summaryrefslogtreecommitdiffstats
path: root/Python/ceval_gil.c
diff options
context:
space:
mode:
Diffstat (limited to 'Python/ceval_gil.c')
-rw-r--r--Python/ceval_gil.c986
1 files changed, 986 insertions, 0 deletions
diff --git a/Python/ceval_gil.c b/Python/ceval_gil.c
new file mode 100644
index 0000000..a679086
--- /dev/null
+++ b/Python/ceval_gil.c
@@ -0,0 +1,986 @@
+
+#include "Python.h"
+#include "pycore_atomic.h" // _Py_atomic_int
+#include "pycore_ceval.h" // _PyEval_SignalReceived()
+#include "pycore_pyerrors.h" // _PyErr_Fetch()
+#include "pycore_pylifecycle.h" // _PyErr_Print()
+#include "pycore_initconfig.h" // _PyStatus_OK()
+#include "pycore_pymem.h" // _PyMem_IsPtrFreed()
+
+/*
+ Notes about the implementation:
+
+ - The GIL is just a boolean variable (locked) whose access is protected
+ by a mutex (gil_mutex), and whose changes are signalled by a condition
+ variable (gil_cond). gil_mutex is taken for short periods of time,
+ and therefore mostly uncontended.
+
+ - In the GIL-holding thread, the main loop (PyEval_EvalFrameEx) must be
+ able to release the GIL on demand by another thread. A volatile boolean
+ variable (gil_drop_request) is used for that purpose, which is checked
+ at every turn of the eval loop. That variable is set after a wait of
+ `interval` microseconds on `gil_cond` has timed out.
+
+ [Actually, another volatile boolean variable (eval_breaker) is used
+ which ORs several conditions into one. Volatile booleans are
+ sufficient as inter-thread signalling means since Python is run
+ on cache-coherent architectures only.]
+
+ - A thread wanting to take the GIL will first let pass a given amount of
+ time (`interval` microseconds) before setting gil_drop_request. This
+ encourages a defined switching period, but doesn't enforce it since
+ opcodes can take an arbitrary time to execute.
+
+ The `interval` value is available for the user to read and modify
+ using the Python API `sys.{get,set}switchinterval()`.
+
+ - When a thread releases the GIL and gil_drop_request is set, that thread
+ ensures that another GIL-awaiting thread gets scheduled.
+ It does so by waiting on a condition variable (switch_cond) until
+ the value of last_holder is changed to something else than its
+ own thread state pointer, indicating that another thread was able to
+ take the GIL.
+
+ This is meant to prohibit the latency-adverse behaviour on multi-core
+ machines where one thread would speculatively release the GIL, but still
+ run and end up being the first to re-acquire it, making the "timeslices"
+ much longer than expected.
+ (Note: this mechanism is enabled with FORCE_SWITCHING above)
+*/
+
+// GH-89279: Force inlining by using a macro.
+#if defined(_MSC_VER) && SIZEOF_INT == 4
+#define _Py_atomic_load_relaxed_int32(ATOMIC_VAL) (assert(sizeof((ATOMIC_VAL)->_value) == 4), *((volatile int*)&((ATOMIC_VAL)->_value)))
+#else
+#define _Py_atomic_load_relaxed_int32(ATOMIC_VAL) _Py_atomic_load_relaxed(ATOMIC_VAL)
+#endif
+
+/* This can set eval_breaker to 0 even though gil_drop_request became
+ 1. We believe this is all right because the eval loop will release
+ the GIL eventually anyway. */
+static inline void
+COMPUTE_EVAL_BREAKER(PyInterpreterState *interp,
+ struct _ceval_runtime_state *ceval,
+ struct _ceval_state *ceval2)
+{
+ _Py_atomic_store_relaxed(&ceval2->eval_breaker,
+ _Py_atomic_load_relaxed_int32(&ceval2->gil_drop_request)
+ | (_Py_atomic_load_relaxed_int32(&ceval->signals_pending)
+ && _Py_ThreadCanHandleSignals(interp))
+ | (_Py_atomic_load_relaxed_int32(&ceval2->pending.calls_to_do)
+ && _Py_ThreadCanHandlePendingCalls())
+ | ceval2->pending.async_exc);
+}
+
+
+static inline void
+SET_GIL_DROP_REQUEST(PyInterpreterState *interp)
+{
+ struct _ceval_state *ceval2 = &interp->ceval;
+ _Py_atomic_store_relaxed(&ceval2->gil_drop_request, 1);
+ _Py_atomic_store_relaxed(&ceval2->eval_breaker, 1);
+}
+
+
+static inline void
+RESET_GIL_DROP_REQUEST(PyInterpreterState *interp)
+{
+ struct _ceval_runtime_state *ceval = &interp->runtime->ceval;
+ struct _ceval_state *ceval2 = &interp->ceval;
+ _Py_atomic_store_relaxed(&ceval2->gil_drop_request, 0);
+ COMPUTE_EVAL_BREAKER(interp, ceval, ceval2);
+}
+
+
+static inline void
+SIGNAL_PENDING_CALLS(PyInterpreterState *interp)
+{
+ struct _ceval_runtime_state *ceval = &interp->runtime->ceval;
+ struct _ceval_state *ceval2 = &interp->ceval;
+ _Py_atomic_store_relaxed(&ceval2->pending.calls_to_do, 1);
+ COMPUTE_EVAL_BREAKER(interp, ceval, ceval2);
+}
+
+
+static inline void
+UNSIGNAL_PENDING_CALLS(PyInterpreterState *interp)
+{
+ struct _ceval_runtime_state *ceval = &interp->runtime->ceval;
+ struct _ceval_state *ceval2 = &interp->ceval;
+ _Py_atomic_store_relaxed(&ceval2->pending.calls_to_do, 0);
+ COMPUTE_EVAL_BREAKER(interp, ceval, ceval2);
+}
+
+
+static inline void
+SIGNAL_PENDING_SIGNALS(PyInterpreterState *interp, int force)
+{
+ struct _ceval_runtime_state *ceval = &interp->runtime->ceval;
+ struct _ceval_state *ceval2 = &interp->ceval;
+ _Py_atomic_store_relaxed(&ceval->signals_pending, 1);
+ if (force) {
+ _Py_atomic_store_relaxed(&ceval2->eval_breaker, 1);
+ }
+ else {
+ /* eval_breaker is not set to 1 if thread_can_handle_signals() is false */
+ COMPUTE_EVAL_BREAKER(interp, ceval, ceval2);
+ }
+}
+
+
+static inline void
+UNSIGNAL_PENDING_SIGNALS(PyInterpreterState *interp)
+{
+ struct _ceval_runtime_state *ceval = &interp->runtime->ceval;
+ struct _ceval_state *ceval2 = &interp->ceval;
+ _Py_atomic_store_relaxed(&ceval->signals_pending, 0);
+ COMPUTE_EVAL_BREAKER(interp, ceval, ceval2);
+}
+
+
+static inline void
+SIGNAL_ASYNC_EXC(PyInterpreterState *interp)
+{
+ struct _ceval_state *ceval2 = &interp->ceval;
+ ceval2->pending.async_exc = 1;
+ _Py_atomic_store_relaxed(&ceval2->eval_breaker, 1);
+}
+
+
+static inline void
+UNSIGNAL_ASYNC_EXC(PyInterpreterState *interp)
+{
+ struct _ceval_runtime_state *ceval = &interp->runtime->ceval;
+ struct _ceval_state *ceval2 = &interp->ceval;
+ ceval2->pending.async_exc = 0;
+ COMPUTE_EVAL_BREAKER(interp, ceval, ceval2);
+}
+
+#ifndef NDEBUG
+/* Ensure that tstate is valid */
+static int
+is_tstate_valid(PyThreadState *tstate)
+{
+ assert(!_PyMem_IsPtrFreed(tstate));
+ assert(!_PyMem_IsPtrFreed(tstate->interp));
+ return 1;
+}
+#endif
+
+/*
+ * Implementation of the Global Interpreter Lock (GIL).
+ */
+
+#include <stdlib.h>
+#include <errno.h>
+
+#include "pycore_atomic.h"
+
+
+#include "condvar.h"
+
+#define MUTEX_INIT(mut) \
+ if (PyMUTEX_INIT(&(mut))) { \
+ Py_FatalError("PyMUTEX_INIT(" #mut ") failed"); };
+#define MUTEX_FINI(mut) \
+ if (PyMUTEX_FINI(&(mut))) { \
+ Py_FatalError("PyMUTEX_FINI(" #mut ") failed"); };
+#define MUTEX_LOCK(mut) \
+ if (PyMUTEX_LOCK(&(mut))) { \
+ Py_FatalError("PyMUTEX_LOCK(" #mut ") failed"); };
+#define MUTEX_UNLOCK(mut) \
+ if (PyMUTEX_UNLOCK(&(mut))) { \
+ Py_FatalError("PyMUTEX_UNLOCK(" #mut ") failed"); };
+
+#define COND_INIT(cond) \
+ if (PyCOND_INIT(&(cond))) { \
+ Py_FatalError("PyCOND_INIT(" #cond ") failed"); };
+#define COND_FINI(cond) \
+ if (PyCOND_FINI(&(cond))) { \
+ Py_FatalError("PyCOND_FINI(" #cond ") failed"); };
+#define COND_SIGNAL(cond) \
+ if (PyCOND_SIGNAL(&(cond))) { \
+ Py_FatalError("PyCOND_SIGNAL(" #cond ") failed"); };
+#define COND_WAIT(cond, mut) \
+ if (PyCOND_WAIT(&(cond), &(mut))) { \
+ Py_FatalError("PyCOND_WAIT(" #cond ") failed"); };
+#define COND_TIMED_WAIT(cond, mut, microseconds, timeout_result) \
+ { \
+ int r = PyCOND_TIMEDWAIT(&(cond), &(mut), (microseconds)); \
+ if (r < 0) \
+ Py_FatalError("PyCOND_WAIT(" #cond ") failed"); \
+ if (r) /* 1 == timeout, 2 == impl. can't say, so assume timeout */ \
+ timeout_result = 1; \
+ else \
+ timeout_result = 0; \
+ } \
+
+
+#define DEFAULT_INTERVAL 5000
+
+static void _gil_initialize(struct _gil_runtime_state *gil)
+{
+ _Py_atomic_int uninitialized = {-1};
+ gil->locked = uninitialized;
+ gil->interval = DEFAULT_INTERVAL;
+}
+
+static int gil_created(struct _gil_runtime_state *gil)
+{
+ return (_Py_atomic_load_explicit(&gil->locked, _Py_memory_order_acquire) >= 0);
+}
+
+static void create_gil(struct _gil_runtime_state *gil)
+{
+ MUTEX_INIT(gil->mutex);
+#ifdef FORCE_SWITCHING
+ MUTEX_INIT(gil->switch_mutex);
+#endif
+ COND_INIT(gil->cond);
+#ifdef FORCE_SWITCHING
+ COND_INIT(gil->switch_cond);
+#endif
+ _Py_atomic_store_relaxed(&gil->last_holder, 0);
+ _Py_ANNOTATE_RWLOCK_CREATE(&gil->locked);
+ _Py_atomic_store_explicit(&gil->locked, 0, _Py_memory_order_release);
+}
+
+static void destroy_gil(struct _gil_runtime_state *gil)
+{
+ /* some pthread-like implementations tie the mutex to the cond
+ * and must have the cond destroyed first.
+ */
+ COND_FINI(gil->cond);
+ MUTEX_FINI(gil->mutex);
+#ifdef FORCE_SWITCHING
+ COND_FINI(gil->switch_cond);
+ MUTEX_FINI(gil->switch_mutex);
+#endif
+ _Py_atomic_store_explicit(&gil->locked, -1,
+ _Py_memory_order_release);
+ _Py_ANNOTATE_RWLOCK_DESTROY(&gil->locked);
+}
+
+#ifdef HAVE_FORK
+static void recreate_gil(struct _gil_runtime_state *gil)
+{
+ _Py_ANNOTATE_RWLOCK_DESTROY(&gil->locked);
+ /* XXX should we destroy the old OS resources here? */
+ create_gil(gil);
+}
+#endif
+
+static void
+drop_gil(struct _ceval_runtime_state *ceval, struct _ceval_state *ceval2,
+ PyThreadState *tstate)
+{
+ struct _gil_runtime_state *gil = &ceval->gil;
+ if (!_Py_atomic_load_relaxed(&gil->locked)) {
+ Py_FatalError("drop_gil: GIL is not locked");
+ }
+
+ /* tstate is allowed to be NULL (early interpreter init) */
+ if (tstate != NULL) {
+ /* Sub-interpreter support: threads might have been switched
+ under our feet using PyThreadState_Swap(). Fix the GIL last
+ holder variable so that our heuristics work. */
+ _Py_atomic_store_relaxed(&gil->last_holder, (uintptr_t)tstate);
+ }
+
+ MUTEX_LOCK(gil->mutex);
+ _Py_ANNOTATE_RWLOCK_RELEASED(&gil->locked, /*is_write=*/1);
+ _Py_atomic_store_relaxed(&gil->locked, 0);
+ COND_SIGNAL(gil->cond);
+ MUTEX_UNLOCK(gil->mutex);
+
+#ifdef FORCE_SWITCHING
+ if (_Py_atomic_load_relaxed(&ceval2->gil_drop_request) && tstate != NULL) {
+ MUTEX_LOCK(gil->switch_mutex);
+ /* Not switched yet => wait */
+ if (((PyThreadState*)_Py_atomic_load_relaxed(&gil->last_holder)) == tstate)
+ {
+ assert(is_tstate_valid(tstate));
+ RESET_GIL_DROP_REQUEST(tstate->interp);
+ /* NOTE: if COND_WAIT does not atomically start waiting when
+ releasing the mutex, another thread can run through, take
+ the GIL and drop it again, and reset the condition
+ before we even had a chance to wait for it. */
+ COND_WAIT(gil->switch_cond, gil->switch_mutex);
+ }
+ MUTEX_UNLOCK(gil->switch_mutex);
+ }
+#endif
+}
+
+
+/* Check if a Python thread must exit immediately, rather than taking the GIL
+ if Py_Finalize() has been called.
+
+ When this function is called by a daemon thread after Py_Finalize() has been
+ called, the GIL does no longer exist.
+
+ tstate must be non-NULL. */
+static inline int
+tstate_must_exit(PyThreadState *tstate)
+{
+ /* bpo-39877: Access _PyRuntime directly rather than using
+ tstate->interp->runtime to support calls from Python daemon threads.
+ After Py_Finalize() has been called, tstate can be a dangling pointer:
+ point to PyThreadState freed memory. */
+ PyThreadState *finalizing = _PyRuntimeState_GetFinalizing(&_PyRuntime);
+ return (finalizing != NULL && finalizing != tstate);
+}
+
+
+/* Take the GIL.
+
+ The function saves errno at entry and restores its value at exit.
+
+ tstate must be non-NULL. */
+static void
+take_gil(PyThreadState *tstate)
+{
+ int err = errno;
+
+ assert(tstate != NULL);
+
+ if (tstate_must_exit(tstate)) {
+ /* bpo-39877: If Py_Finalize() has been called and tstate is not the
+ thread which called Py_Finalize(), exit immediately the thread.
+
+ This code path can be reached by a daemon thread after Py_Finalize()
+ completes. In this case, tstate is a dangling pointer: points to
+ PyThreadState freed memory. */
+ PyThread_exit_thread();
+ }
+
+ assert(is_tstate_valid(tstate));
+ PyInterpreterState *interp = tstate->interp;
+ struct _ceval_runtime_state *ceval = &interp->runtime->ceval;
+ struct _ceval_state *ceval2 = &interp->ceval;
+ struct _gil_runtime_state *gil = &ceval->gil;
+
+ /* Check that _PyEval_InitThreads() was called to create the lock */
+ assert(gil_created(gil));
+
+ MUTEX_LOCK(gil->mutex);
+
+ if (!_Py_atomic_load_relaxed(&gil->locked)) {
+ goto _ready;
+ }
+
+ while (_Py_atomic_load_relaxed(&gil->locked)) {
+ unsigned long saved_switchnum = gil->switch_number;
+
+ unsigned long interval = (gil->interval >= 1 ? gil->interval : 1);
+ int timed_out = 0;
+ COND_TIMED_WAIT(gil->cond, gil->mutex, interval, timed_out);
+
+ /* If we timed out and no switch occurred in the meantime, it is time
+ to ask the GIL-holding thread to drop it. */
+ if (timed_out &&
+ _Py_atomic_load_relaxed(&gil->locked) &&
+ gil->switch_number == saved_switchnum)
+ {
+ if (tstate_must_exit(tstate)) {
+ MUTEX_UNLOCK(gil->mutex);
+ PyThread_exit_thread();
+ }
+ assert(is_tstate_valid(tstate));
+
+ SET_GIL_DROP_REQUEST(interp);
+ }
+ }
+
+_ready:
+#ifdef FORCE_SWITCHING
+ /* This mutex must be taken before modifying gil->last_holder:
+ see drop_gil(). */
+ MUTEX_LOCK(gil->switch_mutex);
+#endif
+ /* We now hold the GIL */
+ _Py_atomic_store_relaxed(&gil->locked, 1);
+ _Py_ANNOTATE_RWLOCK_ACQUIRED(&gil->locked, /*is_write=*/1);
+
+ if (tstate != (PyThreadState*)_Py_atomic_load_relaxed(&gil->last_holder)) {
+ _Py_atomic_store_relaxed(&gil->last_holder, (uintptr_t)tstate);
+ ++gil->switch_number;
+ }
+
+#ifdef FORCE_SWITCHING
+ COND_SIGNAL(gil->switch_cond);
+ MUTEX_UNLOCK(gil->switch_mutex);
+#endif
+
+ if (tstate_must_exit(tstate)) {
+ /* bpo-36475: If Py_Finalize() has been called and tstate is not
+ the thread which called Py_Finalize(), exit immediately the
+ thread.
+
+ This code path can be reached by a daemon thread which was waiting
+ in take_gil() while the main thread called
+ wait_for_thread_shutdown() from Py_Finalize(). */
+ MUTEX_UNLOCK(gil->mutex);
+ drop_gil(ceval, ceval2, tstate);
+ PyThread_exit_thread();
+ }
+ assert(is_tstate_valid(tstate));
+
+ if (_Py_atomic_load_relaxed(&ceval2->gil_drop_request)) {
+ RESET_GIL_DROP_REQUEST(interp);
+ }
+ else {
+ /* bpo-40010: eval_breaker should be recomputed to be set to 1 if there
+ is a pending signal: signal received by another thread which cannot
+ handle signals.
+
+ Note: RESET_GIL_DROP_REQUEST() calls COMPUTE_EVAL_BREAKER(). */
+ COMPUTE_EVAL_BREAKER(interp, ceval, ceval2);
+ }
+
+ /* Don't access tstate if the thread must exit */
+ if (tstate->async_exc != NULL) {
+ _PyEval_SignalAsyncExc(tstate->interp);
+ }
+
+ MUTEX_UNLOCK(gil->mutex);
+
+ errno = err;
+}
+
+void _PyEval_SetSwitchInterval(unsigned long microseconds)
+{
+ struct _gil_runtime_state *gil = &_PyRuntime.ceval.gil;
+ gil->interval = microseconds;
+}
+
+unsigned long _PyEval_GetSwitchInterval()
+{
+ struct _gil_runtime_state *gil = &_PyRuntime.ceval.gil;
+ return gil->interval;
+}
+
+
+int
+_PyEval_ThreadsInitialized(_PyRuntimeState *runtime)
+{
+ return gil_created(&runtime->ceval.gil);
+}
+
+int
+PyEval_ThreadsInitialized(void)
+{
+ _PyRuntimeState *runtime = &_PyRuntime;
+ return _PyEval_ThreadsInitialized(runtime);
+}
+
+PyStatus
+_PyEval_InitGIL(PyThreadState *tstate)
+{
+ if (!_Py_IsMainInterpreter(tstate->interp)) {
+ /* Currently, the GIL is shared by all interpreters,
+ and only the main interpreter is responsible to create
+ and destroy it. */
+ return _PyStatus_OK();
+ }
+
+ struct _gil_runtime_state *gil = &tstate->interp->runtime->ceval.gil;
+ assert(!gil_created(gil));
+
+ PyThread_init_thread();
+ create_gil(gil);
+
+ take_gil(tstate);
+
+ assert(gil_created(gil));
+ return _PyStatus_OK();
+}
+
+void
+_PyEval_FiniGIL(PyInterpreterState *interp)
+{
+ if (!_Py_IsMainInterpreter(interp)) {
+ /* Currently, the GIL is shared by all interpreters,
+ and only the main interpreter is responsible to create
+ and destroy it. */
+ return;
+ }
+
+ struct _gil_runtime_state *gil = &interp->runtime->ceval.gil;
+ if (!gil_created(gil)) {
+ /* First Py_InitializeFromConfig() call: the GIL doesn't exist
+ yet: do nothing. */
+ return;
+ }
+
+ destroy_gil(gil);
+ assert(!gil_created(gil));
+}
+
+void
+PyEval_InitThreads(void)
+{
+ /* Do nothing: kept for backward compatibility */
+}
+
+void
+_PyEval_Fini(void)
+{
+#ifdef Py_STATS
+ _Py_PrintSpecializationStats(1);
+#endif
+}
+void
+PyEval_AcquireLock(void)
+{
+ _PyRuntimeState *runtime = &_PyRuntime;
+ PyThreadState *tstate = _PyRuntimeState_GetThreadState(runtime);
+ _Py_EnsureTstateNotNULL(tstate);
+
+ take_gil(tstate);
+}
+
+void
+PyEval_ReleaseLock(void)
+{
+ _PyRuntimeState *runtime = &_PyRuntime;
+ PyThreadState *tstate = _PyRuntimeState_GetThreadState(runtime);
+ /* This function must succeed when the current thread state is NULL.
+ We therefore avoid PyThreadState_Get() which dumps a fatal error
+ in debug mode. */
+ struct _ceval_runtime_state *ceval = &runtime->ceval;
+ struct _ceval_state *ceval2 = &tstate->interp->ceval;
+ drop_gil(ceval, ceval2, tstate);
+}
+
+void
+_PyEval_ReleaseLock(PyThreadState *tstate)
+{
+ struct _ceval_runtime_state *ceval = &tstate->interp->runtime->ceval;
+ struct _ceval_state *ceval2 = &tstate->interp->ceval;
+ drop_gil(ceval, ceval2, tstate);
+}
+
+void
+PyEval_AcquireThread(PyThreadState *tstate)
+{
+ _Py_EnsureTstateNotNULL(tstate);
+
+ take_gil(tstate);
+
+ struct _gilstate_runtime_state *gilstate = &tstate->interp->runtime->gilstate;
+ if (_PyThreadState_Swap(gilstate, tstate) != NULL) {
+ Py_FatalError("non-NULL old thread state");
+ }
+}
+
+void
+PyEval_ReleaseThread(PyThreadState *tstate)
+{
+ assert(is_tstate_valid(tstate));
+
+ _PyRuntimeState *runtime = tstate->interp->runtime;
+ PyThreadState *new_tstate = _PyThreadState_Swap(&runtime->gilstate, NULL);
+ if (new_tstate != tstate) {
+ Py_FatalError("wrong thread state");
+ }
+ struct _ceval_runtime_state *ceval = &runtime->ceval;
+ struct _ceval_state *ceval2 = &tstate->interp->ceval;
+ drop_gil(ceval, ceval2, tstate);
+}
+
+#ifdef HAVE_FORK
+/* This function is called from PyOS_AfterFork_Child to destroy all threads
+ which are not running in the child process, and clear internal locks
+ which might be held by those threads. */
+PyStatus
+_PyEval_ReInitThreads(PyThreadState *tstate)
+{
+ _PyRuntimeState *runtime = tstate->interp->runtime;
+
+ struct _gil_runtime_state *gil = &runtime->ceval.gil;
+ if (!gil_created(gil)) {
+ return _PyStatus_OK();
+ }
+ recreate_gil(gil);
+
+ take_gil(tstate);
+
+ struct _pending_calls *pending = &tstate->interp->ceval.pending;
+ if (_PyThread_at_fork_reinit(&pending->lock) < 0) {
+ return _PyStatus_ERR("Can't reinitialize pending calls lock");
+ }
+
+ /* Destroy all threads except the current one */
+ _PyThreadState_DeleteExcept(runtime, tstate);
+ return _PyStatus_OK();
+}
+#endif
+
+/* This function is used to signal that async exceptions are waiting to be
+ raised. */
+
+void
+_PyEval_SignalAsyncExc(PyInterpreterState *interp)
+{
+ SIGNAL_ASYNC_EXC(interp);
+}
+
+PyThreadState *
+PyEval_SaveThread(void)
+{
+ _PyRuntimeState *runtime = &_PyRuntime;
+ PyThreadState *tstate = _PyThreadState_Swap(&runtime->gilstate, NULL);
+ _Py_EnsureTstateNotNULL(tstate);
+
+ struct _ceval_runtime_state *ceval = &runtime->ceval;
+ struct _ceval_state *ceval2 = &tstate->interp->ceval;
+ assert(gil_created(&ceval->gil));
+ drop_gil(ceval, ceval2, tstate);
+ return tstate;
+}
+
+void
+PyEval_RestoreThread(PyThreadState *tstate)
+{
+ _Py_EnsureTstateNotNULL(tstate);
+
+ take_gil(tstate);
+
+ struct _gilstate_runtime_state *gilstate = &tstate->interp->runtime->gilstate;
+ _PyThreadState_Swap(gilstate, tstate);
+}
+
+
+/* Mechanism whereby asynchronously executing callbacks (e.g. UNIX
+ signal handlers or Mac I/O completion routines) can schedule calls
+ to a function to be called synchronously.
+ The synchronous function is called with one void* argument.
+ It should return 0 for success or -1 for failure -- failure should
+ be accompanied by an exception.
+
+ If registry succeeds, the registry function returns 0; if it fails
+ (e.g. due to too many pending calls) it returns -1 (without setting
+ an exception condition).
+
+ Note that because registry may occur from within signal handlers,
+ or other asynchronous events, calling malloc() is unsafe!
+
+ Any thread can schedule pending calls, but only the main thread
+ will execute them.
+ There is no facility to schedule calls to a particular thread, but
+ that should be easy to change, should that ever be required. In
+ that case, the static variables here should go into the python
+ threadstate.
+*/
+
+void
+_PyEval_SignalReceived(PyInterpreterState *interp)
+{
+#ifdef MS_WINDOWS
+ // bpo-42296: On Windows, _PyEval_SignalReceived() is called from a signal
+ // handler which can run in a thread different than the Python thread, in
+ // which case _Py_ThreadCanHandleSignals() is wrong. Ignore
+ // _Py_ThreadCanHandleSignals() and always set eval_breaker to 1.
+ //
+ // The next eval_frame_handle_pending() call will call
+ // _Py_ThreadCanHandleSignals() to recompute eval_breaker.
+ int force = 1;
+#else
+ int force = 0;
+#endif
+ /* bpo-30703: Function called when the C signal handler of Python gets a
+ signal. We cannot queue a callback using _PyEval_AddPendingCall() since
+ that function is not async-signal-safe. */
+ SIGNAL_PENDING_SIGNALS(interp, force);
+}
+
+/* Push one item onto the queue while holding the lock. */
+static int
+_push_pending_call(struct _pending_calls *pending,
+ int (*func)(void *), void *arg)
+{
+ int i = pending->last;
+ int j = (i + 1) % NPENDINGCALLS;
+ if (j == pending->first) {
+ return -1; /* Queue full */
+ }
+ pending->calls[i].func = func;
+ pending->calls[i].arg = arg;
+ pending->last = j;
+ return 0;
+}
+
+/* Pop one item off the queue while holding the lock. */
+static void
+_pop_pending_call(struct _pending_calls *pending,
+ int (**func)(void *), void **arg)
+{
+ int i = pending->first;
+ if (i == pending->last) {
+ return; /* Queue empty */
+ }
+
+ *func = pending->calls[i].func;
+ *arg = pending->calls[i].arg;
+ pending->first = (i + 1) % NPENDINGCALLS;
+}
+
+/* This implementation is thread-safe. It allows
+ scheduling to be made from any thread, and even from an executing
+ callback.
+ */
+
+int
+_PyEval_AddPendingCall(PyInterpreterState *interp,
+ int (*func)(void *), void *arg)
+{
+ struct _pending_calls *pending = &interp->ceval.pending;
+ /* Ensure that _PyEval_InitState() was called
+ and that _PyEval_FiniState() is not called yet. */
+ assert(pending->lock != NULL);
+
+ PyThread_acquire_lock(pending->lock, WAIT_LOCK);
+ int result = _push_pending_call(pending, func, arg);
+ PyThread_release_lock(pending->lock);
+
+ /* signal main loop */
+ SIGNAL_PENDING_CALLS(interp);
+ return result;
+}
+
+int
+Py_AddPendingCall(int (*func)(void *), void *arg)
+{
+ /* Best-effort to support subinterpreters and calls with the GIL released.
+
+ First attempt _PyThreadState_GET() since it supports subinterpreters.
+
+ If the GIL is released, _PyThreadState_GET() returns NULL . In this
+ case, use PyGILState_GetThisThreadState() which works even if the GIL
+ is released.
+
+ Sadly, PyGILState_GetThisThreadState() doesn't support subinterpreters:
+ see bpo-10915 and bpo-15751.
+
+ Py_AddPendingCall() doesn't require the caller to hold the GIL. */
+ PyThreadState *tstate = _PyThreadState_GET();
+ if (tstate == NULL) {
+ tstate = PyGILState_GetThisThreadState();
+ }
+
+ PyInterpreterState *interp;
+ if (tstate != NULL) {
+ interp = tstate->interp;
+ }
+ else {
+ /* Last resort: use the main interpreter */
+ interp = _PyInterpreterState_Main();
+ }
+ return _PyEval_AddPendingCall(interp, func, arg);
+}
+
+static int
+handle_signals(PyThreadState *tstate)
+{
+ assert(is_tstate_valid(tstate));
+ if (!_Py_ThreadCanHandleSignals(tstate->interp)) {
+ return 0;
+ }
+
+ UNSIGNAL_PENDING_SIGNALS(tstate->interp);
+ if (_PyErr_CheckSignalsTstate(tstate) < 0) {
+ /* On failure, re-schedule a call to handle_signals(). */
+ SIGNAL_PENDING_SIGNALS(tstate->interp, 0);
+ return -1;
+ }
+ return 0;
+}
+
+static int
+make_pending_calls(PyInterpreterState *interp)
+{
+ /* only execute pending calls on main thread */
+ if (!_Py_ThreadCanHandlePendingCalls()) {
+ return 0;
+ }
+
+ /* don't perform recursive pending calls */
+ static int busy = 0;
+ if (busy) {
+ return 0;
+ }
+ busy = 1;
+
+ /* unsignal before starting to call callbacks, so that any callback
+ added in-between re-signals */
+ UNSIGNAL_PENDING_CALLS(interp);
+ int res = 0;
+
+ /* perform a bounded number of calls, in case of recursion */
+ struct _pending_calls *pending = &interp->ceval.pending;
+ for (int i=0; i<NPENDINGCALLS; i++) {
+ int (*func)(void *) = NULL;
+ void *arg = NULL;
+
+ /* pop one item off the queue while holding the lock */
+ PyThread_acquire_lock(pending->lock, WAIT_LOCK);
+ _pop_pending_call(pending, &func, &arg);
+ PyThread_release_lock(pending->lock);
+
+ /* having released the lock, perform the callback */
+ if (func == NULL) {
+ break;
+ }
+ res = func(arg);
+ if (res) {
+ goto error;
+ }
+ }
+
+ busy = 0;
+ return res;
+
+error:
+ busy = 0;
+ SIGNAL_PENDING_CALLS(interp);
+ return res;
+}
+
+void
+_Py_FinishPendingCalls(PyThreadState *tstate)
+{
+ assert(PyGILState_Check());
+ assert(is_tstate_valid(tstate));
+
+ struct _pending_calls *pending = &tstate->interp->ceval.pending;
+
+ if (!_Py_atomic_load_relaxed_int32(&(pending->calls_to_do))) {
+ return;
+ }
+
+ if (make_pending_calls(tstate->interp) < 0) {
+ PyObject *exc, *val, *tb;
+ _PyErr_Fetch(tstate, &exc, &val, &tb);
+ PyErr_BadInternalCall();
+ _PyErr_ChainExceptions(exc, val, tb);
+ _PyErr_Print(tstate);
+ }
+}
+
+/* Py_MakePendingCalls() is a simple wrapper for the sake
+ of backward-compatibility. */
+int
+Py_MakePendingCalls(void)
+{
+ assert(PyGILState_Check());
+
+ PyThreadState *tstate = _PyThreadState_GET();
+ assert(is_tstate_valid(tstate));
+
+ /* Python signal handler doesn't really queue a callback: it only signals
+ that a signal was received, see _PyEval_SignalReceived(). */
+ int res = handle_signals(tstate);
+ if (res != 0) {
+ return res;
+ }
+
+ res = make_pending_calls(tstate->interp);
+ if (res != 0) {
+ return res;
+ }
+
+ return 0;
+}
+
+/* The interpreter's recursion limit */
+
+void
+_PyEval_InitRuntimeState(struct _ceval_runtime_state *ceval)
+{
+ _gil_initialize(&ceval->gil);
+}
+
+void
+_PyEval_InitState(struct _ceval_state *ceval, PyThread_type_lock pending_lock)
+{
+ struct _pending_calls *pending = &ceval->pending;
+ assert(pending->lock == NULL);
+
+ pending->lock = pending_lock;
+}
+
+void
+_PyEval_FiniState(struct _ceval_state *ceval)
+{
+ struct _pending_calls *pending = &ceval->pending;
+ if (pending->lock != NULL) {
+ PyThread_free_lock(pending->lock);
+ pending->lock = NULL;
+ }
+}
+
+/* Handle signals, pending calls, GIL drop request
+ and asynchronous exception */
+int
+_Py_HandlePending(PyThreadState *tstate)
+{
+ _PyRuntimeState * const runtime = &_PyRuntime;
+ struct _ceval_runtime_state *ceval = &runtime->ceval;
+
+ /* Pending signals */
+ if (_Py_atomic_load_relaxed_int32(&ceval->signals_pending)) {
+ if (handle_signals(tstate) != 0) {
+ return -1;
+ }
+ }
+
+ /* Pending calls */
+ struct _ceval_state *ceval2 = &tstate->interp->ceval;
+ if (_Py_atomic_load_relaxed_int32(&ceval2->pending.calls_to_do)) {
+ if (make_pending_calls(tstate->interp) != 0) {
+ return -1;
+ }
+ }
+
+ /* GIL drop request */
+ if (_Py_atomic_load_relaxed_int32(&ceval2->gil_drop_request)) {
+ /* Give another thread a chance */
+ if (_PyThreadState_Swap(&runtime->gilstate, NULL) != tstate) {
+ Py_FatalError("tstate mix-up");
+ }
+ drop_gil(ceval, ceval2, tstate);
+
+ /* Other threads may run now */
+
+ take_gil(tstate);
+
+ if (_PyThreadState_Swap(&runtime->gilstate, tstate) != NULL) {
+ Py_FatalError("orphan tstate");
+ }
+ }
+
+ /* Check for asynchronous exception. */
+ if (tstate->async_exc != NULL) {
+ PyObject *exc = tstate->async_exc;
+ tstate->async_exc = NULL;
+ UNSIGNAL_ASYNC_EXC(tstate->interp);
+ _PyErr_SetNone(tstate, exc);
+ Py_DECREF(exc);
+ return -1;
+ }
+
+#ifdef MS_WINDOWS
+ // bpo-42296: On Windows, _PyEval_SignalReceived() can be called in a
+ // different thread than the Python thread, in which case
+ // _Py_ThreadCanHandleSignals() is wrong. Recompute eval_breaker in the
+ // current Python thread with the correct _Py_ThreadCanHandleSignals()
+ // value. It prevents to interrupt the eval loop at every instruction if
+ // the current Python thread cannot handle signals (if
+ // _Py_ThreadCanHandleSignals() is false).
+ COMPUTE_EVAL_BREAKER(tstate->interp, ceval, ceval2);
+#endif
+
+ return 0;
+}
+