diff options
Diffstat (limited to 'Objects/complexobject.c')
-rw-r--r-- | Objects/complexobject.c | 25 |
1 files changed, 23 insertions, 2 deletions
diff --git a/Objects/complexobject.c b/Objects/complexobject.c index 7b62fe3..3189746 100644 --- a/Objects/complexobject.c +++ b/Objects/complexobject.c @@ -88,8 +88,7 @@ _Py_c_quot(Py_complex a, Py_complex b) * numerators and denominator by whichever of {b.real, b.imag} has * larger magnitude. The earliest reference I found was to CACM * Algorithm 116 (Complex Division, Robert L. Smith, Stanford - * University). As usual, though, we're still ignoring all IEEE - * endcases. + * University). */ Py_complex r; /* the result */ const double abs_breal = b.real < 0 ? -b.real : b.real; @@ -120,6 +119,28 @@ _Py_c_quot(Py_complex a, Py_complex b) /* At least one of b.real or b.imag is a NaN */ r.real = r.imag = Py_NAN; } + + /* Recover infinities and zeros that computed as nan+nanj. See e.g. + the C11, Annex G.5.2, routine _Cdivd(). */ + if (isnan(r.real) && isnan(r.imag)) { + if ((isinf(a.real) || isinf(a.imag)) + && isfinite(b.real) && isfinite(b.imag)) + { + const double x = copysign(isinf(a.real) ? 1.0 : 0.0, a.real); + const double y = copysign(isinf(a.imag) ? 1.0 : 0.0, a.imag); + r.real = Py_INFINITY * (x*b.real + y*b.imag); + r.imag = Py_INFINITY * (y*b.real - x*b.imag); + } + else if ((isinf(abs_breal) || isinf(abs_bimag)) + && isfinite(a.real) && isfinite(a.imag)) + { + const double x = copysign(isinf(b.real) ? 1.0 : 0.0, b.real); + const double y = copysign(isinf(b.imag) ? 1.0 : 0.0, b.imag); + r.real = 0.0 * (a.real*x + a.imag*y); + r.imag = 0.0 * (a.imag*x - a.real*y); + } + } + return r; } #ifdef _M_ARM64 |