summaryrefslogtreecommitdiffstats
path: root/Demo/turtle/tdemo_bytedesign.py
blob: 96118b32df2b0d5838be70efca80d3e9ebf65c12 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
#!/usr/bin/env python3
"""      turtle-example-suite:

        tdemo_bytedesign.py

An example adapted from the example-suite
of PythonCard's turtle graphcis.

It's based on an article in BYTE magazine
Problem Solving with Logo: Using Turtle
Graphics to Redraw a Design
November 1982, p. 118 - 134

-------------------------------------------

Due to the statement

t.delay(0)

in line 152, which sets the animation delay
to 0, this animation runs in "line per line"
mode as fast as possible.
"""

import math
from turtle import Turtle, mainloop
from time import clock

# wrapper for any additional drawing routines
# that need to know about each other
class Designer(Turtle):

    def design(self, homePos, scale):
        self.up()
        for i in range(5):
            self.forward(64.65 * scale)
            self.down()
            self.wheel(self.position(), scale)
            self.up()
            self.backward(64.65 * scale)
            self.right(72)
        self.up()
        self.goto(homePos)
        self.right(36)
        self.forward(24.5 * scale)
        self.right(198)
        self.down()
        self.centerpiece(46 * scale, 143.4, scale)
        self.getscreen().tracer(True)

    def wheel(self, initpos, scale):
        self.right(54)
        for i in range(4):
            self.pentpiece(initpos, scale)
        self.down()
        self.left(36)
        for i in range(5):
            self.tripiece(initpos, scale)
        self.left(36)
        for i in range(5):
            self.down()
            self.right(72)
            self.forward(28 * scale)
            self.up()
            self.backward(28 * scale)
        self.left(54)
        self.getscreen().update()

    def tripiece(self, initpos, scale):
        oldh = self.heading()
        self.down()
        self.backward(2.5 * scale)
        self.tripolyr(31.5 * scale, scale)
        self.up()
        self.goto(initpos)
        self.setheading(oldh)
        self.down()
        self.backward(2.5 * scale)
        self.tripolyl(31.5 * scale, scale)
        self.up()
        self.goto(initpos)
        self.setheading(oldh)
        self.left(72)
        self.getscreen().update()

    def pentpiece(self, initpos, scale):
        oldh = self.heading()
        self.up()
        self.forward(29 * scale)
        self.down()
        for i in range(5):
            self.forward(18 * scale)
            self.right(72)
        self.pentr(18 * scale, 75, scale)
        self.up()
        self.goto(initpos)
        self.setheading(oldh)
        self.forward(29 * scale)
        self.down()
        for i in range(5):
            self.forward(18 * scale)
            self.right(72)
        self.pentl(18 * scale, 75, scale)
        self.up()
        self.goto(initpos)
        self.setheading(oldh)
        self.left(72)
        self.getscreen().update()

    def pentl(self, side, ang, scale):
        if side < (2 * scale): return
        self.forward(side)
        self.left(ang)
        self.pentl(side - (.38 * scale), ang, scale)

    def pentr(self, side, ang, scale):
        if side < (2 * scale): return
        self.forward(side)
        self.right(ang)
        self.pentr(side - (.38 * scale), ang, scale)

    def tripolyr(self, side, scale):
        if side < (4 * scale): return
        self.forward(side)
        self.right(111)
        self.forward(side / 1.78)
        self.right(111)
        self.forward(side / 1.3)
        self.right(146)
        self.tripolyr(side * .75, scale)

    def tripolyl(self, side, scale):
        if side < (4 * scale): return
        self.forward(side)
        self.left(111)
        self.forward(side / 1.78)
        self.left(111)
        self.forward(side / 1.3)
        self.left(146)
        self.tripolyl(side * .75, scale)

    def centerpiece(self, s, a, scale):
        self.forward(s); self.left(a)
        if s < (7.5 * scale):
            return
        self.centerpiece(s - (1.2 * scale), a, scale)

def main():
    t = Designer()
    t.speed(0)
    t.hideturtle()
    t.getscreen().delay(0)
    t.getscreen().tracer(0)
    at = clock()
    t.design(t.position(), 2)
    et = clock()
    return "runtime: %.2f sec." % (et-at)

if __name__ == '__main__':
    msg = main()
    print(msg)
    mainloop()