx101 minmag -0 Inf -> -0
+mngx102 minmag 0 Inf -> 0
+mngx103 minmag 1 Inf -> 1
+mngx104 minmag 1000 Inf -> 1000
+mngx105 minmag Inf Inf -> Infinity
+
+mngx120 minmag -Inf -Inf -> -Infinity
+mngx121 minmag -Inf -1000 -> -1000
+mngx122 minmag -Inf -1 -> -1
+mngx123 minmag -Inf -0 -> -0
+mngx124 minmag -Inf 0 -> 0
+mngx125 minmag -Inf 1 -> 1
+mngx126 minmag -Inf 1000 -> 1000
+mngx127 minmag -Inf Inf -> -Infinity
+mngx128 minmag -Inf -Inf -> -Infinity
+mngx129 minmag -1000 -Inf -> -1000
+mngx130 minmag -1 -Inf -> -1
+mngx131 minmag -0 -Inf -> -0
+mngx132 minmag 0 -Inf -> 0
+mngx133 minmag 1 -Inf -> 1
+mngx134 minmag 1000 -Inf -> 1000
+mngx135 minmag Inf -Inf -> -Infinity
+
+-- 2004.08.02 754r chooses number over NaN in mixed cases
+mngx141 minmag NaN -Inf -> -Infinity
+mngx142 minmag NaN -1000 -> -1000
+mngx143 minmag NaN -1 -> -1
+mngx144 minmag NaN -0 -> -0
+mngx145 minmag NaN 0 -> 0
+mngx146 minmag NaN 1 -> 1
+mngx147 minmag NaN 1000 -> 1000
+mngx148 minmag NaN Inf -> Infinity
+mngx149 minmag NaN NaN -> NaN
+mngx150 minmag -Inf NaN -> -Infinity
+mngx151 minmag -1000 NaN -> -1000
+mngx152 minmag -1 -NaN -> -1
+mngx153 minmag -0 NaN -> -0
+mngx154 minmag 0 -NaN -> 0
+mngx155 minmag 1 NaN -> 1
+mngx156 minmag 1000 NaN -> 1000
+mngx157 minmag Inf NaN -> Infinity
+
+mngx161 minmag sNaN -Inf -> NaN Invalid_operation
+mngx162 minmag sNaN -1000 -> NaN Invalid_operation
+mngx163 minmag sNaN -1 -> NaN Invalid_operation
+mngx164 minmag sNaN -0 -> NaN Invalid_operation
+mngx165 minmag -sNaN 0 -> -NaN Invalid_operation
+mngx166 minmag -sNaN 1 -> -NaN Invalid_operation
+mngx167 minmag sNaN 1000 -> NaN Invalid_operation
+mngx168 minmag sNaN NaN -> NaN Invalid_operation
+mngx169 minmag sNaN sNaN -> NaN Invalid_operation
+mngx170 minmag NaN sNaN -> NaN Invalid_operation
+mngx171 minmag -Inf sNaN -> NaN Invalid_operation
+mngx172 minmag -1000 sNaN -> NaN Invalid_operation
+mngx173 minmag -1 sNaN -> NaN Invalid_operation
+mngx174 minmag -0 sNaN -> NaN Invalid_operation
+mngx175 minmag 0 sNaN -> NaN Invalid_operation
+mngx176 minmag 1 sNaN -> NaN Invalid_operation
+mngx177 minmag 1000 sNaN -> NaN Invalid_operation
+mngx178 minmag Inf sNaN -> NaN Invalid_operation
+mngx179 minmag NaN sNaN -> NaN Invalid_operation
+
+-- propagating NaNs
+mngx181 minmag NaN9 -Inf -> -Infinity
+mngx182 minmag -NaN8 9990 -> 9990
+mngx183 minmag NaN71 Inf -> Infinity
+
+mngx184 minmag NaN1 NaN54 -> NaN1
+mngx185 minmag NaN22 -NaN53 -> NaN22
+mngx186 minmag -NaN3 NaN6 -> -NaN3
+mngx187 minmag -NaN44 NaN7 -> -NaN44
+
+mngx188 minmag -Inf NaN41 -> -Infinity
+mngx189 minmag -9999 -NaN33 -> -9999
+mngx190 minmag Inf NaN2 -> Infinity
+
+mngx191 minmag sNaN99 -Inf -> NaN99 Invalid_operation
+mngx192 minmag sNaN98 -11 -> NaN98 Invalid_operation
+mngx193 minmag -sNaN97 NaN8 -> -NaN97 Invalid_operation
+mngx194 minmag sNaN69 sNaN94 -> NaN69 Invalid_operation
+mngx195 minmag NaN95 sNaN93 -> NaN93 Invalid_operation
+mngx196 minmag -Inf sNaN92 -> NaN92 Invalid_operation
+mngx197 minmag 088 sNaN91 -> NaN91 Invalid_operation
+mngx198 minmag Inf -sNaN90 -> -NaN90 Invalid_operation
+mngx199 minmag NaN sNaN86 -> NaN86 Invalid_operation
+
+-- rounding checks -- chosen is rounded, or not
+maxExponent: 999
+minexponent: -999
+precision: 9
+mngx201 minmag -12345678000 1 -> 1
+mngx202 minmag 1 -12345678000 -> 1
+mngx203 minmag -1234567800 1 -> 1
+mngx204 minmag 1 -1234567800 -> 1
+mngx205 minmag -1234567890 1 -> 1
+mngx206 minmag 1 -1234567890 -> 1
+mngx207 minmag -1234567891 1 -> 1
+mngx208 minmag 1 -1234567891 -> 1
+mngx209 minmag -12345678901 1 -> 1
+mngx210 minmag 1 -12345678901 -> 1
+mngx211 minmag -1234567896 1 -> 1
+mngx212 minmag 1 -1234567896 -> 1
+mngx213 minmag 1234567891 1 -> 1
+mngx214 minmag 1 1234567891 -> 1
+mngx215 minmag 12345678901 1 -> 1
+mngx216 minmag 1 12345678901 -> 1
+mngx217 minmag 1234567896 1 -> 1
+mngx218 minmag 1 1234567896 -> 1
+
+precision: 15
+mngx221 minmag -12345678000 1 -> 1
+mngx222 minmag 1 -12345678000 -> 1
+mngx223 minmag -1234567800 1 -> 1
+mngx224 minmag 1 -1234567800 -> 1
+mngx225 minmag -1234567890 1 -> 1
+mngx226 minmag 1 -1234567890 -> 1
+mngx227 minmag -1234567891 1 -> 1
+mngx228 minmag 1 -1234567891 -> 1
+mngx229 minmag -12345678901 1 -> 1
+mngx230 minmag 1 -12345678901 -> 1
+mngx231 minmag -1234567896 1 -> 1
+mngx232 minmag 1 -1234567896 -> 1
+mngx233 minmag 1234567891 1 -> 1
+mngx234 minmag 1 1234567891 -> 1
+mngx235 minmag 12345678901 1 -> 1
+mngx236 minmag 1 12345678901 -> 1
+mngx237 minmag 1234567896 1 -> 1
+mngx238 minmag 1 1234567896 -> 1
+
+-- from examples
+mngx280 minmag '3' '2' -> '2'
+mngx281 minmag '-10' '3' -> '3'
+mngx282 minmag '1.0' '1' -> '1.0'
+mngx283 minmag '1' '1.0' -> '1.0'
+mngx284 minmag '7' 'NaN' -> '7'
+
+-- overflow and underflow tests .. subnormal results [inputs] now allowed
+maxExponent: 999999999
+minexponent: -999999999
+mngx330 minmag -1.23456789012345E-0 -9E+999999999 -> -1.23456789012345
+mngx331 minmag -9E+999999999 -1.23456789012345E-0 -> -1.23456789012345
+mngx332 minmag -0.100 -9E-999999999 -> -9E-999999999
+mngx333 minmag -9E-999999999 -0.100 -> -9E-999999999
+mngx335 minmag +1.23456789012345E-0 -9E+999999999 -> 1.23456789012345
+mngx336 minmag -9E+999999999 1.23456789012345E-0 -> 1.23456789012345
+mngx337 minmag +0.100 -9E-999999999 -> -9E-999999999
+mngx338 minmag -9E-999999999 0.100 -> -9E-999999999
+
+mngx339 minmag -1e-599999999 -1e-400000001 -> -1E-599999999
+mngx340 minmag -1e-599999999 -1e-400000000 -> -1E-599999999
+mngx341 minmag -1e-600000000 -1e-400000000 -> -1E-600000000
+mngx342 minmag -9e-999999998 -0.01 -> -9E-999999998
+mngx343 minmag -9e-999999998 -0.1 -> -9E-999999998
+mngx344 minmag -0.01 -9e-999999998 -> -9E-999999998
+mngx345 minmag -1e599999999 -1e400000001 -> -1E+400000001
+mngx346 minmag -1e599999999 -1e400000000 -> -1E+400000000
+mngx347 minmag -1e600000000 -1e400000000 -> -1E+400000000
+mngx348 minmag -9e999999998 -100 -> -100
+mngx349 minmag -9e999999998 -10 -> -10
+mngx350 minmag -100 -9e999999998 -> -100
+-- signs
+mngx351 minmag -1e+777777777 -1e+411111111 -> -1E+411111111
+mngx352 minmag -1e+777777777 +1e+411111111 -> 1E+411111111
+mngx353 minmag +1e+777777777 -1e+411111111 -> -1E+411111111
+mngx354 minmag +1e+777777777 +1e+411111111 -> 1E+411111111
+mngx355 minmag -1e-777777777 -1e-411111111 -> -1E-777777777
+mngx356 minmag -1e-777777777 +1e-411111111 -> -1E-777777777
+mngx357 minmag +1e-777777777 -1e-411111111 -> 1E-777777777
+mngx358 minmag +1e-777777777 +1e-411111111 -> 1E-777777777
+
+-- expanded list from min/max 754r purple prose
+-- [explicit tests for exponent ordering]
+mngx401 minmag Inf 1.1 -> 1.1
+mngx402 minmag 1.1 1 -> 1
+mngx403 minmag 1 1.0 -> 1.0
+mngx404 minmag 1.0 0.1 -> 0.1
+mngx405 minmag 0.1 0.10 -> 0.10
+mngx406 minmag 0.10 0.100 -> 0.100
+mngx407 minmag 0.10 0 -> 0
+mngx408 minmag 0 0.0 -> 0.0
+mngx409 minmag 0.0 -0 -> -0
+mngx410 minmag 0.0 -0.0 -> -0.0
+mngx411 minmag 0.00 -0.0 -> -0.0
+mngx412 minmag 0.0 -0.00 -> -0.00
+mngx413 minmag 0 -0.0 -> -0.0
+mngx414 minmag 0 -0 -> -0
+mngx415 minmag -0.0 -0 -> -0
+mngx416 minmag -0 -0.100 -> -0
+mngx417 minmag -0.100 -0.10 -> -0.10
+mngx418 minmag -0.10 -0.1 -> -0.1
+mngx419 minmag -0.1 -1.0 -> -0.1
+mngx420 minmag -1.0 -1 -> -1
+mngx421 minmag -1 -1.1 -> -1
+mngx423 minmag -1.1 -Inf -> -1.1
+-- same with operands reversed
+mngx431 minmag 1.1 Inf -> 1.1
+mngx432 minmag 1 1.1 -> 1
+mngx433 minmag 1.0 1 -> 1.0
+mngx434 minmag 0.1 1.0 -> 0.1
+mngx435 minmag 0.10 0.1 -> 0.10
+mngx436 minmag 0.100 0.10 -> 0.100
+mngx437 minmag 0 0.10 -> 0
+mngx438 minmag 0.0 0 -> 0.0
+mngx439 minmag -0 0.0 -> -0
+mngx440 minmag -0.0 0.0 -> -0.0
+mngx441 minmag -0.0 0.00 -> -0.0
+mngx442 minmag -0.00 0.0 -> -0.00
+mngx443 minmag -0.0 0 -> -0.0
+mngx444 minmag -0 0 -> -0
+mngx445 minmag -0 -0.0 -> -0
+mngx446 minmag -0.100 -0 -> -0
+mngx447 minmag -0.10 -0.100 -> -0.10
+mngx448 minmag -0.1 -0.10 -> -0.1
+mngx449 minmag -1.0 -0.1 -> -0.1
+mngx450 minmag -1 -1.0 -> -1
+mngx451 minmag -1.1 -1 -> -1
+mngx453 minmag -Inf -1.1 -> -1.1
+-- largies
+mngx460 minmag 1000 1E+3 -> 1000
+mngx461 minmag 1E+3 1000 -> 1000
+mngx462 minmag 1000 -1E+3 -> -1E+3
+mngx463 minmag 1E+3 -1000 -> -1000
+mngx464 minmag -1000 1E+3 -> -1000
+mngx465 minmag -1E+3 1000 -> -1E+3
+mngx466 minmag -1000 -1E+3 -> -1E+3
+mngx467 minmag -1E+3 -1000 -> -1E+3
+
+-- rounding (results treated as though plus)
+maxexponent: 999999999
+minexponent: -999999999
+precision: 3
+
+mngx470 minmag 1 5 -> 1
+mngx471 minmag 10 50 -> 10
+mngx472 minmag 100 500 -> 100
+mngx473 minmag 1000 5000 -> 1.00E+3 Rounded
+mngx474 minmag 10000 50000 -> 1.00E+4 Rounded
+mngx475 minmag 6 50 -> 6
+mngx476 minmag 66 500 -> 66
+mngx477 minmag 666 5000 -> 666
+mngx478 minmag 6666 50000 -> 6.67E+3 Rounded Inexact
+mngx479 minmag 66666 500000 -> 6.67E+4 Rounded Inexact
+mngx480 minmag 33333 500000 -> 3.33E+4 Rounded Inexact
+mngx481 minmag 75401 1 -> 1
+mngx482 minmag 75402 10 -> 10
+mngx483 minmag 75403 100 -> 100
+mngx484 minmag 75404 1000 -> 1.00E+3 Rounded
+mngx485 minmag 75405 10000 -> 1.00E+4 Rounded
+mngx486 minmag 75406 6 -> 6
+mngx487 minmag 75407 66 -> 66
+mngx488 minmag 75408 666 -> 666
+mngx489 minmag 75409 6666 -> 6.67E+3 Rounded Inexact
+mngx490 minmag 75410 66666 -> 6.67E+4 Rounded Inexact
+mngx491 minmag 75411 33333 -> 3.33E+4 Rounded Inexact
+
+
+-- overflow tests
+maxexponent: 999999999
+minexponent: -999999999
+precision: 3
+mngx500 minmag 9.999E+999999999 0 -> 0
+mngx501 minmag -9.999E+999999999 0 -> 0
+
+-- subnormals and underflow
+precision: 3
+maxexponent: 999
+minexponent: -999
+mngx510 minmag 1.00E-999 0 -> 0
+mngx511 minmag 0.1E-999 0 -> 0
+mngx512 minmag 0.10E-999 0 -> 0
+mngx513 minmag 0.100E-999 0 -> 0
+mngx514 minmag 0.01E-999 0 -> 0
+mngx515 minmag 0.999E-999 0 -> 0
+mngx516 minmag 0.099E-999 0 -> 0
+mngx517 minmag 0.009E-999 0 -> 0
+mngx518 minmag 0.001E-999 0 -> 0
+mngx519 minmag 0.0009E-999 0 -> 0
+mngx520 minmag 0.0001E-999 0 -> 0
+
+mngx530 minmag -1.00E-999 0 -> 0
+mngx531 minmag -0.1E-999 0 -> 0
+mngx532 minmag -0.10E-999 0 -> 0
+mngx533 minmag -0.100E-999 0 -> 0
+mngx534 minmag -0.01E-999 0 -> 0
+mngx535 minmag -0.999E-999 0 -> 0
+mngx536 minmag -0.099E-999 0 -> 0
+mngx537 minmag -0.009E-999 0 -> 0
+mngx538 minmag -0.001E-999 0 -> 0
+mngx539 minmag -0.0009E-999 0 -> 0
+mngx540 minmag -0.0001E-999 0 -> 0
+
+
+-- Null tests
+mng900 minmag 10 # -> NaN Invalid_operation
+mng901 minmag # 10 -> NaN Invalid_operation
diff --git a/Lib/test/decimaltestdata/minus.decTest b/Lib/test/decimaltestdata/minus.decTest
index d21af83..e9afc3a 100644
--- a/Lib/test/decimaltestdata/minus.decTest
+++ b/Lib/test/decimaltestdata/minus.decTest
@@ -1,6 +1,6 @@
------------------------------------------------------------------------
-- minus.decTest -- decimal negation --
--- Copyright (c) IBM Corporation, 1981, 2004. All rights reserved. --
+-- Copyright (c) IBM Corporation, 1981, 2007. All rights reserved. --
------------------------------------------------------------------------
-- Please see the document "General Decimal Arithmetic Testcases" --
-- at http://www2.hursley.ibm.com/decimal for the description of --
@@ -17,7 +17,7 @@
-- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK --
-- mfc@uk.ibm.com --
------------------------------------------------------------------------
-version: 2.39
+version: 2.56
-- This set of tests primarily tests the existence of the operator.
-- Subtraction, rounding, and more overflows are tested elsewhere.
@@ -127,9 +127,9 @@ minx114 minus 0.01E-999 -> -1E-1001 Subnormal
minx115 minus 0.999E-999 -> -1.00E-999 Inexact Rounded Subnormal Underflow
minx116 minus 0.099E-999 -> -1.0E-1000 Inexact Rounded Subnormal Underflow
minx117 minus 0.009E-999 -> -1E-1001 Inexact Rounded Subnormal Underflow
-minx118 minus 0.001E-999 -> -0E-1001 Inexact Rounded Subnormal Underflow
-minx119 minus 0.0009E-999 -> -0E-1001 Inexact Rounded Subnormal Underflow
-minx120 minus 0.0001E-999 -> -0E-1001 Inexact Rounded Subnormal Underflow
+minx118 minus 0.001E-999 -> -0E-1001 Inexact Rounded Subnormal Underflow Clamped
+minx119 minus 0.0009E-999 -> -0E-1001 Inexact Rounded Subnormal Underflow Clamped
+minx120 minus 0.0001E-999 -> -0E-1001 Inexact Rounded Subnormal Underflow Clamped
minx130 minus -1.00E-999 -> 1.00E-999
minx131 minus -0.1E-999 -> 1E-1000 Subnormal
@@ -140,9 +140,9 @@ minx134 minus -0.01E-999 -> 1E-1001 Subnormal
minx135 minus -0.999E-999 -> 1.00E-999 Inexact Rounded Subnormal Underflow
minx136 minus -0.099E-999 -> 1.0E-1000 Inexact Rounded Subnormal Underflow
minx137 minus -0.009E-999 -> 1E-1001 Inexact Rounded Subnormal Underflow
-minx138 minus -0.001E-999 -> 0E-1001 Inexact Rounded Subnormal Underflow
-minx139 minus -0.0009E-999 -> 0E-1001 Inexact Rounded Subnormal Underflow
-minx140 minus -0.0001E-999 -> 0E-1001 Inexact Rounded Subnormal Underflow
+minx138 minus -0.001E-999 -> 0E-1001 Inexact Rounded Subnormal Underflow Clamped
+minx139 minus -0.0009E-999 -> 0E-1001 Inexact Rounded Subnormal Underflow Clamped
+minx140 minus -0.0001E-999 -> 0E-1001 Inexact Rounded Subnormal Underflow Clamped
-- long operand checks
diff --git a/Lib/test/decimaltestdata/multiply.decTest b/Lib/test/decimaltestdata/multiply.decTest
index f650150..71f591a 100644
--- a/Lib/test/decimaltestdata/multiply.decTest
+++ b/Lib/test/decimaltestdata/multiply.decTest
@@ -1,6 +1,6 @@
------------------------------------------------------------------------
-- multiply.decTest -- decimal multiplication --
--- Copyright (c) IBM Corporation, 1981, 2004. All rights reserved. --
+-- Copyright (c) IBM Corporation, 1981, 2007. All rights reserved. --
------------------------------------------------------------------------
-- Please see the document "General Decimal Arithmetic Testcases" --
-- at http://www2.hursley.ibm.com/decimal for the description of --
@@ -17,7 +17,7 @@
-- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK --
-- mfc@uk.ibm.com --
------------------------------------------------------------------------
-version: 2.39
+version: 2.56
extended: 1
precision: 9
@@ -44,21 +44,28 @@ mulx014 multiply 9.999999999 9.999999999 -> 100.000000 Inexact Rounded
mulx015 multiply 2.50 4 -> 10.00
precision: 6
mulx016 multiply 2.50 4 -> 10.00
-mulx017 multiply 9.999999999 9.999999999 -> 100.000 Inexact Rounded
+mulx017 multiply 9.999999999 9.999999999 -> 100.000 Inexact Rounded
+mulx018 multiply 9.999999999 -9.999999999 -> -100.000 Inexact Rounded
+mulx019 multiply -9.999999999 9.999999999 -> -100.000 Inexact Rounded
+mulx020 multiply -9.999999999 -9.999999999 -> 100.000 Inexact Rounded
-- 1999.12.21: next one is a edge case if intermediate longs are used
precision: 15
-mulx019 multiply 999999999999 9765625 -> 9.76562499999023E+18 Inexact Rounded
+mulx059 multiply 999999999999 9765625 -> 9.76562499999023E+18 Inexact Rounded
precision: 30
mulx160 multiply 999999999999 9765625 -> 9765624999990234375
precision: 9
-----
-- zeros, etc.
-mulx020 multiply 0 0 -> 0
-mulx021 multiply 0 -0 -> -0
-mulx022 multiply -0 0 -> -0
-mulx023 multiply -0 -0 -> 0
+mulx021 multiply 0 0 -> 0
+mulx022 multiply 0 -0 -> -0
+mulx023 multiply -0 0 -> -0
+mulx024 multiply -0 -0 -> 0
+mulx025 multiply -0.0 -0.0 -> 0.00
+mulx026 multiply -0.0 -0.0 -> 0.00
+mulx027 multiply -0.0 -0.0 -> 0.00
+mulx028 multiply -0.0 -0.0 -> 0.00
mulx030 multiply 5.00 1E-3 -> 0.00500
mulx031 multiply 00.00 0.000 -> 0.00000
mulx032 multiply 00.00 0E-3 -> 0.00000 -- rhs is 0
@@ -94,17 +101,17 @@ mulx066 multiply 123.45 1e13 -> 1.2345E+15
-- test some intermediate lengths
precision: 9
-mulx080 multiply 0.1 123456789 -> 12345678.9
-mulx081 multiply 0.1 1234567891 -> 123456789 Inexact Rounded
-mulx082 multiply 0.1 12345678912 -> 1.23456789E+9 Inexact Rounded
-mulx083 multiply 0.1 12345678912345 -> 1.23456789E+12 Inexact Rounded
-mulx084 multiply 0.1 123456789 -> 12345678.9
+mulx080 multiply 0.1 123456789 -> 12345678.9
+mulx081 multiply 0.1 1234567891 -> 123456789 Inexact Rounded
+mulx082 multiply 0.1 12345678912 -> 1.23456789E+9 Inexact Rounded
+mulx083 multiply 0.1 12345678912345 -> 1.23456789E+12 Inexact Rounded
+mulx084 multiply 0.1 123456789 -> 12345678.9
precision: 8
-mulx085 multiply 0.1 12345678912 -> 1.2345679E+9 Inexact Rounded
-mulx086 multiply 0.1 12345678912345 -> 1.2345679E+12 Inexact Rounded
+mulx085 multiply 0.1 12345678912 -> 1.2345679E+9 Inexact Rounded
+mulx086 multiply 0.1 12345678912345 -> 1.2345679E+12 Inexact Rounded
precision: 7
-mulx087 multiply 0.1 12345678912 -> 1.234568E+9 Inexact Rounded
-mulx088 multiply 0.1 12345678912345 -> 1.234568E+12 Inexact Rounded
+mulx087 multiply 0.1 12345678912 -> 1.234568E+9 Inexact Rounded
+mulx088 multiply 0.1 12345678912345 -> 1.234568E+12 Inexact Rounded
precision: 9
mulx090 multiply 123456789 0.1 -> 12345678.9
@@ -280,6 +287,41 @@ mulx277 multiply 30269.587755640502150977251770554 4.804600973599087339593630964
precision: 1
mulx278 multiply 30269.587755640502150977251770554 4.8046009735990873395936309640543 -> 1E+5 Inexact Rounded
+-- test some edge cases with exact rounding
+maxexponent: 9999
+minexponent: -9999
+precision: 9
+mulx301 multiply 9 9 -> 81
+mulx302 multiply 9 90 -> 810
+mulx303 multiply 9 900 -> 8100
+mulx304 multiply 9 9000 -> 81000
+mulx305 multiply 9 90000 -> 810000
+mulx306 multiply 9 900000 -> 8100000
+mulx307 multiply 9 9000000 -> 81000000
+mulx308 multiply 9 90000000 -> 810000000
+mulx309 multiply 9 900000000 -> 8.10000000E+9 Rounded
+mulx310 multiply 9 9000000000 -> 8.10000000E+10 Rounded
+mulx311 multiply 9 90000000000 -> 8.10000000E+11 Rounded
+mulx312 multiply 9 900000000000 -> 8.10000000E+12 Rounded
+mulx313 multiply 9 9000000000000 -> 8.10000000E+13 Rounded
+mulx314 multiply 9 90000000000000 -> 8.10000000E+14 Rounded
+mulx315 multiply 9 900000000000000 -> 8.10000000E+15 Rounded
+mulx316 multiply 9 9000000000000000 -> 8.10000000E+16 Rounded
+mulx317 multiply 9 90000000000000000 -> 8.10000000E+17 Rounded
+mulx318 multiply 9 900000000000000000 -> 8.10000000E+18 Rounded
+mulx319 multiply 9 9000000000000000000 -> 8.10000000E+19 Rounded
+mulx320 multiply 9 90000000000000000000 -> 8.10000000E+20 Rounded
+mulx321 multiply 9 900000000000000000000 -> 8.10000000E+21 Rounded
+mulx322 multiply 9 9000000000000000000000 -> 8.10000000E+22 Rounded
+mulx323 multiply 9 90000000000000000000000 -> 8.10000000E+23 Rounded
+
+-- fastpath breakers
+precision: 29
+mulx330 multiply 1.491824697641270317824852952837224 1.105170918075647624811707826490246514675628614562883537345747603 -> 1.6487212707001281468486507878 Inexact Rounded
+precision: 55
+mulx331 multiply 0.8958341352965282506768545828765117803873717284891040428 0.8958341352965282506768545828765117803873717284891040428 -> 0.8025187979624784829842553829934069955890983696752228299 Inexact Rounded
+
+
-- tryzeros cases
precision: 7
rounding: half_up
@@ -486,10 +528,10 @@ mulx751 multiply 1e+777777777 1e+411111111 -> Infinity Overflow Inexact Round
mulx752 multiply 1e+777777777 -1e+411111111 -> -Infinity Overflow Inexact Rounded
mulx753 multiply -1e+777777777 1e+411111111 -> -Infinity Overflow Inexact Rounded
mulx754 multiply -1e+777777777 -1e+411111111 -> Infinity Overflow Inexact Rounded
-mulx755 multiply 1e-777777777 1e-411111111 -> 0E-1000000007 Underflow Subnormal Inexact Rounded
-mulx756 multiply 1e-777777777 -1e-411111111 -> -0E-1000000007 Underflow Subnormal Inexact Rounded
-mulx757 multiply -1e-777777777 1e-411111111 -> -0E-1000000007 Underflow Subnormal Inexact Rounded
-mulx758 multiply -1e-777777777 -1e-411111111 -> 0E-1000000007 Underflow Subnormal Inexact Rounded
+mulx755 multiply 1e-777777777 1e-411111111 -> 0E-1000000007 Underflow Subnormal Inexact Rounded Clamped
+mulx756 multiply 1e-777777777 -1e-411111111 -> -0E-1000000007 Underflow Subnormal Inexact Rounded Clamped
+mulx757 multiply -1e-777777777 1e-411111111 -> -0E-1000000007 Underflow Subnormal Inexact Rounded Clamped
+mulx758 multiply -1e-777777777 -1e-411111111 -> 0E-1000000007 Underflow Subnormal Inexact Rounded Clamped
-- 'subnormal' boundary (all hard underflow or overflow in base arithemtic)
precision: 9
@@ -500,9 +542,9 @@ mulx763 multiply 1e-600000000 1e-400000004 -> 1E-1000000004 Subnormal
mulx764 multiply 1e-600000000 1e-400000005 -> 1E-1000000005 Subnormal
mulx765 multiply 1e-600000000 1e-400000006 -> 1E-1000000006 Subnormal
mulx766 multiply 1e-600000000 1e-400000007 -> 1E-1000000007 Subnormal
-mulx767 multiply 1e-600000000 1e-400000008 -> 0E-1000000007 Underflow Subnormal Inexact Rounded
-mulx768 multiply 1e-600000000 1e-400000009 -> 0E-1000000007 Underflow Subnormal Inexact Rounded
-mulx769 multiply 1e-600000000 1e-400000010 -> 0E-1000000007 Underflow Subnormal Inexact Rounded
+mulx767 multiply 1e-600000000 1e-400000008 -> 0E-1000000007 Underflow Subnormal Inexact Rounded Clamped
+mulx768 multiply 1e-600000000 1e-400000009 -> 0E-1000000007 Underflow Subnormal Inexact Rounded Clamped
+mulx769 multiply 1e-600000000 1e-400000010 -> 0E-1000000007 Underflow Subnormal Inexact Rounded Clamped
-- [no equivalent of 'subnormal' for overflow]
mulx770 multiply 1e+600000000 1e+400000001 -> Infinity Overflow Inexact Rounded
mulx771 multiply 1e+600000000 1e+400000002 -> Infinity Overflow Inexact Rounded
@@ -520,31 +562,31 @@ precision: 99
mulx780 multiply 1e-600000000 1e-400000007 -> 1E-1000000007 Subnormal
mulx781 multiply 1e-600000000 1e-400000008 -> 1E-1000000008 Subnormal
mulx782 multiply 1e-600000000 1e-400000097 -> 1E-1000000097 Subnormal
-mulx783 multiply 1e-600000000 1e-400000098 -> 0E-1000000097 Underflow Subnormal Inexact Rounded
+mulx783 multiply 1e-600000000 1e-400000098 -> 0E-1000000097 Underflow Subnormal Inexact Rounded Clamped
precision: 999
mulx784 multiply 1e-600000000 1e-400000997 -> 1E-1000000997 Subnormal
-mulx785 multiply 1e-600000000 1e-400000998 -> 0E-1000000997 Underflow Subnormal Inexact Rounded
+mulx785 multiply 1e-600000000 1e-400000998 -> 0E-1000000997 Underflow Subnormal Inexact Rounded Clamped
-- following testcases [through mulx800] not yet run against code
precision: 9999
mulx786 multiply 1e-600000000 1e-400009997 -> 1E-1000009997 Subnormal
-mulx787 multiply 1e-600000000 1e-400009998 -> 0E-1000009997 Underflow Subnormal Inexact Rounded
+mulx787 multiply 1e-600000000 1e-400009998 -> 0E-1000009997 Underflow Subnormal Inexact Rounded Clamped
precision: 99999
mulx788 multiply 1e-600000000 1e-400099997 -> 1E-1000099997 Subnormal
-mulx789 multiply 1e-600000000 1e-400099998 -> 0E-1000099997 Underflow Subnormal Inexact Rounded
+mulx789 multiply 1e-600000000 1e-400099998 -> 0E-1000099997 Underflow Subnormal Inexact Rounded Clamped
precision: 999999
mulx790 multiply 1e-600000000 1e-400999997 -> 1E-1000999997 Subnormal
-mulx791 multiply 1e-600000000 1e-400999998 -> 0E-1000999997 Underflow Subnormal Inexact Rounded
+mulx791 multiply 1e-600000000 1e-400999998 -> 0E-1000999997 Underflow Subnormal Inexact Rounded Clamped
precision: 9999999
mulx792 multiply 1e-600000000 1e-409999997 -> 1E-1009999997 Subnormal
-mulx793 multiply 1e-600000000 1e-409999998 -> 0E-1009999997 Underflow Subnormal Inexact Rounded
+mulx793 multiply 1e-600000000 1e-409999998 -> 0E-1009999997 Underflow Subnormal Inexact Rounded Clamped
precision: 99999999
mulx794 multiply 1e-600000000 1e-499999997 -> 1E-1099999997 Subnormal
-mulx795 multiply 1e-600000000 1e-499999998 -> 0E-1099999997 Underflow Subnormal Inexact Rounded
+mulx795 multiply 1e-600000000 1e-499999998 -> 0E-1099999997 Underflow Subnormal Inexact Rounded Clamped
precision: 999999999
mulx796 multiply 1e-999999999 1e-999999997 -> 1E-1999999996 Subnormal
mulx797 multiply 1e-999999999 1e-999999998 -> 1E-1999999997 Subnormal
-mulx798 multiply 1e-999999999 1e-999999999 -> 0E-1999999997 Underflow Subnormal Inexact Rounded
+mulx798 multiply 1e-999999999 1e-999999999 -> 0E-1999999997 Underflow Subnormal Inexact Rounded Clamped
mulx799 multiply 1e-600000000 1e-400000007 -> 1E-1000000007 Subnormal
mulx800 multiply 1e-600000000 1e-400000008 -> 1E-1000000008 Subnormal
@@ -573,19 +615,19 @@ mulx816 multiply 2.50E-999 1e-4 -> 2E-1003 Underflow Subnormal Inexact
mulx817 multiply 2.51E-999 1e-4 -> 3E-1003 Underflow Subnormal Inexact Rounded
mulx818 multiply 1E-999 1e-4 -> 1E-1003 Subnormal
-mulx819 multiply 3E-999 1e-5 -> 0E-1003 Underflow Subnormal Inexact Rounded
-mulx820 multiply 5E-999 1e-5 -> 0E-1003 Underflow Subnormal Inexact Rounded
+mulx819 multiply 3E-999 1e-5 -> 0E-1003 Underflow Subnormal Inexact Rounded Clamped
+mulx820 multiply 5E-999 1e-5 -> 0E-1003 Underflow Subnormal Inexact Rounded Clamped
mulx821 multiply 7E-999 1e-5 -> 1E-1003 Underflow Subnormal Inexact Rounded
mulx822 multiply 9E-999 1e-5 -> 1E-1003 Underflow Subnormal Inexact Rounded
mulx823 multiply 9.9E-999 1e-5 -> 1E-1003 Underflow Subnormal Inexact Rounded
mulx824 multiply 1E-999 -1e-4 -> -1E-1003 Subnormal
-mulx825 multiply 3E-999 -1e-5 -> -0E-1003 Underflow Subnormal Inexact Rounded
-mulx826 multiply -5E-999 1e-5 -> -0E-1003 Underflow Subnormal Inexact Rounded
+mulx825 multiply 3E-999 -1e-5 -> -0E-1003 Underflow Subnormal Inexact Rounded Clamped
+mulx826 multiply -5E-999 1e-5 -> -0E-1003 Underflow Subnormal Inexact Rounded Clamped
mulx827 multiply 7E-999 -1e-5 -> -1E-1003 Underflow Subnormal Inexact Rounded
mulx828 multiply -9E-999 1e-5 -> -1E-1003 Underflow Subnormal Inexact Rounded
mulx829 multiply 9.9E-999 -1e-5 -> -1E-1003 Underflow Subnormal Inexact Rounded
-mulx830 multiply 3.0E-999 -1e-5 -> -0E-1003 Underflow Subnormal Inexact Rounded
+mulx830 multiply 3.0E-999 -1e-5 -> -0E-1003 Underflow Subnormal Inexact Rounded Clamped
mulx831 multiply 1.0E-501 1e-501 -> 1.0E-1002 Subnormal
mulx832 multiply 2.0E-501 2e-501 -> 4.0E-1002 Subnormal
@@ -595,7 +637,7 @@ mulx835 multiply 30.0E-501 30e-501 -> 9.000E-1000 Subnormal
mulx836 multiply 40.0E-501 40e-501 -> 1.6000E-999
-- squares
-mulx840 multiply 1E-502 1e-502 -> 0E-1003 Underflow Subnormal Inexact Rounded
+mulx840 multiply 1E-502 1e-502 -> 0E-1003 Underflow Subnormal Inexact Rounded Clamped
mulx841 multiply 1E-501 1e-501 -> 1E-1002 Subnormal
mulx842 multiply 2E-501 2e-501 -> 4E-1002 Subnormal
mulx843 multiply 4E-501 4e-501 -> 1.6E-1001 Subnormal
@@ -604,7 +646,7 @@ mulx845 multiply 30E-501 30e-501 -> 9.00E-1000 Subnormal
mulx846 multiply 40E-501 40e-501 -> 1.600E-999
-- cubes
-mulx850 multiply 1E-670 1e-335 -> 0E-1003 Underflow Subnormal Inexact Rounded
+mulx850 multiply 1E-670 1e-335 -> 0E-1003 Underflow Subnormal Inexact Rounded Clamped
mulx851 multiply 1E-668 1e-334 -> 1E-1002 Subnormal
mulx852 multiply 4E-668 2e-334 -> 8E-1002 Subnormal
mulx853 multiply 9E-668 3e-334 -> 2.7E-1001 Subnormal
@@ -612,7 +654,7 @@ mulx854 multiply 16E-668 4e-334 -> 6.4E-1001 Subnormal
mulx855 multiply 25E-668 5e-334 -> 1.25E-1000 Subnormal
mulx856 multiply 10E-668 100e-334 -> 1.000E-999
--- test from 0.099 ** 999 at 15 digits
+-- test derived from result of 0.099 ** 999 at 15 digits with unlimited exponent
precision: 19
mulx860 multiply 6636851557994578716E-520 6636851557994578716E-520 -> 4.40477986028551E-1003 Underflow Subnormal Inexact Rounded
@@ -629,14 +671,16 @@ mulx873 multiply -9.999E+999999999 1 -> -Infinity Inexact Overflow Rounded
precision: 5
maxexponent: 79
minexponent: -79
-mulx881 multiply 1.2347E-40 1.2347E-40 -> 1.524E-80 Inexact Rounded Subnormal Underflow
-mulx882 multiply 1.234E-40 1.234E-40 -> 1.523E-80 Inexact Rounded Subnormal Underflow
-mulx883 multiply 1.23E-40 1.23E-40 -> 1.513E-80 Inexact Rounded Subnormal Underflow
-mulx884 multiply 1.2E-40 1.2E-40 -> 1.44E-80 Subnormal
-mulx885 multiply 1.2E-40 1.2E-41 -> 1.44E-81 Subnormal
-mulx886 multiply 1.2E-40 1.2E-42 -> 1.4E-82 Subnormal Inexact Rounded Underflow
-mulx887 multiply 1.2E-40 1.3E-42 -> 1.6E-82 Subnormal Inexact Rounded Underflow
-mulx888 multiply 1.3E-40 1.3E-42 -> 1.7E-82 Subnormal Inexact Rounded Underflow
+mulx881 multiply 1.2347E-40 1.2347E-40 -> 1.524E-80 Inexact Rounded Subnormal Underflow
+mulx882 multiply 1.234E-40 1.234E-40 -> 1.523E-80 Inexact Rounded Subnormal Underflow
+mulx883 multiply 1.23E-40 1.23E-40 -> 1.513E-80 Inexact Rounded Subnormal Underflow
+mulx884 multiply 1.2E-40 1.2E-40 -> 1.44E-80 Subnormal
+mulx885 multiply 1.2E-40 1.2E-41 -> 1.44E-81 Subnormal
+mulx886 multiply 1.2E-40 1.2E-42 -> 1.4E-82 Subnormal Inexact Rounded Underflow
+mulx887 multiply 1.2E-40 1.3E-42 -> 1.6E-82 Subnormal Inexact Rounded Underflow
+mulx888 multiply 1.3E-40 1.3E-42 -> 1.7E-82 Subnormal Inexact Rounded Underflow
+mulx889 multiply 1.3E-40 1.3E-43 -> 2E-83 Subnormal Inexact Rounded Underflow
+mulx890 multiply 1.3E-41 1.3E-43 -> 0E-83 Clamped Subnormal Inexact Rounded Underflow
mulx891 multiply 1.2345E-39 1.234E-40 -> 1.5234E-79 Inexact Rounded
mulx892 multiply 1.23456E-39 1.234E-40 -> 1.5234E-79 Inexact Rounded
@@ -645,7 +689,43 @@ mulx894 multiply 1.23456E-40 1.234E-40 -> 1.523E-80 Inexact Rounded Subnorm
mulx895 multiply 1.2345E-41 1.234E-40 -> 1.52E-81 Inexact Rounded Subnormal Underflow
mulx896 multiply 1.23456E-41 1.234E-40 -> 1.52E-81 Inexact Rounded Subnormal Underflow
+-- Now explore the case where we get a normal result with Underflow
+precision: 16
+rounding: half_up
+maxExponent: 384
+minExponent: -383
+
+mulx900 multiply 0.3000000000E-191 0.3000000000E-191 -> 9.00000000000000E-384 Subnormal Rounded
+mulx901 multiply 0.3000000001E-191 0.3000000001E-191 -> 9.00000000600000E-384 Underflow Inexact Subnormal Rounded
+mulx902 multiply 9.999999999999999E-383 0.0999999999999 -> 9.99999999999000E-384 Underflow Inexact Subnormal Rounded
+mulx903 multiply 9.999999999999999E-383 0.09999999999999 -> 9.99999999999900E-384 Underflow Inexact Subnormal Rounded
+mulx904 multiply 9.999999999999999E-383 0.099999999999999 -> 9.99999999999990E-384 Underflow Inexact Subnormal Rounded
+mulx905 multiply 9.999999999999999E-383 0.0999999999999999 -> 9.99999999999999E-384 Underflow Inexact Subnormal Rounded
+-- prove operands are exact
+mulx906 multiply 9.999999999999999E-383 1 -> 9.999999999999999E-383
+mulx907 multiply 1 0.09999999999999999 -> 0.09999999999999999
+-- the next rounds to Nmin
+mulx908 multiply 9.999999999999999E-383 0.09999999999999999 -> 1.000000000000000E-383 Underflow Inexact Subnormal Rounded
+mulx909 multiply 9.999999999999999E-383 0.099999999999999999 -> 1.000000000000000E-383 Underflow Inexact Subnormal Rounded
+mulx910 multiply 9.999999999999999E-383 0.0999999999999999999 -> 1.000000000000000E-383 Underflow Inexact Subnormal Rounded
+mulx911 multiply 9.999999999999999E-383 0.09999999999999999999 -> 1.000000000000000E-383 Underflow Inexact Subnormal Rounded
+
+
+-- Examples from SQL proposal (Krishna Kulkarni)
+precision: 34
+rounding: half_up
+maxExponent: 6144
+minExponent: -6143
+mulx1001 multiply 130E-2 120E-2 -> 1.5600
+mulx1002 multiply 130E-2 12E-1 -> 1.560
+mulx1003 multiply 130E-2 1E0 -> 1.30
+mulx1004 multiply 1E2 1E4 -> 1E+6
+
+-- payload decapitate
+precision: 5
+mulx1010 multiply 11 -sNaN1234567890 -> -NaN67890 Invalid_operation
+
-- Null tests
-mulx900 multiply 10 # -> NaN Invalid_operation
-mulx901 multiply # 10 -> NaN Invalid_operation
+mulx990 multiply 10 # -> NaN Invalid_operation
+mulx991 multiply # 10 -> NaN Invalid_operation
diff --git a/Lib/test/decimaltestdata/nextminus.decTest b/Lib/test/decimaltestdata/nextminus.decTest
new file mode 100644
index 0000000..200580d
--- /dev/null
+++ b/Lib/test/decimaltestdata/nextminus.decTest
@@ -0,0 +1,148 @@
+------------------------------------------------------------------------
+-- nextminus.decTest -- decimal next that is less [754r nextdown] --
+-- Copyright (c) IBM Corporation, 1981, 2007. All rights reserved. --
+------------------------------------------------------------------------
+-- Please see the document "General Decimal Arithmetic Testcases" --
+-- at http://www2.hursley.ibm.com/decimal for the description of --
+-- these testcases. --
+-- --
+-- These testcases are experimental ('beta' versions), and they --
+-- may contain errors. They are offered on an as-is basis. In --
+-- particular, achieving the same results as the tests here is not --
+-- a guarantee that an implementation complies with any Standard --
+-- or specification. The tests are not exhaustive. --
+-- --
+-- Please send comments, suggestions, and corrections to the author: --
+-- Mike Cowlishaw, IBM Fellow --
+-- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK --
+-- mfc@uk.ibm.com --
+------------------------------------------------------------------------
+version: 2.56
+
+extended: 1
+precision: 9
+rounding: half_up
+maxExponent: 384
+minexponent: -383
+
+nextm001 nextminus 0.999999995 -> 0.999999994
+nextm002 nextminus 0.999999996 -> 0.999999995
+nextm003 nextminus 0.999999997 -> 0.999999996
+nextm004 nextminus 0.999999998 -> 0.999999997
+nextm005 nextminus 0.999999999 -> 0.999999998
+nextm006 nextminus 1.00000000 -> 0.999999999
+nextm007 nextminus 1.0 -> 0.999999999
+nextm008 nextminus 1 -> 0.999999999
+nextm009 nextminus 1.00000001 -> 1.00000000
+nextm010 nextminus 1.00000002 -> 1.00000001
+nextm011 nextminus 1.00000003 -> 1.00000002
+nextm012 nextminus 1.00000004 -> 1.00000003
+nextm013 nextminus 1.00000005 -> 1.00000004
+nextm014 nextminus 1.00000006 -> 1.00000005
+nextm015 nextminus 1.00000007 -> 1.00000006
+nextm016 nextminus 1.00000008 -> 1.00000007
+nextm017 nextminus 1.00000009 -> 1.00000008
+nextm018 nextminus 1.00000010 -> 1.00000009
+nextm019 nextminus 1.00000011 -> 1.00000010
+nextm020 nextminus 1.00000012 -> 1.00000011
+
+nextm021 nextminus -0.999999995 -> -0.999999996
+nextm022 nextminus -0.999999996 -> -0.999999997
+nextm023 nextminus -0.999999997 -> -0.999999998
+nextm024 nextminus -0.999999998 -> -0.999999999
+nextm025 nextminus -0.999999999 -> -1.00000000
+nextm026 nextminus -1.00000000 -> -1.00000001
+nextm027 nextminus -1.0 -> -1.00000001
+nextm028 nextminus -1 -> -1.00000001
+nextm029 nextminus -1.00000001 -> -1.00000002
+nextm030 nextminus -1.00000002 -> -1.00000003
+nextm031 nextminus -1.00000003 -> -1.00000004
+nextm032 nextminus -1.00000004 -> -1.00000005
+nextm033 nextminus -1.00000005 -> -1.00000006
+nextm034 nextminus -1.00000006 -> -1.00000007
+nextm035 nextminus -1.00000007 -> -1.00000008
+nextm036 nextminus -1.00000008 -> -1.00000009
+nextm037 nextminus -1.00000009 -> -1.00000010
+nextm038 nextminus -1.00000010 -> -1.00000011
+nextm039 nextminus -1.00000011 -> -1.00000012
+
+-- input operand is >precision
+nextm041 nextminus 1.00000010998 -> 1.00000010
+nextm042 nextminus 1.00000010999 -> 1.00000010
+nextm043 nextminus 1.00000011000 -> 1.00000010
+nextm044 nextminus 1.00000011001 -> 1.00000011
+nextm045 nextminus 1.00000011002 -> 1.00000011
+nextm046 nextminus 1.00000011002 -> 1.00000011
+nextm047 nextminus 1.00000011052 -> 1.00000011
+nextm048 nextminus 1.00000011552 -> 1.00000011
+nextm049 nextminus -1.00000010998 -> -1.00000011
+nextm050 nextminus -1.00000010999 -> -1.00000011
+nextm051 nextminus -1.00000011000 -> -1.00000012
+nextm052 nextminus -1.00000011001 -> -1.00000012
+nextm053 nextminus -1.00000011002 -> -1.00000012
+nextm054 nextminus -1.00000011002 -> -1.00000012
+nextm055 nextminus -1.00000011052 -> -1.00000012
+nextm056 nextminus -1.00000011552 -> -1.00000012
+-- ultra-tiny inputs
+nextm060 nextminus 1E-99999 -> 0E-391
+nextm061 nextminus 1E-999999999 -> 0E-391
+nextm062 nextminus 1E-391 -> 0E-391
+nextm063 nextminus -1E-99999 -> -1E-391
+nextm064 nextminus -1E-999999999 -> -1E-391
+nextm065 nextminus -1E-391 -> -2E-391
+
+-- Zeros
+nextm100 nextminus -0 -> -1E-391
+nextm101 nextminus 0 -> -1E-391
+nextm102 nextminus 0.00 -> -1E-391
+nextm103 nextminus -0.00 -> -1E-391
+nextm104 nextminus 0E-300 -> -1E-391
+nextm105 nextminus 0E+300 -> -1E-391
+nextm106 nextminus 0E+30000 -> -1E-391
+nextm107 nextminus -0E+30000 -> -1E-391
+
+precision: 9
+maxExponent: 999
+minexponent: -999
+-- specials
+nextm150 nextminus Inf -> 9.99999999E+999
+nextm151 nextminus -Inf -> -Infinity
+nextm152 nextminus NaN -> NaN
+nextm153 nextminus sNaN -> NaN Invalid_operation
+nextm154 nextminus NaN77 -> NaN77
+nextm155 nextminus sNaN88 -> NaN88 Invalid_operation
+nextm156 nextminus -NaN -> -NaN
+nextm157 nextminus -sNaN -> -NaN Invalid_operation
+nextm158 nextminus -NaN77 -> -NaN77
+nextm159 nextminus -sNaN88 -> -NaN88 Invalid_operation
+
+-- Nmax, Nmin, Ntiny, subnormals
+nextm170 nextminus 9.99999999E+999 -> 9.99999998E+999
+nextm171 nextminus 9.99999998E+999 -> 9.99999997E+999
+nextm172 nextminus 1E-999 -> 9.9999999E-1000
+nextm173 nextminus 1.00000000E-999 -> 9.9999999E-1000
+nextm174 nextminus 9E-1007 -> 8E-1007
+nextm175 nextminus 9.9E-1006 -> 9.8E-1006
+nextm176 nextminus 9.9999E-1003 -> 9.9998E-1003
+nextm177 nextminus 9.9999999E-1000 -> 9.9999998E-1000
+nextm178 nextminus 9.9999998E-1000 -> 9.9999997E-1000
+nextm179 nextminus 9.9999997E-1000 -> 9.9999996E-1000
+nextm180 nextminus 0E-1007 -> -1E-1007
+nextm181 nextminus 1E-1007 -> 0E-1007
+nextm182 nextminus 2E-1007 -> 1E-1007
+
+nextm183 nextminus -0E-1007 -> -1E-1007
+nextm184 nextminus -1E-1007 -> -2E-1007
+nextm185 nextminus -2E-1007 -> -3E-1007
+nextm186 nextminus -10E-1007 -> -1.1E-1006
+nextm187 nextminus -100E-1007 -> -1.01E-1005
+nextm188 nextminus -100000E-1007 -> -1.00001E-1002
+nextm189 nextminus -1.0000E-999 -> -1.00000001E-999
+nextm190 nextminus -1.00000000E-999 -> -1.00000001E-999
+nextm191 nextminus -1E-999 -> -1.00000001E-999
+nextm192 nextminus -9.99999998E+999 -> -9.99999999E+999
+nextm193 nextminus -9.99999999E+999 -> -Infinity
+
+-- Null tests
+nextm900 nextminus # -> NaN Invalid_operation
+
diff --git a/Lib/test/decimaltestdata/nextplus.decTest b/Lib/test/decimaltestdata/nextplus.decTest
new file mode 100644
index 0000000..01815ee
--- /dev/null
+++ b/Lib/test/decimaltestdata/nextplus.decTest
@@ -0,0 +1,150 @@
+------------------------------------------------------------------------
+-- nextplus.decTest -- decimal next that is greater [754r nextup] --
+-- Copyright (c) IBM Corporation, 1981, 2007. All rights reserved. --
+------------------------------------------------------------------------
+-- Please see the document "General Decimal Arithmetic Testcases" --
+-- at http://www2.hursley.ibm.com/decimal for the description of --
+-- these testcases. --
+-- --
+-- These testcases are experimental ('beta' versions), and they --
+-- may contain errors. They are offered on an as-is basis. In --
+-- particular, achieving the same results as the tests here is not --
+-- a guarantee that an implementation complies with any Standard --
+-- or specification. The tests are not exhaustive. --
+-- --
+-- Please send comments, suggestions, and corrections to the author: --
+-- Mike Cowlishaw, IBM Fellow --
+-- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK --
+-- mfc@uk.ibm.com --
+------------------------------------------------------------------------
+version: 2.56
+
+extended: 1
+precision: 9
+rounding: half_up
+maxExponent: 384
+minexponent: -383
+
+nextp001 nextplus 0.999999995 -> 0.999999996
+nextp002 nextplus 0.999999996 -> 0.999999997
+nextp003 nextplus 0.999999997 -> 0.999999998
+nextp004 nextplus 0.999999998 -> 0.999999999
+nextp005 nextplus 0.999999999 -> 1.00000000
+nextp006 nextplus 1.00000000 -> 1.00000001
+nextp007 nextplus 1.0 -> 1.00000001
+nextp008 nextplus 1 -> 1.00000001
+nextp009 nextplus 1.00000001 -> 1.00000002
+nextp010 nextplus 1.00000002 -> 1.00000003
+nextp011 nextplus 1.00000003 -> 1.00000004
+nextp012 nextplus 1.00000004 -> 1.00000005
+nextp013 nextplus 1.00000005 -> 1.00000006
+nextp014 nextplus 1.00000006 -> 1.00000007
+nextp015 nextplus 1.00000007 -> 1.00000008
+nextp016 nextplus 1.00000008 -> 1.00000009
+nextp017 nextplus 1.00000009 -> 1.00000010
+nextp018 nextplus 1.00000010 -> 1.00000011
+nextp019 nextplus 1.00000011 -> 1.00000012
+
+nextp021 nextplus -0.999999995 -> -0.999999994
+nextp022 nextplus -0.999999996 -> -0.999999995
+nextp023 nextplus -0.999999997 -> -0.999999996
+nextp024 nextplus -0.999999998 -> -0.999999997
+nextp025 nextplus -0.999999999 -> -0.999999998
+nextp026 nextplus -1.00000000 -> -0.999999999
+nextp027 nextplus -1.0 -> -0.999999999
+nextp028 nextplus -1 -> -0.999999999
+nextp029 nextplus -1.00000001 -> -1.00000000
+nextp030 nextplus -1.00000002 -> -1.00000001
+nextp031 nextplus -1.00000003 -> -1.00000002
+nextp032 nextplus -1.00000004 -> -1.00000003
+nextp033 nextplus -1.00000005 -> -1.00000004
+nextp034 nextplus -1.00000006 -> -1.00000005
+nextp035 nextplus -1.00000007 -> -1.00000006
+nextp036 nextplus -1.00000008 -> -1.00000007
+nextp037 nextplus -1.00000009 -> -1.00000008
+nextp038 nextplus -1.00000010 -> -1.00000009
+nextp039 nextplus -1.00000011 -> -1.00000010
+nextp040 nextplus -1.00000012 -> -1.00000011
+
+-- input operand is >precision
+nextp041 nextplus 1.00000010998 -> 1.00000011
+nextp042 nextplus 1.00000010999 -> 1.00000011
+nextp043 nextplus 1.00000011000 -> 1.00000012
+nextp044 nextplus 1.00000011001 -> 1.00000012
+nextp045 nextplus 1.00000011002 -> 1.00000012
+nextp046 nextplus 1.00000011002 -> 1.00000012
+nextp047 nextplus 1.00000011052 -> 1.00000012
+nextp048 nextplus 1.00000011552 -> 1.00000012
+nextp049 nextplus -1.00000010998 -> -1.00000010
+nextp050 nextplus -1.00000010999 -> -1.00000010
+nextp051 nextplus -1.00000011000 -> -1.00000010
+nextp052 nextplus -1.00000011001 -> -1.00000011
+nextp053 nextplus -1.00000011002 -> -1.00000011
+nextp054 nextplus -1.00000011002 -> -1.00000011
+nextp055 nextplus -1.00000011052 -> -1.00000011
+nextp056 nextplus -1.00000011552 -> -1.00000011
+-- ultra-tiny inputs
+nextp060 nextplus 1E-99999 -> 1E-391
+nextp061 nextplus 1E-999999999 -> 1E-391
+nextp062 nextplus 1E-391 -> 2E-391
+nextp063 nextplus -1E-99999 -> -0E-391
+nextp064 nextplus -1E-999999999 -> -0E-391
+nextp065 nextplus -1E-391 -> -0E-391
+
+-- Zeros
+nextp100 nextplus 0 -> 1E-391
+nextp101 nextplus 0.00 -> 1E-391
+nextp102 nextplus 0E-300 -> 1E-391
+nextp103 nextplus 0E+300 -> 1E-391
+nextp104 nextplus 0E+30000 -> 1E-391
+nextp105 nextplus -0 -> 1E-391
+nextp106 nextplus -0.00 -> 1E-391
+nextp107 nextplus -0E-300 -> 1E-391
+nextp108 nextplus -0E+300 -> 1E-391
+nextp109 nextplus -0E+30000 -> 1E-391
+
+maxExponent: 999
+minexponent: -999
+precision: 9
+-- specials
+nextp150 nextplus Inf -> Infinity
+nextp151 nextplus -Inf -> -9.99999999E+999
+nextp152 nextplus NaN -> NaN
+nextp153 nextplus sNaN -> NaN Invalid_operation
+nextp154 nextplus NaN77 -> NaN77
+nextp155 nextplus sNaN88 -> NaN88 Invalid_operation
+nextp156 nextplus -NaN -> -NaN
+nextp157 nextplus -sNaN -> -NaN Invalid_operation
+nextp158 nextplus -NaN77 -> -NaN77
+nextp159 nextplus -sNaN88 -> -NaN88 Invalid_operation
+
+-- Nmax, Nmin, Ntiny, subnormals
+nextp170 nextplus 9.99999999E+999 -> Infinity
+nextp171 nextplus 9.99999998E+999 -> 9.99999999E+999
+nextp172 nextplus 1E-999 -> 1.00000001E-999
+nextp173 nextplus 1.00000000E-999 -> 1.00000001E-999
+nextp174 nextplus 9E-1007 -> 1.0E-1006
+nextp175 nextplus 9.9E-1006 -> 1.00E-1005
+nextp176 nextplus 9.9999E-1003 -> 1.00000E-1002
+nextp177 nextplus 9.9999999E-1000 -> 1.00000000E-999
+nextp178 nextplus 9.9999998E-1000 -> 9.9999999E-1000
+nextp179 nextplus 9.9999997E-1000 -> 9.9999998E-1000
+nextp180 nextplus 0E-1007 -> 1E-1007
+nextp181 nextplus 1E-1007 -> 2E-1007
+nextp182 nextplus 2E-1007 -> 3E-1007
+
+nextp183 nextplus -0E-1007 -> 1E-1007
+nextp184 nextplus -1E-1007 -> -0E-1007
+nextp185 nextplus -2E-1007 -> -1E-1007
+nextp186 nextplus -10E-1007 -> -9E-1007
+nextp187 nextplus -100E-1007 -> -9.9E-1006
+nextp188 nextplus -100000E-1007 -> -9.9999E-1003
+nextp189 nextplus -1.0000E-999 -> -9.9999999E-1000
+nextp190 nextplus -1.00000000E-999 -> -9.9999999E-1000
+nextp191 nextplus -1E-999 -> -9.9999999E-1000
+nextp192 nextplus -9.99999998E+999 -> -9.99999997E+999
+nextp193 nextplus -9.99999999E+999 -> -9.99999998E+999
+
+-- Null tests
+nextp900 nextplus # -> NaN Invalid_operation
+
diff --git a/Lib/test/decimaltestdata/nexttoward.decTest b/Lib/test/decimaltestdata/nexttoward.decTest
new file mode 100644
index 0000000..cb60f57
--- /dev/null
+++ b/Lib/test/decimaltestdata/nexttoward.decTest
@@ -0,0 +1,426 @@
+------------------------------------------------------------------------
+-- nexttoward.decTest -- decimal next toward rhs [754r nextafter] --
+-- Copyright (c) IBM Corporation, 1981, 2007. All rights reserved. --
+------------------------------------------------------------------------
+-- Please see the document "General Decimal Arithmetic Testcases" --
+-- at http://www2.hursley.ibm.com/decimal for the description of --
+-- these testcases. --
+-- --
+-- These testcases are experimental ('beta' versions), and they --
+-- may contain errors. They are offered on an as-is basis. In --
+-- particular, achieving the same results as the tests here is not --
+-- a guarantee that an implementation complies with any Standard --
+-- or specification. The tests are not exhaustive. --
+-- --
+-- Please send comments, suggestions, and corrections to the author: --
+-- Mike Cowlishaw, IBM Fellow --
+-- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK --
+-- mfc@uk.ibm.com --
+------------------------------------------------------------------------
+version: 2.56
+
+extended: 1
+precision: 9
+rounding: half_up
+maxExponent: 384
+minexponent: -383
+
+-- Sanity check with a scattering of numerics
+nextt001 nexttoward 10 10 -> 10
+nextt002 nexttoward -10 -10 -> -10
+nextt003 nexttoward 1 10 -> 1.00000001
+nextt004 nexttoward 1 -10 -> 0.999999999
+nextt005 nexttoward -1 10 -> -0.999999999
+nextt006 nexttoward -1 -10 -> -1.00000001
+nextt007 nexttoward 0 10 -> 1E-391 Underflow Subnormal Inexact Rounded
+nextt008 nexttoward 0 -10 -> -1E-391 Underflow Subnormal Inexact Rounded
+nextt009 nexttoward 9.99999999E+384 +Infinity -> Infinity Overflow Inexact Rounded
+nextt010 nexttoward -9.99999999E+384 -Infinity -> -Infinity Overflow Inexact Rounded
+
+------- lhs=rhs
+-- finites
+nextt101 nexttoward 7 7 -> 7
+nextt102 nexttoward -7 -7 -> -7
+nextt103 nexttoward 75 75 -> 75
+nextt104 nexttoward -75 -75 -> -75
+nextt105 nexttoward 7.50 7.5 -> 7.50
+nextt106 nexttoward -7.50 -7.50 -> -7.50
+nextt107 nexttoward 7.500 7.5000 -> 7.500
+nextt108 nexttoward -7.500 -7.5 -> -7.500
+
+-- zeros
+nextt111 nexttoward 0 0 -> 0
+nextt112 nexttoward -0 -0 -> -0
+nextt113 nexttoward 0E+4 0 -> 0E+4
+nextt114 nexttoward -0E+4 -0 -> -0E+4
+nextt115 nexttoward 0.0000 0.00000 -> 0.0000
+nextt116 nexttoward -0.0000 -0.00 -> -0.0000
+nextt117 nexttoward 0E-141 0 -> 0E-141
+nextt118 nexttoward -0E-141 -000 -> -0E-141
+
+-- full coefficients, alternating bits
+nextt121 nexttoward 268268268 268268268 -> 268268268
+nextt122 nexttoward -268268268 -268268268 -> -268268268
+nextt123 nexttoward 134134134 134134134 -> 134134134
+nextt124 nexttoward -134134134 -134134134 -> -134134134
+
+-- Nmax, Nmin, Ntiny
+nextt131 nexttoward 9.99999999E+384 9.99999999E+384 -> 9.99999999E+384
+nextt132 nexttoward 1E-383 1E-383 -> 1E-383
+nextt133 nexttoward 1.00000000E-383 1.00000000E-383 -> 1.00000000E-383
+nextt134 nexttoward 1E-391 1E-391 -> 1E-391
+
+nextt135 nexttoward -1E-391 -1E-391 -> -1E-391
+nextt136 nexttoward -1.00000000E-383 -1.00000000E-383 -> -1.00000000E-383
+nextt137 nexttoward -1E-383 -1E-383 -> -1E-383
+nextt138 nexttoward -9.99999999E+384 -9.99999999E+384 -> -9.99999999E+384
+
+------- lhs<rhs
+nextt201 nexttoward 0.999999995 Infinity -> 0.999999996
+nextt202 nexttoward 0.999999996 Infinity -> 0.999999997
+nextt203 nexttoward 0.999999997 Infinity -> 0.999999998
+nextt204 nexttoward 0.999999998 Infinity -> 0.999999999
+nextt205 nexttoward 0.999999999 Infinity -> 1.00000000
+nextt206 nexttoward 1.00000000 Infinity -> 1.00000001
+nextt207 nexttoward 1.0 Infinity -> 1.00000001
+nextt208 nexttoward 1 Infinity -> 1.00000001
+nextt209 nexttoward 1.00000001 Infinity -> 1.00000002
+nextt210 nexttoward 1.00000002 Infinity -> 1.00000003
+nextt211 nexttoward 1.00000003 Infinity -> 1.00000004
+nextt212 nexttoward 1.00000004 Infinity -> 1.00000005
+nextt213 nexttoward 1.00000005 Infinity -> 1.00000006
+nextt214 nexttoward 1.00000006 Infinity -> 1.00000007
+nextt215 nexttoward 1.00000007 Infinity -> 1.00000008
+nextt216 nexttoward 1.00000008 Infinity -> 1.00000009
+nextt217 nexttoward 1.00000009 Infinity -> 1.00000010
+nextt218 nexttoward 1.00000010 Infinity -> 1.00000011
+nextt219 nexttoward 1.00000011 Infinity -> 1.00000012
+
+nextt221 nexttoward -0.999999995 Infinity -> -0.999999994
+nextt222 nexttoward -0.999999996 Infinity -> -0.999999995
+nextt223 nexttoward -0.999999997 Infinity -> -0.999999996
+nextt224 nexttoward -0.999999998 Infinity -> -0.999999997
+nextt225 nexttoward -0.999999999 Infinity -> -0.999999998
+nextt226 nexttoward -1.00000000 Infinity -> -0.999999999
+nextt227 nexttoward -1.0 Infinity -> -0.999999999
+nextt228 nexttoward -1 Infinity -> -0.999999999
+nextt229 nexttoward -1.00000001 Infinity -> -1.00000000
+nextt230 nexttoward -1.00000002 Infinity -> -1.00000001
+nextt231 nexttoward -1.00000003 Infinity -> -1.00000002
+nextt232 nexttoward -1.00000004 Infinity -> -1.00000003
+nextt233 nexttoward -1.00000005 Infinity -> -1.00000004
+nextt234 nexttoward -1.00000006 Infinity -> -1.00000005
+nextt235 nexttoward -1.00000007 Infinity -> -1.00000006
+nextt236 nexttoward -1.00000008 Infinity -> -1.00000007
+nextt237 nexttoward -1.00000009 Infinity -> -1.00000008
+nextt238 nexttoward -1.00000010 Infinity -> -1.00000009
+nextt239 nexttoward -1.00000011 Infinity -> -1.00000010
+nextt240 nexttoward -1.00000012 Infinity -> -1.00000011
+
+-- input operand is >precision
+nextt241 nexttoward 1.00000010998 Infinity -> 1.00000011
+nextt242 nexttoward 1.00000010999 Infinity -> 1.00000011
+nextt243 nexttoward 1.00000011000 Infinity -> 1.00000012
+nextt244 nexttoward 1.00000011001 Infinity -> 1.00000012
+nextt245 nexttoward 1.00000011002 Infinity -> 1.00000012
+nextt246 nexttoward 1.00000011002 Infinity -> 1.00000012
+nextt247 nexttoward 1.00000011052 Infinity -> 1.00000012
+nextt248 nexttoward 1.00000011552 Infinity -> 1.00000012
+nextt249 nexttoward -1.00000010998 Infinity -> -1.00000010
+nextt250 nexttoward -1.00000010999 Infinity -> -1.00000010
+nextt251 nexttoward -1.00000011000 Infinity -> -1.00000010
+nextt252 nexttoward -1.00000011001 Infinity -> -1.00000011
+nextt253 nexttoward -1.00000011002 Infinity -> -1.00000011
+nextt254 nexttoward -1.00000011002 Infinity -> -1.00000011
+nextt255 nexttoward -1.00000011052 Infinity -> -1.00000011
+nextt256 nexttoward -1.00000011552 Infinity -> -1.00000011
+-- ultra-tiny inputs
+nextt260 nexttoward 1E-99999 Infinity -> 1E-391 Underflow Subnormal Inexact Rounded
+nextt261 nexttoward 1E-999999999 Infinity -> 1E-391 Underflow Subnormal Inexact Rounded
+nextt262 nexttoward 1E-391 Infinity -> 2E-391 Underflow Subnormal Inexact Rounded
+nextt263 nexttoward -1E-99999 Infinity -> -0E-391 Underflow Subnormal Inexact Rounded Clamped
+nextt264 nexttoward -1E-999999999 Infinity -> -0E-391 Underflow Subnormal Inexact Rounded Clamped
+nextt265 nexttoward -1E-391 Infinity -> -0E-391 Underflow Subnormal Inexact Rounded Clamped
+
+-- Zeros
+nextt300 nexttoward 0 Infinity -> 1E-391 Underflow Subnormal Inexact Rounded
+nextt301 nexttoward 0.00 Infinity -> 1E-391 Underflow Subnormal Inexact Rounded
+nextt302 nexttoward 0E-300 Infinity -> 1E-391 Underflow Subnormal Inexact Rounded
+nextt303 nexttoward 0E+300 Infinity -> 1E-391 Underflow Subnormal Inexact Rounded
+nextt304 nexttoward 0E+30000 Infinity -> 1E-391 Underflow Subnormal Inexact Rounded
+nextt305 nexttoward -0 Infinity -> 1E-391 Underflow Subnormal Inexact Rounded
+nextt306 nexttoward -0.00 Infinity -> 1E-391 Underflow Subnormal Inexact Rounded
+nextt307 nexttoward -0E-300 Infinity -> 1E-391 Underflow Subnormal Inexact Rounded
+nextt308 nexttoward -0E+300 Infinity -> 1E-391 Underflow Subnormal Inexact Rounded
+nextt309 nexttoward -0E+30000 Infinity -> 1E-391 Underflow Subnormal Inexact Rounded
+
+-- specials
+nextt350 nexttoward Inf Infinity -> Infinity
+nextt351 nexttoward -Inf Infinity -> -9.99999999E+384
+nextt352 nexttoward NaN Infinity -> NaN
+nextt353 nexttoward sNaN Infinity -> NaN Invalid_operation
+nextt354 nexttoward NaN77 Infinity -> NaN77
+nextt355 nexttoward sNaN88 Infinity -> NaN88 Invalid_operation
+nextt356 nexttoward -NaN Infinity -> -NaN
+nextt357 nexttoward -sNaN Infinity -> -NaN Invalid_operation
+nextt358 nexttoward -NaN77 Infinity -> -NaN77
+nextt359 nexttoward -sNaN88 Infinity -> -NaN88 Invalid_operation
+
+-- Nmax, Nmin, Ntiny, subnormals
+maxExponent: 999
+minexponent: -999
+nextt370 nexttoward 9.99999999E+999 Infinity -> Infinity Overflow Inexact Rounded
+nextt371 nexttoward 9.99999998E+999 Infinity -> 9.99999999E+999
+nextt372 nexttoward 1E-999 Infinity -> 1.00000001E-999
+nextt373 nexttoward 1.00000000E-999 Infinity -> 1.00000001E-999
+nextt374 nexttoward 0.999999999E-999 Infinity -> 1.00000000E-999
+nextt375 nexttoward 0.99999999E-999 Infinity -> 1.00000000E-999
+nextt376 nexttoward 9E-1007 Infinity -> 1.0E-1006 Underflow Subnormal Inexact Rounded
+nextt377 nexttoward 9.9E-1006 Infinity -> 1.00E-1005 Underflow Subnormal Inexact Rounded
+nextt378 nexttoward 9.9999E-1003 Infinity -> 1.00000E-1002 Underflow Subnormal Inexact Rounded
+nextt379 nexttoward 9.9999998E-1000 Infinity -> 9.9999999E-1000 Underflow Subnormal Inexact Rounded
+nextt380 nexttoward 9.9999997E-1000 Infinity -> 9.9999998E-1000 Underflow Subnormal Inexact Rounded
+nextt381 nexttoward 0E-1007 Infinity -> 1E-1007 Underflow Subnormal Inexact Rounded
+nextt382 nexttoward 1E-1007 Infinity -> 2E-1007 Underflow Subnormal Inexact Rounded
+nextt383 nexttoward 2E-1007 Infinity -> 3E-1007 Underflow Subnormal Inexact Rounded
+
+nextt385 nexttoward -0E-1007 Infinity -> 1E-1007 Underflow Subnormal Inexact Rounded
+nextt386 nexttoward -1E-1007 Infinity -> -0E-1007 Underflow Subnormal Inexact Rounded Clamped
+nextt387 nexttoward -2E-1007 Infinity -> -1E-1007 Underflow Subnormal Inexact Rounded
+nextt388 nexttoward -10E-1007 Infinity -> -9E-1007 Underflow Subnormal Inexact Rounded
+nextt389 nexttoward -100E-1007 Infinity -> -9.9E-1006 Underflow Subnormal Inexact Rounded
+nextt390 nexttoward -100000E-1007 Infinity -> -9.9999E-1003 Underflow Subnormal Inexact Rounded
+nextt391 nexttoward -1.0000E-999 Infinity -> -9.9999999E-1000 Underflow Subnormal Inexact Rounded
+nextt392 nexttoward -1.00000000E-999 Infinity -> -9.9999999E-1000 Underflow Subnormal Inexact Rounded
+nextt393 nexttoward -1E-999 Infinity -> -9.9999999E-1000 Underflow Subnormal Inexact Rounded
+nextt394 nexttoward -9.99999998E+999 Infinity -> -9.99999997E+999
+nextt395 nexttoward -9.99999999E+999 Infinity -> -9.99999998E+999
+
+------- lhs>rhs
+maxExponent: 384
+minexponent: -383
+nextt401 nexttoward 0.999999995 -Infinity -> 0.999999994
+nextt402 nexttoward 0.999999996 -Infinity -> 0.999999995
+nextt403 nexttoward 0.999999997 -Infinity -> 0.999999996
+nextt404 nexttoward 0.999999998 -Infinity -> 0.999999997
+nextt405 nexttoward 0.999999999 -Infinity -> 0.999999998
+nextt406 nexttoward 1.00000000 -Infinity -> 0.999999999
+nextt407 nexttoward 1.0 -Infinity -> 0.999999999
+nextt408 nexttoward 1 -Infinity -> 0.999999999
+nextt409 nexttoward 1.00000001 -Infinity -> 1.00000000
+nextt410 nexttoward 1.00000002 -Infinity -> 1.00000001
+nextt411 nexttoward 1.00000003 -Infinity -> 1.00000002
+nextt412 nexttoward 1.00000004 -Infinity -> 1.00000003
+nextt413 nexttoward 1.00000005 -Infinity -> 1.00000004
+nextt414 nexttoward 1.00000006 -Infinity -> 1.00000005
+nextt415 nexttoward 1.00000007 -Infinity -> 1.00000006
+nextt416 nexttoward 1.00000008 -Infinity -> 1.00000007
+nextt417 nexttoward 1.00000009 -Infinity -> 1.00000008
+nextt418 nexttoward 1.00000010 -Infinity -> 1.00000009
+nextt419 nexttoward 1.00000011 -Infinity -> 1.00000010
+nextt420 nexttoward 1.00000012 -Infinity -> 1.00000011
+
+nextt421 nexttoward -0.999999995 -Infinity -> -0.999999996
+nextt422 nexttoward -0.999999996 -Infinity -> -0.999999997
+nextt423 nexttoward -0.999999997 -Infinity -> -0.999999998
+nextt424 nexttoward -0.999999998 -Infinity -> -0.999999999
+nextt425 nexttoward -0.999999999 -Infinity -> -1.00000000
+nextt426 nexttoward -1.00000000 -Infinity -> -1.00000001
+nextt427 nexttoward -1.0 -Infinity -> -1.00000001
+nextt428 nexttoward -1 -Infinity -> -1.00000001
+nextt429 nexttoward -1.00000001 -Infinity -> -1.00000002
+nextt430 nexttoward -1.00000002 -Infinity -> -1.00000003
+nextt431 nexttoward -1.00000003 -Infinity -> -1.00000004
+nextt432 nexttoward -1.00000004 -Infinity -> -1.00000005
+nextt433 nexttoward -1.00000005 -Infinity -> -1.00000006
+nextt434 nexttoward -1.00000006 -Infinity -> -1.00000007
+nextt435 nexttoward -1.00000007 -Infinity -> -1.00000008
+nextt436 nexttoward -1.00000008 -Infinity -> -1.00000009
+nextt437 nexttoward -1.00000009 -Infinity -> -1.00000010
+nextt438 nexttoward -1.00000010 -Infinity -> -1.00000011
+nextt439 nexttoward -1.00000011 -Infinity -> -1.00000012
+
+-- input operand is >precision
+nextt441 nexttoward 1.00000010998 -Infinity -> 1.00000010
+nextt442 nexttoward 1.00000010999 -Infinity -> 1.00000010
+nextt443 nexttoward 1.00000011000 -Infinity -> 1.00000010
+nextt444 nexttoward 1.00000011001 -Infinity -> 1.00000011
+nextt445 nexttoward 1.00000011002 -Infinity -> 1.00000011
+nextt446 nexttoward 1.00000011002 -Infinity -> 1.00000011
+nextt447 nexttoward 1.00000011052 -Infinity -> 1.00000011
+nextt448 nexttoward 1.00000011552 -Infinity -> 1.00000011
+nextt449 nexttoward -1.00000010998 -Infinity -> -1.00000011
+nextt450 nexttoward -1.00000010999 -Infinity -> -1.00000011
+nextt451 nexttoward -1.00000011000 -Infinity -> -1.00000012
+nextt452 nexttoward -1.00000011001 -Infinity -> -1.00000012
+nextt453 nexttoward -1.00000011002 -Infinity -> -1.00000012
+nextt454 nexttoward -1.00000011002 -Infinity -> -1.00000012
+nextt455 nexttoward -1.00000011052 -Infinity -> -1.00000012
+nextt456 nexttoward -1.00000011552 -Infinity -> -1.00000012
+-- ultra-tiny inputs
+nextt460 nexttoward 1E-99999 -Infinity -> 0E-391 Underflow Subnormal Inexact Rounded Clamped
+nextt461 nexttoward 1E-999999999 -Infinity -> 0E-391 Underflow Subnormal Inexact Rounded Clamped
+nextt462 nexttoward 1E-391 -Infinity -> 0E-391 Underflow Subnormal Inexact Rounded Clamped
+nextt463 nexttoward -1E-99999 -Infinity -> -1E-391 Underflow Subnormal Inexact Rounded
+nextt464 nexttoward -1E-999999999 -Infinity -> -1E-391 Underflow Subnormal Inexact Rounded
+nextt465 nexttoward -1E-391 -Infinity -> -2E-391 Underflow Subnormal Inexact Rounded
+
+-- Zeros
+nextt500 nexttoward -0 -Infinity -> -1E-391 Underflow Subnormal Inexact Rounded
+nextt501 nexttoward 0 -Infinity -> -1E-391 Underflow Subnormal Inexact Rounded
+nextt502 nexttoward 0.00 -Infinity -> -1E-391 Underflow Subnormal Inexact Rounded
+nextt503 nexttoward -0.00 -Infinity -> -1E-391 Underflow Subnormal Inexact Rounded
+nextt504 nexttoward 0E-300 -Infinity -> -1E-391 Underflow Subnormal Inexact Rounded
+nextt505 nexttoward 0E+300 -Infinity -> -1E-391 Underflow Subnormal Inexact Rounded
+nextt506 nexttoward 0E+30000 -Infinity -> -1E-391 Underflow Subnormal Inexact Rounded
+nextt507 nexttoward -0E+30000 -Infinity -> -1E-391 Underflow Subnormal Inexact Rounded
+nextt508 nexttoward 0.00 -0.0000 -> -0.00
+
+-- specials
+nextt550 nexttoward Inf -Infinity -> 9.99999999E+384
+nextt551 nexttoward -Inf -Infinity -> -Infinity
+nextt552 nexttoward NaN -Infinity -> NaN
+nextt553 nexttoward sNaN -Infinity -> NaN Invalid_operation
+nextt554 nexttoward NaN77 -Infinity -> NaN77
+nextt555 nexttoward sNaN88 -Infinity -> NaN88 Invalid_operation
+nextt556 nexttoward -NaN -Infinity -> -NaN
+nextt557 nexttoward -sNaN -Infinity -> -NaN Invalid_operation
+nextt558 nexttoward -NaN77 -Infinity -> -NaN77
+nextt559 nexttoward -sNaN88 -Infinity -> -NaN88 Invalid_operation
+
+-- Nmax, Nmin, Ntiny, subnormals
+maxExponent: 999
+minexponent: -999
+nextt570 nexttoward 9.99999999E+999 -Infinity -> 9.99999998E+999
+nextt571 nexttoward 9.99999998E+999 -Infinity -> 9.99999997E+999
+nextt572 nexttoward 1E-999 -Infinity -> 9.9999999E-1000 Underflow Subnormal Inexact Rounded
+nextt573 nexttoward 1.00000000E-999 -Infinity -> 9.9999999E-1000 Underflow Subnormal Inexact Rounded
+nextt574 nexttoward 9E-1007 -Infinity -> 8E-1007 Underflow Subnormal Inexact Rounded
+nextt575 nexttoward 9.9E-1006 -Infinity -> 9.8E-1006 Underflow Subnormal Inexact Rounded
+nextt576 nexttoward 9.9999E-1003 -Infinity -> 9.9998E-1003 Underflow Subnormal Inexact Rounded
+nextt577 nexttoward 9.9999999E-1000 -Infinity -> 9.9999998E-1000 Underflow Subnormal Inexact Rounded
+nextt578 nexttoward 9.9999998E-1000 -Infinity -> 9.9999997E-1000 Underflow Subnormal Inexact Rounded
+nextt579 nexttoward 9.9999997E-1000 -Infinity -> 9.9999996E-1000 Underflow Subnormal Inexact Rounded
+nextt580 nexttoward 0E-1007 -Infinity -> -1E-1007 Underflow Subnormal Inexact Rounded
+nextt581 nexttoward 1E-1007 -Infinity -> 0E-1007 Underflow Subnormal Inexact Rounded Clamped
+nextt582 nexttoward 2E-1007 -Infinity -> 1E-1007 Underflow Subnormal Inexact Rounded
+
+nextt583 nexttoward -0E-1007 -Infinity -> -1E-1007 Underflow Subnormal Inexact Rounded
+nextt584 nexttoward -1E-1007 -Infinity -> -2E-1007 Underflow Subnormal Inexact Rounded
+nextt585 nexttoward -2E-1007 -Infinity -> -3E-1007 Underflow Subnormal Inexact Rounded
+nextt586 nexttoward -10E-1007 -Infinity -> -1.1E-1006 Underflow Subnormal Inexact Rounded
+nextt587 nexttoward -100E-1007 -Infinity -> -1.01E-1005 Underflow Subnormal Inexact Rounded
+nextt588 nexttoward -100000E-1007 -Infinity -> -1.00001E-1002 Underflow Subnormal Inexact Rounded
+nextt589 nexttoward -1.0000E-999 -Infinity -> -1.00000001E-999
+nextt590 nexttoward -1.00000000E-999 -Infinity -> -1.00000001E-999
+nextt591 nexttoward -1E-999 -Infinity -> -1.00000001E-999
+nextt592 nexttoward -9.99999998E+999 -Infinity -> -9.99999999E+999
+nextt593 nexttoward -9.99999999E+999 -Infinity -> -Infinity Overflow Inexact Rounded
+
+
+
+
+------- Specials
+maxExponent: 384
+minexponent: -383
+nextt780 nexttoward -Inf -Inf -> -Infinity
+nextt781 nexttoward -Inf -1000 -> -9.99999999E+384
+nextt782 nexttoward -Inf -1 -> -9.99999999E+384
+nextt783 nexttoward -Inf -0 -> -9.99999999E+384
+nextt784 nexttoward -Inf 0 -> -9.99999999E+384
+nextt785 nexttoward -Inf 1 -> -9.99999999E+384
+nextt786 nexttoward -Inf 1000 -> -9.99999999E+384
+nextt787 nexttoward -1000 -Inf -> -1000.00001
+nextt788 nexttoward -Inf -Inf -> -Infinity
+nextt789 nexttoward -1 -Inf -> -1.00000001
+nextt790 nexttoward -0 -Inf -> -1E-391 Underflow Subnormal Inexact Rounded
+nextt791 nexttoward 0 -Inf -> -1E-391 Underflow Subnormal Inexact Rounded
+nextt792 nexttoward 1 -Inf -> 0.999999999
+nextt793 nexttoward 1000 -Inf -> 999.999999
+nextt794 nexttoward Inf -Inf -> 9.99999999E+384
+
+nextt800 nexttoward Inf -Inf -> 9.99999999E+384
+nextt801 nexttoward Inf -1000 -> 9.99999999E+384
+nextt802 nexttoward Inf -1 -> 9.99999999E+384
+nextt803 nexttoward Inf -0 -> 9.99999999E+384
+nextt804 nexttoward Inf 0 -> 9.99999999E+384
+nextt805 nexttoward Inf 1 -> 9.99999999E+384
+nextt806 nexttoward Inf 1000 -> 9.99999999E+384
+nextt807 nexttoward Inf Inf -> Infinity
+nextt808 nexttoward -1000 Inf -> -999.999999
+nextt809 nexttoward -Inf Inf -> -9.99999999E+384
+nextt810 nexttoward -1 Inf -> -0.999999999
+nextt811 nexttoward -0 Inf -> 1E-391 Underflow Subnormal Inexact Rounded
+nextt812 nexttoward 0 Inf -> 1E-391 Underflow Subnormal Inexact Rounded
+nextt813 nexttoward 1 Inf -> 1.00000001
+nextt814 nexttoward 1000 Inf -> 1000.00001
+nextt815 nexttoward Inf Inf -> Infinity
+
+nextt821 nexttoward NaN -Inf -> NaN
+nextt822 nexttoward NaN -1000 -> NaN
+nextt823 nexttoward NaN -1 -> NaN
+nextt824 nexttoward NaN -0 -> NaN
+nextt825 nexttoward NaN 0 -> NaN
+nextt826 nexttoward NaN 1 -> NaN
+nextt827 nexttoward NaN 1000 -> NaN
+nextt828 nexttoward NaN Inf -> NaN
+nextt829 nexttoward NaN NaN -> NaN
+nextt830 nexttoward -Inf NaN -> NaN
+nextt831 nexttoward -1000 NaN -> NaN
+nextt832 nexttoward -1 NaN -> NaN
+nextt833 nexttoward -0 NaN -> NaN
+nextt834 nexttoward 0 NaN -> NaN
+nextt835 nexttoward 1 NaN -> NaN
+nextt836 nexttoward 1000 NaN -> NaN
+nextt837 nexttoward Inf NaN -> NaN
+
+nextt841 nexttoward sNaN -Inf -> NaN Invalid_operation
+nextt842 nexttoward sNaN -1000 -> NaN Invalid_operation
+nextt843 nexttoward sNaN -1 -> NaN Invalid_operation
+nextt844 nexttoward sNaN -0 -> NaN Invalid_operation
+nextt845 nexttoward sNaN 0 -> NaN Invalid_operation
+nextt846 nexttoward sNaN 1 -> NaN Invalid_operation
+nextt847 nexttoward sNaN 1000 -> NaN Invalid_operation
+nextt848 nexttoward sNaN NaN -> NaN Invalid_operation
+nextt849 nexttoward sNaN sNaN -> NaN Invalid_operation
+nextt850 nexttoward NaN sNaN -> NaN Invalid_operation
+nextt851 nexttoward -Inf sNaN -> NaN Invalid_operation
+nextt852 nexttoward -1000 sNaN -> NaN Invalid_operation
+nextt853 nexttoward -1 sNaN -> NaN Invalid_operation
+nextt854 nexttoward -0 sNaN -> NaN Invalid_operation
+nextt855 nexttoward 0 sNaN -> NaN Invalid_operation
+nextt856 nexttoward 1 sNaN -> NaN Invalid_operation
+nextt857 nexttoward 1000 sNaN -> NaN Invalid_operation
+nextt858 nexttoward Inf sNaN -> NaN Invalid_operation
+nextt859 nexttoward NaN sNaN -> NaN Invalid_operation
+
+-- propagating NaNs
+nextt861 nexttoward NaN1 -Inf -> NaN1
+nextt862 nexttoward +NaN2 -1000 -> NaN2
+nextt863 nexttoward NaN3 1000 -> NaN3
+nextt864 nexttoward NaN4 Inf -> NaN4
+nextt865 nexttoward NaN5 +NaN6 -> NaN5
+nextt866 nexttoward -Inf NaN7 -> NaN7
+nextt867 nexttoward -1000 NaN8 -> NaN8
+nextt868 nexttoward 1000 NaN9 -> NaN9
+nextt869 nexttoward Inf +NaN10 -> NaN10
+nextt871 nexttoward sNaN11 -Inf -> NaN11 Invalid_operation
+nextt872 nexttoward sNaN12 -1000 -> NaN12 Invalid_operation
+nextt873 nexttoward sNaN13 1000 -> NaN13 Invalid_operation
+nextt874 nexttoward sNaN14 NaN17 -> NaN14 Invalid_operation
+nextt875 nexttoward sNaN15 sNaN18 -> NaN15 Invalid_operation
+nextt876 nexttoward NaN16 sNaN19 -> NaN19 Invalid_operation
+nextt877 nexttoward -Inf +sNaN20 -> NaN20 Invalid_operation
+nextt878 nexttoward -1000 sNaN21 -> NaN21 Invalid_operation
+nextt879 nexttoward 1000 sNaN22 -> NaN22 Invalid_operation
+nextt880 nexttoward Inf sNaN23 -> NaN23 Invalid_operation
+nextt881 nexttoward +NaN25 +sNaN24 -> NaN24 Invalid_operation
+nextt882 nexttoward -NaN26 NaN28 -> -NaN26
+nextt883 nexttoward -sNaN27 sNaN29 -> -NaN27 Invalid_operation
+nextt884 nexttoward 1000 -NaN30 -> -NaN30
+nextt885 nexttoward 1000 -sNaN31 -> -NaN31 Invalid_operation
+
+-- Null tests
+nextt900 nexttoward 1 # -> NaN Invalid_operation
+nextt901 nexttoward # 1 -> NaN Invalid_operation
+
diff --git a/Lib/test/decimaltestdata/normalize.decTest b/Lib/test/decimaltestdata/normalize.decTest
deleted file mode 100644
index 5708839..0000000
--- a/Lib/test/decimaltestdata/normalize.decTest
+++ /dev/null
@@ -1,225 +0,0 @@
-------------------------------------------------------------------------
--- normalize.decTest -- remove trailing zeros --
--- Copyright (c) IBM Corporation, 2003. All rights reserved. --
-------------------------------------------------------------------------
--- Please see the document "General Decimal Arithmetic Testcases" --
--- at http://www2.hursley.ibm.com/decimal for the description of --
--- these testcases. --
--- --
--- These testcases are experimental ('beta' versions), and they --
--- may contain errors. They are offered on an as-is basis. In --
--- particular, achieving the same results as the tests here is not --
--- a guarantee that an implementation complies with any Standard --
--- or specification. The tests are not exhaustive. --
--- --
--- Please send comments, suggestions, and corrections to the author: --
--- Mike Cowlishaw, IBM Fellow --
--- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK --
--- mfc@uk.ibm.com --
-------------------------------------------------------------------------
-version: 2.39
-
-extended: 1
-precision: 9
-rounding: half_up
-maxExponent: 999
-minexponent: -999
-
-nrmx001 normalize '1' -> '1'
-nrmx002 normalize '-1' -> '-1'
-nrmx003 normalize '1.00' -> '1'
-nrmx004 normalize '-1.00' -> '-1'
-nrmx005 normalize '0' -> '0'
-nrmx006 normalize '0.00' -> '0'
-nrmx007 normalize '00.0' -> '0'
-nrmx008 normalize '00.00' -> '0'
-nrmx009 normalize '00' -> '0'
-nrmx010 normalize '0E+1' -> '0'
-nrmx011 normalize '0E+5' -> '0'
-
-nrmx012 normalize '-2' -> '-2'
-nrmx013 normalize '2' -> '2'
-nrmx014 normalize '-2.00' -> '-2'
-nrmx015 normalize '2.00' -> '2'
-nrmx016 normalize '-0' -> '-0'
-nrmx017 normalize '-0.00' -> '-0'
-nrmx018 normalize '-00.0' -> '-0'
-nrmx019 normalize '-00.00' -> '-0'
-nrmx020 normalize '-00' -> '-0'
-nrmx021 normalize '-0E+5' -> '-0'
-nrmx022 normalize '-0E+1' -> '-0'
-
-nrmx030 normalize '+0.1' -> '0.1'
-nrmx031 normalize '-0.1' -> '-0.1'
-nrmx032 normalize '+0.01' -> '0.01'
-nrmx033 normalize '-0.01' -> '-0.01'
-nrmx034 normalize '+0.001' -> '0.001'
-nrmx035 normalize '-0.001' -> '-0.001'
-nrmx036 normalize '+0.000001' -> '0.000001'
-nrmx037 normalize '-0.000001' -> '-0.000001'
-nrmx038 normalize '+0.000000000001' -> '1E-12'
-nrmx039 normalize '-0.000000000001' -> '-1E-12'
-
-nrmx041 normalize 1.1 -> 1.1
-nrmx042 normalize 1.10 -> 1.1
-nrmx043 normalize 1.100 -> 1.1
-nrmx044 normalize 1.110 -> 1.11
-nrmx045 normalize -1.1 -> -1.1
-nrmx046 normalize -1.10 -> -1.1
-nrmx047 normalize -1.100 -> -1.1
-nrmx048 normalize -1.110 -> -1.11
-nrmx049 normalize 9.9 -> 9.9
-nrmx050 normalize 9.90 -> 9.9
-nrmx051 normalize 9.900 -> 9.9
-nrmx052 normalize 9.990 -> 9.99
-nrmx053 normalize -9.9 -> -9.9
-nrmx054 normalize -9.90 -> -9.9
-nrmx055 normalize -9.900 -> -9.9
-nrmx056 normalize -9.990 -> -9.99
-
--- some trailing fractional zeros with zeros in units
-nrmx060 normalize 10.0 -> 1E+1
-nrmx061 normalize 10.00 -> 1E+1
-nrmx062 normalize 100.0 -> 1E+2
-nrmx063 normalize 100.00 -> 1E+2
-nrmx064 normalize 1.1000E+3 -> 1.1E+3
-nrmx065 normalize 1.10000E+3 -> 1.1E+3
-nrmx066 normalize -10.0 -> -1E+1
-nrmx067 normalize -10.00 -> -1E+1
-nrmx068 normalize -100.0 -> -1E+2
-nrmx069 normalize -100.00 -> -1E+2
-nrmx070 normalize -1.1000E+3 -> -1.1E+3
-nrmx071 normalize -1.10000E+3 -> -1.1E+3
-
--- some insignificant trailing zeros with positive exponent
-nrmx080 normalize 10E+1 -> 1E+2
-nrmx081 normalize 100E+1 -> 1E+3
-nrmx082 normalize 1.0E+2 -> 1E+2
-nrmx083 normalize 1.0E+3 -> 1E+3
-nrmx084 normalize 1.1E+3 -> 1.1E+3
-nrmx085 normalize 1.00E+3 -> 1E+3
-nrmx086 normalize 1.10E+3 -> 1.1E+3
-nrmx087 normalize -10E+1 -> -1E+2
-nrmx088 normalize -100E+1 -> -1E+3
-nrmx089 normalize -1.0E+2 -> -1E+2
-nrmx090 normalize -1.0E+3 -> -1E+3
-nrmx091 normalize -1.1E+3 -> -1.1E+3
-nrmx092 normalize -1.00E+3 -> -1E+3
-nrmx093 normalize -1.10E+3 -> -1.1E+3
-
--- some significant trailing zeros, were we to be trimming
-nrmx100 normalize 11 -> 11
-nrmx101 normalize 10 -> 1E+1
-nrmx102 normalize 10. -> 1E+1
-nrmx103 normalize 1.1E+1 -> 11
-nrmx104 normalize 1.0E+1 -> 1E+1
-nrmx105 normalize 1.10E+2 -> 1.1E+2
-nrmx106 normalize 1.00E+2 -> 1E+2
-nrmx107 normalize 1.100E+3 -> 1.1E+3
-nrmx108 normalize 1.000E+3 -> 1E+3
-nrmx109 normalize 1.000000E+6 -> 1E+6
-nrmx110 normalize -11 -> -11
-nrmx111 normalize -10 -> -1E+1
-nrmx112 normalize -10. -> -1E+1
-nrmx113 normalize -1.1E+1 -> -11
-nrmx114 normalize -1.0E+1 -> -1E+1
-nrmx115 normalize -1.10E+2 -> -1.1E+2
-nrmx116 normalize -1.00E+2 -> -1E+2
-nrmx117 normalize -1.100E+3 -> -1.1E+3
-nrmx118 normalize -1.000E+3 -> -1E+3
-nrmx119 normalize -1.00000E+5 -> -1E+5
-nrmx120 normalize -1.000000E+6 -> -1E+6
-nrmx121 normalize -10.00000E+6 -> -1E+7
-nrmx122 normalize -100.0000E+6 -> -1E+8
-nrmx123 normalize -1000.000E+6 -> -1E+9
-nrmx124 normalize -10000.00E+6 -> -1E+10
-nrmx125 normalize -100000.0E+6 -> -1E+11
-nrmx126 normalize -1000000.E+6 -> -1E+12
-
--- examples from decArith
-nrmx140 normalize '2.1' -> '2.1'
-nrmx141 normalize '-2.0' -> '-2'
-nrmx142 normalize '1.200' -> '1.2'
-nrmx143 normalize '-120' -> '-1.2E+2'
-nrmx144 normalize '120.00' -> '1.2E+2'
-nrmx145 normalize '0.00' -> '0'
-
--- overflow tests
-maxexponent: 999999999
-minexponent: -999999999
-precision: 3
-nrmx160 normalize 9.999E+999999999 -> Infinity Inexact Overflow Rounded
-nrmx161 normalize -9.999E+999999999 -> -Infinity Inexact Overflow Rounded
-
--- subnormals and underflow
-precision: 3
-maxexponent: 999
-minexponent: -999
-nrmx210 normalize 1.00E-999 -> 1E-999
-nrmx211 normalize 0.1E-999 -> 1E-1000 Subnormal
-nrmx212 normalize 0.10E-999 -> 1E-1000 Subnormal
-nrmx213 normalize 0.100E-999 -> 1E-1000 Subnormal Rounded
-nrmx214 normalize 0.01E-999 -> 1E-1001 Subnormal
--- next is rounded to Emin
-nrmx215 normalize 0.999E-999 -> 1E-999 Inexact Rounded Subnormal Underflow
-nrmx216 normalize 0.099E-999 -> 1E-1000 Inexact Rounded Subnormal Underflow
-nrmx217 normalize 0.009E-999 -> 1E-1001 Inexact Rounded Subnormal Underflow
-nrmx218 normalize 0.001E-999 -> 0 Inexact Rounded Subnormal Underflow
-nrmx219 normalize 0.0009E-999 -> 0 Inexact Rounded Subnormal Underflow
-nrmx220 normalize 0.0001E-999 -> 0 Inexact Rounded Subnormal Underflow
-
-nrmx230 normalize -1.00E-999 -> -1E-999
-nrmx231 normalize -0.1E-999 -> -1E-1000 Subnormal
-nrmx232 normalize -0.10E-999 -> -1E-1000 Subnormal
-nrmx233 normalize -0.100E-999 -> -1E-1000 Subnormal Rounded
-nrmx234 normalize -0.01E-999 -> -1E-1001 Subnormal
--- next is rounded to Emin
-nrmx235 normalize -0.999E-999 -> -1E-999 Inexact Rounded Subnormal Underflow
-nrmx236 normalize -0.099E-999 -> -1E-1000 Inexact Rounded Subnormal Underflow
-nrmx237 normalize -0.009E-999 -> -1E-1001 Inexact Rounded Subnormal Underflow
-nrmx238 normalize -0.001E-999 -> -0 Inexact Rounded Subnormal Underflow
-nrmx239 normalize -0.0009E-999 -> -0 Inexact Rounded Subnormal Underflow
-nrmx240 normalize -0.0001E-999 -> -0 Inexact Rounded Subnormal Underflow
-
--- more reshaping
-precision: 9
-nrmx260 normalize '56260E-10' -> '0.000005626'
-nrmx261 normalize '56260E-5' -> '0.5626'
-nrmx262 normalize '56260E-2' -> '562.6'
-nrmx263 normalize '56260E-1' -> '5626'
-nrmx265 normalize '56260E-0' -> '5.626E+4'
-nrmx266 normalize '56260E+0' -> '5.626E+4'
-nrmx267 normalize '56260E+1' -> '5.626E+5'
-nrmx268 normalize '56260E+2' -> '5.626E+6'
-nrmx269 normalize '56260E+3' -> '5.626E+7'
-nrmx270 normalize '56260E+4' -> '5.626E+8'
-nrmx271 normalize '56260E+5' -> '5.626E+9'
-nrmx272 normalize '56260E+6' -> '5.626E+10'
-nrmx280 normalize '-56260E-10' -> '-0.000005626'
-nrmx281 normalize '-56260E-5' -> '-0.5626'
-nrmx282 normalize '-56260E-2' -> '-562.6'
-nrmx283 normalize '-56260E-1' -> '-5626'
-nrmx285 normalize '-56260E-0' -> '-5.626E+4'
-nrmx286 normalize '-56260E+0' -> '-5.626E+4'
-nrmx287 normalize '-56260E+1' -> '-5.626E+5'
-nrmx288 normalize '-56260E+2' -> '-5.626E+6'
-nrmx289 normalize '-56260E+3' -> '-5.626E+7'
-nrmx290 normalize '-56260E+4' -> '-5.626E+8'
-nrmx291 normalize '-56260E+5' -> '-5.626E+9'
-nrmx292 normalize '-56260E+6' -> '-5.626E+10'
-
-
--- specials
-nrmx820 normalize 'Inf' -> 'Infinity'
-nrmx821 normalize '-Inf' -> '-Infinity'
-nrmx822 normalize NaN -> NaN
-nrmx823 normalize sNaN -> NaN Invalid_operation
-nrmx824 normalize NaN101 -> NaN101
-nrmx825 normalize sNaN010 -> NaN10 Invalid_operation
-nrmx827 normalize -NaN -> -NaN
-nrmx828 normalize -sNaN -> -NaN Invalid_operation
-nrmx829 normalize -NaN101 -> -NaN101
-nrmx830 normalize -sNaN010 -> -NaN10 Invalid_operation
-
--- Null test
-nrmx900 normalize # -> NaN Invalid_operation
diff --git a/Lib/test/decimaltestdata/or.decTest b/Lib/test/decimaltestdata/or.decTest
new file mode 100644
index 0000000..928939e
--- /dev/null
+++ b/Lib/test/decimaltestdata/or.decTest
@@ -0,0 +1,334 @@
+------------------------------------------------------------------------
+-- or.decTest -- digitwise logical OR --
+-- Copyright (c) IBM Corporation, 1981, 2007. All rights reserved. --
+------------------------------------------------------------------------
+-- Please see the document "General Decimal Arithmetic Testcases" --
+-- at http://www2.hursley.ibm.com/decimal for the description of --
+-- these testcases. --
+-- --
+-- These testcases are experimental ('beta' versions), and they --
+-- may contain errors. They are offered on an as-is basis. In --
+-- particular, achieving the same results as the tests here is not --
+-- a guarantee that an implementation complies with any Standard --
+-- or specification. The tests are not exhaustive. --
+-- --
+-- Please send comments, suggestions, and corrections to the author: --
+-- Mike Cowlishaw, IBM Fellow --
+-- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK --
+-- mfc@uk.ibm.com --
+------------------------------------------------------------------------
+version: 2.56
+
+extended: 1
+precision: 9
+rounding: half_up
+maxExponent: 999
+minExponent: -999
+
+-- Sanity check (truth table)
+orx001 or 0 0 -> 0
+orx002 or 0 1 -> 1
+orx003 or 1 0 -> 1
+orx004 or 1 1 -> 1
+orx005 or 1100 1010 -> 1110
+-- and at msd and msd-1
+orx006 or 000000000 000000000 -> 0
+orx007 or 000000000 100000000 -> 100000000
+orx008 or 100000000 000000000 -> 100000000
+orx009 or 100000000 100000000 -> 100000000
+orx010 or 000000000 000000000 -> 0
+orx011 or 000000000 010000000 -> 10000000
+orx012 or 010000000 000000000 -> 10000000
+orx013 or 010000000 010000000 -> 10000000
+
+-- Various lengths
+-- 123456789 123456789 123456789
+orx021 or 111111111 111111111 -> 111111111
+orx022 or 111111111111 111111111 -> 111111111
+orx023 or 11111111 11111111 -> 11111111
+orx025 or 1111111 1111111 -> 1111111
+orx026 or 111111 111111 -> 111111
+orx027 or 11111 11111 -> 11111
+orx028 or 1111 1111 -> 1111
+orx029 or 111 111 -> 111
+orx031 or 11 11 -> 11
+orx032 or 1 1 -> 1
+orx033 or 111111111111 1111111111 -> 111111111
+orx034 or 11111111111 11111111111 -> 111111111
+orx035 or 1111111111 111111111111 -> 111111111
+orx036 or 111111111 1111111111111 -> 111111111
+
+orx040 or 111111111 111111111111 -> 111111111
+orx041 or 11111111 111111111111 -> 111111111
+orx042 or 11111111 111111111 -> 111111111
+orx043 or 1111111 100000010 -> 101111111
+orx044 or 111111 100000100 -> 100111111
+orx045 or 11111 100001000 -> 100011111
+orx046 or 1111 100010000 -> 100011111
+orx047 or 111 100100000 -> 100100111
+orx048 or 11 101000000 -> 101000011
+orx049 or 1 110000000 -> 110000001
+
+orx050 or 1111111111 1 -> 111111111
+orx051 or 111111111 1 -> 111111111
+orx052 or 11111111 1 -> 11111111
+orx053 or 1111111 1 -> 1111111
+orx054 or 111111 1 -> 111111
+orx055 or 11111 1 -> 11111
+orx056 or 1111 1 -> 1111
+orx057 or 111 1 -> 111
+orx058 or 11 1 -> 11
+orx059 or 1 1 -> 1
+
+orx060 or 1111111111 0 -> 111111111
+orx061 or 111111111 0 -> 111111111
+orx062 or 11111111 0 -> 11111111
+orx063 or 1111111 0 -> 1111111
+orx064 or 111111 0 -> 111111
+orx065 or 11111 0 -> 11111
+orx066 or 1111 0 -> 1111
+orx067 or 111 0 -> 111
+orx068 or 11 0 -> 11
+orx069 or 1 0 -> 1
+
+orx070 or 1 1111111111 -> 111111111
+orx071 or 1 111111111 -> 111111111
+orx072 or 1 11111111 -> 11111111
+orx073 or 1 1111111 -> 1111111
+orx074 or 1 111111 -> 111111
+orx075 or 1 11111 -> 11111
+orx076 or 1 1111 -> 1111
+orx077 or 1 111 -> 111
+orx078 or 1 11 -> 11
+orx079 or 1 1 -> 1
+
+orx080 or 0 1111111111 -> 111111111
+orx081 or 0 111111111 -> 111111111
+orx082 or 0 11111111 -> 11111111
+orx083 or 0 1111111 -> 1111111
+orx084 or 0 111111 -> 111111
+orx085 or 0 11111 -> 11111
+orx086 or 0 1111 -> 1111
+orx087 or 0 111 -> 111
+orx088 or 0 11 -> 11
+orx089 or 0 1 -> 1
+
+orx090 or 011111111 111101111 -> 111111111
+orx091 or 101111111 111101111 -> 111111111
+orx092 or 110111111 111101111 -> 111111111
+orx093 or 111011111 111101111 -> 111111111
+orx094 or 111101111 111101111 -> 111101111
+orx095 or 111110111 111101111 -> 111111111
+orx096 or 111111011 111101111 -> 111111111
+orx097 or 111111101 111101111 -> 111111111
+orx098 or 111111110 111101111 -> 111111111
+
+orx100 or 111101111 011111111 -> 111111111
+orx101 or 111101111 101111111 -> 111111111
+orx102 or 111101111 110111111 -> 111111111
+orx103 or 111101111 111011111 -> 111111111
+orx104 or 111101111 111101111 -> 111101111
+orx105 or 111101111 111110111 -> 111111111
+orx106 or 111101111 111111011 -> 111111111
+orx107 or 111101111 111111101 -> 111111111
+orx108 or 111101111 111111110 -> 111111111
+
+-- non-0/1 should not be accepted, nor should signs
+orx220 or 111111112 111111111 -> NaN Invalid_operation
+orx221 or 333333333 333333333 -> NaN Invalid_operation
+orx222 or 555555555 555555555 -> NaN Invalid_operation
+orx223 or 777777777 777777777 -> NaN Invalid_operation
+orx224 or 999999999 999999999 -> NaN Invalid_operation
+orx225 or 222222222 999999999 -> NaN Invalid_operation
+orx226 or 444444444 999999999 -> NaN Invalid_operation
+orx227 or 666666666 999999999 -> NaN Invalid_operation
+orx228 or 888888888 999999999 -> NaN Invalid_operation
+orx229 or 999999999 222222222 -> NaN Invalid_operation
+orx230 or 999999999 444444444 -> NaN Invalid_operation
+orx231 or 999999999 666666666 -> NaN Invalid_operation
+orx232 or 999999999 888888888 -> NaN Invalid_operation
+-- a few randoms
+orx240 or 567468689 -934981942 -> NaN Invalid_operation
+orx241 or 567367689 934981942 -> NaN Invalid_operation
+orx242 or -631917772 -706014634 -> NaN Invalid_operation
+orx243 or -756253257 138579234 -> NaN Invalid_operation
+orx244 or 835590149 567435400 -> NaN Invalid_operation
+-- test MSD
+orx250 or 200000000 100000000 -> NaN Invalid_operation
+orx251 or 700000000 100000000 -> NaN Invalid_operation
+orx252 or 800000000 100000000 -> NaN Invalid_operation
+orx253 or 900000000 100000000 -> NaN Invalid_operation
+orx254 or 200000000 000000000 -> NaN Invalid_operation
+orx255 or 700000000 000000000 -> NaN Invalid_operation
+orx256 or 800000000 000000000 -> NaN Invalid_operation
+orx257 or 900000000 000000000 -> NaN Invalid_operation
+orx258 or 100000000 200000000 -> NaN Invalid_operation
+orx259 or 100000000 700000000 -> NaN Invalid_operation
+orx260 or 100000000 800000000 -> NaN Invalid_operation
+orx261 or 100000000 900000000 -> NaN Invalid_operation
+orx262 or 000000000 200000000 -> NaN Invalid_operation
+orx263 or 000000000 700000000 -> NaN Invalid_operation
+orx264 or 000000000 800000000 -> NaN Invalid_operation
+orx265 or 000000000 900000000 -> NaN Invalid_operation
+-- test MSD-1
+orx270 or 020000000 100000000 -> NaN Invalid_operation
+orx271 or 070100000 100000000 -> NaN Invalid_operation
+orx272 or 080010000 100000001 -> NaN Invalid_operation
+orx273 or 090001000 100000010 -> NaN Invalid_operation
+orx274 or 100000100 020010100 -> NaN Invalid_operation
+orx275 or 100000000 070001000 -> NaN Invalid_operation
+orx276 or 100000010 080010100 -> NaN Invalid_operation
+orx277 or 100000000 090000010 -> NaN Invalid_operation
+-- test LSD
+orx280 or 001000002 100000000 -> NaN Invalid_operation
+orx281 or 000000007 100000000 -> NaN Invalid_operation
+orx282 or 000000008 100000000 -> NaN Invalid_operation
+orx283 or 000000009 100000000 -> NaN Invalid_operation
+orx284 or 100000000 000100002 -> NaN Invalid_operation
+orx285 or 100100000 001000007 -> NaN Invalid_operation
+orx286 or 100010000 010000008 -> NaN Invalid_operation
+orx287 or 100001000 100000009 -> NaN Invalid_operation
+-- test Middie
+orx288 or 001020000 100000000 -> NaN Invalid_operation
+orx289 or 000070001 100000000 -> NaN Invalid_operation
+orx290 or 000080000 100010000 -> NaN Invalid_operation
+orx291 or 000090000 100001000 -> NaN Invalid_operation
+orx292 or 100000010 000020100 -> NaN Invalid_operation
+orx293 or 100100000 000070010 -> NaN Invalid_operation
+orx294 or 100010100 000080001 -> NaN Invalid_operation
+orx295 or 100001000 000090000 -> NaN Invalid_operation
+-- signs
+orx296 or -100001000 -000000000 -> NaN Invalid_operation
+orx297 or -100001000 000010000 -> NaN Invalid_operation
+orx298 or 100001000 -000000000 -> NaN Invalid_operation
+orx299 or 100001000 000011000 -> 100011000
+
+-- Nmax, Nmin, Ntiny
+orx331 or 2 9.99999999E+999 -> NaN Invalid_operation
+orx332 or 3 1E-999 -> NaN Invalid_operation
+orx333 or 4 1.00000000E-999 -> NaN Invalid_operation
+orx334 or 5 1E-1007 -> NaN Invalid_operation
+orx335 or 6 -1E-1007 -> NaN Invalid_operation
+orx336 or 7 -1.00000000E-999 -> NaN Invalid_operation
+orx337 or 8 -1E-999 -> NaN Invalid_operation
+orx338 or 9 -9.99999999E+999 -> NaN Invalid_operation
+orx341 or 9.99999999E+999 -18 -> NaN Invalid_operation
+orx342 or 1E-999 01 -> NaN Invalid_operation
+orx343 or 1.00000000E-999 -18 -> NaN Invalid_operation
+orx344 or 1E-1007 18 -> NaN Invalid_operation
+orx345 or -1E-1007 -10 -> NaN Invalid_operation
+orx346 or -1.00000000E-999 18 -> NaN Invalid_operation
+orx347 or -1E-999 10 -> NaN Invalid_operation
+orx348 or -9.99999999E+999 -18 -> NaN Invalid_operation
+
+-- A few other non-integers
+orx361 or 1.0 1 -> NaN Invalid_operation
+orx362 or 1E+1 1 -> NaN Invalid_operation
+orx363 or 0.0 1 -> NaN Invalid_operation
+orx364 or 0E+1 1 -> NaN Invalid_operation
+orx365 or 9.9 1 -> NaN Invalid_operation
+orx366 or 9E+1 1 -> NaN Invalid_operation
+orx371 or 0 1.0 -> NaN Invalid_operation
+orx372 or 0 1E+1 -> NaN Invalid_operation
+orx373 or 0 0.0 -> NaN Invalid_operation
+orx374 or 0 0E+1 -> NaN Invalid_operation
+orx375 or 0 9.9 -> NaN Invalid_operation
+orx376 or 0 9E+1 -> NaN Invalid_operation
+
+-- All Specials are in error
+orx780 or -Inf -Inf -> NaN Invalid_operation
+orx781 or -Inf -1000 -> NaN Invalid_operation
+orx782 or -Inf -1 -> NaN Invalid_operation
+orx783 or -Inf -0 -> NaN Invalid_operation
+orx784 or -Inf 0 -> NaN Invalid_operation
+orx785 or -Inf 1 -> NaN Invalid_operation
+orx786 or -Inf 1000 -> NaN Invalid_operation
+orx787 or -1000 -Inf -> NaN Invalid_operation
+orx788 or -Inf -Inf -> NaN Invalid_operation
+orx789 or -1 -Inf -> NaN Invalid_operation
+orx790 or -0 -Inf -> NaN Invalid_operation
+orx791 or 0 -Inf -> NaN Invalid_operation
+orx792 or 1 -Inf -> NaN Invalid_operation
+orx793 or 1000 -Inf -> NaN Invalid_operation
+orx794 or Inf -Inf -> NaN Invalid_operation
+
+orx800 or Inf -Inf -> NaN Invalid_operation
+orx801 or Inf -1000 -> NaN Invalid_operation
+orx802 or Inf -1 -> NaN Invalid_operation
+orx803 or Inf -0 -> NaN Invalid_operation
+orx804 or Inf 0 -> NaN Invalid_operation
+orx805 or Inf 1 -> NaN Invalid_operation
+orx806 or Inf 1000 -> NaN Invalid_operation
+orx807 or Inf Inf -> NaN Invalid_operation
+orx808 or -1000 Inf -> NaN Invalid_operation
+orx809 or -Inf Inf -> NaN Invalid_operation
+orx810 or -1 Inf -> NaN Invalid_operation
+orx811 or -0 Inf -> NaN Invalid_operation
+orx812 or 0 Inf -> NaN Invalid_operation
+orx813 or 1 Inf -> NaN Invalid_operation
+orx814 or 1000 Inf -> NaN Invalid_operation
+orx815 or Inf Inf -> NaN Invalid_operation
+
+orx821 or NaN -Inf -> NaN Invalid_operation
+orx822 or NaN -1000 -> NaN Invalid_operation
+orx823 or NaN -1 -> NaN Invalid_operation
+orx824 or NaN -0 -> NaN Invalid_operation
+orx825 or NaN 0 -> NaN Invalid_operation
+orx826 or NaN 1 -> NaN Invalid_operation
+orx827 or NaN 1000 -> NaN Invalid_operation
+orx828 or NaN Inf -> NaN Invalid_operation
+orx829 or NaN NaN -> NaN Invalid_operation
+orx830 or -Inf NaN -> NaN Invalid_operation
+orx831 or -1000 NaN -> NaN Invalid_operation
+orx832 or -1 NaN -> NaN Invalid_operation
+orx833 or -0 NaN -> NaN Invalid_operation
+orx834 or 0 NaN -> NaN Invalid_operation
+orx835 or 1 NaN -> NaN Invalid_operation
+orx836 or 1000 NaN -> NaN Invalid_operation
+orx837 or Inf NaN -> NaN Invalid_operation
+
+orx841 or sNaN -Inf -> NaN Invalid_operation
+orx842 or sNaN -1000 -> NaN Invalid_operation
+orx843 or sNaN -1 -> NaN Invalid_operation
+orx844 or sNaN -0 -> NaN Invalid_operation
+orx845 or sNaN 0 -> NaN Invalid_operation
+orx846 or sNaN 1 -> NaN Invalid_operation
+orx847 or sNaN 1000 -> NaN Invalid_operation
+orx848 or sNaN NaN -> NaN Invalid_operation
+orx849 or sNaN sNaN -> NaN Invalid_operation
+orx850 or NaN sNaN -> NaN Invalid_operation
+orx851 or -Inf sNaN -> NaN Invalid_operation
+orx852 or -1000 sNaN -> NaN Invalid_operation
+orx853 or -1 sNaN -> NaN Invalid_operation
+orx854 or -0 sNaN -> NaN Invalid_operation
+orx855 or 0 sNaN -> NaN Invalid_operation
+orx856 or 1 sNaN -> NaN Invalid_operation
+orx857 or 1000 sNaN -> NaN Invalid_operation
+orx858 or Inf sNaN -> NaN Invalid_operation
+orx859 or NaN sNaN -> NaN Invalid_operation
+
+-- propagating NaNs
+orx861 or NaN1 -Inf -> NaN Invalid_operation
+orx862 or +NaN2 -1000 -> NaN Invalid_operation
+orx863 or NaN3 1000 -> NaN Invalid_operation
+orx864 or NaN4 Inf -> NaN Invalid_operation
+orx865 or NaN5 +NaN6 -> NaN Invalid_operation
+orx866 or -Inf NaN7 -> NaN Invalid_operation
+orx867 or -1000 NaN8 -> NaN Invalid_operation
+orx868 or 1000 NaN9 -> NaN Invalid_operation
+orx869 or Inf +NaN10 -> NaN Invalid_operation
+orx871 or sNaN11 -Inf -> NaN Invalid_operation
+orx872 or sNaN12 -1000 -> NaN Invalid_operation
+orx873 or sNaN13 1000 -> NaN Invalid_operation
+orx874 or sNaN14 NaN17 -> NaN Invalid_operation
+orx875 or sNaN15 sNaN18 -> NaN Invalid_operation
+orx876 or NaN16 sNaN19 -> NaN Invalid_operation
+orx877 or -Inf +sNaN20 -> NaN Invalid_operation
+orx878 or -1000 sNaN21 -> NaN Invalid_operation
+orx879 or 1000 sNaN22 -> NaN Invalid_operation
+orx880 or Inf sNaN23 -> NaN Invalid_operation
+orx881 or +NaN25 +sNaN24 -> NaN Invalid_operation
+orx882 or -NaN26 NaN28 -> NaN Invalid_operation
+orx883 or -sNaN27 sNaN29 -> NaN Invalid_operation
+orx884 or 1000 -NaN30 -> NaN Invalid_operation
+orx885 or 1000 -sNaN31 -> NaN Invalid_operation
diff --git a/Lib/test/decimaltestdata/plus.decTest b/Lib/test/decimaltestdata/plus.decTest
index a6d8e58..9af4c0e 100644
--- a/Lib/test/decimaltestdata/plus.decTest
+++ b/Lib/test/decimaltestdata/plus.decTest
@@ -1,6 +1,6 @@
------------------------------------------------------------------------
-- plus.decTest -- decimal monadic addition --
--- Copyright (c) IBM Corporation, 1981, 2004. All rights reserved. --
+-- Copyright (c) IBM Corporation, 1981, 2007. All rights reserved. --
------------------------------------------------------------------------
-- Please see the document "General Decimal Arithmetic Testcases" --
-- at http://www2.hursley.ibm.com/decimal for the description of --
@@ -17,7 +17,7 @@
-- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK --
-- mfc@uk.ibm.com --
------------------------------------------------------------------------
-version: 2.39
+version: 2.56
-- This set of tests primarily tests the existence of the operator.
-- Addition and rounding, and most overflows, are tested elsewhere.
@@ -138,9 +138,9 @@ plux214 plus 0.01E-999 -> 1E-1001 Subnormal
plux215 plus 0.999E-999 -> 1.00E-999 Inexact Rounded Subnormal Underflow
plux216 plus 0.099E-999 -> 1.0E-1000 Inexact Rounded Subnormal Underflow
plux217 plus 0.009E-999 -> 1E-1001 Inexact Rounded Subnormal Underflow
-plux218 plus 0.001E-999 -> 0E-1001 Inexact Rounded Subnormal Underflow
-plux219 plus 0.0009E-999 -> 0E-1001 Inexact Rounded Subnormal Underflow
-plux220 plus 0.0001E-999 -> 0E-1001 Inexact Rounded Subnormal Underflow
+plux218 plus 0.001E-999 -> 0E-1001 Inexact Rounded Subnormal Underflow Clamped
+plux219 plus 0.0009E-999 -> 0E-1001 Inexact Rounded Subnormal Underflow Clamped
+plux220 plus 0.0001E-999 -> 0E-1001 Inexact Rounded Subnormal Underflow Clamped
plux230 plus -1.00E-999 -> -1.00E-999
plux231 plus -0.1E-999 -> -1E-1000 Subnormal
@@ -151,9 +151,23 @@ plux234 plus -0.01E-999 -> -1E-1001 Subnormal
plux235 plus -0.999E-999 -> -1.00E-999 Inexact Rounded Subnormal Underflow
plux236 plus -0.099E-999 -> -1.0E-1000 Inexact Rounded Subnormal Underflow
plux237 plus -0.009E-999 -> -1E-1001 Inexact Rounded Subnormal Underflow
-plux238 plus -0.001E-999 -> -0E-1001 Inexact Rounded Subnormal Underflow
-plux239 plus -0.0009E-999 -> -0E-1001 Inexact Rounded Subnormal Underflow
-plux240 plus -0.0001E-999 -> -0E-1001 Inexact Rounded Subnormal Underflow
+plux238 plus -0.001E-999 -> -0E-1001 Inexact Rounded Subnormal Underflow Clamped
+plux239 plus -0.0009E-999 -> -0E-1001 Inexact Rounded Subnormal Underflow Clamped
+plux240 plus -0.0001E-999 -> -0E-1001 Inexact Rounded Subnormal Underflow Clamped
+
+-- subnormals clamped to 0-Etiny
+precision: 16
+maxExponent: 384
+minExponent: -383
+plux251 plus 7E-398 -> 7E-398 Subnormal
+plux252 plus 0E-398 -> 0E-398
+plux253 plus 7E-399 -> 1E-398 Subnormal Underflow Inexact Rounded
+plux254 plus 4E-399 -> 0E-398 Clamped Subnormal Underflow Inexact Rounded
+plux255 plus 7E-400 -> 0E-398 Clamped Subnormal Underflow Inexact Rounded
+plux256 plus 7E-401 -> 0E-398 Clamped Subnormal Underflow Inexact Rounded
+plux257 plus 0E-399 -> 0E-398 Clamped
+plux258 plus 0E-400 -> 0E-398 Clamped
+plux259 plus 0E-401 -> 0E-398 Clamped
-- long operand checks
maxexponent: 999
diff --git a/Lib/test/decimaltestdata/power.decTest b/Lib/test/decimaltestdata/power.decTest
index 748d66a..78c1e07 100644
--- a/Lib/test/decimaltestdata/power.decTest
+++ b/Lib/test/decimaltestdata/power.decTest
@@ -1,6 +1,6 @@
-----------------------------------------------------------------------
--- power.decTest -- decimal exponentiation --
--- Copyright (c) IBM Corporation, 1981, 2003. All rights reserved. --
+------------------------------------------------------------------------
+-- power.decTest -- decimal exponentiation [power(x, y)] --
+-- Copyright (c) IBM Corporation, 1981, 2007. All rights reserved. --
------------------------------------------------------------------------
-- Please see the document "General Decimal Arithmetic Testcases" --
-- at http://www2.hursley.ibm.com/decimal for the description of --
@@ -17,17 +17,17 @@
-- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK --
-- mfc@uk.ibm.com --
------------------------------------------------------------------------
-version: 2.39
+version: 2.56
--- This set of testcases tests raising numbers to an integer power only.
--- If arbitrary powers were supported, 1 ulp differences would be
--- permitted.
+-- In addition to the power operator testcases here, see also the file
+-- powersqrt.decTest which includes all the tests from
+-- squareroot.decTest implemented using power(x, 0.5)
extended: 1
-precision: 9
-rounding: half_up
-maxExponent: 999
-minexponent: -999
+precision: 16
+rounding: half_even
+maxExponent: 384
+minExponent: -383
-- base checks. Note 0**0 is an error.
powx001 power '0' '0' -> NaN Invalid_operation
@@ -52,51 +52,54 @@ powx021 power '2' '11' -> '2048'
powx022 power '2' '12' -> '4096'
powx023 power '2' '15' -> '32768'
powx024 power '2' '16' -> '65536'
-powx025 power '2' '31' -> '2.14748365E+9' Inexact Rounded
+powx025 power '2' '31' -> '2147483648'
-- NB 0 not stripped in next
-powx026 power '2' '32' -> '4.29496730E+9' Inexact Rounded
+powx026 power '2' '32' -> '4294967296'
+
+precision: 9
+powx027 power '2' '31' -> '2.14748365E+9' Inexact Rounded
+-- NB 0 not stripped in next
+powx028 power '2' '32' -> '4.29496730E+9' Inexact Rounded
precision: 10
-powx027 power '2' '31' -> '2147483648'
-powx028 power '2' '32' -> '4294967296'
+powx029 power '2' '31' -> '2147483648'
+powx030 power '2' '32' -> '4294967296'
precision: 9
-powx030 power '3' '2' -> 9
-powx031 power '4' '2' -> 16
-powx032 power '5' '2' -> 25
-powx033 power '6' '2' -> 36
-powx034 power '7' '2' -> 49
-powx035 power '8' '2' -> 64
-powx036 power '9' '2' -> 81
-powx037 power '10' '2' -> 100
-powx038 power '11' '2' -> 121
-powx039 power '12' '2' -> 144
-
-powx040 power '3' '3' -> 27
-powx041 power '4' '3' -> 64
-powx042 power '5' '3' -> 125
-powx043 power '6' '3' -> 216
-powx044 power '7' '3' -> 343
-
-powx050 power '10' '0' -> 1
-powx051 power '10' '1' -> 10
-powx052 power '10' '2' -> 100
-powx053 power '10' '3' -> 1000
-powx054 power '10' '4' -> 10000
-powx055 power '10' '5' -> 100000
-powx056 power '10' '6' -> 1000000
-powx057 power '10' '7' -> 10000000
-powx058 power '10' '8' -> 100000000
-powx059 power '10' '9' -> 1.00000000E+9 Rounded
-powx060 power '10' '22' -> 1.00000000E+22 Rounded
-powx061 power '10' '77' -> 1.00000000E+77 Rounded
-powx062 power '10' '99' -> 1.00000000E+99 Rounded
+powx031 power '3' '2' -> 9
+powx032 power '4' '2' -> 16
+powx033 power '5' '2' -> 25
+powx034 power '6' '2' -> 36
+powx035 power '7' '2' -> 49
+powx036 power '8' '2' -> 64
+powx037 power '9' '2' -> 81
+powx038 power '10' '2' -> 100
+powx039 power '11' '2' -> 121
+powx040 power '12' '2' -> 144
-maxexponent: 999999999
-minexponent: -999999999
-powx063 power '10' '999999999' -> '1.00000000E+999999999' Rounded
-powx064 power '10' '999999998' -> '1.00000000E+999999998' Rounded
-powx065 power '10' '999999997' -> '1.00000000E+999999997' Rounded
-powx066 power '10' '333333333' -> '1.00000000E+333333333' Rounded
+powx041 power '3' '3' -> 27
+powx042 power '4' '3' -> 64
+powx043 power '5' '3' -> 125
+powx044 power '6' '3' -> 216
+powx045 power '7' '3' -> 343
+powx047 power '-3' '3' -> -27
+powx048 power '-4' '3' -> -64
+powx049 power '-5' '3' -> -125
+powx050 power '-6' '3' -> -216
+powx051 power '-7' '3' -> -343
+
+powx052 power '10' '0' -> 1
+powx053 power '10' '1' -> 10
+powx054 power '10' '2' -> 100
+powx055 power '10' '3' -> 1000
+powx056 power '10' '4' -> 10000
+powx057 power '10' '5' -> 100000
+powx058 power '10' '6' -> 1000000
+powx059 power '10' '7' -> 10000000
+powx060 power '10' '8' -> 100000000
+powx061 power '10' '9' -> 1.00000000E+9 Rounded
+powx062 power '10' '22' -> 1.00000000E+22 Rounded
+powx063 power '10' '77' -> 1.00000000E+77 Rounded
+powx064 power '10' '99' -> 1.00000000E+99 Rounded
powx070 power '0.3' '0' -> '1'
powx071 power '0.3' '1' -> '0.3'
@@ -127,71 +130,52 @@ powx094 power 101 6 -> 1.06152015E+12 Inexact Rounded
powx095 power 101 7 -> 1.07213535E+14 Inexact Rounded
-- negative powers
-powx101 power '2' '-1' -> 0.5
-powx102 power '2' '-2' -> 0.25
-powx103 power '2' '-4' -> 0.0625
-powx104 power '2' '-8' -> 0.00390625
-powx105 power '2' '-16' -> 0.0000152587891 Inexact Rounded
-powx106 power '2' '-32' -> 2.32830644E-10 Inexact Rounded
-powx108 power '2' '-64' -> 5.42101086E-20 Inexact Rounded
-powx110 power '10' '-8' -> 1E-8
-powx111 power '10' '-7' -> 1E-7
-powx112 power '10' '-6' -> 0.000001
-powx113 power '10' '-5' -> 0.00001
-powx114 power '10' '-4' -> 0.0001
-powx115 power '10' '-3' -> 0.001
-powx116 power '10' '-2' -> 0.01
-powx117 power '10' '-1' -> 0.1
-
-powx118 power '10' '-333333333' -> 1E-333333333
-powx119 power '10' '-999999998' -> 1E-999999998
-powx120 power '10' '-999999999' -> 1E-999999999
-powx121 power '10' '-77' -> '1E-77'
-powx122 power '10' '-22' -> '1E-22'
-
-powx123 power '2' '-1' -> '0.5'
-powx124 power '2' '-2' -> '0.25'
-powx125 power '2' '-4' -> '0.0625'
-powx126 power '0' '-1' -> Infinity Division_by_zero
-powx127 power '0' '-2' -> Infinity Division_by_zero
-powx128 power -0 '-1' -> -Infinity Division_by_zero
-powx129 power -0 '-2' -> Infinity Division_by_zero
+powx099 power '1' '-1' -> 1
+powx100 power '3' '-1' -> 0.333333333 Inexact Rounded
+powx101 power '2' '-1' -> 0.5
+powx102 power '2' '-2' -> 0.25
+powx103 power '2' '-4' -> 0.0625
+powx104 power '2' '-8' -> 0.00390625
+powx105 power '2' '-16' -> 0.0000152587891 Inexact Rounded
+powx106 power '2' '-32' -> 2.32830644E-10 Inexact Rounded
+powx108 power '2' '-64' -> 5.42101086E-20 Inexact Rounded
+powx110 power '10' '-8' -> 1E-8
+powx111 power '10' '-7' -> 1E-7
+powx112 power '10' '-6' -> 0.000001
+powx113 power '10' '-5' -> 0.00001
+powx114 power '10' '-4' -> 0.0001
+powx115 power '10' '-3' -> 0.001
+powx116 power '10' '-2' -> 0.01
+powx117 power '10' '-1' -> 0.1
+powx121 power '10' '-77' -> '1E-77'
+powx122 power '10' '-22' -> '1E-22'
--- out-of-range edge cases
-powx181 power '7' '999999998' -> 2.10892313E+845098038 Inexact Rounded
-powx182 power '7' '999999999' -> 1.47624619E+845098039 Inexact Rounded
-powx183 power '7' '1000000000' -> NaN Invalid_operation
-powx184 power '7' '1000000001' -> NaN Invalid_operation
-powx185 power '7' '10000000000' -> NaN Invalid_operation
-powx186 power '7' '-1000000001' -> NaN Invalid_operation
-powx187 power '7' '-1000000000' -> NaN Invalid_operation
-powx189 power '7' '-999999999' -> 6.77393787E-845098040 Inexact Rounded
-powx190 power '7' '-999999998' -> 4.74175651E-845098039 Inexact Rounded
-
--- some baddies [more below]
-powx191 power '2' '2.000001' -> NaN Invalid_operation
-powx192 power '2' '2.00000000' -> 4
-powx193 power '2' '2.000000001' -> NaN Invalid_operation
-powx194 power '2' '2.0000000001' -> NaN Invalid_operation
+powx123 power '2' '-1' -> '0.5'
+powx124 power '2' '-2' -> '0.25'
+powx125 power '2' '-4' -> '0.0625'
+
+powx126 power '0' '-1' -> Infinity
+powx127 power '0' '-2' -> Infinity
+powx128 power -0 '-1' -> -Infinity
+powx129 power -0 '-2' -> Infinity
-- "0.5" tests from original Rexx diagnostics [loop unrolled]
-powx200 power 0.5 0 -> 1
-powx201 power 0.5 1 -> 0.5
-powx202 power 0.5 2 -> 0.25
-powx203 power 0.5 3 -> 0.125
-powx204 power 0.5 4 -> 0.0625
-powx205 power 0.5 5 -> 0.03125
-powx206 power 0.5 6 -> 0.015625
-powx207 power 0.5 7 -> 0.0078125
-powx208 power 0.5 8 -> 0.00390625
-powx209 power 0.5 9 -> 0.001953125
-powx210 power 0.5 10 -> 0.0009765625
-
--- A (rare) case where the last digit is not within 0.5 ULP
-precision: 9
-powx215 power "-21971575.0E+31454441" "-7" -> "-4.04549503E-220181139" Inexact Rounded
-precision: 20
-powx216 power "-21971575.0E+31454441" "-7" -> "-4.0454950249324891788E-220181139" Inexact Rounded
+powx200 power 0.5 0 -> 1
+powx201 power 0.5 1 -> 0.5
+powx202 power 0.5 2 -> 0.25
+powx203 power 0.5 3 -> 0.125
+powx204 power 0.5 4 -> 0.0625
+powx205 power 0.5 5 -> 0.03125
+powx206 power 0.5 6 -> 0.015625
+powx207 power 0.5 7 -> 0.0078125
+powx208 power 0.5 8 -> 0.00390625
+powx209 power 0.5 9 -> 0.001953125
+powx210 power 0.5 10 -> 0.0009765625
+
+powx211 power 1 100000000 -> 1
+powx212 power 1 999999998 -> 1
+powx213 power 1 999999999 -> 1
+
-- The Vienna case. Checks both setup and 1/acc working precision
-- Modified 1998.12.14 as RHS no longer rounded before use (must fit)
@@ -201,185 +185,64 @@ powx216 power "-21971575.0E+31454441" "-7" -> "-4.0454950249324891788E-220181139
-- Modified 2002.10.06 -- finally, no input rounding
-- With input rounding, result would be 8.74E-2226
precision: 3
+maxexponent: 5000
+minexponent: -5000
powx219 power '123456789E+10' '-1.23000e+2' -> '5.54E-2226' Inexact Rounded
--- whole number checks
-precision: 9
-powx221 power 1 1234 -> 1
-precision: 4
-powx222 power 1 1234 -> 1
-precision: 3
-powx223 power 1 1234 -> 1
-powx224 power 1 12.34e+2 -> 1
-powx225 power 1 12.3 -> NaN Invalid_operation
-powx226 power 1 12.0 -> 1
-powx227 power 1 1.01 -> NaN Invalid_operation
-powx228 power 2 1.00 -> 2
-powx229 power 2 2.00 -> 4
-precision: 9
-powx230 power 1 1.0001 -> NaN Invalid_operation
-powx231 power 1 1.0000001 -> NaN Invalid_operation
-powx232 power 1 1.0000000001 -> NaN Invalid_operation
-powx233 power 1 1.0000000000001 -> NaN Invalid_operation
-precision: 5
-powx234 power 1 1.0001 -> NaN Invalid_operation
-powx235 power 1 1.0000001 -> NaN Invalid_operation
-powx236 power 1 1.0000000001 -> NaN Invalid_operation
-powx237 power 1 1.0000000000001 -> NaN Invalid_operation
-powx238 power 1 1.0000000000001 -> NaN Invalid_operation
-
-maxexponent: 999999999
-minexponent: -999999999
-powx239 power 1 5.67E-987654321 -> NaN Invalid_operation
-
-powx240 power 1 100000000 -> 1
-powx241 power 1 999999998 -> 1
-powx242 power 1 999999999 -> 1
-powx243 power 1 1000000000 -> NaN Invalid_operation
-powx244 power 1 9999999999 -> NaN Invalid_operation
-
--- Checks for 'Too much precision needed'
--- For x^12, digits+elength+1 = digits+3
-precision: 999999999
-powx249 add 1 1 -> 2 -- check basic operation at this precision
-powx250 power 2 12 -> Infinity Overflow
-precision: 999999998
-powx251 power 2 12 -> Infinity Overflow
-precision: 999999997
-powx252 power 2 12 -> Infinity Overflow
-precision: 999999996
-powx253 power 2 12 -> 4096
-precision: 999999995
-powx254 power 2 12 -> 4096
-
-- zeros
maxexponent: +96
minexponent: -95
precision: 7
-powx260 power 0E-34 3 -> 0E-101 Clamped
-powx261 power 0E-33 3 -> 0E-99
-powx262 power 0E-32 3 -> 0E-96
-powx263 power 0E-30 3 -> 0E-90
-powx264 power 0E-10 3 -> 0E-30
-powx265 power 0E-1 3 -> 0.000
-powx266 power 0E+0 3 -> 0
-powx267 power 0 3 -> 0
-powx268 power 0E+1 3 -> 0E+3
-powx269 power 0E+10 3 -> 0E+30
-powx270 power 0E+30 3 -> 0E+90
-powx271 power 0E+32 3 -> 0E+96
-powx272 power 0E+33 3 -> 0E+96 Clamped
-
--- overflow and underflow tests
-maxexponent: 999999999
-minexponent: -999999999
-precision: 9
-powx280 power 9 999999999 -> 3.05550054E+954242508 Inexact Rounded
-powx281 power 10 999999999 -> 1.00000000E+999999999 Rounded
-powx282 power 10.0001 999999999 -> Infinity Overflow Inexact Rounded
-powx283 power 10.1 999999999 -> Infinity Overflow Inexact Rounded
-powx284 power 11 999999999 -> Infinity Overflow Inexact Rounded
-powx285 power 12 999999999 -> Infinity Overflow Inexact Rounded
-powx286 power 999 999999999 -> Infinity Overflow Inexact Rounded
-powx287 power 999999 999999999 -> Infinity Overflow Inexact Rounded
-powx288 power 999999999 999999999 -> Infinity Overflow Inexact Rounded
-powx289 power 9.9E999999999 999999999 -> Infinity Overflow Inexact Rounded
-
-powx290 power 0.5 999999999 -> 4.33559594E-301029996 Inexact Rounded
-powx291 power 0.1 999999999 -> 1E-999999999 -- unrounded
-powx292 power 0.09 999999999 -> 0E-1000000007 Underflow Subnormal Inexact Rounded Clamped
-powx293 power 0.05 999999999 -> 0E-1000000007 Underflow Subnormal Inexact Rounded Clamped
-powx294 power 0.01 999999999 -> 0E-1000000007 Underflow Subnormal Inexact Rounded Clamped
-powx295 power 0.0001 999999999 -> 0E-1000000007 Underflow Subnormal Inexact Rounded Clamped
-powx297 power 0.0000001 999999999 -> 0E-1000000007 Underflow Subnormal Inexact Rounded Clamped
-powx298 power 0.0000000001 999999999 -> 0E-1000000007 Underflow Subnormal Inexact Rounded Clamped
-powx299 power 1E-999999999 999999999 -> 0E-1000000007 Underflow Subnormal Inexact Rounded Clamped
-
-powx310 power -9 999999999 -> -3.05550054E+954242508 Inexact Rounded
-powx311 power -10 999999999 -> -1.00000000E+999999999 Rounded
-powx312 power -10.0001 999999999 -> -Infinity Overflow Inexact Rounded
-powx313 power -10.1 999999999 -> -Infinity Overflow Inexact Rounded
-powx314 power -11 999999999 -> -Infinity Overflow Inexact Rounded
-powx315 power -12 999999999 -> -Infinity Overflow Inexact Rounded
-powx316 power -999 999999999 -> -Infinity Overflow Inexact Rounded
-powx317 power -999999 999999999 -> -Infinity Overflow Inexact Rounded
-powx318 power -999999999 999999999 -> -Infinity Overflow Inexact Rounded
-powx319 power -9.9E999999999 999999999 -> -Infinity Overflow Inexact Rounded
-
-powx320 power -0.5 999999999 -> -4.33559594E-301029996 Inexact Rounded
-powx321 power -0.1 999999999 -> -1E-999999999
-powx322 power -0.09 999999999 -> -0E-1000000007 Underflow Subnormal Inexact Rounded Clamped
-powx323 power -0.05 999999999 -> -0E-1000000007 Underflow Subnormal Inexact Rounded Clamped
-powx324 power -0.01 999999999 -> -0E-1000000007 Underflow Subnormal Inexact Rounded Clamped
-powx325 power -0.0001 999999999 -> -0E-1000000007 Underflow Subnormal Inexact Rounded Clamped
-powx327 power -0.0000001 999999999 -> -0E-1000000007 Underflow Subnormal Inexact Rounded Clamped
-powx328 power -0.0000000001 999999999 -> -0E-1000000007 Underflow Subnormal Inexact Rounded Clamped
-powx329 power -1E-999999999 999999999 -> -0E-1000000007 Underflow Subnormal Inexact Rounded Clamped
-
--- note no trim of next result
-powx330 power -9 999999998 -> 3.39500060E+954242507 Inexact Rounded
-powx331 power -10 999999998 -> 1.00000000E+999999998 Rounded
-powx332 power -10.0001 999999998 -> Infinity Overflow Inexact Rounded
-powx333 power -10.1 999999998 -> Infinity Overflow Inexact Rounded
-powx334 power -11 999999998 -> Infinity Overflow Inexact Rounded
-powx335 power -12 999999998 -> Infinity Overflow Inexact Rounded
-powx336 power -999 999999998 -> Infinity Overflow Inexact Rounded
-powx337 power -999999 999999998 -> Infinity Overflow Inexact Rounded
-powx338 power -999999999 999999998 -> Infinity Overflow Inexact Rounded
-powx339 power -9.9E999999999 999999998 -> Infinity Overflow Inexact Rounded
-
-powx340 power -0.5 999999998 -> 8.67119187E-301029996 Inexact Rounded
-powx341 power -0.1 999999998 -> 1E-999999998 -- NB exact unrounded
-powx342 power -0.09 999999998 -> 0E-1000000007 Underflow Subnormal Inexact Rounded Clamped
-powx343 power -0.05 999999998 -> 0E-1000000007 Underflow Subnormal Inexact Rounded Clamped
-powx344 power -0.01 999999998 -> 0E-1000000007 Underflow Subnormal Inexact Rounded Clamped
-powx345 power -0.0001 999999998 -> 0E-1000000007 Underflow Subnormal Inexact Rounded Clamped
-powx347 power -0.0000001 999999998 -> 0E-1000000007 Underflow Subnormal Inexact Rounded Clamped
-powx348 power -0.0000000001 999999998 -> 0E-1000000007 Underflow Subnormal Inexact Rounded Clamped
-powx349 power -1E-999999999 999999998 -> 0E-1000000007 Underflow Subnormal Inexact Rounded Clamped
+powx223 power 0E-30 3 -> 0
+powx224 power 0E-10 3 -> 0
+powx225 power 0E-1 3 -> 0
+powx226 power 0E+0 3 -> 0
+powx227 power 0 3 -> 0
+powx228 power 0E+1 3 -> 0
+powx229 power 0E+10 3 -> 0
+powx230 power 0E+30 3 -> 0
+powx231 power 3 0E-30 -> 1
+powx232 power 3 0E-10 -> 1
+powx233 power 3 0E-1 -> 1
+powx234 power 3 0E+0 -> 1
+powx235 power 3 0 -> 1
+powx236 power 3 0E+1 -> 1
+powx237 power 3 0E+10 -> 1
+powx238 power 3 0E+30 -> 1
+powx239 power 0E-30 -3 -> Infinity
+powx240 power 0E-10 -3 -> Infinity
+powx241 power 0E-1 -3 -> Infinity
+powx242 power 0E+0 -3 -> Infinity
+powx243 power 0 -3 -> Infinity
+powx244 power 0E+1 -3 -> Infinity
+powx245 power 0E+10 -3 -> Infinity
+powx246 power 0E+30 -3 -> Infinity
+powx247 power -3 0E-30 -> 1
+powx248 power -3 0E-10 -> 1
+powx249 power -3 0E-1 -> 1
+powx250 power -3 0E+0 -> 1
+powx251 power -3 0 -> 1
+powx252 power -3 0E+1 -> 1
+powx253 power -3 0E+10 -> 1
+powx254 power -3 0E+30 -> 1
--- some subnormals
+-- a few lhs negatives
precision: 9
--- [precision is 9, so smallest exponent is -1000000007
-powx350 power 1e-1 500000000 -> 1E-500000000
-powx351 power 1e-2 999999999 -> 0E-1000000007 Underflow Subnormal Inexact Rounded Clamped
-powx352 power 1e-2 500000000 -> 1E-1000000000 Subnormal
-powx353 power 1e-2 500000001 -> 1E-1000000002 Subnormal
-powx354 power 1e-2 500000002 -> 1E-1000000004 Subnormal
-powx355 power 1e-2 500000003 -> 1E-1000000006 Subnormal
-powx356 power 1e-2 500000004 -> 0E-1000000007 Underflow Subnormal Inexact Rounded
-
-powx360 power 0.010001 500000000 -> 4.34941988E-999978287 Inexact Rounded
-powx361 power 0.010000001 500000000 -> 5.18469257E-999999979 Inexact Rounded
-powx362 power 0.010000001 500000001 -> 5.18469309E-999999981 Inexact Rounded
-powx363 power 0.0100000009 500000000 -> 3.49342003E-999999981 Inexact Rounded
-powx364 power 0.0100000001 500000000 -> 1.48413155E-999999998 Inexact Rounded
-powx365 power 0.01 500000000 -> 1E-1000000000 Subnormal
-powx366 power 0.0099999999 500000000 -> 6.7379E-1000000003 Underflow Subnormal Inexact Rounded
-powx367 power 0.0099999998 500000000 -> 4.54E-1000000005 Underflow Subnormal Inexact Rounded
-powx368 power 0.0099999997 500000000 -> 3E-1000000007 Underflow Subnormal Inexact Rounded
-powx369 power 0.0099999996 500000000 -> 0E-1000000007 Underflow Subnormal Inexact Rounded
-powx370 power 0.009 500000000 -> 0E-1000000007 Underflow Subnormal Inexact Rounded Clamped
-
--- 1/subnormal -> overflow
-powx371 power 1e-1 -500000000 -> 1E+500000000
-powx372 power 1e-2 -999999999 -> Infinity Overflow Inexact Rounded
-powx373 power 1e-2 -500000000 -> Infinity Overflow Inexact Rounded
-powx374 power 1e-2 -500000001 -> Infinity Overflow Inexact Rounded
-powx375 power 1e-2 -500000002 -> Infinity Overflow Inexact Rounded
-powx376 power 1e-2 -500000003 -> Infinity Overflow Inexact Rounded
-powx377 power 1e-2 -500000004 -> Infinity Overflow Inexact Rounded
-
-powx381 power 0.010001 -500000000 -> 2.29915719E+999978286 Inexact Rounded
-powx382 power 0.010000001 -500000000 -> 1.92875467E+999999978 Inexact Rounded
-powx383 power 0.010000001 -500000001 -> 1.92875448E+999999980 Inexact Rounded
-powx384 power 0.0100000009 -500000000 -> 2.86252438E+999999980 Inexact Rounded
-powx385 power 0.0100000001 -500000000 -> 6.73794717E+999999997 Inexact Rounded
-powx386 power 0.01 -500000000 -> Infinity Overflow Inexact Rounded
-powx387 power 0.009999 -500000000 -> Infinity Overflow Inexact Rounded
-
--- negative power giving subnormal
-powx388 power 100.000001 -500000000 -> 6.7379E-1000000003 Underflow Subnormal Inexact Rounded
+maxExponent: 999
+minexponent: -999
+powx260 power -10 '0' -> 1
+powx261 power -10 '1' -> -10
+powx262 power -10 '2' -> 100
+powx263 power -10 '3' -> -1000
+powx264 power -10 '4' -> 10000
+powx265 power -10 '5' -> -100000
+powx266 power -10 '6' -> 1000000
+powx267 power -10 '7' -> -10000000
+powx268 power -10 '8' -> 100000000
+powx269 power -10 '9' -> -1.00000000E+9 Rounded
+powx270 power -10 '22' -> 1.00000000E+22 Rounded
+powx271 power -10 '77' -> -1.00000000E+77 Rounded
+powx272 power -10 '99' -> -1.00000000E+99 Rounded
-- some more edge cases
precision: 15
@@ -389,8 +252,9 @@ powx391 power 0.1 999 -> 1E-999
powx392 power 0.099 999 -> 4.360732062E-1004 Underflow Subnormal Inexact Rounded
powx393 power 0.098 999 -> 1.71731E-1008 Underflow Subnormal Inexact Rounded
powx394 power 0.097 999 -> 6E-1013 Underflow Subnormal Inexact Rounded
-powx395 power 0.096 999 -> 0E-1013 Underflow Subnormal Inexact Rounded
+powx395 power 0.096 999 -> 0E-1013 Underflow Subnormal Inexact Rounded Clamped
powx396 power 0.01 999 -> 0E-1013 Underflow Subnormal Inexact Rounded Clamped
+powx397 power 0.02 100000000 -> 0E-1013 Underflow Subnormal Inexact Rounded Clamped
-- multiply tests are here to aid checking and test for consistent handling
-- of underflow
@@ -399,7 +263,7 @@ maxexponent: 999
minexponent: -999
-- squares
-mulx400 multiply 1E-502 1e-502 -> 0E-1003 Subnormal Inexact Underflow Rounded
+mulx400 multiply 1E-502 1e-502 -> 0E-1003 Subnormal Inexact Underflow Rounded Clamped
mulx401 multiply 1E-501 1e-501 -> 1E-1002 Subnormal
mulx402 multiply 2E-501 2e-501 -> 4E-1002 Subnormal
mulx403 multiply 4E-501 4e-501 -> 1.6E-1001 Subnormal
@@ -407,7 +271,7 @@ mulx404 multiply 10E-501 10e-501 -> 1.00E-1000 Subnormal
mulx405 multiply 30E-501 30e-501 -> 9.00E-1000 Subnormal
mulx406 multiply 40E-501 40e-501 -> 1.600E-999
-powx400 power 1E-502 2 -> 0E-1003 Underflow Subnormal Inexact Rounded
+powx400 power 1E-502 2 -> 0E-1003 Underflow Subnormal Inexact Rounded Clamped
powx401 power 1E-501 2 -> 1E-1002 Subnormal
powx402 power 2E-501 2 -> 4E-1002 Subnormal
powx403 power 4E-501 2 -> 1.6E-1001 Subnormal
@@ -416,7 +280,7 @@ powx405 power 30E-501 2 -> 9.00E-1000 Subnormal
powx406 power 40E-501 2 -> 1.600E-999
-- cubes
-mulx410 multiply 1E-670 1e-335 -> 0E-1003 Underflow Subnormal Inexact Rounded
+mulx410 multiply 1E-670 1e-335 -> 0E-1003 Underflow Subnormal Inexact Rounded Clamped
mulx411 multiply 1E-668 1e-334 -> 1E-1002 Subnormal
mulx412 multiply 4E-668 2e-334 -> 8E-1002 Subnormal
mulx413 multiply 9E-668 3e-334 -> 2.7E-1001 Subnormal
@@ -424,7 +288,7 @@ mulx414 multiply 16E-668 4e-334 -> 6.4E-1001 Subnormal
mulx415 multiply 25E-668 5e-334 -> 1.25E-1000 Subnormal
mulx416 multiply 10E-668 100e-334 -> 1.000E-999
-powx410 power 1E-335 3 -> 0E-1003 Underflow Subnormal Inexact Rounded
+powx410 power 1E-335 3 -> 0E-1003 Underflow Subnormal Inexact Rounded Clamped
powx411 power 1E-334 3 -> 1E-1002 Subnormal
powx412 power 2E-334 3 -> 8E-1002 Subnormal
powx413 power 3E-334 3 -> 2.7E-1001 Subnormal
@@ -442,24 +306,24 @@ powx422 power 2.5E-500 -2 -> 1.6E+999
powx423 power 2.5E+499 -2 -> 1.6E-999
powx424 power 2.5E+500 -2 -> 1.6E-1001 Subnormal
powx425 power 2.5E+501 -2 -> 2E-1003 Underflow Subnormal Inexact Rounded
-powx426 power 2.5E+502 -2 -> 0E-1003 Underflow Subnormal Inexact Rounded
+powx426 power 2.5E+502 -2 -> 0E-1003 Underflow Subnormal Inexact Rounded Clamped
powx427 power 0.25E+499 -2 -> 1.6E-997
powx428 power 0.25E+500 -2 -> 1.6E-999
powx429 power 0.25E+501 -2 -> 1.6E-1001 Subnormal
powx430 power 0.25E+502 -2 -> 2E-1003 Underflow Subnormal Inexact Rounded
-powx431 power 0.25E+503 -2 -> 0E-1003 Underflow Subnormal Inexact Rounded
+powx431 power 0.25E+503 -2 -> 0E-1003 Underflow Subnormal Inexact Rounded Clamped
powx432 power 0.04E+499 -2 -> 6.25E-996
powx433 power 0.04E+500 -2 -> 6.25E-998
powx434 power 0.04E+501 -2 -> 6.25E-1000 Subnormal
-powx435 power 0.04E+502 -2 -> 6.3E-1002 Underflow Subnormal Inexact Rounded
+powx435 power 0.04E+502 -2 -> 6.2E-1002 Underflow Subnormal Inexact Rounded
powx436 power 0.04E+503 -2 -> 1E-1003 Underflow Subnormal Inexact Rounded
-powx437 power 0.04E+504 -2 -> 0E-1003 Underflow Subnormal Inexact Rounded
+powx437 power 0.04E+504 -2 -> 0E-1003 Underflow Subnormal Inexact Rounded Clamped
powx441 power 0.04E+334 -3 -> 1.5625E-998
powx442 power 0.04E+335 -3 -> 1.56E-1001 Underflow Subnormal Inexact Rounded
-powx443 power 0.04E+336 -3 -> 0E-1003 Underflow Subnormal Inexact Rounded
+powx443 power 0.04E+336 -3 -> 0E-1003 Underflow Subnormal Inexact Rounded Clamped
powx444 power 0.25E+333 -3 -> 6.4E-998
powx445 power 0.25E+334 -3 -> 6.4E-1001 Subnormal
powx446 power 0.25E+335 -3 -> 1E-1003 Underflow Subnormal Inexact Rounded
@@ -467,7 +331,7 @@ powx447 power 0.25E+336 -3 -> 0E-1003 Underflow Subnormal Inex
-- check sign for cubes and a few squares
powx448 power -0.04E+334 -3 -> -1.5625E-998
powx449 power -0.04E+335 -3 -> -1.56E-1001 Underflow Subnormal Inexact Rounded
-powx450 power -0.04E+336 -3 -> -0E-1003 Underflow Subnormal Inexact Rounded
+powx450 power -0.04E+336 -3 -> -0E-1003 Underflow Subnormal Inexact Rounded Clamped
powx451 power -0.25E+333 -3 -> -6.4E-998
powx452 power -0.25E+334 -3 -> -6.4E-1001 Subnormal
powx453 power -0.25E+335 -3 -> -1E-1003 Underflow Subnormal Inexact Rounded
@@ -475,7 +339,7 @@ powx454 power -0.25E+336 -3 -> -0E-1003 Underflow Subnormal Inex
powx455 power -0.04E+499 -2 -> 6.25E-996
powx456 power -0.04E+500 -2 -> 6.25E-998
powx457 power -0.04E+501 -2 -> 6.25E-1000 Subnormal
-powx458 power -0.04E+502 -2 -> 6.3E-1002 Underflow Subnormal Inexact Rounded
+powx458 power -0.04E+502 -2 -> 6.2E-1002 Underflow Subnormal Inexact Rounded
-- test -0s
precision: 9
@@ -488,123 +352,124 @@ powx565 power 1 -0 -> 1
powx566 power -1 0 -> 1
powx567 power -1 -0 -> 1
powx568 power 0 1 -> 0
-powx569 power 0 -1 -> Infinity Division_by_zero
+powx569 power 0 -1 -> Infinity
powx570 power -0 1 -> -0
-powx571 power -0 -1 -> -Infinity Division_by_zero
+powx571 power -0 -1 -> -Infinity
powx572 power 0 2 -> 0
-powx573 power 0 -2 -> Infinity Division_by_zero
+powx573 power 0 -2 -> Infinity
powx574 power -0 2 -> 0
-powx575 power -0 -2 -> Infinity Division_by_zero
+powx575 power -0 -2 -> Infinity
powx576 power 0 3 -> 0
-powx577 power 0 -3 -> Infinity Division_by_zero
+powx577 power 0 -3 -> Infinity
powx578 power -0 3 -> -0
-powx579 power -0 -3 -> -Infinity Division_by_zero
+powx579 power -0 -3 -> -Infinity
-- Specials
-powx580 power Inf -Inf -> NaN Invalid_operation
+powx580 power Inf -Inf -> 0
powx581 power Inf -1000 -> 0
powx582 power Inf -1 -> 0
-powx583 power Inf -0 -> 1
-powx584 power Inf 0 -> 1
-powx585 power Inf 1 -> Infinity
-powx586 power Inf 1000 -> Infinity
-powx587 power Inf Inf -> NaN Invalid_operation
-powx588 power -1000 Inf -> NaN Invalid_operation
-powx589 power -Inf Inf -> NaN Invalid_operation
-powx590 power -1 Inf -> NaN Invalid_operation
-powx591 power -0 Inf -> NaN Invalid_operation
-powx592 power 0 Inf -> NaN Invalid_operation
-powx593 power 1 Inf -> NaN Invalid_operation
-powx594 power 1000 Inf -> NaN Invalid_operation
-powx595 power Inf Inf -> NaN Invalid_operation
+powx583 power Inf -0.5 -> 0
+powx584 power Inf -0 -> 1
+powx585 power Inf 0 -> 1
+powx586 power Inf 0.5 -> Infinity
+powx587 power Inf 1 -> Infinity
+powx588 power Inf 1000 -> Infinity
+powx589 power Inf Inf -> Infinity
+powx590 power -1000 Inf -> NaN Invalid_operation
+powx591 power -Inf Inf -> NaN Invalid_operation
+powx592 power -1 Inf -> NaN Invalid_operation
+powx593 power -0.5 Inf -> NaN Invalid_operation
+powx594 power -0 Inf -> 0
+powx595 power 0 Inf -> 0
+powx596 power 0.5 Inf -> 0
+powx597 power 1 Inf -> 1.00000000 Inexact Rounded
+powx598 power 1000 Inf -> Infinity
+powx599 power Inf Inf -> Infinity
powx600 power -Inf -Inf -> NaN Invalid_operation
powx601 power -Inf -1000 -> 0
powx602 power -Inf -1 -> -0
-powx603 power -Inf -0 -> 1
-powx604 power -Inf 0 -> 1
-powx605 power -Inf 1 -> -Infinity
-powx606 power -Inf 1000 -> Infinity
-powx607 power -Inf Inf -> NaN Invalid_operation
-powx608 power -1000 Inf -> NaN Invalid_operation
-powx609 power -Inf -Inf -> NaN Invalid_operation
-powx610 power -1 -Inf -> NaN Invalid_operation
-powx611 power -0 -Inf -> NaN Invalid_operation
-powx612 power 0 -Inf -> NaN Invalid_operation
-powx613 power 1 -Inf -> NaN Invalid_operation
-powx614 power 1000 -Inf -> NaN Invalid_operation
-powx615 power Inf -Inf -> NaN Invalid_operation
-
-powx621 power NaN -Inf -> NaN Invalid_operation
+powx603 power -Inf -0.5 -> NaN Invalid_operation
+powx604 power -Inf -0 -> 1
+powx605 power -Inf 0 -> 1
+powx606 power -Inf 0.5 -> NaN Invalid_operation
+powx607 power -Inf 1 -> -Infinity
+powx608 power -Inf 1000 -> Infinity
+powx609 power -Inf Inf -> NaN Invalid_operation
+powx610 power -1000 Inf -> NaN Invalid_operation
+powx611 power -Inf -Inf -> NaN Invalid_operation
+powx612 power -1 -Inf -> NaN Invalid_operation
+powx613 power -0.5 -Inf -> NaN Invalid_operation
+powx614 power -0 -Inf -> Infinity
+powx615 power 0 -Inf -> Infinity
+powx616 power 0.5 -Inf -> Infinity
+powx617 power 1 -Inf -> 1.00000000 Inexact Rounded
+powx618 power 1000 -Inf -> 0
+powx619 power Inf -Inf -> 0
+
+powx621 power NaN -Inf -> NaN
powx622 power NaN -1000 -> NaN
powx623 power NaN -1 -> NaN
-powx624 power NaN -0 -> NaN
-powx625 power NaN 0 -> NaN
-powx626 power NaN 1 -> NaN
-powx627 power NaN 1000 -> NaN
-powx628 power NaN Inf -> NaN Invalid_operation
-powx629 power NaN NaN -> NaN
-powx630 power -Inf NaN -> NaN
-powx631 power -1000 NaN -> NaN
-powx632 power -1 NaN -> NaN
-powx633 power -0 NaN -> NaN
-powx634 power 0 NaN -> NaN
-powx635 power 1 NaN -> NaN
-powx636 power 1000 NaN -> NaN
-powx637 power Inf NaN -> NaN
+powx624 power NaN -0.5 -> NaN
+powx625 power NaN -0 -> NaN
+powx626 power NaN 0 -> NaN
+powx627 power NaN 0.5 -> NaN
+powx628 power NaN 1 -> NaN
+powx629 power NaN 1000 -> NaN
+powx630 power NaN Inf -> NaN
+powx631 power NaN NaN -> NaN
+powx632 power -Inf NaN -> NaN
+powx633 power -1000 NaN -> NaN
+powx634 power -1 NaN -> NaN
+powx635 power -0 NaN -> NaN
+powx636 power 0 NaN -> NaN
+powx637 power 1 NaN -> NaN
+powx638 power 1000 NaN -> NaN
+powx639 power Inf NaN -> NaN
powx641 power sNaN -Inf -> NaN Invalid_operation
powx642 power sNaN -1000 -> NaN Invalid_operation
powx643 power sNaN -1 -> NaN Invalid_operation
-powx644 power sNaN -0 -> NaN Invalid_operation
-powx645 power sNaN 0 -> NaN Invalid_operation
-powx646 power sNaN 1 -> NaN Invalid_operation
-powx647 power sNaN 1000 -> NaN Invalid_operation
-powx648 power sNaN NaN -> NaN Invalid_operation
-powx649 power sNaN sNaN -> NaN Invalid_operation
-powx650 power NaN sNaN -> NaN Invalid_operation
-powx651 power -Inf sNaN -> NaN Invalid_operation
-powx652 power -1000 sNaN -> NaN Invalid_operation
-powx653 power -1 sNaN -> NaN Invalid_operation
-powx654 power -0 sNaN -> NaN Invalid_operation
-powx655 power 0 sNaN -> NaN Invalid_operation
-powx656 power 1 sNaN -> NaN Invalid_operation
-powx657 power 1000 sNaN -> NaN Invalid_operation
-powx658 power Inf sNaN -> NaN Invalid_operation
-powx659 power NaN sNaN -> NaN Invalid_operation
+powx644 power sNaN -0.5 -> NaN Invalid_operation
+powx645 power sNaN -0 -> NaN Invalid_operation
+powx646 power sNaN 0 -> NaN Invalid_operation
+powx647 power sNaN 0.5 -> NaN Invalid_operation
+powx648 power sNaN 1 -> NaN Invalid_operation
+powx649 power sNaN 1000 -> NaN Invalid_operation
+powx650 power sNaN NaN -> NaN Invalid_operation
+powx651 power sNaN sNaN -> NaN Invalid_operation
+powx652 power NaN sNaN -> NaN Invalid_operation
+powx653 power -Inf sNaN -> NaN Invalid_operation
+powx654 power -1000 sNaN -> NaN Invalid_operation
+powx655 power -1 sNaN -> NaN Invalid_operation
+powx656 power -0.5 sNaN -> NaN Invalid_operation
+powx657 power -0 sNaN -> NaN Invalid_operation
+powx658 power 0 sNaN -> NaN Invalid_operation
+powx659 power 0.5 sNaN -> NaN Invalid_operation
+powx660 power 1 sNaN -> NaN Invalid_operation
+powx661 power 1000 sNaN -> NaN Invalid_operation
+powx662 power Inf sNaN -> NaN Invalid_operation
+powx663 power NaN sNaN -> NaN Invalid_operation
-- NaN propagation
-powx660 power NaN3 sNaN7 -> NaN7 Invalid_operation
-powx661 power sNaN8 NaN6 -> NaN8 Invalid_operation
-powx662 power 1 sNaN7 -> NaN7 Invalid_operation
-powx663 power sNaN8 1 -> NaN8 Invalid_operation
-powx664 power Inf sNaN7 -> NaN7 Invalid_operation
-powx665 power sNaN8 Inf -> NaN Invalid_operation
-powx666 power Inf NaN9 -> NaN9
-powx667 power NaN6 Inf -> NaN Invalid_operation
-powx668 power 1 NaN5 -> NaN5
-powx669 power NaN2 1 -> NaN2
-powx670 power NaN2 Nan4 -> NaN2
-powx671 power NaN Nan4 -> NaN
-powx672 power NaN345 Nan -> NaN345
-powx673 power Inf -sNaN7 -> -NaN7 Invalid_operation
-powx674 power -sNaN8 Inf -> NaN Invalid_operation
-powx675 power Inf -NaN9 -> -NaN9
-powx676 power -NaN6 Inf -> NaN Invalid_operation
-powx677 power -NaN2 -Nan4 -> -NaN2
-
--- Examples from extended specification
-powx690 power Inf -2 -> 0
-powx691 power Inf -1 -> 0
-powx692 power Inf 0 -> 1
-powx693 power Inf 1 -> Infinity
-powx694 power Inf 2 -> Infinity
-powx695 power -Inf -2 -> 0
-powx696 power -Inf -1 -> -0
-powx697 power -Inf 0 -> 1
-powx698 power -Inf 1 -> -Infinity
-powx699 power -Inf 2 -> Infinity
-powx700 power 0 0 -> NaN Invalid_operation
+powx670 power NaN3 sNaN7 -> NaN7 Invalid_operation
+powx671 power sNaN8 NaN6 -> NaN8 Invalid_operation
+powx672 power 1 sNaN7 -> NaN7 Invalid_operation
+powx673 power sNaN8 1 -> NaN8 Invalid_operation
+powx674 power Inf sNaN7 -> NaN7 Invalid_operation
+powx675 power sNaN8 Inf -> NaN8 Invalid_operation
+powx676 power Inf NaN9 -> NaN9
+powx677 power NaN6 Inf -> NaN6
+powx678 power 1 NaN5 -> NaN5
+powx679 power NaN2 1 -> NaN2
+powx680 power NaN2 Nan4 -> NaN2
+powx681 power NaN Nan4 -> NaN
+powx682 power NaN345 Nan -> NaN345
+powx683 power Inf -sNaN7 -> -NaN7 Invalid_operation
+powx684 power -sNaN8 Inf -> -NaN8 Invalid_operation
+powx685 power Inf -NaN9 -> -NaN9
+powx686 power -NaN6 Inf -> -NaN6
+powx687 power -NaN2 -Nan4 -> -NaN2
-- long operand and RHS range checks
maxexponent: 999
@@ -616,15 +481,6 @@ powx703 power 1234567890 1 -> 1.23456789E+9 Rounded
powx704 power 1234567891 1 -> 1.23456789E+9 Inexact Rounded
powx705 power 12345678901 1 -> 1.23456789E+10 Inexact Rounded
powx706 power 1234567896 1 -> 1.23456790E+9 Inexact Rounded
-powx707 power 1 12345678000 -> NaN Invalid_operation
-powx708 power 1 1234567800 -> NaN Invalid_operation
-powx709 power 1 1234567890 -> NaN Invalid_operation
-powx710 power 1 11234567891 -> NaN Invalid_operation
-powx711 power 1 12345678901 -> NaN Invalid_operation
-powx712 power 1 1234567896 -> NaN Invalid_operation
-powx713 power 1 -1234567896 -> NaN Invalid_operation
-powx714 power 1 1000000000 -> NaN Invalid_operation
-powx715 power 1 -1000000000 -> NaN Invalid_operation
precision: 15
-- still checking
@@ -634,12 +490,182 @@ powx743 power 1234567890 1 -> 1234567890
powx744 power 1234567891 1 -> 1234567891
powx745 power 12345678901 1 -> 12345678901
powx746 power 1234567896 1 -> 1234567896
-powx747 power 1 12345678000 -> NaN Invalid_operation
-powx748 power 1 -1234567896 -> NaN Invalid_operation
-powx749 power 1 1000000000 -> NaN Invalid_operation
-powx740 power 1 -1000000000 -> NaN Invalid_operation
--- check for double-rounded subnormals
+maxexponent: 999999
+minexponent: -999999
+precision: 9
+
+-- near out-of-range edge cases
+powx163 power '10' '999999' -> '1.00000000E+999999' Rounded
+powx164 power '10' '999998' -> '1.00000000E+999998' Rounded
+powx165 power '10' '999997' -> '1.00000000E+999997' Rounded
+powx166 power '10' '333333' -> '1.00000000E+333333' Rounded
+powx183 power '7' '1000000' -> 1.09651419E+845098 Inexact Rounded
+powx184 power '7' '1000001' -> 7.67559934E+845098 Inexact Rounded
+powx186 power '7' '-1000001' -> 1.30282986E-845099 Inexact Rounded
+powx187 power '7' '-1000000' -> 9.11980901E-845099 Inexact Rounded
+powx118 power '10' '-333333' -> 1E-333333
+powx119 power '10' '-999998' -> 1E-999998
+powx120 power '10' '-999999' -> 1E-999999
+powx181 power '7' '999998' -> 2.23778406E+845096 Inexact Rounded
+powx182 power '7' '999999' -> 1.56644884E+845097 Inexact Rounded
+powx189 power '7' '-999999' -> 6.38386631E-845098 Inexact Rounded
+powx190 power '7' '-999998' -> 4.46870641E-845097 Inexact Rounded
+
+-- overflow and underflow tests
+precision: 9
+
+powx277 power 9 999999 -> 3.59084629E+954241 Inexact Rounded
+powx278 power 9.99999999 999999 -> 9.99000501E+999998 Inexact Rounded
+powx279 power 10 999999 -> 1.00000000E+999999 Rounded
+powx280 power 10.0000001 999999 -> 1.01005016E+999999 Inexact Rounded
+powx281 power 10.000001 999999 -> 1.10517080E+999999 Inexact Rounded
+powx282 power 10.00001 999999 -> 2.71827775E+999999 Inexact Rounded
+powx283 power 10.0001 999999 -> Infinity Overflow Inexact Rounded
+powx285 power 11 999999 -> Infinity Overflow Inexact Rounded
+powx286 power 12 999999 -> Infinity Overflow Inexact Rounded
+powx287 power 999 999999 -> Infinity Overflow Inexact Rounded
+powx288 power 999999999 999999 -> Infinity Overflow Inexact Rounded
+powx289 power 9.9E999999999 999999 -> Infinity Overflow Inexact Rounded
+
+powx290 power 0.5 999999 -> 2.02006812E-301030 Inexact Rounded
+powx291 power 0.1 999999 -> 1E-999999 -- unrounded
+powx292 power 0.09 999999 -> 0E-1000007 Underflow Subnormal Inexact Rounded Clamped
+powx293 power 0.05 999999 -> 0E-1000007 Underflow Subnormal Inexact Rounded Clamped
+powx294 power 0.01 999999 -> 0E-1000007 Underflow Subnormal Inexact Rounded Clamped
+powx295 power 0.0001 999999 -> 0E-1000007 Underflow Subnormal Inexact Rounded Clamped
+powx297 power 0.0000001 999999 -> 0E-1000007 Underflow Subnormal Inexact Rounded Clamped
+powx298 power 0.0000000001 999999 -> 0E-1000007 Underflow Subnormal Inexact Rounded Clamped
+powx299 power 1E-999999999 999999 -> 0E-1000007 Underflow Subnormal Inexact Rounded Clamped
+
+powx310 power -9 999999 -> -3.59084629E+954241 Inexact Rounded
+powx311 power -10 999999 -> -1.00000000E+999999 Rounded
+powx312 power -10.0001 999999 -> -Infinity Overflow Inexact Rounded
+powx313 power -10.1 999999 -> -Infinity Overflow Inexact Rounded
+powx314 power -11 999999 -> -Infinity Overflow Inexact Rounded
+powx315 power -12 999999 -> -Infinity Overflow Inexact Rounded
+powx316 power -999 999999 -> -Infinity Overflow Inexact Rounded
+powx317 power -999999 999999 -> -Infinity Overflow Inexact Rounded
+powx318 power -999999999 999999 -> -Infinity Overflow Inexact Rounded
+powx319 power -9.9E999999999 999999 -> -Infinity Overflow Inexact Rounded
+
+powx320 power -0.5 999999 -> -2.02006812E-301030 Inexact Rounded
+powx321 power -0.1 999999 -> -1E-999999
+powx322 power -0.09 999999 -> -0E-1000007 Underflow Subnormal Inexact Rounded Clamped
+powx323 power -0.05 999999 -> -0E-1000007 Underflow Subnormal Inexact Rounded Clamped
+powx324 power -0.01 999999 -> -0E-1000007 Underflow Subnormal Inexact Rounded Clamped
+powx325 power -0.0001 999999 -> -0E-1000007 Underflow Subnormal Inexact Rounded Clamped
+powx327 power -0.0000001 999999 -> -0E-1000007 Underflow Subnormal Inexact Rounded Clamped
+powx328 power -0.0000000001 999999 -> -0E-1000007 Underflow Subnormal Inexact Rounded Clamped
+powx329 power -1E-999999999 999999 -> -0E-1000007 Underflow Subnormal Inexact Rounded Clamped
+
+-- note no trim of next result
+powx330 power -9 999998 -> 3.98982921E+954240 Inexact Rounded
+powx331 power -10 999998 -> 1.00000000E+999998 Rounded
+powx332 power -10.0001 999998 -> Infinity Overflow Inexact Rounded
+powx333 power -10.1 999998 -> Infinity Overflow Inexact Rounded
+powx334 power -11 999998 -> Infinity Overflow Inexact Rounded
+powx335 power -12 999998 -> Infinity Overflow Inexact Rounded
+powx336 power -999 999998 -> Infinity Overflow Inexact Rounded
+powx337 power -999999 999998 -> Infinity Overflow Inexact Rounded
+powx338 power -999999999 999998 -> Infinity Overflow Inexact Rounded
+powx339 power -9.9E999999999 999998 -> Infinity Overflow Inexact Rounded
+
+powx340 power -0.5 999998 -> 4.04013624E-301030 Inexact Rounded
+powx341 power -0.1 999998 -> 1E-999998 -- NB exact unrounded
+powx342 power -0.09 999998 -> 0E-1000007 Underflow Subnormal Inexact Rounded Clamped
+powx343 power -0.05 999998 -> 0E-1000007 Underflow Subnormal Inexact Rounded Clamped
+powx344 power -0.01 999998 -> 0E-1000007 Underflow Subnormal Inexact Rounded Clamped
+powx345 power -0.0001 999998 -> 0E-1000007 Underflow Subnormal Inexact Rounded Clamped
+powx347 power -0.0000001 999998 -> 0E-1000007 Underflow Subnormal Inexact Rounded Clamped
+powx348 power -0.0000000001 999998 -> 0E-1000007 Underflow Subnormal Inexact Rounded Clamped
+powx349 power -1E-999999999 999998 -> 0E-1000007 Underflow Subnormal Inexact Rounded Clamped
+
+-- some subnormals
+precision: 9
+-- [precision is 9, so smallest exponent is -1000000007
+powx350 power 1e-1 500000 -> 1E-500000
+powx351 power 1e-2 999999 -> 0E-1000007 Underflow Subnormal Inexact Rounded Clamped
+powx352 power 1e-2 500000 -> 1E-1000000 Subnormal
+powx353 power 1e-2 500001 -> 1E-1000002 Subnormal
+powx354 power 1e-2 500002 -> 1E-1000004 Subnormal
+powx355 power 1e-2 500003 -> 1E-1000006 Subnormal
+powx356 power 1e-2 500004 -> 0E-1000007 Underflow Subnormal Inexact Rounded Clamped
+
+powx360 power 0.010001 500000 -> 5.17176082E-999979 Inexact Rounded
+powx361 power 0.010000001 500000 -> 1.0512711E-1000000 Underflow Subnormal Inexact Rounded
+powx362 power 0.010000001 500001 -> 1.05127E-1000002 Underflow Subnormal Inexact Rounded
+powx363 power 0.0100000009 500000 -> 1.0460279E-1000000 Underflow Subnormal Inexact Rounded
+powx364 power 0.0100000001 500000 -> 1.0050125E-1000000 Underflow Subnormal Inexact Rounded
+powx365 power 0.01 500000 -> 1E-1000000 Subnormal
+powx366 power 0.0099999999 500000 -> 9.950125E-1000001 Underflow Subnormal Inexact Rounded
+powx367 power 0.0099999998 500000 -> 9.900498E-1000001 Underflow Subnormal Inexact Rounded
+powx368 power 0.0099999997 500000 -> 9.851119E-1000001 Underflow Subnormal Inexact Rounded
+powx369 power 0.0099999996 500000 -> 9.801987E-1000001 Underflow Subnormal Inexact Rounded
+powx370 power 0.009 500000 -> 0E-1000007 Underflow Subnormal Inexact Rounded Clamped
+
+-- 1/subnormal -> overflow
+powx371 power 1e-1 -500000 -> 1E+500000
+powx372 power 1e-2 -999999 -> Infinity Overflow Inexact Rounded
+powx373 power 1e-2 -500000 -> Infinity Overflow Inexact Rounded
+powx374 power 1e-2 -500001 -> Infinity Overflow Inexact Rounded
+powx375 power 1e-2 -500002 -> Infinity Overflow Inexact Rounded
+powx376 power 1e-2 -500003 -> Infinity Overflow Inexact Rounded
+powx377 power 1e-2 -500004 -> Infinity Overflow Inexact Rounded
+
+powx381 power 0.010001 -500000 -> 1.93357743E+999978 Inexact Rounded
+powx382 power 0.010000001 -500000 -> 9.51229427E+999999 Inexact Rounded
+powx383 power 0.010000001 -500001 -> Infinity Overflow Inexact Rounded
+powx384 power 0.0100000009 -500000 -> 9.55997484E+999999 Inexact Rounded
+powx385 power 0.0100000001 -500000 -> 9.95012479E+999999 Inexact Rounded
+powx386 power 0.01 -500000 -> Infinity Overflow Inexact Rounded
+powx387 power 0.009999 -500000 -> Infinity Overflow Inexact Rounded
+
+-- negative power giving subnormal
+powx388 power 100.000001 -500000 -> 9.950125E-1000001 Underflow Subnormal Inexact Rounded
+
+
+-- test some 'false integer' boundaries
+precision: 16
+rounding: half_even
+maxExponent: 384
+minExponent: -383
+powx501 power 100 1E+1 -> 1.000000000000000E+20 Rounded
+powx502 power 100 1E+2 -> 1.000000000000000E+200 Rounded
+powx503 power 100 1E+3 -> Infinity Overflow Inexact Rounded
+powx504 power 100 1E+4 -> Infinity Overflow Inexact Rounded
+powx505 power 100 1E+5 -> Infinity Overflow Inexact Rounded
+powx506 power 100 1E+6 -> Infinity Overflow Inexact Rounded
+powx507 power 100 1E+7 -> Infinity Overflow Inexact Rounded
+powx508 power 100 1E+8 -> Infinity Overflow Inexact Rounded
+powx509 power 100 1E+9 -> Infinity Overflow Inexact Rounded
+powx510 power 100 1E+10 -> Infinity Overflow Inexact Rounded
+powx511 power 100 1E+11 -> Infinity Overflow Inexact Rounded
+powx512 power 100 1E+12 -> Infinity Overflow Inexact Rounded
+powx513 power 100 1E+13 -> Infinity Overflow Inexact Rounded
+powx514 power 100 1E+14 -> Infinity Overflow Inexact Rounded
+powx515 power 100 1E+15 -> Infinity Overflow Inexact Rounded
+powx516 power 100 1E+16 -> Infinity Overflow Inexact Rounded
+powx517 power 100 1E+17 -> Infinity Overflow Inexact Rounded
+powx518 power 100 1E+18 -> Infinity Overflow Inexact Rounded
+powx519 power 100 1E+19 -> Infinity Overflow Inexact Rounded
+powx520 power 100 1E+20 -> Infinity Overflow Inexact Rounded
+powx521 power 100 1E+21 -> Infinity Overflow Inexact Rounded
+powx522 power 100 1E+22 -> Infinity Overflow Inexact Rounded
+powx523 power 100 1E+23 -> Infinity Overflow Inexact Rounded
+powx524 power 100 1E+24 -> Infinity Overflow Inexact Rounded
+powx525 power 100 1E+25 -> Infinity Overflow Inexact Rounded
+powx526 power 100 1E+26 -> Infinity Overflow Inexact Rounded
+powx527 power 100 1E+27 -> Infinity Overflow Inexact Rounded
+powx528 power 100 1E+28 -> Infinity Overflow Inexact Rounded
+powx529 power 100 1E+29 -> Infinity Overflow Inexact Rounded
+powx530 power 100 1E+30 -> Infinity Overflow Inexact Rounded
+powx531 power 100 1E+40 -> Infinity Overflow Inexact Rounded
+powx532 power 100 1E+50 -> Infinity Overflow Inexact Rounded
+powx533 power 100 1E+100 -> Infinity Overflow Inexact Rounded
+powx534 power 100 1E+383 -> Infinity Overflow Inexact Rounded
+
+-- a check for double-rounded subnormals
precision: 5
maxexponent: 79
minexponent: -79
@@ -649,3 +675,950 @@ powx750 power 1.2347E-40 2 -> 1.524E-80 Inexact Rounded Subnormal Und
powx900 power 1 # -> NaN Invalid_operation
powx901 power # 1 -> NaN Invalid_operation
+----------------------------------------------------------------------
+-- Below here are tests with a precision or context outside of the --
+-- decNumber 'mathematical functions' restricted range. These --
+-- remain supported in decNumber to minimize breakage, but may be --
+-- outside the range of other implementations. --
+----------------------------------------------------------------------
+maxexponent: 999999999
+minexponent: -999999999
+precision: 9
+powx1063 power '10' '999999999' -> '1.00000000E+999999999' Rounded
+powx1064 power '10' '999999998' -> '1.00000000E+999999998' Rounded
+powx1065 power '10' '999999997' -> '1.00000000E+999999997' Rounded
+powx1066 power '10' '333333333' -> '1.00000000E+333333333' Rounded
+-- next two are integer-out-of range
+powx1183 power '7' '1000000000' -> NaN Invalid_context
+powx1184 power '7' '1000000001' -> NaN Invalid_context
+powx1186 power '7' '-1000000001' -> 1.38243630E-845098041 Inexact Rounded
+powx1187 power '7' '-1000000000' -> 9.67705411E-845098041 Inexact Rounded
+
+-- out-of-range edge cases
+powx1118 power '10' '-333333333' -> 1E-333333333
+powx1119 power '10' '-999999998' -> 1E-999999998
+powx1120 power '10' '-999999999' -> 1E-999999999
+powx1181 power '7' '999999998' -> 2.10892313E+845098038 Inexact Rounded
+powx1182 power '7' '999999999' -> 1.47624619E+845098039 Inexact Rounded
+powx1189 power '7' '-999999999' -> 6.77393787E-845098040 Inexact Rounded
+powx1190 power '7' '-999999998' -> 4.74175651E-845098039 Inexact Rounded
+
+-- A (rare) case where the last digit is not within 0.5 ULP with classic precision
+precision: 9
+powx1215 power "-21971575.0E+31454441" "-7" -> "-4.04549502E-220181139" Inexact Rounded
+precision: 20
+powx1216 power "-21971575.0E+31454441" "-7" -> "-4.0454950249324891788E-220181139" Inexact Rounded
+
+-- overflow and underflow tests
+precision: 9
+powx1280 power 9 999999999 -> 3.05550054E+954242508 Inexact Rounded
+powx1281 power 10 999999999 -> 1.00000000E+999999999 Rounded
+powx1282 power 10.0001 999999999 -> Infinity Overflow Inexact Rounded
+powx1283 power 10.1 999999999 -> Infinity Overflow Inexact Rounded
+powx1284 power 11 999999999 -> Infinity Overflow Inexact Rounded
+powx1285 power 12 999999999 -> Infinity Overflow Inexact Rounded
+powx1286 power 999 999999999 -> Infinity Overflow Inexact Rounded
+powx1287 power 999999 999999999 -> Infinity Overflow Inexact Rounded
+powx1288 power 999999999 999999999 -> Infinity Overflow Inexact Rounded
+powx1289 power 9.9E999999999 999999999 -> Infinity Overflow Inexact Rounded
+
+powx1290 power 0.5 999999999 -> 4.33559594E-301029996 Inexact Rounded
+powx1291 power 0.1 999999999 -> 1E-999999999 -- unrounded
+powx1292 power 0.09 999999999 -> 0E-1000000007 Underflow Subnormal Inexact Rounded Clamped
+powx1293 power 0.05 999999999 -> 0E-1000000007 Underflow Subnormal Inexact Rounded Clamped
+powx1294 power 0.01 999999999 -> 0E-1000000007 Underflow Subnormal Inexact Rounded Clamped
+powx1295 power 0.0001 999999999 -> 0E-1000000007 Underflow Subnormal Inexact Rounded Clamped
+powx1297 power 0.0000001 999999999 -> 0E-1000000007 Underflow Subnormal Inexact Rounded Clamped
+powx1298 power 0.0000000001 999999999 -> 0E-1000000007 Underflow Subnormal Inexact Rounded Clamped
+powx1299 power 1E-999999999 999999999 -> 0E-1000000007 Underflow Subnormal Inexact Rounded Clamped
+
+powx1310 power -9 999999999 -> -3.05550054E+954242508 Inexact Rounded
+powx1311 power -10 999999999 -> -1.00000000E+999999999 Rounded
+powx1312 power -10.0001 999999999 -> -Infinity Overflow Inexact Rounded
+powx1313 power -10.1 999999999 -> -Infinity Overflow Inexact Rounded
+powx1314 power -11 999999999 -> -Infinity Overflow Inexact Rounded
+powx1315 power -12 999999999 -> -Infinity Overflow Inexact Rounded
+powx1316 power -999 999999999 -> -Infinity Overflow Inexact Rounded
+powx1317 power -999999 999999999 -> -Infinity Overflow Inexact Rounded
+powx1318 power -999999999 999999999 -> -Infinity Overflow Inexact Rounded
+powx1319 power -9.9E999999999 999999999 -> -Infinity Overflow Inexact Rounded
+
+powx1320 power -0.5 999999999 -> -4.33559594E-301029996 Inexact Rounded
+powx1321 power -0.1 999999999 -> -1E-999999999
+powx1322 power -0.09 999999999 -> -0E-1000000007 Underflow Subnormal Inexact Rounded Clamped
+powx1323 power -0.05 999999999 -> -0E-1000000007 Underflow Subnormal Inexact Rounded Clamped
+powx1324 power -0.01 999999999 -> -0E-1000000007 Underflow Subnormal Inexact Rounded Clamped
+powx1325 power -0.0001 999999999 -> -0E-1000000007 Underflow Subnormal Inexact Rounded Clamped
+powx1327 power -0.0000001 999999999 -> -0E-1000000007 Underflow Subnormal Inexact Rounded Clamped
+powx1328 power -0.0000000001 999999999 -> -0E-1000000007 Underflow Subnormal Inexact Rounded Clamped
+powx1329 power -1E-999999999 999999999 -> -0E-1000000007 Underflow Subnormal Inexact Rounded Clamped
+
+-- note no trim of next result
+powx1330 power -9 999999998 -> 3.39500060E+954242507 Inexact Rounded
+powx1331 power -10 999999998 -> 1.00000000E+999999998 Rounded
+powx1332 power -10.0001 999999998 -> Infinity Overflow Inexact Rounded
+powx1333 power -10.1 999999998 -> Infinity Overflow Inexact Rounded
+powx1334 power -11 999999998 -> Infinity Overflow Inexact Rounded
+powx1335 power -12 999999998 -> Infinity Overflow Inexact Rounded
+powx1336 power -999 999999998 -> Infinity Overflow Inexact Rounded
+powx1337 power -999999 999999998 -> Infinity Overflow Inexact Rounded
+powx1338 power -999999999 999999998 -> Infinity Overflow Inexact Rounded
+powx1339 power -9.9E999999999 999999998 -> Infinity Overflow Inexact Rounded
+
+powx1340 power -0.5 999999998 -> 8.67119187E-301029996 Inexact Rounded
+powx1341 power -0.1 999999998 -> 1E-999999998 -- NB exact unrounded
+powx1342 power -0.09 999999998 -> 0E-1000000007 Underflow Subnormal Inexact Rounded Clamped
+powx1343 power -0.05 999999998 -> 0E-1000000007 Underflow Subnormal Inexact Rounded Clamped
+powx1344 power -0.01 999999998 -> 0E-1000000007 Underflow Subnormal Inexact Rounded Clamped
+powx1345 power -0.0001 999999998 -> 0E-1000000007 Underflow Subnormal Inexact Rounded Clamped
+powx1347 power -0.0000001 999999998 -> 0E-1000000007 Underflow Subnormal Inexact Rounded Clamped
+powx1348 power -0.0000000001 999999998 -> 0E-1000000007 Underflow Subnormal Inexact Rounded Clamped
+powx1349 power -1E-999999999 999999998 -> 0E-1000000007 Underflow Subnormal Inexact Rounded Clamped
+
+-- some subnormals
+precision: 9
+-- [precision is 9, so smallest exponent is -1000000007
+powx1350 power 1e-1 500000000 -> 1E-500000000
+powx1351 power 1e-2 999999999 -> 0E-1000000007 Underflow Subnormal Inexact Rounded Clamped
+powx1352 power 1e-2 500000000 -> 1E-1000000000 Subnormal
+powx1353 power 1e-2 500000001 -> 1E-1000000002 Subnormal
+powx1354 power 1e-2 500000002 -> 1E-1000000004 Subnormal
+powx1355 power 1e-2 500000003 -> 1E-1000000006 Subnormal
+powx1356 power 1e-2 500000004 -> 0E-1000000007 Underflow Subnormal Inexact Rounded Clamped
+
+powx1360 power 0.010001 500000000 -> 4.34941988E-999978287 Inexact Rounded
+powx1361 power 0.010000001 500000000 -> 5.18469257E-999999979 Inexact Rounded
+powx1362 power 0.010000001 500000001 -> 5.18469309E-999999981 Inexact Rounded
+powx1363 power 0.0100000009 500000000 -> 3.49342003E-999999981 Inexact Rounded
+powx1364 power 0.0100000001 500000000 -> 1.48413155E-999999998 Inexact Rounded
+powx1365 power 0.01 500000000 -> 1E-1000000000 Subnormal
+powx1366 power 0.0099999999 500000000 -> 6.7379E-1000000003 Underflow Subnormal Inexact Rounded
+powx1367 power 0.0099999998 500000000 -> 4.54E-1000000005 Underflow Subnormal Inexact Rounded
+powx1368 power 0.0099999997 500000000 -> 3E-1000000007 Underflow Subnormal Inexact Rounded
+powx1369 power 0.0099999996 500000000 -> 0E-1000000007 Underflow Subnormal Inexact Rounded Clamped
+powx1370 power 0.009 500000000 -> 0E-1000000007 Underflow Subnormal Inexact Rounded Clamped
+
+-- 1/subnormal -> overflow
+powx1371 power 1e-1 -500000000 -> 1E+500000000
+powx1372 power 1e-2 -999999999 -> Infinity Overflow Inexact Rounded
+powx1373 power 1e-2 -500000000 -> Infinity Overflow Inexact Rounded
+powx1374 power 1e-2 -500000001 -> Infinity Overflow Inexact Rounded
+powx1375 power 1e-2 -500000002 -> Infinity Overflow Inexact Rounded
+powx1376 power 1e-2 -500000003 -> Infinity Overflow Inexact Rounded
+powx1377 power 1e-2 -500000004 -> Infinity Overflow Inexact Rounded
+
+powx1381 power 0.010001 -500000000 -> 2.29915719E+999978286 Inexact Rounded
+powx1382 power 0.010000001 -500000000 -> 1.92875467E+999999978 Inexact Rounded
+powx1383 power 0.010000001 -500000001 -> 1.92875448E+999999980 Inexact Rounded
+powx1384 power 0.0100000009 -500000000 -> 2.86252438E+999999980 Inexact Rounded
+powx1385 power 0.0100000001 -500000000 -> 6.73794717E+999999997 Inexact Rounded
+powx1386 power 0.01 -500000000 -> Infinity Overflow Inexact Rounded
+powx1387 power 0.009999 -500000000 -> Infinity Overflow Inexact Rounded
+
+-- negative power giving subnormal
+powx1388 power 100.000001 -500000000 -> 6.7379E-1000000003 Underflow Subnormal Inexact Rounded
+
+----------------------------------------------------------------------
+-- Below here are the tests with a non-integer rhs, including the --
+-- tests that previously caused Invalid operation. An integer-only --
+-- (on rhs) implementation should handle all the tests above as --
+-- shown, and would flag most of the following tests as Invalid. --
+----------------------------------------------------------------------
+precision: 16
+rounding: half_even
+maxExponent: 384
+minExponent: -383
+
+powx2000 power 7 '10000000000' -> Infinity Overflow Inexact Rounded
+powx2001 power 2 '2.000001' -> 4.000002772589683 Inexact Rounded
+powx2002 power 2 '2.00000000' -> 4
+powx2003 power 2 '2.000000001' -> 4.000000002772589 Inexact Rounded
+powx2004 power 2 '2.0000000001' -> 4.000000000277259 Inexact Rounded
+powx2005 power 2 '2.00000000001' -> 4.000000000027726 Inexact Rounded
+powx2006 power 2 '2.000000000001' -> 4.000000000002773 Inexact Rounded
+powx2007 power 2 '2.0000000000001' -> 4.000000000000277 Inexact Rounded
+powx2008 power 2 '2.00000000000001' -> 4.000000000000028 Inexact Rounded
+powx2009 power 2 '2.000000000000001' -> 4.000000000000003 Inexact Rounded
+powx2010 power 2 '2.0000000000000001' -> 4.000000000000000 Inexact Rounded
+-- 1 234567890123456
+
+powx2011 power 1 1234 -> 1
+precision: 4
+powx2012 power 1 1234 -> 1
+precision: 3
+powx2013 power 1 1234 -> 1
+powx2014 power 1 12.34e+2 -> 1
+powx2015 power 1 12.3 -> 1.00 Inexact Rounded
+powx2016 power 1 12.0 -> 1
+powx2017 power 1 1.01 -> 1.00 Inexact Rounded
+powx2018 power 2 1.00 -> 2
+powx2019 power 2 2.00 -> 4
+precision: 9
+powx2030 power 1 1.0001 -> 1.00000000 Inexact Rounded
+powx2031 power 1 1.0000001 -> 1.00000000 Inexact Rounded
+powx2032 power 1 1.0000000001 -> 1.00000000 Inexact Rounded
+powx2033 power 1 1.0000000000001 -> 1.00000000 Inexact Rounded
+precision: 5
+powx2034 power 1 1.0001 -> 1.0000 Inexact Rounded
+powx2035 power 1 1.0000001 -> 1.0000 Inexact Rounded
+powx2036 power 1 1.0000000001 -> 1.0000 Inexact Rounded
+powx2037 power 1 1.0000000000001 -> 1.0000 Inexact Rounded
+powx2038 power 1 1.0000000000001 -> 1.0000 Inexact Rounded
+
+rounding: ceiling
+precision: 3
+powx2039 power 1 1.01 -> 1.00 Inexact Rounded
+powx2040 power 1 12.3 -> 1.00 Inexact Rounded
+rounding: half_even
+
+-- 1 ** any integer, including big ones, should be exact
+powx2041 power 1 1000000000 -> 1
+powx2042 power 1 9999999999 -> 1
+powx2043 power 1 12345678000 -> 1
+powx2044 power 1 1234567800 -> 1
+powx2045 power 1 1234567890 -> 1
+powx2046 power 1 11234567891 -> 1
+powx2047 power 1 12345678901 -> 1
+powx2048 power 1 1234567896 -> 1
+powx2049 power 1 -1234567896 -> 1
+powx2051 power 1 1000000000 -> 1
+powx2052 power 1 -1000000000 -> 1
+powx2053 power 1 12345678000 -> 1
+powx2054 power 1 -1234567896 -> 1
+powx2055 power 1 1000000000 -> 1
+powx2056 power 1 4300000000 -> 1
+powx2057 power 1 -1000000000 -> 1
+-- negatives ... but not out of range for decNumber
+powx2061 power -1 100000 -> 1
+powx2062 power -1 999999 -> -1
+powx2063 power -1 1278000 -> 1
+powx2064 power -1 127803 -> -1
+powx2065 power -1 127890 -> 1
+powx2066 power -1 1167891 -> -1
+powx2067 power -1 1278901 -> -1
+powx2068 power -1 127896 -> 1
+powx2069 power -1 -167897 -> -1
+powx2071 power -1 100000 -> 1
+powx2072 power -1 -100001 -> -1
+powx2073 power -1 1278000 -> 1
+powx2074 power -1 -167896 -> 1
+powx2075 power -1 100000 -> 1
+powx2076 power -1 -100009 -> -1
+
+-- The above were derived from the earlier version of power.decTest;
+-- now start new tests for power(x,y) for non-integer y
+precision: 9
+
+-- tests from specification
+powx2081 power 2 3 -> '8'
+powx2082 power -2 3 -> '-8'
+powx2083 power 2 -3 -> '0.125'
+powx2084 power 1.7 '8' -> '69.7575744' Inexact Rounded
+powx2085 power 10 0.301029996 -> 2.00000000 Inexact Rounded
+powx2086 power Infinity '-1' -> '0'
+powx2087 power Infinity '0' -> '1'
+powx2088 power Infinity '1' -> 'Infinity'
+powx2089 power -Infinity '-1' -> '-0'
+powx2090 power -Infinity '0' -> '1'
+powx2091 power -Infinity '1' -> '-Infinity'
+powx2092 power -Infinity '2' -> 'Infinity'
+powx2093 power 0 0 -> 'NaN' Invalid_operation
+
+precision: 16
+rounding: half_even
+maxExponent: 384
+minExponent: -383
+
+-- basics
+powx2100 power 1E-7 1E-7 -> 0.9999983881917339 Inexact Rounded
+powx2101 power 0.003 1E-7 -> 0.9999994190858697 Inexact Rounded
+powx2102 power 0.7 1E-7 -> 0.9999999643325062 Inexact Rounded
+powx2103 power 1.2 1E-7 -> 1.000000018232156 Inexact Rounded
+powx2104 power 71 1E-7 -> 1.000000426268079 Inexact Rounded
+powx2105 power 9E+9 1E-7 -> 1.000002292051668 Inexact Rounded
+
+powx2110 power 1E-7 0.003 -> 0.9527961640236519 Inexact Rounded
+powx2111 power 0.003 0.003 -> 0.9827235503366797 Inexact Rounded
+powx2112 power 0.7 0.003 -> 0.9989305474406207 Inexact Rounded
+powx2113 power 1.2 0.003 -> 1.000547114282834 Inexact Rounded
+powx2114 power 71 0.003 -> 1.012870156273545 Inexact Rounded
+powx2115 power 9E+9 0.003 -> 1.071180671278787 Inexact Rounded
+
+powx2120 power 1E-7 0.7 -> 0.00001258925411794167 Inexact Rounded
+powx2121 power 0.003 0.7 -> 0.01713897630281030 Inexact Rounded
+powx2122 power 0.7 0.7 -> 0.7790559126704491 Inexact Rounded
+powx2123 power 1.2 0.7 -> 1.136126977198889 Inexact Rounded
+powx2124 power 71 0.7 -> 19.76427300093870 Inexact Rounded
+powx2125 power 9E+9 0.7 -> 9289016.976853710 Inexact Rounded
+
+powx2130 power 1E-7 1.2 -> 3.981071705534973E-9 Inexact Rounded
+powx2131 power 0.003 1.2 -> 0.0009387403933595694 Inexact Rounded
+powx2132 power 0.7 1.2 -> 0.6518049405663864 Inexact Rounded
+powx2133 power 1.2 1.2 -> 1.244564747203978 Inexact Rounded
+powx2134 power 71 1.2 -> 166.5367244638552 Inexact Rounded
+powx2135 power 9E+9 1.2 -> 881233526124.8791 Inexact Rounded
+
+powx2140 power 1E-7 71 -> 0E-398 Inexact Rounded Underflow Subnormal Clamped
+powx2141 power 0.003 71 -> 7.509466514979725E-180 Inexact Rounded
+powx2142 power 0.7 71 -> 1.004525211269079E-11 Inexact Rounded
+powx2143 power 1.2 71 -> 418666.7483186515 Inexact Rounded
+powx2144 power 71 71 -> 2.750063734834616E+131 Inexact Rounded
+powx2145 power 9E+9 71 -> Infinity Inexact Rounded Overflow
+
+powx2150 power 1E-7 9E+9 -> 0E-398 Inexact Rounded Underflow Subnormal Clamped
+powx2151 power 0.003 9E+9 -> 0E-398 Inexact Rounded Underflow Subnormal Clamped
+powx2152 power 0.7 9E+9 -> 0E-398 Inexact Rounded Underflow Subnormal Clamped
+powx2153 power 1.2 9E+9 -> Infinity Inexact Rounded Overflow
+powx2154 power 71 9E+9 -> Infinity Inexact Rounded Overflow
+powx2155 power 9E+9 9E+9 -> Infinity Inexact Rounded Overflow
+
+-- number line milestones with lhs<1 and lhs>1
+
+-- Overflow boundary (Nmax)
+powx2202 power 71 207.966651583983200 -> Infinity Inexact Rounded Overflow
+powx2201 power 71 207.966651583983199 -> 9.999999999999994E+384 Inexact Rounded
+powx2204 power 0.003 -152.603449817093577 -> Infinity Inexact Rounded Overflow
+powx2203 power 0.003 -152.603449817093576 -> 9.999999999999994E+384 Inexact Rounded
+
+-- Nmin boundary
+powx2211 power 71 -206.886305341988480 -> 1.000000000000005E-383 Inexact Rounded
+powx2212 power 71 -206.886305341988481 -> 1.000000000000001E-383 Inexact Rounded
+powx2213 power 71 -206.886305341988482 -> 9.99999999999997E-384 Inexact Rounded Underflow Subnormal
+powx2214 power 71 -206.886305341988483 -> 9.99999999999992E-384 Inexact Rounded Underflow Subnormal
+-- 9.999999999999924565357019820
+
+powx2215 power 0.003 151.810704623238543 -> 1.000000000000009E-383 Inexact Rounded
+powx2216 power 0.003 151.810704623238544 -> 1.000000000000003E-383 Inexact Rounded
+powx2217 power 0.003 151.810704623238545 -> 9.99999999999997E-384 Inexact Rounded Underflow Subnormal
+powx2218 power 0.003 151.810704623238546 -> 9.99999999999991E-384 Inexact Rounded Underflow Subnormal
+
+-- Ntiny boundary, these edge cases determined using half_up rounding
+rounding: half_up
+powx2221 power 71 -215.151510469220498 -> 1E-398 Inexact Rounded Underflow Subnormal
+powx2222 power 71 -215.151510469220499 -> 1E-398 Inexact Rounded Underflow Subnormal
+powx2223 power 71 -215.151510469220500 -> 0E-398 Inexact Rounded Underflow Subnormal Clamped
+powx2224 power 71 -215.151510469220501 -> 0E-398 Inexact Rounded Underflow Subnormal Clamped
+
+powx2225 power 0.003 157.875613618285691 -> 1E-398 Inexact Rounded Underflow Subnormal
+powx2226 power 0.003 157.875613618285692 -> 1E-398 Inexact Rounded Underflow Subnormal
+powx2227 power 0.003 157.875613618285693 -> 0E-398 Inexact Rounded Underflow Subnormal Clamped
+powx2228 power 0.003 220 -> 0E-398 Inexact Rounded Underflow Subnormal Clamped
+rounding: half_even
+
+-- power(10, y) are important ...
+
+-- Integer powers are exact, unless over/underflow
+powx2301 power 10 385 -> Infinity Overflow Inexact Rounded
+powx2302 power 10 384 -> 1.000000000000000E+384 Rounded
+powx2303 power 10 17 -> 1.000000000000000E+17 Rounded
+powx2304 power 10 16 -> 1.000000000000000E+16 Rounded
+powx2305 power 10 15 -> 1000000000000000
+powx2306 power 10 10 -> 10000000000
+powx2307 power 10 5 -> 100000
+powx2308 power 10 1 -> 10
+powx2309 power 10 0 -> 1
+powx2310 power 10 -1 -> 0.1
+powx2311 power 10 -5 -> 0.00001
+powx2312 power 10 -6 -> 0.000001
+powx2313 power 10 -7 -> 1E-7
+powx2314 power 10 -8 -> 1E-8
+powx2315 power 10 -9 -> 1E-9
+powx2316 power 10 -10 -> 1E-10
+powx2317 power 10 -383 -> 1E-383
+powx2318 power 10 -384 -> 1E-384 Subnormal
+powx2319 power 10 -385 -> 1E-385 Subnormal
+powx2320 power 10 -397 -> 1E-397 Subnormal
+powx2321 power 10 -398 -> 1E-398 Subnormal
+powx2322 power 10 -399 -> 0E-398 Subnormal Underflow Inexact Rounded Clamped
+powx2323 power 10 -400 -> 0E-398 Subnormal Underflow Inexact Rounded Clamped
+
+-- Independent sanity check: 1961 Godfrey & Siddons four-figure logs
+powx2351 power 10 0.0000 -> 1
+powx2352 power 10 0.3010 -> 1.999861869632744 Inexact Rounded
+powx2353 power 10 0.4771 -> 2.999853181190793 Inexact Rounded
+powx2354 power 10 0.6021 -> 4.000368510461250 Inexact Rounded
+powx2355 power 10 0.6990 -> 5.000345349769785 Inexact Rounded
+powx2356 power 10 0.7782 -> 6.000673538641164 Inexact Rounded
+powx2357 power 10 0.8451 -> 7.000031591308969 Inexact Rounded
+powx2358 power 10 0.9031 -> 8.000184448550990 Inexact Rounded
+powx2359 power 10 0.9542 -> 8.999119108700520 Inexact Rounded
+powx2360 power 10 0.9956 -> 9.899197750805841 Inexact Rounded
+powx2361 power 10 0.9996 -> 9.990793899844618 Inexact Rounded
+precision: 4
+powx2371 power 10 0.0000 -> 1
+powx2372 power 10 0.3010 -> 2.000 Inexact Rounded
+powx2373 power 10 0.4771 -> 3.000 Inexact Rounded
+powx2374 power 10 0.6021 -> 4.000 Inexact Rounded
+powx2375 power 10 0.6990 -> 5.000 Inexact Rounded
+powx2376 power 10 0.7782 -> 6.001 Inexact Rounded
+powx2377 power 10 0.8451 -> 7.000 Inexact Rounded
+powx2378 power 10 0.9031 -> 8.000 Inexact Rounded
+powx2379 power 10 0.9542 -> 8.999 Inexact Rounded
+powx2380 power 10 0.9956 -> 9.899 Inexact Rounded
+powx2381 power 10 0.9996 -> 9.991 Inexact Rounded
+
+-- 10**x ~=2 (inverse of the test in log10.decTest)
+precision: 50
+powx2401 power 10 0.30102999566398119521373889472449302676818988146211 -> 2.0000000000000000000000000000000000000000000000000 Inexact Rounded
+precision: 49
+powx2402 power 10 0.3010299956639811952137388947244930267681898814621 -> 2.000000000000000000000000000000000000000000000000 Inexact Rounded
+precision: 48
+powx2403 power 10 0.301029995663981195213738894724493026768189881462 -> 2.00000000000000000000000000000000000000000000000 Inexact Rounded
+precision: 47
+powx2404 power 10 0.30102999566398119521373889472449302676818988146 -> 2.0000000000000000000000000000000000000000000000 Inexact Rounded
+precision: 46
+powx2405 power 10 0.3010299956639811952137388947244930267681898815 -> 2.000000000000000000000000000000000000000000000 Inexact Rounded
+precision: 45
+powx2406 power 10 0.301029995663981195213738894724493026768189881 -> 2.00000000000000000000000000000000000000000000 Inexact Rounded
+precision: 44
+powx2407 power 10 0.30102999566398119521373889472449302676818988 -> 2.0000000000000000000000000000000000000000000 Inexact Rounded
+precision: 43
+powx2408 power 10 0.3010299956639811952137388947244930267681899 -> 2.000000000000000000000000000000000000000000 Inexact Rounded
+precision: 42
+powx2409 power 10 0.301029995663981195213738894724493026768190 -> 2.00000000000000000000000000000000000000000 Inexact Rounded
+precision: 41
+powx2410 power 10 0.30102999566398119521373889472449302676819 -> 2.0000000000000000000000000000000000000000 Inexact Rounded
+precision: 40
+powx2411 power 10 0.3010299956639811952137388947244930267682 -> 2.000000000000000000000000000000000000000 Inexact Rounded
+precision: 39
+powx2412 power 10 0.301029995663981195213738894724493026768 -> 2.00000000000000000000000000000000000000 Inexact Rounded
+precision: 38
+powx2413 power 10 0.30102999566398119521373889472449302677 -> 2.0000000000000000000000000000000000000 Inexact Rounded
+precision: 37
+powx2414 power 10 0.3010299956639811952137388947244930268 -> 2.000000000000000000000000000000000000 Inexact Rounded
+precision: 36
+powx2415 power 10 0.301029995663981195213738894724493027 -> 2.00000000000000000000000000000000000 Inexact Rounded
+precision: 35
+powx2416 power 10 0.30102999566398119521373889472449303 -> 2.0000000000000000000000000000000000 Inexact Rounded
+precision: 34
+powx2417 power 10 0.3010299956639811952137388947244930 -> 2.000000000000000000000000000000000 Inexact Rounded
+precision: 33
+powx2418 power 10 0.301029995663981195213738894724493 -> 2.00000000000000000000000000000000 Inexact Rounded
+precision: 32
+powx2419 power 10 0.30102999566398119521373889472449 -> 2.0000000000000000000000000000000 Inexact Rounded
+precision: 31
+powx2420 power 10 0.3010299956639811952137388947245 -> 2.000000000000000000000000000000 Inexact Rounded
+precision: 30
+powx2421 power 10 0.301029995663981195213738894725 -> 2.00000000000000000000000000000 Inexact Rounded
+precision: 29
+powx2422 power 10 0.30102999566398119521373889472 -> 2.0000000000000000000000000000 Inexact Rounded
+precision: 28
+powx2423 power 10 0.3010299956639811952137388947 -> 2.000000000000000000000000000 Inexact Rounded
+precision: 27
+powx2424 power 10 0.301029995663981195213738895 -> 2.00000000000000000000000000 Inexact Rounded
+precision: 26
+powx2425 power 10 0.30102999566398119521373889 -> 2.0000000000000000000000000 Inexact Rounded
+precision: 25
+powx2426 power 10 0.3010299956639811952137389 -> 2.000000000000000000000000 Inexact Rounded
+precision: 24
+powx2427 power 10 0.301029995663981195213739 -> 2.00000000000000000000000 Inexact Rounded
+precision: 23
+powx2428 power 10 0.30102999566398119521374 -> 2.0000000000000000000000 Inexact Rounded
+precision: 22
+powx2429 power 10 0.3010299956639811952137 -> 2.000000000000000000000 Inexact Rounded
+precision: 21
+powx2430 power 10 0.301029995663981195214 -> 2.00000000000000000000 Inexact Rounded
+precision: 20
+powx2431 power 10 0.30102999566398119521 -> 2.0000000000000000000 Inexact Rounded
+precision: 19
+powx2432 power 10 0.3010299956639811952 -> 2.000000000000000000 Inexact Rounded
+precision: 18
+powx2433 power 10 0.301029995663981195 -> 2.00000000000000000 Inexact Rounded
+precision: 17
+powx2434 power 10 0.30102999566398120 -> 2.0000000000000000 Inexact Rounded
+precision: 16
+powx2435 power 10 0.3010299956639812 -> 2.000000000000000 Inexact Rounded
+precision: 15
+powx2436 power 10 0.301029995663981 -> 2.00000000000000 Inexact Rounded
+precision: 14
+powx2437 power 10 0.30102999566398 -> 2.0000000000000 Inexact Rounded
+precision: 13
+powx2438 power 10 0.3010299956640 -> 2.000000000000 Inexact Rounded
+precision: 12
+powx2439 power 10 0.301029995664 -> 2.00000000000 Inexact Rounded
+precision: 11
+powx2440 power 10 0.30102999566 -> 2.0000000000 Inexact Rounded
+precision: 10
+powx2441 power 10 0.3010299957 -> 2.000000000 Inexact Rounded
+precision: 9
+powx2442 power 10 0.301029996 -> 2.00000000 Inexact Rounded
+precision: 8
+powx2443 power 10 0.30103000 -> 2.0000000 Inexact Rounded
+precision: 7
+powx2444 power 10 0.3010300 -> 2.000000 Inexact Rounded
+precision: 6
+powx2445 power 10 0.301030 -> 2.00000 Inexact Rounded
+precision: 5
+powx2446 power 10 0.30103 -> 2.0000 Inexact Rounded
+precision: 4
+powx2447 power 10 0.3010 -> 2.000 Inexact Rounded
+precision: 3
+powx2448 power 10 0.301 -> 2.00 Inexact Rounded
+precision: 2
+powx2449 power 10 0.30 -> 2.0 Inexact Rounded
+precision: 1
+powx2450 power 10 0.3 -> 2 Inexact Rounded
+
+maxExponent: 384
+minExponent: -383
+precision: 16
+rounding: half_even
+
+-- Close-to-e tests
+precision: 34
+powx2500 power 10 0.4342944819032518276511289189166048 -> 2.718281828459045235360287471352661 Inexact Rounded
+powx2501 power 10 0.4342944819032518276511289189166049 -> 2.718281828459045235360287471352661 Inexact Rounded
+powx2502 power 10 0.4342944819032518276511289189166050 -> 2.718281828459045235360287471352662 Inexact Rounded
+powx2503 power 10 0.4342944819032518276511289189166051 -> 2.718281828459045235360287471352663 Inexact Rounded
+powx2504 power 10 0.4342944819032518276511289189166052 -> 2.718281828459045235360287471352663 Inexact Rounded
+
+-- e**e, 16->34
+powx2505 power 2.718281828459045 2.718281828459045 -> '15.15426224147925705633739513098219' Inexact Rounded
+
+-- Sequence around an integer
+powx2512 power 10 2.9999999999999999999999999999999997 -> 999.9999999999999999999999999999993 Inexact Rounded
+powx2513 power 10 2.9999999999999999999999999999999998 -> 999.9999999999999999999999999999995 Inexact Rounded
+powx2514 power 10 2.9999999999999999999999999999999999 -> 999.9999999999999999999999999999998 Inexact Rounded
+powx2515 power 10 3.0000000000000000000000000000000000 -> 1000
+powx2516 power 10 3.0000000000000000000000000000000001 -> 1000.000000000000000000000000000000 Inexact Rounded
+powx2517 power 10 3.0000000000000000000000000000000002 -> 1000.000000000000000000000000000000 Inexact Rounded
+powx2518 power 10 3.0000000000000000000000000000000003 -> 1000.000000000000000000000000000001 Inexact Rounded
+
+-- randomly generated tests
+maxExponent: 384
+minExponent: -383
+
+-- P=34, within 0-999 -- positive arg2
+Precision: 34
+powx3201 power 5.301557744131969249145904611290735 369.3175647984435534243813466380579 -> 3.427165676345688240023113326603960E+267 Inexact Rounded
+powx3202 power 0.0000000000506875655819165973738225 21.93514102704466434121826965196878 -> 1.498169860033487321566659495340789E-226 Inexact Rounded
+powx3203 power 97.88877680721519917858007810494043 5.159898445242793470476673109899554 -> 18705942904.43290467281449559427982 Inexact Rounded
+powx3204 power 7.380441015594399747973924380493799 17.93614173904818313507525109033288 -> 3715757985820076.273336082702577274 Inexact Rounded
+powx3205 power 2.045623627647350918819219169855040 1082.999652407430697958175966996254 -> 4.208806435006704867447150904279854E+336 Inexact Rounded
+powx3206 power 0.0000000762582873112118926142955423 20.30534237055073996975203864170432 -> 2.967574278677013090697130349198877E-145 Inexact Rounded
+powx3207 power 0.0000000000194091470907814855660535 14.71164213947722238856835440242911 -> 2.564391397469554735037158345963280E-158 Inexact Rounded
+powx3208 power 0.0000000000509434185382818596853504 20.97051498204188277347203735421595 -> 1.420157372748083000927138678417272E-216 Inexact Rounded
+powx3209 power 0.0005389217212073307301395750745119 43.96798225485747315858678755538971 -> 1.957850185781292007977898626137240E-144 Inexact Rounded
+powx3210 power 498.5690105989136050444077447411198 128.1038813807243375878831104745803 -> 3.882212970903893127009102293596268E+345 Inexact Rounded
+powx3211 power 0.0000000935428918637303954281938975 5.736933454863278597460091596496099 -> 4.733219644540496152403967823635195E-41 Inexact Rounded
+powx3212 power 8.581586784734161309180363110126352 252.0229459968869784643374981477208 -> 1.907464842458674622356177850049873E+235 Inexact Rounded
+powx3213 power 294.1005302951621709143320795278305 155.5466374141708615975111014663722 -> 9.251717033292072959166737280729728E+383 Inexact Rounded
+powx3214 power 0.0000000041253343654396865855722090 19.00170974760425576247662125110472 -> 4.779566288553864405790921353593512E-160 Inexact Rounded
+powx3215 power 0.0000000000046912257352141395184092 24.66089523148729269098773236636878 -> 4.205126874048597849476723538057527E-280 Inexact Rounded
+powx3216 power 0.0000000000036796674296520639450494 22.09713956900694689234335912523078 -> 2.173081843837539818472071316420405E-253 Inexact Rounded
+powx3217 power 9.659887100303037657934372148567685 277.3765665424320875993026404492216 -> 1.614974043145519382749740616665041E+273 Inexact Rounded
+powx3218 power 0.0000083231310642229204398943076403 29.33123211782131466471359128190372 -> 1.013330439786660210757226597785328E-149 Inexact Rounded
+powx3219 power 0.0938084859086450954956863725653664 262.6091918199905272837286784975012 -> 1.262802485286301066967555821509344E-270 Inexact Rounded
+powx3220 power 8.194926977580900145696305910223304 184.3705133945546202012995485297248 -> 2.696353910907824016690021495828584E+168 Inexact Rounded
+powx3221 power 72.39594594653085161522285114566120 168.7721909489321402152033939836725 -> 7.379858293630460043361584410795031E+313 Inexact Rounded
+powx3222 power 0.0000000000003436856010144185445537 26.34329868961274988994452526178983 -> 4.585379573595865689605567720192768E-329 Inexact Rounded
+powx3223 power 20.18365633762226550254542489492623 127.2099705237021350103678072707790 -> 1.020919629336979353690271762206060E+166 Inexact Rounded
+powx3224 power 0.0000000553723990761530290129268131 8.157597566134754638015199501162405 -> 6.349030513396147480954474615067145E-60 Inexact Rounded
+powx3225 power 0.0001028742674265840656614682618035 93.99842317306603797965470281716482 -> 1.455871110222736531854990397769940E-375 Inexact Rounded
+powx3226 power 95.90195152775543876489746343266050 143.5992850002211509777720799352475 -> 3.881540015848530405189834366588567E+284 Inexact Rounded
+powx3227 power 0.0000000000041783747057233878360333 12.14591167764993506821334760954430 -> 6.190998557456885985124592807383163E-139 Inexact Rounded
+powx3228 power 0.5572830497086740798434917090018768 1001.921811263919522230330241349166 -> 3.871145158537170450093833881625838E-255 Inexact Rounded
+powx3229 power 516.4754759779093954790813881333232 29.23812463126309057800793645336343 -> 2.110986192408878294012450052929185E+79 Inexact Rounded
+powx3230 power 0.0000835892099464584776847299020706 27.64279992884843877453592659341588 -> 1.891535098905506689512376224943293E-113 Inexact Rounded
+powx3231 power 72.45836577748571838139900165184955 166.2562890735032545091688015160084 -> 1.784091549041561516923092542939141E+309 Inexact Rounded
+powx3232 power 305.1823317643335924007629563009032 83.01065159508472884219290136319623 -> 1.757493136164395229602456782779110E+206 Inexact Rounded
+powx3233 power 7.108527102951713603542835791733786 145.7057852766236365450463428821948 -> 1.285934774113104362663619896550528E+124 Inexact Rounded
+powx3234 power 6.471393503175464828149365697049824 64.11741937262455725284754171995720 -> 9.978990355881803195280027533011699E+51 Inexact Rounded
+powx3235 power 39.72898094138459885662380866268385 239.9677288017447400786672779735168 -> 5.422218208517098335832848487375086E+383 Inexact Rounded
+powx3236 power 0.0002865592332736973000183287329933 90.34733869590583787065642532641096 -> 8.293733126976212033209243257136796E-321 Inexact Rounded
+powx3237 power 0.0000011343384394864811195077357936 1.926568285528399656789140809399396 -> 3.516055639378350146874261077470142E-12 Inexact Rounded
+powx3238 power 0.0000000035321610295065299384889224 7.583861778824284092434085265265582 -> 7.970899823817369764381976286536230E-65 Inexact Rounded
+powx3239 power 657.5028301569352677543770758346683 90.55778453811965116200206020172758 -> 1.522530898581564200655160665723268E+255 Inexact Rounded
+powx3240 power 8.484756398325748879450577520251447 389.7468292476262478578280531222417 -> 8.595142803587368093392510310811218E+361 Inexact Rounded
+
+-- P=16, within 0-99 -- positive arg2
+Precision: 16
+powx3101 power 0.0000215524639223 48.37532522355252 -> 1.804663257287277E-226 Inexact Rounded
+powx3102 power 00.80705856227999 2706.777535121391 -> 1.029625065876157E-252 Inexact Rounded
+powx3103 power 3.445441676383689 428.5185892455830 -> 1.657401683096454E+230 Inexact Rounded
+powx3104 power 0.0040158689495826 159.5725558816240 -> 4.255743665762492E-383 Inexact Rounded
+powx3105 power 0.0000841553281215 38.32504413453944 -> 6.738653902512052E-157 Inexact Rounded
+powx3106 power 0.7322610252571353 502.1254457674118 -> 1.109978126985943E-68 Inexact Rounded
+powx3107 power 10.75052532144880 67.34180604734781 -> 2.873015019470189E+69 Inexact Rounded
+powx3108 power 26.20425952945617 104.6002671186488 -> 2.301859355777030E+148 Inexact Rounded
+powx3109 power 0.0000055737473850 31.16285859005424 -> 1.883348470100446E-164 Inexact Rounded
+powx3110 power 61.06096011360700 10.93608439088726 -> 3.382686473028249E+19 Inexact Rounded
+powx3111 power 9.340880853257137 179.9094938131726 -> 3.819299795937696E+174 Inexact Rounded
+powx3112 power 0.0000050767371756 72.03346394186741 -> 4.216236691569869E-382 Inexact Rounded
+powx3113 power 6.838478807860596 47.49665590602285 -> 4.547621630099203E+39 Inexact Rounded
+powx3114 power 0.1299324346439081 397.7440523576938 -> 3.065047705553981E-353 Inexact Rounded
+powx3115 power 0.0003418047034264 20.00516791512018 -> 4.546189665380487E-70 Inexact Rounded
+powx3116 power 0.0001276899611715 78.12968287355703 -> 5.960217405063995E-305 Inexact Rounded
+powx3117 power 25.93160588180509 252.6245071004620 -> 1.472171597589146E+357 Inexact Rounded
+powx3118 power 35.47516857763178 86.14723037360925 -> 3.324299908481125E+133 Inexact Rounded
+powx3119 power 0.0000048171086721 43.31965603038666 -> 4.572331516616228E-231 Inexact Rounded
+powx3120 power 17.97652681097851 144.4684576550292 -> 1.842509906097860E+181 Inexact Rounded
+powx3121 power 3.622765141518729 305.1948680344950 -> 4.132320967578704E+170 Inexact Rounded
+powx3122 power 0.0080959002453519 143.9899444945627 -> 6.474627812947047E-302 Inexact Rounded
+powx3123 power 9.841699927276571 299.2466668837188 -> 1.489097656208736E+297 Inexact Rounded
+powx3124 power 0.0786659206232355 347.4750796962570 -> 2.05764809646925E-384 Inexact Rounded Underflow Subnormal
+powx3125 power 0.0000084459792645 52.47348690745487 -> 6.076251876516942E-267 Inexact Rounded
+powx3126 power 27.86589909967504 191.7296537102283 -> 1.157064112989386E+277 Inexact Rounded
+powx3127 power 0.0000419907937234 58.44957702730767 -> 1.496950672075162E-256 Inexact Rounded
+powx3128 power 0.0000664977739382 80.06749213261876 -> 3.488517620107875E-335 Inexact Rounded
+powx3129 power 58.49554484886656 125.8480768373499 -> 2.449089862146640E+222 Inexact Rounded
+powx3130 power 15.02820060024449 212.3527988973338 -> 8.307913932682067E+249 Inexact Rounded
+powx3131 power 0.0002650089942992 30.92173123678761 -> 2.517827664836147E-111 Inexact Rounded
+powx3132 power 0.0007342977426578 69.49168880741123 -> 1.600168665674440E-218 Inexact Rounded
+powx3133 power 0.0063816068650629 150.1400094183812 -> 2.705057295799001E-330 Inexact Rounded
+powx3134 power 9.912921122728791 297.8274013633411 -> 4.967624993438900E+296 Inexact Rounded
+powx3135 power 1.988603563989245 768.4862967922182 -> 2.692842474899596E+229 Inexact Rounded
+powx3136 power 8.418014519517691 164.2431359980725 -> 9.106211585888836E+151 Inexact Rounded
+powx3137 power 6.068823604450686 120.2955212365837 -> 1.599431918105982E+94 Inexact Rounded
+powx3138 power 56.90062738303850 54.90468294683645 -> 2.312839177902428E+96 Inexact Rounded
+powx3139 power 5.710905139750871 73.44608752962156 -> 3.775876053709929E+55 Inexact Rounded
+powx3140 power 0.0000017446761203 1.223981492228899 -> 8.952936595465635E-8 Inexact Rounded
+
+-- P=7, within 0-9 -- positive arg2
+Precision: 7
+powx3001 power 8.738689 55.96523 -> 4.878180E+52 Inexact Rounded
+powx3002 power 0.0404763 147.4965 -> 3.689722E-206 Inexact Rounded
+powx3003 power 0.0604232 76.69778 -> 3.319183E-94 Inexact Rounded
+powx3004 power 0.0058855 107.5018 -> 1.768875E-240 Inexact Rounded
+powx3005 power 2.058302 1173.050 -> 5.778899E+367 Inexact Rounded
+powx3006 power 0.0056998 85.70157 -> 4.716783E-193 Inexact Rounded
+powx3007 power 0.8169297 3693.537 -> 4.475962E-325 Inexact Rounded
+powx3008 power 0.2810153 659.9568 -> 1.533177E-364 Inexact Rounded
+powx3009 power 4.617478 15.68308 -> 2.629748E+10 Inexact Rounded
+powx3010 power 0.0296418 244.2302 -> 6.207949E-374 Inexact Rounded
+powx3011 power 0.0036456 127.9987 -> 8.120891E-313 Inexact Rounded
+powx3012 power 0.5012813 577.5418 -> 6.088802E-174 Inexact Rounded
+powx3013 power 0.0033275 119.9800 -> 5.055049E-298 Inexact Rounded
+powx3014 power 0.0037652 111.7092 -> 1.560351E-271 Inexact Rounded
+powx3015 power 0.6463252 239.0568 -> 4.864564E-46 Inexact Rounded
+powx3016 power 4.784378 475.0521 -> 8.964460E+322 Inexact Rounded
+powx3017 power 4.610305 563.1791 -> 6.290298E+373 Inexact Rounded
+powx3018 power 0.0175167 80.52208 -> 3.623472E-142 Inexact Rounded
+powx3019 power 5.238307 356.7944 -> 4.011461E+256 Inexact Rounded
+powx3020 power 0.0003527 96.26347 -> 4.377932E-333 Inexact Rounded
+powx3021 power 0.0015155 136.0516 -> 2.57113E-384 Inexact Rounded Underflow Subnormal
+powx3022 power 5.753573 273.2340 -> 4.373184E+207 Inexact Rounded
+powx3023 power 7.778665 332.7917 -> 3.060640E+296 Inexact Rounded
+powx3024 power 1.432479 2046.064 -> 2.325829E+319 Inexact Rounded
+powx3025 power 5.610516 136.4563 -> 1.607502E+102 Inexact Rounded
+powx3026 power 0.0050697 137.4513 -> 3.522315E-316 Inexact Rounded
+powx3027 power 5.678737 85.16253 -> 1.713909E+64 Inexact Rounded
+powx3028 power 0.0816167 236.1973 -> 9.228802E-258 Inexact Rounded
+powx3029 power 0.2602805 562.0157 -> 2.944556E-329 Inexact Rounded
+powx3030 power 0.0080936 24.25367 -> 1.839755E-51 Inexact Rounded
+powx3031 power 4.092016 82.94603 -> 5.724948E+50 Inexact Rounded
+powx3032 power 0.0078255 7.204184 -> 6.675342E-16 Inexact Rounded
+powx3033 power 0.9917693 29846.44 -> 7.430177E-108 Inexact Rounded
+powx3034 power 1.610380 301.2467 -> 2.170142E+62 Inexact Rounded
+powx3035 power 0.0588236 212.1097 -> 1.023196E-261 Inexact Rounded
+powx3036 power 2.498069 531.4647 -> 2.054561E+211 Inexact Rounded
+powx3037 power 9.964342 326.5438 -> 1.089452E+326 Inexact Rounded
+powx3038 power 0.0820626 268.8718 -> 1.107350E-292 Inexact Rounded
+powx3039 power 6.176486 360.7779 -> 1.914449E+285 Inexact Rounded
+powx3040 power 4.206363 16.17288 -> 1.231314E+10 Inexact Rounded
+
+-- P=34, within 0-999 -- negative arg2
+Precision: 34
+powx3701 power 376.0915270000109486633402827007902 -35.69822349904102131649243701958463 -> 1.165722831225506457828653413200143E-92 Inexact Rounded
+powx3702 power 0.0000000503747440074613191665845314 -9.520308341497979093021813571450575 -> 3.000432478861883953977971226770410E+69 Inexact Rounded
+powx3703 power 290.6858731495339778337953407938308 -118.5459048597789693292455673428367 -> 9.357969047113989238392527565200302E-293 Inexact Rounded
+powx3704 power 4.598864607620052062908700928454182 -299.8323667698931125720218537483753 -> 2.069641269855413539579128114448478E-199 Inexact Rounded
+powx3705 power 2.556952676986830645708349254938903 -425.1755373251941383147998924703593 -> 4.428799777833598654260883861514638E-174 Inexact Rounded
+powx3706 power 0.0000005656198763404221986640610118 -32.83361380678301321230028730075315 -> 1.340270622401829145968477601029251E+205 Inexact Rounded
+powx3707 power 012.4841978642452960750801410372125 -214.3734291828712962809866663321921 -> 9.319857751170603140459057535971202E-236 Inexact Rounded
+powx3708 power 0.0000000056041586148066919174315551 -37.21129049213858341528033343116533 -> 1.118345010652454313186702341873169E+307 Inexact Rounded
+powx3709 power 0.0694569218941833767199998804202152 -8.697509072368973932501239815677732 -> 11862866995.51026489032838174290271 Inexact Rounded
+powx3710 power 6.380984024259450398729243522354144 -451.0635696889193561457985486366827 -> 8.800353109387322474809325670314330E-364 Inexact Rounded
+powx3711 power 786.0264840756809048288007204917801 -43.09935384678762773057342161718540 -> 1.616324183365644133979585419925934E-125 Inexact Rounded
+powx3712 power 96.07836427113204744101287948445130 -185.1414572546330024388914720271876 -> 8.586320815218383004023264980018610E-368 Inexact Rounded
+powx3713 power 0.0000000002332189796855870659792406 -5.779561613164628076880609893753327 -> 4.678450775876385793618570483345066E+55 Inexact Rounded
+powx3714 power 0.7254146672024602242369943237968857 -2115.512891397828615710130092245691 -> 8.539080958041689288202111403102495E+294 Inexact Rounded
+powx3715 power 0.0017380543649702864796144008592137 -6.307668017761022788220578633538713 -> 256309141459075651.2275798017695017 Inexact Rounded
+powx3716 power 05.29498758952276908267649116142379 -287.3233896734103442991981056134167 -> 1.039130027847489364009368608104291E-208 Inexact Rounded
+powx3717 power 15.64403593865932622003462779104178 -110.5296633358063267478609032002475 -> 9.750540276026524527375125980296142E-133 Inexact Rounded
+powx3718 power 89.69639006761571087634945077373508 -181.3209914139357665609268339422627 -> 8.335034232277762924539395632025281E-355 Inexact Rounded
+powx3719 power 6.974087483731006359914914110135058 -174.6815625746710345173615508179842 -> 4.553072265122011176641590109568031E-148 Inexact Rounded
+powx3720 power 0.0034393024010554821130553772681993 -93.60931598413919272595497100497364 -> 4.067468855817145539589988349449394E+230 Inexact Rounded
+powx3721 power 63.32834072300379155053737260965633 -168.3926799435088324825751446957616 -> 4.207907835462640471617519501741094E-304 Inexact Rounded
+powx3722 power 00.00216088174206276369011255907785 -70.12279562855442784757874508991013 -> 8.000657143378187029609343435067057E+186 Inexact Rounded
+powx3723 power 934.5957982703545893572134393004375 -102.2287735565878252484031426026726 -> 2.073813769209257617246544424827240E-304 Inexact Rounded
+powx3724 power 107.9116792558793921873995885441177 -44.11941092260869786313838181499158 -> 2.005476533631183268912552168759595E-90 Inexact Rounded
+powx3725 power 0.0000000000188049827381428191769262 -19.32118917192242027966847501724073 -> 1.713174297100918857053338286389034E+207 Inexact Rounded
+powx3726 power 614.9820907366248142166636259027728 -4.069913257030791586645250035698123 -> 4.462432572576935752713876293746717E-12 Inexact Rounded
+powx3727 power 752.0655175769182096165651274049422 -22.59292060348797472013598378334370 -> 1.039881526694635205040192531504131E-65 Inexact Rounded
+powx3728 power 72.20446632047659449616175456059013 -175.4705356401853924020842356605072 -> 7.529540175791582421966947814549028E-327 Inexact Rounded
+powx3729 power 518.8346486600403405764055847937416 -65.87320268592761588756963215588232 -> 1.420189426992170936958891180073151E-179 Inexact Rounded
+powx3730 power 3.457164372003960576453458502270716 -440.3201118177861273814529713443698 -> 6.176418595751201287186292664257369E-238 Inexact Rounded
+powx3731 power 7.908352793344189720739467675503991 -298.6646112894719680394152664740255 -> 5.935857120229147638104675057695125E-269 Inexact Rounded
+powx3732 power 0.0000004297399403788595027926075086 -22.66504617185071293588817501468339 -> 2.012270405520600820469665145636204E+144 Inexact Rounded
+powx3733 power 0.0000008592124097322966354868716443 -9.913109586558030204789520190180906 -> 1.354958763843310237046818832755215E+60 Inexact Rounded
+powx3734 power 161.4806080561258105880907470989925 -70.72907837434814261716311990271578 -> 6.632555003698945544941329872901929E-157 Inexact Rounded
+powx3735 power 0.0000000090669568624173832705631918 -36.53759624613665940127058439106640 -> 7.161808401023414735428130112941559E+293 Inexact Rounded
+powx3736 power 0.0000000000029440295978365709342752 -1.297354238738921988884421117731562 -> 911731060579291.7661267358872917380 Inexact Rounded
+powx3737 power 21.37477220144832172175460425143692 -76.95949933640539226475686997477889 -> 4.481741242418091914011962399912885E-103 Inexact Rounded
+powx3738 power 0.0000000000186657798201636342150903 -20.18296240350678245567049161730909 -> 3.483954007114900406906338526575672E+216 Inexact Rounded
+powx3739 power 0.0006522464792960191985996959126792 -80.03762491483514679886504099194414 -> 9.266548513614215557228467517053035E+254 Inexact Rounded
+powx3740 power 0.0000000032851343694200568966168055 -21.53462116926375512242403160008026 -> 4.873201679668455240861376213601189E+182 Inexact Rounded
+
+-- P=16, within 0-99 -- negative arg2
+Precision: 16
+powx3601 power 0.0000151338748474 -40.84655618364688 -> 7.628470824137755E+196 Inexact Rounded
+powx3602 power 0.1542771848654862 -435.8830009466800 -> 6.389817177800744E+353 Inexact Rounded
+powx3603 power 48.28477749367364 -218.5929209902050 -> 8.531049532576154E-369 Inexact Rounded
+powx3604 power 7.960775891584911 -12.78113732182505 -> 3.053270889769488E-12 Inexact Rounded
+powx3605 power 0.9430340651863058 -9010.470056913748 -> 3.313374654923807E+229 Inexact Rounded
+powx3606 power 0.0000202661501602 -65.57915207383306 -> 5.997379176536464E+307 Inexact Rounded
+powx3607 power 04.33007440798390 -232.0476834666588 -> 2.007827183010456E-148 Inexact Rounded
+powx3608 power 0.0000141944643914 -11.32407921958717 -> 7.902934485074846E+54 Inexact Rounded
+powx3609 power 0.0000021977758261 -53.53706138253307 -> 8.195631772317815E+302 Inexact Rounded
+powx3610 power 39.51297655474188 -19.40370976012326 -> 1.040699608072659E-31 Inexact Rounded
+powx3611 power 38.71210232488775 -66.58341618227921 -> 1.886855066146495E-106 Inexact Rounded
+powx3612 power 0.0000804235229062 -6.715207948992859 -> 3.134757864389333E+27 Inexact Rounded
+powx3613 power 0.0000073547092399 -11.27725685719934 -> 7.781428390953695E+57 Inexact Rounded
+powx3614 power 52.72181272599316 -186.1422311607435 -> 2.916601998744177E-321 Inexact Rounded
+powx3615 power 0.0969519963083306 -280.8220862151369 -> 3.955906885970987E+284 Inexact Rounded
+powx3616 power 94.07263302150081 -148.2031146071230 -> 3.361958990752490E-293 Inexact Rounded
+powx3617 power 85.80286965053704 -90.21453695813759 -> 3.715602429645798E-175 Inexact Rounded
+powx3618 power 03.52699858152259 -492.0414362539196 -> 4.507309220081092E-270 Inexact Rounded
+powx3619 power 0.0508278086396068 -181.0871731572167 -> 2.034428013017949E+234 Inexact Rounded
+powx3620 power 0.395576740303172 -915.5524507432392 -> 5.706585187437578E+368 Inexact Rounded
+powx3621 power 38.06105826789202 -49.75913753435335 -> 2.273188991431738E-79 Inexact Rounded
+powx3622 power 0.0003656748910646 -73.28988491310354 -> 7.768936940568763E+251 Inexact Rounded
+powx3623 power 0.0000006373551809 -51.30825234200690 -> 7.697618167701985E+317 Inexact Rounded
+powx3624 power 82.41729920673856 -35.73319631625699 -> 3.424042354585529E-69 Inexact Rounded
+powx3625 power 0.7845821453127670 -971.4982028897663 -> 2.283415527661089E+102 Inexact Rounded
+powx3626 power 4.840983673433497 -182.3730452370515 -> 1.220591407927770E-125 Inexact Rounded
+powx3627 power 0.0000006137592139 -2.122139474431484 -> 15231217034839.29 Inexact Rounded
+powx3628 power 0.0003657962862984 -35.97993782448099 -> 4.512701319250839E+123 Inexact Rounded
+powx3629 power 40.93693004443150 -165.1362408792997 -> 6.044276411057239E-267 Inexact Rounded
+powx3630 power 0.2941552583028898 -17.41046264945892 -> 1787833103.503346 Inexact Rounded
+powx3631 power 63.99335135369977 -69.92417205168579 -> 5.099359804872509E-127 Inexact Rounded
+powx3632 power 0.0000657924467388 -89.14497293588313 -> 6.145878266688521E+372 Inexact Rounded
+powx3633 power 11.35071250339147 -323.3705865614542 -> 6.863626248766775E-342 Inexact Rounded
+powx3634 power 23.88024718470895 -277.7117513329510 -> 2.006441422612815E-383 Inexact Rounded
+powx3635 power 0.0000009111939914 -58.51782946929182 -> 2.954352883996773E+353 Inexact Rounded
+powx3636 power 0.0000878179048782 -75.81060420238669 -> 3.306878455207585E+307 Inexact Rounded
+powx3637 power 07.39190564273779 -287.5047307244636 -> 1.692080354659805E-250 Inexact Rounded
+powx3638 power 0.0000298310819799 -1.844740377759355 -> 222874718.7238888 Inexact Rounded
+powx3639 power 0.0000006412929384 -28.24850078229290 -> 8.737164230666529E+174 Inexact Rounded
+powx3640 power 0.0000010202965998 -47.17573701956498 -> 4.392845306049341E+282 Inexact Rounded
+
+-- P=7, within 0-9 -- negative arg2
+Precision: 7
+powx3501 power 0.326324 -71.96509 -> 1.000673E+35 Inexact Rounded
+powx3502 power 0.0017635 -0.7186967 -> 95.28419 Inexact Rounded
+powx3503 power 8.564155 -253.0899 -> 8.850512E-237 Inexact Rounded
+powx3504 power 8.987272 -2.155789 -> 0.008793859 Inexact Rounded
+powx3505 power 9.604856 -139.9630 -> 3.073492E-138 Inexact Rounded
+powx3506 power 0.8472919 -2539.085 -> 5.372686E+182 Inexact Rounded
+powx3507 power 5.312329 -60.32965 -> 1.753121E-44 Inexact Rounded
+powx3508 power 0.0338294 -100.5440 -> 7.423939E+147 Inexact Rounded
+powx3509 power 0.0017777 -130.8583 -> 7.565629E+359 Inexact Rounded
+powx3510 power 8.016154 -405.5689 -> 2.395977E-367 Inexact Rounded
+powx3511 power 5.016570 -327.8906 -> 2.203784E-230 Inexact Rounded
+powx3512 power 0.8161743 -744.5276 -> 4.786899E+65 Inexact Rounded
+powx3513 power 0.0666343 -164.7320 -> 5.951240E+193 Inexact Rounded
+powx3514 power 0.0803966 -202.2666 -> 2.715512E+221 Inexact Rounded
+powx3515 power 0.0014752 -12.55547 -> 3.518905E+35 Inexact Rounded
+powx3516 power 9.737565 -14.69615 -> 2.975672E-15 Inexact Rounded
+powx3517 power 0.6634172 -152.7308 -> 1.654458E+27 Inexact Rounded
+powx3518 power 0.0009337 -33.32939 -> 9.575039E+100 Inexact Rounded
+powx3519 power 8.679922 -224.4194 -> 2.392446E-211 Inexact Rounded
+powx3520 power 7.390494 -161.9483 -> 2.088375E-141 Inexact Rounded
+powx3521 power 0.4631489 -417.1673 -> 2.821106E+139 Inexact Rounded
+powx3522 power 0.0095471 -7.677458 -> 3.231855E+15 Inexact Rounded
+powx3523 power 6.566339 -176.1867 -> 9.965633E-145 Inexact Rounded
+powx3524 power 2.696128 -26.15501 -> 5.419731E-12 Inexact Rounded
+powx3525 power 0.4464366 -852.1893 -> 2.957725E+298 Inexact Rounded
+powx3526 power 0.4772006 -921.4111 -> 1.118105E+296 Inexact Rounded
+powx3527 power 8.923696 -359.2211 -> 3.501573E-342 Inexact Rounded
+powx3528 power 0.0018008 -66.91252 -> 4.402718E+183 Inexact Rounded
+powx3529 power 0.0811964 -92.83278 -> 1.701111E+101 Inexact Rounded
+powx3530 power 0.0711219 -58.94347 -> 4.644148E+67 Inexact Rounded
+powx3531 power 7.958121 -50.66123 -> 2.311161E-46 Inexact Rounded
+powx3532 power 6.106466 -81.83610 -> 4.943285E-65 Inexact Rounded
+powx3533 power 4.557634 -129.5268 -> 4.737917E-86 Inexact Rounded
+powx3534 power 0.0027348 -9.180135 -> 3.383524E+23 Inexact Rounded
+powx3535 power 0.0083924 -46.24016 -> 9.996212E+95 Inexact Rounded
+powx3536 power 2.138523 -47.25897 -> 2.507009E-16 Inexact Rounded
+powx3537 power 1.626728 -1573.830 -> 2.668117E-333 Inexact Rounded
+powx3538 power 0.082615 -164.5842 -> 1.717882E+178 Inexact Rounded
+powx3539 power 7.636003 -363.6763 -> 8.366174E-322 Inexact Rounded
+powx3540 power 0.0021481 -138.0065 -> 1.562505E+368 Inexact Rounded
+
+
+-- Invalid operations due to restrictions
+-- [next two probably skipped by most test harnesses]
+precision: 100000000
+powx4001 power 1 1.1 -> NaN Invalid_context
+precision: 99999999
+powx4002 power 1 1.1 -> NaN Invalid_context
+
+precision: 9
+maxExponent: 1000000
+minExponent: -999999
+powx4003 power 1 1.1 -> NaN Invalid_context
+maxExponent: 999999
+minExponent: -999999
+powx4004 power 1 1.1 -> 1.00000000 Inexact Rounded
+maxExponent: 999999
+minExponent: -1000000
+powx4005 power 1 1.1 -> NaN Invalid_context
+maxExponent: 999999
+minExponent: -999998
+powx4006 power 1 1.1 -> 1.00000000 Inexact Rounded
+
+-- operand range violations
+powx4007 power 1 1.1E+999999 -> 1
+powx4008 power 1 1.1E+1000000 -> NaN Invalid_operation
+powx4009 power 1.1E+999999 1.1 -> Infinity Overflow Inexact Rounded
+powx4010 power 1.1E+1000000 1.1 -> NaN Invalid_operation
+powx4011 power 1 1.1E-1999997 -> 1.00000000 Inexact Rounded
+powx4012 power 1 1.1E-1999998 -> NaN Invalid_operation
+powx4013 power 1.1E-1999997 1.1 -> 0E-1000006 Underflow Inexact Rounded Clamped Subnormal
+powx4014 power 1.1E-1999998 1.1 -> NaN Invalid_operation
+
+-- rounding modes -- power is sensitive
+precision: 7
+maxExponent: 99
+minExponent: -99
+
+-- 0.7 ** 3.3 => 0.30819354053418943822
+-- 0.7 ** 3.4 => 0.29739477638272533854
+-- -1.2 ** 17 => -22.18611106740436992
+-- -1.3 ** 17 => -86.50415919381337933
+-- 0.5 ** 11 => 0.00048828125
+-- 3.15 ** 3 => 31.255875
+
+rounding: up
+powx4100 power 0.7 3.3 -> 0.3081936 Inexact Rounded
+powx4101 power 0.7 3.4 -> 0.2973948 Inexact Rounded
+powx4102 power -1.2 17 -> -22.18612 Inexact Rounded
+powx4103 power -1.3 17 -> -86.50416 Inexact Rounded
+powx4104 power 17 81.27115 -> 9.999974E+99 Inexact Rounded
+powx4105 power 17 81.27116 -> Infinity Overflow Inexact Rounded
+
+rounding: down
+powx4120 power 0.7 3.3 -> 0.3081935 Inexact Rounded
+powx4121 power 0.7 3.4 -> 0.2973947 Inexact Rounded
+powx4122 power -1.2 17 -> -22.18611 Inexact Rounded
+powx4123 power -1.3 17 -> -86.50415 Inexact Rounded
+powx4124 power 17 81.27115 -> 9.999973E+99 Inexact Rounded
+powx4125 power 17 81.27116 -> 9.999999E+99 Overflow Inexact Rounded
+
+rounding: floor
+powx4140 power 0.7 3.3 -> 0.3081935 Inexact Rounded
+powx4141 power 0.7 3.4 -> 0.2973947 Inexact Rounded
+powx4142 power -1.2 17 -> -22.18612 Inexact Rounded
+powx4143 power -1.3 17 -> -86.50416 Inexact Rounded
+powx4144 power 17 81.27115 -> 9.999973E+99 Inexact Rounded
+powx4145 power 17 81.27116 -> 9.999999E+99 Overflow Inexact Rounded
+
+rounding: ceiling
+powx4160 power 0.7 3.3 -> 0.3081936 Inexact Rounded
+powx4161 power 0.7 3.4 -> 0.2973948 Inexact Rounded
+powx4162 power -1.2 17 -> -22.18611 Inexact Rounded
+powx4163 power -1.3 17 -> -86.50415 Inexact Rounded
+powx4164 power 17 81.27115 -> 9.999974E+99 Inexact Rounded
+powx4165 power 17 81.27116 -> Infinity Overflow Inexact Rounded
+
+rounding: half_up
+powx4180 power 0.7 3.3 -> 0.3081935 Inexact Rounded
+powx4181 power 0.7 3.4 -> 0.2973948 Inexact Rounded
+powx4182 power -1.2 17 -> -22.18611 Inexact Rounded
+powx4183 power -1.3 17 -> -86.50416 Inexact Rounded
+powx4184 power 0.5 11 -> 0.0004882813 Inexact Rounded
+powx4185 power 3.15 3 -> 31.25588 Inexact Rounded
+powx4186 power 17 81.27115 -> 9.999974E+99 Inexact Rounded
+powx4187 power 17 81.27116 -> Infinity Overflow Inexact Rounded
+
+rounding: half_even
+powx4200 power 0.7 3.3 -> 0.3081935 Inexact Rounded
+powx4201 power 0.7 3.4 -> 0.2973948 Inexact Rounded
+powx4202 power -1.2 17 -> -22.18611 Inexact Rounded
+powx4203 power -1.3 17 -> -86.50416 Inexact Rounded
+powx4204 power 0.5 11 -> 0.0004882812 Inexact Rounded
+powx4205 power 3.15 3 -> 31.25588 Inexact Rounded
+powx4206 power 17 81.27115 -> 9.999974E+99 Inexact Rounded
+powx4207 power 17 81.27116 -> Infinity Overflow Inexact Rounded
+
+rounding: half_down
+powx4220 power 0.7 3.3 -> 0.3081935 Inexact Rounded
+powx4221 power 0.7 3.4 -> 0.2973948 Inexact Rounded
+powx4222 power -1.2 17 -> -22.18611 Inexact Rounded
+powx4223 power -1.3 17 -> -86.50416 Inexact Rounded
+powx4224 power 0.5 11 -> 0.0004882812 Inexact Rounded
+powx4225 power 3.15 3 -> 31.25587 Inexact Rounded
+powx4226 power -3.15 3 -> -31.25587 Inexact Rounded
+powx4227 power 17 81.27115 -> 9.999974E+99 Inexact Rounded
+powx4228 power 17 81.27116 -> Infinity Overflow Inexact Rounded
+
+
+-- more rounding tests as per Ilan Nehama's suggestions & analysis
+-- these are likely to show > 0.5 ulp error for very small powers
+precision: 7
+maxExponent: 96
+minExponent: -95
+
+-- For x=nextfp(1)=1.00..001 (where the number of 0s is precision-2)
+-- power(x,y)=x when the rounding is up (e.g., toward_pos_inf or
+-- ceil) for any y in (0,1].
+rounding: ceiling
+powx4301 power 1.000001 0 -> 1
+-- The next test should be skipped for decNumber
+powx4302 power 1.000001 1e-101 -> 1.000001 Inexact Rounded
+-- The next test should be skipped for decNumber
+powx4303 power 1.000001 1e-95 -> 1.000001 Inexact Rounded
+powx4304 power 1.000001 1e-10 -> 1.000001 Inexact Rounded
+powx4305 power 1.000001 0.1 -> 1.000001 Inexact Rounded
+powx4306 power 1.000001 0.1234567 -> 1.000001 Inexact Rounded
+powx4307 power 1.000001 0.7 -> 1.000001 Inexact Rounded
+powx4308 power 1.000001 0.9999999 -> 1.000001 Inexact Rounded
+powx4309 power 1.000001 1.000000 -> 1.000001
+-- power(x,y)=1 when the rounding is down (e.g. toward_zero or
+-- floor) for any y in [0,1).
+rounding: floor
+powx4321 power 1.000001 0 -> 1
+powx4322 power 1.000001 1e-101 -> 1.000000 Inexact Rounded
+powx4323 power 1.000001 1e-95 -> 1.000000 Inexact Rounded
+powx4324 power 1.000001 1e-10 -> 1.000000 Inexact Rounded
+powx4325 power 1.000001 0.1 -> 1.000000 Inexact Rounded
+powx4326 power 1.000001 0.1234567 -> 1.000000 Inexact Rounded
+powx4327 power 1.000001 0.7 -> 1.000000 Inexact Rounded
+powx4328 power 1.000001 0.9999999 -> 1.000000 Inexact Rounded
+powx4329 power 1.000001 1.000000 -> 1.000001
+
+-- For x=prevfp(1)=0.99..99 (where the number of 9s is precision)
+-- power(x,y)=x when the rounding is down for any y in (0,1].
+rounding: floor
+powx4341 power 0.9999999 0 -> 1
+-- The next test should be skipped for decNumber
+powx4342 power 0.9999999 1e-101 -> 0.9999999 Inexact Rounded
+-- The next test should be skipped for decNumber
+powx4343 power 0.9999999 1e-95 -> 0.9999999 Inexact Rounded
+powx4344 power 0.9999999 1e-10 -> 0.9999999 Inexact Rounded
+powx4345 power 0.9999999 0.1 -> 0.9999999 Inexact Rounded
+powx4346 power 0.9999999 0.1234567 -> 0.9999999 Inexact Rounded
+powx4347 power 0.9999999 0.7 -> 0.9999999 Inexact Rounded
+powx4348 power 0.9999999 0.9999999 -> 0.9999999 Inexact Rounded
+powx4349 power 0.9999999 1.000000 -> 0.9999999
+-- power(x,y)=1 when the rounding is up for any y in (0,1].
+rounding: ceiling
+powx4361 power 0.9999999 0 -> 1
+powx4362 power 0.9999999 1e-101 -> 1.000000 Inexact Rounded
+powx4363 power 0.9999999 1e-95 -> 1.000000 Inexact Rounded
+powx4364 power 0.9999999 1e-10 -> 1.000000 Inexact Rounded
+powx4365 power 0.9999999 0.1 -> 1.000000 Inexact Rounded
+powx4366 power 0.9999999 0.1234567 -> 1.000000 Inexact Rounded
+powx4367 power 0.9999999 0.7 -> 1.000000 Inexact Rounded
+powx4368 power 0.9999999 0.9999999 -> 1.000000 Inexact Rounded
+powx4369 power 0.9999999 1.000000 -> 0.9999999
+
+-- For x=nextfp(0)
+-- power(x,y)=0 when the rounding is down for any y larger than 1.
+rounding: floor
+powx4382 power 1e-101 0 -> 1
+powx4383 power 1e-101 0.9999999 -> 1E-101 Underflow Subnormal Inexact Rounded
+powx4384 power 1e-101 1.000000 -> 1E-101 Subnormal
+powx4385 power 1e-101 1.000001 -> 0E-101 Underflow Subnormal Inexact Rounded Clamped
+powx4386 power 1e-101 2.000000 -> 0E-101 Underflow Subnormal Inexact Rounded Clamped
diff --git a/Lib/test/decimaltestdata/powersqrt.decTest b/Lib/test/decimaltestdata/powersqrt.decTest
new file mode 100644
index 0000000..36e5cbb
--- /dev/null
+++ b/Lib/test/decimaltestdata/powersqrt.decTest
@@ -0,0 +1,2970 @@
+------------------------------------------------------------------------
+-- powersqrt.decTest -- decimal square root, using power --
+-- Copyright (c) IBM Corporation, 2004, 2007. All rights reserved. --
+------------------------------------------------------------------------
+-- Please see the document "General Decimal Arithmetic Testcases" --
+-- at http://www2.hursley.ibm.com/decimal for the description of --
+-- these testcases. --
+-- --
+-- These testcases are experimental ('beta' versions), and they --
+-- may contain errors. They are offered on an as-is basis. In --
+-- particular, achieving the same results as the tests here is not --
+-- a guarantee that an implementation complies with any Standard --
+-- or specification. The tests are not exhaustive. --
+-- --
+-- Please send comments, suggestions, and corrections to the author: --
+-- Mike Cowlishaw, IBM Fellow --
+-- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK --
+-- mfc@uk.ibm.com --
+------------------------------------------------------------------------
+version: 2.56
+
+-- These testcases are taken from squareroot.decTest but are
+-- evaluated using the power operator. The differences in results
+-- (153 out of 2856) fall into the following categories:
+--
+-- x ** 0.5 (x>0) has no preferred exponent, and is Inexact
+-- (and hence full precision); almost all differences are
+-- in this category
+-- 0.00 ** 0.5 becomes 0 (not 0.0), etc.
+-- -0 ** 0.5 becomes 0 (never -0)
+-- Some exact subnormals become inexact and hence underflows
+
+extended: 1
+precision: 9
+rounding: half_even
+maxExponent: 384
+minexponent: -383
+
+-- basics
+pwsx001 power 1 0.5 -> 1.00000000 Inexact Rounded
+pwsx002 power -1 0.5 -> NaN Invalid_operation
+pwsx003 power 1.00 0.5 -> 1.00000000 Inexact Rounded
+pwsx004 power -1.00 0.5 -> NaN Invalid_operation
+pwsx005 power 0 0.5 -> 0
+pwsx006 power 00.0 0.5 -> 0
+pwsx007 power 0.00 0.5 -> 0
+pwsx008 power 00.00 0.5 -> 0
+pwsx009 power 00.000 0.5 -> 0
+pwsx010 power 00.0000 0.5 -> 0
+pwsx011 power 00 0.5 -> 0
+
+pwsx012 power -2 0.5 -> NaN Invalid_operation
+pwsx013 power 2 0.5 -> 1.41421356 Inexact Rounded
+pwsx014 power -2.00 0.5 -> NaN Invalid_operation
+pwsx015 power 2.00 0.5 -> 1.41421356 Inexact Rounded
+pwsx016 power -0 0.5 -> 0
+pwsx017 power -0.0 0.5 -> 0
+pwsx018 power -00.00 0.5 -> 0
+pwsx019 power -00.000 0.5 -> 0
+pwsx020 power -0.0000 0.5 -> 0
+pwsx021 power -0E+9 0.5 -> 0
+pwsx022 power -0E+10 0.5 -> 0
+pwsx023 power -0E+11 0.5 -> 0
+pwsx024 power -0E+12 0.5 -> 0
+pwsx025 power -00 0.5 -> 0
+pwsx026 power 0E+5 0.5 -> 0
+pwsx027 power 4.0 0.5 -> 2.00000000 Inexact Rounded
+pwsx028 power 4.00 0.5 -> 2.00000000 Inexact Rounded
+
+pwsx030 power +0.1 0.5 -> 0.316227766 Inexact Rounded
+pwsx031 power -0.1 0.5 -> NaN Invalid_operation
+pwsx032 power +0.01 0.5 -> 0.100000000 Inexact Rounded
+pwsx033 power -0.01 0.5 -> NaN Invalid_operation
+pwsx034 power +0.001 0.5 -> 0.0316227766 Inexact Rounded
+pwsx035 power -0.001 0.5 -> NaN Invalid_operation
+pwsx036 power +0.000001 0.5 -> 0.00100000000 Inexact Rounded
+pwsx037 power -0.000001 0.5 -> NaN Invalid_operation
+pwsx038 power +0.000000000001 0.5 -> 0.00000100000000 Inexact Rounded
+pwsx039 power -0.000000000001 0.5 -> NaN Invalid_operation
+
+pwsx041 power 1.1 0.5 -> 1.04880885 Inexact Rounded
+pwsx042 power 1.10 0.5 -> 1.04880885 Inexact Rounded
+pwsx043 power 1.100 0.5 -> 1.04880885 Inexact Rounded
+pwsx044 power 1.110 0.5 -> 1.05356538 Inexact Rounded
+pwsx045 power -1.1 0.5 -> NaN Invalid_operation
+pwsx046 power -1.10 0.5 -> NaN Invalid_operation
+pwsx047 power -1.100 0.5 -> NaN Invalid_operation
+pwsx048 power -1.110 0.5 -> NaN Invalid_operation
+pwsx049 power 9.9 0.5 -> 3.14642654 Inexact Rounded
+pwsx050 power 9.90 0.5 -> 3.14642654 Inexact Rounded
+pwsx051 power 9.900 0.5 -> 3.14642654 Inexact Rounded
+pwsx052 power 9.990 0.5 -> 3.16069613 Inexact Rounded
+pwsx053 power -9.9 0.5 -> NaN Invalid_operation
+pwsx054 power -9.90 0.5 -> NaN Invalid_operation
+pwsx055 power -9.900 0.5 -> NaN Invalid_operation
+pwsx056 power -9.990 0.5 -> NaN Invalid_operation
+
+pwsx060 power 1 0.5 -> 1.00000000 Inexact Rounded
+pwsx061 power 1.0 0.5 -> 1.00000000 Inexact Rounded
+pwsx062 power 1.00 0.5 -> 1.00000000 Inexact Rounded
+pwsx063 power 10.0 0.5 -> 3.16227766 Inexact Rounded
+pwsx064 power 10.0 0.5 -> 3.16227766 Inexact Rounded
+pwsx065 power 10.0 0.5 -> 3.16227766 Inexact Rounded
+pwsx066 power 10.00 0.5 -> 3.16227766 Inexact Rounded
+pwsx067 power 100 0.5 -> 10.0000000 Inexact Rounded
+pwsx068 power 100.0 0.5 -> 10.0000000 Inexact Rounded
+pwsx069 power 100.00 0.5 -> 10.0000000 Inexact Rounded
+pwsx070 power 1.1000E+3 0.5 -> 33.1662479 Inexact Rounded
+pwsx071 power 1.10000E+3 0.5 -> 33.1662479 Inexact Rounded
+pwsx072 power -10.0 0.5 -> NaN Invalid_operation
+pwsx073 power -10.00 0.5 -> NaN Invalid_operation
+pwsx074 power -100.0 0.5 -> NaN Invalid_operation
+pwsx075 power -100.00 0.5 -> NaN Invalid_operation
+pwsx076 power -1.1000E+3 0.5 -> NaN Invalid_operation
+pwsx077 power -1.10000E+3 0.5 -> NaN Invalid_operation
+
+-- famous squares
+pwsx080 power 1 0.5 -> 1.00000000 Inexact Rounded
+pwsx081 power 4 0.5 -> 2.00000000 Inexact Rounded
+pwsx082 power 9 0.5 -> 3.00000000 Inexact Rounded
+pwsx083 power 16 0.5 -> 4.00000000 Inexact Rounded
+pwsx084 power 25 0.5 -> 5.00000000 Inexact Rounded
+pwsx085 power 36 0.5 -> 6.00000000 Inexact Rounded
+pwsx086 power 49 0.5 -> 7.00000000 Inexact Rounded
+pwsx087 power 64 0.5 -> 8.00000000 Inexact Rounded
+pwsx088 power 81 0.5 -> 9.00000000 Inexact Rounded
+pwsx089 power 100 0.5 -> 10.0000000 Inexact Rounded
+pwsx090 power 121 0.5 -> 11.0000000 Inexact Rounded
+pwsx091 power 144 0.5 -> 12.0000000 Inexact Rounded
+pwsx092 power 169 0.5 -> 13.0000000 Inexact Rounded
+pwsx093 power 256 0.5 -> 16.0000000 Inexact Rounded
+pwsx094 power 1024 0.5 -> 32.0000000 Inexact Rounded
+pwsx095 power 4096 0.5 -> 64.0000000 Inexact Rounded
+pwsx100 power 0.01 0.5 -> 0.100000000 Inexact Rounded
+pwsx101 power 0.04 0.5 -> 0.200000000 Inexact Rounded
+pwsx102 power 0.09 0.5 -> 0.300000000 Inexact Rounded
+pwsx103 power 0.16 0.5 -> 0.400000000 Inexact Rounded
+pwsx104 power 0.25 0.5 -> 0.500000000 Inexact Rounded
+pwsx105 power 0.36 0.5 -> 0.600000000 Inexact Rounded
+pwsx106 power 0.49 0.5 -> 0.700000000 Inexact Rounded
+pwsx107 power 0.64 0.5 -> 0.800000000 Inexact Rounded
+pwsx108 power 0.81 0.5 -> 0.900000000 Inexact Rounded
+pwsx109 power 1.00 0.5 -> 1.00000000 Inexact Rounded
+pwsx110 power 1.21 0.5 -> 1.10000000 Inexact Rounded
+pwsx111 power 1.44 0.5 -> 1.20000000 Inexact Rounded
+pwsx112 power 1.69 0.5 -> 1.30000000 Inexact Rounded
+pwsx113 power 2.56 0.5 -> 1.60000000 Inexact Rounded
+pwsx114 power 10.24 0.5 -> 3.20000000 Inexact Rounded
+pwsx115 power 40.96 0.5 -> 6.40000000 Inexact Rounded
+
+-- Precision 1 squareroot tests [exhaustive, plus exponent adjusts]
+rounding: half_even
+maxExponent: 999
+minexponent: -999
+precision: 1
+pwsx1201 power 0.1 0.5 -> 0.3 Inexact Rounded
+pwsx1202 power 0.01 0.5 -> 0.1 Inexact Rounded
+pwsx1203 power 1.0E-1 0.5 -> 0.3 Inexact Rounded
+pwsx1204 power 1.00E-2 0.5 -> 0.1 Inexact Rounded
+pwsx1205 power 1E-3 0.5 -> 0.03 Inexact Rounded
+pwsx1206 power 1E+1 0.5 -> 3 Inexact Rounded
+pwsx1207 power 1E+2 0.5 -> 1E+1 Inexact Rounded
+pwsx1208 power 1E+3 0.5 -> 3E+1 Inexact Rounded
+pwsx1209 power 0.2 0.5 -> 0.4 Inexact Rounded
+pwsx1210 power 0.02 0.5 -> 0.1 Inexact Rounded
+pwsx1211 power 2.0E-1 0.5 -> 0.4 Inexact Rounded
+pwsx1212 power 2.00E-2 0.5 -> 0.1 Inexact Rounded
+pwsx1213 power 2E-3 0.5 -> 0.04 Inexact Rounded
+pwsx1214 power 2E+1 0.5 -> 4 Inexact Rounded
+pwsx1215 power 2E+2 0.5 -> 1E+1 Inexact Rounded
+pwsx1216 power 2E+3 0.5 -> 4E+1 Inexact Rounded
+pwsx1217 power 0.3 0.5 -> 0.5 Inexact Rounded
+pwsx1218 power 0.03 0.5 -> 0.2 Inexact Rounded
+pwsx1219 power 3.0E-1 0.5 -> 0.5 Inexact Rounded
+pwsx1220 power 3.00E-2 0.5 -> 0.2 Inexact Rounded
+pwsx1221 power 3E-3 0.5 -> 0.05 Inexact Rounded
+pwsx1222 power 3E+1 0.5 -> 5 Inexact Rounded
+pwsx1223 power 3E+2 0.5 -> 2E+1 Inexact Rounded
+pwsx1224 power 3E+3 0.5 -> 5E+1 Inexact Rounded
+pwsx1225 power 0.4 0.5 -> 0.6 Inexact Rounded
+pwsx1226 power 0.04 0.5 -> 0.2 Inexact Rounded
+pwsx1227 power 4.0E-1 0.5 -> 0.6 Inexact Rounded
+pwsx1228 power 4.00E-2 0.5 -> 0.2 Inexact Rounded
+pwsx1229 power 4E-3 0.5 -> 0.06 Inexact Rounded
+pwsx1230 power 4E+1 0.5 -> 6 Inexact Rounded
+pwsx1231 power 4E+2 0.5 -> 2E+1 Inexact Rounded
+pwsx1232 power 4E+3 0.5 -> 6E+1 Inexact Rounded
+pwsx1233 power 0.5 0.5 -> 0.7 Inexact Rounded
+pwsx1234 power 0.05 0.5 -> 0.2 Inexact Rounded
+pwsx1235 power 5.0E-1 0.5 -> 0.7 Inexact Rounded
+pwsx1236 power 5.00E-2 0.5 -> 0.2 Inexact Rounded
+pwsx1237 power 5E-3 0.5 -> 0.07 Inexact Rounded
+pwsx1238 power 5E+1 0.5 -> 7 Inexact Rounded
+pwsx1239 power 5E+2 0.5 -> 2E+1 Inexact Rounded
+pwsx1240 power 5E+3 0.5 -> 7E+1 Inexact Rounded
+pwsx1241 power 0.6 0.5 -> 0.8 Inexact Rounded
+pwsx1242 power 0.06 0.5 -> 0.2 Inexact Rounded
+pwsx1243 power 6.0E-1 0.5 -> 0.8 Inexact Rounded
+pwsx1244 power 6.00E-2 0.5 -> 0.2 Inexact Rounded
+pwsx1245 power 6E-3 0.5 -> 0.08 Inexact Rounded
+pwsx1246 power 6E+1 0.5 -> 8 Inexact Rounded
+pwsx1247 power 6E+2 0.5 -> 2E+1 Inexact Rounded
+pwsx1248 power 6E+3 0.5 -> 8E+1 Inexact Rounded
+pwsx1249 power 0.7 0.5 -> 0.8 Inexact Rounded
+pwsx1250 power 0.07 0.5 -> 0.3 Inexact Rounded
+pwsx1251 power 7.0E-1 0.5 -> 0.8 Inexact Rounded
+pwsx1252 power 7.00E-2 0.5 -> 0.3 Inexact Rounded
+pwsx1253 power 7E-3 0.5 -> 0.08 Inexact Rounded
+pwsx1254 power 7E+1 0.5 -> 8 Inexact Rounded
+pwsx1255 power 7E+2 0.5 -> 3E+1 Inexact Rounded
+pwsx1256 power 7E+3 0.5 -> 8E+1 Inexact Rounded
+pwsx1257 power 0.8 0.5 -> 0.9 Inexact Rounded
+pwsx1258 power 0.08 0.5 -> 0.3 Inexact Rounded
+pwsx1259 power 8.0E-1 0.5 -> 0.9 Inexact Rounded
+pwsx1260 power 8.00E-2 0.5 -> 0.3 Inexact Rounded
+pwsx1261 power 8E-3 0.5 -> 0.09 Inexact Rounded
+pwsx1262 power 8E+1 0.5 -> 9 Inexact Rounded
+pwsx1263 power 8E+2 0.5 -> 3E+1 Inexact Rounded
+pwsx1264 power 8E+3 0.5 -> 9E+1 Inexact Rounded
+pwsx1265 power 0.9 0.5 -> 0.9 Inexact Rounded
+pwsx1266 power 0.09 0.5 -> 0.3 Inexact Rounded
+pwsx1267 power 9.0E-1 0.5 -> 0.9 Inexact Rounded
+pwsx1268 power 9.00E-2 0.5 -> 0.3 Inexact Rounded
+pwsx1269 power 9E-3 0.5 -> 0.09 Inexact Rounded
+pwsx1270 power 9E+1 0.5 -> 9 Inexact Rounded
+pwsx1271 power 9E+2 0.5 -> 3E+1 Inexact Rounded
+pwsx1272 power 9E+3 0.5 -> 9E+1 Inexact Rounded
+
+-- Precision 2 squareroot tests [exhaustive, plus exponent adjusts]
+rounding: half_even
+maxExponent: 999
+minexponent: -999
+precision: 2
+pwsx2201 power 0.1 0.5 -> 0.32 Inexact Rounded
+pwsx2202 power 0.01 0.5 -> 0.10 Inexact Rounded
+pwsx2203 power 1.0E-1 0.5 -> 0.32 Inexact Rounded
+pwsx2204 power 1.00E-2 0.5 -> 0.10 Inexact Rounded
+pwsx2205 power 1E-3 0.5 -> 0.032 Inexact Rounded
+pwsx2206 power 1E+1 0.5 -> 3.2 Inexact Rounded
+pwsx2207 power 1E+2 0.5 -> 10 Inexact Rounded
+pwsx2208 power 1E+3 0.5 -> 32 Inexact Rounded
+pwsx2209 power 0.2 0.5 -> 0.45 Inexact Rounded
+pwsx2210 power 0.02 0.5 -> 0.14 Inexact Rounded
+pwsx2211 power 2.0E-1 0.5 -> 0.45 Inexact Rounded
+pwsx2212 power 2.00E-2 0.5 -> 0.14 Inexact Rounded
+pwsx2213 power 2E-3 0.5 -> 0.045 Inexact Rounded
+pwsx2214 power 2E+1 0.5 -> 4.5 Inexact Rounded
+pwsx2215 power 2E+2 0.5 -> 14 Inexact Rounded
+pwsx2216 power 2E+3 0.5 -> 45 Inexact Rounded
+pwsx2217 power 0.3 0.5 -> 0.55 Inexact Rounded
+pwsx2218 power 0.03 0.5 -> 0.17 Inexact Rounded
+pwsx2219 power 3.0E-1 0.5 -> 0.55 Inexact Rounded
+pwsx2220 power 3.00E-2 0.5 -> 0.17 Inexact Rounded
+pwsx2221 power 3E-3 0.5 -> 0.055 Inexact Rounded
+pwsx2222 power 3E+1 0.5 -> 5.5 Inexact Rounded
+pwsx2223 power 3E+2 0.5 -> 17 Inexact Rounded
+pwsx2224 power 3E+3 0.5 -> 55 Inexact Rounded
+pwsx2225 power 0.4 0.5 -> 0.63 Inexact Rounded
+pwsx2226 power 0.04 0.5 -> 0.20 Inexact Rounded
+pwsx2227 power 4.0E-1 0.5 -> 0.63 Inexact Rounded
+pwsx2228 power 4.00E-2 0.5 -> 0.20 Inexact Rounded
+pwsx2229 power 4E-3 0.5 -> 0.063 Inexact Rounded
+pwsx2230 power 4E+1 0.5 -> 6.3 Inexact Rounded
+pwsx2231 power 4E+2 0.5 -> 20 Inexact Rounded
+pwsx2232 power 4E+3 0.5 -> 63 Inexact Rounded
+pwsx2233 power 0.5 0.5 -> 0.71 Inexact Rounded
+pwsx2234 power 0.05 0.5 -> 0.22 Inexact Rounded
+pwsx2235 power 5.0E-1 0.5 -> 0.71 Inexact Rounded
+pwsx2236 power 5.00E-2 0.5 -> 0.22 Inexact Rounded
+pwsx2237 power 5E-3 0.5 -> 0.071 Inexact Rounded
+pwsx2238 power 5E+1 0.5 -> 7.1 Inexact Rounded
+pwsx2239 power 5E+2 0.5 -> 22 Inexact Rounded
+pwsx2240 power 5E+3 0.5 -> 71 Inexact Rounded
+pwsx2241 power 0.6 0.5 -> 0.77 Inexact Rounded
+pwsx2242 power 0.06 0.5 -> 0.24 Inexact Rounded
+pwsx2243 power 6.0E-1 0.5 -> 0.77 Inexact Rounded
+pwsx2244 power 6.00E-2 0.5 -> 0.24 Inexact Rounded
+pwsx2245 power 6E-3 0.5 -> 0.077 Inexact Rounded
+pwsx2246 power 6E+1 0.5 -> 7.7 Inexact Rounded
+pwsx2247 power 6E+2 0.5 -> 24 Inexact Rounded
+pwsx2248 power 6E+3 0.5 -> 77 Inexact Rounded
+pwsx2249 power 0.7 0.5 -> 0.84 Inexact Rounded
+pwsx2250 power 0.07 0.5 -> 0.26 Inexact Rounded
+pwsx2251 power 7.0E-1 0.5 -> 0.84 Inexact Rounded
+pwsx2252 power 7.00E-2 0.5 -> 0.26 Inexact Rounded
+pwsx2253 power 7E-3 0.5 -> 0.084 Inexact Rounded
+pwsx2254 power 7E+1 0.5 -> 8.4 Inexact Rounded
+pwsx2255 power 7E+2 0.5 -> 26 Inexact Rounded
+pwsx2256 power 7E+3 0.5 -> 84 Inexact Rounded
+pwsx2257 power 0.8 0.5 -> 0.89 Inexact Rounded
+pwsx2258 power 0.08 0.5 -> 0.28 Inexact Rounded
+pwsx2259 power 8.0E-1 0.5 -> 0.89 Inexact Rounded
+pwsx2260 power 8.00E-2 0.5 -> 0.28 Inexact Rounded
+pwsx2261 power 8E-3 0.5 -> 0.089 Inexact Rounded
+pwsx2262 power 8E+1 0.5 -> 8.9 Inexact Rounded
+pwsx2263 power 8E+2 0.5 -> 28 Inexact Rounded
+pwsx2264 power 8E+3 0.5 -> 89 Inexact Rounded
+pwsx2265 power 0.9 0.5 -> 0.95 Inexact Rounded
+pwsx2266 power 0.09 0.5 -> 0.30 Inexact Rounded
+pwsx2267 power 9.0E-1 0.5 -> 0.95 Inexact Rounded
+pwsx2268 power 9.00E-2 0.5 -> 0.30 Inexact Rounded
+pwsx2269 power 9E-3 0.5 -> 0.095 Inexact Rounded
+pwsx2270 power 9E+1 0.5 -> 9.5 Inexact Rounded
+pwsx2271 power 9E+2 0.5 -> 30 Inexact Rounded
+pwsx2272 power 9E+3 0.5 -> 95 Inexact Rounded
+pwsx2273 power 0.10 0.5 -> 0.32 Inexact Rounded
+pwsx2274 power 0.010 0.5 -> 0.10 Inexact Rounded
+pwsx2275 power 10.0E-1 0.5 -> 1.0 Inexact Rounded
+pwsx2276 power 10.00E-2 0.5 -> 0.32 Inexact Rounded
+pwsx2277 power 10E-3 0.5 -> 0.10 Inexact Rounded
+pwsx2278 power 10E+1 0.5 -> 10 Inexact Rounded
+pwsx2279 power 10E+2 0.5 -> 32 Inexact Rounded
+pwsx2280 power 10E+3 0.5 -> 1.0E+2 Inexact Rounded
+pwsx2281 power 0.11 0.5 -> 0.33 Inexact Rounded
+pwsx2282 power 0.011 0.5 -> 0.10 Inexact Rounded
+pwsx2283 power 11.0E-1 0.5 -> 1.0 Inexact Rounded
+pwsx2284 power 11.00E-2 0.5 -> 0.33 Inexact Rounded
+pwsx2285 power 11E-3 0.5 -> 0.10 Inexact Rounded
+pwsx2286 power 11E+1 0.5 -> 10 Inexact Rounded
+pwsx2287 power 11E+2 0.5 -> 33 Inexact Rounded
+pwsx2288 power 11E+3 0.5 -> 1.0E+2 Inexact Rounded
+pwsx2289 power 0.12 0.5 -> 0.35 Inexact Rounded
+pwsx2290 power 0.012 0.5 -> 0.11 Inexact Rounded
+pwsx2291 power 12.0E-1 0.5 -> 1.1 Inexact Rounded
+pwsx2292 power 12.00E-2 0.5 -> 0.35 Inexact Rounded
+pwsx2293 power 12E-3 0.5 -> 0.11 Inexact Rounded
+pwsx2294 power 12E+1 0.5 -> 11 Inexact Rounded
+pwsx2295 power 12E+2 0.5 -> 35 Inexact Rounded
+pwsx2296 power 12E+3 0.5 -> 1.1E+2 Inexact Rounded
+pwsx2297 power 0.13 0.5 -> 0.36 Inexact Rounded
+pwsx2298 power 0.013 0.5 -> 0.11 Inexact Rounded
+pwsx2299 power 13.0E-1 0.5 -> 1.1 Inexact Rounded
+pwsx2300 power 13.00E-2 0.5 -> 0.36 Inexact Rounded
+pwsx2301 power 13E-3 0.5 -> 0.11 Inexact Rounded
+pwsx2302 power 13E+1 0.5 -> 11 Inexact Rounded
+pwsx2303 power 13E+2 0.5 -> 36 Inexact Rounded
+pwsx2304 power 13E+3 0.5 -> 1.1E+2 Inexact Rounded
+pwsx2305 power 0.14 0.5 -> 0.37 Inexact Rounded
+pwsx2306 power 0.014 0.5 -> 0.12 Inexact Rounded
+pwsx2307 power 14.0E-1 0.5 -> 1.2 Inexact Rounded
+pwsx2308 power 14.00E-2 0.5 -> 0.37 Inexact Rounded
+pwsx2309 power 14E-3 0.5 -> 0.12 Inexact Rounded
+pwsx2310 power 14E+1 0.5 -> 12 Inexact Rounded
+pwsx2311 power 14E+2 0.5 -> 37 Inexact Rounded
+pwsx2312 power 14E+3 0.5 -> 1.2E+2 Inexact Rounded
+pwsx2313 power 0.15 0.5 -> 0.39 Inexact Rounded
+pwsx2314 power 0.015 0.5 -> 0.12 Inexact Rounded
+pwsx2315 power 15.0E-1 0.5 -> 1.2 Inexact Rounded
+pwsx2316 power 15.00E-2 0.5 -> 0.39 Inexact Rounded
+pwsx2317 power 15E-3 0.5 -> 0.12 Inexact Rounded
+pwsx2318 power 15E+1 0.5 -> 12 Inexact Rounded
+pwsx2319 power 15E+2 0.5 -> 39 Inexact Rounded
+pwsx2320 power 15E+3 0.5 -> 1.2E+2 Inexact Rounded
+pwsx2321 power 0.16 0.5 -> 0.40 Inexact Rounded
+pwsx2322 power 0.016 0.5 -> 0.13 Inexact Rounded
+pwsx2323 power 16.0E-1 0.5 -> 1.3 Inexact Rounded
+pwsx2324 power 16.00E-2 0.5 -> 0.40 Inexact Rounded
+pwsx2325 power 16E-3 0.5 -> 0.13 Inexact Rounded
+pwsx2326 power 16E+1 0.5 -> 13 Inexact Rounded
+pwsx2327 power 16E+2 0.5 -> 40 Inexact Rounded
+pwsx2328 power 16E+3 0.5 -> 1.3E+2 Inexact Rounded
+pwsx2329 power 0.17 0.5 -> 0.41 Inexact Rounded
+pwsx2330 power 0.017 0.5 -> 0.13 Inexact Rounded
+pwsx2331 power 17.0E-1 0.5 -> 1.3 Inexact Rounded
+pwsx2332 power 17.00E-2 0.5 -> 0.41 Inexact Rounded
+pwsx2333 power 17E-3 0.5 -> 0.13 Inexact Rounded
+pwsx2334 power 17E+1 0.5 -> 13 Inexact Rounded
+pwsx2335 power 17E+2 0.5 -> 41 Inexact Rounded
+pwsx2336 power 17E+3 0.5 -> 1.3E+2 Inexact Rounded
+pwsx2337 power 0.18 0.5 -> 0.42 Inexact Rounded
+pwsx2338 power 0.018 0.5 -> 0.13 Inexact Rounded
+pwsx2339 power 18.0E-1 0.5 -> 1.3 Inexact Rounded
+pwsx2340 power 18.00E-2 0.5 -> 0.42 Inexact Rounded
+pwsx2341 power 18E-3 0.5 -> 0.13 Inexact Rounded
+pwsx2342 power 18E+1 0.5 -> 13 Inexact Rounded
+pwsx2343 power 18E+2 0.5 -> 42 Inexact Rounded
+pwsx2344 power 18E+3 0.5 -> 1.3E+2 Inexact Rounded
+pwsx2345 power 0.19 0.5 -> 0.44 Inexact Rounded
+pwsx2346 power 0.019 0.5 -> 0.14 Inexact Rounded
+pwsx2347 power 19.0E-1 0.5 -> 1.4 Inexact Rounded
+pwsx2348 power 19.00E-2 0.5 -> 0.44 Inexact Rounded
+pwsx2349 power 19E-3 0.5 -> 0.14 Inexact Rounded
+pwsx2350 power 19E+1 0.5 -> 14 Inexact Rounded
+pwsx2351 power 19E+2 0.5 -> 44 Inexact Rounded
+pwsx2352 power 19E+3 0.5 -> 1.4E+2 Inexact Rounded
+pwsx2353 power 0.20 0.5 -> 0.45 Inexact Rounded
+pwsx2354 power 0.020 0.5 -> 0.14 Inexact Rounded
+pwsx2355 power 20.0E-1 0.5 -> 1.4 Inexact Rounded
+pwsx2356 power 20.00E-2 0.5 -> 0.45 Inexact Rounded
+pwsx2357 power 20E-3 0.5 -> 0.14 Inexact Rounded
+pwsx2358 power 20E+1 0.5 -> 14 Inexact Rounded
+pwsx2359 power 20E+2 0.5 -> 45 Inexact Rounded
+pwsx2360 power 20E+3 0.5 -> 1.4E+2 Inexact Rounded
+pwsx2361 power 0.21 0.5 -> 0.46 Inexact Rounded
+pwsx2362 power 0.021 0.5 -> 0.14 Inexact Rounded
+pwsx2363 power 21.0E-1 0.5 -> 1.4 Inexact Rounded
+pwsx2364 power 21.00E-2 0.5 -> 0.46 Inexact Rounded
+pwsx2365 power 21E-3 0.5 -> 0.14 Inexact Rounded
+pwsx2366 power 21E+1 0.5 -> 14 Inexact Rounded
+pwsx2367 power 21E+2 0.5 -> 46 Inexact Rounded
+pwsx2368 power 21E+3 0.5 -> 1.4E+2 Inexact Rounded
+pwsx2369 power 0.22 0.5 -> 0.47 Inexact Rounded
+pwsx2370 power 0.022 0.5 -> 0.15 Inexact Rounded
+pwsx2371 power 22.0E-1 0.5 -> 1.5 Inexact Rounded
+pwsx2372 power 22.00E-2 0.5 -> 0.47 Inexact Rounded
+pwsx2373 power 22E-3 0.5 -> 0.15 Inexact Rounded
+pwsx2374 power 22E+1 0.5 -> 15 Inexact Rounded
+pwsx2375 power 22E+2 0.5 -> 47 Inexact Rounded
+pwsx2376 power 22E+3 0.5 -> 1.5E+2 Inexact Rounded
+pwsx2377 power 0.23 0.5 -> 0.48 Inexact Rounded
+pwsx2378 power 0.023 0.5 -> 0.15 Inexact Rounded
+pwsx2379 power 23.0E-1 0.5 -> 1.5 Inexact Rounded
+pwsx2380 power 23.00E-2 0.5 -> 0.48 Inexact Rounded
+pwsx2381 power 23E-3 0.5 -> 0.15 Inexact Rounded
+pwsx2382 power 23E+1 0.5 -> 15 Inexact Rounded
+pwsx2383 power 23E+2 0.5 -> 48 Inexact Rounded
+pwsx2384 power 23E+3 0.5 -> 1.5E+2 Inexact Rounded
+pwsx2385 power 0.24 0.5 -> 0.49 Inexact Rounded
+pwsx2386 power 0.024 0.5 -> 0.15 Inexact Rounded
+pwsx2387 power 24.0E-1 0.5 -> 1.5 Inexact Rounded
+pwsx2388 power 24.00E-2 0.5 -> 0.49 Inexact Rounded
+pwsx2389 power 24E-3 0.5 -> 0.15 Inexact Rounded
+pwsx2390 power 24E+1 0.5 -> 15 Inexact Rounded
+pwsx2391 power 24E+2 0.5 -> 49 Inexact Rounded
+pwsx2392 power 24E+3 0.5 -> 1.5E+2 Inexact Rounded
+pwsx2393 power 0.25 0.5 -> 0.50 Inexact Rounded
+pwsx2394 power 0.025 0.5 -> 0.16 Inexact Rounded
+pwsx2395 power 25.0E-1 0.5 -> 1.6 Inexact Rounded
+pwsx2396 power 25.00E-2 0.5 -> 0.50 Inexact Rounded
+pwsx2397 power 25E-3 0.5 -> 0.16 Inexact Rounded
+pwsx2398 power 25E+1 0.5 -> 16 Inexact Rounded
+pwsx2399 power 25E+2 0.5 -> 50 Inexact Rounded
+pwsx2400 power 25E+3 0.5 -> 1.6E+2 Inexact Rounded
+pwsx2401 power 0.26 0.5 -> 0.51 Inexact Rounded
+pwsx2402 power 0.026 0.5 -> 0.16 Inexact Rounded
+pwsx2403 power 26.0E-1 0.5 -> 1.6 Inexact Rounded
+pwsx2404 power 26.00E-2 0.5 -> 0.51 Inexact Rounded
+pwsx2405 power 26E-3 0.5 -> 0.16 Inexact Rounded
+pwsx2406 power 26E+1 0.5 -> 16 Inexact Rounded
+pwsx2407 power 26E+2 0.5 -> 51 Inexact Rounded
+pwsx2408 power 26E+3 0.5 -> 1.6E+2 Inexact Rounded
+pwsx2409 power 0.27 0.5 -> 0.52 Inexact Rounded
+pwsx2410 power 0.027 0.5 -> 0.16 Inexact Rounded
+pwsx2411 power 27.0E-1 0.5 -> 1.6 Inexact Rounded
+pwsx2412 power 27.00E-2 0.5 -> 0.52 Inexact Rounded
+pwsx2413 power 27E-3 0.5 -> 0.16 Inexact Rounded
+pwsx2414 power 27E+1 0.5 -> 16 Inexact Rounded
+pwsx2415 power 27E+2 0.5 -> 52 Inexact Rounded
+pwsx2416 power 27E+3 0.5 -> 1.6E+2 Inexact Rounded
+pwsx2417 power 0.28 0.5 -> 0.53 Inexact Rounded
+pwsx2418 power 0.028 0.5 -> 0.17 Inexact Rounded
+pwsx2419 power 28.0E-1 0.5 -> 1.7 Inexact Rounded
+pwsx2420 power 28.00E-2 0.5 -> 0.53 Inexact Rounded
+pwsx2421 power 28E-3 0.5 -> 0.17 Inexact Rounded
+pwsx2422 power 28E+1 0.5 -> 17 Inexact Rounded
+pwsx2423 power 28E+2 0.5 -> 53 Inexact Rounded
+pwsx2424 power 28E+3 0.5 -> 1.7E+2 Inexact Rounded
+pwsx2425 power 0.29 0.5 -> 0.54 Inexact Rounded
+pwsx2426 power 0.029 0.5 -> 0.17 Inexact Rounded
+pwsx2427 power 29.0E-1 0.5 -> 1.7 Inexact Rounded
+pwsx2428 power 29.00E-2 0.5 -> 0.54 Inexact Rounded
+pwsx2429 power 29E-3 0.5 -> 0.17 Inexact Rounded
+pwsx2430 power 29E+1 0.5 -> 17 Inexact Rounded
+pwsx2431 power 29E+2 0.5 -> 54 Inexact Rounded
+pwsx2432 power 29E+3 0.5 -> 1.7E+2 Inexact Rounded
+pwsx2433 power 0.30 0.5 -> 0.55 Inexact Rounded
+pwsx2434 power 0.030 0.5 -> 0.17 Inexact Rounded
+pwsx2435 power 30.0E-1 0.5 -> 1.7 Inexact Rounded
+pwsx2436 power 30.00E-2 0.5 -> 0.55 Inexact Rounded
+pwsx2437 power 30E-3 0.5 -> 0.17 Inexact Rounded
+pwsx2438 power 30E+1 0.5 -> 17 Inexact Rounded
+pwsx2439 power 30E+2 0.5 -> 55 Inexact Rounded
+pwsx2440 power 30E+3 0.5 -> 1.7E+2 Inexact Rounded
+pwsx2441 power 0.31 0.5 -> 0.56 Inexact Rounded
+pwsx2442 power 0.031 0.5 -> 0.18 Inexact Rounded
+pwsx2443 power 31.0E-1 0.5 -> 1.8 Inexact Rounded
+pwsx2444 power 31.00E-2 0.5 -> 0.56 Inexact Rounded
+pwsx2445 power 31E-3 0.5 -> 0.18 Inexact Rounded
+pwsx2446 power 31E+1 0.5 -> 18 Inexact Rounded
+pwsx2447 power 31E+2 0.5 -> 56 Inexact Rounded
+pwsx2448 power 31E+3 0.5 -> 1.8E+2 Inexact Rounded
+pwsx2449 power 0.32 0.5 -> 0.57 Inexact Rounded
+pwsx2450 power 0.032 0.5 -> 0.18 Inexact Rounded
+pwsx2451 power 32.0E-1 0.5 -> 1.8 Inexact Rounded
+pwsx2452 power 32.00E-2 0.5 -> 0.57 Inexact Rounded
+pwsx2453 power 32E-3 0.5 -> 0.18 Inexact Rounded
+pwsx2454 power 32E+1 0.5 -> 18 Inexact Rounded
+pwsx2455 power 32E+2 0.5 -> 57 Inexact Rounded
+pwsx2456 power 32E+3 0.5 -> 1.8E+2 Inexact Rounded
+pwsx2457 power 0.33 0.5 -> 0.57 Inexact Rounded
+pwsx2458 power 0.033 0.5 -> 0.18 Inexact Rounded
+pwsx2459 power 33.0E-1 0.5 -> 1.8 Inexact Rounded
+pwsx2460 power 33.00E-2 0.5 -> 0.57 Inexact Rounded
+pwsx2461 power 33E-3 0.5 -> 0.18 Inexact Rounded
+pwsx2462 power 33E+1 0.5 -> 18 Inexact Rounded
+pwsx2463 power 33E+2 0.5 -> 57 Inexact Rounded
+pwsx2464 power 33E+3 0.5 -> 1.8E+2 Inexact Rounded
+pwsx2465 power 0.34 0.5 -> 0.58 Inexact Rounded
+pwsx2466 power 0.034 0.5 -> 0.18 Inexact Rounded
+pwsx2467 power 34.0E-1 0.5 -> 1.8 Inexact Rounded
+pwsx2468 power 34.00E-2 0.5 -> 0.58 Inexact Rounded
+pwsx2469 power 34E-3 0.5 -> 0.18 Inexact Rounded
+pwsx2470 power 34E+1 0.5 -> 18 Inexact Rounded
+pwsx2471 power 34E+2 0.5 -> 58 Inexact Rounded
+pwsx2472 power 34E+3 0.5 -> 1.8E+2 Inexact Rounded
+pwsx2473 power 0.35 0.5 -> 0.59 Inexact Rounded
+pwsx2474 power 0.035 0.5 -> 0.19 Inexact Rounded
+pwsx2475 power 35.0E-1 0.5 -> 1.9 Inexact Rounded
+pwsx2476 power 35.00E-2 0.5 -> 0.59 Inexact Rounded
+pwsx2477 power 35E-3 0.5 -> 0.19 Inexact Rounded
+pwsx2478 power 35E+1 0.5 -> 19 Inexact Rounded
+pwsx2479 power 35E+2 0.5 -> 59 Inexact Rounded
+pwsx2480 power 35E+3 0.5 -> 1.9E+2 Inexact Rounded
+pwsx2481 power 0.36 0.5 -> 0.60 Inexact Rounded
+pwsx2482 power 0.036 0.5 -> 0.19 Inexact Rounded
+pwsx2483 power 36.0E-1 0.5 -> 1.9 Inexact Rounded
+pwsx2484 power 36.00E-2 0.5 -> 0.60 Inexact Rounded
+pwsx2485 power 36E-3 0.5 -> 0.19 Inexact Rounded
+pwsx2486 power 36E+1 0.5 -> 19 Inexact Rounded
+pwsx2487 power 36E+2 0.5 -> 60 Inexact Rounded
+pwsx2488 power 36E+3 0.5 -> 1.9E+2 Inexact Rounded
+pwsx2489 power 0.37 0.5 -> 0.61 Inexact Rounded
+pwsx2490 power 0.037 0.5 -> 0.19 Inexact Rounded
+pwsx2491 power 37.0E-1 0.5 -> 1.9 Inexact Rounded
+pwsx2492 power 37.00E-2 0.5 -> 0.61 Inexact Rounded
+pwsx2493 power 37E-3 0.5 -> 0.19 Inexact Rounded
+pwsx2494 power 37E+1 0.5 -> 19 Inexact Rounded
+pwsx2495 power 37E+2 0.5 -> 61 Inexact Rounded
+pwsx2496 power 37E+3 0.5 -> 1.9E+2 Inexact Rounded
+pwsx2497 power 0.38 0.5 -> 0.62 Inexact Rounded
+pwsx2498 power 0.038 0.5 -> 0.19 Inexact Rounded
+pwsx2499 power 38.0E-1 0.5 -> 1.9 Inexact Rounded
+pwsx2500 power 38.00E-2 0.5 -> 0.62 Inexact Rounded
+pwsx2501 power 38E-3 0.5 -> 0.19 Inexact Rounded
+pwsx2502 power 38E+1 0.5 -> 19 Inexact Rounded
+pwsx2503 power 38E+2 0.5 -> 62 Inexact Rounded
+pwsx2504 power 38E+3 0.5 -> 1.9E+2 Inexact Rounded
+pwsx2505 power 0.39 0.5 -> 0.62 Inexact Rounded
+pwsx2506 power 0.039 0.5 -> 0.20 Inexact Rounded
+pwsx2507 power 39.0E-1 0.5 -> 2.0 Inexact Rounded
+pwsx2508 power 39.00E-2 0.5 -> 0.62 Inexact Rounded
+pwsx2509 power 39E-3 0.5 -> 0.20 Inexact Rounded
+pwsx2510 power 39E+1 0.5 -> 20 Inexact Rounded
+pwsx2511 power 39E+2 0.5 -> 62 Inexact Rounded
+pwsx2512 power 39E+3 0.5 -> 2.0E+2 Inexact Rounded
+pwsx2513 power 0.40 0.5 -> 0.63 Inexact Rounded
+pwsx2514 power 0.040 0.5 -> 0.20 Inexact Rounded
+pwsx2515 power 40.0E-1 0.5 -> 2.0 Inexact Rounded
+pwsx2516 power 40.00E-2 0.5 -> 0.63 Inexact Rounded
+pwsx2517 power 40E-3 0.5 -> 0.20 Inexact Rounded
+pwsx2518 power 40E+1 0.5 -> 20 Inexact Rounded
+pwsx2519 power 40E+2 0.5 -> 63 Inexact Rounded
+pwsx2520 power 40E+3 0.5 -> 2.0E+2 Inexact Rounded
+pwsx2521 power 0.41 0.5 -> 0.64 Inexact Rounded
+pwsx2522 power 0.041 0.5 -> 0.20 Inexact Rounded
+pwsx2523 power 41.0E-1 0.5 -> 2.0 Inexact Rounded
+pwsx2524 power 41.00E-2 0.5 -> 0.64 Inexact Rounded
+pwsx2525 power 41E-3 0.5 -> 0.20 Inexact Rounded
+pwsx2526 power 41E+1 0.5 -> 20 Inexact Rounded
+pwsx2527 power 41E+2 0.5 -> 64 Inexact Rounded
+pwsx2528 power 41E+3 0.5 -> 2.0E+2 Inexact Rounded
+pwsx2529 power 0.42 0.5 -> 0.65 Inexact Rounded
+pwsx2530 power 0.042 0.5 -> 0.20 Inexact Rounded
+pwsx2531 power 42.0E-1 0.5 -> 2.0 Inexact Rounded
+pwsx2532 power 42.00E-2 0.5 -> 0.65 Inexact Rounded
+pwsx2533 power 42E-3 0.5 -> 0.20 Inexact Rounded
+pwsx2534 power 42E+1 0.5 -> 20 Inexact Rounded
+pwsx2535 power 42E+2 0.5 -> 65 Inexact Rounded
+pwsx2536 power 42E+3 0.5 -> 2.0E+2 Inexact Rounded
+pwsx2537 power 0.43 0.5 -> 0.66 Inexact Rounded
+pwsx2538 power 0.043 0.5 -> 0.21 Inexact Rounded
+pwsx2539 power 43.0E-1 0.5 -> 2.1 Inexact Rounded
+pwsx2540 power 43.00E-2 0.5 -> 0.66 Inexact Rounded
+pwsx2541 power 43E-3 0.5 -> 0.21 Inexact Rounded
+pwsx2542 power 43E+1 0.5 -> 21 Inexact Rounded
+pwsx2543 power 43E+2 0.5 -> 66 Inexact Rounded
+pwsx2544 power 43E+3 0.5 -> 2.1E+2 Inexact Rounded
+pwsx2545 power 0.44 0.5 -> 0.66 Inexact Rounded
+pwsx2546 power 0.044 0.5 -> 0.21 Inexact Rounded
+pwsx2547 power 44.0E-1 0.5 -> 2.1 Inexact Rounded
+pwsx2548 power 44.00E-2 0.5 -> 0.66 Inexact Rounded
+pwsx2549 power 44E-3 0.5 -> 0.21 Inexact Rounded
+pwsx2550 power 44E+1 0.5 -> 21 Inexact Rounded
+pwsx2551 power 44E+2 0.5 -> 66 Inexact Rounded
+pwsx2552 power 44E+3 0.5 -> 2.1E+2 Inexact Rounded
+pwsx2553 power 0.45 0.5 -> 0.67 Inexact Rounded
+pwsx2554 power 0.045 0.5 -> 0.21 Inexact Rounded
+pwsx2555 power 45.0E-1 0.5 -> 2.1 Inexact Rounded
+pwsx2556 power 45.00E-2 0.5 -> 0.67 Inexact Rounded
+pwsx2557 power 45E-3 0.5 -> 0.21 Inexact Rounded
+pwsx2558 power 45E+1 0.5 -> 21 Inexact Rounded
+pwsx2559 power 45E+2 0.5 -> 67 Inexact Rounded
+pwsx2560 power 45E+3 0.5 -> 2.1E+2 Inexact Rounded
+pwsx2561 power 0.46 0.5 -> 0.68 Inexact Rounded
+pwsx2562 power 0.046 0.5 -> 0.21 Inexact Rounded
+pwsx2563 power 46.0E-1 0.5 -> 2.1 Inexact Rounded
+pwsx2564 power 46.00E-2 0.5 -> 0.68 Inexact Rounded
+pwsx2565 power 46E-3 0.5 -> 0.21 Inexact Rounded
+pwsx2566 power 46E+1 0.5 -> 21 Inexact Rounded
+pwsx2567 power 46E+2 0.5 -> 68 Inexact Rounded
+pwsx2568 power 46E+3 0.5 -> 2.1E+2 Inexact Rounded
+pwsx2569 power 0.47 0.5 -> 0.69 Inexact Rounded
+pwsx2570 power 0.047 0.5 -> 0.22 Inexact Rounded
+pwsx2571 power 47.0E-1 0.5 -> 2.2 Inexact Rounded
+pwsx2572 power 47.00E-2 0.5 -> 0.69 Inexact Rounded
+pwsx2573 power 47E-3 0.5 -> 0.22 Inexact Rounded
+pwsx2574 power 47E+1 0.5 -> 22 Inexact Rounded
+pwsx2575 power 47E+2 0.5 -> 69 Inexact Rounded
+pwsx2576 power 47E+3 0.5 -> 2.2E+2 Inexact Rounded
+pwsx2577 power 0.48 0.5 -> 0.69 Inexact Rounded
+pwsx2578 power 0.048 0.5 -> 0.22 Inexact Rounded
+pwsx2579 power 48.0E-1 0.5 -> 2.2 Inexact Rounded
+pwsx2580 power 48.00E-2 0.5 -> 0.69 Inexact Rounded
+pwsx2581 power 48E-3 0.5 -> 0.22 Inexact Rounded
+pwsx2582 power 48E+1 0.5 -> 22 Inexact Rounded
+pwsx2583 power 48E+2 0.5 -> 69 Inexact Rounded
+pwsx2584 power 48E+3 0.5 -> 2.2E+2 Inexact Rounded
+pwsx2585 power 0.49 0.5 -> 0.70 Inexact Rounded
+pwsx2586 power 0.049 0.5 -> 0.22 Inexact Rounded
+pwsx2587 power 49.0E-1 0.5 -> 2.2 Inexact Rounded
+pwsx2588 power 49.00E-2 0.5 -> 0.70 Inexact Rounded
+pwsx2589 power 49E-3 0.5 -> 0.22 Inexact Rounded
+pwsx2590 power 49E+1 0.5 -> 22 Inexact Rounded
+pwsx2591 power 49E+2 0.5 -> 70 Inexact Rounded
+pwsx2592 power 49E+3 0.5 -> 2.2E+2 Inexact Rounded
+pwsx2593 power 0.50 0.5 -> 0.71 Inexact Rounded
+pwsx2594 power 0.050 0.5 -> 0.22 Inexact Rounded
+pwsx2595 power 50.0E-1 0.5 -> 2.2 Inexact Rounded
+pwsx2596 power 50.00E-2 0.5 -> 0.71 Inexact Rounded
+pwsx2597 power 50E-3 0.5 -> 0.22 Inexact Rounded
+pwsx2598 power 50E+1 0.5 -> 22 Inexact Rounded
+pwsx2599 power 50E+2 0.5 -> 71 Inexact Rounded
+pwsx2600 power 50E+3 0.5 -> 2.2E+2 Inexact Rounded
+pwsx2601 power 0.51 0.5 -> 0.71 Inexact Rounded
+pwsx2602 power 0.051 0.5 -> 0.23 Inexact Rounded
+pwsx2603 power 51.0E-1 0.5 -> 2.3 Inexact Rounded
+pwsx2604 power 51.00E-2 0.5 -> 0.71 Inexact Rounded
+pwsx2605 power 51E-3 0.5 -> 0.23 Inexact Rounded
+pwsx2606 power 51E+1 0.5 -> 23 Inexact Rounded
+pwsx2607 power 51E+2 0.5 -> 71 Inexact Rounded
+pwsx2608 power 51E+3 0.5 -> 2.3E+2 Inexact Rounded
+pwsx2609 power 0.52 0.5 -> 0.72 Inexact Rounded
+pwsx2610 power 0.052 0.5 -> 0.23 Inexact Rounded
+pwsx2611 power 52.0E-1 0.5 -> 2.3 Inexact Rounded
+pwsx2612 power 52.00E-2 0.5 -> 0.72 Inexact Rounded
+pwsx2613 power 52E-3 0.5 -> 0.23 Inexact Rounded
+pwsx2614 power 52E+1 0.5 -> 23 Inexact Rounded
+pwsx2615 power 52E+2 0.5 -> 72 Inexact Rounded
+pwsx2616 power 52E+3 0.5 -> 2.3E+2 Inexact Rounded
+pwsx2617 power 0.53 0.5 -> 0.73 Inexact Rounded
+pwsx2618 power 0.053 0.5 -> 0.23 Inexact Rounded
+pwsx2619 power 53.0E-1 0.5 -> 2.3 Inexact Rounded
+pwsx2620 power 53.00E-2 0.5 -> 0.73 Inexact Rounded
+pwsx2621 power 53E-3 0.5 -> 0.23 Inexact Rounded
+pwsx2622 power 53E+1 0.5 -> 23 Inexact Rounded
+pwsx2623 power 53E+2 0.5 -> 73 Inexact Rounded
+pwsx2624 power 53E+3 0.5 -> 2.3E+2 Inexact Rounded
+pwsx2625 power 0.54 0.5 -> 0.73 Inexact Rounded
+pwsx2626 power 0.054 0.5 -> 0.23 Inexact Rounded
+pwsx2627 power 54.0E-1 0.5 -> 2.3 Inexact Rounded
+pwsx2628 power 54.00E-2 0.5 -> 0.73 Inexact Rounded
+pwsx2629 power 54E-3 0.5 -> 0.23 Inexact Rounded
+pwsx2630 power 54E+1 0.5 -> 23 Inexact Rounded
+pwsx2631 power 54E+2 0.5 -> 73 Inexact Rounded
+pwsx2632 power 54E+3 0.5 -> 2.3E+2 Inexact Rounded
+pwsx2633 power 0.55 0.5 -> 0.74 Inexact Rounded
+pwsx2634 power 0.055 0.5 -> 0.23 Inexact Rounded
+pwsx2635 power 55.0E-1 0.5 -> 2.3 Inexact Rounded
+pwsx2636 power 55.00E-2 0.5 -> 0.74 Inexact Rounded
+pwsx2637 power 55E-3 0.5 -> 0.23 Inexact Rounded
+pwsx2638 power 55E+1 0.5 -> 23 Inexact Rounded
+pwsx2639 power 55E+2 0.5 -> 74 Inexact Rounded
+pwsx2640 power 55E+3 0.5 -> 2.3E+2 Inexact Rounded
+pwsx2641 power 0.56 0.5 -> 0.75 Inexact Rounded
+pwsx2642 power 0.056 0.5 -> 0.24 Inexact Rounded
+pwsx2643 power 56.0E-1 0.5 -> 2.4 Inexact Rounded
+pwsx2644 power 56.00E-2 0.5 -> 0.75 Inexact Rounded
+pwsx2645 power 56E-3 0.5 -> 0.24 Inexact Rounded
+pwsx2646 power 56E+1 0.5 -> 24 Inexact Rounded
+pwsx2647 power 56E+2 0.5 -> 75 Inexact Rounded
+pwsx2648 power 56E+3 0.5 -> 2.4E+2 Inexact Rounded
+pwsx2649 power 0.57 0.5 -> 0.75 Inexact Rounded
+pwsx2650 power 0.057 0.5 -> 0.24 Inexact Rounded
+pwsx2651 power 57.0E-1 0.5 -> 2.4 Inexact Rounded
+pwsx2652 power 57.00E-2 0.5 -> 0.75 Inexact Rounded
+pwsx2653 power 57E-3 0.5 -> 0.24 Inexact Rounded
+pwsx2654 power 57E+1 0.5 -> 24 Inexact Rounded
+pwsx2655 power 57E+2 0.5 -> 75 Inexact Rounded
+pwsx2656 power 57E+3 0.5 -> 2.4E+2 Inexact Rounded
+pwsx2657 power 0.58 0.5 -> 0.76 Inexact Rounded
+pwsx2658 power 0.058 0.5 -> 0.24 Inexact Rounded
+pwsx2659 power 58.0E-1 0.5 -> 2.4 Inexact Rounded
+pwsx2660 power 58.00E-2 0.5 -> 0.76 Inexact Rounded
+pwsx2661 power 58E-3 0.5 -> 0.24 Inexact Rounded
+pwsx2662 power 58E+1 0.5 -> 24 Inexact Rounded
+pwsx2663 power 58E+2 0.5 -> 76 Inexact Rounded
+pwsx2664 power 58E+3 0.5 -> 2.4E+2 Inexact Rounded
+pwsx2665 power 0.59 0.5 -> 0.77 Inexact Rounded
+pwsx2666 power 0.059 0.5 -> 0.24 Inexact Rounded
+pwsx2667 power 59.0E-1 0.5 -> 2.4 Inexact Rounded
+pwsx2668 power 59.00E-2 0.5 -> 0.77 Inexact Rounded
+pwsx2669 power 59E-3 0.5 -> 0.24 Inexact Rounded
+pwsx2670 power 59E+1 0.5 -> 24 Inexact Rounded
+pwsx2671 power 59E+2 0.5 -> 77 Inexact Rounded
+pwsx2672 power 59E+3 0.5 -> 2.4E+2 Inexact Rounded
+pwsx2673 power 0.60 0.5 -> 0.77 Inexact Rounded
+pwsx2674 power 0.060 0.5 -> 0.24 Inexact Rounded
+pwsx2675 power 60.0E-1 0.5 -> 2.4 Inexact Rounded
+pwsx2676 power 60.00E-2 0.5 -> 0.77 Inexact Rounded
+pwsx2677 power 60E-3 0.5 -> 0.24 Inexact Rounded
+pwsx2678 power 60E+1 0.5 -> 24 Inexact Rounded
+pwsx2679 power 60E+2 0.5 -> 77 Inexact Rounded
+pwsx2680 power 60E+3 0.5 -> 2.4E+2 Inexact Rounded
+pwsx2681 power 0.61 0.5 -> 0.78 Inexact Rounded
+pwsx2682 power 0.061 0.5 -> 0.25 Inexact Rounded
+pwsx2683 power 61.0E-1 0.5 -> 2.5 Inexact Rounded
+pwsx2684 power 61.00E-2 0.5 -> 0.78 Inexact Rounded
+pwsx2685 power 61E-3 0.5 -> 0.25 Inexact Rounded
+pwsx2686 power 61E+1 0.5 -> 25 Inexact Rounded
+pwsx2687 power 61E+2 0.5 -> 78 Inexact Rounded
+pwsx2688 power 61E+3 0.5 -> 2.5E+2 Inexact Rounded
+pwsx2689 power 0.62 0.5 -> 0.79 Inexact Rounded
+pwsx2690 power 0.062 0.5 -> 0.25 Inexact Rounded
+pwsx2691 power 62.0E-1 0.5 -> 2.5 Inexact Rounded
+pwsx2692 power 62.00E-2 0.5 -> 0.79 Inexact Rounded
+pwsx2693 power 62E-3 0.5 -> 0.25 Inexact Rounded
+pwsx2694 power 62E+1 0.5 -> 25 Inexact Rounded
+pwsx2695 power 62E+2 0.5 -> 79 Inexact Rounded
+pwsx2696 power 62E+3 0.5 -> 2.5E+2 Inexact Rounded
+pwsx2697 power 0.63 0.5 -> 0.79 Inexact Rounded
+pwsx2698 power 0.063 0.5 -> 0.25 Inexact Rounded
+pwsx2699 power 63.0E-1 0.5 -> 2.5 Inexact Rounded
+pwsx2700 power 63.00E-2 0.5 -> 0.79 Inexact Rounded
+pwsx2701 power 63E-3 0.5 -> 0.25 Inexact Rounded
+pwsx2702 power 63E+1 0.5 -> 25 Inexact Rounded
+pwsx2703 power 63E+2 0.5 -> 79 Inexact Rounded
+pwsx2704 power 63E+3 0.5 -> 2.5E+2 Inexact Rounded
+pwsx2705 power 0.64 0.5 -> 0.80 Inexact Rounded
+pwsx2706 power 0.064 0.5 -> 0.25 Inexact Rounded
+pwsx2707 power 64.0E-1 0.5 -> 2.5 Inexact Rounded
+pwsx2708 power 64.00E-2 0.5 -> 0.80 Inexact Rounded
+pwsx2709 power 64E-3 0.5 -> 0.25 Inexact Rounded
+pwsx2710 power 64E+1 0.5 -> 25 Inexact Rounded
+pwsx2711 power 64E+2 0.5 -> 80 Inexact Rounded
+pwsx2712 power 64E+3 0.5 -> 2.5E+2 Inexact Rounded
+pwsx2713 power 0.65 0.5 -> 0.81 Inexact Rounded
+pwsx2714 power 0.065 0.5 -> 0.25 Inexact Rounded
+pwsx2715 power 65.0E-1 0.5 -> 2.5 Inexact Rounded
+pwsx2716 power 65.00E-2 0.5 -> 0.81 Inexact Rounded
+pwsx2717 power 65E-3 0.5 -> 0.25 Inexact Rounded
+pwsx2718 power 65E+1 0.5 -> 25 Inexact Rounded
+pwsx2719 power 65E+2 0.5 -> 81 Inexact Rounded
+pwsx2720 power 65E+3 0.5 -> 2.5E+2 Inexact Rounded
+pwsx2721 power 0.66 0.5 -> 0.81 Inexact Rounded
+pwsx2722 power 0.066 0.5 -> 0.26 Inexact Rounded
+pwsx2723 power 66.0E-1 0.5 -> 2.6 Inexact Rounded
+pwsx2724 power 66.00E-2 0.5 -> 0.81 Inexact Rounded
+pwsx2725 power 66E-3 0.5 -> 0.26 Inexact Rounded
+pwsx2726 power 66E+1 0.5 -> 26 Inexact Rounded
+pwsx2727 power 66E+2 0.5 -> 81 Inexact Rounded
+pwsx2728 power 66E+3 0.5 -> 2.6E+2 Inexact Rounded
+pwsx2729 power 0.67 0.5 -> 0.82 Inexact Rounded
+pwsx2730 power 0.067 0.5 -> 0.26 Inexact Rounded
+pwsx2731 power 67.0E-1 0.5 -> 2.6 Inexact Rounded
+pwsx2732 power 67.00E-2 0.5 -> 0.82 Inexact Rounded
+pwsx2733 power 67E-3 0.5 -> 0.26 Inexact Rounded
+pwsx2734 power 67E+1 0.5 -> 26 Inexact Rounded
+pwsx2735 power 67E+2 0.5 -> 82 Inexact Rounded
+pwsx2736 power 67E+3 0.5 -> 2.6E+2 Inexact Rounded
+pwsx2737 power 0.68 0.5 -> 0.82 Inexact Rounded
+pwsx2738 power 0.068 0.5 -> 0.26 Inexact Rounded
+pwsx2739 power 68.0E-1 0.5 -> 2.6 Inexact Rounded
+pwsx2740 power 68.00E-2 0.5 -> 0.82 Inexact Rounded
+pwsx2741 power 68E-3 0.5 -> 0.26 Inexact Rounded
+pwsx2742 power 68E+1 0.5 -> 26 Inexact Rounded
+pwsx2743 power 68E+2 0.5 -> 82 Inexact Rounded
+pwsx2744 power 68E+3 0.5 -> 2.6E+2 Inexact Rounded
+pwsx2745 power 0.69 0.5 -> 0.83 Inexact Rounded
+pwsx2746 power 0.069 0.5 -> 0.26 Inexact Rounded
+pwsx2747 power 69.0E-1 0.5 -> 2.6 Inexact Rounded
+pwsx2748 power 69.00E-2 0.5 -> 0.83 Inexact Rounded
+pwsx2749 power 69E-3 0.5 -> 0.26 Inexact Rounded
+pwsx2750 power 69E+1 0.5 -> 26 Inexact Rounded
+pwsx2751 power 69E+2 0.5 -> 83 Inexact Rounded
+pwsx2752 power 69E+3 0.5 -> 2.6E+2 Inexact Rounded
+pwsx2753 power 0.70 0.5 -> 0.84 Inexact Rounded
+pwsx2754 power 0.070 0.5 -> 0.26 Inexact Rounded
+pwsx2755 power 70.0E-1 0.5 -> 2.6 Inexact Rounded
+pwsx2756 power 70.00E-2 0.5 -> 0.84 Inexact Rounded
+pwsx2757 power 70E-3 0.5 -> 0.26 Inexact Rounded
+pwsx2758 power 70E+1 0.5 -> 26 Inexact Rounded
+pwsx2759 power 70E+2 0.5 -> 84 Inexact Rounded
+pwsx2760 power 70E+3 0.5 -> 2.6E+2 Inexact Rounded
+pwsx2761 power 0.71 0.5 -> 0.84 Inexact Rounded
+pwsx2762 power 0.071 0.5 -> 0.27 Inexact Rounded
+pwsx2763 power 71.0E-1 0.5 -> 2.7 Inexact Rounded
+pwsx2764 power 71.00E-2 0.5 -> 0.84 Inexact Rounded
+pwsx2765 power 71E-3 0.5 -> 0.27 Inexact Rounded
+pwsx2766 power 71E+1 0.5 -> 27 Inexact Rounded
+pwsx2767 power 71E+2 0.5 -> 84 Inexact Rounded
+pwsx2768 power 71E+3 0.5 -> 2.7E+2 Inexact Rounded
+pwsx2769 power 0.72 0.5 -> 0.85 Inexact Rounded
+pwsx2770 power 0.072 0.5 -> 0.27 Inexact Rounded
+pwsx2771 power 72.0E-1 0.5 -> 2.7 Inexact Rounded
+pwsx2772 power 72.00E-2 0.5 -> 0.85 Inexact Rounded
+pwsx2773 power 72E-3 0.5 -> 0.27 Inexact Rounded
+pwsx2774 power 72E+1 0.5 -> 27 Inexact Rounded
+pwsx2775 power 72E+2 0.5 -> 85 Inexact Rounded
+pwsx2776 power 72E+3 0.5 -> 2.7E+2 Inexact Rounded
+pwsx2777 power 0.73 0.5 -> 0.85 Inexact Rounded
+pwsx2778 power 0.073 0.5 -> 0.27 Inexact Rounded
+pwsx2779 power 73.0E-1 0.5 -> 2.7 Inexact Rounded
+pwsx2780 power 73.00E-2 0.5 -> 0.85 Inexact Rounded
+pwsx2781 power 73E-3 0.5 -> 0.27 Inexact Rounded
+pwsx2782 power 73E+1 0.5 -> 27 Inexact Rounded
+pwsx2783 power 73E+2 0.5 -> 85 Inexact Rounded
+pwsx2784 power 73E+3 0.5 -> 2.7E+2 Inexact Rounded
+pwsx2785 power 0.74 0.5 -> 0.86 Inexact Rounded
+pwsx2786 power 0.074 0.5 -> 0.27 Inexact Rounded
+pwsx2787 power 74.0E-1 0.5 -> 2.7 Inexact Rounded
+pwsx2788 power 74.00E-2 0.5 -> 0.86 Inexact Rounded
+pwsx2789 power 74E-3 0.5 -> 0.27 Inexact Rounded
+pwsx2790 power 74E+1 0.5 -> 27 Inexact Rounded
+pwsx2791 power 74E+2 0.5 -> 86 Inexact Rounded
+pwsx2792 power 74E+3 0.5 -> 2.7E+2 Inexact Rounded
+pwsx2793 power 0.75 0.5 -> 0.87 Inexact Rounded
+pwsx2794 power 0.075 0.5 -> 0.27 Inexact Rounded
+pwsx2795 power 75.0E-1 0.5 -> 2.7 Inexact Rounded
+pwsx2796 power 75.00E-2 0.5 -> 0.87 Inexact Rounded
+pwsx2797 power 75E-3 0.5 -> 0.27 Inexact Rounded
+pwsx2798 power 75E+1 0.5 -> 27 Inexact Rounded
+pwsx2799 power 75E+2 0.5 -> 87 Inexact Rounded
+pwsx2800 power 75E+3 0.5 -> 2.7E+2 Inexact Rounded
+pwsx2801 power 0.76 0.5 -> 0.87 Inexact Rounded
+pwsx2802 power 0.076 0.5 -> 0.28 Inexact Rounded
+pwsx2803 power 76.0E-1 0.5 -> 2.8 Inexact Rounded
+pwsx2804 power 76.00E-2 0.5 -> 0.87 Inexact Rounded
+pwsx2805 power 76E-3 0.5 -> 0.28 Inexact Rounded
+pwsx2806 power 76E+1 0.5 -> 28 Inexact Rounded
+pwsx2807 power 76E+2 0.5 -> 87 Inexact Rounded
+pwsx2808 power 76E+3 0.5 -> 2.8E+2 Inexact Rounded
+pwsx2809 power 0.77 0.5 -> 0.88 Inexact Rounded
+pwsx2810 power 0.077 0.5 -> 0.28 Inexact Rounded
+pwsx2811 power 77.0E-1 0.5 -> 2.8 Inexact Rounded
+pwsx2812 power 77.00E-2 0.5 -> 0.88 Inexact Rounded
+pwsx2813 power 77E-3 0.5 -> 0.28 Inexact Rounded
+pwsx2814 power 77E+1 0.5 -> 28 Inexact Rounded
+pwsx2815 power 77E+2 0.5 -> 88 Inexact Rounded
+pwsx2816 power 77E+3 0.5 -> 2.8E+2 Inexact Rounded
+pwsx2817 power 0.78 0.5 -> 0.88 Inexact Rounded
+pwsx2818 power 0.078 0.5 -> 0.28 Inexact Rounded
+pwsx2819 power 78.0E-1 0.5 -> 2.8 Inexact Rounded
+pwsx2820 power 78.00E-2 0.5 -> 0.88 Inexact Rounded
+pwsx2821 power 78E-3 0.5 -> 0.28 Inexact Rounded
+pwsx2822 power 78E+1 0.5 -> 28 Inexact Rounded
+pwsx2823 power 78E+2 0.5 -> 88 Inexact Rounded
+pwsx2824 power 78E+3 0.5 -> 2.8E+2 Inexact Rounded
+pwsx2825 power 0.79 0.5 -> 0.89 Inexact Rounded
+pwsx2826 power 0.079 0.5 -> 0.28 Inexact Rounded
+pwsx2827 power 79.0E-1 0.5 -> 2.8 Inexact Rounded
+pwsx2828 power 79.00E-2 0.5 -> 0.89 Inexact Rounded
+pwsx2829 power 79E-3 0.5 -> 0.28 Inexact Rounded
+pwsx2830 power 79E+1 0.5 -> 28 Inexact Rounded
+pwsx2831 power 79E+2 0.5 -> 89 Inexact Rounded
+pwsx2832 power 79E+3 0.5 -> 2.8E+2 Inexact Rounded
+pwsx2833 power 0.80 0.5 -> 0.89 Inexact Rounded
+pwsx2834 power 0.080 0.5 -> 0.28 Inexact Rounded
+pwsx2835 power 80.0E-1 0.5 -> 2.8 Inexact Rounded
+pwsx2836 power 80.00E-2 0.5 -> 0.89 Inexact Rounded
+pwsx2837 power 80E-3 0.5 -> 0.28 Inexact Rounded
+pwsx2838 power 80E+1 0.5 -> 28 Inexact Rounded
+pwsx2839 power 80E+2 0.5 -> 89 Inexact Rounded
+pwsx2840 power 80E+3 0.5 -> 2.8E+2 Inexact Rounded
+pwsx2841 power 0.81 0.5 -> 0.90 Inexact Rounded
+pwsx2842 power 0.081 0.5 -> 0.28 Inexact Rounded
+pwsx2843 power 81.0E-1 0.5 -> 2.8 Inexact Rounded
+pwsx2844 power 81.00E-2 0.5 -> 0.90 Inexact Rounded
+pwsx2845 power 81E-3 0.5 -> 0.28 Inexact Rounded
+pwsx2846 power 81E+1 0.5 -> 28 Inexact Rounded
+pwsx2847 power 81E+2 0.5 -> 90 Inexact Rounded
+pwsx2848 power 81E+3 0.5 -> 2.8E+2 Inexact Rounded
+pwsx2849 power 0.82 0.5 -> 0.91 Inexact Rounded
+pwsx2850 power 0.082 0.5 -> 0.29 Inexact Rounded
+pwsx2851 power 82.0E-1 0.5 -> 2.9 Inexact Rounded
+pwsx2852 power 82.00E-2 0.5 -> 0.91 Inexact Rounded
+pwsx2853 power 82E-3 0.5 -> 0.29 Inexact Rounded
+pwsx2854 power 82E+1 0.5 -> 29 Inexact Rounded
+pwsx2855 power 82E+2 0.5 -> 91 Inexact Rounded
+pwsx2856 power 82E+3 0.5 -> 2.9E+2 Inexact Rounded
+pwsx2857 power 0.83 0.5 -> 0.91 Inexact Rounded
+pwsx2858 power 0.083 0.5 -> 0.29 Inexact Rounded
+pwsx2859 power 83.0E-1 0.5 -> 2.9 Inexact Rounded
+pwsx2860 power 83.00E-2 0.5 -> 0.91 Inexact Rounded
+pwsx2861 power 83E-3 0.5 -> 0.29 Inexact Rounded
+pwsx2862 power 83E+1 0.5 -> 29 Inexact Rounded
+pwsx2863 power 83E+2 0.5 -> 91 Inexact Rounded
+pwsx2864 power 83E+3 0.5 -> 2.9E+2 Inexact Rounded
+pwsx2865 power 0.84 0.5 -> 0.92 Inexact Rounded
+pwsx2866 power 0.084 0.5 -> 0.29 Inexact Rounded
+pwsx2867 power 84.0E-1 0.5 -> 2.9 Inexact Rounded
+pwsx2868 power 84.00E-2 0.5 -> 0.92 Inexact Rounded
+pwsx2869 power 84E-3 0.5 -> 0.29 Inexact Rounded
+pwsx2870 power 84E+1 0.5 -> 29 Inexact Rounded
+pwsx2871 power 84E+2 0.5 -> 92 Inexact Rounded
+pwsx2872 power 84E+3 0.5 -> 2.9E+2 Inexact Rounded
+pwsx2873 power 0.85 0.5 -> 0.92 Inexact Rounded
+pwsx2874 power 0.085 0.5 -> 0.29 Inexact Rounded
+pwsx2875 power 85.0E-1 0.5 -> 2.9 Inexact Rounded
+pwsx2876 power 85.00E-2 0.5 -> 0.92 Inexact Rounded
+pwsx2877 power 85E-3 0.5 -> 0.29 Inexact Rounded
+pwsx2878 power 85E+1 0.5 -> 29 Inexact Rounded
+pwsx2879 power 85E+2 0.5 -> 92 Inexact Rounded
+pwsx2880 power 85E+3 0.5 -> 2.9E+2 Inexact Rounded
+pwsx2881 power 0.86 0.5 -> 0.93 Inexact Rounded
+pwsx2882 power 0.086 0.5 -> 0.29 Inexact Rounded
+pwsx2883 power 86.0E-1 0.5 -> 2.9 Inexact Rounded
+pwsx2884 power 86.00E-2 0.5 -> 0.93 Inexact Rounded
+pwsx2885 power 86E-3 0.5 -> 0.29 Inexact Rounded
+pwsx2886 power 86E+1 0.5 -> 29 Inexact Rounded
+pwsx2887 power 86E+2 0.5 -> 93 Inexact Rounded
+pwsx2888 power 86E+3 0.5 -> 2.9E+2 Inexact Rounded
+pwsx2889 power 0.87 0.5 -> 0.93 Inexact Rounded
+pwsx2890 power 0.087 0.5 -> 0.29 Inexact Rounded
+pwsx2891 power 87.0E-1 0.5 -> 2.9 Inexact Rounded
+pwsx2892 power 87.00E-2 0.5 -> 0.93 Inexact Rounded
+pwsx2893 power 87E-3 0.5 -> 0.29 Inexact Rounded
+pwsx2894 power 87E+1 0.5 -> 29 Inexact Rounded
+pwsx2895 power 87E+2 0.5 -> 93 Inexact Rounded
+pwsx2896 power 87E+3 0.5 -> 2.9E+2 Inexact Rounded
+pwsx2897 power 0.88 0.5 -> 0.94 Inexact Rounded
+pwsx2898 power 0.088 0.5 -> 0.30 Inexact Rounded
+pwsx2899 power 88.0E-1 0.5 -> 3.0 Inexact Rounded
+pwsx2900 power 88.00E-2 0.5 -> 0.94 Inexact Rounded
+pwsx2901 power 88E-3 0.5 -> 0.30 Inexact Rounded
+pwsx2902 power 88E+1 0.5 -> 30 Inexact Rounded
+pwsx2903 power 88E+2 0.5 -> 94 Inexact Rounded
+pwsx2904 power 88E+3 0.5 -> 3.0E+2 Inexact Rounded
+pwsx2905 power 0.89 0.5 -> 0.94 Inexact Rounded
+pwsx2906 power 0.089 0.5 -> 0.30 Inexact Rounded
+pwsx2907 power 89.0E-1 0.5 -> 3.0 Inexact Rounded
+pwsx2908 power 89.00E-2 0.5 -> 0.94 Inexact Rounded
+pwsx2909 power 89E-3 0.5 -> 0.30 Inexact Rounded
+pwsx2910 power 89E+1 0.5 -> 30 Inexact Rounded
+pwsx2911 power 89E+2 0.5 -> 94 Inexact Rounded
+pwsx2912 power 89E+3 0.5 -> 3.0E+2 Inexact Rounded
+pwsx2913 power 0.90 0.5 -> 0.95 Inexact Rounded
+pwsx2914 power 0.090 0.5 -> 0.30 Inexact Rounded
+pwsx2915 power 90.0E-1 0.5 -> 3.0 Inexact Rounded
+pwsx2916 power 90.00E-2 0.5 -> 0.95 Inexact Rounded
+pwsx2917 power 90E-3 0.5 -> 0.30 Inexact Rounded
+pwsx2918 power 90E+1 0.5 -> 30 Inexact Rounded
+pwsx2919 power 90E+2 0.5 -> 95 Inexact Rounded
+pwsx2920 power 90E+3 0.5 -> 3.0E+2 Inexact Rounded
+pwsx2921 power 0.91 0.5 -> 0.95 Inexact Rounded
+pwsx2922 power 0.091 0.5 -> 0.30 Inexact Rounded
+pwsx2923 power 91.0E-1 0.5 -> 3.0 Inexact Rounded
+pwsx2924 power 91.00E-2 0.5 -> 0.95 Inexact Rounded
+pwsx2925 power 91E-3 0.5 -> 0.30 Inexact Rounded
+pwsx2926 power 91E+1 0.5 -> 30 Inexact Rounded
+pwsx2927 power 91E+2 0.5 -> 95 Inexact Rounded
+pwsx2928 power 91E+3 0.5 -> 3.0E+2 Inexact Rounded
+pwsx2929 power 0.92 0.5 -> 0.96 Inexact Rounded
+pwsx2930 power 0.092 0.5 -> 0.30 Inexact Rounded
+pwsx2931 power 92.0E-1 0.5 -> 3.0 Inexact Rounded
+pwsx2932 power 92.00E-2 0.5 -> 0.96 Inexact Rounded
+pwsx2933 power 92E-3 0.5 -> 0.30 Inexact Rounded
+pwsx2934 power 92E+1 0.5 -> 30 Inexact Rounded
+pwsx2935 power 92E+2 0.5 -> 96 Inexact Rounded
+pwsx2936 power 92E+3 0.5 -> 3.0E+2 Inexact Rounded
+pwsx2937 power 0.93 0.5 -> 0.96 Inexact Rounded
+pwsx2938 power 0.093 0.5 -> 0.30 Inexact Rounded
+pwsx2939 power 93.0E-1 0.5 -> 3.0 Inexact Rounded
+pwsx2940 power 93.00E-2 0.5 -> 0.96 Inexact Rounded
+pwsx2941 power 93E-3 0.5 -> 0.30 Inexact Rounded
+pwsx2942 power 93E+1 0.5 -> 30 Inexact Rounded
+pwsx2943 power 93E+2 0.5 -> 96 Inexact Rounded
+pwsx2944 power 93E+3 0.5 -> 3.0E+2 Inexact Rounded
+pwsx2945 power 0.94 0.5 -> 0.97 Inexact Rounded
+pwsx2946 power 0.094 0.5 -> 0.31 Inexact Rounded
+pwsx2947 power 94.0E-1 0.5 -> 3.1 Inexact Rounded
+pwsx2948 power 94.00E-2 0.5 -> 0.97 Inexact Rounded
+pwsx2949 power 94E-3 0.5 -> 0.31 Inexact Rounded
+pwsx2950 power 94E+1 0.5 -> 31 Inexact Rounded
+pwsx2951 power 94E+2 0.5 -> 97 Inexact Rounded
+pwsx2952 power 94E+3 0.5 -> 3.1E+2 Inexact Rounded
+pwsx2953 power 0.95 0.5 -> 0.97 Inexact Rounded
+pwsx2954 power 0.095 0.5 -> 0.31 Inexact Rounded
+pwsx2955 power 95.0E-1 0.5 -> 3.1 Inexact Rounded
+pwsx2956 power 95.00E-2 0.5 -> 0.97 Inexact Rounded
+pwsx2957 power 95E-3 0.5 -> 0.31 Inexact Rounded
+pwsx2958 power 95E+1 0.5 -> 31 Inexact Rounded
+pwsx2959 power 95E+2 0.5 -> 97 Inexact Rounded
+pwsx2960 power 95E+3 0.5 -> 3.1E+2 Inexact Rounded
+pwsx2961 power 0.96 0.5 -> 0.98 Inexact Rounded
+pwsx2962 power 0.096 0.5 -> 0.31 Inexact Rounded
+pwsx2963 power 96.0E-1 0.5 -> 3.1 Inexact Rounded
+pwsx2964 power 96.00E-2 0.5 -> 0.98 Inexact Rounded
+pwsx2965 power 96E-3 0.5 -> 0.31 Inexact Rounded
+pwsx2966 power 96E+1 0.5 -> 31 Inexact Rounded
+pwsx2967 power 96E+2 0.5 -> 98 Inexact Rounded
+pwsx2968 power 96E+3 0.5 -> 3.1E+2 Inexact Rounded
+pwsx2969 power 0.97 0.5 -> 0.98 Inexact Rounded
+pwsx2970 power 0.097 0.5 -> 0.31 Inexact Rounded
+pwsx2971 power 97.0E-1 0.5 -> 3.1 Inexact Rounded
+pwsx2972 power 97.00E-2 0.5 -> 0.98 Inexact Rounded
+pwsx2973 power 97E-3 0.5 -> 0.31 Inexact Rounded
+pwsx2974 power 97E+1 0.5 -> 31 Inexact Rounded
+pwsx2975 power 97E+2 0.5 -> 98 Inexact Rounded
+pwsx2976 power 97E+3 0.5 -> 3.1E+2 Inexact Rounded
+pwsx2977 power 0.98 0.5 -> 0.99 Inexact Rounded
+pwsx2978 power 0.098 0.5 -> 0.31 Inexact Rounded
+pwsx2979 power 98.0E-1 0.5 -> 3.1 Inexact Rounded
+pwsx2980 power 98.00E-2 0.5 -> 0.99 Inexact Rounded
+pwsx2981 power 98E-3 0.5 -> 0.31 Inexact Rounded
+pwsx2982 power 98E+1 0.5 -> 31 Inexact Rounded
+pwsx2983 power 98E+2 0.5 -> 99 Inexact Rounded
+pwsx2984 power 98E+3 0.5 -> 3.1E+2 Inexact Rounded
+pwsx2985 power 0.99 0.5 -> 0.99 Inexact Rounded
+pwsx2986 power 0.099 0.5 -> 0.31 Inexact Rounded
+pwsx2987 power 99.0E-1 0.5 -> 3.1 Inexact Rounded
+pwsx2988 power 99.00E-2 0.5 -> 0.99 Inexact Rounded
+pwsx2989 power 99E-3 0.5 -> 0.31 Inexact Rounded
+pwsx2990 power 99E+1 0.5 -> 31 Inexact Rounded
+pwsx2991 power 99E+2 0.5 -> 99 Inexact Rounded
+pwsx2992 power 99E+3 0.5 -> 3.1E+2 Inexact Rounded
+
+-- Precision 3 squareroot tests [exhaustive, f and f/10]
+rounding: half_even
+maxExponent: 999
+minexponent: -999
+precision: 3
+pwsx3001 power 0.1 0.5 -> 0.316 Inexact Rounded
+pwsx3002 power 0.01 0.5 -> 0.100 Inexact Rounded
+pwsx3003 power 0.2 0.5 -> 0.447 Inexact Rounded
+pwsx3004 power 0.02 0.5 -> 0.141 Inexact Rounded
+pwsx3005 power 0.3 0.5 -> 0.548 Inexact Rounded
+pwsx3006 power 0.03 0.5 -> 0.173 Inexact Rounded
+pwsx3007 power 0.4 0.5 -> 0.632 Inexact Rounded
+pwsx3008 power 0.04 0.5 -> 0.200 Inexact Rounded
+pwsx3009 power 0.5 0.5 -> 0.707 Inexact Rounded
+pwsx3010 power 0.05 0.5 -> 0.224 Inexact Rounded
+pwsx3011 power 0.6 0.5 -> 0.775 Inexact Rounded
+pwsx3012 power 0.06 0.5 -> 0.245 Inexact Rounded
+pwsx3013 power 0.7 0.5 -> 0.837 Inexact Rounded
+pwsx3014 power 0.07 0.5 -> 0.265 Inexact Rounded
+pwsx3015 power 0.8 0.5 -> 0.894 Inexact Rounded
+pwsx3016 power 0.08 0.5 -> 0.283 Inexact Rounded
+pwsx3017 power 0.9 0.5 -> 0.949 Inexact Rounded
+pwsx3018 power 0.09 0.5 -> 0.300 Inexact Rounded
+pwsx3019 power 0.11 0.5 -> 0.332 Inexact Rounded
+pwsx3020 power 0.011 0.5 -> 0.105 Inexact Rounded
+pwsx3021 power 0.12 0.5 -> 0.346 Inexact Rounded
+pwsx3022 power 0.012 0.5 -> 0.110 Inexact Rounded
+pwsx3023 power 0.13 0.5 -> 0.361 Inexact Rounded
+pwsx3024 power 0.013 0.5 -> 0.114 Inexact Rounded
+pwsx3025 power 0.14 0.5 -> 0.374 Inexact Rounded
+pwsx3026 power 0.014 0.5 -> 0.118 Inexact Rounded
+pwsx3027 power 0.15 0.5 -> 0.387 Inexact Rounded
+pwsx3028 power 0.015 0.5 -> 0.122 Inexact Rounded
+pwsx3029 power 0.16 0.5 -> 0.400 Inexact Rounded
+pwsx3030 power 0.016 0.5 -> 0.126 Inexact Rounded
+pwsx3031 power 0.17 0.5 -> 0.412 Inexact Rounded
+pwsx3032 power 0.017 0.5 -> 0.130 Inexact Rounded
+pwsx3033 power 0.18 0.5 -> 0.424 Inexact Rounded
+pwsx3034 power 0.018 0.5 -> 0.134 Inexact Rounded
+pwsx3035 power 0.19 0.5 -> 0.436 Inexact Rounded
+pwsx3036 power 0.019 0.5 -> 0.138 Inexact Rounded
+pwsx3037 power 0.21 0.5 -> 0.458 Inexact Rounded
+pwsx3038 power 0.021 0.5 -> 0.145 Inexact Rounded
+pwsx3039 power 0.22 0.5 -> 0.469 Inexact Rounded
+pwsx3040 power 0.022 0.5 -> 0.148 Inexact Rounded
+pwsx3041 power 0.23 0.5 -> 0.480 Inexact Rounded
+pwsx3042 power 0.023 0.5 -> 0.152 Inexact Rounded
+pwsx3043 power 0.24 0.5 -> 0.490 Inexact Rounded
+pwsx3044 power 0.024 0.5 -> 0.155 Inexact Rounded
+pwsx3045 power 0.25 0.5 -> 0.500 Inexact Rounded
+pwsx3046 power 0.025 0.5 -> 0.158 Inexact Rounded
+pwsx3047 power 0.26 0.5 -> 0.510 Inexact Rounded
+pwsx3048 power 0.026 0.5 -> 0.161 Inexact Rounded
+pwsx3049 power 0.27 0.5 -> 0.520 Inexact Rounded
+pwsx3050 power 0.027 0.5 -> 0.164 Inexact Rounded
+pwsx3051 power 0.28 0.5 -> 0.529 Inexact Rounded
+pwsx3052 power 0.028 0.5 -> 0.167 Inexact Rounded
+pwsx3053 power 0.29 0.5 -> 0.539 Inexact Rounded
+pwsx3054 power 0.029 0.5 -> 0.170 Inexact Rounded
+pwsx3055 power 0.31 0.5 -> 0.557 Inexact Rounded
+pwsx3056 power 0.031 0.5 -> 0.176 Inexact Rounded
+pwsx3057 power 0.32 0.5 -> 0.566 Inexact Rounded
+pwsx3058 power 0.032 0.5 -> 0.179 Inexact Rounded
+pwsx3059 power 0.33 0.5 -> 0.574 Inexact Rounded
+pwsx3060 power 0.033 0.5 -> 0.182 Inexact Rounded
+pwsx3061 power 0.34 0.5 -> 0.583 Inexact Rounded
+pwsx3062 power 0.034 0.5 -> 0.184 Inexact Rounded
+pwsx3063 power 0.35 0.5 -> 0.592 Inexact Rounded
+pwsx3064 power 0.035 0.5 -> 0.187 Inexact Rounded
+pwsx3065 power 0.36 0.5 -> 0.600 Inexact Rounded
+pwsx3066 power 0.036 0.5 -> 0.190 Inexact Rounded
+pwsx3067 power 0.37 0.5 -> 0.608 Inexact Rounded
+pwsx3068 power 0.037 0.5 -> 0.192 Inexact Rounded
+pwsx3069 power 0.38 0.5 -> 0.616 Inexact Rounded
+pwsx3070 power 0.038 0.5 -> 0.195 Inexact Rounded
+pwsx3071 power 0.39 0.5 -> 0.624 Inexact Rounded
+pwsx3072 power 0.039 0.5 -> 0.197 Inexact Rounded
+pwsx3073 power 0.41 0.5 -> 0.640 Inexact Rounded
+pwsx3074 power 0.041 0.5 -> 0.202 Inexact Rounded
+pwsx3075 power 0.42 0.5 -> 0.648 Inexact Rounded
+pwsx3076 power 0.042 0.5 -> 0.205 Inexact Rounded
+pwsx3077 power 0.43 0.5 -> 0.656 Inexact Rounded
+pwsx3078 power 0.043 0.5 -> 0.207 Inexact Rounded
+pwsx3079 power 0.44 0.5 -> 0.663 Inexact Rounded
+pwsx3080 power 0.044 0.5 -> 0.210 Inexact Rounded
+pwsx3081 power 0.45 0.5 -> 0.671 Inexact Rounded
+pwsx3082 power 0.045 0.5 -> 0.212 Inexact Rounded
+pwsx3083 power 0.46 0.5 -> 0.678 Inexact Rounded
+pwsx3084 power 0.046 0.5 -> 0.214 Inexact Rounded
+pwsx3085 power 0.47 0.5 -> 0.686 Inexact Rounded
+pwsx3086 power 0.047 0.5 -> 0.217 Inexact Rounded
+pwsx3087 power 0.48 0.5 -> 0.693 Inexact Rounded
+pwsx3088 power 0.048 0.5 -> 0.219 Inexact Rounded
+pwsx3089 power 0.49 0.5 -> 0.700 Inexact Rounded
+pwsx3090 power 0.049 0.5 -> 0.221 Inexact Rounded
+pwsx3091 power 0.51 0.5 -> 0.714 Inexact Rounded
+pwsx3092 power 0.051 0.5 -> 0.226 Inexact Rounded
+pwsx3093 power 0.52 0.5 -> 0.721 Inexact Rounded
+pwsx3094 power 0.052 0.5 -> 0.228 Inexact Rounded
+pwsx3095 power 0.53 0.5 -> 0.728 Inexact Rounded
+pwsx3096 power 0.053 0.5 -> 0.230 Inexact Rounded
+pwsx3097 power 0.54 0.5 -> 0.735 Inexact Rounded
+pwsx3098 power 0.054 0.5 -> 0.232 Inexact Rounded
+pwsx3099 power 0.55 0.5 -> 0.742 Inexact Rounded
+pwsx3100 power 0.055 0.5 -> 0.235 Inexact Rounded
+pwsx3101 power 0.56 0.5 -> 0.748 Inexact Rounded
+pwsx3102 power 0.056 0.5 -> 0.237 Inexact Rounded
+pwsx3103 power 0.57 0.5 -> 0.755 Inexact Rounded
+pwsx3104 power 0.057 0.5 -> 0.239 Inexact Rounded
+pwsx3105 power 0.58 0.5 -> 0.762 Inexact Rounded
+pwsx3106 power 0.058 0.5 -> 0.241 Inexact Rounded
+pwsx3107 power 0.59 0.5 -> 0.768 Inexact Rounded
+pwsx3108 power 0.059 0.5 -> 0.243 Inexact Rounded
+pwsx3109 power 0.61 0.5 -> 0.781 Inexact Rounded
+pwsx3110 power 0.061 0.5 -> 0.247 Inexact Rounded
+pwsx3111 power 0.62 0.5 -> 0.787 Inexact Rounded
+pwsx3112 power 0.062 0.5 -> 0.249 Inexact Rounded
+pwsx3113 power 0.63 0.5 -> 0.794 Inexact Rounded
+pwsx3114 power 0.063 0.5 -> 0.251 Inexact Rounded
+pwsx3115 power 0.64 0.5 -> 0.800 Inexact Rounded
+pwsx3116 power 0.064 0.5 -> 0.253 Inexact Rounded
+pwsx3117 power 0.65 0.5 -> 0.806 Inexact Rounded
+pwsx3118 power 0.065 0.5 -> 0.255 Inexact Rounded
+pwsx3119 power 0.66 0.5 -> 0.812 Inexact Rounded
+pwsx3120 power 0.066 0.5 -> 0.257 Inexact Rounded
+pwsx3121 power 0.67 0.5 -> 0.819 Inexact Rounded
+pwsx3122 power 0.067 0.5 -> 0.259 Inexact Rounded
+pwsx3123 power 0.68 0.5 -> 0.825 Inexact Rounded
+pwsx3124 power 0.068 0.5 -> 0.261 Inexact Rounded
+pwsx3125 power 0.69 0.5 -> 0.831 Inexact Rounded
+pwsx3126 power 0.069 0.5 -> 0.263 Inexact Rounded
+pwsx3127 power 0.71 0.5 -> 0.843 Inexact Rounded
+pwsx3128 power 0.071 0.5 -> 0.266 Inexact Rounded
+pwsx3129 power 0.72 0.5 -> 0.849 Inexact Rounded
+pwsx3130 power 0.072 0.5 -> 0.268 Inexact Rounded
+pwsx3131 power 0.73 0.5 -> 0.854 Inexact Rounded
+pwsx3132 power 0.073 0.5 -> 0.270 Inexact Rounded
+pwsx3133 power 0.74 0.5 -> 0.860 Inexact Rounded
+pwsx3134 power 0.074 0.5 -> 0.272 Inexact Rounded
+pwsx3135 power 0.75 0.5 -> 0.866 Inexact Rounded
+pwsx3136 power 0.075 0.5 -> 0.274 Inexact Rounded
+pwsx3137 power 0.76 0.5 -> 0.872 Inexact Rounded
+pwsx3138 power 0.076 0.5 -> 0.276 Inexact Rounded
+pwsx3139 power 0.77 0.5 -> 0.877 Inexact Rounded
+pwsx3140 power 0.077 0.5 -> 0.277 Inexact Rounded
+pwsx3141 power 0.78 0.5 -> 0.883 Inexact Rounded
+pwsx3142 power 0.078 0.5 -> 0.279 Inexact Rounded
+pwsx3143 power 0.79 0.5 -> 0.889 Inexact Rounded
+pwsx3144 power 0.079 0.5 -> 0.281 Inexact Rounded
+pwsx3145 power 0.81 0.5 -> 0.900 Inexact Rounded
+pwsx3146 power 0.081 0.5 -> 0.285 Inexact Rounded
+pwsx3147 power 0.82 0.5 -> 0.906 Inexact Rounded
+pwsx3148 power 0.082 0.5 -> 0.286 Inexact Rounded
+pwsx3149 power 0.83 0.5 -> 0.911 Inexact Rounded
+pwsx3150 power 0.083 0.5 -> 0.288 Inexact Rounded
+pwsx3151 power 0.84 0.5 -> 0.917 Inexact Rounded
+pwsx3152 power 0.084 0.5 -> 0.290 Inexact Rounded
+pwsx3153 power 0.85 0.5 -> 0.922 Inexact Rounded
+pwsx3154 power 0.085 0.5 -> 0.292 Inexact Rounded
+pwsx3155 power 0.86 0.5 -> 0.927 Inexact Rounded
+pwsx3156 power 0.086 0.5 -> 0.293 Inexact Rounded
+pwsx3157 power 0.87 0.5 -> 0.933 Inexact Rounded
+pwsx3158 power 0.087 0.5 -> 0.295 Inexact Rounded
+pwsx3159 power 0.88 0.5 -> 0.938 Inexact Rounded
+pwsx3160 power 0.088 0.5 -> 0.297 Inexact Rounded
+pwsx3161 power 0.89 0.5 -> 0.943 Inexact Rounded
+pwsx3162 power 0.089 0.5 -> 0.298 Inexact Rounded
+pwsx3163 power 0.91 0.5 -> 0.954 Inexact Rounded
+pwsx3164 power 0.091 0.5 -> 0.302 Inexact Rounded
+pwsx3165 power 0.92 0.5 -> 0.959 Inexact Rounded
+pwsx3166 power 0.092 0.5 -> 0.303 Inexact Rounded
+pwsx3167 power 0.93 0.5 -> 0.964 Inexact Rounded
+pwsx3168 power 0.093 0.5 -> 0.305 Inexact Rounded
+pwsx3169 power 0.94 0.5 -> 0.970 Inexact Rounded
+pwsx3170 power 0.094 0.5 -> 0.307 Inexact Rounded
+pwsx3171 power 0.95 0.5 -> 0.975 Inexact Rounded
+pwsx3172 power 0.095 0.5 -> 0.308 Inexact Rounded
+pwsx3173 power 0.96 0.5 -> 0.980 Inexact Rounded
+pwsx3174 power 0.096 0.5 -> 0.310 Inexact Rounded
+pwsx3175 power 0.97 0.5 -> 0.985 Inexact Rounded
+pwsx3176 power 0.097 0.5 -> 0.311 Inexact Rounded
+pwsx3177 power 0.98 0.5 -> 0.990 Inexact Rounded
+pwsx3178 power 0.098 0.5 -> 0.313 Inexact Rounded
+pwsx3179 power 0.99 0.5 -> 0.995 Inexact Rounded
+pwsx3180 power 0.099 0.5 -> 0.315 Inexact Rounded
+pwsx3181 power 0.101 0.5 -> 0.318 Inexact Rounded
+pwsx3182 power 0.0101 0.5 -> 0.100 Inexact Rounded
+pwsx3183 power 0.102 0.5 -> 0.319 Inexact Rounded
+pwsx3184 power 0.0102 0.5 -> 0.101 Inexact Rounded
+pwsx3185 power 0.103 0.5 -> 0.321 Inexact Rounded
+pwsx3186 power 0.0103 0.5 -> 0.101 Inexact Rounded
+pwsx3187 power 0.104 0.5 -> 0.322 Inexact Rounded
+pwsx3188 power 0.0104 0.5 -> 0.102 Inexact Rounded
+pwsx3189 power 0.105 0.5 -> 0.324 Inexact Rounded
+pwsx3190 power 0.0105 0.5 -> 0.102 Inexact Rounded
+pwsx3191 power 0.106 0.5 -> 0.326 Inexact Rounded
+pwsx3192 power 0.0106 0.5 -> 0.103 Inexact Rounded
+pwsx3193 power 0.107 0.5 -> 0.327 Inexact Rounded
+pwsx3194 power 0.0107 0.5 -> 0.103 Inexact Rounded
+pwsx3195 power 0.108 0.5 -> 0.329 Inexact Rounded
+pwsx3196 power 0.0108 0.5 -> 0.104 Inexact Rounded
+pwsx3197 power 0.109 0.5 -> 0.330 Inexact Rounded
+pwsx3198 power 0.0109 0.5 -> 0.104 Inexact Rounded
+pwsx3199 power 0.111 0.5 -> 0.333 Inexact Rounded
+pwsx3200 power 0.0111 0.5 -> 0.105 Inexact Rounded
+pwsx3201 power 0.112 0.5 -> 0.335 Inexact Rounded
+pwsx3202 power 0.0112 0.5 -> 0.106 Inexact Rounded
+pwsx3203 power 0.113 0.5 -> 0.336 Inexact Rounded
+pwsx3204 power 0.0113 0.5 -> 0.106 Inexact Rounded
+pwsx3205 power 0.114 0.5 -> 0.338 Inexact Rounded
+pwsx3206 power 0.0114 0.5 -> 0.107 Inexact Rounded
+pwsx3207 power 0.115 0.5 -> 0.339 Inexact Rounded
+pwsx3208 power 0.0115 0.5 -> 0.107 Inexact Rounded
+pwsx3209 power 0.116 0.5 -> 0.341 Inexact Rounded
+pwsx3210 power 0.0116 0.5 -> 0.108 Inexact Rounded
+pwsx3211 power 0.117 0.5 -> 0.342 Inexact Rounded
+pwsx3212 power 0.0117 0.5 -> 0.108 Inexact Rounded
+pwsx3213 power 0.118 0.5 -> 0.344 Inexact Rounded
+pwsx3214 power 0.0118 0.5 -> 0.109 Inexact Rounded
+pwsx3215 power 0.119 0.5 -> 0.345 Inexact Rounded
+pwsx3216 power 0.0119 0.5 -> 0.109 Inexact Rounded
+pwsx3217 power 0.121 0.5 -> 0.348 Inexact Rounded
+pwsx3218 power 0.0121 0.5 -> 0.110 Inexact Rounded
+pwsx3219 power 0.122 0.5 -> 0.349 Inexact Rounded
+pwsx3220 power 0.0122 0.5 -> 0.110 Inexact Rounded
+pwsx3221 power 0.123 0.5 -> 0.351 Inexact Rounded
+pwsx3222 power 0.0123 0.5 -> 0.111 Inexact Rounded
+pwsx3223 power 0.124 0.5 -> 0.352 Inexact Rounded
+pwsx3224 power 0.0124 0.5 -> 0.111 Inexact Rounded
+pwsx3225 power 0.125 0.5 -> 0.354 Inexact Rounded
+pwsx3226 power 0.0125 0.5 -> 0.112 Inexact Rounded
+pwsx3227 power 0.126 0.5 -> 0.355 Inexact Rounded
+pwsx3228 power 0.0126 0.5 -> 0.112 Inexact Rounded
+pwsx3229 power 0.127 0.5 -> 0.356 Inexact Rounded
+pwsx3230 power 0.0127 0.5 -> 0.113 Inexact Rounded
+pwsx3231 power 0.128 0.5 -> 0.358 Inexact Rounded
+pwsx3232 power 0.0128 0.5 -> 0.113 Inexact Rounded
+pwsx3233 power 0.129 0.5 -> 0.359 Inexact Rounded
+pwsx3234 power 0.0129 0.5 -> 0.114 Inexact Rounded
+pwsx3235 power 0.131 0.5 -> 0.362 Inexact Rounded
+pwsx3236 power 0.0131 0.5 -> 0.114 Inexact Rounded
+pwsx3237 power 0.132 0.5 -> 0.363 Inexact Rounded
+pwsx3238 power 0.0132 0.5 -> 0.115 Inexact Rounded
+pwsx3239 power 0.133 0.5 -> 0.365 Inexact Rounded
+pwsx3240 power 0.0133 0.5 -> 0.115 Inexact Rounded
+pwsx3241 power 0.134 0.5 -> 0.366 Inexact Rounded
+pwsx3242 power 0.0134 0.5 -> 0.116 Inexact Rounded
+pwsx3243 power 0.135 0.5 -> 0.367 Inexact Rounded
+pwsx3244 power 0.0135 0.5 -> 0.116 Inexact Rounded
+pwsx3245 power 0.136 0.5 -> 0.369 Inexact Rounded
+pwsx3246 power 0.0136 0.5 -> 0.117 Inexact Rounded
+pwsx3247 power 0.137 0.5 -> 0.370 Inexact Rounded
+pwsx3248 power 0.0137 0.5 -> 0.117 Inexact Rounded
+pwsx3249 power 0.138 0.5 -> 0.371 Inexact Rounded
+pwsx3250 power 0.0138 0.5 -> 0.117 Inexact Rounded
+pwsx3251 power 0.139 0.5 -> 0.373 Inexact Rounded
+pwsx3252 power 0.0139 0.5 -> 0.118 Inexact Rounded
+pwsx3253 power 0.141 0.5 -> 0.375 Inexact Rounded
+pwsx3254 power 0.0141 0.5 -> 0.119 Inexact Rounded
+pwsx3255 power 0.142 0.5 -> 0.377 Inexact Rounded
+pwsx3256 power 0.0142 0.5 -> 0.119 Inexact Rounded
+pwsx3257 power 0.143 0.5 -> 0.378 Inexact Rounded
+pwsx3258 power 0.0143 0.5 -> 0.120 Inexact Rounded
+pwsx3259 power 0.144 0.5 -> 0.379 Inexact Rounded
+pwsx3260 power 0.0144 0.5 -> 0.120 Inexact Rounded
+pwsx3261 power 0.145 0.5 -> 0.381 Inexact Rounded
+pwsx3262 power 0.0145 0.5 -> 0.120 Inexact Rounded
+pwsx3263 power 0.146 0.5 -> 0.382 Inexact Rounded
+pwsx3264 power 0.0146 0.5 -> 0.121 Inexact Rounded
+pwsx3265 power 0.147 0.5 -> 0.383 Inexact Rounded
+pwsx3266 power 0.0147 0.5 -> 0.121 Inexact Rounded
+pwsx3267 power 0.148 0.5 -> 0.385 Inexact Rounded
+pwsx3268 power 0.0148 0.5 -> 0.122 Inexact Rounded
+pwsx3269 power 0.149 0.5 -> 0.386 Inexact Rounded
+pwsx3270 power 0.0149 0.5 -> 0.122 Inexact Rounded
+pwsx3271 power 0.151 0.5 -> 0.389 Inexact Rounded
+pwsx3272 power 0.0151 0.5 -> 0.123 Inexact Rounded
+pwsx3273 power 0.152 0.5 -> 0.390 Inexact Rounded
+pwsx3274 power 0.0152 0.5 -> 0.123 Inexact Rounded
+pwsx3275 power 0.153 0.5 -> 0.391 Inexact Rounded
+pwsx3276 power 0.0153 0.5 -> 0.124 Inexact Rounded
+pwsx3277 power 0.154 0.5 -> 0.392 Inexact Rounded
+pwsx3278 power 0.0154 0.5 -> 0.124 Inexact Rounded
+pwsx3279 power 0.155 0.5 -> 0.394 Inexact Rounded
+pwsx3280 power 0.0155 0.5 -> 0.124 Inexact Rounded
+pwsx3281 power 0.156 0.5 -> 0.395 Inexact Rounded
+pwsx3282 power 0.0156 0.5 -> 0.125 Inexact Rounded
+pwsx3283 power 0.157 0.5 -> 0.396 Inexact Rounded
+pwsx3284 power 0.0157 0.5 -> 0.125 Inexact Rounded
+pwsx3285 power 0.158 0.5 -> 0.397 Inexact Rounded
+pwsx3286 power 0.0158 0.5 -> 0.126 Inexact Rounded
+pwsx3287 power 0.159 0.5 -> 0.399 Inexact Rounded
+pwsx3288 power 0.0159 0.5 -> 0.126 Inexact Rounded
+pwsx3289 power 0.161 0.5 -> 0.401 Inexact Rounded
+pwsx3290 power 0.0161 0.5 -> 0.127 Inexact Rounded
+pwsx3291 power 0.162 0.5 -> 0.402 Inexact Rounded
+pwsx3292 power 0.0162 0.5 -> 0.127 Inexact Rounded
+pwsx3293 power 0.163 0.5 -> 0.404 Inexact Rounded
+pwsx3294 power 0.0163 0.5 -> 0.128 Inexact Rounded
+pwsx3295 power 0.164 0.5 -> 0.405 Inexact Rounded
+pwsx3296 power 0.0164 0.5 -> 0.128 Inexact Rounded
+pwsx3297 power 0.165 0.5 -> 0.406 Inexact Rounded
+pwsx3298 power 0.0165 0.5 -> 0.128 Inexact Rounded
+pwsx3299 power 0.166 0.5 -> 0.407 Inexact Rounded
+pwsx3300 power 0.0166 0.5 -> 0.129 Inexact Rounded
+pwsx3301 power 0.167 0.5 -> 0.409 Inexact Rounded
+pwsx3302 power 0.0167 0.5 -> 0.129 Inexact Rounded
+pwsx3303 power 0.168 0.5 -> 0.410 Inexact Rounded
+pwsx3304 power 0.0168 0.5 -> 0.130 Inexact Rounded
+pwsx3305 power 0.169 0.5 -> 0.411 Inexact Rounded
+pwsx3306 power 0.0169 0.5 -> 0.130 Inexact Rounded
+pwsx3307 power 0.171 0.5 -> 0.414 Inexact Rounded
+pwsx3308 power 0.0171 0.5 -> 0.131 Inexact Rounded
+pwsx3309 power 0.172 0.5 -> 0.415 Inexact Rounded
+pwsx3310 power 0.0172 0.5 -> 0.131 Inexact Rounded
+pwsx3311 power 0.173 0.5 -> 0.416 Inexact Rounded
+pwsx3312 power 0.0173 0.5 -> 0.132 Inexact Rounded
+pwsx3313 power 0.174 0.5 -> 0.417 Inexact Rounded
+pwsx3314 power 0.0174 0.5 -> 0.132 Inexact Rounded
+pwsx3315 power 0.175 0.5 -> 0.418 Inexact Rounded
+pwsx3316 power 0.0175 0.5 -> 0.132 Inexact Rounded
+pwsx3317 power 0.176 0.5 -> 0.420 Inexact Rounded
+pwsx3318 power 0.0176 0.5 -> 0.133 Inexact Rounded
+pwsx3319 power 0.177 0.5 -> 0.421 Inexact Rounded
+pwsx3320 power 0.0177 0.5 -> 0.133 Inexact Rounded
+pwsx3321 power 0.178 0.5 -> 0.422 Inexact Rounded
+pwsx3322 power 0.0178 0.5 -> 0.133 Inexact Rounded
+pwsx3323 power 0.179 0.5 -> 0.423 Inexact Rounded
+pwsx3324 power 0.0179 0.5 -> 0.134 Inexact Rounded
+pwsx3325 power 0.181 0.5 -> 0.425 Inexact Rounded
+pwsx3326 power 0.0181 0.5 -> 0.135 Inexact Rounded
+pwsx3327 power 0.182 0.5 -> 0.427 Inexact Rounded
+pwsx3328 power 0.0182 0.5 -> 0.135 Inexact Rounded
+pwsx3329 power 0.183 0.5 -> 0.428 Inexact Rounded
+pwsx3330 power 0.0183 0.5 -> 0.135 Inexact Rounded
+pwsx3331 power 0.184 0.5 -> 0.429 Inexact Rounded
+pwsx3332 power 0.0184 0.5 -> 0.136 Inexact Rounded
+pwsx3333 power 0.185 0.5 -> 0.430 Inexact Rounded
+pwsx3334 power 0.0185 0.5 -> 0.136 Inexact Rounded
+pwsx3335 power 0.186 0.5 -> 0.431 Inexact Rounded
+pwsx3336 power 0.0186 0.5 -> 0.136 Inexact Rounded
+pwsx3337 power 0.187 0.5 -> 0.432 Inexact Rounded
+pwsx3338 power 0.0187 0.5 -> 0.137 Inexact Rounded
+pwsx3339 power 0.188 0.5 -> 0.434 Inexact Rounded
+pwsx3340 power 0.0188 0.5 -> 0.137 Inexact Rounded
+pwsx3341 power 0.189 0.5 -> 0.435 Inexact Rounded
+pwsx3342 power 0.0189 0.5 -> 0.137 Inexact Rounded
+pwsx3343 power 0.191 0.5 -> 0.437 Inexact Rounded
+pwsx3344 power 0.0191 0.5 -> 0.138 Inexact Rounded
+pwsx3345 power 0.192 0.5 -> 0.438 Inexact Rounded
+pwsx3346 power 0.0192 0.5 -> 0.139 Inexact Rounded
+pwsx3347 power 0.193 0.5 -> 0.439 Inexact Rounded
+pwsx3348 power 0.0193 0.5 -> 0.139 Inexact Rounded
+pwsx3349 power 0.194 0.5 -> 0.440 Inexact Rounded
+pwsx3350 power 0.0194 0.5 -> 0.139 Inexact Rounded
+pwsx3351 power 0.195 0.5 -> 0.442 Inexact Rounded
+pwsx3352 power 0.0195 0.5 -> 0.140 Inexact Rounded
+pwsx3353 power 0.196 0.5 -> 0.443 Inexact Rounded
+pwsx3354 power 0.0196 0.5 -> 0.140 Inexact Rounded
+pwsx3355 power 0.197 0.5 -> 0.444 Inexact Rounded
+pwsx3356 power 0.0197 0.5 -> 0.140 Inexact Rounded
+pwsx3357 power 0.198 0.5 -> 0.445 Inexact Rounded
+pwsx3358 power 0.0198 0.5 -> 0.141 Inexact Rounded
+pwsx3359 power 0.199 0.5 -> 0.446 Inexact Rounded
+pwsx3360 power 0.0199 0.5 -> 0.141 Inexact Rounded
+pwsx3361 power 0.201 0.5 -> 0.448 Inexact Rounded
+pwsx3362 power 0.0201 0.5 -> 0.142 Inexact Rounded
+pwsx3363 power 0.202 0.5 -> 0.449 Inexact Rounded
+pwsx3364 power 0.0202 0.5 -> 0.142 Inexact Rounded
+pwsx3365 power 0.203 0.5 -> 0.451 Inexact Rounded
+pwsx3366 power 0.0203 0.5 -> 0.142 Inexact Rounded
+pwsx3367 power 0.204 0.5 -> 0.452 Inexact Rounded
+pwsx3368 power 0.0204 0.5 -> 0.143 Inexact Rounded
+pwsx3369 power 0.205 0.5 -> 0.453 Inexact Rounded
+pwsx3370 power 0.0205 0.5 -> 0.143 Inexact Rounded
+pwsx3371 power 0.206 0.5 -> 0.454 Inexact Rounded
+pwsx3372 power 0.0206 0.5 -> 0.144 Inexact Rounded
+pwsx3373 power 0.207 0.5 -> 0.455 Inexact Rounded
+pwsx3374 power 0.0207 0.5 -> 0.144 Inexact Rounded
+pwsx3375 power 0.208 0.5 -> 0.456 Inexact Rounded
+pwsx3376 power 0.0208 0.5 -> 0.144 Inexact Rounded
+pwsx3377 power 0.209 0.5 -> 0.457 Inexact Rounded
+pwsx3378 power 0.0209 0.5 -> 0.145 Inexact Rounded
+pwsx3379 power 0.211 0.5 -> 0.459 Inexact Rounded
+pwsx3380 power 0.0211 0.5 -> 0.145 Inexact Rounded
+pwsx3381 power 0.212 0.5 -> 0.460 Inexact Rounded
+pwsx3382 power 0.0212 0.5 -> 0.146 Inexact Rounded
+pwsx3383 power 0.213 0.5 -> 0.462 Inexact Rounded
+pwsx3384 power 0.0213 0.5 -> 0.146 Inexact Rounded
+pwsx3385 power 0.214 0.5 -> 0.463 Inexact Rounded
+pwsx3386 power 0.0214 0.5 -> 0.146 Inexact Rounded
+pwsx3387 power 0.215 0.5 -> 0.464 Inexact Rounded
+pwsx3388 power 0.0215 0.5 -> 0.147 Inexact Rounded
+pwsx3389 power 0.216 0.5 -> 0.465 Inexact Rounded
+pwsx3390 power 0.0216 0.5 -> 0.147 Inexact Rounded
+pwsx3391 power 0.217 0.5 -> 0.466 Inexact Rounded
+pwsx3392 power 0.0217 0.5 -> 0.147 Inexact Rounded
+pwsx3393 power 0.218 0.5 -> 0.467 Inexact Rounded
+pwsx3394 power 0.0218 0.5 -> 0.148 Inexact Rounded
+pwsx3395 power 0.219 0.5 -> 0.468 Inexact Rounded
+pwsx3396 power 0.0219 0.5 -> 0.148 Inexact Rounded
+pwsx3397 power 0.221 0.5 -> 0.470 Inexact Rounded
+pwsx3398 power 0.0221 0.5 -> 0.149 Inexact Rounded
+pwsx3399 power 0.222 0.5 -> 0.471 Inexact Rounded
+pwsx3400 power 0.0222 0.5 -> 0.149 Inexact Rounded
+pwsx3401 power 0.223 0.5 -> 0.472 Inexact Rounded
+pwsx3402 power 0.0223 0.5 -> 0.149 Inexact Rounded
+pwsx3403 power 0.224 0.5 -> 0.473 Inexact Rounded
+pwsx3404 power 0.0224 0.5 -> 0.150 Inexact Rounded
+pwsx3405 power 0.225 0.5 -> 0.474 Inexact Rounded
+pwsx3406 power 0.0225 0.5 -> 0.150 Inexact Rounded
+pwsx3407 power 0.226 0.5 -> 0.475 Inexact Rounded
+pwsx3408 power 0.0226 0.5 -> 0.150 Inexact Rounded
+pwsx3409 power 0.227 0.5 -> 0.476 Inexact Rounded
+pwsx3410 power 0.0227 0.5 -> 0.151 Inexact Rounded
+pwsx3411 power 0.228 0.5 -> 0.477 Inexact Rounded
+pwsx3412 power 0.0228 0.5 -> 0.151 Inexact Rounded
+pwsx3413 power 0.229 0.5 -> 0.479 Inexact Rounded
+pwsx3414 power 0.0229 0.5 -> 0.151 Inexact Rounded
+pwsx3415 power 0.231 0.5 -> 0.481 Inexact Rounded
+pwsx3416 power 0.0231 0.5 -> 0.152 Inexact Rounded
+pwsx3417 power 0.232 0.5 -> 0.482 Inexact Rounded
+pwsx3418 power 0.0232 0.5 -> 0.152 Inexact Rounded
+pwsx3419 power 0.233 0.5 -> 0.483 Inexact Rounded
+pwsx3420 power 0.0233 0.5 -> 0.153 Inexact Rounded
+pwsx3421 power 0.234 0.5 -> 0.484 Inexact Rounded
+pwsx3422 power 0.0234 0.5 -> 0.153 Inexact Rounded
+pwsx3423 power 0.235 0.5 -> 0.485 Inexact Rounded
+pwsx3424 power 0.0235 0.5 -> 0.153 Inexact Rounded
+pwsx3425 power 0.236 0.5 -> 0.486 Inexact Rounded
+pwsx3426 power 0.0236 0.5 -> 0.154 Inexact Rounded
+pwsx3427 power 0.237 0.5 -> 0.487 Inexact Rounded
+pwsx3428 power 0.0237 0.5 -> 0.154 Inexact Rounded
+pwsx3429 power 0.238 0.5 -> 0.488 Inexact Rounded
+pwsx3430 power 0.0238 0.5 -> 0.154 Inexact Rounded
+pwsx3431 power 0.239 0.5 -> 0.489 Inexact Rounded
+pwsx3432 power 0.0239 0.5 -> 0.155 Inexact Rounded
+pwsx3433 power 0.241 0.5 -> 0.491 Inexact Rounded
+pwsx3434 power 0.0241 0.5 -> 0.155 Inexact Rounded
+pwsx3435 power 0.242 0.5 -> 0.492 Inexact Rounded
+pwsx3436 power 0.0242 0.5 -> 0.156 Inexact Rounded
+pwsx3437 power 0.243 0.5 -> 0.493 Inexact Rounded
+pwsx3438 power 0.0243 0.5 -> 0.156 Inexact Rounded
+pwsx3439 power 0.244 0.5 -> 0.494 Inexact Rounded
+pwsx3440 power 0.0244 0.5 -> 0.156 Inexact Rounded
+pwsx3441 power 0.245 0.5 -> 0.495 Inexact Rounded
+pwsx3442 power 0.0245 0.5 -> 0.157 Inexact Rounded
+pwsx3443 power 0.246 0.5 -> 0.496 Inexact Rounded
+pwsx3444 power 0.0246 0.5 -> 0.157 Inexact Rounded
+pwsx3445 power 0.247 0.5 -> 0.497 Inexact Rounded
+pwsx3446 power 0.0247 0.5 -> 0.157 Inexact Rounded
+pwsx3447 power 0.248 0.5 -> 0.498 Inexact Rounded
+pwsx3448 power 0.0248 0.5 -> 0.157 Inexact Rounded
+pwsx3449 power 0.249 0.5 -> 0.499 Inexact Rounded
+pwsx3450 power 0.0249 0.5 -> 0.158 Inexact Rounded
+pwsx3451 power 0.251 0.5 -> 0.501 Inexact Rounded
+pwsx3452 power 0.0251 0.5 -> 0.158 Inexact Rounded
+pwsx3453 power 0.252 0.5 -> 0.502 Inexact Rounded
+pwsx3454 power 0.0252 0.5 -> 0.159 Inexact Rounded
+pwsx3455 power 0.253 0.5 -> 0.503 Inexact Rounded
+pwsx3456 power 0.0253 0.5 -> 0.159 Inexact Rounded
+pwsx3457 power 0.254 0.5 -> 0.504 Inexact Rounded
+pwsx3458 power 0.0254 0.5 -> 0.159 Inexact Rounded
+pwsx3459 power 0.255 0.5 -> 0.505 Inexact Rounded
+pwsx3460 power 0.0255 0.5 -> 0.160 Inexact Rounded
+pwsx3461 power 0.256 0.5 -> 0.506 Inexact Rounded
+pwsx3462 power 0.0256 0.5 -> 0.160 Inexact Rounded
+pwsx3463 power 0.257 0.5 -> 0.507 Inexact Rounded
+pwsx3464 power 0.0257 0.5 -> 0.160 Inexact Rounded
+pwsx3465 power 0.258 0.5 -> 0.508 Inexact Rounded
+pwsx3466 power 0.0258 0.5 -> 0.161 Inexact Rounded
+pwsx3467 power 0.259 0.5 -> 0.509 Inexact Rounded
+pwsx3468 power 0.0259 0.5 -> 0.161 Inexact Rounded
+pwsx3469 power 0.261 0.5 -> 0.511 Inexact Rounded
+pwsx3470 power 0.0261 0.5 -> 0.162 Inexact Rounded
+pwsx3471 power 0.262 0.5 -> 0.512 Inexact Rounded
+pwsx3472 power 0.0262 0.5 -> 0.162 Inexact Rounded
+pwsx3473 power 0.263 0.5 -> 0.513 Inexact Rounded
+pwsx3474 power 0.0263 0.5 -> 0.162 Inexact Rounded
+pwsx3475 power 0.264 0.5 -> 0.514 Inexact Rounded
+pwsx3476 power 0.0264 0.5 -> 0.162 Inexact Rounded
+pwsx3477 power 0.265 0.5 -> 0.515 Inexact Rounded
+pwsx3478 power 0.0265 0.5 -> 0.163 Inexact Rounded
+pwsx3479 power 0.266 0.5 -> 0.516 Inexact Rounded
+pwsx3480 power 0.0266 0.5 -> 0.163 Inexact Rounded
+pwsx3481 power 0.267 0.5 -> 0.517 Inexact Rounded
+pwsx3482 power 0.0267 0.5 -> 0.163 Inexact Rounded
+pwsx3483 power 0.268 0.5 -> 0.518 Inexact Rounded
+pwsx3484 power 0.0268 0.5 -> 0.164 Inexact Rounded
+pwsx3485 power 0.269 0.5 -> 0.519 Inexact Rounded
+pwsx3486 power 0.0269 0.5 -> 0.164 Inexact Rounded
+pwsx3487 power 0.271 0.5 -> 0.521 Inexact Rounded
+pwsx3488 power 0.0271 0.5 -> 0.165 Inexact Rounded
+pwsx3489 power 0.272 0.5 -> 0.522 Inexact Rounded
+pwsx3490 power 0.0272 0.5 -> 0.165 Inexact Rounded
+pwsx3491 power 0.273 0.5 -> 0.522 Inexact Rounded
+pwsx3492 power 0.0273 0.5 -> 0.165 Inexact Rounded
+pwsx3493 power 0.274 0.5 -> 0.523 Inexact Rounded
+pwsx3494 power 0.0274 0.5 -> 0.166 Inexact Rounded
+pwsx3495 power 0.275 0.5 -> 0.524 Inexact Rounded
+pwsx3496 power 0.0275 0.5 -> 0.166 Inexact Rounded
+pwsx3497 power 0.276 0.5 -> 0.525 Inexact Rounded
+pwsx3498 power 0.0276 0.5 -> 0.166 Inexact Rounded
+pwsx3499 power 0.277 0.5 -> 0.526 Inexact Rounded
+pwsx3500 power 0.0277 0.5 -> 0.166 Inexact Rounded
+pwsx3501 power 0.278 0.5 -> 0.527 Inexact Rounded
+pwsx3502 power 0.0278 0.5 -> 0.167 Inexact Rounded
+pwsx3503 power 0.279 0.5 -> 0.528 Inexact Rounded
+pwsx3504 power 0.0279 0.5 -> 0.167 Inexact Rounded
+pwsx3505 power 0.281 0.5 -> 0.530 Inexact Rounded
+pwsx3506 power 0.0281 0.5 -> 0.168 Inexact Rounded
+pwsx3507 power 0.282 0.5 -> 0.531 Inexact Rounded
+pwsx3508 power 0.0282 0.5 -> 0.168 Inexact Rounded
+pwsx3509 power 0.283 0.5 -> 0.532 Inexact Rounded
+pwsx3510 power 0.0283 0.5 -> 0.168 Inexact Rounded
+pwsx3511 power 0.284 0.5 -> 0.533 Inexact Rounded
+pwsx3512 power 0.0284 0.5 -> 0.169 Inexact Rounded
+pwsx3513 power 0.285 0.5 -> 0.534 Inexact Rounded
+pwsx3514 power 0.0285 0.5 -> 0.169 Inexact Rounded
+pwsx3515 power 0.286 0.5 -> 0.535 Inexact Rounded
+pwsx3516 power 0.0286 0.5 -> 0.169 Inexact Rounded
+pwsx3517 power 0.287 0.5 -> 0.536 Inexact Rounded
+pwsx3518 power 0.0287 0.5 -> 0.169 Inexact Rounded
+pwsx3519 power 0.288 0.5 -> 0.537 Inexact Rounded
+pwsx3520 power 0.0288 0.5 -> 0.170 Inexact Rounded
+pwsx3521 power 0.289 0.5 -> 0.538 Inexact Rounded
+pwsx3522 power 0.0289 0.5 -> 0.170 Inexact Rounded
+pwsx3523 power 0.291 0.5 -> 0.539 Inexact Rounded
+pwsx3524 power 0.0291 0.5 -> 0.171 Inexact Rounded
+pwsx3525 power 0.292 0.5 -> 0.540 Inexact Rounded
+pwsx3526 power 0.0292 0.5 -> 0.171 Inexact Rounded
+pwsx3527 power 0.293 0.5 -> 0.541 Inexact Rounded
+pwsx3528 power 0.0293 0.5 -> 0.171 Inexact Rounded
+pwsx3529 power 0.294 0.5 -> 0.542 Inexact Rounded
+pwsx3530 power 0.0294 0.5 -> 0.171 Inexact Rounded
+pwsx3531 power 0.295 0.5 -> 0.543 Inexact Rounded
+pwsx3532 power 0.0295 0.5 -> 0.172 Inexact Rounded
+pwsx3533 power 0.296 0.5 -> 0.544 Inexact Rounded
+pwsx3534 power 0.0296 0.5 -> 0.172 Inexact Rounded
+pwsx3535 power 0.297 0.5 -> 0.545 Inexact Rounded
+pwsx3536 power 0.0297 0.5 -> 0.172 Inexact Rounded
+pwsx3537 power 0.298 0.5 -> 0.546 Inexact Rounded
+pwsx3538 power 0.0298 0.5 -> 0.173 Inexact Rounded
+pwsx3539 power 0.299 0.5 -> 0.547 Inexact Rounded
+pwsx3540 power 0.0299 0.5 -> 0.173 Inexact Rounded
+pwsx3541 power 0.301 0.5 -> 0.549 Inexact Rounded
+pwsx3542 power 0.0301 0.5 -> 0.173 Inexact Rounded
+pwsx3543 power 0.302 0.5 -> 0.550 Inexact Rounded
+pwsx3544 power 0.0302 0.5 -> 0.174 Inexact Rounded
+pwsx3545 power 0.303 0.5 -> 0.550 Inexact Rounded
+pwsx3546 power 0.0303 0.5 -> 0.174 Inexact Rounded
+pwsx3547 power 0.304 0.5 -> 0.551 Inexact Rounded
+pwsx3548 power 0.0304 0.5 -> 0.174 Inexact Rounded
+pwsx3549 power 0.305 0.5 -> 0.552 Inexact Rounded
+pwsx3550 power 0.0305 0.5 -> 0.175 Inexact Rounded
+pwsx3551 power 0.306 0.5 -> 0.553 Inexact Rounded
+pwsx3552 power 0.0306 0.5 -> 0.175 Inexact Rounded
+pwsx3553 power 0.307 0.5 -> 0.554 Inexact Rounded
+pwsx3554 power 0.0307 0.5 -> 0.175 Inexact Rounded
+pwsx3555 power 0.308 0.5 -> 0.555 Inexact Rounded
+pwsx3556 power 0.0308 0.5 -> 0.175 Inexact Rounded
+pwsx3557 power 0.309 0.5 -> 0.556 Inexact Rounded
+pwsx3558 power 0.0309 0.5 -> 0.176 Inexact Rounded
+pwsx3559 power 0.311 0.5 -> 0.558 Inexact Rounded
+pwsx3560 power 0.0311 0.5 -> 0.176 Inexact Rounded
+pwsx3561 power 0.312 0.5 -> 0.559 Inexact Rounded
+pwsx3562 power 0.0312 0.5 -> 0.177 Inexact Rounded
+pwsx3563 power 0.313 0.5 -> 0.559 Inexact Rounded
+pwsx3564 power 0.0313 0.5 -> 0.177 Inexact Rounded
+pwsx3565 power 0.314 0.5 -> 0.560 Inexact Rounded
+pwsx3566 power 0.0314 0.5 -> 0.177 Inexact Rounded
+pwsx3567 power 0.315 0.5 -> 0.561 Inexact Rounded
+pwsx3568 power 0.0315 0.5 -> 0.177 Inexact Rounded
+pwsx3569 power 0.316 0.5 -> 0.562 Inexact Rounded
+pwsx3570 power 0.0316 0.5 -> 0.178 Inexact Rounded
+pwsx3571 power 0.317 0.5 -> 0.563 Inexact Rounded
+pwsx3572 power 0.0317 0.5 -> 0.178 Inexact Rounded
+pwsx3573 power 0.318 0.5 -> 0.564 Inexact Rounded
+pwsx3574 power 0.0318 0.5 -> 0.178 Inexact Rounded
+pwsx3575 power 0.319 0.5 -> 0.565 Inexact Rounded
+pwsx3576 power 0.0319 0.5 -> 0.179 Inexact Rounded
+pwsx3577 power 0.321 0.5 -> 0.567 Inexact Rounded
+pwsx3578 power 0.0321 0.5 -> 0.179 Inexact Rounded
+pwsx3579 power 0.322 0.5 -> 0.567 Inexact Rounded
+pwsx3580 power 0.0322 0.5 -> 0.179 Inexact Rounded
+pwsx3581 power 0.323 0.5 -> 0.568 Inexact Rounded
+pwsx3582 power 0.0323 0.5 -> 0.180 Inexact Rounded
+pwsx3583 power 0.324 0.5 -> 0.569 Inexact Rounded
+pwsx3584 power 0.0324 0.5 -> 0.180 Inexact Rounded
+pwsx3585 power 0.325 0.5 -> 0.570 Inexact Rounded
+pwsx3586 power 0.0325 0.5 -> 0.180 Inexact Rounded
+pwsx3587 power 0.326 0.5 -> 0.571 Inexact Rounded
+pwsx3588 power 0.0326 0.5 -> 0.181 Inexact Rounded
+pwsx3589 power 0.327 0.5 -> 0.572 Inexact Rounded
+pwsx3590 power 0.0327 0.5 -> 0.181 Inexact Rounded
+pwsx3591 power 0.328 0.5 -> 0.573 Inexact Rounded
+pwsx3592 power 0.0328 0.5 -> 0.181 Inexact Rounded
+pwsx3593 power 0.329 0.5 -> 0.574 Inexact Rounded
+pwsx3594 power 0.0329 0.5 -> 0.181 Inexact Rounded
+pwsx3595 power 0.331 0.5 -> 0.575 Inexact Rounded
+pwsx3596 power 0.0331 0.5 -> 0.182 Inexact Rounded
+pwsx3597 power 0.332 0.5 -> 0.576 Inexact Rounded
+pwsx3598 power 0.0332 0.5 -> 0.182 Inexact Rounded
+pwsx3599 power 0.333 0.5 -> 0.577 Inexact Rounded
+pwsx3600 power 0.0333 0.5 -> 0.182 Inexact Rounded
+pwsx3601 power 0.334 0.5 -> 0.578 Inexact Rounded
+pwsx3602 power 0.0334 0.5 -> 0.183 Inexact Rounded
+pwsx3603 power 0.335 0.5 -> 0.579 Inexact Rounded
+pwsx3604 power 0.0335 0.5 -> 0.183 Inexact Rounded
+pwsx3605 power 0.336 0.5 -> 0.580 Inexact Rounded
+pwsx3606 power 0.0336 0.5 -> 0.183 Inexact Rounded
+pwsx3607 power 0.337 0.5 -> 0.581 Inexact Rounded
+pwsx3608 power 0.0337 0.5 -> 0.184 Inexact Rounded
+pwsx3609 power 0.338 0.5 -> 0.581 Inexact Rounded
+pwsx3610 power 0.0338 0.5 -> 0.184 Inexact Rounded
+pwsx3611 power 0.339 0.5 -> 0.582 Inexact Rounded
+pwsx3612 power 0.0339 0.5 -> 0.184 Inexact Rounded
+pwsx3613 power 0.341 0.5 -> 0.584 Inexact Rounded
+pwsx3614 power 0.0341 0.5 -> 0.185 Inexact Rounded
+pwsx3615 power 0.342 0.5 -> 0.585 Inexact Rounded
+pwsx3616 power 0.0342 0.5 -> 0.185 Inexact Rounded
+pwsx3617 power 0.343 0.5 -> 0.586 Inexact Rounded
+pwsx3618 power 0.0343 0.5 -> 0.185 Inexact Rounded
+pwsx3619 power 0.344 0.5 -> 0.587 Inexact Rounded
+pwsx3620 power 0.0344 0.5 -> 0.185 Inexact Rounded
+pwsx3621 power 0.345 0.5 -> 0.587 Inexact Rounded
+pwsx3622 power 0.0345 0.5 -> 0.186 Inexact Rounded
+pwsx3623 power 0.346 0.5 -> 0.588 Inexact Rounded
+pwsx3624 power 0.0346 0.5 -> 0.186 Inexact Rounded
+pwsx3625 power 0.347 0.5 -> 0.589 Inexact Rounded
+pwsx3626 power 0.0347 0.5 -> 0.186 Inexact Rounded
+pwsx3627 power 0.348 0.5 -> 0.590 Inexact Rounded
+pwsx3628 power 0.0348 0.5 -> 0.187 Inexact Rounded
+pwsx3629 power 0.349 0.5 -> 0.591 Inexact Rounded
+pwsx3630 power 0.0349 0.5 -> 0.187 Inexact Rounded
+pwsx3631 power 0.351 0.5 -> 0.592 Inexact Rounded
+pwsx3632 power 0.0351 0.5 -> 0.187 Inexact Rounded
+pwsx3633 power 0.352 0.5 -> 0.593 Inexact Rounded
+pwsx3634 power 0.0352 0.5 -> 0.188 Inexact Rounded
+pwsx3635 power 0.353 0.5 -> 0.594 Inexact Rounded
+pwsx3636 power 0.0353 0.5 -> 0.188 Inexact Rounded
+pwsx3637 power 0.354 0.5 -> 0.595 Inexact Rounded
+pwsx3638 power 0.0354 0.5 -> 0.188 Inexact Rounded
+pwsx3639 power 0.355 0.5 -> 0.596 Inexact Rounded
+pwsx3640 power 0.0355 0.5 -> 0.188 Inexact Rounded
+pwsx3641 power 0.356 0.5 -> 0.597 Inexact Rounded
+pwsx3642 power 0.0356 0.5 -> 0.189 Inexact Rounded
+pwsx3643 power 0.357 0.5 -> 0.597 Inexact Rounded
+pwsx3644 power 0.0357 0.5 -> 0.189 Inexact Rounded
+pwsx3645 power 0.358 0.5 -> 0.598 Inexact Rounded
+pwsx3646 power 0.0358 0.5 -> 0.189 Inexact Rounded
+pwsx3647 power 0.359 0.5 -> 0.599 Inexact Rounded
+pwsx3648 power 0.0359 0.5 -> 0.189 Inexact Rounded
+pwsx3649 power 0.361 0.5 -> 0.601 Inexact Rounded
+pwsx3650 power 0.0361 0.5 -> 0.190 Inexact Rounded
+pwsx3651 power 0.362 0.5 -> 0.602 Inexact Rounded
+pwsx3652 power 0.0362 0.5 -> 0.190 Inexact Rounded
+pwsx3653 power 0.363 0.5 -> 0.602 Inexact Rounded
+pwsx3654 power 0.0363 0.5 -> 0.191 Inexact Rounded
+pwsx3655 power 0.364 0.5 -> 0.603 Inexact Rounded
+pwsx3656 power 0.0364 0.5 -> 0.191 Inexact Rounded
+pwsx3657 power 0.365 0.5 -> 0.604 Inexact Rounded
+pwsx3658 power 0.0365 0.5 -> 0.191 Inexact Rounded
+pwsx3659 power 0.366 0.5 -> 0.605 Inexact Rounded
+pwsx3660 power 0.0366 0.5 -> 0.191 Inexact Rounded
+pwsx3661 power 0.367 0.5 -> 0.606 Inexact Rounded
+pwsx3662 power 0.0367 0.5 -> 0.192 Inexact Rounded
+pwsx3663 power 0.368 0.5 -> 0.607 Inexact Rounded
+pwsx3664 power 0.0368 0.5 -> 0.192 Inexact Rounded
+pwsx3665 power 0.369 0.5 -> 0.607 Inexact Rounded
+pwsx3666 power 0.0369 0.5 -> 0.192 Inexact Rounded
+pwsx3667 power 0.371 0.5 -> 0.609 Inexact Rounded
+pwsx3668 power 0.0371 0.5 -> 0.193 Inexact Rounded
+pwsx3669 power 0.372 0.5 -> 0.610 Inexact Rounded
+pwsx3670 power 0.0372 0.5 -> 0.193 Inexact Rounded
+pwsx3671 power 0.373 0.5 -> 0.611 Inexact Rounded
+pwsx3672 power 0.0373 0.5 -> 0.193 Inexact Rounded
+pwsx3673 power 0.374 0.5 -> 0.612 Inexact Rounded
+pwsx3674 power 0.0374 0.5 -> 0.193 Inexact Rounded
+pwsx3675 power 0.375 0.5 -> 0.612 Inexact Rounded
+pwsx3676 power 0.0375 0.5 -> 0.194 Inexact Rounded
+pwsx3677 power 0.376 0.5 -> 0.613 Inexact Rounded
+pwsx3678 power 0.0376 0.5 -> 0.194 Inexact Rounded
+pwsx3679 power 0.377 0.5 -> 0.614 Inexact Rounded
+pwsx3680 power 0.0377 0.5 -> 0.194 Inexact Rounded
+pwsx3681 power 0.378 0.5 -> 0.615 Inexact Rounded
+pwsx3682 power 0.0378 0.5 -> 0.194 Inexact Rounded
+pwsx3683 power 0.379 0.5 -> 0.616 Inexact Rounded
+pwsx3684 power 0.0379 0.5 -> 0.195 Inexact Rounded
+pwsx3685 power 0.381 0.5 -> 0.617 Inexact Rounded
+pwsx3686 power 0.0381 0.5 -> 0.195 Inexact Rounded
+pwsx3687 power 0.382 0.5 -> 0.618 Inexact Rounded
+pwsx3688 power 0.0382 0.5 -> 0.195 Inexact Rounded
+pwsx3689 power 0.383 0.5 -> 0.619 Inexact Rounded
+pwsx3690 power 0.0383 0.5 -> 0.196 Inexact Rounded
+pwsx3691 power 0.384 0.5 -> 0.620 Inexact Rounded
+pwsx3692 power 0.0384 0.5 -> 0.196 Inexact Rounded
+pwsx3693 power 0.385 0.5 -> 0.620 Inexact Rounded
+pwsx3694 power 0.0385 0.5 -> 0.196 Inexact Rounded
+pwsx3695 power 0.386 0.5 -> 0.621 Inexact Rounded
+pwsx3696 power 0.0386 0.5 -> 0.196 Inexact Rounded
+pwsx3697 power 0.387 0.5 -> 0.622 Inexact Rounded
+pwsx3698 power 0.0387 0.5 -> 0.197 Inexact Rounded
+pwsx3699 power 0.388 0.5 -> 0.623 Inexact Rounded
+pwsx3700 power 0.0388 0.5 -> 0.197 Inexact Rounded
+pwsx3701 power 0.389 0.5 -> 0.624 Inexact Rounded
+pwsx3702 power 0.0389 0.5 -> 0.197 Inexact Rounded
+pwsx3703 power 0.391 0.5 -> 0.625 Inexact Rounded
+pwsx3704 power 0.0391 0.5 -> 0.198 Inexact Rounded
+pwsx3705 power 0.392 0.5 -> 0.626 Inexact Rounded
+pwsx3706 power 0.0392 0.5 -> 0.198 Inexact Rounded
+pwsx3707 power 0.393 0.5 -> 0.627 Inexact Rounded
+pwsx3708 power 0.0393 0.5 -> 0.198 Inexact Rounded
+pwsx3709 power 0.394 0.5 -> 0.628 Inexact Rounded
+pwsx3710 power 0.0394 0.5 -> 0.198 Inexact Rounded
+pwsx3711 power 0.395 0.5 -> 0.628 Inexact Rounded
+pwsx3712 power 0.0395 0.5 -> 0.199 Inexact Rounded
+pwsx3713 power 0.396 0.5 -> 0.629 Inexact Rounded
+pwsx3714 power 0.0396 0.5 -> 0.199 Inexact Rounded
+pwsx3715 power 0.397 0.5 -> 0.630 Inexact Rounded
+pwsx3716 power 0.0397 0.5 -> 0.199 Inexact Rounded
+pwsx3717 power 0.398 0.5 -> 0.631 Inexact Rounded
+pwsx3718 power 0.0398 0.5 -> 0.199 Inexact Rounded
+pwsx3719 power 0.399 0.5 -> 0.632 Inexact Rounded
+pwsx3720 power 0.0399 0.5 -> 0.200 Inexact Rounded
+pwsx3721 power 0.401 0.5 -> 0.633 Inexact Rounded
+pwsx3722 power 0.0401 0.5 -> 0.200 Inexact Rounded
+pwsx3723 power 0.402 0.5 -> 0.634 Inexact Rounded
+pwsx3724 power 0.0402 0.5 -> 0.200 Inexact Rounded
+pwsx3725 power 0.403 0.5 -> 0.635 Inexact Rounded
+pwsx3726 power 0.0403 0.5 -> 0.201 Inexact Rounded
+pwsx3727 power 0.404 0.5 -> 0.636 Inexact Rounded
+pwsx3728 power 0.0404 0.5 -> 0.201 Inexact Rounded
+pwsx3729 power 0.405 0.5 -> 0.636 Inexact Rounded
+pwsx3730 power 0.0405 0.5 -> 0.201 Inexact Rounded
+pwsx3731 power 0.406 0.5 -> 0.637 Inexact Rounded
+pwsx3732 power 0.0406 0.5 -> 0.201 Inexact Rounded
+pwsx3733 power 0.407 0.5 -> 0.638 Inexact Rounded
+pwsx3734 power 0.0407 0.5 -> 0.202 Inexact Rounded
+pwsx3735 power 0.408 0.5 -> 0.639 Inexact Rounded
+pwsx3736 power 0.0408 0.5 -> 0.202 Inexact Rounded
+pwsx3737 power 0.409 0.5 -> 0.640 Inexact Rounded
+pwsx3738 power 0.0409 0.5 -> 0.202 Inexact Rounded
+pwsx3739 power 0.411 0.5 -> 0.641 Inexact Rounded
+pwsx3740 power 0.0411 0.5 -> 0.203 Inexact Rounded
+pwsx3741 power 0.412 0.5 -> 0.642 Inexact Rounded
+pwsx3742 power 0.0412 0.5 -> 0.203 Inexact Rounded
+pwsx3743 power 0.413 0.5 -> 0.643 Inexact Rounded
+pwsx3744 power 0.0413 0.5 -> 0.203 Inexact Rounded
+pwsx3745 power 0.414 0.5 -> 0.643 Inexact Rounded
+pwsx3746 power 0.0414 0.5 -> 0.203 Inexact Rounded
+pwsx3747 power 0.415 0.5 -> 0.644 Inexact Rounded
+pwsx3748 power 0.0415 0.5 -> 0.204 Inexact Rounded
+pwsx3749 power 0.416 0.5 -> 0.645 Inexact Rounded
+pwsx3750 power 0.0416 0.5 -> 0.204 Inexact Rounded
+pwsx3751 power 0.417 0.5 -> 0.646 Inexact Rounded
+pwsx3752 power 0.0417 0.5 -> 0.204 Inexact Rounded
+pwsx3753 power 0.418 0.5 -> 0.647 Inexact Rounded
+pwsx3754 power 0.0418 0.5 -> 0.204 Inexact Rounded
+pwsx3755 power 0.419 0.5 -> 0.647 Inexact Rounded
+pwsx3756 power 0.0419 0.5 -> 0.205 Inexact Rounded
+pwsx3757 power 0.421 0.5 -> 0.649 Inexact Rounded
+pwsx3758 power 0.0421 0.5 -> 0.205 Inexact Rounded
+pwsx3759 power 0.422 0.5 -> 0.650 Inexact Rounded
+pwsx3760 power 0.0422 0.5 -> 0.205 Inexact Rounded
+pwsx3761 power 0.423 0.5 -> 0.650 Inexact Rounded
+pwsx3762 power 0.0423 0.5 -> 0.206 Inexact Rounded
+pwsx3763 power 0.424 0.5 -> 0.651 Inexact Rounded
+pwsx3764 power 0.0424 0.5 -> 0.206 Inexact Rounded
+pwsx3765 power 0.425 0.5 -> 0.652 Inexact Rounded
+pwsx3766 power 0.0425 0.5 -> 0.206 Inexact Rounded
+pwsx3767 power 0.426 0.5 -> 0.653 Inexact Rounded
+pwsx3768 power 0.0426 0.5 -> 0.206 Inexact Rounded
+pwsx3769 power 0.427 0.5 -> 0.653 Inexact Rounded
+pwsx3770 power 0.0427 0.5 -> 0.207 Inexact Rounded
+pwsx3771 power 0.428 0.5 -> 0.654 Inexact Rounded
+pwsx3772 power 0.0428 0.5 -> 0.207 Inexact Rounded
+pwsx3773 power 0.429 0.5 -> 0.655 Inexact Rounded
+pwsx3774 power 0.0429 0.5 -> 0.207 Inexact Rounded
+pwsx3775 power 0.431 0.5 -> 0.657 Inexact Rounded
+pwsx3776 power 0.0431 0.5 -> 0.208 Inexact Rounded
+pwsx3777 power 0.432 0.5 -> 0.657 Inexact Rounded
+pwsx3778 power 0.0432 0.5 -> 0.208 Inexact Rounded
+pwsx3779 power 0.433 0.5 -> 0.658 Inexact Rounded
+pwsx3780 power 0.0433 0.5 -> 0.208 Inexact Rounded
+pwsx3781 power 0.434 0.5 -> 0.659 Inexact Rounded
+pwsx3782 power 0.0434 0.5 -> 0.208 Inexact Rounded
+pwsx3783 power 0.435 0.5 -> 0.660 Inexact Rounded
+pwsx3784 power 0.0435 0.5 -> 0.209 Inexact Rounded
+pwsx3785 power 0.436 0.5 -> 0.660 Inexact Rounded
+pwsx3786 power 0.0436 0.5 -> 0.209 Inexact Rounded
+pwsx3787 power 0.437 0.5 -> 0.661 Inexact Rounded
+pwsx3788 power 0.0437 0.5 -> 0.209 Inexact Rounded
+pwsx3789 power 0.438 0.5 -> 0.662 Inexact Rounded
+pwsx3790 power 0.0438 0.5 -> 0.209 Inexact Rounded
+pwsx3791 power 0.439 0.5 -> 0.663 Inexact Rounded
+pwsx3792 power 0.0439 0.5 -> 0.210 Inexact Rounded
+pwsx3793 power 0.441 0.5 -> 0.664 Inexact Rounded
+pwsx3794 power 0.0441 0.5 -> 0.210 Inexact Rounded
+pwsx3795 power 0.442 0.5 -> 0.665 Inexact Rounded
+pwsx3796 power 0.0442 0.5 -> 0.210 Inexact Rounded
+pwsx3797 power 0.443 0.5 -> 0.666 Inexact Rounded
+pwsx3798 power 0.0443 0.5 -> 0.210 Inexact Rounded
+pwsx3799 power 0.444 0.5 -> 0.666 Inexact Rounded
+pwsx3800 power 0.0444 0.5 -> 0.211 Inexact Rounded
+pwsx3801 power 0.445 0.5 -> 0.667 Inexact Rounded
+pwsx3802 power 0.0445 0.5 -> 0.211 Inexact Rounded
+pwsx3803 power 0.446 0.5 -> 0.668 Inexact Rounded
+pwsx3804 power 0.0446 0.5 -> 0.211 Inexact Rounded
+pwsx3805 power 0.447 0.5 -> 0.669 Inexact Rounded
+pwsx3806 power 0.0447 0.5 -> 0.211 Inexact Rounded
+pwsx3807 power 0.448 0.5 -> 0.669 Inexact Rounded
+pwsx3808 power 0.0448 0.5 -> 0.212 Inexact Rounded
+pwsx3809 power 0.449 0.5 -> 0.670 Inexact Rounded
+pwsx3810 power 0.0449 0.5 -> 0.212 Inexact Rounded
+pwsx3811 power 0.451 0.5 -> 0.672 Inexact Rounded
+pwsx3812 power 0.0451 0.5 -> 0.212 Inexact Rounded
+pwsx3813 power 0.452 0.5 -> 0.672 Inexact Rounded
+pwsx3814 power 0.0452 0.5 -> 0.213 Inexact Rounded
+pwsx3815 power 0.453 0.5 -> 0.673 Inexact Rounded
+pwsx3816 power 0.0453 0.5 -> 0.213 Inexact Rounded
+pwsx3817 power 0.454 0.5 -> 0.674 Inexact Rounded
+pwsx3818 power 0.0454 0.5 -> 0.213 Inexact Rounded
+pwsx3819 power 0.455 0.5 -> 0.675 Inexact Rounded
+pwsx3820 power 0.0455 0.5 -> 0.213 Inexact Rounded
+pwsx3821 power 0.456 0.5 -> 0.675 Inexact Rounded
+pwsx3822 power 0.0456 0.5 -> 0.214 Inexact Rounded
+pwsx3823 power 0.457 0.5 -> 0.676 Inexact Rounded
+pwsx3824 power 0.0457 0.5 -> 0.214 Inexact Rounded
+pwsx3825 power 0.458 0.5 -> 0.677 Inexact Rounded
+pwsx3826 power 0.0458 0.5 -> 0.214 Inexact Rounded
+pwsx3827 power 0.459 0.5 -> 0.677 Inexact Rounded
+pwsx3828 power 0.0459 0.5 -> 0.214 Inexact Rounded
+pwsx3829 power 0.461 0.5 -> 0.679 Inexact Rounded
+pwsx3830 power 0.0461 0.5 -> 0.215 Inexact Rounded
+pwsx3831 power 0.462 0.5 -> 0.680 Inexact Rounded
+pwsx3832 power 0.0462 0.5 -> 0.215 Inexact Rounded
+pwsx3833 power 0.463 0.5 -> 0.680 Inexact Rounded
+pwsx3834 power 0.0463 0.5 -> 0.215 Inexact Rounded
+pwsx3835 power 0.464 0.5 -> 0.681 Inexact Rounded
+pwsx3836 power 0.0464 0.5 -> 0.215 Inexact Rounded
+pwsx3837 power 0.465 0.5 -> 0.682 Inexact Rounded
+pwsx3838 power 0.0465 0.5 -> 0.216 Inexact Rounded
+pwsx3839 power 0.466 0.5 -> 0.683 Inexact Rounded
+pwsx3840 power 0.0466 0.5 -> 0.216 Inexact Rounded
+pwsx3841 power 0.467 0.5 -> 0.683 Inexact Rounded
+pwsx3842 power 0.0467 0.5 -> 0.216 Inexact Rounded
+pwsx3843 power 0.468 0.5 -> 0.684 Inexact Rounded
+pwsx3844 power 0.0468 0.5 -> 0.216 Inexact Rounded
+pwsx3845 power 0.469 0.5 -> 0.685 Inexact Rounded
+pwsx3846 power 0.0469 0.5 -> 0.217 Inexact Rounded
+pwsx3847 power 0.471 0.5 -> 0.686 Inexact Rounded
+pwsx3848 power 0.0471 0.5 -> 0.217 Inexact Rounded
+pwsx3849 power 0.472 0.5 -> 0.687 Inexact Rounded
+pwsx3850 power 0.0472 0.5 -> 0.217 Inexact Rounded
+pwsx3851 power 0.473 0.5 -> 0.688 Inexact Rounded
+pwsx3852 power 0.0473 0.5 -> 0.217 Inexact Rounded
+pwsx3853 power 0.474 0.5 -> 0.688 Inexact Rounded
+pwsx3854 power 0.0474 0.5 -> 0.218 Inexact Rounded
+pwsx3855 power 0.475 0.5 -> 0.689 Inexact Rounded
+pwsx3856 power 0.0475 0.5 -> 0.218 Inexact Rounded
+pwsx3857 power 0.476 0.5 -> 0.690 Inexact Rounded
+pwsx3858 power 0.0476 0.5 -> 0.218 Inexact Rounded
+pwsx3859 power 0.477 0.5 -> 0.691 Inexact Rounded
+pwsx3860 power 0.0477 0.5 -> 0.218 Inexact Rounded
+pwsx3861 power 0.478 0.5 -> 0.691 Inexact Rounded
+pwsx3862 power 0.0478 0.5 -> 0.219 Inexact Rounded
+pwsx3863 power 0.479 0.5 -> 0.692 Inexact Rounded
+pwsx3864 power 0.0479 0.5 -> 0.219 Inexact Rounded
+pwsx3865 power 0.481 0.5 -> 0.694 Inexact Rounded
+pwsx3866 power 0.0481 0.5 -> 0.219 Inexact Rounded
+pwsx3867 power 0.482 0.5 -> 0.694 Inexact Rounded
+pwsx3868 power 0.0482 0.5 -> 0.220 Inexact Rounded
+pwsx3869 power 0.483 0.5 -> 0.695 Inexact Rounded
+pwsx3870 power 0.0483 0.5 -> 0.220 Inexact Rounded
+pwsx3871 power 0.484 0.5 -> 0.696 Inexact Rounded
+pwsx3872 power 0.0484 0.5 -> 0.220 Inexact Rounded
+pwsx3873 power 0.485 0.5 -> 0.696 Inexact Rounded
+pwsx3874 power 0.0485 0.5 -> 0.220 Inexact Rounded
+pwsx3875 power 0.486 0.5 -> 0.697 Inexact Rounded
+pwsx3876 power 0.0486 0.5 -> 0.220 Inexact Rounded
+pwsx3877 power 0.487 0.5 -> 0.698 Inexact Rounded
+pwsx3878 power 0.0487 0.5 -> 0.221 Inexact Rounded
+pwsx3879 power 0.488 0.5 -> 0.699 Inexact Rounded
+pwsx3880 power 0.0488 0.5 -> 0.221 Inexact Rounded
+pwsx3881 power 0.489 0.5 -> 0.699 Inexact Rounded
+pwsx3882 power 0.0489 0.5 -> 0.221 Inexact Rounded
+pwsx3883 power 0.491 0.5 -> 0.701 Inexact Rounded
+pwsx3884 power 0.0491 0.5 -> 0.222 Inexact Rounded
+pwsx3885 power 0.492 0.5 -> 0.701 Inexact Rounded
+pwsx3886 power 0.0492 0.5 -> 0.222 Inexact Rounded
+pwsx3887 power 0.493 0.5 -> 0.702 Inexact Rounded
+pwsx3888 power 0.0493 0.5 -> 0.222 Inexact Rounded
+pwsx3889 power 0.494 0.5 -> 0.703 Inexact Rounded
+pwsx3890 power 0.0494 0.5 -> 0.222 Inexact Rounded
+pwsx3891 power 0.495 0.5 -> 0.704 Inexact Rounded
+pwsx3892 power 0.0495 0.5 -> 0.222 Inexact Rounded
+pwsx3893 power 0.496 0.5 -> 0.704 Inexact Rounded
+pwsx3894 power 0.0496 0.5 -> 0.223 Inexact Rounded
+pwsx3895 power 0.497 0.5 -> 0.705 Inexact Rounded
+pwsx3896 power 0.0497 0.5 -> 0.223 Inexact Rounded
+pwsx3897 power 0.498 0.5 -> 0.706 Inexact Rounded
+pwsx3898 power 0.0498 0.5 -> 0.223 Inexact Rounded
+pwsx3899 power 0.499 0.5 -> 0.706 Inexact Rounded
+pwsx3900 power 0.0499 0.5 -> 0.223 Inexact Rounded
+pwsx3901 power 0.501 0.5 -> 0.708 Inexact Rounded
+pwsx3902 power 0.0501 0.5 -> 0.224 Inexact Rounded
+pwsx3903 power 0.502 0.5 -> 0.709 Inexact Rounded
+pwsx3904 power 0.0502 0.5 -> 0.224 Inexact Rounded
+pwsx3905 power 0.503 0.5 -> 0.709 Inexact Rounded
+pwsx3906 power 0.0503 0.5 -> 0.224 Inexact Rounded
+pwsx3907 power 0.504 0.5 -> 0.710 Inexact Rounded
+pwsx3908 power 0.0504 0.5 -> 0.224 Inexact Rounded
+pwsx3909 power 0.505 0.5 -> 0.711 Inexact Rounded
+pwsx3910 power 0.0505 0.5 -> 0.225 Inexact Rounded
+pwsx3911 power 0.506 0.5 -> 0.711 Inexact Rounded
+pwsx3912 power 0.0506 0.5 -> 0.225 Inexact Rounded
+pwsx3913 power 0.507 0.5 -> 0.712 Inexact Rounded
+pwsx3914 power 0.0507 0.5 -> 0.225 Inexact Rounded
+pwsx3915 power 0.508 0.5 -> 0.713 Inexact Rounded
+pwsx3916 power 0.0508 0.5 -> 0.225 Inexact Rounded
+pwsx3917 power 0.509 0.5 -> 0.713 Inexact Rounded
+pwsx3918 power 0.0509 0.5 -> 0.226 Inexact Rounded
+pwsx3919 power 0.511 0.5 -> 0.715 Inexact Rounded
+pwsx3920 power 0.0511 0.5 -> 0.226 Inexact Rounded
+pwsx3921 power 0.512 0.5 -> 0.716 Inexact Rounded
+pwsx3922 power 0.0512 0.5 -> 0.226 Inexact Rounded
+pwsx3923 power 0.513 0.5 -> 0.716 Inexact Rounded
+pwsx3924 power 0.0513 0.5 -> 0.226 Inexact Rounded
+pwsx3925 power 0.514 0.5 -> 0.717 Inexact Rounded
+pwsx3926 power 0.0514 0.5 -> 0.227 Inexact Rounded
+pwsx3927 power 0.515 0.5 -> 0.718 Inexact Rounded
+pwsx3928 power 0.0515 0.5 -> 0.227 Inexact Rounded
+pwsx3929 power 0.516 0.5 -> 0.718 Inexact Rounded
+pwsx3930 power 0.0516 0.5 -> 0.227 Inexact Rounded
+pwsx3931 power 0.517 0.5 -> 0.719 Inexact Rounded
+pwsx3932 power 0.0517 0.5 -> 0.227 Inexact Rounded
+pwsx3933 power 0.518 0.5 -> 0.720 Inexact Rounded
+pwsx3934 power 0.0518 0.5 -> 0.228 Inexact Rounded
+pwsx3935 power 0.519 0.5 -> 0.720 Inexact Rounded
+pwsx3936 power 0.0519 0.5 -> 0.228 Inexact Rounded
+pwsx3937 power 0.521 0.5 -> 0.722 Inexact Rounded
+pwsx3938 power 0.0521 0.5 -> 0.228 Inexact Rounded
+pwsx3939 power 0.522 0.5 -> 0.722 Inexact Rounded
+pwsx3940 power 0.0522 0.5 -> 0.228 Inexact Rounded
+pwsx3941 power 0.523 0.5 -> 0.723 Inexact Rounded
+pwsx3942 power 0.0523 0.5 -> 0.229 Inexact Rounded
+pwsx3943 power 0.524 0.5 -> 0.724 Inexact Rounded
+pwsx3944 power 0.0524 0.5 -> 0.229 Inexact Rounded
+pwsx3945 power 0.525 0.5 -> 0.725 Inexact Rounded
+pwsx3946 power 0.0525 0.5 -> 0.229 Inexact Rounded
+pwsx3947 power 0.526 0.5 -> 0.725 Inexact Rounded
+pwsx3948 power 0.0526 0.5 -> 0.229 Inexact Rounded
+pwsx3949 power 0.527 0.5 -> 0.726 Inexact Rounded
+pwsx3950 power 0.0527 0.5 -> 0.230 Inexact Rounded
+pwsx3951 power 0.528 0.5 -> 0.727 Inexact Rounded
+pwsx3952 power 0.0528 0.5 -> 0.230 Inexact Rounded
+pwsx3953 power 0.529 0.5 -> 0.727 Inexact Rounded
+pwsx3954 power 0.0529 0.5 -> 0.230 Inexact Rounded
+pwsx3955 power 0.531 0.5 -> 0.729 Inexact Rounded
+pwsx3956 power 0.0531 0.5 -> 0.230 Inexact Rounded
+pwsx3957 power 0.532 0.5 -> 0.729 Inexact Rounded
+pwsx3958 power 0.0532 0.5 -> 0.231 Inexact Rounded
+pwsx3959 power 0.533 0.5 -> 0.730 Inexact Rounded
+pwsx3960 power 0.0533 0.5 -> 0.231 Inexact Rounded
+pwsx3961 power 0.534 0.5 -> 0.731 Inexact Rounded
+pwsx3962 power 0.0534 0.5 -> 0.231 Inexact Rounded
+pwsx3963 power 0.535 0.5 -> 0.731 Inexact Rounded
+pwsx3964 power 0.0535 0.5 -> 0.231 Inexact Rounded
+pwsx3965 power 0.536 0.5 -> 0.732 Inexact Rounded
+pwsx3966 power 0.0536 0.5 -> 0.232 Inexact Rounded
+pwsx3967 power 0.537 0.5 -> 0.733 Inexact Rounded
+pwsx3968 power 0.0537 0.5 -> 0.232 Inexact Rounded
+pwsx3969 power 0.538 0.5 -> 0.733 Inexact Rounded
+pwsx3970 power 0.0538 0.5 -> 0.232 Inexact Rounded
+pwsx3971 power 0.539 0.5 -> 0.734 Inexact Rounded
+pwsx3972 power 0.0539 0.5 -> 0.232 Inexact Rounded
+pwsx3973 power 0.541 0.5 -> 0.736 Inexact Rounded
+pwsx3974 power 0.0541 0.5 -> 0.233 Inexact Rounded
+pwsx3975 power 0.542 0.5 -> 0.736 Inexact Rounded
+pwsx3976 power 0.0542 0.5 -> 0.233 Inexact Rounded
+pwsx3977 power 0.543 0.5 -> 0.737 Inexact Rounded
+pwsx3978 power 0.0543 0.5 -> 0.233 Inexact Rounded
+pwsx3979 power 0.544 0.5 -> 0.738 Inexact Rounded
+pwsx3980 power 0.0544 0.5 -> 0.233 Inexact Rounded
+pwsx3981 power 0.545 0.5 -> 0.738 Inexact Rounded
+pwsx3982 power 0.0545 0.5 -> 0.233 Inexact Rounded
+pwsx3983 power 0.546 0.5 -> 0.739 Inexact Rounded
+pwsx3984 power 0.0546 0.5 -> 0.234 Inexact Rounded
+pwsx3985 power 0.547 0.5 -> 0.740 Inexact Rounded
+pwsx3986 power 0.0547 0.5 -> 0.234 Inexact Rounded
+pwsx3987 power 0.548 0.5 -> 0.740 Inexact Rounded
+pwsx3988 power 0.0548 0.5 -> 0.234 Inexact Rounded
+pwsx3989 power 0.549 0.5 -> 0.741 Inexact Rounded
+pwsx3990 power 0.0549 0.5 -> 0.234 Inexact Rounded
+pwsx3991 power 0.551 0.5 -> 0.742 Inexact Rounded
+pwsx3992 power 0.0551 0.5 -> 0.235 Inexact Rounded
+pwsx3993 power 0.552 0.5 -> 0.743 Inexact Rounded
+pwsx3994 power 0.0552 0.5 -> 0.235 Inexact Rounded
+pwsx3995 power 0.553 0.5 -> 0.744 Inexact Rounded
+pwsx3996 power 0.0553 0.5 -> 0.235 Inexact Rounded
+pwsx3997 power 0.554 0.5 -> 0.744 Inexact Rounded
+pwsx3998 power 0.0554 0.5 -> 0.235 Inexact Rounded
+pwsx3999 power 0.555 0.5 -> 0.745 Inexact Rounded
+pwsx4000 power 0.0555 0.5 -> 0.236 Inexact Rounded
+pwsx4001 power 0.556 0.5 -> 0.746 Inexact Rounded
+pwsx4002 power 0.0556 0.5 -> 0.236 Inexact Rounded
+pwsx4003 power 0.557 0.5 -> 0.746 Inexact Rounded
+pwsx4004 power 0.0557 0.5 -> 0.236 Inexact Rounded
+pwsx4005 power 0.558 0.5 -> 0.747 Inexact Rounded
+pwsx4006 power 0.0558 0.5 -> 0.236 Inexact Rounded
+pwsx4007 power 0.559 0.5 -> 0.748 Inexact Rounded
+pwsx4008 power 0.0559 0.5 -> 0.236 Inexact Rounded
+pwsx4009 power 0.561 0.5 -> 0.749 Inexact Rounded
+pwsx4010 power 0.0561 0.5 -> 0.237 Inexact Rounded
+pwsx4011 power 0.562 0.5 -> 0.750 Inexact Rounded
+pwsx4012 power 0.0562 0.5 -> 0.237 Inexact Rounded
+pwsx4013 power 0.563 0.5 -> 0.750 Inexact Rounded
+pwsx4014 power 0.0563 0.5 -> 0.237 Inexact Rounded
+pwsx4015 power 0.564 0.5 -> 0.751 Inexact Rounded
+pwsx4016 power 0.0564 0.5 -> 0.237 Inexact Rounded
+pwsx4017 power 0.565 0.5 -> 0.752 Inexact Rounded
+pwsx4018 power 0.0565 0.5 -> 0.238 Inexact Rounded
+pwsx4019 power 0.566 0.5 -> 0.752 Inexact Rounded
+pwsx4020 power 0.0566 0.5 -> 0.238 Inexact Rounded
+pwsx4021 power 0.567 0.5 -> 0.753 Inexact Rounded
+pwsx4022 power 0.0567 0.5 -> 0.238 Inexact Rounded
+pwsx4023 power 0.568 0.5 -> 0.754 Inexact Rounded
+pwsx4024 power 0.0568 0.5 -> 0.238 Inexact Rounded
+pwsx4025 power 0.569 0.5 -> 0.754 Inexact Rounded
+pwsx4026 power 0.0569 0.5 -> 0.239 Inexact Rounded
+pwsx4027 power 0.571 0.5 -> 0.756 Inexact Rounded
+pwsx4028 power 0.0571 0.5 -> 0.239 Inexact Rounded
+pwsx4029 power 0.572 0.5 -> 0.756 Inexact Rounded
+pwsx4030 power 0.0572 0.5 -> 0.239 Inexact Rounded
+pwsx4031 power 0.573 0.5 -> 0.757 Inexact Rounded
+pwsx4032 power 0.0573 0.5 -> 0.239 Inexact Rounded
+pwsx4033 power 0.574 0.5 -> 0.758 Inexact Rounded
+pwsx4034 power 0.0574 0.5 -> 0.240 Inexact Rounded
+pwsx4035 power 0.575 0.5 -> 0.758 Inexact Rounded
+pwsx4036 power 0.0575 0.5 -> 0.240 Inexact Rounded
+pwsx4037 power 0.576 0.5 -> 0.759 Inexact Rounded
+pwsx4038 power 0.0576 0.5 -> 0.240 Inexact Rounded
+pwsx4039 power 0.577 0.5 -> 0.760 Inexact Rounded
+pwsx4040 power 0.0577 0.5 -> 0.240 Inexact Rounded
+pwsx4041 power 0.578 0.5 -> 0.760 Inexact Rounded
+pwsx4042 power 0.0578 0.5 -> 0.240 Inexact Rounded
+pwsx4043 power 0.579 0.5 -> 0.761 Inexact Rounded
+pwsx4044 power 0.0579 0.5 -> 0.241 Inexact Rounded
+pwsx4045 power 0.581 0.5 -> 0.762 Inexact Rounded
+pwsx4046 power 0.0581 0.5 -> 0.241 Inexact Rounded
+pwsx4047 power 0.582 0.5 -> 0.763 Inexact Rounded
+pwsx4048 power 0.0582 0.5 -> 0.241 Inexact Rounded
+pwsx4049 power 0.583 0.5 -> 0.764 Inexact Rounded
+pwsx4050 power 0.0583 0.5 -> 0.241 Inexact Rounded
+pwsx4051 power 0.584 0.5 -> 0.764 Inexact Rounded
+pwsx4052 power 0.0584 0.5 -> 0.242 Inexact Rounded
+pwsx4053 power 0.585 0.5 -> 0.765 Inexact Rounded
+pwsx4054 power 0.0585 0.5 -> 0.242 Inexact Rounded
+pwsx4055 power 0.586 0.5 -> 0.766 Inexact Rounded
+pwsx4056 power 0.0586 0.5 -> 0.242 Inexact Rounded
+pwsx4057 power 0.587 0.5 -> 0.766 Inexact Rounded
+pwsx4058 power 0.0587 0.5 -> 0.242 Inexact Rounded
+pwsx4059 power 0.588 0.5 -> 0.767 Inexact Rounded
+pwsx4060 power 0.0588 0.5 -> 0.242 Inexact Rounded
+pwsx4061 power 0.589 0.5 -> 0.767 Inexact Rounded
+pwsx4062 power 0.0589 0.5 -> 0.243 Inexact Rounded
+pwsx4063 power 0.591 0.5 -> 0.769 Inexact Rounded
+pwsx4064 power 0.0591 0.5 -> 0.243 Inexact Rounded
+pwsx4065 power 0.592 0.5 -> 0.769 Inexact Rounded
+pwsx4066 power 0.0592 0.5 -> 0.243 Inexact Rounded
+pwsx4067 power 0.593 0.5 -> 0.770 Inexact Rounded
+pwsx4068 power 0.0593 0.5 -> 0.244 Inexact Rounded
+pwsx4069 power 0.594 0.5 -> 0.771 Inexact Rounded
+pwsx4070 power 0.0594 0.5 -> 0.244 Inexact Rounded
+pwsx4071 power 0.595 0.5 -> 0.771 Inexact Rounded
+pwsx4072 power 0.0595 0.5 -> 0.244 Inexact Rounded
+pwsx4073 power 0.596 0.5 -> 0.772 Inexact Rounded
+pwsx4074 power 0.0596 0.5 -> 0.244 Inexact Rounded
+pwsx4075 power 0.597 0.5 -> 0.773 Inexact Rounded
+pwsx4076 power 0.0597 0.5 -> 0.244 Inexact Rounded
+pwsx4077 power 0.598 0.5 -> 0.773 Inexact Rounded
+pwsx4078 power 0.0598 0.5 -> 0.245 Inexact Rounded
+pwsx4079 power 0.599 0.5 -> 0.774 Inexact Rounded
+pwsx4080 power 0.0599 0.5 -> 0.245 Inexact Rounded
+pwsx4081 power 0.601 0.5 -> 0.775 Inexact Rounded
+pwsx4082 power 0.0601 0.5 -> 0.245 Inexact Rounded
+pwsx4083 power 0.602 0.5 -> 0.776 Inexact Rounded
+pwsx4084 power 0.0602 0.5 -> 0.245 Inexact Rounded
+pwsx4085 power 0.603 0.5 -> 0.777 Inexact Rounded
+pwsx4086 power 0.0603 0.5 -> 0.246 Inexact Rounded
+pwsx4087 power 0.604 0.5 -> 0.777 Inexact Rounded
+pwsx4088 power 0.0604 0.5 -> 0.246 Inexact Rounded
+pwsx4089 power 0.605 0.5 -> 0.778 Inexact Rounded
+pwsx4090 power 0.0605 0.5 -> 0.246 Inexact Rounded
+pwsx4091 power 0.606 0.5 -> 0.778 Inexact Rounded
+pwsx4092 power 0.0606 0.5 -> 0.246 Inexact Rounded
+pwsx4093 power 0.607 0.5 -> 0.779 Inexact Rounded
+pwsx4094 power 0.0607 0.5 -> 0.246 Inexact Rounded
+pwsx4095 power 0.608 0.5 -> 0.780 Inexact Rounded
+pwsx4096 power 0.0608 0.5 -> 0.247 Inexact Rounded
+pwsx4097 power 0.609 0.5 -> 0.780 Inexact Rounded
+pwsx4098 power 0.0609 0.5 -> 0.247 Inexact Rounded
+pwsx4099 power 0.611 0.5 -> 0.782 Inexact Rounded
+pwsx4100 power 0.0611 0.5 -> 0.247 Inexact Rounded
+pwsx4101 power 0.612 0.5 -> 0.782 Inexact Rounded
+pwsx4102 power 0.0612 0.5 -> 0.247 Inexact Rounded
+pwsx4103 power 0.613 0.5 -> 0.783 Inexact Rounded
+pwsx4104 power 0.0613 0.5 -> 0.248 Inexact Rounded
+pwsx4105 power 0.614 0.5 -> 0.784 Inexact Rounded
+pwsx4106 power 0.0614 0.5 -> 0.248 Inexact Rounded
+pwsx4107 power 0.615 0.5 -> 0.784 Inexact Rounded
+pwsx4108 power 0.0615 0.5 -> 0.248 Inexact Rounded
+pwsx4109 power 0.616 0.5 -> 0.785 Inexact Rounded
+pwsx4110 power 0.0616 0.5 -> 0.248 Inexact Rounded
+pwsx4111 power 0.617 0.5 -> 0.785 Inexact Rounded
+pwsx4112 power 0.0617 0.5 -> 0.248 Inexact Rounded
+pwsx4113 power 0.618 0.5 -> 0.786 Inexact Rounded
+pwsx4114 power 0.0618 0.5 -> 0.249 Inexact Rounded
+pwsx4115 power 0.619 0.5 -> 0.787 Inexact Rounded
+pwsx4116 power 0.0619 0.5 -> 0.249 Inexact Rounded
+pwsx4117 power 0.621 0.5 -> 0.788 Inexact Rounded
+pwsx4118 power 0.0621 0.5 -> 0.249 Inexact Rounded
+pwsx4119 power 0.622 0.5 -> 0.789 Inexact Rounded
+pwsx4120 power 0.0622 0.5 -> 0.249 Inexact Rounded
+pwsx4121 power 0.623 0.5 -> 0.789 Inexact Rounded
+pwsx4122 power 0.0623 0.5 -> 0.250 Inexact Rounded
+pwsx4123 power 0.624 0.5 -> 0.790 Inexact Rounded
+pwsx4124 power 0.0624 0.5 -> 0.250 Inexact Rounded
+pwsx4125 power 0.625 0.5 -> 0.791 Inexact Rounded
+pwsx4126 power 0.0625 0.5 -> 0.250 Inexact Rounded
+pwsx4127 power 0.626 0.5 -> 0.791 Inexact Rounded
+pwsx4128 power 0.0626 0.5 -> 0.250 Inexact Rounded
+pwsx4129 power 0.627 0.5 -> 0.792 Inexact Rounded
+pwsx4130 power 0.0627 0.5 -> 0.250 Inexact Rounded
+pwsx4131 power 0.628 0.5 -> 0.792 Inexact Rounded
+pwsx4132 power 0.0628 0.5 -> 0.251 Inexact Rounded
+pwsx4133 power 0.629 0.5 -> 0.793 Inexact Rounded
+pwsx4134 power 0.0629 0.5 -> 0.251 Inexact Rounded
+pwsx4135 power 0.631 0.5 -> 0.794 Inexact Rounded
+pwsx4136 power 0.0631 0.5 -> 0.251 Inexact Rounded
+pwsx4137 power 0.632 0.5 -> 0.795 Inexact Rounded
+pwsx4138 power 0.0632 0.5 -> 0.251 Inexact Rounded
+pwsx4139 power 0.633 0.5 -> 0.796 Inexact Rounded
+pwsx4140 power 0.0633 0.5 -> 0.252 Inexact Rounded
+pwsx4141 power 0.634 0.5 -> 0.796 Inexact Rounded
+pwsx4142 power 0.0634 0.5 -> 0.252 Inexact Rounded
+pwsx4143 power 0.635 0.5 -> 0.797 Inexact Rounded
+pwsx4144 power 0.0635 0.5 -> 0.252 Inexact Rounded
+pwsx4145 power 0.636 0.5 -> 0.797 Inexact Rounded
+pwsx4146 power 0.0636 0.5 -> 0.252 Inexact Rounded
+pwsx4147 power 0.637 0.5 -> 0.798 Inexact Rounded
+pwsx4148 power 0.0637 0.5 -> 0.252 Inexact Rounded
+pwsx4149 power 0.638 0.5 -> 0.799 Inexact Rounded
+pwsx4150 power 0.0638 0.5 -> 0.253 Inexact Rounded
+pwsx4151 power 0.639 0.5 -> 0.799 Inexact Rounded
+pwsx4152 power 0.0639 0.5 -> 0.253 Inexact Rounded
+pwsx4153 power 0.641 0.5 -> 0.801 Inexact Rounded
+pwsx4154 power 0.0641 0.5 -> 0.253 Inexact Rounded
+pwsx4155 power 0.642 0.5 -> 0.801 Inexact Rounded
+pwsx4156 power 0.0642 0.5 -> 0.253 Inexact Rounded
+pwsx4157 power 0.643 0.5 -> 0.802 Inexact Rounded
+pwsx4158 power 0.0643 0.5 -> 0.254 Inexact Rounded
+pwsx4159 power 0.644 0.5 -> 0.802 Inexact Rounded
+pwsx4160 power 0.0644 0.5 -> 0.254 Inexact Rounded
+pwsx4161 power 0.645 0.5 -> 0.803 Inexact Rounded
+pwsx4162 power 0.0645 0.5 -> 0.254 Inexact Rounded
+pwsx4163 power 0.646 0.5 -> 0.804 Inexact Rounded
+pwsx4164 power 0.0646 0.5 -> 0.254 Inexact Rounded
+pwsx4165 power 0.647 0.5 -> 0.804 Inexact Rounded
+pwsx4166 power 0.0647 0.5 -> 0.254 Inexact Rounded
+pwsx4167 power 0.648 0.5 -> 0.805 Inexact Rounded
+pwsx4168 power 0.0648 0.5 -> 0.255 Inexact Rounded
+pwsx4169 power 0.649 0.5 -> 0.806 Inexact Rounded
+pwsx4170 power 0.0649 0.5 -> 0.255 Inexact Rounded
+pwsx4171 power 0.651 0.5 -> 0.807 Inexact Rounded
+pwsx4172 power 0.0651 0.5 -> 0.255 Inexact Rounded
+pwsx4173 power 0.652 0.5 -> 0.807 Inexact Rounded
+pwsx4174 power 0.0652 0.5 -> 0.255 Inexact Rounded
+pwsx4175 power 0.653 0.5 -> 0.808 Inexact Rounded
+pwsx4176 power 0.0653 0.5 -> 0.256 Inexact Rounded
+pwsx4177 power 0.654 0.5 -> 0.809 Inexact Rounded
+pwsx4178 power 0.0654 0.5 -> 0.256 Inexact Rounded
+pwsx4179 power 0.655 0.5 -> 0.809 Inexact Rounded
+pwsx4180 power 0.0655 0.5 -> 0.256 Inexact Rounded
+pwsx4181 power 0.656 0.5 -> 0.810 Inexact Rounded
+pwsx4182 power 0.0656 0.5 -> 0.256 Inexact Rounded
+pwsx4183 power 0.657 0.5 -> 0.811 Inexact Rounded
+pwsx4184 power 0.0657 0.5 -> 0.256 Inexact Rounded
+pwsx4185 power 0.658 0.5 -> 0.811 Inexact Rounded
+pwsx4186 power 0.0658 0.5 -> 0.257 Inexact Rounded
+pwsx4187 power 0.659 0.5 -> 0.812 Inexact Rounded
+pwsx4188 power 0.0659 0.5 -> 0.257 Inexact Rounded
+pwsx4189 power 0.661 0.5 -> 0.813 Inexact Rounded
+pwsx4190 power 0.0661 0.5 -> 0.257 Inexact Rounded
+pwsx4191 power 0.662 0.5 -> 0.814 Inexact Rounded
+pwsx4192 power 0.0662 0.5 -> 0.257 Inexact Rounded
+pwsx4193 power 0.663 0.5 -> 0.814 Inexact Rounded
+pwsx4194 power 0.0663 0.5 -> 0.257 Inexact Rounded
+pwsx4195 power 0.664 0.5 -> 0.815 Inexact Rounded
+pwsx4196 power 0.0664 0.5 -> 0.258 Inexact Rounded
+pwsx4197 power 0.665 0.5 -> 0.815 Inexact Rounded
+pwsx4198 power 0.0665 0.5 -> 0.258 Inexact Rounded
+pwsx4199 power 0.666 0.5 -> 0.816 Inexact Rounded
+pwsx4200 power 0.0666 0.5 -> 0.258 Inexact Rounded
+pwsx4201 power 0.667 0.5 -> 0.817 Inexact Rounded
+pwsx4202 power 0.0667 0.5 -> 0.258 Inexact Rounded
+pwsx4203 power 0.668 0.5 -> 0.817 Inexact Rounded
+pwsx4204 power 0.0668 0.5 -> 0.258 Inexact Rounded
+pwsx4205 power 0.669 0.5 -> 0.818 Inexact Rounded
+pwsx4206 power 0.0669 0.5 -> 0.259 Inexact Rounded
+pwsx4207 power 0.671 0.5 -> 0.819 Inexact Rounded
+pwsx4208 power 0.0671 0.5 -> 0.259 Inexact Rounded
+pwsx4209 power 0.672 0.5 -> 0.820 Inexact Rounded
+pwsx4210 power 0.0672 0.5 -> 0.259 Inexact Rounded
+pwsx4211 power 0.673 0.5 -> 0.820 Inexact Rounded
+pwsx4212 power 0.0673 0.5 -> 0.259 Inexact Rounded
+pwsx4213 power 0.674 0.5 -> 0.821 Inexact Rounded
+pwsx4214 power 0.0674 0.5 -> 0.260 Inexact Rounded
+pwsx4215 power 0.675 0.5 -> 0.822 Inexact Rounded
+pwsx4216 power 0.0675 0.5 -> 0.260 Inexact Rounded
+pwsx4217 power 0.676 0.5 -> 0.822 Inexact Rounded
+pwsx4218 power 0.0676 0.5 -> 0.260 Inexact Rounded
+pwsx4219 power 0.677 0.5 -> 0.823 Inexact Rounded
+pwsx4220 power 0.0677 0.5 -> 0.260 Inexact Rounded
+pwsx4221 power 0.678 0.5 -> 0.823 Inexact Rounded
+pwsx4222 power 0.0678 0.5 -> 0.260 Inexact Rounded
+pwsx4223 power 0.679 0.5 -> 0.824 Inexact Rounded
+pwsx4224 power 0.0679 0.5 -> 0.261 Inexact Rounded
+pwsx4225 power 0.681 0.5 -> 0.825 Inexact Rounded
+pwsx4226 power 0.0681 0.5 -> 0.261 Inexact Rounded
+pwsx4227 power 0.682 0.5 -> 0.826 Inexact Rounded
+pwsx4228 power 0.0682 0.5 -> 0.261 Inexact Rounded
+pwsx4229 power 0.683 0.5 -> 0.826 Inexact Rounded
+pwsx4230 power 0.0683 0.5 -> 0.261 Inexact Rounded
+pwsx4231 power 0.684 0.5 -> 0.827 Inexact Rounded
+pwsx4232 power 0.0684 0.5 -> 0.262 Inexact Rounded
+pwsx4233 power 0.685 0.5 -> 0.828 Inexact Rounded
+pwsx4234 power 0.0685 0.5 -> 0.262 Inexact Rounded
+pwsx4235 power 0.686 0.5 -> 0.828 Inexact Rounded
+pwsx4236 power 0.0686 0.5 -> 0.262 Inexact Rounded
+pwsx4237 power 0.687 0.5 -> 0.829 Inexact Rounded
+pwsx4238 power 0.0687 0.5 -> 0.262 Inexact Rounded
+pwsx4239 power 0.688 0.5 -> 0.829 Inexact Rounded
+pwsx4240 power 0.0688 0.5 -> 0.262 Inexact Rounded
+pwsx4241 power 0.689 0.5 -> 0.830 Inexact Rounded
+pwsx4242 power 0.0689 0.5 -> 0.262 Inexact Rounded
+pwsx4243 power 0.691 0.5 -> 0.831 Inexact Rounded
+pwsx4244 power 0.0691 0.5 -> 0.263 Inexact Rounded
+pwsx4245 power 0.692 0.5 -> 0.832 Inexact Rounded
+pwsx4246 power 0.0692 0.5 -> 0.263 Inexact Rounded
+pwsx4247 power 0.693 0.5 -> 0.832 Inexact Rounded
+pwsx4248 power 0.0693 0.5 -> 0.263 Inexact Rounded
+pwsx4249 power 0.694 0.5 -> 0.833 Inexact Rounded
+pwsx4250 power 0.0694 0.5 -> 0.263 Inexact Rounded
+pwsx4251 power 0.695 0.5 -> 0.834 Inexact Rounded
+pwsx4252 power 0.0695 0.5 -> 0.264 Inexact Rounded
+pwsx4253 power 0.696 0.5 -> 0.834 Inexact Rounded
+pwsx4254 power 0.0696 0.5 -> 0.264 Inexact Rounded
+pwsx4255 power 0.697 0.5 -> 0.835 Inexact Rounded
+pwsx4256 power 0.0697 0.5 -> 0.264 Inexact Rounded
+pwsx4257 power 0.698 0.5 -> 0.835 Inexact Rounded
+pwsx4258 power 0.0698 0.5 -> 0.264 Inexact Rounded
+pwsx4259 power 0.699 0.5 -> 0.836 Inexact Rounded
+pwsx4260 power 0.0699 0.5 -> 0.264 Inexact Rounded
+pwsx4261 power 0.701 0.5 -> 0.837 Inexact Rounded
+pwsx4262 power 0.0701 0.5 -> 0.265 Inexact Rounded
+pwsx4263 power 0.702 0.5 -> 0.838 Inexact Rounded
+pwsx4264 power 0.0702 0.5 -> 0.265 Inexact Rounded
+pwsx4265 power 0.703 0.5 -> 0.838 Inexact Rounded
+pwsx4266 power 0.0703 0.5 -> 0.265 Inexact Rounded
+pwsx4267 power 0.704 0.5 -> 0.839 Inexact Rounded
+pwsx4268 power 0.0704 0.5 -> 0.265 Inexact Rounded
+pwsx4269 power 0.705 0.5 -> 0.840 Inexact Rounded
+pwsx4270 power 0.0705 0.5 -> 0.266 Inexact Rounded
+pwsx4271 power 0.706 0.5 -> 0.840 Inexact Rounded
+pwsx4272 power 0.0706 0.5 -> 0.266 Inexact Rounded
+pwsx4273 power 0.707 0.5 -> 0.841 Inexact Rounded
+pwsx4274 power 0.0707 0.5 -> 0.266 Inexact Rounded
+pwsx4275 power 0.708 0.5 -> 0.841 Inexact Rounded
+pwsx4276 power 0.0708 0.5 -> 0.266 Inexact Rounded
+pwsx4277 power 0.709 0.5 -> 0.842 Inexact Rounded
+pwsx4278 power 0.0709 0.5 -> 0.266 Inexact Rounded
+pwsx4279 power 0.711 0.5 -> 0.843 Inexact Rounded
+pwsx4280 power 0.0711 0.5 -> 0.267 Inexact Rounded
+pwsx4281 power 0.712 0.5 -> 0.844 Inexact Rounded
+pwsx4282 power 0.0712 0.5 -> 0.267 Inexact Rounded
+pwsx4283 power 0.713 0.5 -> 0.844 Inexact Rounded
+pwsx4284 power 0.0713 0.5 -> 0.267 Inexact Rounded
+pwsx4285 power 0.714 0.5 -> 0.845 Inexact Rounded
+pwsx4286 power 0.0714 0.5 -> 0.267 Inexact Rounded
+pwsx4287 power 0.715 0.5 -> 0.846 Inexact Rounded
+pwsx4288 power 0.0715 0.5 -> 0.267 Inexact Rounded
+pwsx4289 power 0.716 0.5 -> 0.846 Inexact Rounded
+pwsx4290 power 0.0716 0.5 -> 0.268 Inexact Rounded
+pwsx4291 power 0.717 0.5 -> 0.847 Inexact Rounded
+pwsx4292 power 0.0717 0.5 -> 0.268 Inexact Rounded
+pwsx4293 power 0.718 0.5 -> 0.847 Inexact Rounded
+pwsx4294 power 0.0718 0.5 -> 0.268 Inexact Rounded
+pwsx4295 power 0.719 0.5 -> 0.848 Inexact Rounded
+pwsx4296 power 0.0719 0.5 -> 0.268 Inexact Rounded
+pwsx4297 power 0.721 0.5 -> 0.849 Inexact Rounded
+pwsx4298 power 0.0721 0.5 -> 0.269 Inexact Rounded
+pwsx4299 power 0.722 0.5 -> 0.850 Inexact Rounded
+pwsx4300 power 0.0722 0.5 -> 0.269 Inexact Rounded
+pwsx4301 power 0.723 0.5 -> 0.850 Inexact Rounded
+pwsx4302 power 0.0723 0.5 -> 0.269 Inexact Rounded
+pwsx4303 power 0.724 0.5 -> 0.851 Inexact Rounded
+pwsx4304 power 0.0724 0.5 -> 0.269 Inexact Rounded
+pwsx4305 power 0.725 0.5 -> 0.851 Inexact Rounded
+pwsx4306 power 0.0725 0.5 -> 0.269 Inexact Rounded
+pwsx4307 power 0.726 0.5 -> 0.852 Inexact Rounded
+pwsx4308 power 0.0726 0.5 -> 0.269 Inexact Rounded
+pwsx4309 power 0.727 0.5 -> 0.853 Inexact Rounded
+pwsx4310 power 0.0727 0.5 -> 0.270 Inexact Rounded
+pwsx4311 power 0.728 0.5 -> 0.853 Inexact Rounded
+pwsx4312 power 0.0728 0.5 -> 0.270 Inexact Rounded
+pwsx4313 power 0.729 0.5 -> 0.854 Inexact Rounded
+pwsx4314 power 0.0729 0.5 -> 0.270 Inexact Rounded
+pwsx4315 power 0.731 0.5 -> 0.855 Inexact Rounded
+pwsx4316 power 0.0731 0.5 -> 0.270 Inexact Rounded
+pwsx4317 power 0.732 0.5 -> 0.856 Inexact Rounded
+pwsx4318 power 0.0732 0.5 -> 0.271 Inexact Rounded
+pwsx4319 power 0.733 0.5 -> 0.856 Inexact Rounded
+pwsx4320 power 0.0733 0.5 -> 0.271 Inexact Rounded
+pwsx4321 power 0.734 0.5 -> 0.857 Inexact Rounded
+pwsx4322 power 0.0734 0.5 -> 0.271 Inexact Rounded
+pwsx4323 power 0.735 0.5 -> 0.857 Inexact Rounded
+pwsx4324 power 0.0735 0.5 -> 0.271 Inexact Rounded
+pwsx4325 power 0.736 0.5 -> 0.858 Inexact Rounded
+pwsx4326 power 0.0736 0.5 -> 0.271 Inexact Rounded
+pwsx4327 power 0.737 0.5 -> 0.858 Inexact Rounded
+pwsx4328 power 0.0737 0.5 -> 0.271 Inexact Rounded
+pwsx4329 power 0.738 0.5 -> 0.859 Inexact Rounded
+pwsx4330 power 0.0738 0.5 -> 0.272 Inexact Rounded
+pwsx4331 power 0.739 0.5 -> 0.860 Inexact Rounded
+pwsx4332 power 0.0739 0.5 -> 0.272 Inexact Rounded
+pwsx4333 power 0.741 0.5 -> 0.861 Inexact Rounded
+pwsx4334 power 0.0741 0.5 -> 0.272 Inexact Rounded
+pwsx4335 power 0.742 0.5 -> 0.861 Inexact Rounded
+pwsx4336 power 0.0742 0.5 -> 0.272 Inexact Rounded
+pwsx4337 power 0.743 0.5 -> 0.862 Inexact Rounded
+pwsx4338 power 0.0743 0.5 -> 0.273 Inexact Rounded
+pwsx4339 power 0.744 0.5 -> 0.863 Inexact Rounded
+pwsx4340 power 0.0744 0.5 -> 0.273 Inexact Rounded
+pwsx4341 power 0.745 0.5 -> 0.863 Inexact Rounded
+pwsx4342 power 0.0745 0.5 -> 0.273 Inexact Rounded
+pwsx4343 power 0.746 0.5 -> 0.864 Inexact Rounded
+pwsx4344 power 0.0746 0.5 -> 0.273 Inexact Rounded
+pwsx4345 power 0.747 0.5 -> 0.864 Inexact Rounded
+pwsx4346 power 0.0747 0.5 -> 0.273 Inexact Rounded
+pwsx4347 power 0.748 0.5 -> 0.865 Inexact Rounded
+pwsx4348 power 0.0748 0.5 -> 0.273 Inexact Rounded
+pwsx4349 power 0.749 0.5 -> 0.865 Inexact Rounded
+pwsx4350 power 0.0749 0.5 -> 0.274 Inexact Rounded
+pwsx4351 power 0.751 0.5 -> 0.867 Inexact Rounded
+pwsx4352 power 0.0751 0.5 -> 0.274 Inexact Rounded
+pwsx4353 power 0.752 0.5 -> 0.867 Inexact Rounded
+pwsx4354 power 0.0752 0.5 -> 0.274 Inexact Rounded
+pwsx4355 power 0.753 0.5 -> 0.868 Inexact Rounded
+pwsx4356 power 0.0753 0.5 -> 0.274 Inexact Rounded
+pwsx4357 power 0.754 0.5 -> 0.868 Inexact Rounded
+pwsx4358 power 0.0754 0.5 -> 0.275 Inexact Rounded
+pwsx4359 power 0.755 0.5 -> 0.869 Inexact Rounded
+pwsx4360 power 0.0755 0.5 -> 0.275 Inexact Rounded
+pwsx4361 power 0.756 0.5 -> 0.869 Inexact Rounded
+pwsx4362 power 0.0756 0.5 -> 0.275 Inexact Rounded
+pwsx4363 power 0.757 0.5 -> 0.870 Inexact Rounded
+pwsx4364 power 0.0757 0.5 -> 0.275 Inexact Rounded
+pwsx4365 power 0.758 0.5 -> 0.871 Inexact Rounded
+pwsx4366 power 0.0758 0.5 -> 0.275 Inexact Rounded
+pwsx4367 power 0.759 0.5 -> 0.871 Inexact Rounded
+pwsx4368 power 0.0759 0.5 -> 0.275 Inexact Rounded
+pwsx4369 power 0.761 0.5 -> 0.872 Inexact Rounded
+pwsx4370 power 0.0761 0.5 -> 0.276 Inexact Rounded
+pwsx4371 power 0.762 0.5 -> 0.873 Inexact Rounded
+pwsx4372 power 0.0762 0.5 -> 0.276 Inexact Rounded
+pwsx4373 power 0.763 0.5 -> 0.873 Inexact Rounded
+pwsx4374 power 0.0763 0.5 -> 0.276 Inexact Rounded
+pwsx4375 power 0.764 0.5 -> 0.874 Inexact Rounded
+pwsx4376 power 0.0764 0.5 -> 0.276 Inexact Rounded
+pwsx4377 power 0.765 0.5 -> 0.875 Inexact Rounded
+pwsx4378 power 0.0765 0.5 -> 0.277 Inexact Rounded
+pwsx4379 power 0.766 0.5 -> 0.875 Inexact Rounded
+pwsx4380 power 0.0766 0.5 -> 0.277 Inexact Rounded
+pwsx4381 power 0.767 0.5 -> 0.876 Inexact Rounded
+pwsx4382 power 0.0767 0.5 -> 0.277 Inexact Rounded
+pwsx4383 power 0.768 0.5 -> 0.876 Inexact Rounded
+pwsx4384 power 0.0768 0.5 -> 0.277 Inexact Rounded
+pwsx4385 power 0.769 0.5 -> 0.877 Inexact Rounded
+pwsx4386 power 0.0769 0.5 -> 0.277 Inexact Rounded
+pwsx4387 power 0.771 0.5 -> 0.878 Inexact Rounded
+pwsx4388 power 0.0771 0.5 -> 0.278 Inexact Rounded
+pwsx4389 power 0.772 0.5 -> 0.879 Inexact Rounded
+pwsx4390 power 0.0772 0.5 -> 0.278 Inexact Rounded
+pwsx4391 power 0.773 0.5 -> 0.879 Inexact Rounded
+pwsx4392 power 0.0773 0.5 -> 0.278 Inexact Rounded
+pwsx4393 power 0.774 0.5 -> 0.880 Inexact Rounded
+pwsx4394 power 0.0774 0.5 -> 0.278 Inexact Rounded
+pwsx4395 power 0.775 0.5 -> 0.880 Inexact Rounded
+pwsx4396 power 0.0775 0.5 -> 0.278 Inexact Rounded
+pwsx4397 power 0.776 0.5 -> 0.881 Inexact Rounded
+pwsx4398 power 0.0776 0.5 -> 0.279 Inexact Rounded
+pwsx4399 power 0.777 0.5 -> 0.881 Inexact Rounded
+pwsx4400 power 0.0777 0.5 -> 0.279 Inexact Rounded
+pwsx4401 power 0.778 0.5 -> 0.882 Inexact Rounded
+pwsx4402 power 0.0778 0.5 -> 0.279 Inexact Rounded
+pwsx4403 power 0.779 0.5 -> 0.883 Inexact Rounded
+pwsx4404 power 0.0779 0.5 -> 0.279 Inexact Rounded
+pwsx4405 power 0.781 0.5 -> 0.884 Inexact Rounded
+pwsx4406 power 0.0781 0.5 -> 0.279 Inexact Rounded
+pwsx4407 power 0.782 0.5 -> 0.884 Inexact Rounded
+pwsx4408 power 0.0782 0.5 -> 0.280 Inexact Rounded
+pwsx4409 power 0.783 0.5 -> 0.885 Inexact Rounded
+pwsx4410 power 0.0783 0.5 -> 0.280 Inexact Rounded
+pwsx4411 power 0.784 0.5 -> 0.885 Inexact Rounded
+pwsx4412 power 0.0784 0.5 -> 0.280 Inexact Rounded
+pwsx4413 power 0.785 0.5 -> 0.886 Inexact Rounded
+pwsx4414 power 0.0785 0.5 -> 0.280 Inexact Rounded
+pwsx4415 power 0.786 0.5 -> 0.887 Inexact Rounded
+pwsx4416 power 0.0786 0.5 -> 0.280 Inexact Rounded
+pwsx4417 power 0.787 0.5 -> 0.887 Inexact Rounded
+pwsx4418 power 0.0787 0.5 -> 0.281 Inexact Rounded
+pwsx4419 power 0.788 0.5 -> 0.888 Inexact Rounded
+pwsx4420 power 0.0788 0.5 -> 0.281 Inexact Rounded
+pwsx4421 power 0.789 0.5 -> 0.888 Inexact Rounded
+pwsx4422 power 0.0789 0.5 -> 0.281 Inexact Rounded
+pwsx4423 power 0.791 0.5 -> 0.889 Inexact Rounded
+pwsx4424 power 0.0791 0.5 -> 0.281 Inexact Rounded
+pwsx4425 power 0.792 0.5 -> 0.890 Inexact Rounded
+pwsx4426 power 0.0792 0.5 -> 0.281 Inexact Rounded
+pwsx4427 power 0.793 0.5 -> 0.891 Inexact Rounded
+pwsx4428 power 0.0793 0.5 -> 0.282 Inexact Rounded
+pwsx4429 power 0.794 0.5 -> 0.891 Inexact Rounded
+pwsx4430 power 0.0794 0.5 -> 0.282 Inexact Rounded
+pwsx4431 power 0.795 0.5 -> 0.892 Inexact Rounded
+pwsx4432 power 0.0795 0.5 -> 0.282 Inexact Rounded
+pwsx4433 power 0.796 0.5 -> 0.892 Inexact Rounded
+pwsx4434 power 0.0796 0.5 -> 0.282 Inexact Rounded
+pwsx4435 power 0.797 0.5 -> 0.893 Inexact Rounded
+pwsx4436 power 0.0797 0.5 -> 0.282 Inexact Rounded
+pwsx4437 power 0.798 0.5 -> 0.893 Inexact Rounded
+pwsx4438 power 0.0798 0.5 -> 0.282 Inexact Rounded
+pwsx4439 power 0.799 0.5 -> 0.894 Inexact Rounded
+pwsx4440 power 0.0799 0.5 -> 0.283 Inexact Rounded
+pwsx4441 power 0.801 0.5 -> 0.895 Inexact Rounded
+pwsx4442 power 0.0801 0.5 -> 0.283 Inexact Rounded
+pwsx4443 power 0.802 0.5 -> 0.896 Inexact Rounded
+pwsx4444 power 0.0802 0.5 -> 0.283 Inexact Rounded
+pwsx4445 power 0.803 0.5 -> 0.896 Inexact Rounded
+pwsx4446 power 0.0803 0.5 -> 0.283 Inexact Rounded
+pwsx4447 power 0.804 0.5 -> 0.897 Inexact Rounded
+pwsx4448 power 0.0804 0.5 -> 0.284 Inexact Rounded
+pwsx4449 power 0.805 0.5 -> 0.897 Inexact Rounded
+pwsx4450 power 0.0805 0.5 -> 0.284 Inexact Rounded
+pwsx4451 power 0.806 0.5 -> 0.898 Inexact Rounded
+pwsx4452 power 0.0806 0.5 -> 0.284 Inexact Rounded
+pwsx4453 power 0.807 0.5 -> 0.898 Inexact Rounded
+pwsx4454 power 0.0807 0.5 -> 0.284 Inexact Rounded
+pwsx4455 power 0.808 0.5 -> 0.899 Inexact Rounded
+pwsx4456 power 0.0808 0.5 -> 0.284 Inexact Rounded
+pwsx4457 power 0.809 0.5 -> 0.899 Inexact Rounded
+pwsx4458 power 0.0809 0.5 -> 0.284 Inexact Rounded
+pwsx4459 power 0.811 0.5 -> 0.901 Inexact Rounded
+pwsx4460 power 0.0811 0.5 -> 0.285 Inexact Rounded
+pwsx4461 power 0.812 0.5 -> 0.901 Inexact Rounded
+pwsx4462 power 0.0812 0.5 -> 0.285 Inexact Rounded
+pwsx4463 power 0.813 0.5 -> 0.902 Inexact Rounded
+pwsx4464 power 0.0813 0.5 -> 0.285 Inexact Rounded
+pwsx4465 power 0.814 0.5 -> 0.902 Inexact Rounded
+pwsx4466 power 0.0814 0.5 -> 0.285 Inexact Rounded
+pwsx4467 power 0.815 0.5 -> 0.903 Inexact Rounded
+pwsx4468 power 0.0815 0.5 -> 0.285 Inexact Rounded
+pwsx4469 power 0.816 0.5 -> 0.903 Inexact Rounded
+pwsx4470 power 0.0816 0.5 -> 0.286 Inexact Rounded
+pwsx4471 power 0.817 0.5 -> 0.904 Inexact Rounded
+pwsx4472 power 0.0817 0.5 -> 0.286 Inexact Rounded
+pwsx4473 power 0.818 0.5 -> 0.904 Inexact Rounded
+pwsx4474 power 0.0818 0.5 -> 0.286 Inexact Rounded
+pwsx4475 power 0.819 0.5 -> 0.905 Inexact Rounded
+pwsx4476 power 0.0819 0.5 -> 0.286 Inexact Rounded
+pwsx4477 power 0.821 0.5 -> 0.906 Inexact Rounded
+pwsx4478 power 0.0821 0.5 -> 0.287 Inexact Rounded
+pwsx4479 power 0.822 0.5 -> 0.907 Inexact Rounded
+pwsx4480 power 0.0822 0.5 -> 0.287 Inexact Rounded
+pwsx4481 power 0.823 0.5 -> 0.907 Inexact Rounded
+pwsx4482 power 0.0823 0.5 -> 0.287 Inexact Rounded
+pwsx4483 power 0.824 0.5 -> 0.908 Inexact Rounded
+pwsx4484 power 0.0824 0.5 -> 0.287 Inexact Rounded
+pwsx4485 power 0.825 0.5 -> 0.908 Inexact Rounded
+pwsx4486 power 0.0825 0.5 -> 0.287 Inexact Rounded
+pwsx4487 power 0.826 0.5 -> 0.909 Inexact Rounded
+pwsx4488 power 0.0826 0.5 -> 0.287 Inexact Rounded
+pwsx4489 power 0.827 0.5 -> 0.909 Inexact Rounded
+pwsx4490 power 0.0827 0.5 -> 0.288 Inexact Rounded
+pwsx4491 power 0.828 0.5 -> 0.910 Inexact Rounded
+pwsx4492 power 0.0828 0.5 -> 0.288 Inexact Rounded
+pwsx4493 power 0.829 0.5 -> 0.910 Inexact Rounded
+pwsx4494 power 0.0829 0.5 -> 0.288 Inexact Rounded
+pwsx4495 power 0.831 0.5 -> 0.912 Inexact Rounded
+pwsx4496 power 0.0831 0.5 -> 0.288 Inexact Rounded
+pwsx4497 power 0.832 0.5 -> 0.912 Inexact Rounded
+pwsx4498 power 0.0832 0.5 -> 0.288 Inexact Rounded
+pwsx4499 power 0.833 0.5 -> 0.913 Inexact Rounded
+pwsx4500 power 0.0833 0.5 -> 0.289 Inexact Rounded
+pwsx4501 power 0.834 0.5 -> 0.913 Inexact Rounded
+pwsx4502 power 0.0834 0.5 -> 0.289 Inexact Rounded
+pwsx4503 power 0.835 0.5 -> 0.914 Inexact Rounded
+pwsx4504 power 0.0835 0.5 -> 0.289 Inexact Rounded
+pwsx4505 power 0.836 0.5 -> 0.914 Inexact Rounded
+pwsx4506 power 0.0836 0.5 -> 0.289 Inexact Rounded
+pwsx4507 power 0.837 0.5 -> 0.915 Inexact Rounded
+pwsx4508 power 0.0837 0.5 -> 0.289 Inexact Rounded
+pwsx4509 power 0.838 0.5 -> 0.915 Inexact Rounded
+pwsx4510 power 0.0838 0.5 -> 0.289 Inexact Rounded
+pwsx4511 power 0.839 0.5 -> 0.916 Inexact Rounded
+pwsx4512 power 0.0839 0.5 -> 0.290 Inexact Rounded
+pwsx4513 power 0.841 0.5 -> 0.917 Inexact Rounded
+pwsx4514 power 0.0841 0.5 -> 0.290 Inexact Rounded
+pwsx4515 power 0.842 0.5 -> 0.918 Inexact Rounded
+pwsx4516 power 0.0842 0.5 -> 0.290 Inexact Rounded
+pwsx4517 power 0.843 0.5 -> 0.918 Inexact Rounded
+pwsx4518 power 0.0843 0.5 -> 0.290 Inexact Rounded
+pwsx4519 power 0.844 0.5 -> 0.919 Inexact Rounded
+pwsx4520 power 0.0844 0.5 -> 0.291 Inexact Rounded
+pwsx4521 power 0.845 0.5 -> 0.919 Inexact Rounded
+pwsx4522 power 0.0845 0.5 -> 0.291 Inexact Rounded
+pwsx4523 power 0.846 0.5 -> 0.920 Inexact Rounded
+pwsx4524 power 0.0846 0.5 -> 0.291 Inexact Rounded
+pwsx4525 power 0.847 0.5 -> 0.920 Inexact Rounded
+pwsx4526 power 0.0847 0.5 -> 0.291 Inexact Rounded
+pwsx4527 power 0.848 0.5 -> 0.921 Inexact Rounded
+pwsx4528 power 0.0848 0.5 -> 0.291 Inexact Rounded
+pwsx4529 power 0.849 0.5 -> 0.921 Inexact Rounded
+pwsx4530 power 0.0849 0.5 -> 0.291 Inexact Rounded
+pwsx4531 power 0.851 0.5 -> 0.922 Inexact Rounded
+pwsx4532 power 0.0851 0.5 -> 0.292 Inexact Rounded
+pwsx4533 power 0.852 0.5 -> 0.923 Inexact Rounded
+pwsx4534 power 0.0852 0.5 -> 0.292 Inexact Rounded
+pwsx4535 power 0.853 0.5 -> 0.924 Inexact Rounded
+pwsx4536 power 0.0853 0.5 -> 0.292 Inexact Rounded
+pwsx4537 power 0.854 0.5 -> 0.924 Inexact Rounded
+pwsx4538 power 0.0854 0.5 -> 0.292 Inexact Rounded
+pwsx4539 power 0.855 0.5 -> 0.925 Inexact Rounded
+pwsx4540 power 0.0855 0.5 -> 0.292 Inexact Rounded
+pwsx4541 power 0.856 0.5 -> 0.925 Inexact Rounded
+pwsx4542 power 0.0856 0.5 -> 0.293 Inexact Rounded
+pwsx4543 power 0.857 0.5 -> 0.926 Inexact Rounded
+pwsx4544 power 0.0857 0.5 -> 0.293 Inexact Rounded
+pwsx4545 power 0.858 0.5 -> 0.926 Inexact Rounded
+pwsx4546 power 0.0858 0.5 -> 0.293 Inexact Rounded
+pwsx4547 power 0.859 0.5 -> 0.927 Inexact Rounded
+pwsx4548 power 0.0859 0.5 -> 0.293 Inexact Rounded
+pwsx4549 power 0.861 0.5 -> 0.928 Inexact Rounded
+pwsx4550 power 0.0861 0.5 -> 0.293 Inexact Rounded
+pwsx4551 power 0.862 0.5 -> 0.928 Inexact Rounded
+pwsx4552 power 0.0862 0.5 -> 0.294 Inexact Rounded
+pwsx4553 power 0.863 0.5 -> 0.929 Inexact Rounded
+pwsx4554 power 0.0863 0.5 -> 0.294 Inexact Rounded
+pwsx4555 power 0.864 0.5 -> 0.930 Inexact Rounded
+pwsx4556 power 0.0864 0.5 -> 0.294 Inexact Rounded
+pwsx4557 power 0.865 0.5 -> 0.930 Inexact Rounded
+pwsx4558 power 0.0865 0.5 -> 0.294 Inexact Rounded
+pwsx4559 power 0.866 0.5 -> 0.931 Inexact Rounded
+pwsx4560 power 0.0866 0.5 -> 0.294 Inexact Rounded
+pwsx4561 power 0.867 0.5 -> 0.931 Inexact Rounded
+pwsx4562 power 0.0867 0.5 -> 0.294 Inexact Rounded
+pwsx4563 power 0.868 0.5 -> 0.932 Inexact Rounded
+pwsx4564 power 0.0868 0.5 -> 0.295 Inexact Rounded
+pwsx4565 power 0.869 0.5 -> 0.932 Inexact Rounded
+pwsx4566 power 0.0869 0.5 -> 0.295 Inexact Rounded
+pwsx4567 power 0.871 0.5 -> 0.933 Inexact Rounded
+pwsx4568 power 0.0871 0.5 -> 0.295 Inexact Rounded
+pwsx4569 power 0.872 0.5 -> 0.934 Inexact Rounded
+pwsx4570 power 0.0872 0.5 -> 0.295 Inexact Rounded
+pwsx4571 power 0.873 0.5 -> 0.934 Inexact Rounded
+pwsx4572 power 0.0873 0.5 -> 0.295 Inexact Rounded
+pwsx4573 power 0.874 0.5 -> 0.935 Inexact Rounded
+pwsx4574 power 0.0874 0.5 -> 0.296 Inexact Rounded
+pwsx4575 power 0.875 0.5 -> 0.935 Inexact Rounded
+pwsx4576 power 0.0875 0.5 -> 0.296 Inexact Rounded
+pwsx4577 power 0.876 0.5 -> 0.936 Inexact Rounded
+pwsx4578 power 0.0876 0.5 -> 0.296 Inexact Rounded
+pwsx4579 power 0.877 0.5 -> 0.936 Inexact Rounded
+pwsx4580 power 0.0877 0.5 -> 0.296 Inexact Rounded
+pwsx4581 power 0.878 0.5 -> 0.937 Inexact Rounded
+pwsx4582 power 0.0878 0.5 -> 0.296 Inexact Rounded
+pwsx4583 power 0.879 0.5 -> 0.938 Inexact Rounded
+pwsx4584 power 0.0879 0.5 -> 0.296 Inexact Rounded
+pwsx4585 power 0.881 0.5 -> 0.939 Inexact Rounded
+pwsx4586 power 0.0881 0.5 -> 0.297 Inexact Rounded
+pwsx4587 power 0.882 0.5 -> 0.939 Inexact Rounded
+pwsx4588 power 0.0882 0.5 -> 0.297 Inexact Rounded
+pwsx4589 power 0.883 0.5 -> 0.940 Inexact Rounded
+pwsx4590 power 0.0883 0.5 -> 0.297 Inexact Rounded
+pwsx4591 power 0.884 0.5 -> 0.940 Inexact Rounded
+pwsx4592 power 0.0884 0.5 -> 0.297 Inexact Rounded
+pwsx4593 power 0.885 0.5 -> 0.941 Inexact Rounded
+pwsx4594 power 0.0885 0.5 -> 0.297 Inexact Rounded
+pwsx4595 power 0.886 0.5 -> 0.941 Inexact Rounded
+pwsx4596 power 0.0886 0.5 -> 0.298 Inexact Rounded
+pwsx4597 power 0.887 0.5 -> 0.942 Inexact Rounded
+pwsx4598 power 0.0887 0.5 -> 0.298 Inexact Rounded
+pwsx4599 power 0.888 0.5 -> 0.942 Inexact Rounded
+pwsx4600 power 0.0888 0.5 -> 0.298 Inexact Rounded
+pwsx4601 power 0.889 0.5 -> 0.943 Inexact Rounded
+pwsx4602 power 0.0889 0.5 -> 0.298 Inexact Rounded
+pwsx4603 power 0.891 0.5 -> 0.944 Inexact Rounded
+pwsx4604 power 0.0891 0.5 -> 0.298 Inexact Rounded
+pwsx4605 power 0.892 0.5 -> 0.944 Inexact Rounded
+pwsx4606 power 0.0892 0.5 -> 0.299 Inexact Rounded
+pwsx4607 power 0.893 0.5 -> 0.945 Inexact Rounded
+pwsx4608 power 0.0893 0.5 -> 0.299 Inexact Rounded
+pwsx4609 power 0.894 0.5 -> 0.946 Inexact Rounded
+pwsx4610 power 0.0894 0.5 -> 0.299 Inexact Rounded
+pwsx4611 power 0.895 0.5 -> 0.946 Inexact Rounded
+pwsx4612 power 0.0895 0.5 -> 0.299 Inexact Rounded
+pwsx4613 power 0.896 0.5 -> 0.947 Inexact Rounded
+pwsx4614 power 0.0896 0.5 -> 0.299 Inexact Rounded
+pwsx4615 power 0.897 0.5 -> 0.947 Inexact Rounded
+pwsx4616 power 0.0897 0.5 -> 0.299 Inexact Rounded
+pwsx4617 power 0.898 0.5 -> 0.948 Inexact Rounded
+pwsx4618 power 0.0898 0.5 -> 0.300 Inexact Rounded
+pwsx4619 power 0.899 0.5 -> 0.948 Inexact Rounded
+pwsx4620 power 0.0899 0.5 -> 0.300 Inexact Rounded
+pwsx4621 power 0.901 0.5 -> 0.949 Inexact Rounded
+pwsx4622 power 0.0901 0.5 -> 0.300 Inexact Rounded
+pwsx4623 power 0.902 0.5 -> 0.950 Inexact Rounded
+pwsx4624 power 0.0902 0.5 -> 0.300 Inexact Rounded
+pwsx4625 power 0.903 0.5 -> 0.950 Inexact Rounded
+pwsx4626 power 0.0903 0.5 -> 0.300 Inexact Rounded
+pwsx4627 power 0.904 0.5 -> 0.951 Inexact Rounded
+pwsx4628 power 0.0904 0.5 -> 0.301 Inexact Rounded
+pwsx4629 power 0.905 0.5 -> 0.951 Inexact Rounded
+pwsx4630 power 0.0905 0.5 -> 0.301 Inexact Rounded
+pwsx4631 power 0.906 0.5 -> 0.952 Inexact Rounded
+pwsx4632 power 0.0906 0.5 -> 0.301 Inexact Rounded
+pwsx4633 power 0.907 0.5 -> 0.952 Inexact Rounded
+pwsx4634 power 0.0907 0.5 -> 0.301 Inexact Rounded
+pwsx4635 power 0.908 0.5 -> 0.953 Inexact Rounded
+pwsx4636 power 0.0908 0.5 -> 0.301 Inexact Rounded
+pwsx4637 power 0.909 0.5 -> 0.953 Inexact Rounded
+pwsx4638 power 0.0909 0.5 -> 0.301 Inexact Rounded
+pwsx4639 power 0.911 0.5 -> 0.954 Inexact Rounded
+pwsx4640 power 0.0911 0.5 -> 0.302 Inexact Rounded
+pwsx4641 power 0.912 0.5 -> 0.955 Inexact Rounded
+pwsx4642 power 0.0912 0.5 -> 0.302 Inexact Rounded
+pwsx4643 power 0.913 0.5 -> 0.956 Inexact Rounded
+pwsx4644 power 0.0913 0.5 -> 0.302 Inexact Rounded
+pwsx4645 power 0.914 0.5 -> 0.956 Inexact Rounded
+pwsx4646 power 0.0914 0.5 -> 0.302 Inexact Rounded
+pwsx4647 power 0.915 0.5 -> 0.957 Inexact Rounded
+pwsx4648 power 0.0915 0.5 -> 0.302 Inexact Rounded
+pwsx4649 power 0.916 0.5 -> 0.957 Inexact Rounded
+pwsx4650 power 0.0916 0.5 -> 0.303 Inexact Rounded
+pwsx4651 power 0.917 0.5 -> 0.958 Inexact Rounded
+pwsx4652 power 0.0917 0.5 -> 0.303 Inexact Rounded
+pwsx4653 power 0.918 0.5 -> 0.958 Inexact Rounded
+pwsx4654 power 0.0918 0.5 -> 0.303 Inexact Rounded
+pwsx4655 power 0.919 0.5 -> 0.959 Inexact Rounded
+pwsx4656 power 0.0919 0.5 -> 0.303 Inexact Rounded
+pwsx4657 power 0.921 0.5 -> 0.960 Inexact Rounded
+pwsx4658 power 0.0921 0.5 -> 0.303 Inexact Rounded
+pwsx4659 power 0.922 0.5 -> 0.960 Inexact Rounded
+pwsx4660 power 0.0922 0.5 -> 0.304 Inexact Rounded
+pwsx4661 power 0.923 0.5 -> 0.961 Inexact Rounded
+pwsx4662 power 0.0923 0.5 -> 0.304 Inexact Rounded
+pwsx4663 power 0.924 0.5 -> 0.961 Inexact Rounded
+pwsx4664 power 0.0924 0.5 -> 0.304 Inexact Rounded
+pwsx4665 power 0.925 0.5 -> 0.962 Inexact Rounded
+pwsx4666 power 0.0925 0.5 -> 0.304 Inexact Rounded
+pwsx4667 power 0.926 0.5 -> 0.962 Inexact Rounded
+pwsx4668 power 0.0926 0.5 -> 0.304 Inexact Rounded
+pwsx4669 power 0.927 0.5 -> 0.963 Inexact Rounded
+pwsx4670 power 0.0927 0.5 -> 0.304 Inexact Rounded
+pwsx4671 power 0.928 0.5 -> 0.963 Inexact Rounded
+pwsx4672 power 0.0928 0.5 -> 0.305 Inexact Rounded
+pwsx4673 power 0.929 0.5 -> 0.964 Inexact Rounded
+pwsx4674 power 0.0929 0.5 -> 0.305 Inexact Rounded
+pwsx4675 power 0.931 0.5 -> 0.965 Inexact Rounded
+pwsx4676 power 0.0931 0.5 -> 0.305 Inexact Rounded
+pwsx4677 power 0.932 0.5 -> 0.965 Inexact Rounded
+pwsx4678 power 0.0932 0.5 -> 0.305 Inexact Rounded
+pwsx4679 power 0.933 0.5 -> 0.966 Inexact Rounded
+pwsx4680 power 0.0933 0.5 -> 0.305 Inexact Rounded
+pwsx4681 power 0.934 0.5 -> 0.966 Inexact Rounded
+pwsx4682 power 0.0934 0.5 -> 0.306 Inexact Rounded
+pwsx4683 power 0.935 0.5 -> 0.967 Inexact Rounded
+pwsx4684 power 0.0935 0.5 -> 0.306 Inexact Rounded
+pwsx4685 power 0.936 0.5 -> 0.967 Inexact Rounded
+pwsx4686 power 0.0936 0.5 -> 0.306 Inexact Rounded
+pwsx4687 power 0.937 0.5 -> 0.968 Inexact Rounded
+pwsx4688 power 0.0937 0.5 -> 0.306 Inexact Rounded
+pwsx4689 power 0.938 0.5 -> 0.969 Inexact Rounded
+pwsx4690 power 0.0938 0.5 -> 0.306 Inexact Rounded
+pwsx4691 power 0.939 0.5 -> 0.969 Inexact Rounded
+pwsx4692 power 0.0939 0.5 -> 0.306 Inexact Rounded
+pwsx4693 power 0.941 0.5 -> 0.970 Inexact Rounded
+pwsx4694 power 0.0941 0.5 -> 0.307 Inexact Rounded
+pwsx4695 power 0.942 0.5 -> 0.971 Inexact Rounded
+pwsx4696 power 0.0942 0.5 -> 0.307 Inexact Rounded
+pwsx4697 power 0.943 0.5 -> 0.971 Inexact Rounded
+pwsx4698 power 0.0943 0.5 -> 0.307 Inexact Rounded
+pwsx4699 power 0.944 0.5 -> 0.972 Inexact Rounded
+pwsx4700 power 0.0944 0.5 -> 0.307 Inexact Rounded
+pwsx4701 power 0.945 0.5 -> 0.972 Inexact Rounded
+pwsx4702 power 0.0945 0.5 -> 0.307 Inexact Rounded
+pwsx4703 power 0.946 0.5 -> 0.973 Inexact Rounded
+pwsx4704 power 0.0946 0.5 -> 0.308 Inexact Rounded
+pwsx4705 power 0.947 0.5 -> 0.973 Inexact Rounded
+pwsx4706 power 0.0947 0.5 -> 0.308 Inexact Rounded
+pwsx4707 power 0.948 0.5 -> 0.974 Inexact Rounded
+pwsx4708 power 0.0948 0.5 -> 0.308 Inexact Rounded
+pwsx4709 power 0.949 0.5 -> 0.974 Inexact Rounded
+pwsx4710 power 0.0949 0.5 -> 0.308 Inexact Rounded
+pwsx4711 power 0.951 0.5 -> 0.975 Inexact Rounded
+pwsx4712 power 0.0951 0.5 -> 0.308 Inexact Rounded
+pwsx4713 power 0.952 0.5 -> 0.976 Inexact Rounded
+pwsx4714 power 0.0952 0.5 -> 0.309 Inexact Rounded
+pwsx4715 power 0.953 0.5 -> 0.976 Inexact Rounded
+pwsx4716 power 0.0953 0.5 -> 0.309 Inexact Rounded
+pwsx4717 power 0.954 0.5 -> 0.977 Inexact Rounded
+pwsx4718 power 0.0954 0.5 -> 0.309 Inexact Rounded
+pwsx4719 power 0.955 0.5 -> 0.977 Inexact Rounded
+pwsx4720 power 0.0955 0.5 -> 0.309 Inexact Rounded
+pwsx4721 power 0.956 0.5 -> 0.978 Inexact Rounded
+pwsx4722 power 0.0956 0.5 -> 0.309 Inexact Rounded
+pwsx4723 power 0.957 0.5 -> 0.978 Inexact Rounded
+pwsx4724 power 0.0957 0.5 -> 0.309 Inexact Rounded
+pwsx4725 power 0.958 0.5 -> 0.979 Inexact Rounded
+pwsx4726 power 0.0958 0.5 -> 0.310 Inexact Rounded
+pwsx4727 power 0.959 0.5 -> 0.979 Inexact Rounded
+pwsx4728 power 0.0959 0.5 -> 0.310 Inexact Rounded
+pwsx4729 power 0.961 0.5 -> 0.980 Inexact Rounded
+pwsx4730 power 0.0961 0.5 -> 0.310 Inexact Rounded
+pwsx4731 power 0.962 0.5 -> 0.981 Inexact Rounded
+pwsx4732 power 0.0962 0.5 -> 0.310 Inexact Rounded
+pwsx4733 power 0.963 0.5 -> 0.981 Inexact Rounded
+pwsx4734 power 0.0963 0.5 -> 0.310 Inexact Rounded
+pwsx4735 power 0.964 0.5 -> 0.982 Inexact Rounded
+pwsx4736 power 0.0964 0.5 -> 0.310 Inexact Rounded
+pwsx4737 power 0.965 0.5 -> 0.982 Inexact Rounded
+pwsx4738 power 0.0965 0.5 -> 0.311 Inexact Rounded
+pwsx4739 power 0.966 0.5 -> 0.983 Inexact Rounded
+pwsx4740 power 0.0966 0.5 -> 0.311 Inexact Rounded
+pwsx4741 power 0.967 0.5 -> 0.983 Inexact Rounded
+pwsx4742 power 0.0967 0.5 -> 0.311 Inexact Rounded
+pwsx4743 power 0.968 0.5 -> 0.984 Inexact Rounded
+pwsx4744 power 0.0968 0.5 -> 0.311 Inexact Rounded
+pwsx4745 power 0.969 0.5 -> 0.984 Inexact Rounded
+pwsx4746 power 0.0969 0.5 -> 0.311 Inexact Rounded
+pwsx4747 power 0.971 0.5 -> 0.985 Inexact Rounded
+pwsx4748 power 0.0971 0.5 -> 0.312 Inexact Rounded
+pwsx4749 power 0.972 0.5 -> 0.986 Inexact Rounded
+pwsx4750 power 0.0972 0.5 -> 0.312 Inexact Rounded
+pwsx4751 power 0.973 0.5 -> 0.986 Inexact Rounded
+pwsx4752 power 0.0973 0.5 -> 0.312 Inexact Rounded
+pwsx4753 power 0.974 0.5 -> 0.987 Inexact Rounded
+pwsx4754 power 0.0974 0.5 -> 0.312 Inexact Rounded
+pwsx4755 power 0.975 0.5 -> 0.987 Inexact Rounded
+pwsx4756 power 0.0975 0.5 -> 0.312 Inexact Rounded
+pwsx4757 power 0.976 0.5 -> 0.988 Inexact Rounded
+pwsx4758 power 0.0976 0.5 -> 0.312 Inexact Rounded
+pwsx4759 power 0.977 0.5 -> 0.988 Inexact Rounded
+pwsx4760 power 0.0977 0.5 -> 0.313 Inexact Rounded
+pwsx4761 power 0.978 0.5 -> 0.989 Inexact Rounded
+pwsx4762 power 0.0978 0.5 -> 0.313 Inexact Rounded
+pwsx4763 power 0.979 0.5 -> 0.989 Inexact Rounded
+pwsx4764 power 0.0979 0.5 -> 0.313 Inexact Rounded
+pwsx4765 power 0.981 0.5 -> 0.990 Inexact Rounded
+pwsx4766 power 0.0981 0.5 -> 0.313 Inexact Rounded
+pwsx4767 power 0.982 0.5 -> 0.991 Inexact Rounded
+pwsx4768 power 0.0982 0.5 -> 0.313 Inexact Rounded
+pwsx4769 power 0.983 0.5 -> 0.991 Inexact Rounded
+pwsx4770 power 0.0983 0.5 -> 0.314 Inexact Rounded
+pwsx4771 power 0.984 0.5 -> 0.992 Inexact Rounded
+pwsx4772 power 0.0984 0.5 -> 0.314 Inexact Rounded
+pwsx4773 power 0.985 0.5 -> 0.992 Inexact Rounded
+pwsx4774 power 0.0985 0.5 -> 0.314 Inexact Rounded
+pwsx4775 power 0.986 0.5 -> 0.993 Inexact Rounded
+pwsx4776 power 0.0986 0.5 -> 0.314 Inexact Rounded
+pwsx4777 power 0.987 0.5 -> 0.993 Inexact Rounded
+pwsx4778 power 0.0987 0.5 -> 0.314 Inexact Rounded
+pwsx4779 power 0.988 0.5 -> 0.994 Inexact Rounded
+pwsx4780 power 0.0988 0.5 -> 0.314 Inexact Rounded
+pwsx4781 power 0.989 0.5 -> 0.994 Inexact Rounded
+pwsx4782 power 0.0989 0.5 -> 0.314 Inexact Rounded
+pwsx4783 power 0.991 0.5 -> 0.995 Inexact Rounded
+pwsx4784 power 0.0991 0.5 -> 0.315 Inexact Rounded
+pwsx4785 power 0.992 0.5 -> 0.996 Inexact Rounded
+pwsx4786 power 0.0992 0.5 -> 0.315 Inexact Rounded
+pwsx4787 power 0.993 0.5 -> 0.996 Inexact Rounded
+pwsx4788 power 0.0993 0.5 -> 0.315 Inexact Rounded
+pwsx4789 power 0.994 0.5 -> 0.997 Inexact Rounded
+pwsx4790 power 0.0994 0.5 -> 0.315 Inexact Rounded
+pwsx4791 power 0.995 0.5 -> 0.997 Inexact Rounded
+pwsx4792 power 0.0995 0.5 -> 0.315 Inexact Rounded
+pwsx4793 power 0.996 0.5 -> 0.998 Inexact Rounded
+pwsx4794 power 0.0996 0.5 -> 0.316 Inexact Rounded
+pwsx4795 power 0.997 0.5 -> 0.998 Inexact Rounded
+pwsx4796 power 0.0997 0.5 -> 0.316 Inexact Rounded
+pwsx4797 power 0.998 0.5 -> 0.999 Inexact Rounded
+pwsx4798 power 0.0998 0.5 -> 0.316 Inexact Rounded
+pwsx4799 power 0.999 0.5 -> 0.999 Inexact Rounded
+pwsx4800 power 0.0999 0.5 -> 0.316 Inexact Rounded
+
+-- A group of precision 4 tests where Hull & Abrham adjustments are
+-- needed in some cases (both up and down) [see Hull1985b]
+rounding: half_even
+maxExponent: 999
+minexponent: -999
+precision: 4
+pwsx5001 power 0.0118 0.5 -> 0.1086 Inexact Rounded
+pwsx5002 power 0.119 0.5 -> 0.3450 Inexact Rounded
+pwsx5003 power 0.0119 0.5 -> 0.1091 Inexact Rounded
+pwsx5004 power 0.121 0.5 -> 0.3479 Inexact Rounded
+pwsx5005 power 0.0121 0.5 -> 0.1100 Inexact Rounded
+pwsx5006 power 0.122 0.5 -> 0.3493 Inexact Rounded
+pwsx5007 power 0.0122 0.5 -> 0.1105 Inexact Rounded
+pwsx5008 power 0.123 0.5 -> 0.3507 Inexact Rounded
+pwsx5009 power 0.494 0.5 -> 0.7029 Inexact Rounded
+pwsx5010 power 0.0669 0.5 -> 0.2587 Inexact Rounded
+pwsx5011 power 0.9558 0.5 -> 0.9777 Inexact Rounded
+pwsx5012 power 0.9348 0.5 -> 0.9669 Inexact Rounded
+pwsx5013 power 0.9345 0.5 -> 0.9667 Inexact Rounded
+pwsx5014 power 0.09345 0.5 -> 0.3057 Inexact Rounded
+pwsx5015 power 0.9346 0.5 -> 0.9667 Inexact Rounded
+pwsx5016 power 0.09346 0.5 -> 0.3057 Inexact Rounded
+pwsx5017 power 0.9347 0.5 -> 0.9668 Inexact Rounded
+
+-- examples from decArith
+precision: 9
+pwsx700 power 0 0.5 -> '0'
+pwsx701 power -0 0.5 -> '0'
+pwsx702 power 0.39 0.5 -> 0.624499800 Inexact Rounded
+pwsx703 power 100 0.5 -> '10.0000000' Inexact Rounded
+pwsx704 power 1.00 0.5 -> '1.00000000' Inexact Rounded
+pwsx705 power 7 0.5 -> '2.64575131' Inexact Rounded
+pwsx706 power 10 0.5 -> 3.16227766 Inexact Rounded
+
+-- some one-offs
+precision: 9
+pwsx711 power 0.1 0.5 -> 0.316227766 Inexact Rounded
+pwsx712 power 0.2 0.5 -> 0.447213595 Inexact Rounded
+pwsx713 power 0.3 0.5 -> 0.547722558 Inexact Rounded
+pwsx714 power 0.4 0.5 -> 0.632455532 Inexact Rounded
+pwsx715 power 0.5 0.5 -> 0.707106781 Inexact Rounded
+pwsx716 power 0.6 0.5 -> 0.774596669 Inexact Rounded
+pwsx717 power 0.7 0.5 -> 0.836660027 Inexact Rounded
+pwsx718 power 0.8 0.5 -> 0.894427191 Inexact Rounded
+pwsx719 power 0.9 0.5 -> 0.948683298 Inexact Rounded
+precision: 10 -- note no normalizatoin here
+pwsx720 power +0.1 0.5 -> 0.3162277660 Inexact Rounded
+precision: 11
+pwsx721 power +0.1 0.5 -> 0.31622776602 Inexact Rounded
+precision: 12
+pwsx722 power +0.1 0.5 -> 0.316227766017 Inexact Rounded
+precision: 9
+pwsx723 power 0.39 0.5 -> 0.624499800 Inexact Rounded
+precision: 15
+pwsx724 power 0.39 0.5 -> 0.624499799839840 Inexact Rounded
+
+-- discussion cases
+precision: 7
+pwsx731 power 9 0.5 -> 3.000000 Inexact Rounded
+pwsx732 power 100 0.5 -> 10.00000 Inexact Rounded
+pwsx733 power 123 0.5 -> 11.09054 Inexact Rounded
+pwsx734 power 144 0.5 -> 12.00000 Inexact Rounded
+pwsx735 power 156 0.5 -> 12.49000 Inexact Rounded
+pwsx736 power 10000 0.5 -> 100.0000 Inexact Rounded
+
+-- values close to overflow (if there were input rounding)
+maxexponent: 99
+minexponent: -99
+precision: 5
+pwsx760 power 9.9997E+99 0.5 -> 9.9998E+49 Inexact Rounded
+pwsx761 power 9.9998E+99 0.5 -> 9.9999E+49 Inexact Rounded
+pwsx762 power 9.9999E+99 0.5 -> 9.9999E+49 Inexact Rounded
+pwsx763 power 9.99991E+99 0.5 -> 1.0000E+50 Inexact Rounded
+pwsx764 power 9.99994E+99 0.5 -> 1.0000E+50 Inexact Rounded
+pwsx765 power 9.99995E+99 0.5 -> 1.0000E+50 Inexact Rounded
+pwsx766 power 9.99999E+99 0.5 -> 1.0000E+50 Inexact Rounded
+precision: 9
+pwsx770 power 9.9997E+99 0.5 -> 9.99985000E+49 Inexact Rounded
+pwsx771 power 9.9998E+99 0.5 -> 9.99990000E+49 Inexact Rounded
+pwsx772 power 9.9999E+99 0.5 -> 9.99995000E+49 Inexact Rounded
+pwsx773 power 9.99991E+99 0.5 -> 9.99995500E+49 Inexact Rounded
+pwsx774 power 9.99994E+99 0.5 -> 9.99997000E+49 Inexact Rounded
+pwsx775 power 9.99995E+99 0.5 -> 9.99997500E+49 Inexact Rounded
+pwsx776 power 9.99999E+99 0.5 -> 9.99999500E+49 Inexact Rounded
+precision: 20
+pwsx780 power 9.9997E+99 0.5 -> '9.9998499988749831247E+49' Inexact Rounded
+pwsx781 power 9.9998E+99 0.5 -> '9.9998999994999949999E+49' Inexact Rounded
+pwsx782 power 9.9999E+99 0.5 -> '9.9999499998749993750E+49' Inexact Rounded
+pwsx783 power 9.99991E+99 0.5 -> '9.9999549998987495444E+49' Inexact Rounded
+pwsx784 power 9.99994E+99 0.5 -> '9.9999699999549998650E+49' Inexact Rounded
+pwsx785 power 9.99995E+99 0.5 -> '9.9999749999687499219E+49' Inexact Rounded
+pwsx786 power 9.99999E+99 0.5 -> '9.9999949999987499994E+49' Inexact Rounded
+
+-- subnormals and underflows [these can only result when eMax is < digits+1]
+-- Etiny = -(Emax + (precision-1))
+-- start with subnormal operands and normal results
+maxexponent: 9
+minexponent: -9
+precision: 9 -- Etiny=-17
+pwsx800 power 1E-17 0.5 -> 3.16227766E-9 Inexact Rounded
+pwsx801 power 10E-17 0.5 -> 1.00000000E-8 Inexact Rounded
+precision: 10 -- Etiny=-18
+pwsx802 power 10E-18 0.5 -> 3.162277660E-9 Inexact Rounded
+pwsx803 power 1E-18 0.5 -> 1.000000000E-9 Inexact Rounded
+
+precision: 11 -- Etiny=-19
+pwsx804 power 1E-19 0.5 -> 3.162277660E-10 Underflow Subnormal Inexact Rounded
+-- The next test should be skipped for decNumber
+pwsx805 power 10E-19 0.5 -> 1.0000000000E-9 Inexact Rounded
+precision: 12 -- Etiny=-20
+pwsx806 power 10E-20 0.5 -> 3.1622776602E-10 Underflow Subnormal Inexact Rounded
+pwsx807 power 1E-20 0.5 -> 1.0000000000E-10 Underflow Subnormal Inexact Rounded
+
+precision: 13 -- Etiny=-21
+pwsx808 power 1E-21 0.5 -> 3.1622776602E-11 Underflow Subnormal Inexact Rounded
+pwsx809 power 10E-21 0.5 -> 1.00000000000E-10 Underflow Subnormal Inexact Rounded
+precision: 14 -- Etiny=-22
+pwsx810 power 1E-21 0.5 -> 3.16227766017E-11 Underflow Subnormal Inexact Rounded
+pwsx811 power 10E-22 0.5 -> 3.16227766017E-11 Underflow Subnormal Inexact Rounded
+pwsx812 power 1E-22 0.5 -> 1.00000000000E-11 Underflow Subnormal Inexact Rounded
+
+
+-- special values
+maxexponent: 999
+minexponent: -999
+pwsx820 power Inf 0.5 -> Infinity
+pwsx821 power -Inf 0.5 -> NaN Invalid_operation
+pwsx822 power NaN 0.5 -> NaN
+pwsx823 power sNaN 0.5 -> NaN Invalid_operation
+-- propagating NaNs
+pwsx824 power sNaN123 0.5 -> NaN123 Invalid_operation
+pwsx825 power -sNaN321 0.5 -> -NaN321 Invalid_operation
+pwsx826 power NaN456 0.5 -> NaN456
+pwsx827 power -NaN654 0.5 -> -NaN654
+pwsx828 power NaN1 0.5 -> NaN1
+
+-- Null test
+pwsx900 power # 0.5 -> NaN Invalid_operation
diff --git a/Lib/test/decimaltestdata/quantize.decTest b/Lib/test/decimaltestdata/quantize.decTest
index dc1b130..a60f1bf 100644
--- a/Lib/test/decimaltestdata/quantize.decTest
+++ b/Lib/test/decimaltestdata/quantize.decTest
@@ -1,6 +1,6 @@
------------------------------------------------------------------------
-- quantize.decTest -- decimal quantize operation --
--- Copyright (c) IBM Corporation, 1981, 2004. All rights reserved. --
+-- Copyright (c) IBM Corporation, 1981, 2007. All rights reserved. --
------------------------------------------------------------------------
-- Please see the document "General Decimal Arithmetic Testcases" --
-- at http://www2.hursley.ibm.com/decimal for the description of --
@@ -17,11 +17,12 @@
-- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK --
-- mfc@uk.ibm.com --
------------------------------------------------------------------------
-version: 2.39
+version: 2.56
-- Most of the tests here assume a "regular pattern", where the
-- sign and coefficient are +1.
-- 2004.03.15 Underflow for quantize is suppressed
+-- 2005.06.08 More extensive tests for 'does not fit'
extended: 1
precision: 9
@@ -123,10 +124,6 @@ quax123 quantize 1.04 1e0 -> 1 Inexact Rounded
quax124 quantize 1.05 1e-3 -> 1.050
quax125 quantize 1.05 1e-2 -> 1.05
quax126 quantize 1.05 1e-1 -> 1.1 Inexact Rounded
-quax127 quantize 1.05 1e0 -> 1 Inexact Rounded
-quax128 quantize 1.05 1e-3 -> 1.050
-quax129 quantize 1.05 1e-2 -> 1.05
-quax130 quantize 1.05 1e-1 -> 1.1 Inexact Rounded
quax131 quantize 1.05 1e0 -> 1 Inexact Rounded
quax132 quantize 1.06 1e-3 -> 1.060
quax133 quantize 1.06 1e-2 -> 1.06
@@ -435,6 +432,102 @@ quax471 quantize 9.999E-15 1e-1 -> 0.0 Inexact Rounded
quax472 quantize 9.999E-15 1e0 -> 0 Inexact Rounded
quax473 quantize 9.999E-15 1e1 -> 0E+1 Inexact Rounded
+precision: 7
+quax900 quantize 9.999E-15 1e-22 -> NaN Invalid_operation
+quax901 quantize 9.999E-15 1e-21 -> 9.999000E-15
+quax902 quantize 9.999E-15 1e-20 -> 9.99900E-15
+quax903 quantize 9.999E-15 1e-19 -> 9.9990E-15
+quax904 quantize 9.999E-15 1e-18 -> 9.999E-15
+quax905 quantize 9.999E-15 1e-17 -> 1.000E-14 Inexact Rounded
+quax906 quantize 9.999E-15 1e-16 -> 1.00E-14 Inexact Rounded
+quax907 quantize 9.999E-15 1e-15 -> 1.0E-14 Inexact Rounded
+quax908 quantize 9.999E-15 1e-14 -> 1E-14 Inexact Rounded
+quax909 quantize 9.999E-15 1e-13 -> 0E-13 Inexact Rounded
+quax910 quantize 9.999E-15 1e-12 -> 0E-12 Inexact Rounded
+quax911 quantize 9.999E-15 1e-11 -> 0E-11 Inexact Rounded
+quax912 quantize 9.999E-15 1e-10 -> 0E-10 Inexact Rounded
+quax913 quantize 9.999E-15 1e-9 -> 0E-9 Inexact Rounded
+quax914 quantize 9.999E-15 1e-8 -> 0E-8 Inexact Rounded
+quax915 quantize 9.999E-15 1e-7 -> 0E-7 Inexact Rounded
+quax916 quantize 9.999E-15 1e-6 -> 0.000000 Inexact Rounded
+quax917 quantize 9.999E-15 1e-5 -> 0.00000 Inexact Rounded
+quax918 quantize 9.999E-15 1e-4 -> 0.0000 Inexact Rounded
+quax919 quantize 9.999E-15 1e-3 -> 0.000 Inexact Rounded
+quax920 quantize 9.999E-15 1e-2 -> 0.00 Inexact Rounded
+quax921 quantize 9.999E-15 1e-1 -> 0.0 Inexact Rounded
+quax922 quantize 9.999E-15 1e0 -> 0 Inexact Rounded
+quax923 quantize 9.999E-15 1e1 -> 0E+1 Inexact Rounded
+
+precision: 6
+quax930 quantize 9.999E-15 1e-22 -> NaN Invalid_operation
+quax931 quantize 9.999E-15 1e-21 -> NaN Invalid_operation
+quax932 quantize 9.999E-15 1e-20 -> 9.99900E-15
+quax933 quantize 9.999E-15 1e-19 -> 9.9990E-15
+quax934 quantize 9.999E-15 1e-18 -> 9.999E-15
+quax935 quantize 9.999E-15 1e-17 -> 1.000E-14 Inexact Rounded
+quax936 quantize 9.999E-15 1e-16 -> 1.00E-14 Inexact Rounded
+quax937 quantize 9.999E-15 1e-15 -> 1.0E-14 Inexact Rounded
+quax938 quantize 9.999E-15 1e-14 -> 1E-14 Inexact Rounded
+quax939 quantize 9.999E-15 1e-13 -> 0E-13 Inexact Rounded
+quax940 quantize 9.999E-15 1e-12 -> 0E-12 Inexact Rounded
+quax941 quantize 9.999E-15 1e-11 -> 0E-11 Inexact Rounded
+quax942 quantize 9.999E-15 1e-10 -> 0E-10 Inexact Rounded
+quax943 quantize 9.999E-15 1e-9 -> 0E-9 Inexact Rounded
+quax944 quantize 9.999E-15 1e-8 -> 0E-8 Inexact Rounded
+quax945 quantize 9.999E-15 1e-7 -> 0E-7 Inexact Rounded
+quax946 quantize 9.999E-15 1e-6 -> 0.000000 Inexact Rounded
+quax947 quantize 9.999E-15 1e-5 -> 0.00000 Inexact Rounded
+quax948 quantize 9.999E-15 1e-4 -> 0.0000 Inexact Rounded
+quax949 quantize 9.999E-15 1e-3 -> 0.000 Inexact Rounded
+quax950 quantize 9.999E-15 1e-2 -> 0.00 Inexact Rounded
+quax951 quantize 9.999E-15 1e-1 -> 0.0 Inexact Rounded
+quax952 quantize 9.999E-15 1e0 -> 0 Inexact Rounded
+quax953 quantize 9.999E-15 1e1 -> 0E+1 Inexact Rounded
+
+precision: 3
+quax960 quantize 9.999E-15 1e-22 -> NaN Invalid_operation
+quax961 quantize 9.999E-15 1e-21 -> NaN Invalid_operation
+quax962 quantize 9.999E-15 1e-20 -> NaN Invalid_operation
+quax963 quantize 9.999E-15 1e-19 -> NaN Invalid_operation
+quax964 quantize 9.999E-15 1e-18 -> NaN Invalid_operation
+quax965 quantize 9.999E-15 1e-17 -> NaN Invalid_operation
+quax966 quantize 9.999E-15 1e-16 -> 1.00E-14 Inexact Rounded
+quax967 quantize 9.999E-15 1e-15 -> 1.0E-14 Inexact Rounded
+quax968 quantize 9.999E-15 1e-14 -> 1E-14 Inexact Rounded
+quax969 quantize 9.999E-15 1e-13 -> 0E-13 Inexact Rounded
+quax970 quantize 9.999E-15 1e-12 -> 0E-12 Inexact Rounded
+quax971 quantize 9.999E-15 1e-11 -> 0E-11 Inexact Rounded
+quax972 quantize 9.999E-15 1e-10 -> 0E-10 Inexact Rounded
+quax973 quantize 9.999E-15 1e-9 -> 0E-9 Inexact Rounded
+quax974 quantize 9.999E-15 1e-8 -> 0E-8 Inexact Rounded
+quax975 quantize 9.999E-15 1e-7 -> 0E-7 Inexact Rounded
+quax976 quantize 9.999E-15 1e-6 -> 0.000000 Inexact Rounded
+quax977 quantize 9.999E-15 1e-5 -> 0.00000 Inexact Rounded
+quax978 quantize 9.999E-15 1e-4 -> 0.0000 Inexact Rounded
+quax979 quantize 9.999E-15 1e-3 -> 0.000 Inexact Rounded
+quax980 quantize 9.999E-15 1e-2 -> 0.00 Inexact Rounded
+quax981 quantize 9.999E-15 1e-1 -> 0.0 Inexact Rounded
+quax982 quantize 9.999E-15 1e0 -> 0 Inexact Rounded
+quax983 quantize 9.999E-15 1e1 -> 0E+1 Inexact Rounded
+
+-- Fung Lee's case & similar
+precision: 3
+quax1001 quantize 0.000 0.001 -> 0.000
+quax1002 quantize 0.001 0.001 -> 0.001
+quax1003 quantize 0.0012 0.001 -> 0.001 Inexact Rounded
+quax1004 quantize 0.0018 0.001 -> 0.002 Inexact Rounded
+quax1005 quantize 0.501 0.001 -> 0.501
+quax1006 quantize 0.5012 0.001 -> 0.501 Inexact Rounded
+quax1007 quantize 0.5018 0.001 -> 0.502 Inexact Rounded
+quax1008 quantize 0.999 0.001 -> 0.999
+quax1009 quantize 0.9992 0.001 -> 0.999 Inexact Rounded
+quax1010 quantize 0.9998 0.001 -> NaN Invalid_operation
+quax1011 quantize 1.0001 0.001 -> NaN Invalid_operation
+quax1012 quantize 1.0051 0.001 -> NaN Invalid_operation
+quax1013 quantize 1.0551 0.001 -> NaN Invalid_operation
+quax1014 quantize 1.5551 0.001 -> NaN Invalid_operation
+quax1015 quantize 1.9999 0.001 -> NaN Invalid_operation
+
-- long operand checks [rhs checks removed]
maxexponent: 999
minexponent: -999
@@ -775,6 +868,81 @@ quax864 quantize 1 1e-2147483647 -> NaN Invalid_operation
quax865 quantize 1 1e-2147483648 -> NaN Invalid_operation
quax866 quantize 1 1e-2147483649 -> NaN Invalid_operation
+-- More from Fung Lee
+precision: 16
+rounding: half_up
+maxExponent: 384
+minExponent: -383
+quax1021 quantize 8.666666666666000E+384 1.000000000000000E+384 -> 8.666666666666000E+384
+quax1022 quantize 64#8.666666666666000E+384 64#1.000000000000000E+384 -> 8.666666666666000E+384
+quax1023 quantize 64#8.666666666666000E+384 128#1.000000000000000E+384 -> 8.666666666666000E+384
+quax1024 quantize 64#8.666666666666000E+384 64#1E+384 -> 8.666666666666000E+384
+quax1025 quantize 64#8.666666666666000E+384 64#1E+384 -> 64#8.666666666666000E+384
+quax1026 quantize 64#8.666666666666000E+384 128#1E+384 -> 64#9E+384 Inexact Rounded Clamped
+quax1027 quantize 64#8.666666666666000E+323 64#1E+31 -> NaN Invalid_operation
+quax1028 quantize 64#8.666666666666000E+323 128#1E+31 -> NaN Invalid_operation
+quax1029 quantize 64#8.66666666E+3 128#1E+10 -> 64#0E10 Inexact Rounded
+quax1030 quantize 8.66666666E+3 1E+3 -> 9E+3 Inexact Rounded
+
+-- Int and uInt32 edge values for testing conversions
+quax1040 quantize -2147483646 0 -> -2147483646
+quax1041 quantize -2147483647 0 -> -2147483647
+quax1042 quantize -2147483648 0 -> -2147483648
+quax1043 quantize -2147483649 0 -> -2147483649
+quax1044 quantize 2147483646 0 -> 2147483646
+quax1045 quantize 2147483647 0 -> 2147483647
+quax1046 quantize 2147483648 0 -> 2147483648
+quax1047 quantize 2147483649 0 -> 2147483649
+quax1048 quantize 4294967294 0 -> 4294967294
+quax1049 quantize 4294967295 0 -> 4294967295
+quax1050 quantize 4294967296 0 -> 4294967296
+quax1051 quantize 4294967297 0 -> 4294967297
+-- and powers of ten for same
+quax1101 quantize 5000000000 0 -> 5000000000
+quax1102 quantize 4000000000 0 -> 4000000000
+quax1103 quantize 2000000000 0 -> 2000000000
+quax1104 quantize 1000000000 0 -> 1000000000
+quax1105 quantize 0100000000 0 -> 100000000
+quax1106 quantize 0010000000 0 -> 10000000
+quax1107 quantize 0001000000 0 -> 1000000
+quax1108 quantize 0000100000 0 -> 100000
+quax1109 quantize 0000010000 0 -> 10000
+quax1110 quantize 0000001000 0 -> 1000
+quax1111 quantize 0000000100 0 -> 100
+quax1112 quantize 0000000010 0 -> 10
+quax1113 quantize 0000000001 0 -> 1
+quax1114 quantize 0000000000 0 -> 0
+-- and powers of ten for same
+quax1121 quantize -5000000000 0 -> -5000000000
+quax1122 quantize -4000000000 0 -> -4000000000
+quax1123 quantize -2000000000 0 -> -2000000000
+quax1124 quantize -1000000000 0 -> -1000000000
+quax1125 quantize -0100000000 0 -> -100000000
+quax1126 quantize -0010000000 0 -> -10000000
+quax1127 quantize -0001000000 0 -> -1000000
+quax1128 quantize -0000100000 0 -> -100000
+quax1129 quantize -0000010000 0 -> -10000
+quax1130 quantize -0000001000 0 -> -1000
+quax1131 quantize -0000000100 0 -> -100
+quax1132 quantize -0000000010 0 -> -10
+quax1133 quantize -0000000001 0 -> -1
+quax1134 quantize -0000000000 0 -> -0
+
+-- Some miscellany
+precision: 34
+rounding: half_up
+maxExponent: 6144
+minExponent: -6143
+-- 1 2 3
+-- 1 234567890123456789012345678901234
+quax0a1 quantize 8.555555555555555555555555555555555E+6143 1E+6143 -> 9E+6143 Inexact Rounded
+quax0a2 quantize 128#8.555555555555555555555555555555555E+6143 128#1E+6143 -> 8.55555555555555555555555555555556E+6143 Rounded Inexact
+quax0a3 quantize 128#8.555555555555555555555555555555555E+6144 128#1E+6144 -> 8.555555555555555555555555555555555E+6144
+
+-- payload decapitate
+precision: 5
+quax62100 quantize 11 -sNaN1234567890 -> -NaN67890 Invalid_operation
+
-- Null tests
-quax900 quantize 10 # -> NaN Invalid_operation
-quax901 quantize # 1e10 -> NaN Invalid_operation
+quax998 quantize 10 # -> NaN Invalid_operation
+quax999 quantize # 1e10 -> NaN Invalid_operation
diff --git a/Lib/test/decimaltestdata/randomBound32.decTest b/Lib/test/decimaltestdata/randomBound32.decTest
index 308589c..7f115ad 100644
--- a/Lib/test/decimaltestdata/randomBound32.decTest
+++ b/Lib/test/decimaltestdata/randomBound32.decTest
@@ -1,6 +1,6 @@
------------------------------------------------------------------------
-- randomBound32.decTest -- decimal testcases -- boundaries near 32 --
--- Copyright (c) IBM Corporation, 1981, 2003. All rights reserved. --
+-- Copyright (c) IBM Corporation, 1981, 2007. All rights reserved. --
------------------------------------------------------------------------
-- Please see the document "General Decimal Arithmetic Testcases" --
-- at http://www2.hursley.ibm.com/decimal for the description of --
@@ -17,7 +17,7 @@
-- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK --
-- mfc@uk.ibm.com --
------------------------------------------------------------------------
-version: 2.39
+version: 2.55
-- These testcases test calculations at precisions 31, 32, and 33, to
-- exercise the boundaries around 2**5
@@ -90,7 +90,7 @@ comx3008 compare 75353574493.84484153484918212042 -86841116950958499222630441912
divx3008 divide 75353574493.84484153484918212042 -8684111695095849922263044191221 -> -8.677177026223536475531592432118E-21 Inexact Rounded
dvix3008 divideint 75353574493.84484153484918212042 -8684111695095849922263044191221 -> -0
mulx3008 multiply 75353574493.84484153484918212042 -8684111695095849922263044191221 -> -6.543788575292743281456830701127E+41 Inexact Rounded
-powx3008 power 75353574493.84484153484918212042 -9 -> 1.276630670287906925570645490708E-98 Inexact Rounded
+powx3008 power 75353574493.84484153484918212042 -9 -> 1.276630670287906925570645490707E-98 Inexact Rounded
remx3008 remainder 75353574493.84484153484918212042 -8684111695095849922263044191221 -> 75353574493.84484153484918212042
subx3008 subtract 75353574493.84484153484918212042 -8684111695095849922263044191221 -> 8684111695095849922338397765715 Inexact Rounded
addx3009 add 6907058.216435355874729592373011 2.857005446917670515662398741545 -> 6907061.073440802792400108035410 Inexact Rounded
@@ -1040,7 +1040,7 @@ comx3226 compare 47.525676459351505682005359699680E+704 -58631943508436657383369
divx3226 divide 47.525676459351505682005359699680E+704 -58631943508436657383369760970210 -> -8.1057651538555854520994438038537E+673 Inexact Rounded
dvix3226 divideint 47.525676459351505682005359699680E+704 -58631943508436657383369760970210 -> NaN Division_impossible
mulx3226 multiply 47.525676459351505682005359699680E+704 -58631943508436657383369760970210 -> -2.7865227773649353769876975366506E+737 Inexact Rounded
-powx3226 power 47.525676459351505682005359699680E+704 -6 -> 8.6782100393941226535150385475463E-4235 Inexact Rounded
+powx3226 power 47.525676459351505682005359699680E+704 -6 -> 8.6782100393941226535150385475464E-4235 Inexact Rounded
remx3226 remainder 47.525676459351505682005359699680E+704 -58631943508436657383369760970210 -> NaN Division_impossible
subx3226 subtract 47.525676459351505682005359699680E+704 -58631943508436657383369760970210 -> 4.7525676459351505682005359699680E+705 Inexact Rounded
addx3227 add -74396862273800.625679130772935550 -115616605.52826981284183992013157 -> -74396977890406.153948943614775470 Inexact Rounded
diff --git a/Lib/test/decimaltestdata/randoms.decTest b/Lib/test/decimaltestdata/randoms.decTest
index 5493f0c..1529aec 100644
--- a/Lib/test/decimaltestdata/randoms.decTest
+++ b/Lib/test/decimaltestdata/randoms.decTest
@@ -1,6 +1,6 @@
------------------------------------------------------------------------
-- randoms.decTest -- decimal random testcases --
--- Copyright (c) IBM Corporation, 1981, 2003. All rights reserved. --
+-- Copyright (c) IBM Corporation, 1981, 2007. All rights reserved. --
------------------------------------------------------------------------
-- Please see the document "General Decimal Arithmetic Testcases" --
-- at http://www2.hursley.ibm.com/decimal for the description of --
@@ -17,7 +17,7 @@
-- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK --
-- mfc@uk.ibm.com --
------------------------------------------------------------------------
-version: 2.39
+version: 2.56
extended: 1
maxexponent: 999999999
@@ -264,7 +264,7 @@ xcom030 compare -225094.28 -88.7723542 -> -1
xdiv030 divide -225094.28 -88.7723542 -> 2535.63491 Inexact Rounded
xdvi030 divideint -225094.28 -88.7723542 -> 2535
xmul030 multiply -225094.28 -88.7723542 -> 19982149.2 Inexact Rounded
-xpow030 power -225094.28 -89 -> -4.36076964E-477 Inexact Rounded
+xpow030 power -225094.28 -89 -> -4.36076965E-477 Inexact Rounded
xrem030 remainder -225094.28 -88.7723542 -> -56.3621030
xsub030 subtract -225094.28 -88.7723542 -> -225005.508 Inexact Rounded
xadd031 add 50.4442340 82.7952169E+880120759 -> 8.27952169E+880120760 Inexact Rounded
@@ -295,7 +295,7 @@ xadd034 add 592.142173E-419941416 -3.46079109E-844011845 -> 5.92142173E-41994141
xcom034 compare 592.142173E-419941416 -3.46079109E-844011845 -> 1
xdiv034 divide 592.142173E-419941416 -3.46079109E-844011845 -> -1.71100236E+424070431 Inexact Rounded
xdvi034 divideint 592.142173E-419941416 -3.46079109E-844011845 -> NaN Division_impossible
-xmul034 multiply 592.142173E-419941416 -3.46079109E-844011845 -> -0E-1000000007 Underflow Subnormal Inexact Rounded
+xmul034 multiply 592.142173E-419941416 -3.46079109E-844011845 -> -0E-1000000007 Underflow Subnormal Inexact Rounded Clamped
xpow034 power 592.142173E-419941416 -3 -> Infinity Overflow Inexact Rounded
xrem034 remainder 592.142173E-419941416 -3.46079109E-844011845 -> NaN Division_impossible
xsub034 subtract 592.142173E-419941416 -3.46079109E-844011845 -> 5.92142173E-419941414 Inexact Rounded
@@ -487,7 +487,7 @@ xadd058 add 151795163E-371727182 -488.09788E-738852245 -> 1.51795163E-371727174
xcom058 compare 151795163E-371727182 -488.09788E-738852245 -> 1
xdiv058 divide 151795163E-371727182 -488.09788E-738852245 -> -3.10993285E+367125068 Inexact Rounded
xdvi058 divideint 151795163E-371727182 -488.09788E-738852245 -> NaN Division_impossible
-xmul058 multiply 151795163E-371727182 -488.09788E-738852245 -> -0E-1000000007 Underflow Subnormal Inexact Rounded
+xmul058 multiply 151795163E-371727182 -488.09788E-738852245 -> -0E-1000000007 Underflow Subnormal Inexact Rounded Clamped
xpow058 power 151795163E-371727182 -5 -> Infinity Overflow Inexact Rounded
xrem058 remainder 151795163E-371727182 -488.09788E-738852245 -> NaN Division_impossible
xsub058 subtract 151795163E-371727182 -488.09788E-738852245 -> 1.51795163E-371727174 Inexact Rounded
@@ -568,7 +568,7 @@ xcom068 compare -12393257.2 76803689E+949125770 -> -1
xdiv068 divide -12393257.2 76803689E+949125770 -> -1.61362786E-949125771 Inexact Rounded
xdvi068 divideint -12393257.2 76803689E+949125770 -> -0
xmul068 multiply -12393257.2 76803689E+949125770 -> -9.51847872E+949125784 Inexact Rounded
-xpow068 power -12393257.2 8 -> 5.56523750E+56 Inexact Rounded
+xpow068 power -12393257.2 8 -> 5.56523749E+56 Inexact Rounded
xrem068 remainder -12393257.2 76803689E+949125770 -> -12393257.2
xsub068 subtract -12393257.2 76803689E+949125770 -> -7.68036890E+949125777 Inexact Rounded
xadd069 add -754771634.E+716555026 -292336.311 -> -7.54771634E+716555034 Inexact Rounded
@@ -775,7 +775,7 @@ xadd094 add -671.507198E-908587890 3057429.32E-555230623 -> 3.05742932E-55523061
xcom094 compare -671.507198E-908587890 3057429.32E-555230623 -> -1
xdiv094 divide -671.507198E-908587890 3057429.32E-555230623 -> -2.19631307E-353357271 Inexact Rounded
xdvi094 divideint -671.507198E-908587890 3057429.32E-555230623 -> -0
-xmul094 multiply -671.507198E-908587890 3057429.32E-555230623 -> -0E-1000000007 Underflow Subnormal Inexact Rounded
+xmul094 multiply -671.507198E-908587890 3057429.32E-555230623 -> -0E-1000000007 Underflow Subnormal Inexact Rounded Clamped
xpow094 power -671.507198E-908587890 3 -> -0E-1000000007 Underflow Subnormal Inexact Rounded Clamped
xrem094 remainder -671.507198E-908587890 3057429.32E-555230623 -> -6.71507198E-908587888
xsub094 subtract -671.507198E-908587890 3057429.32E-555230623 -> -3.05742932E-555230617 Inexact Rounded
@@ -856,7 +856,7 @@ xcom104 compare 553527296. -7924.40185 -> 1
xdiv104 divide 553527296. -7924.40185 -> -69850.9877 Inexact Rounded
xdvi104 divideint 553527296. -7924.40185 -> -69850
xmul104 multiply 553527296. -7924.40185 -> -4.38637273E+12 Inexact Rounded
-xpow104 power 553527296. -7924 -> 2.32397213E-69281 Inexact Rounded
+xpow104 power 553527296. -7924 -> 2.32397214E-69281 Inexact Rounded
xrem104 remainder 553527296. -7924.40185 -> 7826.77750
xsub104 subtract 553527296. -7924.40185 -> 553535220 Inexact Rounded
xadd105 add -38.7465207 64936.2942 -> 64897.5477 Inexact Rounded
@@ -919,7 +919,7 @@ xadd112 add -51.1632090E-753968082 8.96207471E-585797887 -> 8.96207471E-58579788
xcom112 compare -51.1632090E-753968082 8.96207471E-585797887 -> -1
xdiv112 divide -51.1632090E-753968082 8.96207471E-585797887 -> -5.70885768E-168170195 Inexact Rounded
xdvi112 divideint -51.1632090E-753968082 8.96207471E-585797887 -> -0
-xmul112 multiply -51.1632090E-753968082 8.96207471E-585797887 -> -0E-1000000007 Underflow Subnormal Inexact Rounded
+xmul112 multiply -51.1632090E-753968082 8.96207471E-585797887 -> -0E-1000000007 Underflow Subnormal Inexact Rounded Clamped
xpow112 power -51.1632090E-753968082 9 -> -0E-1000000007 Underflow Subnormal Inexact Rounded Clamped
xrem112 remainder -51.1632090E-753968082 8.96207471E-585797887 -> -5.11632090E-753968081
xsub112 subtract -51.1632090E-753968082 8.96207471E-585797887 -> -8.96207471E-585797887 Inexact Rounded
@@ -989,7 +989,7 @@ xrem120 remainder 14239029. -36527.2221 -> 29939.6031
xsub120 subtract 14239029. -36527.2221 -> 14275556.2 Inexact Rounded
xadd121 add 72333.2654E-544425548 -690.664836E+662155120 -> -6.90664836E+662155122 Inexact Rounded
xcom121 compare 72333.2654E-544425548 -690.664836E+662155120 -> 1
-xdiv121 divide 72333.2654E-544425548 -690.664836E+662155120 -> -0E-1000000007 Inexact Rounded Underflow Subnormal
+xdiv121 divide 72333.2654E-544425548 -690.664836E+662155120 -> -0E-1000000007 Inexact Rounded Underflow Subnormal Clamped
xdvi121 divideint 72333.2654E-544425548 -690.664836E+662155120 -> -0
xmul121 multiply 72333.2654E-544425548 -690.664836E+662155120 -> -4.99580429E+117729579 Inexact Rounded
xpow121 power 72333.2654E-544425548 -7 -> Infinity Overflow Inexact Rounded
@@ -1005,7 +1005,7 @@ xrem122 remainder -37721.1567E-115787341 -828949864E-76251747 -> -3.77211567E-11
xsub122 subtract -37721.1567E-115787341 -828949864E-76251747 -> 8.28949864E-76251739 Inexact Rounded
xadd123 add -2078852.83E-647080089 -119779858.E+734665461 -> -1.19779858E+734665469 Inexact Rounded
xcom123 compare -2078852.83E-647080089 -119779858.E+734665461 -> 1
-xdiv123 divide -2078852.83E-647080089 -119779858.E+734665461 -> 0E-1000000007 Inexact Rounded Underflow Subnormal
+xdiv123 divide -2078852.83E-647080089 -119779858.E+734665461 -> 0E-1000000007 Inexact Rounded Underflow Subnormal Clamped
xdvi123 divideint -2078852.83E-647080089 -119779858.E+734665461 -> 0
xmul123 multiply -2078852.83E-647080089 -119779858.E+734665461 -> 2.49004697E+87585386 Inexact Rounded
xpow123 power -2078852.83E-647080089 -1 -> -4.81034533E+647080082 Inexact Rounded
@@ -1183,7 +1183,7 @@ xadd145 add -477067757.E-961684940 7.70122608E-741072245 -> 7.70122608E-74107224
xcom145 compare -477067757.E-961684940 7.70122608E-741072245 -> -1
xdiv145 divide -477067757.E-961684940 7.70122608E-741072245 -> -6.19469877E-220612688 Inexact Rounded
xdvi145 divideint -477067757.E-961684940 7.70122608E-741072245 -> -0
-xmul145 multiply -477067757.E-961684940 7.70122608E-741072245 -> -0E-1000000007 Underflow Subnormal Inexact Rounded
+xmul145 multiply -477067757.E-961684940 7.70122608E-741072245 -> -0E-1000000007 Underflow Subnormal Inexact Rounded Clamped
xpow145 power -477067757.E-961684940 8 -> 0E-1000000007 Underflow Subnormal Inexact Rounded Clamped
xrem145 remainder -477067757.E-961684940 7.70122608E-741072245 -> -4.77067757E-961684932
xsub145 subtract -477067757.E-961684940 7.70122608E-741072245 -> -7.70122608E-741072245 Inexact Rounded
@@ -1296,7 +1296,7 @@ xcom159 compare -18861647. 99794586.7 -> -1
xdiv159 divide -18861647. 99794586.7 -> -0.189004711 Inexact Rounded
xdvi159 divideint -18861647. 99794586.7 -> -0
xmul159 multiply -18861647. 99794586.7 -> -1.88229027E+15 Inexact Rounded
-xpow159 power -18861647. 99794587 -> -4.28957460E+726063462 Inexact Rounded
+xpow159 power -18861647. 99794587 -> -4.28957459E+726063462 Inexact Rounded
xrem159 remainder -18861647. 99794586.7 -> -18861647.0
xsub159 subtract -18861647. 99794586.7 -> -118656234 Inexact Rounded
xadd160 add 322192.407 461.67044 -> 322654.077 Inexact Rounded
@@ -1519,7 +1519,7 @@ xadd187 add -29.356551E-282816139 37141748E-903397821 -> -2.93565510E-282816138
xcom187 compare -29.356551E-282816139 37141748E-903397821 -> -1
xdiv187 divide -29.356551E-282816139 37141748E-903397821 -> -7.90392283E+620581675 Inexact Rounded
xdvi187 divideint -29.356551E-282816139 37141748E-903397821 -> NaN Division_impossible
-xmul187 multiply -29.356551E-282816139 37141748E-903397821 -> -0E-1000000007 Underflow Subnormal Inexact Rounded
+xmul187 multiply -29.356551E-282816139 37141748E-903397821 -> -0E-1000000007 Underflow Subnormal Inexact Rounded Clamped
xpow187 power -29.356551E-282816139 4 -> 0E-1000000007 Underflow Subnormal Inexact Rounded Clamped
xrem187 remainder -29.356551E-282816139 37141748E-903397821 -> NaN Division_impossible
xsub187 subtract -29.356551E-282816139 37141748E-903397821 -> -2.93565510E-282816138 Inexact Rounded
@@ -1760,7 +1760,7 @@ xcom217 compare 7428219.97 667.326760 -> 1
xdiv217 divide 7428219.97 667.326760 -> 11131.3084 Inexact Rounded
xdvi217 divideint 7428219.97 667.326760 -> 11131
xmul217 multiply 7428219.97 667.326760 -> 4.95704997E+9 Inexact Rounded
-xpow217 power 7428219.97 667 -> 7.58808510E+4582 Inexact Rounded
+xpow217 power 7428219.97 667 -> 7.58808509E+4582 Inexact Rounded
xrem217 remainder 7428219.97 667.326760 -> 205.804440
xsub217 subtract 7428219.97 667.326760 -> 7427552.64 Inexact Rounded
xadd218 add -7291.19212 209.64966E-588526476 -> -7291.19212 Inexact Rounded
@@ -2200,7 +2200,7 @@ xcom272 compare 513115529. 27775075.6E+217133352 -> -1
xdiv272 divide 513115529. 27775075.6E+217133352 -> 1.84739562E-217133351 Inexact Rounded
xdvi272 divideint 513115529. 27775075.6E+217133352 -> 0
xmul272 multiply 513115529. 27775075.6E+217133352 -> 1.42518226E+217133368 Inexact Rounded
-xpow272 power 513115529. 3 -> 1.35096929E+26 Inexact Rounded
+xpow272 power 513115529. 3 -> 1.35096928E+26 Inexact Rounded
xrem272 remainder 513115529. 27775075.6E+217133352 -> 513115529
xsub272 subtract 513115529. 27775075.6E+217133352 -> -2.77750756E+217133359 Inexact Rounded
xadd273 add -247157.208 -532990.453 -> -780147.661
@@ -2327,7 +2327,7 @@ xadd288 add -4.18074650E-858746879 571035.277E-279409165 -> 5.71035277E-27940916
xcom288 compare -4.18074650E-858746879 571035.277E-279409165 -> -1
xdiv288 divide -4.18074650E-858746879 571035.277E-279409165 -> -7.32134540E-579337720 Inexact Rounded
xdvi288 divideint -4.18074650E-858746879 571035.277E-279409165 -> -0
-xmul288 multiply -4.18074650E-858746879 571035.277E-279409165 -> -0E-1000000007 Underflow Subnormal Inexact Rounded
+xmul288 multiply -4.18074650E-858746879 571035.277E-279409165 -> -0E-1000000007 Underflow Subnormal Inexact Rounded Clamped
xpow288 power -4.18074650E-858746879 6 -> 0E-1000000007 Underflow Subnormal Inexact Rounded Clamped
xrem288 remainder -4.18074650E-858746879 571035.277E-279409165 -> -4.18074650E-858746879
xsub288 subtract -4.18074650E-858746879 571035.277E-279409165 -> -5.71035277E-279409160 Inexact Rounded
@@ -2599,7 +2599,7 @@ xadd322 add 82.4185291E-321919303 -215747737.E-995147400 -> 8.24185291E-32191930
xcom322 compare 82.4185291E-321919303 -215747737.E-995147400 -> 1
xdiv322 divide 82.4185291E-321919303 -215747737.E-995147400 -> -3.82013412E+673228090 Inexact Rounded
xdvi322 divideint 82.4185291E-321919303 -215747737.E-995147400 -> NaN Division_impossible
-xmul322 multiply 82.4185291E-321919303 -215747737.E-995147400 -> -0E-1000000007 Underflow Subnormal Inexact Rounded
+xmul322 multiply 82.4185291E-321919303 -215747737.E-995147400 -> -0E-1000000007 Underflow Subnormal Inexact Rounded Clamped
xpow322 power 82.4185291E-321919303 -2 -> 1.47214396E+643838602 Inexact Rounded
xrem322 remainder 82.4185291E-321919303 -215747737.E-995147400 -> NaN Division_impossible
xsub322 subtract 82.4185291E-321919303 -215747737.E-995147400 -> 8.24185291E-321919302 Inexact Rounded
@@ -2640,7 +2640,7 @@ xcom327 compare 2512953.3 -3769170.35E-993621645 -> 1
xdiv327 divide 2512953.3 -3769170.35E-993621645 -> -6.66712583E+993621644 Inexact Rounded
xdvi327 divideint 2512953.3 -3769170.35E-993621645 -> NaN Division_impossible
xmul327 multiply 2512953.3 -3769170.35E-993621645 -> -9.47174907E-993621633 Inexact Rounded
-xpow327 power 2512953.3 -4 -> 2.50762349E-26 Inexact Rounded
+xpow327 power 2512953.3 -4 -> 2.50762348E-26 Inexact Rounded
xrem327 remainder 2512953.3 -3769170.35E-993621645 -> NaN Division_impossible
xsub327 subtract 2512953.3 -3769170.35E-993621645 -> 2512953.30 Inexact Rounded
xadd328 add -682.796370 71131.0224 -> 70448.2260 Inexact Rounded
@@ -2656,7 +2656,7 @@ xcom329 compare 89.9997490 -4993.69831 -> 1
xdiv329 divide 89.9997490 -4993.69831 -> -0.0180226644 Inexact Rounded
xdvi329 divideint 89.9997490 -4993.69831 -> -0
xmul329 multiply 89.9997490 -4993.69831 -> -449431.594 Inexact Rounded
-xpow329 power 89.9997490 -4994 -> 3.30336526E-9760 Inexact Rounded
+xpow329 power 89.9997490 -4994 -> 3.30336525E-9760 Inexact Rounded
xrem329 remainder 89.9997490 -4993.69831 -> 89.9997490
xsub329 subtract 89.9997490 -4993.69831 -> 5083.69806 Inexact Rounded
xadd330 add 76563354.6E-112338836 278271.585E-511481095 -> 7.65633546E-112338829 Inexact Rounded
@@ -2821,7 +2821,7 @@ xrem349 remainder -4037911.02E+641367645 29.5713010 -> NaN Division_impossible
xsub349 subtract -4037911.02E+641367645 29.5713010 -> -4.03791102E+641367651 Inexact Rounded
xadd350 add -688755561.E-95301699 978.275312E+913812609 -> 9.78275312E+913812611 Inexact Rounded
xcom350 compare -688755561.E-95301699 978.275312E+913812609 -> -1
-xdiv350 divide -688755561.E-95301699 978.275312E+913812609 -> -0E-1000000007 Inexact Rounded Underflow Subnormal
+xdiv350 divide -688755561.E-95301699 978.275312E+913812609 -> -0E-1000000007 Inexact Rounded Underflow Subnormal Clamped
xdvi350 divideint -688755561.E-95301699 978.275312E+913812609 -> -0
xmul350 multiply -688755561.E-95301699 978.275312E+913812609 -> -6.73792561E+818510921 Inexact Rounded
xpow350 power -688755561.E-95301699 10 -> 2.40243244E-953016902 Inexact Rounded
@@ -3024,7 +3024,7 @@ xcom375 compare -5549320.1 -93580684.1 -> 1
xdiv375 divide -5549320.1 -93580684.1 -> 0.0592998454 Inexact Rounded
xdvi375 divideint -5549320.1 -93580684.1 -> 0
xmul375 multiply -5549320.1 -93580684.1 -> 5.19309171E+14 Inexact Rounded
-xpow375 power -5549320.1 -93580684 -> 4.20662080E-631130572 Inexact Rounded
+xpow375 power -5549320.1 -93580684 -> 4.20662079E-631130572 Inexact Rounded
xrem375 remainder -5549320.1 -93580684.1 -> -5549320.1
xsub375 subtract -5549320.1 -93580684.1 -> 88031364.0
xadd376 add -14677053.1 -25784.7358 -> -14702837.8 Inexact Rounded
@@ -3191,7 +3191,7 @@ xadd396 add 4880.06442E-382222621 -115627239E-912834031 -> 4.88006442E-382222618
xcom396 compare 4880.06442E-382222621 -115627239E-912834031 -> 1
xdiv396 divide 4880.06442E-382222621 -115627239E-912834031 -> -4.22051453E+530611405 Inexact Rounded
xdvi396 divideint 4880.06442E-382222621 -115627239E-912834031 -> NaN Division_impossible
-xmul396 multiply 4880.06442E-382222621 -115627239E-912834031 -> -0E-1000000007 Underflow Subnormal Inexact Rounded
+xmul396 multiply 4880.06442E-382222621 -115627239E-912834031 -> -0E-1000000007 Underflow Subnormal Inexact Rounded Clamped
xpow396 power 4880.06442E-382222621 -1 -> 2.04915328E+382222617 Inexact Rounded
xrem396 remainder 4880.06442E-382222621 -115627239E-912834031 -> NaN Division_impossible
xsub396 subtract 4880.06442E-382222621 -115627239E-912834031 -> 4.88006442E-382222618 Inexact Rounded
@@ -3295,7 +3295,7 @@ xadd409 add -54.3684171E-807210192 1.04592973E-984041807 -> -5.43684171E-8072101
xcom409 compare -54.3684171E-807210192 1.04592973E-984041807 -> -1
xdiv409 divide -54.3684171E-807210192 1.04592973E-984041807 -> -5.19809463E+176831616 Inexact Rounded
xdvi409 divideint -54.3684171E-807210192 1.04592973E-984041807 -> NaN Division_impossible
-xmul409 multiply -54.3684171E-807210192 1.04592973E-984041807 -> -0E-1000000007 Underflow Subnormal Inexact Rounded
+xmul409 multiply -54.3684171E-807210192 1.04592973E-984041807 -> -0E-1000000007 Underflow Subnormal Inexact Rounded Clamped
xpow409 power -54.3684171E-807210192 1 -> -5.43684171E-807210191
xrem409 remainder -54.3684171E-807210192 1.04592973E-984041807 -> NaN Division_impossible
xsub409 subtract -54.3684171E-807210192 1.04592973E-984041807 -> -5.43684171E-807210191 Inexact Rounded
@@ -3391,7 +3391,7 @@ xadd421 add -4.09492571E-301749490 434.20199E-749390952 -> -4.09492571E-30174949
xcom421 compare -4.09492571E-301749490 434.20199E-749390952 -> -1
xdiv421 divide -4.09492571E-301749490 434.20199E-749390952 -> -9.43092341E+447641459 Inexact Rounded
xdvi421 divideint -4.09492571E-301749490 434.20199E-749390952 -> NaN Division_impossible
-xmul421 multiply -4.09492571E-301749490 434.20199E-749390952 -> -0E-1000000007 Underflow Subnormal Inexact Rounded
+xmul421 multiply -4.09492571E-301749490 434.20199E-749390952 -> -0E-1000000007 Underflow Subnormal Inexact Rounded Clamped
xpow421 power -4.09492571E-301749490 4 -> 0E-1000000007 Underflow Subnormal Inexact Rounded Clamped
xrem421 remainder -4.09492571E-301749490 434.20199E-749390952 -> NaN Division_impossible
xsub421 subtract -4.09492571E-301749490 434.20199E-749390952 -> -4.09492571E-301749490 Inexact Rounded
@@ -3423,7 +3423,7 @@ xadd425 add 6.88891136E-935467395 -785049.562E-741671442 -> -7.85049562E-7416714
xcom425 compare 6.88891136E-935467395 -785049.562E-741671442 -> 1
xdiv425 divide 6.88891136E-935467395 -785049.562E-741671442 -> -8.77512923E-193795959 Inexact Rounded
xdvi425 divideint 6.88891136E-935467395 -785049.562E-741671442 -> -0
-xmul425 multiply 6.88891136E-935467395 -785049.562E-741671442 -> -0E-1000000007 Underflow Subnormal Inexact Rounded
+xmul425 multiply 6.88891136E-935467395 -785049.562E-741671442 -> -0E-1000000007 Underflow Subnormal Inexact Rounded Clamped
xpow425 power 6.88891136E-935467395 -8 -> Infinity Overflow Inexact Rounded
xrem425 remainder 6.88891136E-935467395 -785049.562E-741671442 -> 6.88891136E-935467395
xsub425 subtract 6.88891136E-935467395 -785049.562E-741671442 -> 7.85049562E-741671437 Inexact Rounded
@@ -3535,7 +3535,7 @@ xadd439 add 971113.655E-695540249 -419351120E-977743823 -> 9.71113655E-695540244
xcom439 compare 971113.655E-695540249 -419351120E-977743823 -> 1
xdiv439 divide 971113.655E-695540249 -419351120E-977743823 -> -2.31575310E+282203571 Inexact Rounded
xdvi439 divideint 971113.655E-695540249 -419351120E-977743823 -> NaN Division_impossible
-xmul439 multiply 971113.655E-695540249 -419351120E-977743823 -> -0E-1000000007 Underflow Subnormal Inexact Rounded
+xmul439 multiply 971113.655E-695540249 -419351120E-977743823 -> -0E-1000000007 Underflow Subnormal Inexact Rounded Clamped
xpow439 power 971113.655E-695540249 -4 -> Infinity Overflow Inexact Rounded
xrem439 remainder 971113.655E-695540249 -419351120E-977743823 -> NaN Division_impossible
xsub439 subtract 971113.655E-695540249 -419351120E-977743823 -> 9.71113655E-695540244 Inexact Rounded
@@ -3600,7 +3600,7 @@ xcom447 compare -9.95836312 -866466703 -> 1
xdiv447 divide -9.95836312 -866466703 -> 1.14930707E-8 Inexact Rounded
xdvi447 divideint -9.95836312 -866466703 -> 0
xmul447 multiply -9.95836312 -866466703 -> 8.62859006E+9 Inexact Rounded
-xpow447 power -9.95836312 -866466703 -> -6.71744368E-864896630 Inexact Rounded
+xpow447 power -9.95836312 -866466703 -> -6.71744369E-864896630 Inexact Rounded
xrem447 remainder -9.95836312 -866466703 -> -9.95836312
xsub447 subtract -9.95836312 -866466703 -> 866466693 Inexact Rounded
xadd448 add 80919339.2E-967231586 219.824266 -> 219.824266 Inexact Rounded
@@ -3616,7 +3616,7 @@ xcom449 compare 159579.444 -89827.5229 -> 1
xdiv449 divide 159579.444 -89827.5229 -> -1.77650946 Inexact Rounded
xdvi449 divideint 159579.444 -89827.5229 -> -1
xmul449 multiply 159579.444 -89827.5229 -> -1.43346262E+10 Inexact Rounded
-xpow449 power 159579.444 -89828 -> 9.69955849E-467374 Inexact Rounded
+xpow449 power 159579.444 -89828 -> 9.69955850E-467374 Inexact Rounded
xrem449 remainder 159579.444 -89827.5229 -> 69751.9211
xsub449 subtract 159579.444 -89827.5229 -> 249406.967 Inexact Rounded
xadd450 add -4.54000153 6966333.74 -> 6966329.20 Inexact Rounded
@@ -3640,7 +3640,7 @@ xcom452 compare -361382575. -7976.15286E+898491169 -> 1
xdiv452 divide -361382575. -7976.15286E+898491169 -> 4.53078798E-898491165 Inexact Rounded
xdvi452 divideint -361382575. -7976.15286E+898491169 -> 0
xmul452 multiply -361382575. -7976.15286E+898491169 -> 2.88244266E+898491181 Inexact Rounded
-xpow452 power -361382575. -8 -> 3.43765536E-69 Inexact Rounded
+xpow452 power -361382575. -8 -> 3.43765537E-69 Inexact Rounded
xrem452 remainder -361382575. -7976.15286E+898491169 -> -361382575
xsub452 subtract -361382575. -7976.15286E+898491169 -> 7.97615286E+898491172 Inexact Rounded
xadd453 add 7021805.61 1222952.83 -> 8244758.44
@@ -3720,7 +3720,7 @@ xcom462 compare -51592.2698 -713885.741 -> 1
xdiv462 divide -51592.2698 -713885.741 -> 0.0722696460 Inexact Rounded
xdvi462 divideint -51592.2698 -713885.741 -> 0
xmul462 multiply -51592.2698 -713885.741 -> 3.68309858E+10 Inexact Rounded
-xpow462 power -51592.2698 -713886 -> 6.38576921E-3364249 Inexact Rounded
+xpow462 power -51592.2698 -713886 -> 6.38576920E-3364249 Inexact Rounded
xrem462 remainder -51592.2698 -713885.741 -> -51592.2698
xsub462 subtract -51592.2698 -713885.741 -> 662293.471 Inexact Rounded
xadd463 add 51.2279848E+80439745 207.55925E+865165070 -> 2.07559250E+865165072 Inexact Rounded
@@ -3768,7 +3768,7 @@ xcom468 compare -5.32711606 -8447286.21 -> 1
xdiv468 divide -5.32711606 -8447286.21 -> 6.30630468E-7 Inexact Rounded
xdvi468 divideint -5.32711606 -8447286.21 -> 0
xmul468 multiply -5.32711606 -8447286.21 -> 44999674.0 Inexact Rounded
-xpow468 power -5.32711606 -8447286 -> 9.09138729E-6136888 Inexact Rounded
+xpow468 power -5.32711606 -8447286 -> 9.09138728E-6136888 Inexact Rounded
xrem468 remainder -5.32711606 -8447286.21 -> -5.32711606
xsub468 subtract -5.32711606 -8447286.21 -> 8447280.88 Inexact Rounded
xadd469 add -82272171.8 -776.238587E-372690416 -> -82272171.8 Inexact Rounded
@@ -4027,3 +4027,4 @@ xmul500 multiply -525445087.E+231529167 188227460 -> -9.89031941E+231529183 Inex
xpow500 power -525445087.E+231529167 188227460 -> Infinity Overflow Inexact Rounded
xrem500 remainder -525445087.E+231529167 188227460 -> NaN Division_impossible
xsub500 subtract -525445087.E+231529167 188227460 -> -5.25445087E+231529175 Inexact Rounded
+
diff --git a/Lib/test/decimaltestdata/reduce.decTest b/Lib/test/decimaltestdata/reduce.decTest
new file mode 100644
index 0000000..ddce0c9
--- /dev/null
+++ b/Lib/test/decimaltestdata/reduce.decTest
@@ -0,0 +1,234 @@
+------------------------------------------------------------------------
+-- reduce.decTest -- remove trailing zeros --
+-- Copyright (c) IBM Corporation, 2003, 2007. All rights reserved. --
+------------------------------------------------------------------------
+-- Please see the document "General Decimal Arithmetic Testcases" --
+-- at http://www2.hursley.ibm.com/decimal for the description of --
+-- these testcases. --
+-- --
+-- These testcases are experimental ('beta' versions), and they --
+-- may contain errors. They are offered on an as-is basis. In --
+-- particular, achieving the same results as the tests here is not --
+-- a guarantee that an implementation complies with any Standard --
+-- or specification. The tests are not exhaustive. --
+-- --
+-- Please send comments, suggestions, and corrections to the author: --
+-- Mike Cowlishaw, IBM Fellow --
+-- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK --
+-- mfc@uk.ibm.com --
+------------------------------------------------------------------------
+-- [This used to be called normalize.]
+
+version: 2.56
+
+extended: 1
+precision: 9
+rounding: half_up
+maxExponent: 999
+minexponent: -999
+
+redx001 reduce '1' -> '1'
+redx002 reduce '-1' -> '-1'
+redx003 reduce '1.00' -> '1'
+redx004 reduce '-1.00' -> '-1'
+redx005 reduce '0' -> '0'
+redx006 reduce '0.00' -> '0'
+redx007 reduce '00.0' -> '0'
+redx008 reduce '00.00' -> '0'
+redx009 reduce '00' -> '0'
+redx010 reduce '0E+1' -> '0'
+redx011 reduce '0E+5' -> '0'
+
+redx012 reduce '-2' -> '-2'
+redx013 reduce '2' -> '2'
+redx014 reduce '-2.00' -> '-2'
+redx015 reduce '2.00' -> '2'
+redx016 reduce '-0' -> '-0'
+redx017 reduce '-0.00' -> '-0'
+redx018 reduce '-00.0' -> '-0'
+redx019 reduce '-00.00' -> '-0'
+redx020 reduce '-00' -> '-0'
+redx021 reduce '-0E+5' -> '-0'
+redx022 reduce '-0E+1' -> '-0'
+
+redx030 reduce '+0.1' -> '0.1'
+redx031 reduce '-0.1' -> '-0.1'
+redx032 reduce '+0.01' -> '0.01'
+redx033 reduce '-0.01' -> '-0.01'
+redx034 reduce '+0.001' -> '0.001'
+redx035 reduce '-0.001' -> '-0.001'
+redx036 reduce '+0.000001' -> '0.000001'
+redx037 reduce '-0.000001' -> '-0.000001'
+redx038 reduce '+0.000000000001' -> '1E-12'
+redx039 reduce '-0.000000000001' -> '-1E-12'
+
+redx041 reduce 1.1 -> 1.1
+redx042 reduce 1.10 -> 1.1
+redx043 reduce 1.100 -> 1.1
+redx044 reduce 1.110 -> 1.11
+redx045 reduce -1.1 -> -1.1
+redx046 reduce -1.10 -> -1.1
+redx047 reduce -1.100 -> -1.1
+redx048 reduce -1.110 -> -1.11
+redx049 reduce 9.9 -> 9.9
+redx050 reduce 9.90 -> 9.9
+redx051 reduce 9.900 -> 9.9
+redx052 reduce 9.990 -> 9.99
+redx053 reduce -9.9 -> -9.9
+redx054 reduce -9.90 -> -9.9
+redx055 reduce -9.900 -> -9.9
+redx056 reduce -9.990 -> -9.99
+
+-- some trailing fractional zeros with zeros in units
+redx060 reduce 10.0 -> 1E+1
+redx061 reduce 10.00 -> 1E+1
+redx062 reduce 100.0 -> 1E+2
+redx063 reduce 100.00 -> 1E+2
+redx064 reduce 1.1000E+3 -> 1.1E+3
+redx065 reduce 1.10000E+3 -> 1.1E+3
+redx066 reduce -10.0 -> -1E+1
+redx067 reduce -10.00 -> -1E+1
+redx068 reduce -100.0 -> -1E+2
+redx069 reduce -100.00 -> -1E+2
+redx070 reduce -1.1000E+3 -> -1.1E+3
+redx071 reduce -1.10000E+3 -> -1.1E+3
+
+-- some insignificant trailing zeros with positive exponent
+redx080 reduce 10E+1 -> 1E+2
+redx081 reduce 100E+1 -> 1E+3
+redx082 reduce 1.0E+2 -> 1E+2
+redx083 reduce 1.0E+3 -> 1E+3
+redx084 reduce 1.1E+3 -> 1.1E+3
+redx085 reduce 1.00E+3 -> 1E+3
+redx086 reduce 1.10E+3 -> 1.1E+3
+redx087 reduce -10E+1 -> -1E+2
+redx088 reduce -100E+1 -> -1E+3
+redx089 reduce -1.0E+2 -> -1E+2
+redx090 reduce -1.0E+3 -> -1E+3
+redx091 reduce -1.1E+3 -> -1.1E+3
+redx092 reduce -1.00E+3 -> -1E+3
+redx093 reduce -1.10E+3 -> -1.1E+3
+
+-- some significant trailing zeros, were we to be trimming
+redx100 reduce 11 -> 11
+redx101 reduce 10 -> 1E+1
+redx102 reduce 10. -> 1E+1
+redx103 reduce 1.1E+1 -> 11
+redx104 reduce 1.0E+1 -> 1E+1
+redx105 reduce 1.10E+2 -> 1.1E+2
+redx106 reduce 1.00E+2 -> 1E+2
+redx107 reduce 1.100E+3 -> 1.1E+3
+redx108 reduce 1.000E+3 -> 1E+3
+redx109 reduce 1.000000E+6 -> 1E+6
+redx110 reduce -11 -> -11
+redx111 reduce -10 -> -1E+1
+redx112 reduce -10. -> -1E+1
+redx113 reduce -1.1E+1 -> -11
+redx114 reduce -1.0E+1 -> -1E+1
+redx115 reduce -1.10E+2 -> -1.1E+2
+redx116 reduce -1.00E+2 -> -1E+2
+redx117 reduce -1.100E+3 -> -1.1E+3
+redx118 reduce -1.000E+3 -> -1E+3
+redx119 reduce -1.00000E+5 -> -1E+5
+redx120 reduce -1.000000E+6 -> -1E+6
+redx121 reduce -10.00000E+6 -> -1E+7
+redx122 reduce -100.0000E+6 -> -1E+8
+redx123 reduce -1000.000E+6 -> -1E+9
+redx124 reduce -10000.00E+6 -> -1E+10
+redx125 reduce -100000.0E+6 -> -1E+11
+redx126 reduce -1000000.E+6 -> -1E+12
+
+-- examples from decArith
+redx140 reduce '2.1' -> '2.1'
+redx141 reduce '-2.0' -> '-2'
+redx142 reduce '1.200' -> '1.2'
+redx143 reduce '-120' -> '-1.2E+2'
+redx144 reduce '120.00' -> '1.2E+2'
+redx145 reduce '0.00' -> '0'
+
+-- overflow tests
+maxexponent: 999999999
+minexponent: -999999999
+precision: 3
+redx160 reduce 9.999E+999999999 -> Infinity Inexact Overflow Rounded
+redx161 reduce -9.999E+999999999 -> -Infinity Inexact Overflow Rounded
+
+-- subnormals and underflow
+precision: 3
+maxexponent: 999
+minexponent: -999
+redx210 reduce 1.00E-999 -> 1E-999
+redx211 reduce 0.1E-999 -> 1E-1000 Subnormal
+redx212 reduce 0.10E-999 -> 1E-1000 Subnormal
+redx213 reduce 0.100E-999 -> 1E-1000 Subnormal Rounded
+redx214 reduce 0.01E-999 -> 1E-1001 Subnormal
+-- next is rounded to Emin
+redx215 reduce 0.999E-999 -> 1E-999 Inexact Rounded Subnormal Underflow
+redx216 reduce 0.099E-999 -> 1E-1000 Inexact Rounded Subnormal Underflow
+redx217 reduce 0.009E-999 -> 1E-1001 Inexact Rounded Subnormal Underflow
+redx218 reduce 0.001E-999 -> 0 Inexact Rounded Subnormal Underflow Clamped
+redx219 reduce 0.0009E-999 -> 0 Inexact Rounded Subnormal Underflow Clamped
+redx220 reduce 0.0001E-999 -> 0 Inexact Rounded Subnormal Underflow Clamped
+
+redx230 reduce -1.00E-999 -> -1E-999
+redx231 reduce -0.1E-999 -> -1E-1000 Subnormal
+redx232 reduce -0.10E-999 -> -1E-1000 Subnormal
+redx233 reduce -0.100E-999 -> -1E-1000 Subnormal Rounded
+redx234 reduce -0.01E-999 -> -1E-1001 Subnormal
+-- next is rounded to Emin
+redx235 reduce -0.999E-999 -> -1E-999 Inexact Rounded Subnormal Underflow
+redx236 reduce -0.099E-999 -> -1E-1000 Inexact Rounded Subnormal Underflow
+redx237 reduce -0.009E-999 -> -1E-1001 Inexact Rounded Subnormal Underflow
+redx238 reduce -0.001E-999 -> -0 Inexact Rounded Subnormal Underflow Clamped
+redx239 reduce -0.0009E-999 -> -0 Inexact Rounded Subnormal Underflow Clamped
+redx240 reduce -0.0001E-999 -> -0 Inexact Rounded Subnormal Underflow Clamped
+
+-- more reshaping
+precision: 9
+redx260 reduce '56260E-10' -> '0.000005626'
+redx261 reduce '56260E-5' -> '0.5626'
+redx262 reduce '56260E-2' -> '562.6'
+redx263 reduce '56260E-1' -> '5626'
+redx265 reduce '56260E-0' -> '5.626E+4'
+redx266 reduce '56260E+0' -> '5.626E+4'
+redx267 reduce '56260E+1' -> '5.626E+5'
+redx268 reduce '56260E+2' -> '5.626E+6'
+redx269 reduce '56260E+3' -> '5.626E+7'
+redx270 reduce '56260E+4' -> '5.626E+8'
+redx271 reduce '56260E+5' -> '5.626E+9'
+redx272 reduce '56260E+6' -> '5.626E+10'
+redx280 reduce '-56260E-10' -> '-0.000005626'
+redx281 reduce '-56260E-5' -> '-0.5626'
+redx282 reduce '-56260E-2' -> '-562.6'
+redx283 reduce '-56260E-1' -> '-5626'
+redx285 reduce '-56260E-0' -> '-5.626E+4'
+redx286 reduce '-56260E+0' -> '-5.626E+4'
+redx287 reduce '-56260E+1' -> '-5.626E+5'
+redx288 reduce '-56260E+2' -> '-5.626E+6'
+redx289 reduce '-56260E+3' -> '-5.626E+7'
+redx290 reduce '-56260E+4' -> '-5.626E+8'
+redx291 reduce '-56260E+5' -> '-5.626E+9'
+redx292 reduce '-56260E+6' -> '-5.626E+10'
+
+-- FL test
+precision: 40
+redx295 reduce 9892345673.0123456780000000000 -> 9892345673.012345678
+
+-- specials
+redx820 reduce 'Inf' -> 'Infinity'
+redx821 reduce '-Inf' -> '-Infinity'
+redx822 reduce NaN -> NaN
+redx823 reduce sNaN -> NaN Invalid_operation
+redx824 reduce NaN101 -> NaN101
+redx825 reduce sNaN010 -> NaN10 Invalid_operation
+redx827 reduce -NaN -> -NaN
+redx828 reduce -sNaN -> -NaN Invalid_operation
+redx829 reduce -NaN101 -> -NaN101
+redx830 reduce -sNaN010 -> -NaN10 Invalid_operation
+
+-- payload decapitate
+precision: 5
+redx62100 reduce sNaN1234567890 -> NaN67890 Invalid_operation
+
+-- Null test
+redx900 reduce # -> NaN Invalid_operation
diff --git a/Lib/test/decimaltestdata/remainder.decTest b/Lib/test/decimaltestdata/remainder.decTest
index 6eb49c3..4c92d0c 100644
--- a/Lib/test/decimaltestdata/remainder.decTest
+++ b/Lib/test/decimaltestdata/remainder.decTest
@@ -1,6 +1,6 @@
------------------------------------------------------------------------
-- remainder.decTest -- decimal remainder --
--- Copyright (c) IBM Corporation, 1981, 2004. All rights reserved. --
+-- Copyright (c) IBM Corporation, 1981, 2007. All rights reserved. --
------------------------------------------------------------------------
-- Please see the document "General Decimal Arithmetic Testcases" --
-- at http://www2.hursley.ibm.com/decimal for the description of --
@@ -17,7 +17,7 @@
-- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK --
-- mfc@uk.ibm.com --
------------------------------------------------------------------------
-version: 2.39
+version: 2.56
extended: 1
precision: 9
@@ -351,6 +351,17 @@ remx407 remainder 0.5555555 1 -> 0.5555555
remx408 remainder 0.55555555 1 -> 0.55555555
remx409 remainder 0.555555555 1 -> 0.555555555
+-- zero signs
+remx650 remainder 1 1 -> 0
+remx651 remainder -1 1 -> -0
+remx652 remainder 1 -1 -> 0
+remx653 remainder -1 -1 -> -0
+remx654 remainder 0 1 -> 0
+remx655 remainder -0 1 -> -0
+remx656 remainder 0 -1 -> 0
+remx657 remainder -0 -1 -> -0
+remx658 remainder 0.00 1 -> 0.00
+remx659 remainder -0.00 1 -> -0.00
-- Specials
remx680 remainder Inf -Inf -> NaN Invalid_operation
diff --git a/Lib/test/decimaltestdata/remainderNear.decTest b/Lib/test/decimaltestdata/remainderNear.decTest
index d007bda..cfca91b 100644
--- a/Lib/test/decimaltestdata/remainderNear.decTest
+++ b/Lib/test/decimaltestdata/remainderNear.decTest
@@ -1,6 +1,6 @@
------------------------------------------------------------------------
-- remainderNear.decTest -- decimal remainder-near (IEEE remainder) --
--- Copyright (c) IBM Corporation, 1981, 2004. All rights reserved. --
+-- Copyright (c) IBM Corporation, 1981, 2007. All rights reserved. --
------------------------------------------------------------------------
-- Please see the document "General Decimal Arithmetic Testcases" --
-- at http://www2.hursley.ibm.com/decimal for the description of --
@@ -17,7 +17,7 @@
-- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK --
-- mfc@uk.ibm.com --
------------------------------------------------------------------------
-version: 2.39
+version: 2.55
extended: 1
precision: 9
diff --git a/Lib/test/decimaltestdata/rescale.decTest b/Lib/test/decimaltestdata/rescale.decTest
index fd63f0f..30597db 100644
--- a/Lib/test/decimaltestdata/rescale.decTest
+++ b/Lib/test/decimaltestdata/rescale.decTest
@@ -1,6 +1,6 @@
------------------------------------------------------------------------
-- rescale.decTest -- decimal rescale operation --
--- Copyright (c) IBM Corporation, 1981, 2004. All rights reserved. --
+-- Copyright (c) IBM Corporation, 1981, 2007. All rights reserved. --
------------------------------------------------------------------------
-- Please see the document "General Decimal Arithmetic Testcases" --
-- at http://www2.hursley.ibm.com/decimal for the description of --
@@ -17,7 +17,7 @@
-- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK --
-- mfc@uk.ibm.com --
------------------------------------------------------------------------
-version: 2.39
+version: 2.56
-- [obsolete] Quantize.decTest has the improved version
@@ -379,7 +379,7 @@ resx445 rescale 0.000999 0 -> 0 Inexact Rounded
resx446 rescale 0.000999 1 -> 0E+1 Inexact Rounded
precision: 8
-resx449 rescale 9.999E-15 -23 -> NaN Invalid_operation
+resx449 rescale 9.999E-15 -23 -> NaN Invalid_operation
resx450 rescale 9.999E-15 -22 -> 9.9990000E-15
resx451 rescale 9.999E-15 -21 -> 9.999000E-15
resx452 rescale 9.999E-15 -20 -> 9.99900E-15
@@ -405,6 +405,12 @@ resx471 rescale 9.999E-15 -1 -> 0.0 Inexact Rounded
resx472 rescale 9.999E-15 0 -> 0 Inexact Rounded
resx473 rescale 9.999E-15 1 -> 0E+1 Inexact Rounded
+-- [additional tests for "don't fit" edge cases are in
+-- quantize.decTest. Here's a critical one.]
+precision: 3
+resx480 rescale 0.9999 -3 -> NaN Invalid_operation
+
+
-- long operand checks [rhs checks removed]
maxexponent: 999
minexponent: -999
diff --git a/Lib/test/decimaltestdata/rotate.decTest b/Lib/test/decimaltestdata/rotate.decTest
new file mode 100644
index 0000000..c5ced59
--- /dev/null
+++ b/Lib/test/decimaltestdata/rotate.decTest
@@ -0,0 +1,247 @@
+------------------------------------------------------------------------
+-- rotate.decTest -- rotate coefficient left or right --
+-- Copyright (c) IBM Corporation, 1981, 2007. All rights reserved. --
+------------------------------------------------------------------------
+-- Please see the document "General Decimal Arithmetic Testcases" --
+-- at http://www2.hursley.ibm.com/decimal for the description of --
+-- these testcases. --
+-- --
+-- These testcases are experimental ('beta' versions), and they --
+-- may contain errors. They are offered on an as-is basis. In --
+-- particular, achieving the same results as the tests here is not --
+-- a guarantee that an implementation complies with any Standard --
+-- or specification. The tests are not exhaustive. --
+-- --
+-- Please send comments, suggestions, and corrections to the author: --
+-- Mike Cowlishaw, IBM Fellow --
+-- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK --
+-- mfc@uk.ibm.com --
+------------------------------------------------------------------------
+version: 2.56
+
+extended: 1
+precision: 9
+rounding: half_up
+maxExponent: 999
+minExponent: -999
+
+-- Sanity check
+rotx001 rotate 0 0 -> 0
+rotx002 rotate 0 2 -> 0
+rotx003 rotate 1 2 -> 100
+rotx004 rotate 34 8 -> 400000003
+rotx005 rotate 1 9 -> 1
+rotx006 rotate 1 -1 -> 100000000
+rotx007 rotate 123456789 -1 -> 912345678
+rotx008 rotate 123456789 -8 -> 234567891
+rotx009 rotate 123456789 -9 -> 123456789
+rotx010 rotate 0 -2 -> 0
+
+-- rhs must be an integer
+rotx011 rotate 1 1.5 -> NaN Invalid_operation
+rotx012 rotate 1 1.0 -> NaN Invalid_operation
+rotx013 rotate 1 0.1 -> NaN Invalid_operation
+rotx014 rotate 1 0.0 -> NaN Invalid_operation
+rotx015 rotate 1 1E+1 -> NaN Invalid_operation
+rotx016 rotate 1 1E+99 -> NaN Invalid_operation
+rotx017 rotate 1 Inf -> NaN Invalid_operation
+rotx018 rotate 1 -Inf -> NaN Invalid_operation
+-- and |rhs| <= precision
+rotx020 rotate 1 -1000 -> NaN Invalid_operation
+rotx021 rotate 1 -10 -> NaN Invalid_operation
+rotx022 rotate 1 10 -> NaN Invalid_operation
+rotx023 rotate 1 1000 -> NaN Invalid_operation
+
+-- full pattern
+rotx030 rotate 123456789 -9 -> 123456789
+rotx031 rotate 123456789 -8 -> 234567891
+rotx032 rotate 123456789 -7 -> 345678912
+rotx033 rotate 123456789 -6 -> 456789123
+rotx034 rotate 123456789 -5 -> 567891234
+rotx035 rotate 123456789 -4 -> 678912345
+rotx036 rotate 123456789 -3 -> 789123456
+rotx037 rotate 123456789 -2 -> 891234567
+rotx038 rotate 123456789 -1 -> 912345678
+rotx039 rotate 123456789 -0 -> 123456789
+rotx040 rotate 123456789 +0 -> 123456789
+rotx041 rotate 123456789 +1 -> 234567891
+rotx042 rotate 123456789 +2 -> 345678912
+rotx043 rotate 123456789 +3 -> 456789123
+rotx044 rotate 123456789 +4 -> 567891234
+rotx045 rotate 123456789 +5 -> 678912345
+rotx046 rotate 123456789 +6 -> 789123456
+rotx047 rotate 123456789 +7 -> 891234567
+rotx048 rotate 123456789 +8 -> 912345678
+rotx049 rotate 123456789 +9 -> 123456789
+
+-- zeros
+rotx060 rotate 0E-10 +9 -> 0E-10
+rotx061 rotate 0E-10 -9 -> 0E-10
+rotx062 rotate 0.000 +9 -> 0.000
+rotx063 rotate 0.000 -9 -> 0.000
+rotx064 rotate 0E+10 +9 -> 0E+10
+rotx065 rotate 0E+10 -9 -> 0E+10
+rotx066 rotate -0E-10 +9 -> -0E-10
+rotx067 rotate -0E-10 -9 -> -0E-10
+rotx068 rotate -0.000 +9 -> -0.000
+rotx069 rotate -0.000 -9 -> -0.000
+rotx070 rotate -0E+10 +9 -> -0E+10
+rotx071 rotate -0E+10 -9 -> -0E+10
+
+-- Nmax, Nmin, Ntiny
+rotx141 rotate 9.99999999E+999 -1 -> 9.99999999E+999
+rotx142 rotate 9.99999999E+999 -8 -> 9.99999999E+999
+rotx143 rotate 9.99999999E+999 1 -> 9.99999999E+999
+rotx144 rotate 9.99999999E+999 8 -> 9.99999999E+999
+rotx145 rotate 1E-999 -1 -> 1.00000000E-991
+rotx146 rotate 1E-999 -8 -> 1.0E-998
+rotx147 rotate 1E-999 1 -> 1.0E-998
+rotx148 rotate 1E-999 8 -> 1.00000000E-991
+rotx151 rotate 1.00000000E-999 -1 -> 1.0000000E-1000
+rotx152 rotate 1.00000000E-999 -8 -> 1E-1007
+rotx153 rotate 1.00000000E-999 1 -> 1E-1007
+rotx154 rotate 1.00000000E-999 8 -> 1.0000000E-1000
+rotx155 rotate 9.00000000E-999 -1 -> 9.0000000E-1000
+rotx156 rotate 9.00000000E-999 -8 -> 9E-1007
+rotx157 rotate 9.00000000E-999 1 -> 9E-1007
+rotx158 rotate 9.00000000E-999 8 -> 9.0000000E-1000
+rotx160 rotate 1E-1007 -1 -> 1.00000000E-999
+rotx161 rotate 1E-1007 -8 -> 1.0E-1006
+rotx162 rotate 1E-1007 1 -> 1.0E-1006
+rotx163 rotate 1E-1007 8 -> 1.00000000E-999
+-- negatives
+rotx171 rotate -9.99999999E+999 -1 -> -9.99999999E+999
+rotx172 rotate -9.99999999E+999 -8 -> -9.99999999E+999
+rotx173 rotate -9.99999999E+999 1 -> -9.99999999E+999
+rotx174 rotate -9.99999999E+999 8 -> -9.99999999E+999
+rotx175 rotate -1E-999 -1 -> -1.00000000E-991
+rotx176 rotate -1E-999 -8 -> -1.0E-998
+rotx177 rotate -1E-999 1 -> -1.0E-998
+rotx178 rotate -1E-999 8 -> -1.00000000E-991
+rotx181 rotate -1.00000000E-999 -1 -> -1.0000000E-1000
+rotx182 rotate -1.00000000E-999 -8 -> -1E-1007
+rotx183 rotate -1.00000000E-999 1 -> -1E-1007
+rotx184 rotate -1.00000000E-999 8 -> -1.0000000E-1000
+rotx185 rotate -9.00000000E-999 -1 -> -9.0000000E-1000
+rotx186 rotate -9.00000000E-999 -8 -> -9E-1007
+rotx187 rotate -9.00000000E-999 1 -> -9E-1007
+rotx188 rotate -9.00000000E-999 8 -> -9.0000000E-1000
+rotx190 rotate -1E-1007 -1 -> -1.00000000E-999
+rotx191 rotate -1E-1007 -8 -> -1.0E-1006
+rotx192 rotate -1E-1007 1 -> -1.0E-1006
+rotx193 rotate -1E-1007 8 -> -1.00000000E-999
+
+-- more negatives (of sanities)
+rotx201 rotate -0 0 -> -0
+rotx202 rotate -0 2 -> -0
+rotx203 rotate -1 2 -> -100
+rotx204 rotate -1 8 -> -100000000
+rotx205 rotate -1 9 -> -1
+rotx206 rotate -1 -1 -> -100000000
+rotx207 rotate -123456789 -1 -> -912345678
+rotx208 rotate -123456789 -8 -> -234567891
+rotx209 rotate -123456789 -9 -> -123456789
+rotx210 rotate -0 -2 -> -0
+
+-- Specials; NaNs are handled as usual
+rotx781 rotate -Inf -8 -> -Infinity
+rotx782 rotate -Inf -1 -> -Infinity
+rotx783 rotate -Inf -0 -> -Infinity
+rotx784 rotate -Inf 0 -> -Infinity
+rotx785 rotate -Inf 1 -> -Infinity
+rotx786 rotate -Inf 8 -> -Infinity
+rotx787 rotate -1000 -Inf -> NaN Invalid_operation
+rotx788 rotate -Inf -Inf -> NaN Invalid_operation
+rotx789 rotate -1 -Inf -> NaN Invalid_operation
+rotx790 rotate -0 -Inf -> NaN Invalid_operation
+rotx791 rotate 0 -Inf -> NaN Invalid_operation
+rotx792 rotate 1 -Inf -> NaN Invalid_operation
+rotx793 rotate 1000 -Inf -> NaN Invalid_operation
+rotx794 rotate Inf -Inf -> NaN Invalid_operation
+
+rotx800 rotate Inf -Inf -> NaN Invalid_operation
+rotx801 rotate Inf -8 -> Infinity
+rotx802 rotate Inf -1 -> Infinity
+rotx803 rotate Inf -0 -> Infinity
+rotx804 rotate Inf 0 -> Infinity
+rotx805 rotate Inf 1 -> Infinity
+rotx806 rotate Inf 8 -> Infinity
+rotx807 rotate Inf Inf -> NaN Invalid_operation
+rotx808 rotate -1000 Inf -> NaN Invalid_operation
+rotx809 rotate -Inf Inf -> NaN Invalid_operation
+rotx810 rotate -1 Inf -> NaN Invalid_operation
+rotx811 rotate -0 Inf -> NaN Invalid_operation
+rotx812 rotate 0 Inf -> NaN Invalid_operation
+rotx813 rotate 1 Inf -> NaN Invalid_operation
+rotx814 rotate 1000 Inf -> NaN Invalid_operation
+rotx815 rotate Inf Inf -> NaN Invalid_operation
+
+rotx821 rotate NaN -Inf -> NaN
+rotx822 rotate NaN -1000 -> NaN
+rotx823 rotate NaN -1 -> NaN
+rotx824 rotate NaN -0 -> NaN
+rotx825 rotate NaN 0 -> NaN
+rotx826 rotate NaN 1 -> NaN
+rotx827 rotate NaN 1000 -> NaN
+rotx828 rotate NaN Inf -> NaN
+rotx829 rotate NaN NaN -> NaN
+rotx830 rotate -Inf NaN -> NaN
+rotx831 rotate -1000 NaN -> NaN
+rotx832 rotate -1 NaN -> NaN
+rotx833 rotate -0 NaN -> NaN
+rotx834 rotate 0 NaN -> NaN
+rotx835 rotate 1 NaN -> NaN
+rotx836 rotate 1000 NaN -> NaN
+rotx837 rotate Inf NaN -> NaN
+
+
+
+rotx841 rotate sNaN -Inf -> NaN Invalid_operation
+rotx842 rotate sNaN -1000 -> NaN Invalid_operation
+rotx843 rotate sNaN -1 -> NaN Invalid_operation
+rotx844 rotate sNaN -0 -> NaN Invalid_operation
+rotx845 rotate sNaN 0 -> NaN Invalid_operation
+rotx846 rotate sNaN 1 -> NaN Invalid_operation
+rotx847 rotate sNaN 1000 -> NaN Invalid_operation
+rotx848 rotate sNaN NaN -> NaN Invalid_operation
+rotx849 rotate sNaN sNaN -> NaN Invalid_operation
+rotx850 rotate NaN sNaN -> NaN Invalid_operation
+rotx851 rotate -Inf sNaN -> NaN Invalid_operation
+rotx852 rotate -1000 sNaN -> NaN Invalid_operation
+rotx853 rotate -1 sNaN -> NaN Invalid_operation
+rotx854 rotate -0 sNaN -> NaN Invalid_operation
+rotx855 rotate 0 sNaN -> NaN Invalid_operation
+rotx856 rotate 1 sNaN -> NaN Invalid_operation
+rotx857 rotate 1000 sNaN -> NaN Invalid_operation
+rotx858 rotate Inf sNaN -> NaN Invalid_operation
+rotx859 rotate NaN sNaN -> NaN Invalid_operation
+
+-- propagating NaNs
+rotx861 rotate NaN1 -Inf -> NaN1
+rotx862 rotate +NaN2 -1000 -> NaN2
+rotx863 rotate NaN3 1000 -> NaN3
+rotx864 rotate NaN4 Inf -> NaN4
+rotx865 rotate NaN5 +NaN6 -> NaN5
+rotx866 rotate -Inf NaN7 -> NaN7
+rotx867 rotate -1000 NaN8 -> NaN8
+rotx868 rotate 1000 NaN9 -> NaN9
+rotx869 rotate Inf +NaN10 -> NaN10
+rotx871 rotate sNaN11 -Inf -> NaN11 Invalid_operation
+rotx872 rotate sNaN12 -1000 -> NaN12 Invalid_operation
+rotx873 rotate sNaN13 1000 -> NaN13 Invalid_operation
+rotx874 rotate sNaN14 NaN17 -> NaN14 Invalid_operation
+rotx875 rotate sNaN15 sNaN18 -> NaN15 Invalid_operation
+rotx876 rotate NaN16 sNaN19 -> NaN19 Invalid_operation
+rotx877 rotate -Inf +sNaN20 -> NaN20 Invalid_operation
+rotx878 rotate -1000 sNaN21 -> NaN21 Invalid_operation
+rotx879 rotate 1000 sNaN22 -> NaN22 Invalid_operation
+rotx880 rotate Inf sNaN23 -> NaN23 Invalid_operation
+rotx881 rotate +NaN25 +sNaN24 -> NaN24 Invalid_operation
+rotx882 rotate -NaN26 NaN28 -> -NaN26
+rotx883 rotate -sNaN27 sNaN29 -> -NaN27 Invalid_operation
+rotx884 rotate 1000 -NaN30 -> -NaN30
+rotx885 rotate 1000 -sNaN31 -> -NaN31 Invalid_operation
+
+-- payload decapitate
+precision: 5
+rotx886 rotate 11 -sNaN1234567890 -> -NaN67890 Invalid_operation
diff --git a/Lib/test/decimaltestdata/rounding.decTest b/Lib/test/decimaltestdata/rounding.decTest
index f1437a5..d24fbfb 100644
--- a/Lib/test/decimaltestdata/rounding.decTest
+++ b/Lib/test/decimaltestdata/rounding.decTest
@@ -1,6 +1,6 @@
------------------------------------------------------------------------
-- rounding.decTest -- decimal rounding modes testcases --
--- Copyright (c) IBM Corporation, 1981, 2003. All rights reserved. --
+-- Copyright (c) IBM Corporation, 1981, 2007. All rights reserved. --
------------------------------------------------------------------------
-- Please see the document "General Decimal Arithmetic Testcases" --
-- at http://www2.hursley.ibm.com/decimal for the description of --
@@ -17,7 +17,7 @@
-- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK --
-- mfc@uk.ibm.com --
------------------------------------------------------------------------
-version: 2.39
+version: 2.56
-- These tests require that implementations take account of residues in
-- order to get correct results for some rounding modes. Rather than
@@ -26,8 +26,11 @@ version: 2.39
-- is rounding of negatives (if the latter works for addition, assume it
-- works for the others, too).]
--
--- Underflow Subnormal and overflow behaviours are tested under the individual
--- operators.
+-- Round-for-reround (05UP) is tested as a separate block, mostly for
+-- 'historical' reasons.
+--
+-- Underflow Subnormal and overflow behaviours are tested under the
+-- individual operators.
extended: 1
precision: 5 -- for easier visual inspection
@@ -980,8 +983,8 @@ minexponent: -999999999
rounding: down
rovx100 multiply 10 9E+999999999 -> 9.9999E+999999999 Overflow Inexact Rounded
rovx101 multiply -10 9E+999999999 -> -9.9999E+999999999 Overflow Inexact Rounded
-rovx102 divide 1E-9 9E+999999999 -> 0E-1000000003 Underflow Subnormal Inexact Rounded
-rovx104 divide -1E-9 9E+999999999 -> -0E-1000000003 Underflow Subnormal Inexact Rounded
+rovx102 divide 1E-9 9E+999999999 -> 0E-1000000003 Underflow Subnormal Inexact Rounded Clamped
+rovx104 divide -1E-9 9E+999999999 -> -0E-1000000003 Underflow Subnormal Inexact Rounded Clamped
rounding: up
rovx110 multiply 10 9E+999999999 -> Infinity Overflow Inexact Rounded
@@ -993,31 +996,31 @@ rounding: ceiling
rovx120 multiply 10 9E+999999999 -> Infinity Overflow Inexact Rounded
rovx121 multiply -10 9E+999999999 -> -9.9999E+999999999 Overflow Inexact Rounded
rovx122 divide 1E-9 9E+999999999 -> 1E-1000000003 Underflow Subnormal Inexact Rounded
-rovx124 divide -1E-9 9E+999999999 -> -0E-1000000003 Underflow Subnormal Inexact Rounded
+rovx124 divide -1E-9 9E+999999999 -> -0E-1000000003 Underflow Subnormal Inexact Rounded Clamped
rounding: floor
rovx130 multiply 10 9E+999999999 -> 9.9999E+999999999 Overflow Inexact Rounded
rovx131 multiply -10 9E+999999999 -> -Infinity Overflow Inexact Rounded
-rovx132 divide 1E-9 9E+999999999 -> 0E-1000000003 Underflow Subnormal Inexact Rounded
+rovx132 divide 1E-9 9E+999999999 -> 0E-1000000003 Underflow Subnormal Inexact Rounded Clamped
rovx134 divide -1E-9 9E+999999999 -> -1E-1000000003 Underflow Subnormal Inexact Rounded
rounding: half_up
rovx140 multiply 10 9E+999999999 -> Infinity Overflow Inexact Rounded
rovx141 multiply -10 9E+999999999 -> -Infinity Overflow Inexact Rounded
-rovx142 divide 1E-9 9E+999999999 -> 0E-1000000003 Underflow Subnormal Inexact Rounded
-rovx144 divide -1E-9 9E+999999999 -> -0E-1000000003 Underflow Subnormal Inexact Rounded
+rovx142 divide 1E-9 9E+999999999 -> 0E-1000000003 Underflow Subnormal Inexact Rounded Clamped
+rovx144 divide -1E-9 9E+999999999 -> -0E-1000000003 Underflow Subnormal Inexact Rounded Clamped
rounding: half_even
rovx150 multiply 10 9E+999999999 -> Infinity Overflow Inexact Rounded
rovx151 multiply -10 9E+999999999 -> -Infinity Overflow Inexact Rounded
-rovx152 divide 1E-9 9E+999999999 -> 0E-1000000003 Underflow Subnormal Inexact Rounded
-rovx154 divide -1E-9 9E+999999999 -> -0E-1000000003 Underflow Subnormal Inexact Rounded
+rovx152 divide 1E-9 9E+999999999 -> 0E-1000000003 Underflow Subnormal Inexact Rounded Clamped
+rovx154 divide -1E-9 9E+999999999 -> -0E-1000000003 Underflow Subnormal Inexact Rounded Clamped
rounding: half_down
rovx160 multiply 10 9E+999999999 -> Infinity Overflow Inexact Rounded
rovx161 multiply -10 9E+999999999 -> -Infinity Overflow Inexact Rounded
-rovx162 divide 1E-9 9E+999999999 -> 0E-1000000003 Underflow Subnormal Inexact Rounded
-rovx164 divide -1E-9 9E+999999999 -> -0E-1000000003 Underflow Subnormal Inexact Rounded
+rovx162 divide 1E-9 9E+999999999 -> 0E-1000000003 Underflow Subnormal Inexact Rounded Clamped
+rovx164 divide -1E-9 9E+999999999 -> -0E-1000000003 Underflow Subnormal Inexact Rounded Clamped
-- check maximum finite value over a range of precisions
rounding: down
@@ -1077,3 +1080,224 @@ rounding: down
rmex412 multiply -9.999E+999999999 10 -> -9.99999999E+999999999 Overflow Inexact Rounded
rmex413 multiply 9.999E+999999999 10 -> 9.99999999E+999999999 Overflow Inexact Rounded
+----- Round-for-reround -----
+rounding: 05up
+precision: 5 -- for easier visual inspection
+maxExponent: 999
+minexponent: -999
+
+-- basic rounding; really is just 0 and 5 up
+r05up001 add 12340 0.001 -> 12341 Inexact Rounded
+r05up002 add 12341 0.001 -> 12341 Inexact Rounded
+r05up003 add 12342 0.001 -> 12342 Inexact Rounded
+r05up004 add 12343 0.001 -> 12343 Inexact Rounded
+r05up005 add 12344 0.001 -> 12344 Inexact Rounded
+r05up006 add 12345 0.001 -> 12346 Inexact Rounded
+r05up007 add 12346 0.001 -> 12346 Inexact Rounded
+r05up008 add 12347 0.001 -> 12347 Inexact Rounded
+r05up009 add 12348 0.001 -> 12348 Inexact Rounded
+r05up010 add 12349 0.001 -> 12349 Inexact Rounded
+
+r05up011 add 12340 0.000 -> 12340 Rounded
+r05up012 add 12341 0.000 -> 12341 Rounded
+r05up013 add 12342 0.000 -> 12342 Rounded
+r05up014 add 12343 0.000 -> 12343 Rounded
+r05up015 add 12344 0.000 -> 12344 Rounded
+r05up016 add 12345 0.000 -> 12345 Rounded
+r05up017 add 12346 0.000 -> 12346 Rounded
+r05up018 add 12347 0.000 -> 12347 Rounded
+r05up019 add 12348 0.000 -> 12348 Rounded
+r05up020 add 12349 0.000 -> 12349 Rounded
+
+r05up021 add 12340 0.901 -> 12341 Inexact Rounded
+r05up022 add 12341 0.901 -> 12341 Inexact Rounded
+r05up023 add 12342 0.901 -> 12342 Inexact Rounded
+r05up024 add 12343 0.901 -> 12343 Inexact Rounded
+r05up025 add 12344 0.901 -> 12344 Inexact Rounded
+r05up026 add 12345 0.901 -> 12346 Inexact Rounded
+r05up027 add 12346 0.901 -> 12346 Inexact Rounded
+r05up028 add 12347 0.901 -> 12347 Inexact Rounded
+r05up029 add 12348 0.901 -> 12348 Inexact Rounded
+r05up030 add 12349 0.901 -> 12349 Inexact Rounded
+
+r05up031 add -12340 -0.001 -> -12341 Inexact Rounded
+r05up032 add -12341 -0.001 -> -12341 Inexact Rounded
+r05up033 add -12342 -0.001 -> -12342 Inexact Rounded
+r05up034 add -12343 -0.001 -> -12343 Inexact Rounded
+r05up035 add -12344 -0.001 -> -12344 Inexact Rounded
+r05up036 add -12345 -0.001 -> -12346 Inexact Rounded
+r05up037 add -12346 -0.001 -> -12346 Inexact Rounded
+r05up038 add -12347 -0.001 -> -12347 Inexact Rounded
+r05up039 add -12348 -0.001 -> -12348 Inexact Rounded
+r05up040 add -12349 -0.001 -> -12349 Inexact Rounded
+
+r05up041 add -12340 0.001 -> -12339 Inexact Rounded
+r05up042 add -12341 0.001 -> -12341 Inexact Rounded
+r05up043 add -12342 0.001 -> -12341 Inexact Rounded
+r05up044 add -12343 0.001 -> -12342 Inexact Rounded
+r05up045 add -12344 0.001 -> -12343 Inexact Rounded
+r05up046 add -12345 0.001 -> -12344 Inexact Rounded
+r05up047 add -12346 0.001 -> -12346 Inexact Rounded
+r05up048 add -12347 0.001 -> -12346 Inexact Rounded
+r05up049 add -12348 0.001 -> -12347 Inexact Rounded
+r05up050 add -12349 0.001 -> -12348 Inexact Rounded
+
+-- Addition operators -------------------------------------------------
+-- [The first few of these check negative residue possibilities; these
+-- cases may be implemented as a negative residue in fastpaths]
+
+r0adx100 add 12345 -0.1 -> 12344 Inexact Rounded
+r0adx101 add 12345 -0.01 -> 12344 Inexact Rounded
+r0adx102 add 12345 -0.001 -> 12344 Inexact Rounded
+r0adx103 add 12345 -0.00001 -> 12344 Inexact Rounded
+r0adx104 add 12345 -0.000001 -> 12344 Inexact Rounded
+r0adx105 add 12345 -0.0000001 -> 12344 Inexact Rounded
+r0adx106 add 12345 0 -> 12345
+r0adx107 add 12345 0.0000001 -> 12346 Inexact Rounded
+r0adx108 add 12345 0.000001 -> 12346 Inexact Rounded
+r0adx109 add 12345 0.00001 -> 12346 Inexact Rounded
+r0adx110 add 12345 0.0001 -> 12346 Inexact Rounded
+r0adx111 add 12345 0.001 -> 12346 Inexact Rounded
+r0adx112 add 12345 0.01 -> 12346 Inexact Rounded
+r0adx113 add 12345 0.1 -> 12346 Inexact Rounded
+
+r0adx115 add 12346 0.49999 -> 12346 Inexact Rounded
+r0adx116 add 12346 0.5 -> 12346 Inexact Rounded
+r0adx117 add 12346 0.50001 -> 12346 Inexact Rounded
+
+r0adx120 add 12345 0.4 -> 12346 Inexact Rounded
+r0adx121 add 12345 0.49 -> 12346 Inexact Rounded
+r0adx122 add 12345 0.499 -> 12346 Inexact Rounded
+r0adx123 add 12345 0.49999 -> 12346 Inexact Rounded
+r0adx124 add 12345 0.5 -> 12346 Inexact Rounded
+r0adx125 add 12345 0.50001 -> 12346 Inexact Rounded
+r0adx126 add 12345 0.5001 -> 12346 Inexact Rounded
+r0adx127 add 12345 0.501 -> 12346 Inexact Rounded
+r0adx128 add 12345 0.51 -> 12346 Inexact Rounded
+r0adx129 add 12345 0.6 -> 12346 Inexact Rounded
+
+-- negatives...
+
+r0sux100 add -12345 -0.1 -> -12346 Inexact Rounded
+r0sux101 add -12345 -0.01 -> -12346 Inexact Rounded
+r0sux102 add -12345 -0.001 -> -12346 Inexact Rounded
+r0sux103 add -12345 -0.00001 -> -12346 Inexact Rounded
+r0sux104 add -12345 -0.000001 -> -12346 Inexact Rounded
+r0sux105 add -12345 -0.0000001 -> -12346 Inexact Rounded
+r0sux106 add -12345 0 -> -12345
+r0sux107 add -12345 0.0000001 -> -12344 Inexact Rounded
+r0sux108 add -12345 0.000001 -> -12344 Inexact Rounded
+r0sux109 add -12345 0.00001 -> -12344 Inexact Rounded
+r0sux110 add -12345 0.0001 -> -12344 Inexact Rounded
+r0sux111 add -12345 0.001 -> -12344 Inexact Rounded
+r0sux112 add -12345 0.01 -> -12344 Inexact Rounded
+r0sux113 add -12345 0.1 -> -12344 Inexact Rounded
+
+r0sux115 add -12346 0.49999 -> -12346 Inexact Rounded
+r0sux116 add -12346 0.5 -> -12346 Inexact Rounded
+r0sux117 add -12346 0.50001 -> -12346 Inexact Rounded
+
+r0sux120 add -12345 0.4 -> -12344 Inexact Rounded
+r0sux121 add -12345 0.49 -> -12344 Inexact Rounded
+r0sux122 add -12345 0.499 -> -12344 Inexact Rounded
+r0sux123 add -12345 0.49999 -> -12344 Inexact Rounded
+r0sux124 add -12345 0.5 -> -12344 Inexact Rounded
+r0sux125 add -12345 0.50001 -> -12344 Inexact Rounded
+r0sux126 add -12345 0.5001 -> -12344 Inexact Rounded
+r0sux127 add -12345 0.501 -> -12344 Inexact Rounded
+r0sux128 add -12345 0.51 -> -12344 Inexact Rounded
+r0sux129 add -12345 0.6 -> -12344 Inexact Rounded
+
+-- Check cancellation subtractions
+-- (The IEEE 854 'curious rule' in $6.3)
+
+r0zex001 add 0 0 -> 0
+r0zex002 add 0 -0 -> 0
+r0zex003 add -0 0 -> 0
+r0zex004 add -0 -0 -> -0
+r0zex005 add 1 -1 -> 0
+r0zex006 add -1 1 -> 0
+r0zex007 add 1.5 -1.5 -> 0.0
+r0zex008 add -1.5 1.5 -> 0.0
+r0zex009 add 2 -2 -> 0
+r0zex010 add -2 2 -> 0
+
+
+-- Division operators -------------------------------------------------
+
+r0dvx101 divide 12345 1 -> 12345
+r0dvx102 divide 12345 1.0001 -> 12343 Inexact Rounded
+r0dvx103 divide 12345 1.001 -> 12332 Inexact Rounded
+r0dvx104 divide 12345 1.01 -> 12222 Inexact Rounded
+r0dvx105 divide 12345 1.1 -> 11222 Inexact Rounded
+r0dvx106 divide 12355 4 -> 3088.7 Inexact Rounded
+r0dvx107 divide 12345 4 -> 3086.2 Inexact Rounded
+r0dvx108 divide 12355 4.0001 -> 3088.6 Inexact Rounded
+r0dvx109 divide 12345 4.0001 -> 3086.1 Inexact Rounded
+r0dvx110 divide 12345 4.9 -> 2519.3 Inexact Rounded
+r0dvx111 divide 12345 4.99 -> 2473.9 Inexact Rounded
+r0dvx112 divide 12345 4.999 -> 2469.4 Inexact Rounded
+r0dvx113 divide 12345 4.9999 -> 2469.1 Inexact Rounded
+r0dvx114 divide 12345 5 -> 2469
+r0dvx115 divide 12345 5.0001 -> 2468.9 Inexact Rounded
+r0dvx116 divide 12345 5.001 -> 2468.6 Inexact Rounded
+r0dvx117 divide 12345 5.01 -> 2464.1 Inexact Rounded
+r0dvx118 divide 12345 5.1 -> 2420.6 Inexact Rounded
+
+-- [divideInteger and remainder unaffected]
+
+-- Multiplication operator --------------------------------------------
+
+r0mux101 multiply 12345 1 -> 12345
+r0mux102 multiply 12345 1.0001 -> 12346 Inexact Rounded
+r0mux103 multiply 12345 1.001 -> 12357 Inexact Rounded
+r0mux104 multiply 12345 1.01 -> 12468 Inexact Rounded
+r0mux105 multiply 12345 1.1 -> 13579 Inexact Rounded
+r0mux106 multiply 12345 4 -> 49380
+r0mux107 multiply 12345 4.0001 -> 49381 Inexact Rounded
+r0mux108 multiply 12345 4.9 -> 60491 Inexact Rounded
+r0mux109 multiply 12345 4.99 -> 61601 Inexact Rounded
+r0mux110 multiply 12345 4.999 -> 61712 Inexact Rounded
+r0mux111 multiply 12345 4.9999 -> 61723 Inexact Rounded
+r0mux112 multiply 12345 5 -> 61725
+r0mux113 multiply 12345 5.0001 -> 61726 Inexact Rounded
+r0mux114 multiply 12345 5.001 -> 61737 Inexact Rounded
+r0mux115 multiply 12345 5.01 -> 61848 Inexact Rounded
+r0mux116 multiply 12345 12 -> 1.4814E+5 Rounded
+r0mux117 multiply 12345 13 -> 1.6048E+5 Inexact Rounded
+r0mux118 multiply 12355 12 -> 1.4826E+5 Rounded
+r0mux119 multiply 12355 13 -> 1.6061E+5 Inexact Rounded
+
+
+-- Power operator -----------------------------------------------------
+
+r0pox101 power 12345 -5 -> 3.4877E-21 Inexact Rounded
+r0pox102 power 12345 -4 -> 4.3056E-17 Inexact Rounded
+r0pox103 power 12345 -3 -> 5.3152E-13 Inexact Rounded
+r0pox104 power 12345 -2 -> 6.5617E-9 Inexact Rounded
+r0pox105 power 12345 -1 -> 0.000081004 Inexact Rounded
+r0pox106 power 12345 0 -> 1
+r0pox107 power 12345 1 -> 12345
+r0pox108 power 12345 2 -> 1.5239E+8 Inexact Rounded
+r0pox109 power 12345 3 -> 1.8813E+12 Inexact Rounded
+r0pox110 power 12345 4 -> 2.3226E+16 Inexact Rounded
+r0pox111 power 12345 5 -> 2.8671E+20 Inexact Rounded
+r0pox112 power 415 2 -> 1.7222E+5 Inexact Rounded
+r0pox113 power 75 3 -> 4.2187E+5 Inexact Rounded
+
+
+-- Underflow Subnormal and overflow values vary with rounding mode and sign
+maxexponent: 999999999
+minexponent: -999999999
+-- [round down gives Nmax on first two and .0E... on the next two]
+r0ovx100 multiply 10 9E+999999999 -> 9.9999E+999999999 Overflow Inexact Rounded
+r0ovx101 multiply -10 9E+999999999 -> -9.9999E+999999999 Overflow Inexact Rounded
+r0ovx102 divide 1E-9 9E+999999999 -> 1E-1000000003 Underflow Subnormal Inexact Rounded
+r0ovx104 divide -1E-9 9E+999999999 -> -1E-1000000003 Underflow Subnormal Inexact Rounded
+
+-- reprise rounding mode effect (using multiplies so precision directive used)
+precision: 9
+maxexponent: 999999999
+r0mex412 multiply -9.999E+999999999 10 -> -9.99999999E+999999999 Overflow Inexact Rounded
+r0mex413 multiply 9.999E+999999999 10 -> 9.99999999E+999999999 Overflow Inexact Rounded
+
diff --git a/Lib/test/decimaltestdata/samequantum.decTest b/Lib/test/decimaltestdata/samequantum.decTest
index bdea000..0b1efff 100644
--- a/Lib/test/decimaltestdata/samequantum.decTest
+++ b/Lib/test/decimaltestdata/samequantum.decTest
@@ -1,6 +1,6 @@
------------------------------------------------------------------------
-- samequantum.decTest -- check quantums match --
--- Copyright (c) IBM Corporation, 2001, 2003. All rights reserved. --
+-- Copyright (c) IBM Corporation, 2001, 2007. All rights reserved. --
------------------------------------------------------------------------
-- Please see the document "General Decimal Arithmetic Testcases" --
-- at http://www2.hursley.ibm.com/decimal for the description of --
@@ -17,7 +17,7 @@
-- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK --
-- mfc@uk.ibm.com --
------------------------------------------------------------------------
-version: 2.39
+version: 2.56
extended: 1
precision: 9
@@ -64,8 +64,44 @@ samq047 samequantum -0E-17 0.0E-17 -> 0
samq048 samequantum -0E-17 -0.0E-16 -> 1
samq049 samequantum -0E-17 -0.0E-17 -> 0
--- specials & combinations
+-- Nmax, Nmin, Ntiny
+samq051 samequantum 9.99999999E+999 9.99999999E+999 -> 1
+samq052 samequantum 1E-999 1E-999 -> 1
+samq053 samequantum 1.00000000E-999 1.00000000E-999 -> 1
+samq054 samequantum 1E-1007 1E-1007 -> 1
+samq055 samequantum 9.99999999E+999 9.99999999E+999 -> 1
+samq056 samequantum 1E-999 1E-999 -> 1
+samq057 samequantum 1.00000000E-999 1.00000000E-999 -> 1
+samq058 samequantum 1E-1007 1E-1007 -> 1
+
+samq061 samequantum -1E-1007 -1E-1007 -> 1
+samq062 samequantum -1.00000000E-999 -1.00000000E-999 -> 1
+samq063 samequantum -1E-999 -1E-999 -> 1
+samq064 samequantum -9.99999999E+999 -9.99999999E+999 -> 1
+samq065 samequantum -1E-1007 -1E-1007 -> 1
+samq066 samequantum -1.00000000E-999 -1.00000000E-999 -> 1
+samq067 samequantum -1E-999 -1E-999 -> 1
+samq068 samequantum -9.99999999E+999 -9.99999999E+999 -> 1
+
+samq071 samequantum -4E-1007 -1E-1007 -> 1
+samq072 samequantum -4.00000000E-999 -1.00004000E-999 -> 1
+samq073 samequantum -4E-999 -1E-999 -> 1
+samq074 samequantum -4.99999999E+999 -9.99949999E+999 -> 1
+samq075 samequantum -4E-1007 -1E-1007 -> 1
+samq076 samequantum -4.00000000E-999 -1.00400000E-999 -> 1
+samq077 samequantum -4E-999 -1E-999 -> 1
+samq078 samequantum -4.99999999E+999 -9.94999999E+999 -> 1
+samq081 samequantum -4E-1006 -1E-1007 -> 0
+samq082 samequantum -4.00000000E-999 -1.00004000E-996 -> 0
+samq083 samequantum -4E-996 -1E-999 -> 0
+samq084 samequantum -4.99999999E+999 -9.99949999E+996 -> 0
+samq085 samequantum -4E-1006 -1E-1007 -> 0
+samq086 samequantum -4.00000000E-999 -1.00400000E-996 -> 0
+samq087 samequantum -4E-996 -1E-999 -> 0
+samq088 samequantum -4.99999999E+999 -9.94999999E+996 -> 0
+
+-- specials & combinations
samq0110 samequantum -Inf -Inf -> 1
samq0111 samequantum -Inf Inf -> 1
samq0112 samequantum -Inf NaN -> 0
diff --git a/Lib/test/decimaltestdata/scaleb.decTest b/Lib/test/decimaltestdata/scaleb.decTest
new file mode 100644
index 0000000..0761dea
--- /dev/null
+++ b/Lib/test/decimaltestdata/scaleb.decTest
@@ -0,0 +1,200 @@
+------------------------------------------------------------------------
+-- scaleb.decTest -- scale a number by powers of 10 --
+-- Copyright (c) IBM Corporation, 1981, 2007. All rights reserved. --
+------------------------------------------------------------------------
+-- Please see the document "General Decimal Arithmetic Testcases" --
+-- at http://www2.hursley.ibm.com/decimal for the description of --
+-- these testcases. --
+-- --
+-- These testcases are experimental ('beta' versions), and they --
+-- may contain errors. They are offered on an as-is basis. In --
+-- particular, achieving the same results as the tests here is not --
+-- a guarantee that an implementation complies with any Standard --
+-- or specification. The tests are not exhaustive. --
+-- --
+-- Please send comments, suggestions, and corrections to the author: --
+-- Mike Cowlishaw, IBM Fellow --
+-- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK --
+-- mfc@uk.ibm.com --
+------------------------------------------------------------------------
+version: 2.56
+
+extended: 1
+precision: 9
+rounding: half_up
+maxExponent: 999
+minExponent: -999
+
+-- Max |rhs| is 2*(999+9) = 2016
+
+-- Sanity checks
+scbx001 scaleb 7.50 10 -> 7.50E+10
+scbx002 scaleb 7.50 3 -> 7.50E+3
+scbx003 scaleb 7.50 2 -> 750
+scbx004 scaleb 7.50 1 -> 75.0
+scbx005 scaleb 7.50 0 -> 7.50
+scbx006 scaleb 7.50 -1 -> 0.750
+scbx007 scaleb 7.50 -2 -> 0.0750
+scbx008 scaleb 7.50 -10 -> 7.50E-10
+scbx009 scaleb -7.50 3 -> -7.50E+3
+scbx010 scaleb -7.50 2 -> -750
+scbx011 scaleb -7.50 1 -> -75.0
+scbx012 scaleb -7.50 0 -> -7.50
+scbx013 scaleb -7.50 -1 -> -0.750
+
+-- Infinities
+scbx014 scaleb Infinity 1 -> Infinity
+scbx015 scaleb -Infinity 2 -> -Infinity
+scbx016 scaleb Infinity -1 -> Infinity
+scbx017 scaleb -Infinity -2 -> -Infinity
+
+-- Next two are somewhat undefined in 754r; treat as non-integer
+scbx018 scaleb 10 Infinity -> NaN Invalid_operation
+scbx019 scaleb 10 -Infinity -> NaN Invalid_operation
+
+-- NaNs are undefined in 754r; assume usual processing
+-- NaNs, 0 payload
+scbx021 scaleb NaN 1 -> NaN
+scbx022 scaleb -NaN -1 -> -NaN
+scbx023 scaleb sNaN 1 -> NaN Invalid_operation
+scbx024 scaleb -sNaN 1 -> -NaN Invalid_operation
+scbx025 scaleb 4 NaN -> NaN
+scbx026 scaleb -Inf -NaN -> -NaN
+scbx027 scaleb 4 sNaN -> NaN Invalid_operation
+scbx028 scaleb Inf -sNaN -> -NaN Invalid_operation
+
+-- non-integer RHS
+scbx030 scaleb 1.23 1 -> 12.3
+scbx031 scaleb 1.23 1.00 -> NaN Invalid_operation
+scbx032 scaleb 1.23 1.1 -> NaN Invalid_operation
+scbx033 scaleb 1.23 1.01 -> NaN Invalid_operation
+scbx034 scaleb 1.23 0.01 -> NaN Invalid_operation
+scbx035 scaleb 1.23 0.11 -> NaN Invalid_operation
+scbx036 scaleb 1.23 0.999999999 -> NaN Invalid_operation
+scbx037 scaleb 1.23 -1 -> 0.123
+scbx038 scaleb 1.23 -1.00 -> NaN Invalid_operation
+scbx039 scaleb 1.23 -1.1 -> NaN Invalid_operation
+scbx040 scaleb 1.23 -1.01 -> NaN Invalid_operation
+scbx041 scaleb 1.23 -0.01 -> NaN Invalid_operation
+scbx042 scaleb 1.23 -0.11 -> NaN Invalid_operation
+scbx043 scaleb 1.23 -0.999999999 -> NaN Invalid_operation
+scbx044 scaleb 1.23 0.1 -> NaN Invalid_operation
+scbx045 scaleb 1.23 1E+1 -> NaN Invalid_operation
+scbx046 scaleb 1.23 1.1234E+6 -> NaN Invalid_operation
+scbx047 scaleb 1.23 1.123E+4 -> NaN Invalid_operation
+
+
+scbx120 scaleb 1.23 2015 -> Infinity Overflow Inexact Rounded
+scbx121 scaleb 1.23 2016 -> Infinity Overflow Inexact Rounded
+scbx122 scaleb 1.23 2017 -> NaN Invalid_operation
+scbx123 scaleb 1.23 2018 -> NaN Invalid_operation
+scbx124 scaleb 1.23 -2015 -> 0E-1007 Underflow Subnormal Inexact Rounded Clamped
+scbx125 scaleb 1.23 -2016 -> 0E-1007 Underflow Subnormal Inexact Rounded Clamped
+scbx126 scaleb 1.23 -2017 -> NaN Invalid_operation
+scbx127 scaleb 1.23 -2018 -> NaN Invalid_operation
+
+-- NaNs, non-0 payload
+-- propagating NaNs
+scbx861 scaleb NaN01 -Inf -> NaN1
+scbx862 scaleb -NaN02 -1000 -> -NaN2
+scbx863 scaleb NaN03 1000 -> NaN3
+scbx864 scaleb NaN04 Inf -> NaN4
+scbx865 scaleb NaN05 NaN61 -> NaN5
+scbx866 scaleb -Inf -NaN71 -> -NaN71
+scbx867 scaleb -1000 NaN81 -> NaN81
+scbx868 scaleb 1000 NaN91 -> NaN91
+scbx869 scaleb Inf NaN101 -> NaN101
+scbx871 scaleb sNaN011 -Inf -> NaN11 Invalid_operation
+scbx872 scaleb sNaN012 -1000 -> NaN12 Invalid_operation
+scbx873 scaleb -sNaN013 1000 -> -NaN13 Invalid_operation
+scbx874 scaleb sNaN014 NaN171 -> NaN14 Invalid_operation
+scbx875 scaleb sNaN015 sNaN181 -> NaN15 Invalid_operation
+scbx876 scaleb NaN016 sNaN191 -> NaN191 Invalid_operation
+scbx877 scaleb -Inf sNaN201 -> NaN201 Invalid_operation
+scbx878 scaleb -1000 sNaN211 -> NaN211 Invalid_operation
+scbx879 scaleb 1000 -sNaN221 -> -NaN221 Invalid_operation
+scbx880 scaleb Inf sNaN231 -> NaN231 Invalid_operation
+scbx881 scaleb NaN025 sNaN241 -> NaN241 Invalid_operation
+
+-- finites
+scbx051 scaleb 7 -2 -> 0.07
+scbx052 scaleb -7 -2 -> -0.07
+scbx053 scaleb 75 -2 -> 0.75
+scbx054 scaleb -75 -2 -> -0.75
+scbx055 scaleb 7.50 -2 -> 0.0750
+scbx056 scaleb -7.50 -2 -> -0.0750
+scbx057 scaleb 7.500 -2 -> 0.07500
+scbx058 scaleb -7.500 -2 -> -0.07500
+scbx061 scaleb 7 -1 -> 0.7
+scbx062 scaleb -7 -1 -> -0.7
+scbx063 scaleb 75 -1 -> 7.5
+scbx064 scaleb -75 -1 -> -7.5
+scbx065 scaleb 7.50 -1 -> 0.750
+scbx066 scaleb -7.50 -1 -> -0.750
+scbx067 scaleb 7.500 -1 -> 0.7500
+scbx068 scaleb -7.500 -1 -> -0.7500
+scbx071 scaleb 7 0 -> 7
+scbx072 scaleb -7 0 -> -7
+scbx073 scaleb 75 0 -> 75
+scbx074 scaleb -75 0 -> -75
+scbx075 scaleb 7.50 0 -> 7.50
+scbx076 scaleb -7.50 0 -> -7.50
+scbx077 scaleb 7.500 0 -> 7.500
+scbx078 scaleb -7.500 0 -> -7.500
+scbx081 scaleb 7 1 -> 7E+1
+scbx082 scaleb -7 1 -> -7E+1
+scbx083 scaleb 75 1 -> 7.5E+2
+scbx084 scaleb -75 1 -> -7.5E+2
+scbx085 scaleb 7.50 1 -> 75.0
+scbx086 scaleb -7.50 1 -> -75.0
+scbx087 scaleb 7.500 1 -> 75.00
+scbx088 scaleb -7.500 1 -> -75.00
+scbx091 scaleb 7 2 -> 7E+2
+scbx092 scaleb -7 2 -> -7E+2
+scbx093 scaleb 75 2 -> 7.5E+3
+scbx094 scaleb -75 2 -> -7.5E+3
+scbx095 scaleb 7.50 2 -> 750
+scbx096 scaleb -7.50 2 -> -750
+scbx097 scaleb 7.500 2 -> 750.0
+scbx098 scaleb -7.500 2 -> -750.0
+
+-- zeros
+scbx111 scaleb 0 1 -> 0E+1
+scbx112 scaleb -0 2 -> -0E+2
+scbx113 scaleb 0E+4 3 -> 0E+7
+scbx114 scaleb -0E+4 4 -> -0E+8
+scbx115 scaleb 0.0000 5 -> 0E+1
+scbx116 scaleb -0.0000 6 -> -0E+2
+scbx117 scaleb 0E-141 7 -> 0E-134
+scbx118 scaleb -0E-141 8 -> -0E-133
+
+-- Nmax, Nmin, Ntiny
+scbx132 scaleb 9.99999999E+999 +999 -> Infinity Overflow Inexact Rounded
+scbx133 scaleb 9.99999999E+999 +10 -> Infinity Overflow Inexact Rounded
+scbx134 scaleb 9.99999999E+999 +1 -> Infinity Overflow Inexact Rounded
+scbx135 scaleb 9.99999999E+999 0 -> 9.99999999E+999
+scbx136 scaleb 9.99999999E+999 -1 -> 9.99999999E+998
+scbx137 scaleb 1E-999 +1 -> 1E-998
+scbx138 scaleb 1E-999 -0 -> 1E-999
+scbx139 scaleb 1E-999 -1 -> 1E-1000 Subnormal
+scbx140 scaleb 1.00000000E-999 +1 -> 1.00000000E-998
+scbx141 scaleb 1.00000000E-999 0 -> 1.00000000E-999
+scbx142 scaleb 1.00000000E-999 -1 -> 1.0000000E-1000 Subnormal Rounded
+scbx143 scaleb 1E-1007 +1 -> 1E-1006 Subnormal
+scbx144 scaleb 1E-1007 -0 -> 1E-1007 Subnormal
+scbx145 scaleb 1E-1007 -1 -> 0E-1007 Underflow Subnormal Inexact Rounded Clamped
+
+scbx150 scaleb -1E-1007 +1 -> -1E-1006 Subnormal
+scbx151 scaleb -1E-1007 -0 -> -1E-1007 Subnormal
+scbx152 scaleb -1E-1007 -1 -> -0E-1007 Underflow Subnormal Inexact Rounded Clamped
+scbx153 scaleb -1.00000000E-999 +1 -> -1.00000000E-998
+scbx154 scaleb -1.00000000E-999 +0 -> -1.00000000E-999
+scbx155 scaleb -1.00000000E-999 -1 -> -1.0000000E-1000 Subnormal Rounded
+scbx156 scaleb -1E-999 +1 -> -1E-998
+scbx157 scaleb -1E-999 -0 -> -1E-999
+scbx158 scaleb -1E-999 -1 -> -1E-1000 Subnormal
+scbx159 scaleb -9.99999999E+999 +1 -> -Infinity Overflow Inexact Rounded
+scbx160 scaleb -9.99999999E+999 +0 -> -9.99999999E+999
+scbx161 scaleb -9.99999999E+999 -1 -> -9.99999999E+998
+scbx162 scaleb -9E+999 +1 -> -Infinity Overflow Inexact Rounded
+scbx163 scaleb -1E+999 +1 -> -Infinity Overflow Inexact Rounded
diff --git a/Lib/test/decimaltestdata/shift.decTest b/Lib/test/decimaltestdata/shift.decTest
new file mode 100644
index 0000000..c2a40cc
--- /dev/null
+++ b/Lib/test/decimaltestdata/shift.decTest
@@ -0,0 +1,250 @@
+------------------------------------------------------------------------
+-- shift.decTest -- shift coefficient left or right --
+-- Copyright (c) IBM Corporation, 1981, 2007. All rights reserved. --
+------------------------------------------------------------------------
+-- Please see the document "General Decimal Arithmetic Testcases" --
+-- at http://www2.hursley.ibm.com/decimal for the description of --
+-- these testcases. --
+-- --
+-- These testcases are experimental ('beta' versions), and they --
+-- may contain errors. They are offered on an as-is basis. In --
+-- particular, achieving the same results as the tests here is not --
+-- a guarantee that an implementation complies with any Standard --
+-- or specification. The tests are not exhaustive. --
+-- --
+-- Please send comments, suggestions, and corrections to the author: --
+-- Mike Cowlishaw, IBM Fellow --
+-- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK --
+-- mfc@uk.ibm.com --
+------------------------------------------------------------------------
+version: 2.56
+
+extended: 1
+precision: 9
+rounding: half_up
+maxExponent: 999
+minExponent: -999
+
+-- Sanity check
+shix001 shift 0 0 -> 0
+shix002 shift 0 2 -> 0
+shix003 shift 1 2 -> 100
+shix004 shift 1 8 -> 100000000
+shix005 shift 1 9 -> 0
+shix006 shift 1 -1 -> 0
+shix007 shift 123456789 -1 -> 12345678
+shix008 shift 123456789 -8 -> 1
+shix009 shift 123456789 -9 -> 0
+shix010 shift 0 -2 -> 0
+
+-- rhs must be an integer
+shix011 shift 1 1.5 -> NaN Invalid_operation
+shix012 shift 1 1.0 -> NaN Invalid_operation
+shix013 shift 1 0.1 -> NaN Invalid_operation
+shix014 shift 1 0.0 -> NaN Invalid_operation
+shix015 shift 1 1E+1 -> NaN Invalid_operation
+shix016 shift 1 1E+99 -> NaN Invalid_operation
+shix017 shift 1 Inf -> NaN Invalid_operation
+shix018 shift 1 -Inf -> NaN Invalid_operation
+-- and |rhs| <= precision
+shix020 shift 1 -1000 -> NaN Invalid_operation
+shix021 shift 1 -10 -> NaN Invalid_operation
+shix022 shift 1 10 -> NaN Invalid_operation
+shix023 shift 1 1000 -> NaN Invalid_operation
+
+-- full shifting pattern
+shix030 shift 123456789 -9 -> 0
+shix031 shift 123456789 -8 -> 1
+shix032 shift 123456789 -7 -> 12
+shix033 shift 123456789 -6 -> 123
+shix034 shift 123456789 -5 -> 1234
+shix035 shift 123456789 -4 -> 12345
+shix036 shift 123456789 -3 -> 123456
+shix037 shift 123456789 -2 -> 1234567
+shix038 shift 123456789 -1 -> 12345678
+shix039 shift 123456789 -0 -> 123456789
+shix040 shift 123456789 +0 -> 123456789
+shix041 shift 123456789 +1 -> 234567890
+shix042 shift 123456789 +2 -> 345678900
+shix043 shift 123456789 +3 -> 456789000
+shix044 shift 123456789 +4 -> 567890000
+shix045 shift 123456789 +5 -> 678900000
+shix046 shift 123456789 +6 -> 789000000
+shix047 shift 123456789 +7 -> 890000000
+shix048 shift 123456789 +8 -> 900000000
+shix049 shift 123456789 +9 -> 0
+
+-- from examples
+shix051 shift 34 8 -> '400000000'
+shix052 shift 12 9 -> '0'
+shix053 shift 123456789 -2 -> '1234567'
+shix054 shift 123456789 0 -> '123456789'
+shix055 shift 123456789 +2 -> '345678900'
+
+-- zeros
+shix060 shift 0E-10 +9 -> 0E-10
+shix061 shift 0E-10 -9 -> 0E-10
+shix062 shift 0.000 +9 -> 0.000
+shix063 shift 0.000 -9 -> 0.000
+shix064 shift 0E+10 +9 -> 0E+10
+shix065 shift 0E+10 -9 -> 0E+10
+shix066 shift -0E-10 +9 -> -0E-10
+shix067 shift -0E-10 -9 -> -0E-10
+shix068 shift -0.000 +9 -> -0.000
+shix069 shift -0.000 -9 -> -0.000
+shix070 shift -0E+10 +9 -> -0E+10
+shix071 shift -0E+10 -9 -> -0E+10
+
+-- Nmax, Nmin, Ntiny
+shix141 shift 9.99999999E+999 -1 -> 9.9999999E+998
+shix142 shift 9.99999999E+999 -8 -> 9E+991
+shix143 shift 9.99999999E+999 1 -> 9.99999990E+999
+shix144 shift 9.99999999E+999 8 -> 9.00000000E+999
+shix145 shift 1E-999 -1 -> 0E-999
+shix146 shift 1E-999 -8 -> 0E-999
+shix147 shift 1E-999 1 -> 1.0E-998
+shix148 shift 1E-999 8 -> 1.00000000E-991
+shix151 shift 1.00000000E-999 -1 -> 1.0000000E-1000
+shix152 shift 1.00000000E-999 -8 -> 1E-1007
+shix153 shift 1.00000000E-999 1 -> 0E-1007
+shix154 shift 1.00000000E-999 8 -> 0E-1007
+shix155 shift 9.00000000E-999 -1 -> 9.0000000E-1000
+shix156 shift 9.00000000E-999 -8 -> 9E-1007
+shix157 shift 9.00000000E-999 1 -> 0E-1007
+shix158 shift 9.00000000E-999 8 -> 0E-1007
+shix160 shift 1E-1007 -1 -> 0E-1007
+shix161 shift 1E-1007 -8 -> 0E-1007
+shix162 shift 1E-1007 1 -> 1.0E-1006
+shix163 shift 1E-1007 8 -> 1.00000000E-999
+-- negatives
+shix171 shift -9.99999999E+999 -1 -> -9.9999999E+998
+shix172 shift -9.99999999E+999 -8 -> -9E+991
+shix173 shift -9.99999999E+999 1 -> -9.99999990E+999
+shix174 shift -9.99999999E+999 8 -> -9.00000000E+999
+shix175 shift -1E-999 -1 -> -0E-999
+shix176 shift -1E-999 -8 -> -0E-999
+shix177 shift -1E-999 1 -> -1.0E-998
+shix178 shift -1E-999 8 -> -1.00000000E-991
+shix181 shift -1.00000000E-999 -1 -> -1.0000000E-1000
+shix182 shift -1.00000000E-999 -8 -> -1E-1007
+shix183 shift -1.00000000E-999 1 -> -0E-1007
+shix184 shift -1.00000000E-999 8 -> -0E-1007
+shix185 shift -9.00000000E-999 -1 -> -9.0000000E-1000
+shix186 shift -9.00000000E-999 -8 -> -9E-1007
+shix187 shift -9.00000000E-999 1 -> -0E-1007
+shix188 shift -9.00000000E-999 8 -> -0E-1007
+shix190 shift -1E-1007 -1 -> -0E-1007
+shix191 shift -1E-1007 -8 -> -0E-1007
+shix192 shift -1E-1007 1 -> -1.0E-1006
+shix193 shift -1E-1007 8 -> -1.00000000E-999
+
+-- more negatives (of sanities)
+shix201 shift -0 0 -> -0
+shix202 shift -0 2 -> -0
+shix203 shift -1 2 -> -100
+shix204 shift -1 8 -> -100000000
+shix205 shift -1 9 -> -0
+shix206 shift -1 -1 -> -0
+shix207 shift -123456789 -1 -> -12345678
+shix208 shift -123456789 -8 -> -1
+shix209 shift -123456789 -9 -> -0
+shix210 shift -0 -2 -> -0
+shix211 shift -0 -0 -> -0
+
+
+-- Specials; NaNs are handled as usual
+shix781 shift -Inf -8 -> -Infinity
+shix782 shift -Inf -1 -> -Infinity
+shix783 shift -Inf -0 -> -Infinity
+shix784 shift -Inf 0 -> -Infinity
+shix785 shift -Inf 1 -> -Infinity
+shix786 shift -Inf 8 -> -Infinity
+shix787 shift -1000 -Inf -> NaN Invalid_operation
+shix788 shift -Inf -Inf -> NaN Invalid_operation
+shix789 shift -1 -Inf -> NaN Invalid_operation
+shix790 shift -0 -Inf -> NaN Invalid_operation
+shix791 shift 0 -Inf -> NaN Invalid_operation
+shix792 shift 1 -Inf -> NaN Invalid_operation
+shix793 shift 1000 -Inf -> NaN Invalid_operation
+shix794 shift Inf -Inf -> NaN Invalid_operation
+
+shix800 shift Inf -Inf -> NaN Invalid_operation
+shix801 shift Inf -8 -> Infinity
+shix802 shift Inf -1 -> Infinity
+shix803 shift Inf -0 -> Infinity
+shix804 shift Inf 0 -> Infinity
+shix805 shift Inf 1 -> Infinity
+shix806 shift Inf 8 -> Infinity
+shix807 shift Inf Inf -> NaN Invalid_operation
+shix808 shift -1000 Inf -> NaN Invalid_operation
+shix809 shift -Inf Inf -> NaN Invalid_operation
+shix810 shift -1 Inf -> NaN Invalid_operation
+shix811 shift -0 Inf -> NaN Invalid_operation
+shix812 shift 0 Inf -> NaN Invalid_operation
+shix813 shift 1 Inf -> NaN Invalid_operation
+shix814 shift 1000 Inf -> NaN Invalid_operation
+shix815 shift Inf Inf -> NaN Invalid_operation
+
+shix821 shift NaN -Inf -> NaN
+shix822 shift NaN -1000 -> NaN
+shix823 shift NaN -1 -> NaN
+shix824 shift NaN -0 -> NaN
+shix825 shift NaN 0 -> NaN
+shix826 shift NaN 1 -> NaN
+shix827 shift NaN 1000 -> NaN
+shix828 shift NaN Inf -> NaN
+shix829 shift NaN NaN -> NaN
+shix830 shift -Inf NaN -> NaN
+shix831 shift -1000 NaN -> NaN
+shix832 shift -1 NaN -> NaN
+shix833 shift -0 NaN -> NaN
+shix834 shift 0 NaN -> NaN
+shix835 shift 1 NaN -> NaN
+shix836 shift 1000 NaN -> NaN
+shix837 shift Inf NaN -> NaN
+
+shix841 shift sNaN -Inf -> NaN Invalid_operation
+shix842 shift sNaN -1000 -> NaN Invalid_operation
+shix843 shift sNaN -1 -> NaN Invalid_operation
+shix844 shift sNaN -0 -> NaN Invalid_operation
+shix845 shift sNaN 0 -> NaN Invalid_operation
+shix846 shift sNaN 1 -> NaN Invalid_operation
+shix847 shift sNaN 1000 -> NaN Invalid_operation
+shix848 shift sNaN NaN -> NaN Invalid_operation
+shix849 shift sNaN sNaN -> NaN Invalid_operation
+shix850 shift NaN sNaN -> NaN Invalid_operation
+shix851 shift -Inf sNaN -> NaN Invalid_operation
+shix852 shift -1000 sNaN -> NaN Invalid_operation
+shix853 shift -1 sNaN -> NaN Invalid_operation
+shix854 shift -0 sNaN -> NaN Invalid_operation
+shix855 shift 0 sNaN -> NaN Invalid_operation
+shix856 shift 1 sNaN -> NaN Invalid_operation
+shix857 shift 1000 sNaN -> NaN Invalid_operation
+shix858 shift Inf sNaN -> NaN Invalid_operation
+shix859 shift NaN sNaN -> NaN Invalid_operation
+
+-- propagating NaNs
+shix861 shift NaN1 -Inf -> NaN1
+shix862 shift +NaN2 -1000 -> NaN2
+shix863 shift NaN3 1000 -> NaN3
+shix864 shift NaN4 Inf -> NaN4
+shix865 shift NaN5 +NaN6 -> NaN5
+shix866 shift -Inf NaN7 -> NaN7
+shix867 shift -1000 NaN8 -> NaN8
+shix868 shift 1000 NaN9 -> NaN9
+shix869 shift Inf +NaN10 -> NaN10
+shix871 shift sNaN11 -Inf -> NaN11 Invalid_operation
+shix872 shift sNaN12 -1000 -> NaN12 Invalid_operation
+shix873 shift sNaN13 1000 -> NaN13 Invalid_operation
+shix874 shift sNaN14 NaN17 -> NaN14 Invalid_operation
+shix875 shift sNaN15 sNaN18 -> NaN15 Invalid_operation
+shix876 shift NaN16 sNaN19 -> NaN19 Invalid_operation
+shix877 shift -Inf +sNaN20 -> NaN20 Invalid_operation
+shix878 shift -1000 sNaN21 -> NaN21 Invalid_operation
+shix879 shift 1000 sNaN22 -> NaN22 Invalid_operation
+shix880 shift Inf sNaN23 -> NaN23 Invalid_operation
+shix881 shift +NaN25 +sNaN24 -> NaN24 Invalid_operation
+shix882 shift -NaN26 NaN28 -> -NaN26
+shix883 shift -sNaN27 sNaN29 -> -NaN27 Invalid_operation
+shix884 shift 1000 -NaN30 -> -NaN30
+shix885 shift 1000 -sNaN31 -> -NaN31 Invalid_operation
diff --git a/Lib/test/decimaltestdata/squareroot.decTest b/Lib/test/decimaltestdata/squareroot.decTest
index 0c83cc7..2ccff5a 100644
--- a/Lib/test/decimaltestdata/squareroot.decTest
+++ b/Lib/test/decimaltestdata/squareroot.decTest
@@ -1,6 +1,6 @@
------------------------------------------------------------------------
-- squareroot.decTest -- decimal square root --
--- Copyright (c) IBM Corporation, 2004. All rights reserved. --
+-- Copyright (c) IBM Corporation, 2003, 2007. All rights reserved. --
------------------------------------------------------------------------
-- Please see the document "General Decimal Arithmetic Testcases" --
-- at http://www2.hursley.ibm.com/decimal for the description of --
@@ -17,7 +17,7 @@
-- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK --
-- mfc@uk.ibm.com --
------------------------------------------------------------------------
-version: 2.39
+version: 2.56
extended: 1
precision: 9
@@ -102,6 +102,8 @@ sqtx074 squareroot -100.0 -> NaN Invalid_operation
sqtx075 squareroot -100.00 -> NaN Invalid_operation
sqtx076 squareroot -1.1000E+3 -> NaN Invalid_operation
sqtx077 squareroot -1.10000E+3 -> NaN Invalid_operation
+sqtx078 squareroot 1.000 -> 1.00
+sqtx079 squareroot 1.0000 -> 1.00
-- famous squares
sqtx080 squareroot 1 -> 1
@@ -2926,19 +2928,26 @@ sqtx803 squareroot 1E-18 -> 1E-9
precision: 11 -- Etiny=-19
sqtx804 squareroot 1E-19 -> 3.162277660E-10 Underflow Subnormal Inexact Rounded
-sqtx805 squareroot 10E-19 -> 1.0E-9
+sqtx805 squareroot 10E-19 -> 1.0E-9 -- exact
precision: 12 -- Etiny=-20
sqtx806 squareroot 10E-20 -> 3.1622776602E-10 Underflow Subnormal Inexact Rounded
-sqtx807 squareroot 1E-20 -> 1E-10 Subnormal -- Exact Subnormal case
+sqtx807 squareroot 1E-20 -> 1E-10 Subnormal -- exact Subnormal case
precision: 13 -- Etiny=-21
sqtx808 squareroot 1E-21 -> 3.1622776602E-11 Underflow Subnormal Inexact Rounded
-sqtx809 squareroot 10E-21 -> 1.0E-10 Subnormal
+sqtx809 squareroot 10E-21 -> 1.0E-10 Subnormal -- exact Subnormal case
precision: 14 -- Etiny=-22
sqtx810 squareroot 1E-21 -> 3.16227766017E-11 Underflow Subnormal Inexact Rounded
sqtx811 squareroot 10E-22 -> 3.16227766017E-11 Underflow Subnormal Inexact Rounded
-sqtx812 squareroot 1E-22 -> 1E-11 Subnormal -- Exact Subnormal case
+sqtx812 squareroot 1E-22 -> 1E-11 Subnormal -- exact Subnormal case
+-- Not enough digits?
+precision: 16
+maxExponent: 384
+minExponent: -383
+rounding: half_even
+sqtx815 squareroot 1.0000000001000000E-78 -> 1.000000000050000E-39 Inexact Rounded
+-- 1 234567890123456
-- special values
maxexponent: 999
@@ -2954,5 +2963,842 @@ sqtx826 squareroot NaN456 -> NaN456
sqtx827 squareroot -NaN654 -> -NaN654
sqtx828 squareroot NaN1 -> NaN1
+-- payload decapitate
+precision: 5
+sqtx840 squareroot -sNaN1234567890 -> -NaN67890 Invalid_operation
+
+------------------------------------------------------------------------
+--
+-- Special thanks to Mark Dickinson for tests in the range 8000-8999.
+--
+-- Extra tests for the square root function, dealing with a variety of
+-- corner cases. In particular, these tests concentrate on
+-- (1) cases where the input precision exceeds the context precision, and
+-- (2) cases where the input exponent is outside the current context,
+-- and in particular when the result is subnormal
+--
+-- maxexponent and minexponent are set to 9 and -9 for most of these
+-- cases; only the precision changes. The rounding also does not
+-- change, because it is ignored for this operation.
+maxexponent: 9
+minexponent: -9
+
+-- exact results, input precision > context precision
+precision: 1
+sqtx8000 squareroot 0 -> 0
+sqtx8001 squareroot 1 -> 1
+sqtx8002 squareroot 4 -> 2
+sqtx8003 squareroot 9 -> 3
+sqtx8004 squareroot 16 -> 4
+sqtx8005 squareroot 25 -> 5
+sqtx8006 squareroot 36 -> 6
+sqtx8007 squareroot 49 -> 7
+sqtx8008 squareroot 64 -> 8
+sqtx8009 squareroot 81 -> 9
+sqtx8010 squareroot 100 -> 1E+1 Rounded
+sqtx8011 squareroot 121 -> 1E+1 Inexact Rounded
+
+precision: 2
+sqtx8012 squareroot 0 -> 0
+sqtx8013 squareroot 1 -> 1
+sqtx8014 squareroot 4 -> 2
+sqtx8015 squareroot 9 -> 3
+sqtx8016 squareroot 16 -> 4
+sqtx8017 squareroot 25 -> 5
+sqtx8018 squareroot 36 -> 6
+sqtx8019 squareroot 49 -> 7
+sqtx8020 squareroot 64 -> 8
+sqtx8021 squareroot 81 -> 9
+sqtx8022 squareroot 100 -> 10
+sqtx8023 squareroot 121 -> 11
+sqtx8024 squareroot 144 -> 12
+sqtx8025 squareroot 169 -> 13
+sqtx8026 squareroot 196 -> 14
+sqtx8027 squareroot 225 -> 15
+sqtx8028 squareroot 256 -> 16
+sqtx8029 squareroot 289 -> 17
+sqtx8030 squareroot 324 -> 18
+sqtx8031 squareroot 361 -> 19
+sqtx8032 squareroot 400 -> 20
+sqtx8033 squareroot 441 -> 21
+sqtx8034 squareroot 484 -> 22
+sqtx8035 squareroot 529 -> 23
+sqtx8036 squareroot 576 -> 24
+sqtx8037 squareroot 625 -> 25
+sqtx8038 squareroot 676 -> 26
+sqtx8039 squareroot 729 -> 27
+sqtx8040 squareroot 784 -> 28
+sqtx8041 squareroot 841 -> 29
+sqtx8042 squareroot 900 -> 30
+sqtx8043 squareroot 961 -> 31
+sqtx8044 squareroot 1024 -> 32
+sqtx8045 squareroot 1089 -> 33
+sqtx8046 squareroot 1156 -> 34
+sqtx8047 squareroot 1225 -> 35
+sqtx8048 squareroot 1296 -> 36
+sqtx8049 squareroot 1369 -> 37
+sqtx8050 squareroot 1444 -> 38
+sqtx8051 squareroot 1521 -> 39
+sqtx8052 squareroot 1600 -> 40
+sqtx8053 squareroot 1681 -> 41
+sqtx8054 squareroot 1764 -> 42
+sqtx8055 squareroot 1849 -> 43
+sqtx8056 squareroot 1936 -> 44
+sqtx8057 squareroot 2025 -> 45
+sqtx8058 squareroot 2116 -> 46
+sqtx8059 squareroot 2209 -> 47
+sqtx8060 squareroot 2304 -> 48
+sqtx8061 squareroot 2401 -> 49
+sqtx8062 squareroot 2500 -> 50
+sqtx8063 squareroot 2601 -> 51
+sqtx8064 squareroot 2704 -> 52
+sqtx8065 squareroot 2809 -> 53
+sqtx8066 squareroot 2916 -> 54
+sqtx8067 squareroot 3025 -> 55
+sqtx8068 squareroot 3136 -> 56
+sqtx8069 squareroot 3249 -> 57
+sqtx8070 squareroot 3364 -> 58
+sqtx8071 squareroot 3481 -> 59
+sqtx8072 squareroot 3600 -> 60
+sqtx8073 squareroot 3721 -> 61
+sqtx8074 squareroot 3844 -> 62
+sqtx8075 squareroot 3969 -> 63
+sqtx8076 squareroot 4096 -> 64
+sqtx8077 squareroot 4225 -> 65
+sqtx8078 squareroot 4356 -> 66
+sqtx8079 squareroot 4489 -> 67
+sqtx8080 squareroot 4624 -> 68
+sqtx8081 squareroot 4761 -> 69
+sqtx8082 squareroot 4900 -> 70
+sqtx8083 squareroot 5041 -> 71
+sqtx8084 squareroot 5184 -> 72
+sqtx8085 squareroot 5329 -> 73
+sqtx8086 squareroot 5476 -> 74
+sqtx8087 squareroot 5625 -> 75
+sqtx8088 squareroot 5776 -> 76
+sqtx8089 squareroot 5929 -> 77
+sqtx8090 squareroot 6084 -> 78
+sqtx8091 squareroot 6241 -> 79
+sqtx8092 squareroot 6400 -> 80
+sqtx8093 squareroot 6561 -> 81
+sqtx8094 squareroot 6724 -> 82
+sqtx8095 squareroot 6889 -> 83
+sqtx8096 squareroot 7056 -> 84
+sqtx8097 squareroot 7225 -> 85
+sqtx8098 squareroot 7396 -> 86
+sqtx8099 squareroot 7569 -> 87
+sqtx8100 squareroot 7744 -> 88
+sqtx8101 squareroot 7921 -> 89
+sqtx8102 squareroot 8100 -> 90
+sqtx8103 squareroot 8281 -> 91
+sqtx8104 squareroot 8464 -> 92
+sqtx8105 squareroot 8649 -> 93
+sqtx8106 squareroot 8836 -> 94
+sqtx8107 squareroot 9025 -> 95
+sqtx8108 squareroot 9216 -> 96
+sqtx8109 squareroot 9409 -> 97
+sqtx8110 squareroot 9604 -> 98
+sqtx8111 squareroot 9801 -> 99
+sqtx8112 squareroot 10000 -> 1.0E+2 Rounded
+sqtx8113 squareroot 10201 -> 1.0E+2 Inexact Rounded
+
+precision: 3
+sqtx8114 squareroot 841 -> 29
+sqtx8115 squareroot 1600 -> 40
+sqtx8116 squareroot 2209 -> 47
+sqtx8117 squareroot 9604 -> 98
+sqtx8118 squareroot 21316 -> 146
+sqtx8119 squareroot 52441 -> 229
+sqtx8120 squareroot 68644 -> 262
+sqtx8121 squareroot 69696 -> 264
+sqtx8122 squareroot 70225 -> 265
+sqtx8123 squareroot 76729 -> 277
+sqtx8124 squareroot 130321 -> 361
+sqtx8125 squareroot 171396 -> 414
+sqtx8126 squareroot 270400 -> 520
+sqtx8127 squareroot 279841 -> 529
+sqtx8128 squareroot 407044 -> 638
+sqtx8129 squareroot 408321 -> 639
+sqtx8130 squareroot 480249 -> 693
+sqtx8131 squareroot 516961 -> 719
+sqtx8132 squareroot 692224 -> 832
+sqtx8133 squareroot 829921 -> 911
+
+-- selection of random exact results
+precision: 6
+sqtx8134 squareroot 2.25E-12 -> 0.0000015
+sqtx8135 squareroot 8.41E-14 -> 2.9E-7
+sqtx8136 squareroot 6.241E-15 -> 7.9E-8
+sqtx8137 squareroot 5.041E+13 -> 7.1E+6
+sqtx8138 squareroot 4761 -> 69
+sqtx8139 squareroot 1.369E+17 -> 3.7E+8
+sqtx8140 squareroot 0.00002116 -> 0.0046
+sqtx8141 squareroot 7.29E+4 -> 2.7E+2
+sqtx8142 squareroot 4.624E-13 -> 6.8E-7
+sqtx8143 squareroot 3.969E+5 -> 6.3E+2
+sqtx8144 squareroot 3.73321E-11 -> 0.00000611
+sqtx8145 squareroot 5.61001E+17 -> 7.49E+8
+sqtx8146 squareroot 2.30400E-11 -> 0.00000480
+sqtx8147 squareroot 4.30336E+17 -> 6.56E+8
+sqtx8148 squareroot 0.057121 -> 0.239
+sqtx8149 squareroot 7.225E+17 -> 8.5E+8
+sqtx8150 squareroot 3.14721E+13 -> 5.61E+6
+sqtx8151 squareroot 4.61041E+17 -> 6.79E+8
+sqtx8152 squareroot 1.39876E-15 -> 3.74E-8
+sqtx8153 squareroot 6.19369E-9 -> 0.0000787
+sqtx8154 squareroot 1.620529E-10 -> 0.00001273
+sqtx8155 squareroot 1177.1761 -> 34.31
+sqtx8156 squareroot 67043344 -> 8188
+sqtx8157 squareroot 4.84E+6 -> 2.2E+3
+sqtx8158 squareroot 1.23904E+11 -> 3.52E+5
+sqtx8159 squareroot 32604100 -> 5710
+sqtx8160 squareroot 2.9757025E-11 -> 0.000005455
+sqtx8161 squareroot 6.3760225E-9 -> 0.00007985
+sqtx8162 squareroot 4.5198729E-11 -> 0.000006723
+sqtx8163 squareroot 1.4745600E-11 -> 0.000003840
+sqtx8164 squareroot 18964283.04 -> 4354.8
+sqtx8165 squareroot 3.308895529E+13 -> 5.7523E+6
+sqtx8166 squareroot 0.0028590409 -> 0.05347
+sqtx8167 squareroot 3572.213824 -> 59.768
+sqtx8168 squareroot 4.274021376E+15 -> 6.5376E+7
+sqtx8169 squareroot 4455476.64 -> 2110.8
+sqtx8170 squareroot 38.44 -> 6.2
+sqtx8171 squareroot 68.558400 -> 8.280
+sqtx8172 squareroot 715402009 -> 26747
+sqtx8173 squareroot 93.373569 -> 9.663
+sqtx8174 squareroot 2.62144000000E+15 -> 5.12000E+7
+sqtx8175 squareroot 7.48225000000E+15 -> 8.65000E+7
+sqtx8176 squareroot 3.38724000000E-9 -> 0.0000582000
+sqtx8177 squareroot 5.64001000000E-13 -> 7.51000E-7
+sqtx8178 squareroot 5.06944000000E-15 -> 7.12000E-8
+sqtx8179 squareroot 4.95616000000E+17 -> 7.04000E+8
+sqtx8180 squareroot 0.0000242064000000 -> 0.00492000
+sqtx8181 squareroot 1.48996000000E-15 -> 3.86000E-8
+sqtx8182 squareroot 9.37024000000E+17 -> 9.68000E+8
+sqtx8183 squareroot 7128900.0000 -> 2670.00
+sqtx8184 squareroot 8.2311610000E-10 -> 0.0000286900
+sqtx8185 squareroot 482747040000 -> 694800
+sqtx8186 squareroot 4.14478440000E+17 -> 6.43800E+8
+sqtx8187 squareroot 5.10510250000E-7 -> 0.000714500
+sqtx8188 squareroot 355096.810000 -> 595.900
+sqtx8189 squareroot 14288400.0000 -> 3780.00
+sqtx8190 squareroot 3.36168040000E-15 -> 5.79800E-8
+sqtx8191 squareroot 1.70899560000E-13 -> 4.13400E-7
+sqtx8192 squareroot 0.0000378348010000 -> 0.00615100
+sqtx8193 squareroot 2.00972890000E-13 -> 4.48300E-7
+sqtx8194 squareroot 4.07222659600E-13 -> 6.38140E-7
+sqtx8195 squareroot 131486012100 -> 362610
+sqtx8196 squareroot 818192611600 -> 904540
+sqtx8197 squareroot 9.8558323600E+16 -> 3.13940E+8
+sqtx8198 squareroot 5641.06144900 -> 75.1070
+sqtx8199 squareroot 4.58789475600E+17 -> 6.77340E+8
+sqtx8200 squareroot 3.21386948100E-9 -> 0.0000566910
+sqtx8201 squareroot 3.9441960000E-8 -> 0.000198600
+sqtx8202 squareroot 242723.728900 -> 492.670
+sqtx8203 squareroot 1874.89000000 -> 43.3000
+sqtx8204 squareroot 2.56722595684E+15 -> 5.06678E+7
+sqtx8205 squareroot 3.96437714689E-17 -> 6.29633E-9
+sqtx8206 squareroot 3.80106774784E-17 -> 6.16528E-9
+sqtx8207 squareroot 1.42403588496E-13 -> 3.77364E-7
+sqtx8208 squareroot 4604.84388100 -> 67.8590
+sqtx8209 squareroot 2157100869.16 -> 46444.6
+sqtx8210 squareroot 355288570.81 -> 18849.1
+sqtx8211 squareroot 4.69775901604E-11 -> 0.00000685402
+sqtx8212 squareroot 8.22115770436E+17 -> 9.06706E+8
+sqtx8213 squareroot 7.16443744900E+15 -> 8.46430E+7
+sqtx8214 squareroot 9.48995498896E+15 -> 9.74164E+7
+sqtx8215 squareroot 0.0000419091801129 -> 0.00647373
+sqtx8216 squareroot 5862627996.84 -> 76567.8
+sqtx8217 squareroot 9369537.3409 -> 3060.97
+sqtx8218 squareroot 7.74792529729E+17 -> 8.80223E+8
+sqtx8219 squareroot 1.08626931396E+17 -> 3.29586E+8
+sqtx8220 squareroot 8.89584739684E-7 -> 0.000943178
+sqtx8221 squareroot 4.0266040896E-18 -> 2.00664E-9
+sqtx8222 squareroot 9.27669480336E-7 -> 0.000963156
+sqtx8223 squareroot 0.00225497717956 -> 0.0474866
+
+-- test use of round-half-even for ties
+precision: 1
+sqtx8224 squareroot 225 -> 2E+1 Inexact Rounded
+sqtx8225 squareroot 625 -> 2E+1 Inexact Rounded
+sqtx8226 squareroot 1225 -> 4E+1 Inexact Rounded
+sqtx8227 squareroot 2025 -> 4E+1 Inexact Rounded
+sqtx8228 squareroot 3025 -> 6E+1 Inexact Rounded
+sqtx8229 squareroot 4225 -> 6E+1 Inexact Rounded
+sqtx8230 squareroot 5625 -> 8E+1 Inexact Rounded
+sqtx8231 squareroot 7225 -> 8E+1 Inexact Rounded
+sqtx8232 squareroot 9025 -> 1E+2 Inexact Rounded
+
+precision: 2
+sqtx8233 squareroot 11025 -> 1.0E+2 Inexact Rounded
+sqtx8234 squareroot 13225 -> 1.2E+2 Inexact Rounded
+sqtx8235 squareroot 15625 -> 1.2E+2 Inexact Rounded
+sqtx8236 squareroot 18225 -> 1.4E+2 Inexact Rounded
+sqtx8237 squareroot 21025 -> 1.4E+2 Inexact Rounded
+sqtx8238 squareroot 24025 -> 1.6E+2 Inexact Rounded
+sqtx8239 squareroot 27225 -> 1.6E+2 Inexact Rounded
+sqtx8240 squareroot 30625 -> 1.8E+2 Inexact Rounded
+sqtx8241 squareroot 34225 -> 1.8E+2 Inexact Rounded
+sqtx8242 squareroot 38025 -> 2.0E+2 Inexact Rounded
+sqtx8243 squareroot 42025 -> 2.0E+2 Inexact Rounded
+sqtx8244 squareroot 46225 -> 2.2E+2 Inexact Rounded
+sqtx8245 squareroot 50625 -> 2.2E+2 Inexact Rounded
+sqtx8246 squareroot 55225 -> 2.4E+2 Inexact Rounded
+sqtx8247 squareroot 60025 -> 2.4E+2 Inexact Rounded
+sqtx8248 squareroot 65025 -> 2.6E+2 Inexact Rounded
+sqtx8249 squareroot 70225 -> 2.6E+2 Inexact Rounded
+sqtx8250 squareroot 75625 -> 2.8E+2 Inexact Rounded
+sqtx8251 squareroot 81225 -> 2.8E+2 Inexact Rounded
+sqtx8252 squareroot 87025 -> 3.0E+2 Inexact Rounded
+sqtx8253 squareroot 93025 -> 3.0E+2 Inexact Rounded
+sqtx8254 squareroot 99225 -> 3.2E+2 Inexact Rounded
+sqtx8255 squareroot 105625 -> 3.2E+2 Inexact Rounded
+sqtx8256 squareroot 112225 -> 3.4E+2 Inexact Rounded
+sqtx8257 squareroot 119025 -> 3.4E+2 Inexact Rounded
+sqtx8258 squareroot 126025 -> 3.6E+2 Inexact Rounded
+sqtx8259 squareroot 133225 -> 3.6E+2 Inexact Rounded
+sqtx8260 squareroot 140625 -> 3.8E+2 Inexact Rounded
+sqtx8261 squareroot 148225 -> 3.8E+2 Inexact Rounded
+sqtx8262 squareroot 156025 -> 4.0E+2 Inexact Rounded
+sqtx8263 squareroot 164025 -> 4.0E+2 Inexact Rounded
+sqtx8264 squareroot 172225 -> 4.2E+2 Inexact Rounded
+sqtx8265 squareroot 180625 -> 4.2E+2 Inexact Rounded
+sqtx8266 squareroot 189225 -> 4.4E+2 Inexact Rounded
+sqtx8267 squareroot 198025 -> 4.4E+2 Inexact Rounded
+sqtx8268 squareroot 207025 -> 4.6E+2 Inexact Rounded
+sqtx8269 squareroot 216225 -> 4.6E+2 Inexact Rounded
+sqtx8270 squareroot 225625 -> 4.8E+2 Inexact Rounded
+sqtx8271 squareroot 235225 -> 4.8E+2 Inexact Rounded
+sqtx8272 squareroot 245025 -> 5.0E+2 Inexact Rounded
+sqtx8273 squareroot 255025 -> 5.0E+2 Inexact Rounded
+sqtx8274 squareroot 265225 -> 5.2E+2 Inexact Rounded
+sqtx8275 squareroot 275625 -> 5.2E+2 Inexact Rounded
+sqtx8276 squareroot 286225 -> 5.4E+2 Inexact Rounded
+sqtx8277 squareroot 297025 -> 5.4E+2 Inexact Rounded
+sqtx8278 squareroot 308025 -> 5.6E+2 Inexact Rounded
+sqtx8279 squareroot 319225 -> 5.6E+2 Inexact Rounded
+sqtx8280 squareroot 330625 -> 5.8E+2 Inexact Rounded
+sqtx8281 squareroot 342225 -> 5.8E+2 Inexact Rounded
+sqtx8282 squareroot 354025 -> 6.0E+2 Inexact Rounded
+sqtx8283 squareroot 366025 -> 6.0E+2 Inexact Rounded
+sqtx8284 squareroot 378225 -> 6.2E+2 Inexact Rounded
+sqtx8285 squareroot 390625 -> 6.2E+2 Inexact Rounded
+sqtx8286 squareroot 403225 -> 6.4E+2 Inexact Rounded
+sqtx8287 squareroot 416025 -> 6.4E+2 Inexact Rounded
+sqtx8288 squareroot 429025 -> 6.6E+2 Inexact Rounded
+sqtx8289 squareroot 442225 -> 6.6E+2 Inexact Rounded
+sqtx8290 squareroot 455625 -> 6.8E+2 Inexact Rounded
+sqtx8291 squareroot 469225 -> 6.8E+2 Inexact Rounded
+sqtx8292 squareroot 483025 -> 7.0E+2 Inexact Rounded
+sqtx8293 squareroot 497025 -> 7.0E+2 Inexact Rounded
+sqtx8294 squareroot 511225 -> 7.2E+2 Inexact Rounded
+sqtx8295 squareroot 525625 -> 7.2E+2 Inexact Rounded
+sqtx8296 squareroot 540225 -> 7.4E+2 Inexact Rounded
+sqtx8297 squareroot 555025 -> 7.4E+2 Inexact Rounded
+sqtx8298 squareroot 570025 -> 7.6E+2 Inexact Rounded
+sqtx8299 squareroot 585225 -> 7.6E+2 Inexact Rounded
+sqtx8300 squareroot 600625 -> 7.8E+2 Inexact Rounded
+sqtx8301 squareroot 616225 -> 7.8E+2 Inexact Rounded
+sqtx8302 squareroot 632025 -> 8.0E+2 Inexact Rounded
+sqtx8303 squareroot 648025 -> 8.0E+2 Inexact Rounded
+sqtx8304 squareroot 664225 -> 8.2E+2 Inexact Rounded
+sqtx8305 squareroot 680625 -> 8.2E+2 Inexact Rounded
+sqtx8306 squareroot 697225 -> 8.4E+2 Inexact Rounded
+sqtx8307 squareroot 714025 -> 8.4E+2 Inexact Rounded
+sqtx8308 squareroot 731025 -> 8.6E+2 Inexact Rounded
+sqtx8309 squareroot 748225 -> 8.6E+2 Inexact Rounded
+sqtx8310 squareroot 765625 -> 8.8E+2 Inexact Rounded
+sqtx8311 squareroot 783225 -> 8.8E+2 Inexact Rounded
+sqtx8312 squareroot 801025 -> 9.0E+2 Inexact Rounded
+sqtx8313 squareroot 819025 -> 9.0E+2 Inexact Rounded
+sqtx8314 squareroot 837225 -> 9.2E+2 Inexact Rounded
+sqtx8315 squareroot 855625 -> 9.2E+2 Inexact Rounded
+sqtx8316 squareroot 874225 -> 9.4E+2 Inexact Rounded
+sqtx8317 squareroot 893025 -> 9.4E+2 Inexact Rounded
+sqtx8318 squareroot 912025 -> 9.6E+2 Inexact Rounded
+sqtx8319 squareroot 931225 -> 9.6E+2 Inexact Rounded
+sqtx8320 squareroot 950625 -> 9.8E+2 Inexact Rounded
+sqtx8321 squareroot 970225 -> 9.8E+2 Inexact Rounded
+sqtx8322 squareroot 990025 -> 1.0E+3 Inexact Rounded
+
+precision: 6
+sqtx8323 squareroot 88975734963025 -> 9.43270E+6 Inexact Rounded
+sqtx8324 squareroot 71085555000625 -> 8.43122E+6 Inexact Rounded
+sqtx8325 squareroot 39994304.051025 -> 6324.10 Inexact Rounded
+sqtx8326 squareroot 0.000007327172265625 -> 0.00270688 Inexact Rounded
+sqtx8327 squareroot 1.0258600439025E-13 -> 3.20290E-7 Inexact Rounded
+sqtx8328 squareroot 0.0034580574275625 -> 0.0588052 Inexact Rounded
+sqtx8329 squareroot 7.6842317700625E-7 -> 0.000876598 Inexact Rounded
+sqtx8330 squareroot 1263834495.2025 -> 35550.4 Inexact Rounded
+sqtx8331 squareroot 433970666460.25 -> 658764 Inexact Rounded
+sqtx8332 squareroot 4.5879286230625E-7 -> 0.000677342 Inexact Rounded
+sqtx8333 squareroot 0.0029305603306225 -> 0.0541346 Inexact Rounded
+sqtx8334 squareroot 70218282.733225 -> 8379.64 Inexact Rounded
+sqtx8335 squareroot 11942519.082025 -> 3455.80 Inexact Rounded
+sqtx8336 squareroot 0.0021230668905625 -> 0.0460768 Inexact Rounded
+sqtx8337 squareroot 0.90081833411025 -> 0.949114 Inexact Rounded
+sqtx8338 squareroot 5.5104120936225E-17 -> 7.42322E-9 Inexact Rounded
+sqtx8339 squareroot 0.10530446854225 -> 0.324506 Inexact Rounded
+sqtx8340 squareroot 8.706069866025E-14 -> 2.95060E-7 Inexact Rounded
+sqtx8341 squareroot 23838.58800625 -> 154.398 Inexact Rounded
+sqtx8342 squareroot 0.0013426911275625 -> 0.0366428 Inexact Rounded
+
+-- test use of round-half-even in underflow situations
+
+-- precisions 2; all cases where result is both subnormal and a tie
+precision: 2
+sqtx8343 squareroot 2.5E-21 -> 0E-10 Underflow Subnormal Inexact Rounded Clamped
+sqtx8344 squareroot 2.25E-20 -> 2E-10 Underflow Subnormal Inexact Rounded
+sqtx8345 squareroot 6.25E-20 -> 2E-10 Underflow Subnormal Inexact Rounded
+sqtx8346 squareroot 1.225E-19 -> 4E-10 Underflow Subnormal Inexact Rounded
+sqtx8347 squareroot 2.025E-19 -> 4E-10 Underflow Subnormal Inexact Rounded
+sqtx8348 squareroot 3.025E-19 -> 6E-10 Underflow Subnormal Inexact Rounded
+sqtx8349 squareroot 4.225E-19 -> 6E-10 Underflow Subnormal Inexact Rounded
+sqtx8350 squareroot 5.625E-19 -> 8E-10 Underflow Subnormal Inexact Rounded
+sqtx8351 squareroot 7.225E-19 -> 8E-10 Underflow Subnormal Inexact Rounded
+sqtx8352 squareroot 9.025E-19 -> 1.0E-9 Underflow Subnormal Inexact Rounded
+
+-- precision 3, input precision <= 5
+precision: 3
+sqtx8353 squareroot 2.5E-23 -> 0E-11 Underflow Subnormal Inexact Rounded Clamped
+sqtx8354 squareroot 2.25E-22 -> 2E-11 Underflow Subnormal Inexact Rounded
+sqtx8355 squareroot 6.25E-22 -> 2E-11 Underflow Subnormal Inexact Rounded
+sqtx8356 squareroot 1.225E-21 -> 4E-11 Underflow Subnormal Inexact Rounded
+sqtx8357 squareroot 2.025E-21 -> 4E-11 Underflow Subnormal Inexact Rounded
+sqtx8358 squareroot 3.025E-21 -> 6E-11 Underflow Subnormal Inexact Rounded
+sqtx8359 squareroot 4.225E-21 -> 6E-11 Underflow Subnormal Inexact Rounded
+sqtx8360 squareroot 5.625E-21 -> 8E-11 Underflow Subnormal Inexact Rounded
+sqtx8361 squareroot 7.225E-21 -> 8E-11 Underflow Subnormal Inexact Rounded
+sqtx8362 squareroot 9.025E-21 -> 1.0E-10 Underflow Subnormal Inexact Rounded
+sqtx8363 squareroot 1.1025E-20 -> 1.0E-10 Underflow Subnormal Inexact Rounded
+sqtx8364 squareroot 1.3225E-20 -> 1.2E-10 Underflow Subnormal Inexact Rounded
+sqtx8365 squareroot 1.5625E-20 -> 1.2E-10 Underflow Subnormal Inexact Rounded
+sqtx8366 squareroot 1.8225E-20 -> 1.4E-10 Underflow Subnormal Inexact Rounded
+sqtx8367 squareroot 2.1025E-20 -> 1.4E-10 Underflow Subnormal Inexact Rounded
+sqtx8368 squareroot 2.4025E-20 -> 1.6E-10 Underflow Subnormal Inexact Rounded
+sqtx8369 squareroot 2.7225E-20 -> 1.6E-10 Underflow Subnormal Inexact Rounded
+sqtx8370 squareroot 3.0625E-20 -> 1.8E-10 Underflow Subnormal Inexact Rounded
+sqtx8371 squareroot 3.4225E-20 -> 1.8E-10 Underflow Subnormal Inexact Rounded
+sqtx8372 squareroot 3.8025E-20 -> 2.0E-10 Underflow Subnormal Inexact Rounded
+sqtx8373 squareroot 4.2025E-20 -> 2.0E-10 Underflow Subnormal Inexact Rounded
+sqtx8374 squareroot 4.6225E-20 -> 2.2E-10 Underflow Subnormal Inexact Rounded
+sqtx8375 squareroot 5.0625E-20 -> 2.2E-10 Underflow Subnormal Inexact Rounded
+sqtx8376 squareroot 5.5225E-20 -> 2.4E-10 Underflow Subnormal Inexact Rounded
+sqtx8377 squareroot 6.0025E-20 -> 2.4E-10 Underflow Subnormal Inexact Rounded
+sqtx8378 squareroot 6.5025E-20 -> 2.6E-10 Underflow Subnormal Inexact Rounded
+sqtx8379 squareroot 7.0225E-20 -> 2.6E-10 Underflow Subnormal Inexact Rounded
+sqtx8380 squareroot 7.5625E-20 -> 2.8E-10 Underflow Subnormal Inexact Rounded
+sqtx8381 squareroot 8.1225E-20 -> 2.8E-10 Underflow Subnormal Inexact Rounded
+sqtx8382 squareroot 8.7025E-20 -> 3.0E-10 Underflow Subnormal Inexact Rounded
+sqtx8383 squareroot 9.3025E-20 -> 3.0E-10 Underflow Subnormal Inexact Rounded
+sqtx8384 squareroot 9.9225E-20 -> 3.2E-10 Underflow Subnormal Inexact Rounded
+
+--precision 4, input precision <= 4
+precision: 4
+sqtx8385 squareroot 2.5E-25 -> 0E-12 Underflow Subnormal Inexact Rounded Clamped
+sqtx8386 squareroot 2.25E-24 -> 2E-12 Underflow Subnormal Inexact Rounded
+sqtx8387 squareroot 6.25E-24 -> 2E-12 Underflow Subnormal Inexact Rounded
+sqtx8388 squareroot 1.225E-23 -> 4E-12 Underflow Subnormal Inexact Rounded
+sqtx8389 squareroot 2.025E-23 -> 4E-12 Underflow Subnormal Inexact Rounded
+sqtx8390 squareroot 3.025E-23 -> 6E-12 Underflow Subnormal Inexact Rounded
+sqtx8391 squareroot 4.225E-23 -> 6E-12 Underflow Subnormal Inexact Rounded
+sqtx8392 squareroot 5.625E-23 -> 8E-12 Underflow Subnormal Inexact Rounded
+sqtx8393 squareroot 7.225E-23 -> 8E-12 Underflow Subnormal Inexact Rounded
+sqtx8394 squareroot 9.025E-23 -> 1.0E-11 Underflow Subnormal Inexact Rounded
+
+--precision 5, input precision <= 5
+precision: 5
+sqtx8395 squareroot 2.5E-27 -> 0E-13 Underflow Subnormal Inexact Rounded Clamped
+sqtx8396 squareroot 2.25E-26 -> 2E-13 Underflow Subnormal Inexact Rounded
+sqtx8397 squareroot 6.25E-26 -> 2E-13 Underflow Subnormal Inexact Rounded
+sqtx8398 squareroot 1.225E-25 -> 4E-13 Underflow Subnormal Inexact Rounded
+sqtx8399 squareroot 2.025E-25 -> 4E-13 Underflow Subnormal Inexact Rounded
+sqtx8400 squareroot 3.025E-25 -> 6E-13 Underflow Subnormal Inexact Rounded
+sqtx8401 squareroot 4.225E-25 -> 6E-13 Underflow Subnormal Inexact Rounded
+sqtx8402 squareroot 5.625E-25 -> 8E-13 Underflow Subnormal Inexact Rounded
+sqtx8403 squareroot 7.225E-25 -> 8E-13 Underflow Subnormal Inexact Rounded
+sqtx8404 squareroot 9.025E-25 -> 1.0E-12 Underflow Subnormal Inexact Rounded
+sqtx8405 squareroot 1.1025E-24 -> 1.0E-12 Underflow Subnormal Inexact Rounded
+sqtx8406 squareroot 1.3225E-24 -> 1.2E-12 Underflow Subnormal Inexact Rounded
+sqtx8407 squareroot 1.5625E-24 -> 1.2E-12 Underflow Subnormal Inexact Rounded
+sqtx8408 squareroot 1.8225E-24 -> 1.4E-12 Underflow Subnormal Inexact Rounded
+sqtx8409 squareroot 2.1025E-24 -> 1.4E-12 Underflow Subnormal Inexact Rounded
+sqtx8410 squareroot 2.4025E-24 -> 1.6E-12 Underflow Subnormal Inexact Rounded
+sqtx8411 squareroot 2.7225E-24 -> 1.6E-12 Underflow Subnormal Inexact Rounded
+sqtx8412 squareroot 3.0625E-24 -> 1.8E-12 Underflow Subnormal Inexact Rounded
+sqtx8413 squareroot 3.4225E-24 -> 1.8E-12 Underflow Subnormal Inexact Rounded
+sqtx8414 squareroot 3.8025E-24 -> 2.0E-12 Underflow Subnormal Inexact Rounded
+sqtx8415 squareroot 4.2025E-24 -> 2.0E-12 Underflow Subnormal Inexact Rounded
+sqtx8416 squareroot 4.6225E-24 -> 2.2E-12 Underflow Subnormal Inexact Rounded
+sqtx8417 squareroot 5.0625E-24 -> 2.2E-12 Underflow Subnormal Inexact Rounded
+sqtx8418 squareroot 5.5225E-24 -> 2.4E-12 Underflow Subnormal Inexact Rounded
+sqtx8419 squareroot 6.0025E-24 -> 2.4E-12 Underflow Subnormal Inexact Rounded
+sqtx8420 squareroot 6.5025E-24 -> 2.6E-12 Underflow Subnormal Inexact Rounded
+sqtx8421 squareroot 7.0225E-24 -> 2.6E-12 Underflow Subnormal Inexact Rounded
+sqtx8422 squareroot 7.5625E-24 -> 2.8E-12 Underflow Subnormal Inexact Rounded
+sqtx8423 squareroot 8.1225E-24 -> 2.8E-12 Underflow Subnormal Inexact Rounded
+sqtx8424 squareroot 8.7025E-24 -> 3.0E-12 Underflow Subnormal Inexact Rounded
+sqtx8425 squareroot 9.3025E-24 -> 3.0E-12 Underflow Subnormal Inexact Rounded
+sqtx8426 squareroot 9.9225E-24 -> 3.2E-12 Underflow Subnormal Inexact Rounded
+
+-- a random selection of values that Python2.5.1 rounds incorrectly
+precision: 1
+sqtx8427 squareroot 227 -> 2E+1 Inexact Rounded
+sqtx8428 squareroot 625 -> 2E+1 Inexact Rounded
+sqtx8429 squareroot 1215 -> 3E+1 Inexact Rounded
+sqtx8430 squareroot 2008 -> 4E+1 Inexact Rounded
+sqtx8431 squareroot 2020 -> 4E+1 Inexact Rounded
+sqtx8432 squareroot 2026 -> 5E+1 Inexact Rounded
+sqtx8433 squareroot 2027 -> 5E+1 Inexact Rounded
+sqtx8434 squareroot 2065 -> 5E+1 Inexact Rounded
+sqtx8435 squareroot 2075 -> 5E+1 Inexact Rounded
+sqtx8436 squareroot 2088 -> 5E+1 Inexact Rounded
+sqtx8437 squareroot 3049 -> 6E+1 Inexact Rounded
+sqtx8438 squareroot 3057 -> 6E+1 Inexact Rounded
+sqtx8439 squareroot 3061 -> 6E+1 Inexact Rounded
+sqtx8440 squareroot 3092 -> 6E+1 Inexact Rounded
+sqtx8441 squareroot 4222 -> 6E+1 Inexact Rounded
+sqtx8442 squareroot 5676 -> 8E+1 Inexact Rounded
+sqtx8443 squareroot 5686 -> 8E+1 Inexact Rounded
+sqtx8444 squareroot 7215 -> 8E+1 Inexact Rounded
+sqtx8445 squareroot 9086 -> 1E+2 Inexact Rounded
+sqtx8446 squareroot 9095 -> 1E+2 Inexact Rounded
+
+precision: 2
+sqtx8447 squareroot 1266 -> 36 Inexact Rounded
+sqtx8448 squareroot 2552 -> 51 Inexact Rounded
+sqtx8449 squareroot 5554 -> 75 Inexact Rounded
+sqtx8450 squareroot 7832 -> 88 Inexact Rounded
+sqtx8451 squareroot 13201 -> 1.1E+2 Inexact Rounded
+sqtx8452 squareroot 15695 -> 1.3E+2 Inexact Rounded
+sqtx8453 squareroot 18272 -> 1.4E+2 Inexact Rounded
+sqtx8454 squareroot 21026 -> 1.5E+2 Inexact Rounded
+sqtx8455 squareroot 24069 -> 1.6E+2 Inexact Rounded
+sqtx8456 squareroot 34277 -> 1.9E+2 Inexact Rounded
+sqtx8457 squareroot 46233 -> 2.2E+2 Inexact Rounded
+sqtx8458 squareroot 46251 -> 2.2E+2 Inexact Rounded
+sqtx8459 squareroot 46276 -> 2.2E+2 Inexact Rounded
+sqtx8460 squareroot 70214 -> 2.6E+2 Inexact Rounded
+sqtx8461 squareroot 81249 -> 2.9E+2 Inexact Rounded
+sqtx8462 squareroot 81266 -> 2.9E+2 Inexact Rounded
+sqtx8463 squareroot 93065 -> 3.1E+2 Inexact Rounded
+sqtx8464 squareroot 93083 -> 3.1E+2 Inexact Rounded
+sqtx8465 squareroot 99230 -> 3.2E+2 Inexact Rounded
+sqtx8466 squareroot 99271 -> 3.2E+2 Inexact Rounded
+
+precision: 3
+sqtx8467 squareroot 11349 -> 107 Inexact Rounded
+sqtx8468 squareroot 26738 -> 164 Inexact Rounded
+sqtx8469 squareroot 31508 -> 178 Inexact Rounded
+sqtx8470 squareroot 44734 -> 212 Inexact Rounded
+sqtx8471 squareroot 44738 -> 212 Inexact Rounded
+sqtx8472 squareroot 51307 -> 227 Inexact Rounded
+sqtx8473 squareroot 62259 -> 250 Inexact Rounded
+sqtx8474 squareroot 75901 -> 276 Inexact Rounded
+sqtx8475 squareroot 76457 -> 277 Inexact Rounded
+sqtx8476 squareroot 180287 -> 425 Inexact Rounded
+sqtx8477 squareroot 202053 -> 450 Inexact Rounded
+sqtx8478 squareroot 235747 -> 486 Inexact Rounded
+sqtx8479 squareroot 256537 -> 506 Inexact Rounded
+sqtx8480 squareroot 299772 -> 548 Inexact Rounded
+sqtx8481 squareroot 415337 -> 644 Inexact Rounded
+sqtx8482 squareroot 617067 -> 786 Inexact Rounded
+sqtx8483 squareroot 628022 -> 792 Inexact Rounded
+sqtx8484 squareroot 645629 -> 804 Inexact Rounded
+sqtx8485 squareroot 785836 -> 886 Inexact Rounded
+sqtx8486 squareroot 993066 -> 997 Inexact Rounded
+
+precision: 6
+sqtx8487 squareroot 14917781 -> 3862.35 Inexact Rounded
+sqtx8488 squareroot 17237238 -> 4151.78 Inexact Rounded
+sqtx8489 squareroot 18054463 -> 4249.05 Inexact Rounded
+sqtx8490 squareroot 19990694 -> 4471.10 Inexact Rounded
+sqtx8491 squareroot 29061855 -> 5390.90 Inexact Rounded
+sqtx8492 squareroot 49166257 -> 7011.87 Inexact Rounded
+sqtx8493 squareroot 53082086 -> 7285.75 Inexact Rounded
+sqtx8494 squareroot 56787909 -> 7535.78 Inexact Rounded
+sqtx8495 squareroot 81140019 -> 9007.78 Inexact Rounded
+sqtx8496 squareroot 87977554 -> 9379.64 Inexact Rounded
+sqtx8497 squareroot 93624683 -> 9675.98 Inexact Rounded
+sqtx8498 squareroot 98732747 -> 9936.44 Inexact Rounded
+sqtx8499 squareroot 99222813 -> 9961.06 Inexact Rounded
+sqtx8500 squareroot 143883626 -> 11995.2 Inexact Rounded
+sqtx8501 squareroot 180433301 -> 13432.5 Inexact Rounded
+sqtx8502 squareroot 227034020 -> 15067.6 Inexact Rounded
+sqtx8503 squareroot 283253992 -> 16830.2 Inexact Rounded
+sqtx8504 squareroot 617047954 -> 24840.4 Inexact Rounded
+sqtx8505 squareroot 736870094 -> 27145.4 Inexact Rounded
+sqtx8506 squareroot 897322915 -> 29955.3 Inexact Rounded
+
+-- results close to minimum normal
+precision: 1
+sqtx8507 squareroot 1E-20 -> 0E-9 Underflow Subnormal Inexact Rounded Clamped
+sqtx8508 squareroot 1E-19 -> 0E-9 Underflow Subnormal Inexact Rounded Clamped
+sqtx8509 squareroot 1E-18 -> 1E-9
+
+precision: 2
+sqtx8510 squareroot 8.1E-19 -> 9E-10 Subnormal
+sqtx8511 squareroot 8.10E-19 -> 9E-10 Subnormal Rounded
+sqtx8512 squareroot 9.0E-19 -> 9E-10 Underflow Subnormal Inexact Rounded
+sqtx8513 squareroot 9.02E-19 -> 9E-10 Underflow Subnormal Inexact Rounded
+sqtx8514 squareroot 9.03E-19 -> 1.0E-9 Underflow Subnormal Inexact Rounded
+sqtx8515 squareroot 9.1E-19 -> 1.0E-9 Underflow Subnormal Inexact Rounded
+sqtx8516 squareroot 9.9E-19 -> 1.0E-9 Underflow Subnormal Inexact Rounded
+sqtx8517 squareroot 9.91E-19 -> 1.0E-9 Underflow Subnormal Inexact Rounded
+sqtx8518 squareroot 9.92E-19 -> 1.0E-9 Underflow Subnormal Inexact Rounded
+sqtx8519 squareroot 9.95E-19 -> 1.0E-9 Underflow Subnormal Inexact Rounded
+sqtx8520 squareroot 9.98E-19 -> 1.0E-9 Underflow Subnormal Inexact Rounded
+sqtx8521 squareroot 9.99E-19 -> 1.0E-9 Underflow Subnormal Inexact Rounded
+sqtx8522 squareroot 1E-18 -> 1E-9
+sqtx8523 squareroot 1.0E-18 -> 1.0E-9
+sqtx8524 squareroot 1.00E-18 -> 1.0E-9
+sqtx8525 squareroot 1.000E-18 -> 1.0E-9 Rounded
+sqtx8526 squareroot 1.0000E-18 -> 1.0E-9 Rounded
+sqtx8527 squareroot 1.01E-18 -> 1.0E-9 Inexact Rounded
+sqtx8528 squareroot 1.02E-18 -> 1.0E-9 Inexact Rounded
+sqtx8529 squareroot 1.1E-18 -> 1.0E-9 Inexact Rounded
+
+precision: 3
+sqtx8530 squareroot 8.1E-19 -> 9E-10 Subnormal
+sqtx8531 squareroot 8.10E-19 -> 9.0E-10 Subnormal
+sqtx8532 squareroot 8.100E-19 -> 9.0E-10 Subnormal
+sqtx8533 squareroot 8.1000E-19 -> 9.0E-10 Subnormal Rounded
+sqtx8534 squareroot 9.9E-19 -> 9.9E-10 Underflow Subnormal Inexact Rounded
+sqtx8535 squareroot 9.91E-19 -> 1.00E-9 Underflow Subnormal Inexact Rounded
+sqtx8536 squareroot 9.99E-19 -> 1.00E-9 Underflow Subnormal Inexact Rounded
+sqtx8537 squareroot 9.998E-19 -> 1.00E-9 Underflow Subnormal Inexact Rounded
+sqtx8538 squareroot 1E-18 -> 1E-9
+sqtx8539 squareroot 1.0E-18 -> 1.0E-9
+sqtx8540 squareroot 1.00E-18 -> 1.0E-9
+sqtx8541 squareroot 1.000E-18 -> 1.00E-9
+sqtx8542 squareroot 1.0000E-18 -> 1.00E-9
+sqtx8543 squareroot 1.00000E-18 -> 1.00E-9 Rounded
+sqtx8544 squareroot 1.000000E-18 -> 1.00E-9 Rounded
+sqtx8545 squareroot 1.01E-18 -> 1.00E-9 Inexact Rounded
+sqtx8546 squareroot 1.02E-18 -> 1.01E-9 Inexact Rounded
+
+-- result exactly representable with precision p, but not necessarily
+-- exactly representable as a subnormal; check the correct flags are raised
+precision: 2
+sqtx8547 squareroot 1.21E-20 -> 1E-10 Underflow Subnormal Inexact Rounded
+sqtx8548 squareroot 1.44E-20 -> 1E-10 Underflow Subnormal Inexact Rounded
+sqtx8549 squareroot 9.61E-20 -> 3E-10 Underflow Subnormal Inexact Rounded
+sqtx8550 squareroot 8.836E-19 -> 9E-10 Underflow Subnormal Inexact Rounded
+sqtx8551 squareroot 9.216E-19 -> 1.0E-9 Underflow Subnormal Inexact Rounded
+
+precision: 3
+sqtx8552 squareroot 1.21E-22 -> 1E-11 Underflow Subnormal Inexact Rounded
+sqtx8553 squareroot 1.21E-20 -> 1.1E-10 Subnormal
+sqtx8554 squareroot 1.96E-22 -> 1E-11 Underflow Subnormal Inexact Rounded
+sqtx8555 squareroot 1.96E-20 -> 1.4E-10 Subnormal
+sqtx8556 squareroot 2.56E-22 -> 2E-11 Underflow Subnormal Inexact Rounded
+sqtx8557 squareroot 4.00E-22 -> 2E-11 Subnormal Rounded
+sqtx8558 squareroot 7.84E-22 -> 3E-11 Underflow Subnormal Inexact Rounded
+sqtx8559 squareroot 9.801E-21 -> 1.0E-10 Underflow Subnormal Inexact Rounded
+sqtx8560 squareroot 9.801E-19 -> 9.9E-10 Subnormal
+sqtx8561 squareroot 1.0201E-20 -> 1.0E-10 Underflow Subnormal Inexact Rounded
+sqtx8562 squareroot 1.1025E-20 -> 1.0E-10 Underflow Subnormal Inexact Rounded
+sqtx8563 squareroot 1.1236E-20 -> 1.1E-10 Underflow Subnormal Inexact Rounded
+sqtx8564 squareroot 1.2996E-20 -> 1.1E-10 Underflow Subnormal Inexact Rounded
+sqtx8565 squareroot 1.3225E-20 -> 1.2E-10 Underflow Subnormal Inexact Rounded
+
+-- A selection of subnormal results prone to double rounding errors
+precision: 2
+sqtx8566 squareroot 2.3E-21 -> 0E-10 Underflow Subnormal Inexact Rounded Clamped
+sqtx8567 squareroot 2.4E-21 -> 0E-10 Underflow Subnormal Inexact Rounded Clamped
+sqtx8568 squareroot 2.5E-21 -> 0E-10 Underflow Subnormal Inexact Rounded Clamped
+sqtx8569 squareroot 2.6E-21 -> 1E-10 Underflow Subnormal Inexact Rounded
+sqtx8570 squareroot 2.7E-21 -> 1E-10 Underflow Subnormal Inexact Rounded
+sqtx8571 squareroot 2.8E-21 -> 1E-10 Underflow Subnormal Inexact Rounded
+sqtx8572 squareroot 2.2E-20 -> 1E-10 Underflow Subnormal Inexact Rounded
+sqtx8573 squareroot 2.3E-20 -> 2E-10 Underflow Subnormal Inexact Rounded
+sqtx8574 squareroot 2.4E-20 -> 2E-10 Underflow Subnormal Inexact Rounded
+sqtx8575 squareroot 6.2E-20 -> 2E-10 Underflow Subnormal Inexact Rounded
+sqtx8576 squareroot 6.3E-20 -> 3E-10 Underflow Subnormal Inexact Rounded
+sqtx8577 squareroot 6.4E-20 -> 3E-10 Underflow Subnormal Inexact Rounded
+sqtx8578 squareroot 6.5E-20 -> 3E-10 Underflow Subnormal Inexact Rounded
+sqtx8579 squareroot 1.2E-19 -> 3E-10 Underflow Subnormal Inexact Rounded
+sqtx8580 squareroot 2.0E-19 -> 4E-10 Underflow Subnormal Inexact Rounded
+sqtx8581 squareroot 4.2E-19 -> 6E-10 Underflow Subnormal Inexact Rounded
+sqtx8582 squareroot 5.6E-19 -> 7E-10 Underflow Subnormal Inexact Rounded
+sqtx8583 squareroot 5.7E-19 -> 8E-10 Underflow Subnormal Inexact Rounded
+sqtx8584 squareroot 9.0E-19 -> 9E-10 Underflow Subnormal Inexact Rounded
+sqtx8585 squareroot 9.1E-19 -> 1.0E-9 Underflow Subnormal Inexact Rounded
+precision: 3
+sqtx8586 squareroot 2.6E-23 -> 1E-11 Underflow Subnormal Inexact Rounded
+sqtx8587 squareroot 2.22E-22 -> 1E-11 Underflow Subnormal Inexact Rounded
+sqtx8588 squareroot 6.07E-22 -> 2E-11 Underflow Subnormal Inexact Rounded
+sqtx8589 squareroot 6.25E-22 -> 2E-11 Underflow Subnormal Inexact Rounded
+sqtx8590 squareroot 6.45E-22 -> 3E-11 Underflow Subnormal Inexact Rounded
+sqtx8591 squareroot 6.50E-22 -> 3E-11 Underflow Subnormal Inexact Rounded
+sqtx8592 squareroot 1.22E-21 -> 3E-11 Underflow Subnormal Inexact Rounded
+sqtx8593 squareroot 1.24E-21 -> 4E-11 Underflow Subnormal Inexact Rounded
+sqtx8594 squareroot 4.18E-21 -> 6E-11 Underflow Subnormal Inexact Rounded
+sqtx8595 squareroot 7.19E-21 -> 8E-11 Underflow Subnormal Inexact Rounded
+sqtx8596 squareroot 8.94E-21 -> 9E-11 Underflow Subnormal Inexact Rounded
+sqtx8597 squareroot 1.81E-20 -> 1.3E-10 Underflow Subnormal Inexact Rounded
+sqtx8598 squareroot 4.64E-20 -> 2.2E-10 Underflow Subnormal Inexact Rounded
+sqtx8599 squareroot 5.06E-20 -> 2.2E-10 Underflow Subnormal Inexact Rounded
+sqtx8600 squareroot 5.08E-20 -> 2.3E-10 Underflow Subnormal Inexact Rounded
+sqtx8601 squareroot 7.00E-20 -> 2.6E-10 Underflow Subnormal Inexact Rounded
+sqtx8602 squareroot 1.81E-19 -> 4.3E-10 Underflow Subnormal Inexact Rounded
+sqtx8603 squareroot 6.64E-19 -> 8.1E-10 Underflow Subnormal Inexact Rounded
+sqtx8604 squareroot 7.48E-19 -> 8.6E-10 Underflow Subnormal Inexact Rounded
+sqtx8605 squareroot 9.91E-19 -> 1.00E-9 Underflow Subnormal Inexact Rounded
+precision: 4
+sqtx8606 squareroot 6.24E-24 -> 2E-12 Underflow Subnormal Inexact Rounded
+sqtx8607 squareroot 7.162E-23 -> 8E-12 Underflow Subnormal Inexact Rounded
+sqtx8608 squareroot 7.243E-23 -> 9E-12 Underflow Subnormal Inexact Rounded
+sqtx8609 squareroot 8.961E-23 -> 9E-12 Underflow Subnormal Inexact Rounded
+sqtx8610 squareroot 9.029E-23 -> 1.0E-11 Underflow Subnormal Inexact Rounded
+sqtx8611 squareroot 4.624E-22 -> 2.2E-11 Underflow Subnormal Inexact Rounded
+sqtx8612 squareroot 5.980E-22 -> 2.4E-11 Underflow Subnormal Inexact Rounded
+sqtx8613 squareroot 6.507E-22 -> 2.6E-11 Underflow Subnormal Inexact Rounded
+sqtx8614 squareroot 1.483E-21 -> 3.9E-11 Underflow Subnormal Inexact Rounded
+sqtx8615 squareroot 3.903E-21 -> 6.2E-11 Underflow Subnormal Inexact Rounded
+sqtx8616 squareroot 8.733E-21 -> 9.3E-11 Underflow Subnormal Inexact Rounded
+sqtx8617 squareroot 1.781E-20 -> 1.33E-10 Underflow Subnormal Inexact Rounded
+sqtx8618 squareroot 6.426E-20 -> 2.53E-10 Underflow Subnormal Inexact Rounded
+sqtx8619 squareroot 7.102E-20 -> 2.66E-10 Underflow Subnormal Inexact Rounded
+sqtx8620 squareroot 7.535E-20 -> 2.74E-10 Underflow Subnormal Inexact Rounded
+sqtx8621 squareroot 9.892E-20 -> 3.15E-10 Underflow Subnormal Inexact Rounded
+sqtx8622 squareroot 1.612E-19 -> 4.01E-10 Underflow Subnormal Inexact Rounded
+sqtx8623 squareroot 1.726E-19 -> 4.15E-10 Underflow Subnormal Inexact Rounded
+sqtx8624 squareroot 1.853E-19 -> 4.30E-10 Underflow Subnormal Inexact Rounded
+sqtx8625 squareroot 4.245E-19 -> 6.52E-10 Underflow Subnormal Inexact Rounded
+
+-- clamping and overflow for large exponents
+precision: 1
+sqtx8626 squareroot 1E+18 -> 1E+9
+sqtx8627 squareroot 1E+19 -> 3E+9 Inexact Rounded
+sqtx8628 squareroot 9E+19 -> 9E+9 Inexact Rounded
+sqtx8629 squareroot 9.1E+19 -> Infinity Overflow Inexact Rounded
+sqtx8630 squareroot 1E+20 -> Infinity Overflow Inexact Rounded
+
+precision: 2
+sqtx8631 squareroot 1E+18 -> 1E+9
+sqtx8632 squareroot 1.0E+18 -> 1.0E+9
+sqtx8633 squareroot 1.00E+18 -> 1.0E+9
+sqtx8634 squareroot 1.000E+18 -> 1.0E+9 Rounded
+sqtx8635 squareroot 1E+20 -> Infinity Overflow Inexact Rounded
+clamp: 1
+sqtx8636 squareroot 1E+18 -> 1.0E+9 Clamped
+sqtx8637 squareroot 1.0E+18 -> 1.0E+9
+sqtx8638 squareroot 1E+20 -> Infinity Overflow Inexact Rounded
+clamp: 0
+
+precision: 6
+sqtx8639 squareroot 1E+18 -> 1E+9
+sqtx8640 squareroot 1.0000000000E+18 -> 1.00000E+9
+sqtx8641 squareroot 1.00000000000E+18 -> 1.00000E+9 Rounded
+sqtx8642 squareroot 1E+20 -> Infinity Overflow Inexact Rounded
+clamp: 1
+sqtx8643 squareroot 1E+8 -> 1E+4
+sqtx8644 squareroot 1E+10 -> 1.0E+5 Clamped
+sqtx8645 squareroot 1.0E+10 -> 1.0E+5
+sqtx8646 squareroot 1E+12 -> 1.00E+6 Clamped
+sqtx8647 squareroot 1.0E+12 -> 1.00E+6 Clamped
+sqtx8648 squareroot 1.00E+12 -> 1.00E+6 Clamped
+sqtx8649 squareroot 1.000E+12 -> 1.00E+6
+sqtx8650 squareroot 1E+18 -> 1.00000E+9 Clamped
+sqtx8651 squareroot 1.00000000E+18 -> 1.00000E+9 Clamped
+sqtx8652 squareroot 1.000000000E+18 -> 1.00000E+9
+sqtx8653 squareroot 1E+20 -> Infinity Overflow Inexact Rounded
+clamp: 0
+
+-- The following example causes a TypeError in Python 2.5.1
+precision: 3
+maxexponent: 9
+minexponent: -9
+sqtx8654 squareroot 10000000000 -> 1.00E+5 Rounded
+
+-- Additional tricky cases of underflown subnormals
+rounding: half_even
+precision: 5
+maxexponent: 999
+minexponent: -999
+sqtx8700 squareroot 2.8073E-2000 -> 1.675E-1000 Underflow Subnormal Inexact Rounded
+sqtx8701 squareroot 2.8883E-2000 -> 1.699E-1000 Underflow Subnormal Inexact Rounded
+sqtx8702 squareroot 3.1524E-2000 -> 1.775E-1000 Underflow Subnormal Inexact Rounded
+sqtx8703 squareroot 3.2382E-2000 -> 1.799E-1000 Underflow Subnormal Inexact Rounded
+sqtx8704 squareroot 3.5175E-2000 -> 1.875E-1000 Underflow Subnormal Inexact Rounded
+sqtx8705 squareroot 3.6081E-2000 -> 1.899E-1000 Underflow Subnormal Inexact Rounded
+sqtx8706 squareroot 3.9026E-2000 -> 1.975E-1000 Underflow Subnormal Inexact Rounded
+sqtx8707 squareroot 3.9980E-2000 -> 1.999E-1000 Underflow Subnormal Inexact Rounded
+sqtx8708 squareroot 4.3077E-2000 -> 2.075E-1000 Underflow Subnormal Inexact Rounded
+sqtx8709 squareroot 4.4079E-2000 -> 2.099E-1000 Underflow Subnormal Inexact Rounded
+sqtx8710 squareroot 4.7328E-2000 -> 2.175E-1000 Underflow Subnormal Inexact Rounded
+sqtx8711 squareroot 4.8378E-2000 -> 2.199E-1000 Underflow Subnormal Inexact Rounded
+sqtx8712 squareroot 5.1779E-2000 -> 2.275E-1000 Underflow Subnormal Inexact Rounded
+sqtx8713 squareroot 5.2877E-2000 -> 2.299E-1000 Underflow Subnormal Inexact Rounded
+sqtx8714 squareroot 5.6430E-2000 -> 2.375E-1000 Underflow Subnormal Inexact Rounded
+sqtx8715 squareroot 5.7576E-2000 -> 2.399E-1000 Underflow Subnormal Inexact Rounded
+sqtx8716 squareroot 6.1281E-2000 -> 2.475E-1000 Underflow Subnormal Inexact Rounded
+sqtx8717 squareroot 6.2475E-2000 -> 2.499E-1000 Underflow Subnormal Inexact Rounded
+sqtx8718 squareroot 6.6332E-2000 -> 2.575E-1000 Underflow Subnormal Inexact Rounded
+sqtx8719 squareroot 6.7574E-2000 -> 2.599E-1000 Underflow Subnormal Inexact Rounded
+sqtx8720 squareroot 7.1583E-2000 -> 2.675E-1000 Underflow Subnormal Inexact Rounded
+sqtx8721 squareroot 7.2873E-2000 -> 2.699E-1000 Underflow Subnormal Inexact Rounded
+sqtx8722 squareroot 7.7034E-2000 -> 2.775E-1000 Underflow Subnormal Inexact Rounded
+sqtx8723 squareroot 7.8372E-2000 -> 2.799E-1000 Underflow Subnormal Inexact Rounded
+sqtx8724 squareroot 8.2685E-2000 -> 2.875E-1000 Underflow Subnormal Inexact Rounded
+sqtx8725 squareroot 8.4071E-2000 -> 2.899E-1000 Underflow Subnormal Inexact Rounded
+sqtx8726 squareroot 8.8536E-2000 -> 2.975E-1000 Underflow Subnormal Inexact Rounded
+sqtx8727 squareroot 8.9970E-2000 -> 2.999E-1000 Underflow Subnormal Inexact Rounded
+sqtx8728 squareroot 9.4587E-2000 -> 3.075E-1000 Underflow Subnormal Inexact Rounded
+sqtx8729 squareroot 9.6069E-2000 -> 3.099E-1000 Underflow Subnormal Inexact Rounded
+-- (End of Mark Dickinson's testcases.)
+
+
+-- Some additional edge cases
+maxexponent: 9
+minexponent: -9
+precision: 2
+sqtx9000 squareroot 9980.01 -> 1.0E+2 Inexact Rounded
+precision: 3
+sqtx9001 squareroot 9980.01 -> 99.9
+precision: 4
+sqtx9002 squareroot 9980.01 -> 99.9
+
+-- Exact from over-precise
+precision: 4
+sqtx9003 squareroot 11025 -> 105
+precision: 3
+sqtx9004 squareroot 11025 -> 105
+precision: 2
+sqtx9005 squareroot 11025 -> 1.0E+2 Inexact Rounded
+precision: 1
+sqtx9006 squareroot 11025 -> 1E+2 Inexact Rounded
+
+-- Out-of-bounds zeros
+precision: 4
+sqtx9010 squareroot 0E-9 -> 0.00000
+sqtx9011 squareroot 0E-10 -> 0.00000
+sqtx9012 squareroot 0E-11 -> 0.000000
+sqtx9013 squareroot 0E-12 -> 0.000000
+sqtx9014 squareroot 0E-13 -> 0E-7
+sqtx9015 squareroot 0E-14 -> 0E-7
+sqtx9020 squareroot 0E-17 -> 0E-9
+sqtx9021 squareroot 0E-20 -> 0E-10
+sqtx9022 squareroot 0E-22 -> 0E-11
+sqtx9023 squareroot 0E-24 -> 0E-12
+sqtx9024 squareroot 0E-25 -> 0E-12 Clamped
+sqtx9025 squareroot 0E-26 -> 0E-12 Clamped
+sqtx9026 squareroot 0E-27 -> 0E-12 Clamped
+sqtx9027 squareroot 0E-28 -> 0E-12 Clamped
+
+sqtx9030 squareroot 0E+8 -> 0E+4
+sqtx9031 squareroot 0E+10 -> 0E+5
+sqtx9032 squareroot 0E+12 -> 0E+6
+sqtx9033 squareroot 0E+14 -> 0E+7
+sqtx9034 squareroot 0E+15 -> 0E+7
+sqtx9035 squareroot 0E+16 -> 0E+8
+sqtx9036 squareroot 0E+18 -> 0E+9
+sqtx9037 squareroot 0E+19 -> 0E+9
+sqtx9038 squareroot 0E+20 -> 0E+9 Clamped
+sqtx9039 squareroot 0E+21 -> 0E+9 Clamped
+sqtx9040 squareroot 0E+22 -> 0E+9 Clamped
+
+
-- Null test
-sqtx900 squareroot # -> NaN Invalid_operation
+sqtx9900 squareroot # -> NaN Invalid_operation
diff --git a/Lib/test/decimaltestdata/subtract.decTest b/Lib/test/decimaltestdata/subtract.decTest
index bdedc5b..338a09c 100644
--- a/Lib/test/decimaltestdata/subtract.decTest
+++ b/Lib/test/decimaltestdata/subtract.decTest
@@ -1,6 +1,6 @@
------------------------------------------------------------------------
-- subtract.decTest -- decimal subtraction --
--- Copyright (c) IBM Corporation, 1981, 2004. All rights reserved. --
+-- Copyright (c) IBM Corporation, 1981, 2007. All rights reserved. --
------------------------------------------------------------------------
-- Please see the document "General Decimal Arithmetic Testcases" --
-- at http://www2.hursley.ibm.com/decimal for the description of --
@@ -17,7 +17,7 @@
-- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK --
-- mfc@uk.ibm.com --
------------------------------------------------------------------------
-version: 2.39
+version: 2.56
extended: 1
precision: 9
@@ -805,9 +805,9 @@ subx1014 subtract 0 0.01E-999 -> -1E-1001 Subnormal
subx1015 subtract 0 0.999E-999 -> -1.00E-999 Inexact Rounded Subnormal Underflow
subx1016 subtract 0 0.099E-999 -> -1.0E-1000 Inexact Rounded Subnormal Underflow
subx1017 subtract 0 0.009E-999 -> -1E-1001 Inexact Rounded Subnormal Underflow
-subx1018 subtract 0 0.001E-999 -> -0E-1001 Inexact Rounded Subnormal Underflow
-subx1019 subtract 0 0.0009E-999 -> -0E-1001 Inexact Rounded Subnormal Underflow
-subx1020 subtract 0 0.0001E-999 -> -0E-1001 Inexact Rounded Subnormal Underflow
+subx1018 subtract 0 0.001E-999 -> -0E-1001 Inexact Rounded Subnormal Underflow Clamped
+subx1019 subtract 0 0.0009E-999 -> -0E-1001 Inexact Rounded Subnormal Underflow Clamped
+subx1020 subtract 0 0.0001E-999 -> -0E-1001 Inexact Rounded Subnormal Underflow Clamped
subx1030 subtract 0 -1.00E-999 -> 1.00E-999
subx1031 subtract 0 -0.1E-999 -> 1E-1000 Subnormal
@@ -818,9 +818,9 @@ subx1034 subtract 0 -0.01E-999 -> 1E-1001 Subnormal
subx1035 subtract 0 -0.999E-999 -> 1.00E-999 Inexact Rounded Subnormal Underflow
subx1036 subtract 0 -0.099E-999 -> 1.0E-1000 Inexact Rounded Subnormal Underflow
subx1037 subtract 0 -0.009E-999 -> 1E-1001 Inexact Rounded Subnormal Underflow
-subx1038 subtract 0 -0.001E-999 -> 0E-1001 Inexact Rounded Subnormal Underflow
-subx1039 subtract 0 -0.0009E-999 -> 0E-1001 Inexact Rounded Subnormal Underflow
-subx1040 subtract 0 -0.0001E-999 -> 0E-1001 Inexact Rounded Subnormal Underflow
+subx1038 subtract 0 -0.001E-999 -> 0E-1001 Inexact Rounded Subnormal Underflow Clamped
+subx1039 subtract 0 -0.0009E-999 -> 0E-1001 Inexact Rounded Subnormal Underflow Clamped
+subx1040 subtract 0 -0.0001E-999 -> 0E-1001 Inexact Rounded Subnormal Underflow Clamped
-- some non-zero subnormal subtracts
-- subx1056 is a tricky case
@@ -831,7 +831,7 @@ subx1052 subtract 0.10E-999 0.1E-999 -> 0E-1001
subx1053 subtract 0.100E-999 0.1E-999 -> 0E-1001 Clamped
subx1054 subtract 0.01E-999 0.1E-999 -> -9E-1001 Subnormal
subx1055 subtract 0.999E-999 0.1E-999 -> 9.0E-1000 Inexact Rounded Subnormal Underflow
-subx1056 subtract 0.099E-999 0.1E-999 -> -0E-1001 Inexact Rounded Subnormal Underflow
+subx1056 subtract 0.099E-999 0.1E-999 -> -0E-1001 Inexact Rounded Subnormal Underflow Clamped
subx1057 subtract 0.009E-999 0.1E-999 -> -9E-1001 Inexact Rounded Subnormal Underflow
subx1058 subtract 0.001E-999 0.1E-999 -> -1.0E-1000 Inexact Rounded Subnormal Underflow
subx1059 subtract 0.0009E-999 0.1E-999 -> -1.0E-1000 Inexact Rounded Subnormal Underflow
@@ -849,15 +849,25 @@ subx1104 subtract 1.52444E-80 0 -> 1.524E-80 Inexact Rounded Subnormal Underfl
subx1105 subtract 1.52445E-80 0 -> 1.524E-80 Inexact Rounded Subnormal Underflow
subx1106 subtract 1.52446E-80 0 -> 1.524E-80 Inexact Rounded Subnormal Underflow
-subx1111 subtract 1.2345678E-80 1.2345671E-80 -> 0E-83 Inexact Rounded Subnormal Underflow
-subx1112 subtract 1.2345678E-80 1.2345618E-80 -> 0E-83 Inexact Rounded Subnormal Underflow
-subx1113 subtract 1.2345678E-80 1.2345178E-80 -> 0E-83 Inexact Rounded Subnormal Underflow
-subx1114 subtract 1.2345678E-80 1.2341678E-80 -> 0E-83 Inexact Rounded Subnormal Underflow
+subx1111 subtract 1.2345678E-80 1.2345671E-80 -> 0E-83 Inexact Rounded Subnormal Underflow Clamped
+subx1112 subtract 1.2345678E-80 1.2345618E-80 -> 0E-83 Inexact Rounded Subnormal Underflow Clamped
+subx1113 subtract 1.2345678E-80 1.2345178E-80 -> 0E-83 Inexact Rounded Subnormal Underflow Clamped
+subx1114 subtract 1.2345678E-80 1.2341678E-80 -> 0E-83 Inexact Rounded Subnormal Underflow Clamped
subx1115 subtract 1.2345678E-80 1.2315678E-80 -> 3E-83 Rounded Subnormal
subx1116 subtract 1.2345678E-80 1.2145678E-80 -> 2.0E-82 Rounded Subnormal
subx1117 subtract 1.2345678E-80 1.1345678E-80 -> 1.00E-81 Rounded Subnormal
subx1118 subtract 1.2345678E-80 0.2345678E-80 -> 1.000E-80 Rounded Subnormal
+precision: 34
+rounding: half_up
+maxExponent: 6144
+minExponent: -6143
+-- Examples from SQL proposal (Krishna Kulkarni)
+subx1125 subtract 130E-2 120E-2 -> 0.10
+subx1126 subtract 130E-2 12E-1 -> 0.10
+subx1127 subtract 130E-2 1E0 -> 0.30
+subx1128 subtract 1E2 1E4 -> -9.9E+3
+
-- Null tests
subx9990 subtract 10 # -> NaN Invalid_operation
subx9991 subtract # 10 -> NaN Invalid_operation
diff --git a/Lib/test/decimaltestdata/testall.decTest b/Lib/test/decimaltestdata/testall.decTest
index 8daa0d9..1cbc20e 100644
--- a/Lib/test/decimaltestdata/testall.decTest
+++ b/Lib/test/decimaltestdata/testall.decTest
@@ -1,6 +1,6 @@
------------------------------------------------------------------------
-- testall.decTest -- run all general decimal arithmetic testcases --
--- Copyright (c) IBM Corporation, 1981, 2004. All rights reserved. --
+-- Copyright (c) IBM Corporation, 1981, 2007. All rights reserved. --
------------------------------------------------------------------------
-- Please see the document "General Decimal Arithmetic Testcases" --
-- at http://www2.hursley.ibm.com/decimal for the description of --
@@ -17,41 +17,70 @@
-- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK --
-- mfc@uk.ibm.com --
------------------------------------------------------------------------
-version: 2.39
+version: 2.56
-- core tests (using Extended: 1) --------------------------------------
dectest: base
+
dectest: abs
dectest: add
+dectest: and
dectest: clamp
+dectest: class
dectest: compare
+dectest: comparesig
+dectest: comparetotal
+dectest: comparetotmag
+dectest: copy
+dectest: copyabs
+dectest: copynegate
+dectest: copysign
dectest: divide
dectest: divideint
+dectest: exp
+dectest: fma
dectest: inexact
+dectest: invert
+dectest: ln
+dectest: logb
+dectest: log10
dectest: max
+dectest: maxmag
dectest: min
+dectest: minmag
dectest: minus
dectest: multiply
-dectest: normalize
+dectest: nextminus
+dectest: nextplus
+dectest: nexttoward
+dectest: or
dectest: plus
dectest: power
+dectest: powersqrt
dectest: quantize
dectest: randoms
+dectest: reduce -- [was called normalize]
dectest: remainder
dectest: remaindernear
dectest: rescale -- [obsolete]
+dectest: rotate
dectest: rounding
dectest: samequantum
+dectest: scaleb
+dectest: shift
dectest: squareroot
dectest: subtract
dectest: tointegral
+dectest: tointegralx
dectest: trim
+dectest: xor
--- The next are for the Strawman 4d concrete representations
-dectest: decimal32
-dectest: decimal64
-dectest: decimal128
-
+-- The next are for the Strawman 4d concrete representations and
+-- tests at those sizes [including dsEncode, ddEncode, and dqEncode,
+-- which replace decimal32, decimal64, and decimal128]
+dectest: decSingle
+dectest: decDouble
+dectest: decQuad
-- General 31->33-digit boundary tests
dectest: randombound32
diff --git a/Lib/test/decimaltestdata/tointegral.decTest b/Lib/test/decimaltestdata/tointegral.decTest
index f7174d4..ad25e6b 100644
--- a/Lib/test/decimaltestdata/tointegral.decTest
+++ b/Lib/test/decimaltestdata/tointegral.decTest
@@ -1,6 +1,6 @@
------------------------------------------------------------------------
-- tointegral.decTest -- round decimal to integral value --
--- Copyright (c) IBM Corporation, 2001, 2003. All rights reserved. --
+-- Copyright (c) IBM Corporation, 2001, 2007. All rights reserved. --
------------------------------------------------------------------------
-- Please see the document "General Decimal Arithmetic Testcases" --
-- at http://www2.hursley.ibm.com/decimal for the description of --
@@ -17,7 +17,7 @@
-- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK --
-- mfc@uk.ibm.com --
------------------------------------------------------------------------
-version: 2.39
+version: 2.56
-- This set of tests tests the extended specification 'round-to-integral
-- value' operation (from IEEE 854, later modified in 754r).
@@ -174,3 +174,68 @@ intx205 tointegral 10E+5 -> 1.0E+6
intx206 tointegral 7.89E+77 -> 7.89E+77
intx207 tointegral -Inf -> -Infinity
+
+-- all rounding modes
+rounding: half_even
+
+intx210 tointegral 55.5 -> 56
+intx211 tointegral 56.5 -> 56
+intx212 tointegral 57.5 -> 58
+intx213 tointegral -55.5 -> -56
+intx214 tointegral -56.5 -> -56
+intx215 tointegral -57.5 -> -58
+
+rounding: half_up
+
+intx220 tointegral 55.5 -> 56
+intx221 tointegral 56.5 -> 57
+intx222 tointegral 57.5 -> 58
+intx223 tointegral -55.5 -> -56
+intx224 tointegral -56.5 -> -57
+intx225 tointegral -57.5 -> -58
+
+rounding: half_down
+
+intx230 tointegral 55.5 -> 55
+intx231 tointegral 56.5 -> 56
+intx232 tointegral 57.5 -> 57
+intx233 tointegral -55.5 -> -55
+intx234 tointegral -56.5 -> -56
+intx235 tointegral -57.5 -> -57
+
+rounding: up
+
+intx240 tointegral 55.3 -> 56
+intx241 tointegral 56.3 -> 57
+intx242 tointegral 57.3 -> 58
+intx243 tointegral -55.3 -> -56
+intx244 tointegral -56.3 -> -57
+intx245 tointegral -57.3 -> -58
+
+rounding: down
+
+intx250 tointegral 55.7 -> 55
+intx251 tointegral 56.7 -> 56
+intx252 tointegral 57.7 -> 57
+intx253 tointegral -55.7 -> -55
+intx254 tointegral -56.7 -> -56
+intx255 tointegral -57.7 -> -57
+
+rounding: ceiling
+
+intx260 tointegral 55.3 -> 56
+intx261 tointegral 56.3 -> 57
+intx262 tointegral 57.3 -> 58
+intx263 tointegral -55.3 -> -55
+intx264 tointegral -56.3 -> -56
+intx265 tointegral -57.3 -> -57
+
+rounding: floor
+
+intx270 tointegral 55.7 -> 55
+intx271 tointegral 56.7 -> 56
+intx272 tointegral 57.7 -> 57
+intx273 tointegral -55.7 -> -56
+intx274 tointegral -56.7 -> -57
+intx275 tointegral -57.7 -> -58
+
diff --git a/Lib/test/decimaltestdata/tointegralx.decTest b/Lib/test/decimaltestdata/tointegralx.decTest
new file mode 100644
index 0000000..d9bc9f3
--- /dev/null
+++ b/Lib/test/decimaltestdata/tointegralx.decTest
@@ -0,0 +1,255 @@
+------------------------------------------------------------------------
+-- tointegralx.decTest -- round decimal to integral value, exact --
+-- Copyright (c) IBM Corporation, 2001, 2007. All rights reserved. --
+------------------------------------------------------------------------
+-- Please see the document "General Decimal Arithmetic Testcases" --
+-- at http://www2.hursley.ibm.com/decimal for the description of --
+-- these testcases. --
+-- --
+-- These testcases are experimental ('beta' versions), and they --
+-- may contain errors. They are offered on an as-is basis. In --
+-- particular, achieving the same results as the tests here is not --
+-- a guarantee that an implementation complies with any Standard --
+-- or specification. The tests are not exhaustive. --
+-- --
+-- Please send comments, suggestions, and corrections to the author: --
+-- Mike Cowlishaw, IBM Fellow --
+-- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK --
+-- mfc@uk.ibm.com --
+------------------------------------------------------------------------
+version: 2.56
+
+-- This set of tests tests the extended specification 'round-to-integral
+-- value' operation (from IEEE 854, later modified in 754r).
+-- All non-zero results are defined as being those from either copy or
+-- quantize, so those are assumed to have been tested.
+
+-- This tests toIntegraExact, which may set Inexact
+
+extended: 1
+precision: 9
+rounding: half_up
+maxExponent: 999
+minExponent: -999
+
+intxx001 tointegralx 0 -> 0
+intxx002 tointegralx 0.0 -> 0
+intxx003 tointegralx 0.1 -> 0 Inexact Rounded
+intxx004 tointegralx 0.2 -> 0 Inexact Rounded
+intxx005 tointegralx 0.3 -> 0 Inexact Rounded
+intxx006 tointegralx 0.4 -> 0 Inexact Rounded
+intxx007 tointegralx 0.5 -> 1 Inexact Rounded
+intxx008 tointegralx 0.6 -> 1 Inexact Rounded
+intxx009 tointegralx 0.7 -> 1 Inexact Rounded
+intxx010 tointegralx 0.8 -> 1 Inexact Rounded
+intxx011 tointegralx 0.9 -> 1 Inexact Rounded
+intxx012 tointegralx 1 -> 1
+intxx013 tointegralx 1.0 -> 1 Rounded
+intxx014 tointegralx 1.1 -> 1 Inexact Rounded
+intxx015 tointegralx 1.2 -> 1 Inexact Rounded
+intxx016 tointegralx 1.3 -> 1 Inexact Rounded
+intxx017 tointegralx 1.4 -> 1 Inexact Rounded
+intxx018 tointegralx 1.5 -> 2 Inexact Rounded
+intxx019 tointegralx 1.6 -> 2 Inexact Rounded
+intxx020 tointegralx 1.7 -> 2 Inexact Rounded
+intxx021 tointegralx 1.8 -> 2 Inexact Rounded
+intxx022 tointegralx 1.9 -> 2 Inexact Rounded
+-- negatives
+intxx031 tointegralx -0 -> -0
+intxx032 tointegralx -0.0 -> -0
+intxx033 tointegralx -0.1 -> -0 Inexact Rounded
+intxx034 tointegralx -0.2 -> -0 Inexact Rounded
+intxx035 tointegralx -0.3 -> -0 Inexact Rounded
+intxx036 tointegralx -0.4 -> -0 Inexact Rounded
+intxx037 tointegralx -0.5 -> -1 Inexact Rounded
+intxx038 tointegralx -0.6 -> -1 Inexact Rounded
+intxx039 tointegralx -0.7 -> -1 Inexact Rounded
+intxx040 tointegralx -0.8 -> -1 Inexact Rounded
+intxx041 tointegralx -0.9 -> -1 Inexact Rounded
+intxx042 tointegralx -1 -> -1
+intxx043 tointegralx -1.0 -> -1 Rounded
+intxx044 tointegralx -1.1 -> -1 Inexact Rounded
+intxx045 tointegralx -1.2 -> -1 Inexact Rounded
+intxx046 tointegralx -1.3 -> -1 Inexact Rounded
+intxx047 tointegralx -1.4 -> -1 Inexact Rounded
+intxx048 tointegralx -1.5 -> -2 Inexact Rounded
+intxx049 tointegralx -1.6 -> -2 Inexact Rounded
+intxx050 tointegralx -1.7 -> -2 Inexact Rounded
+intxx051 tointegralx -1.8 -> -2 Inexact Rounded
+intxx052 tointegralx -1.9 -> -2 Inexact Rounded
+-- next two would be NaN using quantize(x, 0)
+intxx053 tointegralx 10E+30 -> 1.0E+31
+intxx054 tointegralx -10E+30 -> -1.0E+31
+
+-- numbers around precision
+precision: 9
+intxx060 tointegralx '56267E-10' -> '0' Inexact Rounded
+intxx061 tointegralx '56267E-5' -> '1' Inexact Rounded
+intxx062 tointegralx '56267E-2' -> '563' Inexact Rounded
+intxx063 tointegralx '56267E-1' -> '5627' Inexact Rounded
+intxx065 tointegralx '56267E-0' -> '56267'
+intxx066 tointegralx '56267E+0' -> '56267'
+intxx067 tointegralx '56267E+1' -> '5.6267E+5'
+intxx068 tointegralx '56267E+2' -> '5.6267E+6'
+intxx069 tointegralx '56267E+3' -> '5.6267E+7'
+intxx070 tointegralx '56267E+4' -> '5.6267E+8'
+intxx071 tointegralx '56267E+5' -> '5.6267E+9'
+intxx072 tointegralx '56267E+6' -> '5.6267E+10'
+intxx073 tointegralx '1.23E+96' -> '1.23E+96'
+intxx074 tointegralx '1.23E+384' -> '1.23E+384'
+intxx075 tointegralx '1.23E+999' -> '1.23E+999'
+
+intxx080 tointegralx '-56267E-10' -> '-0' Inexact Rounded
+intxx081 tointegralx '-56267E-5' -> '-1' Inexact Rounded
+intxx082 tointegralx '-56267E-2' -> '-563' Inexact Rounded
+intxx083 tointegralx '-56267E-1' -> '-5627' Inexact Rounded
+intxx085 tointegralx '-56267E-0' -> '-56267'
+intxx086 tointegralx '-56267E+0' -> '-56267'
+intxx087 tointegralx '-56267E+1' -> '-5.6267E+5'
+intxx088 tointegralx '-56267E+2' -> '-5.6267E+6'
+intxx089 tointegralx '-56267E+3' -> '-5.6267E+7'
+intxx090 tointegralx '-56267E+4' -> '-5.6267E+8'
+intxx091 tointegralx '-56267E+5' -> '-5.6267E+9'
+intxx092 tointegralx '-56267E+6' -> '-5.6267E+10'
+intxx093 tointegralx '-1.23E+96' -> '-1.23E+96'
+intxx094 tointegralx '-1.23E+384' -> '-1.23E+384'
+intxx095 tointegralx '-1.23E+999' -> '-1.23E+999'
+
+-- subnormal inputs
+intxx100 tointegralx 1E-999 -> 0 Inexact Rounded
+intxx101 tointegralx 0.1E-999 -> 0 Inexact Rounded
+intxx102 tointegralx 0.01E-999 -> 0 Inexact Rounded
+intxx103 tointegralx 0E-999 -> 0
+
+-- specials and zeros
+intxx120 tointegralx 'Inf' -> Infinity
+intxx121 tointegralx '-Inf' -> -Infinity
+intxx122 tointegralx NaN -> NaN
+intxx123 tointegralx sNaN -> NaN Invalid_operation
+intxx124 tointegralx 0 -> 0
+intxx125 tointegralx -0 -> -0
+intxx126 tointegralx 0.000 -> 0
+intxx127 tointegralx 0.00 -> 0
+intxx128 tointegralx 0.0 -> 0
+intxx129 tointegralx 0 -> 0
+intxx130 tointegralx 0E-3 -> 0
+intxx131 tointegralx 0E-2 -> 0
+intxx132 tointegralx 0E-1 -> 0
+intxx133 tointegralx 0E-0 -> 0
+intxx134 tointegralx 0E+1 -> 0E+1
+intxx135 tointegralx 0E+2 -> 0E+2
+intxx136 tointegralx 0E+3 -> 0E+3
+intxx137 tointegralx 0E+4 -> 0E+4
+intxx138 tointegralx 0E+5 -> 0E+5
+intxx139 tointegralx -0.000 -> -0
+intxx140 tointegralx -0.00 -> -0
+intxx141 tointegralx -0.0 -> -0
+intxx142 tointegralx -0 -> -0
+intxx143 tointegralx -0E-3 -> -0
+intxx144 tointegralx -0E-2 -> -0
+intxx145 tointegralx -0E-1 -> -0
+intxx146 tointegralx -0E-0 -> -0
+intxx147 tointegralx -0E+1 -> -0E+1
+intxx148 tointegralx -0E+2 -> -0E+2
+intxx149 tointegralx -0E+3 -> -0E+3
+intxx150 tointegralx -0E+4 -> -0E+4
+intxx151 tointegralx -0E+5 -> -0E+5
+-- propagating NaNs
+intxx152 tointegralx NaN808 -> NaN808
+intxx153 tointegralx sNaN080 -> NaN80 Invalid_operation
+intxx154 tointegralx -NaN808 -> -NaN808
+intxx155 tointegralx -sNaN080 -> -NaN80 Invalid_operation
+intxx156 tointegralx -NaN -> -NaN
+intxx157 tointegralx -sNaN -> -NaN Invalid_operation
+
+-- examples
+rounding: half_up
+precision: 9
+intxx200 tointegralx 2.1 -> 2 Inexact Rounded
+intxx201 tointegralx 100 -> 100
+intxx202 tointegralx 100.0 -> 100 Rounded
+intxx203 tointegralx 101.5 -> 102 Inexact Rounded
+intxx204 tointegralx -101.5 -> -102 Inexact Rounded
+intxx205 tointegralx 10E+5 -> 1.0E+6
+intxx206 tointegralx 7.89E+77 -> 7.89E+77
+intxx207 tointegralx -Inf -> -Infinity
+
+
+-- all rounding modes
+rounding: half_even
+
+intxx210 tointegralx 55.5 -> 56 Inexact Rounded
+intxx211 tointegralx 56.5 -> 56 Inexact Rounded
+intxx212 tointegralx 57.5 -> 58 Inexact Rounded
+intxx213 tointegralx -55.5 -> -56 Inexact Rounded
+intxx214 tointegralx -56.5 -> -56 Inexact Rounded
+intxx215 tointegralx -57.5 -> -58 Inexact Rounded
+
+rounding: half_up
+
+intxx220 tointegralx 55.5 -> 56 Inexact Rounded
+intxx221 tointegralx 56.5 -> 57 Inexact Rounded
+intxx222 tointegralx 57.5 -> 58 Inexact Rounded
+intxx223 tointegralx -55.5 -> -56 Inexact Rounded
+intxx224 tointegralx -56.5 -> -57 Inexact Rounded
+intxx225 tointegralx -57.5 -> -58 Inexact Rounded
+
+rounding: half_down
+
+intxx230 tointegralx 55.5 -> 55 Inexact Rounded
+intxx231 tointegralx 56.5 -> 56 Inexact Rounded
+intxx232 tointegralx 57.5 -> 57 Inexact Rounded
+intxx233 tointegralx -55.5 -> -55 Inexact Rounded
+intxx234 tointegralx -56.5 -> -56 Inexact Rounded
+intxx235 tointegralx -57.5 -> -57 Inexact Rounded
+
+rounding: up
+
+intxx240 tointegralx 55.3 -> 56 Inexact Rounded
+intxx241 tointegralx 56.3 -> 57 Inexact Rounded
+intxx242 tointegralx 57.3 -> 58 Inexact Rounded
+intxx243 tointegralx -55.3 -> -56 Inexact Rounded
+intxx244 tointegralx -56.3 -> -57 Inexact Rounded
+intxx245 tointegralx -57.3 -> -58 Inexact Rounded
+
+rounding: down
+
+intxx250 tointegralx 55.7 -> 55 Inexact Rounded
+intxx251 tointegralx 56.7 -> 56 Inexact Rounded
+intxx252 tointegralx 57.7 -> 57 Inexact Rounded
+intxx253 tointegralx -55.7 -> -55 Inexact Rounded
+intxx254 tointegralx -56.7 -> -56 Inexact Rounded
+intxx255 tointegralx -57.7 -> -57 Inexact Rounded
+
+rounding: ceiling
+
+intxx260 tointegralx 55.3 -> 56 Inexact Rounded
+intxx261 tointegralx 56.3 -> 57 Inexact Rounded
+intxx262 tointegralx 57.3 -> 58 Inexact Rounded
+intxx263 tointegralx -55.3 -> -55 Inexact Rounded
+intxx264 tointegralx -56.3 -> -56 Inexact Rounded
+intxx265 tointegralx -57.3 -> -57 Inexact Rounded
+
+rounding: floor
+
+intxx270 tointegralx 55.7 -> 55 Inexact Rounded
+intxx271 tointegralx 56.7 -> 56 Inexact Rounded
+intxx272 tointegralx 57.7 -> 57 Inexact Rounded
+intxx273 tointegralx -55.7 -> -56 Inexact Rounded
+intxx274 tointegralx -56.7 -> -57 Inexact Rounded
+intxx275 tointegralx -57.7 -> -58 Inexact Rounded
+
+-- Int and uInt32 edge values for testing conversions
+precision: 16
+intxx300 tointegralx -2147483646 -> -2147483646
+intxx301 tointegralx -2147483647 -> -2147483647
+intxx302 tointegralx -2147483648 -> -2147483648
+intxx303 tointegralx -2147483649 -> -2147483649
+intxx304 tointegralx 2147483646 -> 2147483646
+intxx305 tointegralx 2147483647 -> 2147483647
+intxx306 tointegralx 2147483648 -> 2147483648
+intxx307 tointegralx 2147483649 -> 2147483649
+intxx308 tointegralx 4294967294 -> 4294967294
+intxx309 tointegralx 4294967295 -> 4294967295
+intxx310 tointegralx 4294967296 -> 4294967296
+intxx311 tointegralx 4294967297 -> 4294967297
diff --git a/Lib/test/decimaltestdata/xor.decTest b/Lib/test/decimaltestdata/xor.decTest
new file mode 100644
index 0000000..2ac1b37
--- /dev/null
+++ b/Lib/test/decimaltestdata/xor.decTest
@@ -0,0 +1,335 @@
+------------------------------------------------------------------------
+-- xor.decTest -- digitwise logical XOR --
+-- Copyright (c) IBM Corporation, 1981, 2007. All rights reserved. --
+------------------------------------------------------------------------
+-- Please see the document "General Decimal Arithmetic Testcases" --
+-- at http://www2.hursley.ibm.com/decimal for the description of --
+-- these testcases. --
+-- --
+-- These testcases are experimental ('beta' versions), and they --
+-- may contain errors. They are offered on an as-is basis. In --
+-- particular, achieving the same results as the tests here is not --
+-- a guarantee that an implementation complies with any Standard --
+-- or specification. The tests are not exhaustive. --
+-- --
+-- Please send comments, suggestions, and corrections to the author: --
+-- Mike Cowlishaw, IBM Fellow --
+-- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK --
+-- mfc@uk.ibm.com --
+------------------------------------------------------------------------
+version: 2.56
+
+extended: 1
+precision: 9
+rounding: half_up
+maxExponent: 999
+minExponent: -999
+
+-- Sanity check (truth table)
+xorx001 xor 0 0 -> 0
+xorx002 xor 0 1 -> 1
+xorx003 xor 1 0 -> 1
+xorx004 xor 1 1 -> 0
+xorx005 xor 1100 1010 -> 110
+xorx006 xor 1111 10 -> 1101
+-- and at msd and msd-1
+xorx010 xor 000000000 000000000 -> 0
+xorx011 xor 000000000 100000000 -> 100000000
+xorx012 xor 100000000 000000000 -> 100000000
+xorx013 xor 100000000 100000000 -> 0
+xorx014 xor 000000000 000000000 -> 0
+xorx015 xor 000000000 010000000 -> 10000000
+xorx016 xor 010000000 000000000 -> 10000000
+xorx017 xor 010000000 010000000 -> 0
+
+-- Various lengths
+-- 123456789 123456789 123456789
+xorx021 xor 111111111 111111111 -> 0
+xorx022 xor 111111111111 111111111 -> 0
+xorx023 xor 11111111 11111111 -> 0
+xorx025 xor 1111111 1111111 -> 0
+xorx026 xor 111111 111111 -> 0
+xorx027 xor 11111 11111 -> 0
+xorx028 xor 1111 1111 -> 0
+xorx029 xor 111 111 -> 0
+xorx031 xor 11 11 -> 0
+xorx032 xor 1 1 -> 0
+xorx033 xor 111111111111 1111111111 -> 0
+xorx034 xor 11111111111 11111111111 -> 0
+xorx035 xor 1111111111 111111111111 -> 0
+xorx036 xor 111111111 1111111111111 -> 0
+
+xorx040 xor 111111111 111111111111 -> 0
+xorx041 xor 11111111 111111111111 -> 100000000
+xorx042 xor 11111111 111111111 -> 100000000
+xorx043 xor 1111111 100000010 -> 101111101
+xorx044 xor 111111 100000100 -> 100111011
+xorx045 xor 11111 100001000 -> 100010111
+xorx046 xor 1111 100010000 -> 100011111
+xorx047 xor 111 100100000 -> 100100111
+xorx048 xor 11 101000000 -> 101000011
+xorx049 xor 1 110000000 -> 110000001
+
+xorx050 xor 1111111111 1 -> 111111110
+xorx051 xor 111111111 1 -> 111111110
+xorx052 xor 11111111 1 -> 11111110
+xorx053 xor 1111111 1 -> 1111110
+xorx054 xor 111111 1 -> 111110
+xorx055 xor 11111 1 -> 11110
+xorx056 xor 1111 1 -> 1110
+xorx057 xor 111 1 -> 110
+xorx058 xor 11 1 -> 10
+xorx059 xor 1 1 -> 0
+
+xorx060 xor 1111111111 0 -> 111111111
+xorx061 xor 111111111 0 -> 111111111
+xorx062 xor 11111111 0 -> 11111111
+xorx063 xor 1111111 0 -> 1111111
+xorx064 xor 111111 0 -> 111111
+xorx065 xor 11111 0 -> 11111
+xorx066 xor 1111 0 -> 1111
+xorx067 xor 111 0 -> 111
+xorx068 xor 11 0 -> 11
+xorx069 xor 1 0 -> 1
+
+xorx070 xor 1 1111111111 -> 111111110
+xorx071 xor 1 111111111 -> 111111110
+xorx072 xor 1 11111111 -> 11111110
+xorx073 xor 1 1111111 -> 1111110
+xorx074 xor 1 111111 -> 111110
+xorx075 xor 1 11111 -> 11110
+xorx076 xor 1 1111 -> 1110
+xorx077 xor 1 111 -> 110
+xorx078 xor 1 11 -> 10
+xorx079 xor 1 1 -> 0
+
+xorx080 xor 0 1111111111 -> 111111111
+xorx081 xor 0 111111111 -> 111111111
+xorx082 xor 0 11111111 -> 11111111
+xorx083 xor 0 1111111 -> 1111111
+xorx084 xor 0 111111 -> 111111
+xorx085 xor 0 11111 -> 11111
+xorx086 xor 0 1111 -> 1111
+xorx087 xor 0 111 -> 111
+xorx088 xor 0 11 -> 11
+xorx089 xor 0 1 -> 1
+
+xorx090 xor 011111111 111101111 -> 100010000
+xorx091 xor 101111111 111101111 -> 10010000
+xorx092 xor 110111111 111101111 -> 1010000
+xorx093 xor 111011111 111101111 -> 110000
+xorx094 xor 111101111 111101111 -> 0
+xorx095 xor 111110111 111101111 -> 11000
+xorx096 xor 111111011 111101111 -> 10100
+xorx097 xor 111111101 111101111 -> 10010
+xorx098 xor 111111110 111101111 -> 10001
+
+xorx100 xor 111101111 011111111 -> 100010000
+xorx101 xor 111101111 101111111 -> 10010000
+xorx102 xor 111101111 110111111 -> 1010000
+xorx103 xor 111101111 111011111 -> 110000
+xorx104 xor 111101111 111101111 -> 0
+xorx105 xor 111101111 111110111 -> 11000
+xorx106 xor 111101111 111111011 -> 10100
+xorx107 xor 111101111 111111101 -> 10010
+xorx108 xor 111101111 111111110 -> 10001
+
+-- non-0/1 should not be accepted, nor should signs
+xorx220 xor 111111112 111111111 -> NaN Invalid_operation
+xorx221 xor 333333333 333333333 -> NaN Invalid_operation
+xorx222 xor 555555555 555555555 -> NaN Invalid_operation
+xorx223 xor 777777777 777777777 -> NaN Invalid_operation
+xorx224 xor 999999999 999999999 -> NaN Invalid_operation
+xorx225 xor 222222222 999999999 -> NaN Invalid_operation
+xorx226 xor 444444444 999999999 -> NaN Invalid_operation
+xorx227 xor 666666666 999999999 -> NaN Invalid_operation
+xorx228 xor 888888888 999999999 -> NaN Invalid_operation
+xorx229 xor 999999999 222222222 -> NaN Invalid_operation
+xorx230 xor 999999999 444444444 -> NaN Invalid_operation
+xorx231 xor 999999999 666666666 -> NaN Invalid_operation
+xorx232 xor 999999999 888888888 -> NaN Invalid_operation
+-- a few randoms
+xorx240 xor 567468689 -934981942 -> NaN Invalid_operation
+xorx241 xor 567367689 934981942 -> NaN Invalid_operation
+xorx242 xor -631917772 -706014634 -> NaN Invalid_operation
+xorx243 xor -756253257 138579234 -> NaN Invalid_operation
+xorx244 xor 835590149 567435400 -> NaN Invalid_operation
+-- test MSD
+xorx250 xor 200000000 100000000 -> NaN Invalid_operation
+xorx251 xor 700000000 100000000 -> NaN Invalid_operation
+xorx252 xor 800000000 100000000 -> NaN Invalid_operation
+xorx253 xor 900000000 100000000 -> NaN Invalid_operation
+xorx254 xor 200000000 000000000 -> NaN Invalid_operation
+xorx255 xor 700000000 000000000 -> NaN Invalid_operation
+xorx256 xor 800000000 000000000 -> NaN Invalid_operation
+xorx257 xor 900000000 000000000 -> NaN Invalid_operation
+xorx258 xor 100000000 200000000 -> NaN Invalid_operation
+xorx259 xor 100000000 700000000 -> NaN Invalid_operation
+xorx260 xor 100000000 800000000 -> NaN Invalid_operation
+xorx261 xor 100000000 900000000 -> NaN Invalid_operation
+xorx262 xor 000000000 200000000 -> NaN Invalid_operation
+xorx263 xor 000000000 700000000 -> NaN Invalid_operation
+xorx264 xor 000000000 800000000 -> NaN Invalid_operation
+xorx265 xor 000000000 900000000 -> NaN Invalid_operation
+-- test MSD-1
+xorx270 xor 020000000 100000000 -> NaN Invalid_operation
+xorx271 xor 070100000 100000000 -> NaN Invalid_operation
+xorx272 xor 080010000 100000001 -> NaN Invalid_operation
+xorx273 xor 090001000 100000010 -> NaN Invalid_operation
+xorx274 xor 100000100 020010100 -> NaN Invalid_operation
+xorx275 xor 100000000 070001000 -> NaN Invalid_operation
+xorx276 xor 100000010 080010100 -> NaN Invalid_operation
+xorx277 xor 100000000 090000010 -> NaN Invalid_operation
+-- test LSD
+xorx280 xor 001000002 100000000 -> NaN Invalid_operation
+xorx281 xor 000000007 100000000 -> NaN Invalid_operation
+xorx282 xor 000000008 100000000 -> NaN Invalid_operation
+xorx283 xor 000000009 100000000 -> NaN Invalid_operation
+xorx284 xor 100000000 000100002 -> NaN Invalid_operation
+xorx285 xor 100100000 001000007 -> NaN Invalid_operation
+xorx286 xor 100010000 010000008 -> NaN Invalid_operation
+xorx287 xor 100001000 100000009 -> NaN Invalid_operation
+-- test Middie
+xorx288 xor 001020000 100000000 -> NaN Invalid_operation
+xorx289 xor 000070001 100000000 -> NaN Invalid_operation
+xorx290 xor 000080000 100010000 -> NaN Invalid_operation
+xorx291 xor 000090000 100001000 -> NaN Invalid_operation
+xorx292 xor 100000010 000020100 -> NaN Invalid_operation
+xorx293 xor 100100000 000070010 -> NaN Invalid_operation
+xorx294 xor 100010100 000080001 -> NaN Invalid_operation
+xorx295 xor 100001000 000090000 -> NaN Invalid_operation
+-- signs
+xorx296 xor -100001000 -000000000 -> NaN Invalid_operation
+xorx297 xor -100001000 000010000 -> NaN Invalid_operation
+xorx298 xor 100001000 -000000000 -> NaN Invalid_operation
+xorx299 xor 100001000 000011000 -> 100010000
+
+-- Nmax, Nmin, Ntiny
+xorx331 xor 2 9.99999999E+999 -> NaN Invalid_operation
+xorx332 xor 3 1E-999 -> NaN Invalid_operation
+xorx333 xor 4 1.00000000E-999 -> NaN Invalid_operation
+xorx334 xor 5 1E-1007 -> NaN Invalid_operation
+xorx335 xor 6 -1E-1007 -> NaN Invalid_operation
+xorx336 xor 7 -1.00000000E-999 -> NaN Invalid_operation
+xorx337 xor 8 -1E-999 -> NaN Invalid_operation
+xorx338 xor 9 -9.99999999E+999 -> NaN Invalid_operation
+xorx341 xor 9.99999999E+999 -18 -> NaN Invalid_operation
+xorx342 xor 1E-999 01 -> NaN Invalid_operation
+xorx343 xor 1.00000000E-999 -18 -> NaN Invalid_operation
+xorx344 xor 1E-1007 18 -> NaN Invalid_operation
+xorx345 xor -1E-1007 -10 -> NaN Invalid_operation
+xorx346 xor -1.00000000E-999 18 -> NaN Invalid_operation
+xorx347 xor -1E-999 10 -> NaN Invalid_operation
+xorx348 xor -9.99999999E+999 -18 -> NaN Invalid_operation
+
+-- A few other non-integers
+xorx361 xor 1.0 1 -> NaN Invalid_operation
+xorx362 xor 1E+1 1 -> NaN Invalid_operation
+xorx363 xor 0.0 1 -> NaN Invalid_operation
+xorx364 xor 0E+1 1 -> NaN Invalid_operation
+xorx365 xor 9.9 1 -> NaN Invalid_operation
+xorx366 xor 9E+1 1 -> NaN Invalid_operation
+xorx371 xor 0 1.0 -> NaN Invalid_operation
+xorx372 xor 0 1E+1 -> NaN Invalid_operation
+xorx373 xor 0 0.0 -> NaN Invalid_operation
+xorx374 xor 0 0E+1 -> NaN Invalid_operation
+xorx375 xor 0 9.9 -> NaN Invalid_operation
+xorx376 xor 0 9E+1 -> NaN Invalid_operation
+
+-- All Specials are in error
+xorx780 xor -Inf -Inf -> NaN Invalid_operation
+xorx781 xor -Inf -1000 -> NaN Invalid_operation
+xorx782 xor -Inf -1 -> NaN Invalid_operation
+xorx783 xor -Inf -0 -> NaN Invalid_operation
+xorx784 xor -Inf 0 -> NaN Invalid_operation
+xorx785 xor -Inf 1 -> NaN Invalid_operation
+xorx786 xor -Inf 1000 -> NaN Invalid_operation
+xorx787 xor -1000 -Inf -> NaN Invalid_operation
+xorx788 xor -Inf -Inf -> NaN Invalid_operation
+xorx789 xor -1 -Inf -> NaN Invalid_operation
+xorx790 xor -0 -Inf -> NaN Invalid_operation
+xorx791 xor 0 -Inf -> NaN Invalid_operation
+xorx792 xor 1 -Inf -> NaN Invalid_operation
+xorx793 xor 1000 -Inf -> NaN Invalid_operation
+xorx794 xor Inf -Inf -> NaN Invalid_operation
+
+xorx800 xor Inf -Inf -> NaN Invalid_operation
+xorx801 xor Inf -1000 -> NaN Invalid_operation
+xorx802 xor Inf -1 -> NaN Invalid_operation
+xorx803 xor Inf -0 -> NaN Invalid_operation
+xorx804 xor Inf 0 -> NaN Invalid_operation
+xorx805 xor Inf 1 -> NaN Invalid_operation
+xorx806 xor Inf 1000 -> NaN Invalid_operation
+xorx807 xor Inf Inf -> NaN Invalid_operation
+xorx808 xor -1000 Inf -> NaN Invalid_operation
+xorx809 xor -Inf Inf -> NaN Invalid_operation
+xorx810 xor -1 Inf -> NaN Invalid_operation
+xorx811 xor -0 Inf -> NaN Invalid_operation
+xorx812 xor 0 Inf -> NaN Invalid_operation
+xorx813 xor 1 Inf -> NaN Invalid_operation
+xorx814 xor 1000 Inf -> NaN Invalid_operation
+xorx815 xor Inf Inf -> NaN Invalid_operation
+
+xorx821 xor NaN -Inf -> NaN Invalid_operation
+xorx822 xor NaN -1000 -> NaN Invalid_operation
+xorx823 xor NaN -1 -> NaN Invalid_operation
+xorx824 xor NaN -0 -> NaN Invalid_operation
+xorx825 xor NaN 0 -> NaN Invalid_operation
+xorx826 xor NaN 1 -> NaN Invalid_operation
+xorx827 xor NaN 1000 -> NaN Invalid_operation
+xorx828 xor NaN Inf -> NaN Invalid_operation
+xorx829 xor NaN NaN -> NaN Invalid_operation
+xorx830 xor -Inf NaN -> NaN Invalid_operation
+xorx831 xor -1000 NaN -> NaN Invalid_operation
+xorx832 xor -1 NaN -> NaN Invalid_operation
+xorx833 xor -0 NaN -> NaN Invalid_operation
+xorx834 xor 0 NaN -> NaN Invalid_operation
+xorx835 xor 1 NaN -> NaN Invalid_operation
+xorx836 xor 1000 NaN -> NaN Invalid_operation
+xorx837 xor Inf NaN -> NaN Invalid_operation
+
+xorx841 xor sNaN -Inf -> NaN Invalid_operation
+xorx842 xor sNaN -1000 -> NaN Invalid_operation
+xorx843 xor sNaN -1 -> NaN Invalid_operation
+xorx844 xor sNaN -0 -> NaN Invalid_operation
+xorx845 xor sNaN 0 -> NaN Invalid_operation
+xorx846 xor sNaN 1 -> NaN Invalid_operation
+xorx847 xor sNaN 1000 -> NaN Invalid_operation
+xorx848 xor sNaN NaN -> NaN Invalid_operation
+xorx849 xor sNaN sNaN -> NaN Invalid_operation
+xorx850 xor NaN sNaN -> NaN Invalid_operation
+xorx851 xor -Inf sNaN -> NaN Invalid_operation
+xorx852 xor -1000 sNaN -> NaN Invalid_operation
+xorx853 xor -1 sNaN -> NaN Invalid_operation
+xorx854 xor -0 sNaN -> NaN Invalid_operation
+xorx855 xor 0 sNaN -> NaN Invalid_operation
+xorx856 xor 1 sNaN -> NaN Invalid_operation
+xorx857 xor 1000 sNaN -> NaN Invalid_operation
+xorx858 xor Inf sNaN -> NaN Invalid_operation
+xorx859 xor NaN sNaN -> NaN Invalid_operation
+
+-- propagating NaNs
+xorx861 xor NaN1 -Inf -> NaN Invalid_operation
+xorx862 xor +NaN2 -1000 -> NaN Invalid_operation
+xorx863 xor NaN3 1000 -> NaN Invalid_operation
+xorx864 xor NaN4 Inf -> NaN Invalid_operation
+xorx865 xor NaN5 +NaN6 -> NaN Invalid_operation
+xorx866 xor -Inf NaN7 -> NaN Invalid_operation
+xorx867 xor -1000 NaN8 -> NaN Invalid_operation
+xorx868 xor 1000 NaN9 -> NaN Invalid_operation
+xorx869 xor Inf +NaN10 -> NaN Invalid_operation
+xorx871 xor sNaN11 -Inf -> NaN Invalid_operation
+xorx872 xor sNaN12 -1000 -> NaN Invalid_operation
+xorx873 xor sNaN13 1000 -> NaN Invalid_operation
+xorx874 xor sNaN14 NaN17 -> NaN Invalid_operation
+xorx875 xor sNaN15 sNaN18 -> NaN Invalid_operation
+xorx876 xor NaN16 sNaN19 -> NaN Invalid_operation
+xorx877 xor -Inf +sNaN20 -> NaN Invalid_operation
+xorx878 xor -1000 sNaN21 -> NaN Invalid_operation
+xorx879 xor 1000 sNaN22 -> NaN Invalid_operation
+xorx880 xor Inf sNaN23 -> NaN Invalid_operation
+xorx881 xor +NaN25 +sNaN24 -> NaN Invalid_operation
+xorx882 xor -NaN26 NaN28 -> NaN Invalid_operation
+xorx883 xor -sNaN27 sNaN29 -> NaN Invalid_operation
+xorx884 xor 1000 -NaN30 -> NaN Invalid_operation
+xorx885 xor 1000 -sNaN31 -> NaN Invalid_operation
diff --git a/Lib/test/test_decimal.py b/Lib/test/test_decimal.py
index 841ea6f..bc299ec 100644
--- a/Lib/test/test_decimal.py
+++ b/Lib/test/test_decimal.py
@@ -65,9 +65,7 @@ skip_expected = not os.path.isdir(directory)
# Slower, since it runs some things several times.
EXTENDEDERRORTEST = False
-
#Map the test cases' error names to the actual errors
-
ErrorNames = {'clamped' : Clamped,
'conversion_syntax' : InvalidOperation,
'division_by_zero' : DivisionByZero,
@@ -92,20 +90,62 @@ RoundingDict = {'ceiling' : ROUND_CEILING, #Maps test-case names to roundings.
'half_down' : ROUND_HALF_DOWN,
'half_even' : ROUND_HALF_EVEN,
'half_up' : ROUND_HALF_UP,
- 'up' : ROUND_UP}
+ 'up' : ROUND_UP,
+ '05up' : ROUND_05UP}
# Name adapter to be able to change the Decimal and Context
# interface without changing the test files from Cowlishaw
nameAdapter = {'toeng':'to_eng_string',
'tosci':'to_sci_string',
'samequantum':'same_quantum',
- 'tointegral':'to_integral',
+ 'tointegral':'to_integral_value',
+ 'tointegralx':'to_integral_exact',
'remaindernear':'remainder_near',
'divideint':'divide_int',
'squareroot':'sqrt',
'apply':'_apply',
+ 'class':'number_class',
+ 'comparesig':'compare_signal',
+ 'comparetotal':'compare_total',
+ 'comparetotmag':'compare_total_mag',
+ 'copyabs':'copy_abs',
+ 'copy':'copy_decimal',
+ 'copynegate':'copy_negate',
+ 'copysign':'copy_sign',
+ 'and':'logical_and',
+ 'or':'logical_or',
+ 'xor':'logical_xor',
+ 'invert':'logical_invert',
+ 'maxmag':'max_mag',
+ 'minmag':'min_mag',
+ 'nextminus':'next_minus',
+ 'nextplus':'next_plus',
+ 'nexttoward':'next_toward',
+ 'reduce':'normalize',
}
+# For some operations (currently exp, ln, log10, power), the decNumber
+# reference implementation imposes additional restrictions on the
+# context and operands. These restrictions are not part of the
+# specification; however, the effect of these restrictions does show
+# up in some of the testcases. We skip testcases that violate these
+# restrictions, since Decimal behaves differently from decNumber for
+# these testcases so these testcases would otherwise fail.
+
+decNumberRestricted = ('power', 'ln', 'log10', 'exp')
+DEC_MAX_MATH = 999999
+def outside_decNumber_bounds(v, context):
+ if (context.prec > DEC_MAX_MATH or
+ context.Emax > DEC_MAX_MATH or
+ -context.Emin > DEC_MAX_MATH):
+ return True
+ if not v._is_special and v and (
+ len(v._int) > DEC_MAX_MATH or
+ v.adjusted() > DEC_MAX_MATH or
+ v.adjusted() < 1-2*DEC_MAX_MATH):
+ return True
+ return False
+
class DecimalTest(unittest.TestCase):
"""Class which tests the Decimal class against the test cases.
@@ -142,10 +182,6 @@ class DecimalTest(unittest.TestCase):
#print line
try:
t = self.eval_line(line)
- except InvalidOperation:
- print 'Error in test cases:'
- print line
- continue
except DecimalException, exception:
#Exception raised where there shoudn't have been one.
self.fail('Exception "'+exception.__class__.__name__ + '" raised on line '+line)
@@ -194,7 +230,8 @@ class DecimalTest(unittest.TestCase):
Sides = s.split('->')
L = Sides[0].strip().split()
id = L[0]
-# print id,
+ if DEBUG:
+ print "Test ", id,
funct = L[1].lower()
valstemp = L[2:]
L = Sides[1].strip().split()
@@ -246,11 +283,27 @@ class DecimalTest(unittest.TestCase):
self.context.traps[error] = 0
v = self.context.create_decimal(v)
else:
- v = Decimal(v)
+ v = Decimal(v, self.context)
vals.append(v)
ans = FixQuotes(ans)
+ # skip tests that are related to bounds imposed in the decNumber
+ # reference implementation
+ if fname in decNumberRestricted:
+ if fname == 'power':
+ if not (vals[1]._isinteger() and
+ -1999999997 <= vals[1] <= 999999999):
+ if outside_decNumber_bounds(vals[0], self.context) or \
+ outside_decNumber_bounds(vals[1], self.context):
+ #print "Skipping test %s" % s
+ return
+ else:
+ if outside_decNumber_bounds(vals[0], self.context):
+ #print "Skipping test %s" % s
+ return
+
+
if EXTENDEDERRORTEST and fname not in ('to_sci_string', 'to_eng_string'):
for error in theirexceptions:
self.context.traps[error] = 1
@@ -264,6 +317,8 @@ class DecimalTest(unittest.TestCase):
else:
self.fail("Did not raise %s in %s" % (error, s))
self.context.traps[error] = 0
+ if DEBUG:
+ print "--", self.context
try:
result = str(funct(*vals))
if fname == 'same_quantum':
@@ -283,8 +338,7 @@ class DecimalTest(unittest.TestCase):
self.assertEqual(result, ans,
'Incorrect answer for ' + s + ' -- got ' + result)
self.assertEqual(myexceptions, theirexceptions,
- 'Incorrect flags set in ' + s + ' -- got ' \
- + str(myexceptions))
+ 'Incorrect flags set in ' + s + ' -- got ' + str(myexceptions))
return
def getexceptions(self):
@@ -301,17 +355,6 @@ class DecimalTest(unittest.TestCase):
def change_clamp(self, clamp):
self.context._clamp = clamp
-# Dynamically build custom test definition for each file in the test
-# directory and add the definitions to the DecimalTest class. This
-# procedure insures that new files do not get skipped.
-for filename in os.listdir(directory):
- if '.decTest' not in filename:
- continue
- head, tail = filename.split('.')
- tester = lambda self, f=filename: self.eval_file(directory + f)
- setattr(DecimalTest, 'test_' + head, tester)
- del filename, head, tail, tester
-
# The following classes test the behaviour of Decimal according to PEP 327
@@ -853,6 +896,10 @@ class DecimalUsabilityTest(unittest.TestCase):
a.sort()
self.assertEqual(a, b)
+ # with None
+ self.assertFalse(Decimal(1) < None)
+ self.assertTrue(Decimal(1) > None)
+
def test_copy_and_deepcopy_methods(self):
d = Decimal('43.24')
c = copy.copy(d)
@@ -960,8 +1007,8 @@ class DecimalUsabilityTest(unittest.TestCase):
d1 = Decimal('-25e55')
b1 = Decimal('-25e55')
- d2 = Decimal('33e-33')
- b2 = Decimal('33e-33')
+ d2 = Decimal('33e+33')
+ b2 = Decimal('33e+33')
def checkSameDec(operation, useOther=False):
if useOther:
@@ -1091,7 +1138,59 @@ class WithStatementTest(unittest.TestCase):
self.assert_(new_ctx is not set_ctx, 'did not copy the context')
self.assert_(set_ctx is enter_ctx, '__enter__ returned wrong context')
-def test_main(arith=False, verbose=None):
+class ContextFlags(unittest.TestCase):
+ def test_flags_irrelevant(self):
+ # check that the result (numeric result + flags raised) of an
+ # arithmetic operation doesn't depend on the current flags
+
+ context = Context(prec=9, Emin = -999999999, Emax = 999999999,
+ rounding=ROUND_HALF_EVEN, traps=[], flags=[])
+
+ # operations that raise various flags, in the form (function, arglist)
+ operations = [
+ (context._apply, [Decimal("100E-1000000009")]),
+ (context.sqrt, [Decimal(2)]),
+ (context.add, [Decimal("1.23456789"), Decimal("9.87654321")]),
+ (context.multiply, [Decimal("1.23456789"), Decimal("9.87654321")]),
+ (context.subtract, [Decimal("1.23456789"), Decimal("9.87654321")]),
+ ]
+
+ # try various flags individually, then a whole lot at once
+ flagsets = [[Inexact], [Rounded], [Underflow], [Clamped], [Subnormal],
+ [Inexact, Rounded, Underflow, Clamped, Subnormal]]
+
+ for fn, args in operations:
+ # find answer and flags raised using a clean context
+ context.clear_flags()
+ ans = fn(*args)
+ flags = [k for k, v in context.flags.items() if v]
+
+ for extra_flags in flagsets:
+ # set flags, before calling operation
+ context.clear_flags()
+ for flag in extra_flags:
+ context._raise_error(flag)
+ new_ans = fn(*args)
+
+ # flags that we expect to be set after the operation
+ expected_flags = list(flags)
+ for flag in extra_flags:
+ if flag not in expected_flags:
+ expected_flags.append(flag)
+ expected_flags.sort()
+
+ # flags we actually got
+ new_flags = [k for k,v in context.flags.items() if v]
+ new_flags.sort()
+
+ self.assertEqual(ans, new_ans,
+ "operation produces different answers depending on flags set: " +
+ "expected %s, got %s." % (ans, new_ans))
+ self.assertEqual(new_flags, expected_flags,
+ "operation raises different flags depending on flags set: " +
+ "expected %s, got %s" % (expected_flags, new_flags))
+
+def test_main(arith=False, verbose=None, todo_tests=None, debug=None):
""" Execute the tests.
Runs all arithmetic tests if arith is True or if the "decimal" resource
@@ -1099,35 +1198,58 @@ def test_main(arith=False, verbose=None):
"""
init()
- global TEST_ALL
+ global TEST_ALL, DEBUG
TEST_ALL = arith or is_resource_enabled('decimal')
+ DEBUG = debug
+
+ if todo_tests is None:
+ test_classes = [
+ DecimalExplicitConstructionTest,
+ DecimalImplicitConstructionTest,
+ DecimalArithmeticOperatorsTest,
+ DecimalUseOfContextTest,
+ DecimalUsabilityTest,
+ DecimalPythonAPItests,
+ ContextAPItests,
+ DecimalTest,
+ WithStatementTest,
+ ContextFlags
+ ]
+ else:
+ test_classes = [DecimalTest]
+
+ # Dynamically build custom test definition for each file in the test
+ # directory and add the definitions to the DecimalTest class. This
+ # procedure insures that new files do not get skipped.
+ for filename in os.listdir(directory):
+ if '.decTest' not in filename or filename.startswith("."):
+ continue
+ head, tail = filename.split('.')
+ if todo_tests is not None and head not in todo_tests:
+ continue
+ tester = lambda self, f=filename: self.eval_file(directory + f)
+ setattr(DecimalTest, 'test_' + head, tester)
+ del filename, head, tail, tester
- test_classes = [
- DecimalExplicitConstructionTest,
- DecimalImplicitConstructionTest,
- DecimalArithmeticOperatorsTest,
- DecimalUseOfContextTest,
- DecimalUsabilityTest,
- DecimalPythonAPItests,
- ContextAPItests,
- DecimalTest,
- WithStatementTest,
- ]
try:
run_unittest(*test_classes)
- import decimal as DecimalModule
- run_doctest(DecimalModule, verbose)
+ if todo_tests is None:
+ import decimal as DecimalModule
+ run_doctest(DecimalModule, verbose)
finally:
setcontext(ORIGINAL_CONTEXT)
if __name__ == '__main__':
- # Calling with no arguments runs all tests.
- # Calling with "Skip" will skip over 90% of the arithmetic tests.
- if len(sys.argv) == 1:
- test_main(arith=True, verbose=True)
- elif len(sys.argv) == 2:
- arith = sys.argv[1].lower() != 'skip'
- test_main(arith=arith, verbose=True)
+ import optparse
+ p = optparse.OptionParser("test_decimal.py [--debug] [{--skip | test1 [test2 [...]]}]")
+ p.add_option('--debug', '-d', action='store_true', help='shows the test number and context before each test')
+ p.add_option('--skip', '-s', action='store_true', help='skip over 90% of the arithmetic tests')
+ (opt, args) = p.parse_args()
+
+ if opt.skip:
+ test_main(arith=False, verbose=True)
+ elif args:
+ test_main(arith=True, verbose=True, todo_tests=args, debug=opt.debug)
else:
- raise ValueError("test called with wrong arguments, use test_Decimal [Skip]")
+ test_main(arith=True, verbose=True)