1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
|
\chapter{Concrete Objects Layer \label{concrete}}
The functions in this chapter are specific to certain Python object
types. Passing them an object of the wrong type is not a good idea;
if you receive an object from a Python program and you are not sure
that it has the right type, you must perform a type check first;
for example, to check that an object is a dictionary, use
\cfunction{PyDict_Check()}. The chapter is structured like the
``family tree'' of Python object types.
\warning{While the functions described in this chapter carefully check
the type of the objects which are passed in, many of them do not check
for \NULL{} being passed instead of a valid object. Allowing \NULL{}
to be passed in can cause memory access violations and immediate
termination of the interpreter.}
\section{Fundamental Objects \label{fundamental}}
This section describes Python type objects and the singleton object
\code{None}.
\subsection{Type Objects \label{typeObjects}}
\obindex{type}
\begin{ctypedesc}{PyTypeObject}
The C structure of the objects used to describe built-in types.
\end{ctypedesc}
\begin{cvardesc}{PyObject*}{PyType_Type}
This is the type object for type objects; it is the same object as
\code{type} and \code{types.TypeType} in the Python layer.
\withsubitem{(in module types)}{\ttindex{TypeType}}
\end{cvardesc}
\begin{cfuncdesc}{int}{PyType_Check}{PyObject *o}
Return true if the object \var{o} is a type object, including
instances of types derived from the standard type object. Return
false in all other cases.
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PyType_CheckExact}{PyObject *o}
Return true if the object \var{o} is a type object, but not a
subtype of the standard type object. Return false in all other
cases.
\versionadded{2.2}
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PyType_HasFeature}{PyObject *o, int feature}
Return true if the type object \var{o} sets the feature
\var{feature}. Type features are denoted by single bit flags.
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PyType_IS_GC}{PyObject *o}
Return true if the type object includes support for the cycle
detector; this tests the type flag \constant{Py_TPFLAGS_HAVE_GC}.
\versionadded{2.0}
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PyType_IsSubtype}{PyTypeObject *a, PyTypeObject *b}
Return true if \var{a} is a subtype of \var{b}.
\versionadded{2.2}
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyType_GenericAlloc}{PyTypeObject *type,
Py_ssize_t nitems}
\versionadded{2.2}
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyType_GenericNew}{PyTypeObject *type,
PyObject *args, PyObject *kwds}
\versionadded{2.2}
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PyType_Ready}{PyTypeObject *type}
Finalize a type object. This should be called on all type objects
to finish their initialization. This function is responsible for
adding inherited slots from a type's base class. Return \code{0}
on success, or return \code{-1} and sets an exception on error.
\versionadded{2.2}
\end{cfuncdesc}
\subsection{The None Object \label{noneObject}}
\obindex{None}
Note that the \ctype{PyTypeObject} for \code{None} is not directly
exposed in the Python/C API. Since \code{None} is a singleton,
testing for object identity (using \samp{==} in C) is sufficient.
There is no \cfunction{PyNone_Check()} function for the same reason.
\begin{cvardesc}{PyObject*}{Py_None}
The Python \code{None} object, denoting lack of value. This object
has no methods. It needs to be treated just like any other object
with respect to reference counts.
\end{cvardesc}
\begin{csimplemacrodesc}{Py_RETURN_NONE}
Properly handle returning \cdata{Py_None} from within a C function.
\versionadded{2.4}
\end{csimplemacrodesc}
\section{Numeric Objects \label{numericObjects}}
\obindex{numeric}
\subsection{Plain Integer Objects \label{intObjects}}
\obindex{integer}
\begin{ctypedesc}{PyIntObject}
This subtype of \ctype{PyObject} represents a Python integer
object.
\end{ctypedesc}
\begin{cvardesc}{PyTypeObject}{PyInt_Type}
This instance of \ctype{PyTypeObject} represents the Python plain
integer type. This is the same object as \code{int} and
\code{types.IntType}.
\withsubitem{(in modules types)}{\ttindex{IntType}}
\end{cvardesc}
\begin{cfuncdesc}{int}{PyInt_Check}{PyObject *o}
Return true if \var{o} is of type \cdata{PyInt_Type} or a subtype
of \cdata{PyInt_Type}.
\versionchanged[Allowed subtypes to be accepted]{2.2}
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PyInt_CheckExact}{PyObject *o}
Return true if \var{o} is of type \cdata{PyInt_Type}, but not a
subtype of \cdata{PyInt_Type}.
\versionadded{2.2}
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyInt_FromString}{char *str, char **pend,
int base}
Return a new \ctype{PyIntObject} or \ctype{PyLongObject} based on the
string value in \var{str}, which is interpreted according to the radix in
\var{base}. If \var{pend} is non-\NULL{}, \code{*\var{pend}} will point to
the first character in \var{str} which follows the representation of the
number. If \var{base} is \code{0}, the radix will be determined based on
the leading characters of \var{str}: if \var{str} starts with \code{'0x'}
or \code{'0X'}, radix 16 will be used; if \var{str} starts with
\code{'0'}, radix 8 will be used; otherwise radix 10 will be used. If
\var{base} is not \code{0}, it must be between \code{2} and \code{36},
inclusive. Leading spaces are ignored. If there are no digits,
\exception{ValueError} will be raised. If the string represents a number
too large to be contained within the machine's \ctype{long int} type and
overflow warnings are being suppressed, a \ctype{PyLongObject} will be
returned. If overflow warnings are not being suppressed, \NULL{} will be
returned in this case.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyInt_FromLong}{long ival}
Create a new integer object with a value of \var{ival}.
The current implementation keeps an array of integer objects for all
integers between \code{-5} and \code{256}, when you create an int in
that range you actually just get back a reference to the existing
object. So it should be possible to change the value of \code{1}. I
suspect the behaviour of Python in this case is undefined. :-)
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyInt_FromSsize_t}{Py_ssize_t ival}
Create a new integer object with a value of \var{ival}.
If the value exceeds \code{LONG_MAX}, a long integer object is
returned.
\versionadded{2.5}
\end{cfuncdesc}
\begin{cfuncdesc}{long}{PyInt_AsLong}{PyObject *io}
Will first attempt to cast the object to a \ctype{PyIntObject}, if
it is not already one, and then return its value. If there is an
error, \code{-1} is returned, and the caller should check
\code{PyErr_Occurred()} to find out whether there was an error, or
whether the value just happened to be -1.
\end{cfuncdesc}
\begin{cfuncdesc}{long}{PyInt_AS_LONG}{PyObject *io}
Return the value of the object \var{io}. No error checking is
performed.
\end{cfuncdesc}
\begin{cfuncdesc}{unsigned long}{PyInt_AsUnsignedLongMask}{PyObject *io}
Will first attempt to cast the object to a \ctype{PyIntObject} or
\ctype{PyLongObject}, if it is not already one, and then return its
value as unsigned long. This function does not check for overflow.
\versionadded{2.3}
\end{cfuncdesc}
\begin{cfuncdesc}{unsigned PY_LONG_LONG}{PyInt_AsUnsignedLongLongMask}{PyObject *io}
Will first attempt to cast the object to a \ctype{PyIntObject} or
\ctype{PyLongObject}, if it is not already one, and then return its
value as unsigned long long, without checking for overflow.
\versionadded{2.3}
\end{cfuncdesc}
\begin{cfuncdesc}{Py_ssize_t}{PyInt_AsSsize_t}{PyObject *io}
Will first attempt to cast the object to a \ctype{PyIntObject} or
\ctype{PyLongObject}, if it is not already one, and then return its
value as \ctype{Py_ssize_t}.
\versionadded{2.5}
\end{cfuncdesc}
\begin{cfuncdesc}{long}{PyInt_GetMax}{}
Return the system's idea of the largest integer it can handle
(\constant{LONG_MAX}\ttindex{LONG_MAX}, as defined in the system
header files).
\end{cfuncdesc}
\subsection{Boolean Objects \label{boolObjects}}
Booleans in Python are implemented as a subclass of integers. There
are only two booleans, \constant{Py_False} and \constant{Py_True}. As
such, the normal creation and deletion functions don't apply to
booleans. The following macros are available, however.
\begin{cfuncdesc}{int}{PyBool_Check}{PyObject *o}
Return true if \var{o} is of type \cdata{PyBool_Type}.
\versionadded{2.3}
\end{cfuncdesc}
\begin{cvardesc}{PyObject*}{Py_False}
The Python \code{False} object. This object has no methods. It needs to
be treated just like any other object with respect to reference counts.
\end{cvardesc}
\begin{cvardesc}{PyObject*}{Py_True}
The Python \code{True} object. This object has no methods. It needs to
be treated just like any other object with respect to reference counts.
\end{cvardesc}
\begin{csimplemacrodesc}{Py_RETURN_FALSE}
Return \constant{Py_False} from a function, properly incrementing its
reference count.
\versionadded{2.4}
\end{csimplemacrodesc}
\begin{csimplemacrodesc}{Py_RETURN_TRUE}
Return \constant{Py_True} from a function, properly incrementing its
reference count.
\versionadded{2.4}
\end{csimplemacrodesc}
\begin{cfuncdesc}{PyObject*}{PyBool_FromLong}{long v}
Return a new reference to \constant{Py_True} or \constant{Py_False}
depending on the truth value of \var{v}.
\versionadded{2.3}
\end{cfuncdesc}
\subsection{Long Integer Objects \label{longObjects}}
\obindex{long integer}
\begin{ctypedesc}{PyLongObject}
This subtype of \ctype{PyObject} represents a Python long integer
object.
\end{ctypedesc}
\begin{cvardesc}{PyTypeObject}{PyLong_Type}
This instance of \ctype{PyTypeObject} represents the Python long
integer type. This is the same object as \code{long} and
\code{types.LongType}.
\withsubitem{(in modules types)}{\ttindex{LongType}}
\end{cvardesc}
\begin{cfuncdesc}{int}{PyLong_Check}{PyObject *p}
Return true if its argument is a \ctype{PyLongObject} or a subtype
of \ctype{PyLongObject}.
\versionchanged[Allowed subtypes to be accepted]{2.2}
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PyLong_CheckExact}{PyObject *p}
Return true if its argument is a \ctype{PyLongObject}, but not a
subtype of \ctype{PyLongObject}.
\versionadded{2.2}
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyLong_FromLong}{long v}
Return a new \ctype{PyLongObject} object from \var{v}, or \NULL{}
on failure.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyLong_FromUnsignedLong}{unsigned long v}
Return a new \ctype{PyLongObject} object from a C \ctype{unsigned
long}, or \NULL{} on failure.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyLong_FromLongLong}{PY_LONG_LONG v}
Return a new \ctype{PyLongObject} object from a C \ctype{long long},
or \NULL{} on failure.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyLong_FromUnsignedLongLong}{unsigned PY_LONG_LONG v}
Return a new \ctype{PyLongObject} object from a C \ctype{unsigned
long long}, or \NULL{} on failure.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyLong_FromDouble}{double v}
Return a new \ctype{PyLongObject} object from the integer part of
\var{v}, or \NULL{} on failure.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyLong_FromString}{char *str, char **pend,
int base}
Return a new \ctype{PyLongObject} based on the string value in
\var{str}, which is interpreted according to the radix in
\var{base}. If \var{pend} is non-\NULL{}, \code{*\var{pend}} will
point to the first character in \var{str} which follows the
representation of the number. If \var{base} is \code{0}, the radix
will be determined based on the leading characters of \var{str}: if
\var{str} starts with \code{'0x'} or \code{'0X'}, radix 16 will be
used; if \var{str} starts with \code{'0'}, radix 8 will be used;
otherwise radix 10 will be used. If \var{base} is not \code{0}, it
must be between \code{2} and \code{36}, inclusive. Leading spaces
are ignored. If there are no digits, \exception{ValueError} will be
raised.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyLong_FromUnicode}{Py_UNICODE *u,
Py_ssize_t length, int base}
Convert a sequence of Unicode digits to a Python long integer
value. The first parameter, \var{u}, points to the first character
of the Unicode string, \var{length} gives the number of characters,
and \var{base} is the radix for the conversion. The radix must be
in the range [2, 36]; if it is out of range, \exception{ValueError}
will be raised.
\versionadded{1.6}
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyLong_FromVoidPtr}{void *p}
Create a Python integer or long integer from the pointer \var{p}.
The pointer value can be retrieved from the resulting value using
\cfunction{PyLong_AsVoidPtr()}.
\versionadded{1.5.2}
\versionchanged[If the integer is larger than LONG_MAX,
a positive long integer is returned]{2.5}
\end{cfuncdesc}
\begin{cfuncdesc}{long}{PyLong_AsLong}{PyObject *pylong}
Return a C \ctype{long} representation of the contents of
\var{pylong}. If \var{pylong} is greater than
\constant{LONG_MAX}\ttindex{LONG_MAX}, an \exception{OverflowError}
is raised.
\withsubitem{(built-in exception)}{\ttindex{OverflowError}}
\end{cfuncdesc}
\begin{cfuncdesc}{unsigned long}{PyLong_AsUnsignedLong}{PyObject *pylong}
Return a C \ctype{unsigned long} representation of the contents of
\var{pylong}. If \var{pylong} is greater than
\constant{ULONG_MAX}\ttindex{ULONG_MAX}, an
\exception{OverflowError} is raised.
\withsubitem{(built-in exception)}{\ttindex{OverflowError}}
\end{cfuncdesc}
\begin{cfuncdesc}{PY_LONG_LONG}{PyLong_AsLongLong}{PyObject *pylong}
Return a C \ctype{long long} from a Python long integer. If
\var{pylong} cannot be represented as a \ctype{long long}, an
\exception{OverflowError} will be raised.
\versionadded{2.2}
\end{cfuncdesc}
\begin{cfuncdesc}{unsigned PY_LONG_LONG}{PyLong_AsUnsignedLongLong}{PyObject
*pylong}
Return a C \ctype{unsigned long long} from a Python long integer.
If \var{pylong} cannot be represented as an \ctype{unsigned long
long}, an \exception{OverflowError} will be raised if the value is
positive, or a \exception{TypeError} will be raised if the value is
negative.
\versionadded{2.2}
\end{cfuncdesc}
\begin{cfuncdesc}{unsigned long}{PyLong_AsUnsignedLongMask}{PyObject *io}
Return a C \ctype{unsigned long} from a Python long integer, without
checking for overflow.
\versionadded{2.3}
\end{cfuncdesc}
\begin{cfuncdesc}{unsigned PY_LONG_LONG}{PyLong_AsUnsignedLongLongMask}{PyObject *io}
Return a C \ctype{unsigned long long} from a Python long integer, without
checking for overflow.
\versionadded{2.3}
\end{cfuncdesc}
\begin{cfuncdesc}{double}{PyLong_AsDouble}{PyObject *pylong}
Return a C \ctype{double} representation of the contents of
\var{pylong}. If \var{pylong} cannot be approximately represented
as a \ctype{double}, an \exception{OverflowError} exception is
raised and \code{-1.0} will be returned.
\end{cfuncdesc}
\begin{cfuncdesc}{void*}{PyLong_AsVoidPtr}{PyObject *pylong}
Convert a Python integer or long integer \var{pylong} to a C
\ctype{void} pointer. If \var{pylong} cannot be converted, an
\exception{OverflowError} will be raised. This is only assured to
produce a usable \ctype{void} pointer for values created with
\cfunction{PyLong_FromVoidPtr()}.
\versionadded{1.5.2}
\versionchanged[For values outside 0..LONG_MAX, both signed and
unsigned integers are acccepted]{2.5}
\end{cfuncdesc}
\subsection{Floating Point Objects \label{floatObjects}}
\obindex{floating point}
\begin{ctypedesc}{PyFloatObject}
This subtype of \ctype{PyObject} represents a Python floating point
object.
\end{ctypedesc}
\begin{cvardesc}{PyTypeObject}{PyFloat_Type}
This instance of \ctype{PyTypeObject} represents the Python floating
point type. This is the same object as \code{float} and
\code{types.FloatType}.
\withsubitem{(in modules types)}{\ttindex{FloatType}}
\end{cvardesc}
\begin{cfuncdesc}{int}{PyFloat_Check}{PyObject *p}
Return true if its argument is a \ctype{PyFloatObject} or a subtype
of \ctype{PyFloatObject}.
\versionchanged[Allowed subtypes to be accepted]{2.2}
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PyFloat_CheckExact}{PyObject *p}
Return true if its argument is a \ctype{PyFloatObject}, but not a
subtype of \ctype{PyFloatObject}.
\versionadded{2.2}
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyFloat_FromString}{PyObject *str}
Create a \ctype{PyFloatObject} object based on the string value in
\var{str}, or \NULL{} on failure.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyFloat_FromDouble}{double v}
Create a \ctype{PyFloatObject} object from \var{v}, or \NULL{} on
failure.
\end{cfuncdesc}
\begin{cfuncdesc}{double}{PyFloat_AsDouble}{PyObject *pyfloat}
Return a C \ctype{double} representation of the contents of
\var{pyfloat}. If \var{pyfloat} is not a Python floating point
object but has a \method{__float__} method, this method will first
be called to convert \var{pyfloat} into a float.
\end{cfuncdesc}
\begin{cfuncdesc}{double}{PyFloat_AS_DOUBLE}{PyObject *pyfloat}
Return a C \ctype{double} representation of the contents of
\var{pyfloat}, but without error checking.
\end{cfuncdesc}
\subsection{Complex Number Objects \label{complexObjects}}
\obindex{complex number}
Python's complex number objects are implemented as two distinct types
when viewed from the C API: one is the Python object exposed to
Python programs, and the other is a C structure which represents the
actual complex number value. The API provides functions for working
with both.
\subsubsection{Complex Numbers as C Structures}
Note that the functions which accept these structures as parameters
and return them as results do so \emph{by value} rather than
dereferencing them through pointers. This is consistent throughout
the API.
\begin{ctypedesc}{Py_complex}
The C structure which corresponds to the value portion of a Python
complex number object. Most of the functions for dealing with
complex number objects use structures of this type as input or
output values, as appropriate. It is defined as:
\begin{verbatim}
typedef struct {
double real;
double imag;
} Py_complex;
\end{verbatim}
\end{ctypedesc}
\begin{cfuncdesc}{Py_complex}{_Py_c_sum}{Py_complex left, Py_complex right}
Return the sum of two complex numbers, using the C
\ctype{Py_complex} representation.
\end{cfuncdesc}
\begin{cfuncdesc}{Py_complex}{_Py_c_diff}{Py_complex left, Py_complex right}
Return the difference between two complex numbers, using the C
\ctype{Py_complex} representation.
\end{cfuncdesc}
\begin{cfuncdesc}{Py_complex}{_Py_c_neg}{Py_complex complex}
Return the negation of the complex number \var{complex}, using the C
\ctype{Py_complex} representation.
\end{cfuncdesc}
\begin{cfuncdesc}{Py_complex}{_Py_c_prod}{Py_complex left, Py_complex right}
Return the product of two complex numbers, using the C
\ctype{Py_complex} representation.
\end{cfuncdesc}
\begin{cfuncdesc}{Py_complex}{_Py_c_quot}{Py_complex dividend,
Py_complex divisor}
Return the quotient of two complex numbers, using the C
\ctype{Py_complex} representation.
\end{cfuncdesc}
\begin{cfuncdesc}{Py_complex}{_Py_c_pow}{Py_complex num, Py_complex exp}
Return the exponentiation of \var{num} by \var{exp}, using the C
\ctype{Py_complex} representation.
\end{cfuncdesc}
\subsubsection{Complex Numbers as Python Objects}
\begin{ctypedesc}{PyComplexObject}
This subtype of \ctype{PyObject} represents a Python complex number
object.
\end{ctypedesc}
\begin{cvardesc}{PyTypeObject}{PyComplex_Type}
This instance of \ctype{PyTypeObject} represents the Python complex
number type. It is the same object as \code{complex} and
\code{types.ComplexType}.
\end{cvardesc}
\begin{cfuncdesc}{int}{PyComplex_Check}{PyObject *p}
Return true if its argument is a \ctype{PyComplexObject} or a
subtype of \ctype{PyComplexObject}.
\versionchanged[Allowed subtypes to be accepted]{2.2}
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PyComplex_CheckExact}{PyObject *p}
Return true if its argument is a \ctype{PyComplexObject}, but not a
subtype of \ctype{PyComplexObject}.
\versionadded{2.2}
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyComplex_FromCComplex}{Py_complex v}
Create a new Python complex number object from a C
\ctype{Py_complex} value.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyComplex_FromDoubles}{double real, double imag}
Return a new \ctype{PyComplexObject} object from \var{real} and
\var{imag}.
\end{cfuncdesc}
\begin{cfuncdesc}{double}{PyComplex_RealAsDouble}{PyObject *op}
Return the real part of \var{op} as a C \ctype{double}.
\end{cfuncdesc}
\begin{cfuncdesc}{double}{PyComplex_ImagAsDouble}{PyObject *op}
Return the imaginary part of \var{op} as a C \ctype{double}.
\end{cfuncdesc}
\begin{cfuncdesc}{Py_complex}{PyComplex_AsCComplex}{PyObject *op}
Return the \ctype{Py_complex} value of the complex number \var{op}.
\versionchanged[If \var{op} is not a Python complex number object
but has a \method{__complex__} method, this method
will first be called to convert \var{op} to a Python
complex number object]{2.6}
\end{cfuncdesc}
\section{Sequence Objects \label{sequenceObjects}}
\obindex{sequence}
Generic operations on sequence objects were discussed in the previous
chapter; this section deals with the specific kinds of sequence
objects that are intrinsic to the Python language.
\subsection{String Objects \label{stringObjects}}
These functions raise \exception{TypeError} when expecting a string
parameter and are called with a non-string parameter.
\obindex{string}
\begin{ctypedesc}{PyStringObject}
This subtype of \ctype{PyObject} represents a Python string object.
\end{ctypedesc}
\begin{cvardesc}{PyTypeObject}{PyString_Type}
This instance of \ctype{PyTypeObject} represents the Python string
type; it is the same object as \code{str} and \code{types.StringType}
in the Python layer.
\withsubitem{(in module types)}{\ttindex{StringType}}.
\end{cvardesc}
\begin{cfuncdesc}{int}{PyString_Check}{PyObject *o}
Return true if the object \var{o} is a string object or an instance
of a subtype of the string type.
\versionchanged[Allowed subtypes to be accepted]{2.2}
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PyString_CheckExact}{PyObject *o}
Return true if the object \var{o} is a string object, but not an
instance of a subtype of the string type.
\versionadded{2.2}
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyString_FromString}{const char *v}
Return a new string object with a copy of the string \var{v} as value
on success, and \NULL{} on failure. The parameter \var{v} must not be
\NULL{}; it will not be checked.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyString_FromStringAndSize}{const char *v,
Py_ssize_t len}
Return a new string object with a copy of the string \var{v} as value
and length \var{len} on success, and \NULL{} on failure. If \var{v} is
\NULL{}, the contents of the string are uninitialized.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyString_FromFormat}{const char *format, ...}
Take a C \cfunction{printf()}-style \var{format} string and a
variable number of arguments, calculate the size of the resulting
Python string and return a string with the values formatted into
it. The variable arguments must be C types and must correspond
exactly to the format characters in the \var{format} string. The
following format characters are allowed:
% This should be exactly the same as the table in PyErr_Format.
% One should just refer to the other.
% The descriptions for %zd and %zu are wrong, but the truth is complicated
% because not all compilers support the %z width modifier -- we fake it
% when necessary via interpolating PY_FORMAT_SIZE_T.
% %u, %lu, %zu should have "new in Python 2.5" blurbs.
\begin{tableiii}{l|l|l}{member}{Format Characters}{Type}{Comment}
\lineiii{\%\%}{\emph{n/a}}{The literal \% character.}
\lineiii{\%c}{int}{A single character, represented as an C int.}
\lineiii{\%d}{int}{Exactly equivalent to \code{printf("\%d")}.}
\lineiii{\%u}{unsigned int}{Exactly equivalent to \code{printf("\%u")}.}
\lineiii{\%ld}{long}{Exactly equivalent to \code{printf("\%ld")}.}
\lineiii{\%lu}{unsigned long}{Exactly equivalent to \code{printf("\%lu")}.}
\lineiii{\%zd}{Py_ssize_t}{Exactly equivalent to \code{printf("\%zd")}.}
\lineiii{\%zu}{size_t}{Exactly equivalent to \code{printf("\%zu")}.}
\lineiii{\%i}{int}{Exactly equivalent to \code{printf("\%i")}.}
\lineiii{\%x}{int}{Exactly equivalent to \code{printf("\%x")}.}
\lineiii{\%s}{char*}{A null-terminated C character array.}
\lineiii{\%p}{void*}{The hex representation of a C pointer.
Mostly equivalent to \code{printf("\%p")} except that it is
guaranteed to start with the literal \code{0x} regardless of
what the platform's \code{printf} yields.}
\end{tableiii}
An unrecognized format character causes all the rest of the format
string to be copied as-is to the result string, and any extra
arguments discarded.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyString_FromFormatV}{const char *format,
va_list vargs}
Identical to \function{PyString_FromFormat()} except that it takes
exactly two arguments.
\end{cfuncdesc}
\begin{cfuncdesc}{Py_ssize_t}{PyString_Size}{PyObject *string}
Return the length of the string in string object \var{string}.
\end{cfuncdesc}
\begin{cfuncdesc}{Py_ssize_t}{PyString_GET_SIZE}{PyObject *string}
Macro form of \cfunction{PyString_Size()} but without error
checking.
\end{cfuncdesc}
\begin{cfuncdesc}{char*}{PyString_AsString}{PyObject *string}
Return a NUL-terminated representation of the contents of
\var{string}. The pointer refers to the internal buffer of
\var{string}, not a copy. The data must not be modified in any way,
unless the string was just created using
\code{PyString_FromStringAndSize(NULL, \var{size})}.
It must not be deallocated. If \var{string} is a Unicode object,
this function computes the default encoding of \var{string} and
operates on that. If \var{string} is not a string object at all,
\cfunction{PyString_AsString()} returns \NULL{} and raises
\exception{TypeError}.
\end{cfuncdesc}
\begin{cfuncdesc}{char*}{PyString_AS_STRING}{PyObject *string}
Macro form of \cfunction{PyString_AsString()} but without error
checking. Only string objects are supported; no Unicode objects
should be passed.
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PyString_AsStringAndSize}{PyObject *obj,
char **buffer,
Py_ssize_t *length}
Return a NUL-terminated representation of the contents of the
object \var{obj} through the output variables \var{buffer} and
\var{length}.
The function accepts both string and Unicode objects as input. For
Unicode objects it returns the default encoded version of the
object. If \var{length} is \NULL{}, the resulting buffer may not
contain NUL characters; if it does, the function returns \code{-1}
and a \exception{TypeError} is raised.
The buffer refers to an internal string buffer of \var{obj}, not a
copy. The data must not be modified in any way, unless the string
was just created using \code{PyString_FromStringAndSize(NULL,
\var{size})}. It must not be deallocated. If \var{string} is a
Unicode object, this function computes the default encoding of
\var{string} and operates on that. If \var{string} is not a string
object at all, \cfunction{PyString_AsStringAndSize()} returns
\code{-1} and raises \exception{TypeError}.
\end{cfuncdesc}
\begin{cfuncdesc}{void}{PyString_Concat}{PyObject **string,
PyObject *newpart}
Create a new string object in \var{*string} containing the contents
of \var{newpart} appended to \var{string}; the caller will own the
new reference. The reference to the old value of \var{string} will
be stolen. If the new string cannot be created, the old reference
to \var{string} will still be discarded and the value of
\var{*string} will be set to \NULL{}; the appropriate exception will
be set.
\end{cfuncdesc}
\begin{cfuncdesc}{void}{PyString_ConcatAndDel}{PyObject **string,
PyObject *newpart}
Create a new string object in \var{*string} containing the contents
of \var{newpart} appended to \var{string}. This version decrements
the reference count of \var{newpart}.
\end{cfuncdesc}
\begin{cfuncdesc}{int}{_PyString_Resize}{PyObject **string, Py_ssize_t newsize}
A way to resize a string object even though it is ``immutable''.
Only use this to build up a brand new string object; don't use this
if the string may already be known in other parts of the code. It
is an error to call this function if the refcount on the input string
object is not one.
Pass the address of an existing string object as an lvalue (it may
be written into), and the new size desired. On success, \var{*string}
holds the resized string object and \code{0} is returned; the address in
\var{*string} may differ from its input value. If the
reallocation fails, the original string object at \var{*string} is
deallocated, \var{*string} is set to \NULL{}, a memory exception is set,
and \code{-1} is returned.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyString_Format}{PyObject *format,
PyObject *args}
Return a new string object from \var{format} and \var{args}.
Analogous to \code{\var{format} \%\ \var{args}}. The \var{args}
argument must be a tuple.
\end{cfuncdesc}
\begin{cfuncdesc}{void}{PyString_InternInPlace}{PyObject **string}
Intern the argument \var{*string} in place. The argument must be
the address of a pointer variable pointing to a Python string
object. If there is an existing interned string that is the same as
\var{*string}, it sets \var{*string} to it (decrementing the
reference count of the old string object and incrementing the
reference count of the interned string object), otherwise it leaves
\var{*string} alone and interns it (incrementing its reference
count). (Clarification: even though there is a lot of talk about
reference counts, think of this function as reference-count-neutral;
you own the object after the call if and only if you owned it before
the call.)
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyString_InternFromString}{const char *v}
A combination of \cfunction{PyString_FromString()} and
\cfunction{PyString_InternInPlace()}, returning either a new string
object that has been interned, or a new (``owned'') reference to an
earlier interned string object with the same value.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyString_Decode}{const char *s,
Py_ssize_t size,
const char *encoding,
const char *errors}
Create an object by decoding \var{size} bytes of the encoded
buffer \var{s} using the codec registered for
\var{encoding}. \var{encoding} and \var{errors} have the same
meaning as the parameters of the same name in the
\function{unicode()} built-in function. The codec to be used is
looked up using the Python codec registry. Return \NULL{} if
an exception was raised by the codec.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyString_AsDecodedObject}{PyObject *str,
const char *encoding,
const char *errors}
Decode a string object by passing it to the codec registered for
\var{encoding} and return the result as Python
object. \var{encoding} and \var{errors} have the same meaning as the
parameters of the same name in the string \method{encode()} method.
The codec to be used is looked up using the Python codec registry.
Return \NULL{} if an exception was raised by the codec.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyString_Encode}{const char *s,
Py_ssize_t size,
const char *encoding,
const char *errors}
Encode the \ctype{char} buffer of the given size by passing it to
the codec registered for \var{encoding} and return a Python object.
\var{encoding} and \var{errors} have the same meaning as the
parameters of the same name in the string \method{encode()} method.
The codec to be used is looked up using the Python codec
registry. Return \NULL{} if an exception was raised by the
codec.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyString_AsEncodedObject}{PyObject *str,
const char *encoding,
const char *errors}
Encode a string object using the codec registered for
\var{encoding} and return the result as Python object.
\var{encoding} and \var{errors} have the same meaning as the
parameters of the same name in the string \method{encode()} method.
The codec to be used is looked up using the Python codec registry.
Return \NULL{} if an exception was raised by the codec.
\end{cfuncdesc}
\subsection{Unicode Objects \label{unicodeObjects}}
\sectionauthor{Marc-Andre Lemburg}{mal@lemburg.com}
%--- Unicode Type -------------------------------------------------------
These are the basic Unicode object types used for the Unicode
implementation in Python:
\begin{ctypedesc}{Py_UNICODE}
This type represents the storage type which is used by Python
internally as basis for holding Unicode ordinals. Python's default
builds use a 16-bit type for \ctype{Py_UNICODE} and store Unicode
values internally as UCS2. It is also possible to build a UCS4
version of Python (most recent Linux distributions come with UCS4
builds of Python). These builds then use a 32-bit type for
\ctype{Py_UNICODE} and store Unicode data internally as UCS4. On
platforms where \ctype{wchar_t} is available and compatible with the
chosen Python Unicode build variant, \ctype{Py_UNICODE} is a typedef
alias for \ctype{wchar_t} to enhance native platform compatibility.
On all other platforms, \ctype{Py_UNICODE} is a typedef alias for
either \ctype{unsigned short} (UCS2) or \ctype{unsigned long}
(UCS4).
\end{ctypedesc}
Note that UCS2 and UCS4 Python builds are not binary compatible.
Please keep this in mind when writing extensions or interfaces.
\begin{ctypedesc}{PyUnicodeObject}
This subtype of \ctype{PyObject} represents a Python Unicode object.
\end{ctypedesc}
\begin{cvardesc}{PyTypeObject}{PyUnicode_Type}
This instance of \ctype{PyTypeObject} represents the Python Unicode
type. It is exposed to Python code as \code{unicode} and
\code{types.UnicodeType}.
\end{cvardesc}
The following APIs are really C macros and can be used to do fast
checks and to access internal read-only data of Unicode objects:
\begin{cfuncdesc}{int}{PyUnicode_Check}{PyObject *o}
Return true if the object \var{o} is a Unicode object or an
instance of a Unicode subtype.
\versionchanged[Allowed subtypes to be accepted]{2.2}
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PyUnicode_CheckExact}{PyObject *o}
Return true if the object \var{o} is a Unicode object, but not an
instance of a subtype.
\versionadded{2.2}
\end{cfuncdesc}
\begin{cfuncdesc}{Py_ssize_t}{PyUnicode_GET_SIZE}{PyObject *o}
Return the size of the object. \var{o} has to be a
\ctype{PyUnicodeObject} (not checked).
\end{cfuncdesc}
\begin{cfuncdesc}{Py_ssize_t}{PyUnicode_GET_DATA_SIZE}{PyObject *o}
Return the size of the object's internal buffer in bytes. \var{o}
has to be a \ctype{PyUnicodeObject} (not checked).
\end{cfuncdesc}
\begin{cfuncdesc}{Py_UNICODE*}{PyUnicode_AS_UNICODE}{PyObject *o}
Return a pointer to the internal \ctype{Py_UNICODE} buffer of the
object. \var{o} has to be a \ctype{PyUnicodeObject} (not checked).
\end{cfuncdesc}
\begin{cfuncdesc}{const char*}{PyUnicode_AS_DATA}{PyObject *o}
Return a pointer to the internal buffer of the object.
\var{o} has to be a \ctype{PyUnicodeObject} (not checked).
\end{cfuncdesc}
% --- Unicode character properties ---------------------------------------
Unicode provides many different character properties. The most often
needed ones are available through these macros which are mapped to C
functions depending on the Python configuration.
\begin{cfuncdesc}{int}{Py_UNICODE_ISSPACE}{Py_UNICODE ch}
Return 1 or 0 depending on whether \var{ch} is a whitespace
character.
\end{cfuncdesc}
\begin{cfuncdesc}{int}{Py_UNICODE_ISLOWER}{Py_UNICODE ch}
Return 1 or 0 depending on whether \var{ch} is a lowercase character.
\end{cfuncdesc}
\begin{cfuncdesc}{int}{Py_UNICODE_ISUPPER}{Py_UNICODE ch}
Return 1 or 0 depending on whether \var{ch} is an uppercase
character.
\end{cfuncdesc}
\begin{cfuncdesc}{int}{Py_UNICODE_ISTITLE}{Py_UNICODE ch}
Return 1 or 0 depending on whether \var{ch} is a titlecase character.
\end{cfuncdesc}
\begin{cfuncdesc}{int}{Py_UNICODE_ISLINEBREAK}{Py_UNICODE ch}
Return 1 or 0 depending on whether \var{ch} is a linebreak character.
\end{cfuncdesc}
\begin{cfuncdesc}{int}{Py_UNICODE_ISDECIMAL}{Py_UNICODE ch}
Return 1 or 0 depending on whether \var{ch} is a decimal character.
\end{cfuncdesc}
\begin{cfuncdesc}{int}{Py_UNICODE_ISDIGIT}{Py_UNICODE ch}
Return 1 or 0 depending on whether \var{ch} is a digit character.
\end{cfuncdesc}
\begin{cfuncdesc}{int}{Py_UNICODE_ISNUMERIC}{Py_UNICODE ch}
Return 1 or 0 depending on whether \var{ch} is a numeric character.
\end{cfuncdesc}
\begin{cfuncdesc}{int}{Py_UNICODE_ISALPHA}{Py_UNICODE ch}
Return 1 or 0 depending on whether \var{ch} is an alphabetic
character.
\end{cfuncdesc}
\begin{cfuncdesc}{int}{Py_UNICODE_ISALNUM}{Py_UNICODE ch}
Return 1 or 0 depending on whether \var{ch} is an alphanumeric
character.
\end{cfuncdesc}
These APIs can be used for fast direct character conversions:
\begin{cfuncdesc}{Py_UNICODE}{Py_UNICODE_TOLOWER}{Py_UNICODE ch}
Return the character \var{ch} converted to lower case.
\end{cfuncdesc}
\begin{cfuncdesc}{Py_UNICODE}{Py_UNICODE_TOUPPER}{Py_UNICODE ch}
Return the character \var{ch} converted to upper case.
\end{cfuncdesc}
\begin{cfuncdesc}{Py_UNICODE}{Py_UNICODE_TOTITLE}{Py_UNICODE ch}
Return the character \var{ch} converted to title case.
\end{cfuncdesc}
\begin{cfuncdesc}{int}{Py_UNICODE_TODECIMAL}{Py_UNICODE ch}
Return the character \var{ch} converted to a decimal positive
integer. Return \code{-1} if this is not possible. This macro
does not raise exceptions.
\end{cfuncdesc}
\begin{cfuncdesc}{int}{Py_UNICODE_TODIGIT}{Py_UNICODE ch}
Return the character \var{ch} converted to a single digit integer.
Return \code{-1} if this is not possible. This macro does not raise
exceptions.
\end{cfuncdesc}
\begin{cfuncdesc}{double}{Py_UNICODE_TONUMERIC}{Py_UNICODE ch}
Return the character \var{ch} converted to a double.
Return \code{-1.0} if this is not possible. This macro does not raise
exceptions.
\end{cfuncdesc}
% --- Plain Py_UNICODE ---------------------------------------------------
To create Unicode objects and access their basic sequence properties,
use these APIs:
\begin{cfuncdesc}{PyObject*}{PyUnicode_FromUnicode}{const Py_UNICODE *u,
Py_ssize_t size}
Create a Unicode Object from the Py_UNICODE buffer \var{u} of the
given size. \var{u} may be \NULL{} which causes the contents to be
undefined. It is the user's responsibility to fill in the needed
data. The buffer is copied into the new object. If the buffer is
not \NULL{}, the return value might be a shared object. Therefore,
modification of the resulting Unicode object is only allowed when
\var{u} is \NULL{}.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyUnicode_FromStringAndSize}{const char *u,
Py_ssize_t size}
Create a Unicode Object from the char buffer \var{u}.
The bytes will be interpreted as being UTF-8 encoded.
\var{u} may also be \NULL{} which causes the
contents to be undefined. It is the user's responsibility to fill
in the needed data. The buffer is copied into the new object.
If the buffer is not \NULL{}, the return value might be a shared object.
Therefore, modification of the resulting Unicode object is only allowed
when \var{u} is \NULL{}.
\versionadded{3.0}
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyUnicode_FromString}{const char*u}
Create a Unicode object from an UTF-8 encoded null-terminated
char buffer \var{u}.
\versionadded{3.0}
\end{funcdesc}
\begin{cfuncdesc}{PyObject*}{PyUnicode_FromFormat}{const char *format, ...}
Take a C \cfunction{printf()}-style \var{format} string and a
variable number of arguments, calculate the size of the resulting
Python unicode string and return a string with the values formatted into
it. The variable arguments must be C types and must correspond
exactly to the format characters in the \var{format} string. The
following format characters are allowed:
% The descriptions for %zd and %zu are wrong, but the truth is complicated
% because not all compilers support the %z width modifier -- we fake it
% when necessary via interpolating PY_FORMAT_SIZE_T.
\begin{tableiii}{l|l|l}{member}{Format Characters}{Type}{Comment}
\lineiii{\%\%}{\emph{n/a}}{The literal \% character.}
\lineiii{\%c}{int}{A single character, represented as an C int.}
\lineiii{\%d}{int}{Exactly equivalent to \code{printf("\%d")}.}
\lineiii{\%u}{unsigned int}{Exactly equivalent to \code{printf("\%u")}.}
\lineiii{\%ld}{long}{Exactly equivalent to \code{printf("\%ld")}.}
\lineiii{\%lu}{unsigned long}{Exactly equivalent to \code{printf("\%lu")}.}
\lineiii{\%zd}{Py_ssize_t}{Exactly equivalent to \code{printf("\%zd")}.}
\lineiii{\%zu}{size_t}{Exactly equivalent to \code{printf("\%zu")}.}
\lineiii{\%i}{int}{Exactly equivalent to \code{printf("\%i")}.}
\lineiii{\%x}{int}{Exactly equivalent to \code{printf("\%x")}.}
\lineiii{\%s}{char*}{A null-terminated C character array.}
\lineiii{\%p}{void*}{The hex representation of a C pointer.
Mostly equivalent to \code{printf("\%p")} except that it is
guaranteed to start with the literal \code{0x} regardless of
what the platform's \code{printf} yields.}
\lineiii{\%U}{PyObject*}{A unicode object.}
\lineiii{\%V}{PyObject*, char *}{A unicode object (which may be \NULL{})
and a null-terminated C character array as a second parameter (which
will be used, if the first parameter is \NULL{}).}
\lineiii{\%S}{PyObject*}{The result of calling \function{PyObject_Unicode()}.}
\lineiii{\%R}{PyObject*}{The result of calling \function{PyObject_Repr()}.}
\end{tableiii}
An unrecognized format character causes all the rest of the format
string to be copied as-is to the result string, and any extra
arguments discarded.
\versionadded{3.0}
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyUnicode_FromFormatV}{const char *format,
va_list vargs}
Identical to \function{PyUnicode_FromFormat()} except that it takes
exactly two arguments.
\versionadded{3.0}
\end{cfuncdesc}
\begin{cfuncdesc}{Py_UNICODE*}{PyUnicode_AsUnicode}{PyObject *unicode}
Return a read-only pointer to the Unicode object's internal
\ctype{Py_UNICODE} buffer, \NULL{} if \var{unicode} is not a Unicode
object.
\end{cfuncdesc}
\begin{cfuncdesc}{Py_ssize_t}{PyUnicode_GetSize}{PyObject *unicode}
Return the length of the Unicode object.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyUnicode_FromEncodedObject}{PyObject *obj,
const char *encoding,
const char *errors}
Coerce an encoded object \var{obj} to an Unicode object and return a
reference with incremented refcount.
String and other char buffer compatible objects are decoded
according to the given encoding and using the error handling
defined by errors. Both can be \NULL{} to have the interface
use the default values (see the next section for details).
All other objects, including Unicode objects, cause a
\exception{TypeError} to be set.
The API returns \NULL{} if there was an error. The caller is
responsible for decref'ing the returned objects.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyUnicode_FromObject}{PyObject *obj}
Shortcut for \code{PyUnicode_FromEncodedObject(obj, NULL, "strict")}
which is used throughout the interpreter whenever coercion to
Unicode is needed.
\end{cfuncdesc}
% --- wchar_t support for platforms which support it ---------------------
If the platform supports \ctype{wchar_t} and provides a header file
wchar.h, Python can interface directly to this type using the
following functions. Support is optimized if Python's own
\ctype{Py_UNICODE} type is identical to the system's \ctype{wchar_t}.
\begin{cfuncdesc}{PyObject*}{PyUnicode_FromWideChar}{const wchar_t *w,
Py_ssize_t size}
Create a Unicode object from the \ctype{wchar_t} buffer \var{w} of
the given size. Return \NULL{} on failure.
\end{cfuncdesc}
\begin{cfuncdesc}{Py_ssize_t}{PyUnicode_AsWideChar}{PyUnicodeObject *unicode,
wchar_t *w,
Py_ssize_t size}
Copy the Unicode object contents into the \ctype{wchar_t} buffer
\var{w}. At most \var{size} \ctype{wchar_t} characters are copied
(excluding a possibly trailing 0-termination character). Return
the number of \ctype{wchar_t} characters copied or -1 in case of an
error. Note that the resulting \ctype{wchar_t} string may or may
not be 0-terminated. It is the responsibility of the caller to make
sure that the \ctype{wchar_t} string is 0-terminated in case this is
required by the application.
\end{cfuncdesc}
\subsubsection{Built-in Codecs \label{builtinCodecs}}
Python provides a set of builtin codecs which are written in C
for speed. All of these codecs are directly usable via the
following functions.
Many of the following APIs take two arguments encoding and
errors. These parameters encoding and errors have the same semantics
as the ones of the builtin unicode() Unicode object constructor.
Setting encoding to \NULL{} causes the default encoding to be used
which is \ASCII. The file system calls should use
\cdata{Py_FileSystemDefaultEncoding} as the encoding for file
names. This variable should be treated as read-only: On some systems,
it will be a pointer to a static string, on others, it will change at
run-time (such as when the application invokes setlocale).
Error handling is set by errors which may also be set to \NULL{}
meaning to use the default handling defined for the codec. Default
error handling for all builtin codecs is ``strict''
(\exception{ValueError} is raised).
The codecs all use a similar interface. Only deviation from the
following generic ones are documented for simplicity.
% --- Generic Codecs -----------------------------------------------------
These are the generic codec APIs:
\begin{cfuncdesc}{PyObject*}{PyUnicode_Decode}{const char *s,
Py_ssize_t size,
const char *encoding,
const char *errors}
Create a Unicode object by decoding \var{size} bytes of the encoded
string \var{s}. \var{encoding} and \var{errors} have the same
meaning as the parameters of the same name in the
\function{unicode()} builtin function. The codec to be used is
looked up using the Python codec registry. Return \NULL{} if an
exception was raised by the codec.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyUnicode_Encode}{const Py_UNICODE *s,
Py_ssize_t size,
const char *encoding,
const char *errors}
Encode the \ctype{Py_UNICODE} buffer of the given size and return
a Python string object. \var{encoding} and \var{errors} have the
same meaning as the parameters of the same name in the Unicode
\method{encode()} method. The codec to be used is looked up using
the Python codec registry. Return \NULL{} if an exception was
raised by the codec.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyUnicode_AsEncodedString}{PyObject *unicode,
const char *encoding,
const char *errors}
Encode a Unicode object and return the result as Python string
object. \var{encoding} and \var{errors} have the same meaning as the
parameters of the same name in the Unicode \method{encode()} method.
The codec to be used is looked up using the Python codec registry.
Return \NULL{} if an exception was raised by the codec.
\end{cfuncdesc}
% --- UTF-8 Codecs -------------------------------------------------------
These are the UTF-8 codec APIs:
\begin{cfuncdesc}{PyObject*}{PyUnicode_DecodeUTF8}{const char *s,
Py_ssize_t size,
const char *errors}
Create a Unicode object by decoding \var{size} bytes of the UTF-8
encoded string \var{s}. Return \NULL{} if an exception was raised
by the codec.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyUnicode_DecodeUTF8Stateful}{const char *s,
Py_ssize_t size,
const char *errors,
Py_ssize_t *consumed}
If \var{consumed} is \NULL{}, behave like \cfunction{PyUnicode_DecodeUTF8()}.
If \var{consumed} is not \NULL{}, trailing incomplete UTF-8 byte sequences
will not be treated as an error. Those bytes will not be decoded and the
number of bytes that have been decoded will be stored in \var{consumed}.
\versionadded{2.4}
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyUnicode_EncodeUTF8}{const Py_UNICODE *s,
Py_ssize_t size,
const char *errors}
Encode the \ctype{Py_UNICODE} buffer of the given size using UTF-8
and return a Python string object. Return \NULL{} if an exception
was raised by the codec.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyUnicode_AsUTF8String}{PyObject *unicode}
Encode a Unicode objects using UTF-8 and return the result as
Python string object. Error handling is ``strict''. Return
\NULL{} if an exception was raised by the codec.
\end{cfuncdesc}
% --- UTF-16 Codecs ------------------------------------------------------ */
These are the UTF-16 codec APIs:
\begin{cfuncdesc}{PyObject*}{PyUnicode_DecodeUTF16}{const char *s,
Py_ssize_t size,
const char *errors,
int *byteorder}
Decode \var{length} bytes from a UTF-16 encoded buffer string and
return the corresponding Unicode object. \var{errors} (if
non-\NULL{}) defines the error handling. It defaults to ``strict''.
If \var{byteorder} is non-\NULL{}, the decoder starts decoding using
the given byte order:
\begin{verbatim}
*byteorder == -1: little endian
*byteorder == 0: native order
*byteorder == 1: big endian
\end{verbatim}
and then switches if the first two bytes of the input data are a byte order
mark (BOM) and the specified byte order is native order. This BOM is not
copied into the resulting Unicode string. After completion, \var{*byteorder}
is set to the current byte order at the.
If \var{byteorder} is \NULL{}, the codec starts in native order mode.
Return \NULL{} if an exception was raised by the codec.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyUnicode_DecodeUTF16Stateful}{const char *s,
Py_ssize_t size,
const char *errors,
int *byteorder,
Py_ssize_t *consumed}
If \var{consumed} is \NULL{}, behave like
\cfunction{PyUnicode_DecodeUTF16()}. If \var{consumed} is not \NULL{},
\cfunction{PyUnicode_DecodeUTF16Stateful()} will not treat trailing incomplete
UTF-16 byte sequences (such as an odd number of bytes or a split surrogate pair)
as an error. Those bytes will not be decoded and the number of bytes that
have been decoded will be stored in \var{consumed}.
\versionadded{2.4}
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyUnicode_EncodeUTF16}{const Py_UNICODE *s,
Py_ssize_t size,
const char *errors,
int byteorder}
Return a Python string object holding the UTF-16 encoded value of
the Unicode data in \var{s}. If \var{byteorder} is not \code{0},
output is written according to the following byte order:
\begin{verbatim}
byteorder == -1: little endian
byteorder == 0: native byte order (writes a BOM mark)
byteorder == 1: big endian
\end{verbatim}
If byteorder is \code{0}, the output string will always start with
the Unicode BOM mark (U+FEFF). In the other two modes, no BOM mark
is prepended.
If \var{Py_UNICODE_WIDE} is defined, a single \ctype{Py_UNICODE}
value may get represented as a surrogate pair. If it is not
defined, each \ctype{Py_UNICODE} values is interpreted as an
UCS-2 character.
Return \NULL{} if an exception was raised by the codec.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyUnicode_AsUTF16String}{PyObject *unicode}
Return a Python string using the UTF-16 encoding in native byte
order. The string always starts with a BOM mark. Error handling is
``strict''. Return \NULL{} if an exception was raised by the
codec.
\end{cfuncdesc}
% --- Unicode-Escape Codecs ----------------------------------------------
These are the ``Unicode Escape'' codec APIs:
\begin{cfuncdesc}{PyObject*}{PyUnicode_DecodeUnicodeEscape}{const char *s,
Py_ssize_t size,
const char *errors}
Create a Unicode object by decoding \var{size} bytes of the
Unicode-Escape encoded string \var{s}. Return \NULL{} if an
exception was raised by the codec.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyUnicode_EncodeUnicodeEscape}{const Py_UNICODE *s,
Py_ssize_t size}
Encode the \ctype{Py_UNICODE} buffer of the given size using
Unicode-Escape and return a Python string object. Return \NULL{}
if an exception was raised by the codec.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyUnicode_AsUnicodeEscapeString}{PyObject *unicode}
Encode a Unicode objects using Unicode-Escape and return the
result as Python string object. Error handling is ``strict''.
Return \NULL{} if an exception was raised by the codec.
\end{cfuncdesc}
% --- Raw-Unicode-Escape Codecs ------------------------------------------
These are the ``Raw Unicode Escape'' codec APIs:
\begin{cfuncdesc}{PyObject*}{PyUnicode_DecodeRawUnicodeEscape}{const char *s,
Py_ssize_t size,
const char *errors}
Create a Unicode object by decoding \var{size} bytes of the
Raw-Unicode-Escape encoded string \var{s}. Return \NULL{} if an
exception was raised by the codec.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyUnicode_EncodeRawUnicodeEscape}{const Py_UNICODE *s,
Py_ssize_t size,
const char *errors}
Encode the \ctype{Py_UNICODE} buffer of the given size using
Raw-Unicode-Escape and return a Python string object. Return
\NULL{} if an exception was raised by the codec.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyUnicode_AsRawUnicodeEscapeString}{PyObject *unicode}
Encode a Unicode objects using Raw-Unicode-Escape and return the
result as Python string object. Error handling is ``strict''.
Return \NULL{} if an exception was raised by the codec.
\end{cfuncdesc}
% --- Latin-1 Codecs -----------------------------------------------------
These are the Latin-1 codec APIs:
Latin-1 corresponds to the first 256 Unicode ordinals and only these
are accepted by the codecs during encoding.
\begin{cfuncdesc}{PyObject*}{PyUnicode_DecodeLatin1}{const char *s,
Py_ssize_t size,
const char *errors}
Create a Unicode object by decoding \var{size} bytes of the Latin-1
encoded string \var{s}. Return \NULL{} if an exception was raised
by the codec.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyUnicode_EncodeLatin1}{const Py_UNICODE *s,
Py_ssize_t size,
const char *errors}
Encode the \ctype{Py_UNICODE} buffer of the given size using
Latin-1 and return a Python string object. Return \NULL{} if an
exception was raised by the codec.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyUnicode_AsLatin1String}{PyObject *unicode}
Encode a Unicode objects using Latin-1 and return the result as
Python string object. Error handling is ``strict''. Return
\NULL{} if an exception was raised by the codec.
\end{cfuncdesc}
% --- ASCII Codecs -------------------------------------------------------
These are the \ASCII{} codec APIs. Only 7-bit \ASCII{} data is
accepted. All other codes generate errors.
\begin{cfuncdesc}{PyObject*}{PyUnicode_DecodeASCII}{const char *s,
Py_ssize_t size,
const char *errors}
Create a Unicode object by decoding \var{size} bytes of the
\ASCII{} encoded string \var{s}. Return \NULL{} if an exception
was raised by the codec.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyUnicode_EncodeASCII}{const Py_UNICODE *s,
Py_ssize_t size,
const char *errors}
Encode the \ctype{Py_UNICODE} buffer of the given size using
\ASCII{} and return a Python string object. Return \NULL{} if an
exception was raised by the codec.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyUnicode_AsASCIIString}{PyObject *unicode}
Encode a Unicode objects using \ASCII{} and return the result as
Python string object. Error handling is ``strict''. Return
\NULL{} if an exception was raised by the codec.
\end{cfuncdesc}
% --- Character Map Codecs -----------------------------------------------
These are the mapping codec APIs:
This codec is special in that it can be used to implement many
different codecs (and this is in fact what was done to obtain most of
the standard codecs included in the \module{encodings} package). The
codec uses mapping to encode and decode characters.
Decoding mappings must map single string characters to single Unicode
characters, integers (which are then interpreted as Unicode ordinals)
or None (meaning "undefined mapping" and causing an error).
Encoding mappings must map single Unicode characters to single string
characters, integers (which are then interpreted as Latin-1 ordinals)
or None (meaning "undefined mapping" and causing an error).
The mapping objects provided must only support the __getitem__ mapping
interface.
If a character lookup fails with a LookupError, the character is
copied as-is meaning that its ordinal value will be interpreted as
Unicode or Latin-1 ordinal resp. Because of this, mappings only need
to contain those mappings which map characters to different code
points.
\begin{cfuncdesc}{PyObject*}{PyUnicode_DecodeCharmap}{const char *s,
Py_ssize_t size,
PyObject *mapping,
const char *errors}
Create a Unicode object by decoding \var{size} bytes of the encoded
string \var{s} using the given \var{mapping} object. Return
\NULL{} if an exception was raised by the codec. If \var{mapping} is \NULL{}
latin-1 decoding will be done. Else it can be a dictionary mapping byte or a
unicode string, which is treated as a lookup table. Byte values greater
that the length of the string and U+FFFE "characters" are treated as
"undefined mapping".
\versionchanged[Allowed unicode string as mapping argument]{2.4}
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyUnicode_EncodeCharmap}{const Py_UNICODE *s,
Py_ssize_t size,
PyObject *mapping,
const char *errors}
Encode the \ctype{Py_UNICODE} buffer of the given size using the
given \var{mapping} object and return a Python string object.
Return \NULL{} if an exception was raised by the codec.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyUnicode_AsCharmapString}{PyObject *unicode,
PyObject *mapping}
Encode a Unicode objects using the given \var{mapping} object and
return the result as Python string object. Error handling is
``strict''. Return \NULL{} if an exception was raised by the
codec.
\end{cfuncdesc}
The following codec API is special in that maps Unicode to Unicode.
\begin{cfuncdesc}{PyObject*}{PyUnicode_TranslateCharmap}{const Py_UNICODE *s,
Py_ssize_t size,
PyObject *table,
const char *errors}
Translate a \ctype{Py_UNICODE} buffer of the given length by
applying a character mapping \var{table} to it and return the
resulting Unicode object. Return \NULL{} when an exception was
raised by the codec.
The \var{mapping} table must map Unicode ordinal integers to Unicode
ordinal integers or None (causing deletion of the character).
Mapping tables need only provide the \method{__getitem__()}
interface; dictionaries and sequences work well. Unmapped character
ordinals (ones which cause a \exception{LookupError}) are left
untouched and are copied as-is.
\end{cfuncdesc}
% --- MBCS codecs for Windows --------------------------------------------
These are the MBCS codec APIs. They are currently only available on
Windows and use the Win32 MBCS converters to implement the
conversions. Note that MBCS (or DBCS) is a class of encodings, not
just one. The target encoding is defined by the user settings on the
machine running the codec.
\begin{cfuncdesc}{PyObject*}{PyUnicode_DecodeMBCS}{const char *s,
Py_ssize_t size,
const char *errors}
Create a Unicode object by decoding \var{size} bytes of the MBCS
encoded string \var{s}. Return \NULL{} if an exception was
raised by the codec.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyUnicode_DecodeMBCSStateful}{const char *s,
int size,
const char *errors,
int *consumed}
If \var{consumed} is \NULL{}, behave like
\cfunction{PyUnicode_DecodeMBCS()}. If \var{consumed} is not \NULL{},
\cfunction{PyUnicode_DecodeMBCSStateful()} will not decode trailing lead
byte and the number of bytes that have been decoded will be stored in
\var{consumed}.
\versionadded{2.5}
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyUnicode_EncodeMBCS}{const Py_UNICODE *s,
Py_ssize_t size,
const char *errors}
Encode the \ctype{Py_UNICODE} buffer of the given size using MBCS
and return a Python string object. Return \NULL{} if an exception
was raised by the codec.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyUnicode_AsMBCSString}{PyObject *unicode}
Encode a Unicode objects using MBCS and return the result as
Python string object. Error handling is ``strict''. Return
\NULL{} if an exception was raised by the codec.
\end{cfuncdesc}
% --- Methods & Slots ----------------------------------------------------
\subsubsection{Methods and Slot Functions \label{unicodeMethodsAndSlots}}
The following APIs are capable of handling Unicode objects and strings
on input (we refer to them as strings in the descriptions) and return
Unicode objects or integers as appropriate.
They all return \NULL{} or \code{-1} if an exception occurs.
\begin{cfuncdesc}{PyObject*}{PyUnicode_Concat}{PyObject *left,
PyObject *right}
Concat two strings giving a new Unicode string.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyUnicode_Split}{PyObject *s,
PyObject *sep,
Py_ssize_t maxsplit}
Split a string giving a list of Unicode strings. If sep is \NULL{},
splitting will be done at all whitespace substrings. Otherwise,
splits occur at the given separator. At most \var{maxsplit} splits
will be done. If negative, no limit is set. Separators are not
included in the resulting list.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyUnicode_Splitlines}{PyObject *s,
int keepend}
Split a Unicode string at line breaks, returning a list of Unicode
strings. CRLF is considered to be one line break. If \var{keepend}
is 0, the Line break characters are not included in the resulting
strings.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyUnicode_Translate}{PyObject *str,
PyObject *table,
const char *errors}
Translate a string by applying a character mapping table to it and
return the resulting Unicode object.
The mapping table must map Unicode ordinal integers to Unicode
ordinal integers or None (causing deletion of the character).
Mapping tables need only provide the \method{__getitem__()}
interface; dictionaries and sequences work well. Unmapped character
ordinals (ones which cause a \exception{LookupError}) are left
untouched and are copied as-is.
\var{errors} has the usual meaning for codecs. It may be \NULL{}
which indicates to use the default error handling.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyUnicode_Join}{PyObject *separator,
PyObject *seq}
Join a sequence of strings using the given separator and return the
resulting Unicode string.
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PyUnicode_Tailmatch}{PyObject *str,
PyObject *substr,
Py_ssize_t start,
Py_ssize_t end,
int direction}
Return 1 if \var{substr} matches \var{str}[\var{start}:\var{end}] at
the given tail end (\var{direction} == -1 means to do a prefix
match, \var{direction} == 1 a suffix match), 0 otherwise.
Return \code{-1} if an error occurred.
\end{cfuncdesc}
\begin{cfuncdesc}{Py_ssize_t}{PyUnicode_Find}{PyObject *str,
PyObject *substr,
Py_ssize_t start,
Py_ssize_t end,
int direction}
Return the first position of \var{substr} in
\var{str}[\var{start}:\var{end}] using the given \var{direction}
(\var{direction} == 1 means to do a forward search,
\var{direction} == -1 a backward search). The return value is the
index of the first match; a value of \code{-1} indicates that no
match was found, and \code{-2} indicates that an error occurred and
an exception has been set.
\end{cfuncdesc}
\begin{cfuncdesc}{Py_ssize_t}{PyUnicode_Count}{PyObject *str,
PyObject *substr,
Py_ssize_t start,
Py_ssize_t end}
Return the number of non-overlapping occurrences of \var{substr} in
\code{\var{str}[\var{start}:\var{end}]}. Return \code{-1} if an
error occurred.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyUnicode_Replace}{PyObject *str,
PyObject *substr,
PyObject *replstr,
Py_ssize_t maxcount}
Replace at most \var{maxcount} occurrences of \var{substr} in
\var{str} with \var{replstr} and return the resulting Unicode object.
\var{maxcount} == -1 means replace all occurrences.
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PyUnicode_Compare}{PyObject *left, PyObject *right}
Compare two strings and return -1, 0, 1 for less than, equal, and
greater than, respectively.
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PyUnicode_RichCompare}{PyObject *left,
PyObject *right,
int op}
Rich compare two unicode strings and return one of the following:
\begin{itemize}
\item \code{NULL} in case an exception was raised
\item \constant{Py_True} or \constant{Py_False} for successful comparisons
\item \constant{Py_NotImplemented} in case the type combination is unknown
\end{itemize}
Note that \constant{Py_EQ} and \constant{Py_NE} comparisons can cause a
\exception{UnicodeWarning} in case the conversion of the arguments to
Unicode fails with a \exception{UnicodeDecodeError}.
Possible values for \var{op} are
\constant{Py_GT}, \constant{Py_GE}, \constant{Py_EQ},
\constant{Py_NE}, \constant{Py_LT}, and \constant{Py_LE}.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyUnicode_Format}{PyObject *format,
PyObject *args}
Return a new string object from \var{format} and \var{args}; this
is analogous to \code{\var{format} \%\ \var{args}}. The
\var{args} argument must be a tuple.
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PyUnicode_Contains}{PyObject *container,
PyObject *element}
Check whether \var{element} is contained in \var{container} and
return true or false accordingly.
\var{element} has to coerce to a one element Unicode
string. \code{-1} is returned if there was an error.
\end{cfuncdesc}
\begin{cfuncdesc}{void}{PyUnicode_InternInPlace}{PyObject **string}
Intern the argument \var{*string} in place. The argument must be
the address of a pointer variable pointing to a Python unicode string
object. If there is an existing interned string that is the same as
\var{*string}, it sets \var{*string} to it (decrementing the
reference count of the old string object and incrementing the
reference count of the interned string object), otherwise it leaves
\var{*string} alone and interns it (incrementing its reference
count). (Clarification: even though there is a lot of talk about
reference counts, think of this function as reference-count-neutral;
you own the object after the call if and only if you owned it before
the call.)
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyUnicode_InternFromString}{const char *v}
A combination of \cfunction{PyUnicode_FromString()} and
\cfunction{PyUnicode_InternInPlace()}, returning either a new unicode
string object that has been interned, or a new (``owned'') reference to
an earlier interned string object with the same value.
\end{cfuncdesc}
\subsection{Buffer Objects \label{bufferObjects}}
\sectionauthor{Greg Stein}{gstein@lyra.org}
\obindex{buffer}
Python objects implemented in C can export a group of functions called
the ``buffer\index{buffer interface} interface.'' These functions can
be used by an object to expose its data in a raw, byte-oriented
format. Clients of the object can use the buffer interface to access
the object data directly, without needing to copy it first.
Two examples of objects that support
the buffer interface are strings and arrays. The string object exposes
the character contents in the buffer interface's byte-oriented
form. An array can also expose its contents, but it should be noted
that array elements may be multi-byte values.
An example user of the buffer interface is the file object's
\method{write()} method. Any object that can export a series of bytes
through the buffer interface can be written to a file. There are a
number of format codes to \cfunction{PyArg_ParseTuple()} that operate
against an object's buffer interface, returning data from the target
object.
More information on the buffer interface is provided in the section
``Buffer Object Structures'' (section~\ref{buffer-structs}), under
the description for \ctype{PyBufferProcs}\ttindex{PyBufferProcs}.
A ``buffer object'' is defined in the \file{bufferobject.h} header
(included by \file{Python.h}). These objects look very similar to
string objects at the Python programming level: they support slicing,
indexing, concatenation, and some other standard string
operations. However, their data can come from one of two sources: from
a block of memory, or from another object which exports the buffer
interface.
Buffer objects are useful as a way to expose the data from another
object's buffer interface to the Python programmer. They can also be
used as a zero-copy slicing mechanism. Using their ability to
reference a block of memory, it is possible to expose any data to the
Python programmer quite easily. The memory could be a large, constant
array in a C extension, it could be a raw block of memory for
manipulation before passing to an operating system library, or it
could be used to pass around structured data in its native, in-memory
format.
\begin{ctypedesc}{PyBufferObject}
This subtype of \ctype{PyObject} represents a buffer object.
\end{ctypedesc}
\begin{cvardesc}{PyTypeObject}{PyBuffer_Type}
The instance of \ctype{PyTypeObject} which represents the Python
buffer type; it is the same object as \code{buffer} and
\code{types.BufferType} in the Python layer.
\withsubitem{(in module types)}{\ttindex{BufferType}}.
\end{cvardesc}
\begin{cvardesc}{int}{Py_END_OF_BUFFER}
This constant may be passed as the \var{size} parameter to
\cfunction{PyBuffer_FromObject()} or
\cfunction{PyBuffer_FromReadWriteObject()}. It indicates that the
new \ctype{PyBufferObject} should refer to \var{base} object from
the specified \var{offset} to the end of its exported buffer. Using
this enables the caller to avoid querying the \var{base} object for
its length.
\end{cvardesc}
\begin{cfuncdesc}{int}{PyBuffer_Check}{PyObject *p}
Return true if the argument has type \cdata{PyBuffer_Type}.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyBuffer_FromObject}{PyObject *base,
Py_ssize_t offset, Py_ssize_t size}
Return a new read-only buffer object. This raises
\exception{TypeError} if \var{base} doesn't support the read-only
buffer protocol or doesn't provide exactly one buffer segment, or it
raises \exception{ValueError} if \var{offset} is less than zero. The
buffer will hold a reference to the \var{base} object, and the
buffer's contents will refer to the \var{base} object's buffer
interface, starting as position \var{offset} and extending for
\var{size} bytes. If \var{size} is \constant{Py_END_OF_BUFFER}, then
the new buffer's contents extend to the length of the \var{base}
object's exported buffer data.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyBuffer_FromReadWriteObject}{PyObject *base,
Py_ssize_t offset,
Py_ssize_t size}
Return a new writable buffer object. Parameters and exceptions are
similar to those for \cfunction{PyBuffer_FromObject()}. If the
\var{base} object does not export the writeable buffer protocol,
then \exception{TypeError} is raised.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyBuffer_FromMemory}{void *ptr, Py_ssize_t size}
Return a new read-only buffer object that reads from a specified
location in memory, with a specified size. The caller is
responsible for ensuring that the memory buffer, passed in as
\var{ptr}, is not deallocated while the returned buffer object
exists. Raises \exception{ValueError} if \var{size} is less than
zero. Note that \constant{Py_END_OF_BUFFER} may \emph{not} be
passed for the \var{size} parameter; \exception{ValueError} will be
raised in that case.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyBuffer_FromReadWriteMemory}{void *ptr, Py_ssize_t size}
Similar to \cfunction{PyBuffer_FromMemory()}, but the returned
buffer is writable.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyBuffer_New}{Py_ssize_t size}
Return a new writable buffer object that maintains its own memory
buffer of \var{size} bytes. \exception{ValueError} is returned if
\var{size} is not zero or positive. Note that the memory buffer (as
returned by \cfunction{PyObject_AsWriteBuffer()}) is not specifically
aligned.
\end{cfuncdesc}
\subsection{Tuple Objects \label{tupleObjects}}
\obindex{tuple}
\begin{ctypedesc}{PyTupleObject}
This subtype of \ctype{PyObject} represents a Python tuple object.
\end{ctypedesc}
\begin{cvardesc}{PyTypeObject}{PyTuple_Type}
This instance of \ctype{PyTypeObject} represents the Python tuple
type; it is the same object as \code{tuple} and \code{types.TupleType}
in the Python layer.\withsubitem{(in module types)}{\ttindex{TupleType}}.
\end{cvardesc}
\begin{cfuncdesc}{int}{PyTuple_Check}{PyObject *p}
Return true if \var{p} is a tuple object or an instance of a subtype
of the tuple type.
\versionchanged[Allowed subtypes to be accepted]{2.2}
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PyTuple_CheckExact}{PyObject *p}
Return true if \var{p} is a tuple object, but not an instance of a
subtype of the tuple type.
\versionadded{2.2}
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyTuple_New}{Py_ssize_t len}
Return a new tuple object of size \var{len}, or \NULL{} on failure.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyTuple_Pack}{Py_ssize_t n, \moreargs}
Return a new tuple object of size \var{n}, or \NULL{} on failure.
The tuple values are initialized to the subsequent \var{n} C arguments
pointing to Python objects. \samp{PyTuple_Pack(2, \var{a}, \var{b})}
is equivalent to \samp{Py_BuildValue("(OO)", \var{a}, \var{b})}.
\versionadded{2.4}
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PyTuple_Size}{PyObject *p}
Take a pointer to a tuple object, and return the size of that
tuple.
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PyTuple_GET_SIZE}{PyObject *p}
Return the size of the tuple \var{p}, which must be non-\NULL{} and
point to a tuple; no error checking is performed.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyTuple_GetItem}{PyObject *p, Py_ssize_t pos}
Return the object at position \var{pos} in the tuple pointed to by
\var{p}. If \var{pos} is out of bounds, return \NULL{} and sets an
\exception{IndexError} exception.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyTuple_GET_ITEM}{PyObject *p, Py_ssize_t pos}
Like \cfunction{PyTuple_GetItem()}, but does no checking of its
arguments.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyTuple_GetSlice}{PyObject *p,
Py_ssize_t low, Py_ssize_t high}
Take a slice of the tuple pointed to by \var{p} from \var{low} to
\var{high} and return it as a new tuple.
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PyTuple_SetItem}{PyObject *p,
Py_ssize_t pos, PyObject *o}
Insert a reference to object \var{o} at position \var{pos} of the
tuple pointed to by \var{p}. Return \code{0} on success.
\note{This function ``steals'' a reference to \var{o}.}
\end{cfuncdesc}
\begin{cfuncdesc}{void}{PyTuple_SET_ITEM}{PyObject *p,
Py_ssize_t pos, PyObject *o}
Like \cfunction{PyTuple_SetItem()}, but does no error checking, and
should \emph{only} be used to fill in brand new tuples. \note{This
function ``steals'' a reference to \var{o}.}
\end{cfuncdesc}
\begin{cfuncdesc}{int}{_PyTuple_Resize}{PyObject **p, Py_ssize_t newsize}
Can be used to resize a tuple. \var{newsize} will be the new length
of the tuple. Because tuples are \emph{supposed} to be immutable,
this should only be used if there is only one reference to the
object. Do \emph{not} use this if the tuple may already be known to
some other part of the code. The tuple will always grow or shrink
at the end. Think of this as destroying the old tuple and creating
a new one, only more efficiently. Returns \code{0} on success.
Client code should never assume that the resulting value of
\code{*\var{p}} will be the same as before calling this function.
If the object referenced by \code{*\var{p}} is replaced, the
original \code{*\var{p}} is destroyed. On failure, returns
\code{-1} and sets \code{*\var{p}} to \NULL{}, and raises
\exception{MemoryError} or
\exception{SystemError}.
\versionchanged[Removed unused third parameter, \var{last_is_sticky}]{2.2}
\end{cfuncdesc}
\subsection{List Objects \label{listObjects}}
\obindex{list}
\begin{ctypedesc}{PyListObject}
This subtype of \ctype{PyObject} represents a Python list object.
\end{ctypedesc}
\begin{cvardesc}{PyTypeObject}{PyList_Type}
This instance of \ctype{PyTypeObject} represents the Python list
type. This is the same object as \code{list} and \code{types.ListType}
in the Python layer.\withsubitem{(in module types)}{\ttindex{ListType}}
\end{cvardesc}
\begin{cfuncdesc}{int}{PyList_Check}{PyObject *p}
Return true if \var{p} is a list object or an instance of a
subtype of the list type.
\versionchanged[Allowed subtypes to be accepted]{2.2}
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PyList_CheckExact}{PyObject *p}
Return true if \var{p} is a list object, but not an instance of a
subtype of the list type.
\versionadded{2.2}
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyList_New}{Py_ssize_t len}
Return a new list of length \var{len} on success, or \NULL{} on
failure.
\note{If \var{length} is greater than zero, the returned list object's
items are set to \code{NULL}. Thus you cannot use abstract
API functions such as \cfunction{PySequence_SetItem()}
or expose the object to Python code before setting all items to a
real object with \cfunction{PyList_SetItem()}.}
\end{cfuncdesc}
\begin{cfuncdesc}{Py_ssize_t}{PyList_Size}{PyObject *list}
Return the length of the list object in \var{list}; this is
equivalent to \samp{len(\var{list})} on a list object.
\bifuncindex{len}
\end{cfuncdesc}
\begin{cfuncdesc}{Py_ssize_t}{PyList_GET_SIZE}{PyObject *list}
Macro form of \cfunction{PyList_Size()} without error checking.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyList_GetItem}{PyObject *list, Py_ssize_t index}
Return the object at position \var{pos} in the list pointed to by
\var{p}. The position must be positive, indexing from the end of the
list is not supported. If \var{pos} is out of bounds, return \NULL{}
and set an \exception{IndexError} exception.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyList_GET_ITEM}{PyObject *list, Py_ssize_t i}
Macro form of \cfunction{PyList_GetItem()} without error checking.
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PyList_SetItem}{PyObject *list, Py_ssize_t index,
PyObject *item}
Set the item at index \var{index} in list to \var{item}. Return
\code{0} on success or \code{-1} on failure. \note{This function
``steals'' a reference to \var{item} and discards a reference to an
item already in the list at the affected position.}
\end{cfuncdesc}
\begin{cfuncdesc}{void}{PyList_SET_ITEM}{PyObject *list, Py_ssize_t i,
PyObject *o}
Macro form of \cfunction{PyList_SetItem()} without error checking.
This is normally only used to fill in new lists where there is no
previous content.
\note{This function ``steals'' a reference to \var{item}, and,
unlike \cfunction{PyList_SetItem()}, does \emph{not} discard a
reference to any item that it being replaced; any reference in
\var{list} at position \var{i} will be leaked.}
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PyList_Insert}{PyObject *list, Py_ssize_t index,
PyObject *item}
Insert the item \var{item} into list \var{list} in front of index
\var{index}. Return \code{0} if successful; return \code{-1} and
set an exception if unsuccessful. Analogous to
\code{\var{list}.insert(\var{index}, \var{item})}.
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PyList_Append}{PyObject *list, PyObject *item}
Append the object \var{item} at the end of list \var{list}.
Return \code{0} if successful; return \code{-1} and set an
exception if unsuccessful. Analogous to
\code{\var{list}.append(\var{item})}.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyList_GetSlice}{PyObject *list,
Py_ssize_t low, Py_ssize_t high}
Return a list of the objects in \var{list} containing the objects
\emph{between} \var{low} and \var{high}. Return \NULL{} and set
an exception if unsuccessful.
Analogous to \code{\var{list}[\var{low}:\var{high}]}.
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PyList_SetSlice}{PyObject *list,
Py_ssize_t low, Py_ssize_t high,
PyObject *itemlist}
Set the slice of \var{list} between \var{low} and \var{high} to the
contents of \var{itemlist}. Analogous to
\code{\var{list}[\var{low}:\var{high}] = \var{itemlist}}.
The \var{itemlist} may be \NULL{}, indicating the assignment
of an empty list (slice deletion).
Return \code{0} on success, \code{-1} on failure.
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PyList_Sort}{PyObject *list}
Sort the items of \var{list} in place. Return \code{0} on
success, \code{-1} on failure. This is equivalent to
\samp{\var{list}.sort()}.
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PyList_Reverse}{PyObject *list}
Reverse the items of \var{list} in place. Return \code{0} on
success, \code{-1} on failure. This is the equivalent of
\samp{\var{list}.reverse()}.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyList_AsTuple}{PyObject *list}
Return a new tuple object containing the contents of \var{list};
equivalent to \samp{tuple(\var{list})}.\bifuncindex{tuple}
\end{cfuncdesc}
\section{Mapping Objects \label{mapObjects}}
\obindex{mapping}
\subsection{Dictionary Objects \label{dictObjects}}
\obindex{dictionary}
\begin{ctypedesc}{PyDictObject}
This subtype of \ctype{PyObject} represents a Python dictionary
object.
\end{ctypedesc}
\begin{cvardesc}{PyTypeObject}{PyDict_Type}
This instance of \ctype{PyTypeObject} represents the Python
dictionary type. This is exposed to Python programs as
\code{dict} and \code{types.DictType}.
\withsubitem{(in module types)}{\ttindex{DictType}\ttindex{DictionaryType}}
\end{cvardesc}
\begin{cfuncdesc}{int}{PyDict_Check}{PyObject *p}
Return true if \var{p} is a dict object or an instance of a
subtype of the dict type.
\versionchanged[Allowed subtypes to be accepted]{2.2}
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PyDict_CheckExact}{PyObject *p}
Return true if \var{p} is a dict object, but not an instance of a
subtype of the dict type.
\versionadded{2.4}
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyDict_New}{}
Return a new empty dictionary, or \NULL{} on failure.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyDictProxy_New}{PyObject *dict}
Return a proxy object for a mapping which enforces read-only
behavior. This is normally used to create a proxy to prevent
modification of the dictionary for non-dynamic class types.
\versionadded{2.2}
\end{cfuncdesc}
\begin{cfuncdesc}{void}{PyDict_Clear}{PyObject *p}
Empty an existing dictionary of all key-value pairs.
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PyDict_Contains}{PyObject *p, PyObject *key}
Determine if dictionary \var{p} contains \var{key}. If an item
in \var{p} is matches \var{key}, return \code{1}, otherwise return
\code{0}. On error, return \code{-1}. This is equivalent to the
Python expression \samp{\var{key} in \var{p}}.
\versionadded{2.4}
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyDict_Copy}{PyObject *p}
Return a new dictionary that contains the same key-value pairs as
\var{p}.
\versionadded{1.6}
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PyDict_SetItem}{PyObject *p, PyObject *key,
PyObject *val}
Insert \var{value} into the dictionary \var{p} with a key of
\var{key}. \var{key} must be hashable; if it isn't,
\exception{TypeError} will be raised.
Return \code{0} on success or \code{-1} on failure.
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PyDict_SetItemString}{PyObject *p,
const char *key,
PyObject *val}
Insert \var{value} into the dictionary \var{p} using \var{key} as a
key. \var{key} should be a \ctype{char*}. The key object is created
using \code{PyString_FromString(\var{key})}. Return \code{0} on
success or \code{-1} on failure.
\ttindex{PyString_FromString()}
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PyDict_DelItem}{PyObject *p, PyObject *key}
Remove the entry in dictionary \var{p} with key \var{key}.
\var{key} must be hashable; if it isn't, \exception{TypeError} is
raised. Return \code{0} on success or \code{-1} on failure.
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PyDict_DelItemString}{PyObject *p, char *key}
Remove the entry in dictionary \var{p} which has a key specified by
the string \var{key}. Return \code{0} on success or \code{-1} on
failure.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyDict_GetItem}{PyObject *p, PyObject *key}
Return the object from dictionary \var{p} which has a key
\var{key}. Return \NULL{} if the key \var{key} is not present, but
\emph{without} setting an exception.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyDict_GetItemString}{PyObject *p, const char *key}
This is the same as \cfunction{PyDict_GetItem()}, but \var{key} is
specified as a \ctype{char*}, rather than a \ctype{PyObject*}.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyDict_Items}{PyObject *p}
Return a \ctype{PyListObject} containing all the items from the
dictionary, as in the dictionary method \method{items()} (see the
\citetitle[../lib/lib.html]{Python Library Reference}).
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyDict_Keys}{PyObject *p}
Return a \ctype{PyListObject} containing all the keys from the
dictionary, as in the dictionary method \method{keys()} (see the
\citetitle[../lib/lib.html]{Python Library Reference}).
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyDict_Values}{PyObject *p}
Return a \ctype{PyListObject} containing all the values from the
dictionary \var{p}, as in the dictionary method \method{values()}
(see the \citetitle[../lib/lib.html]{Python Library Reference}).
\end{cfuncdesc}
\begin{cfuncdesc}{Py_ssize_t}{PyDict_Size}{PyObject *p}
Return the number of items in the dictionary. This is equivalent
to \samp{len(\var{p})} on a dictionary.\bifuncindex{len}
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PyDict_Next}{PyObject *p, Py_ssize_t *ppos,
PyObject **pkey, PyObject **pvalue}
Iterate over all key-value pairs in the dictionary \var{p}. The
\ctype{int} referred to by \var{ppos} must be initialized to
\code{0} prior to the first call to this function to start the
iteration; the function returns true for each pair in the
dictionary, and false once all pairs have been reported. The
parameters \var{pkey} and \var{pvalue} should either point to
\ctype{PyObject*} variables that will be filled in with each key and
value, respectively, or may be \NULL{}. Any references returned through
them are borrowed. \var{ppos} should not be altered during iteration.
Its value represents offsets within the internal dictionary structure,
and since the structure is sparse, the offsets are not consecutive.
For example:
\begin{verbatim}
PyObject *key, *value;
Py_ssize_t pos = 0;
while (PyDict_Next(self->dict, &pos, &key, &value)) {
/* do something interesting with the values... */
...
}
\end{verbatim}
The dictionary \var{p} should not be mutated during iteration. It
is safe (since Python 2.1) to modify the values of the keys as you
iterate over the dictionary, but only so long as the set of keys
does not change. For example:
\begin{verbatim}
PyObject *key, *value;
Py_ssize_t pos = 0;
while (PyDict_Next(self->dict, &pos, &key, &value)) {
int i = PyInt_AS_LONG(value) + 1;
PyObject *o = PyInt_FromLong(i);
if (o == NULL)
return -1;
if (PyDict_SetItem(self->dict, key, o) < 0) {
Py_DECREF(o);
return -1;
}
Py_DECREF(o);
}
\end{verbatim}
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PyDict_Merge}{PyObject *a, PyObject *b, int override}
Iterate over mapping object \var{b} adding key-value pairs to dictionary
\var{a}.
\var{b} may be a dictionary, or any object supporting
\function{PyMapping_Keys()} and \function{PyObject_GetItem()}.
If \var{override} is true, existing pairs in \var{a} will
be replaced if a matching key is found in \var{b}, otherwise pairs
will only be added if there is not a matching key in \var{a}.
Return \code{0} on success or \code{-1} if an exception was
raised.
\versionadded{2.2}
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PyDict_Update}{PyObject *a, PyObject *b}
This is the same as \code{PyDict_Merge(\var{a}, \var{b}, 1)} in C,
or \code{\var{a}.update(\var{b})} in Python. Return \code{0} on
success or \code{-1} if an exception was raised.
\versionadded{2.2}
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PyDict_MergeFromSeq2}{PyObject *a, PyObject *seq2,
int override}
Update or merge into dictionary \var{a}, from the key-value pairs in
\var{seq2}. \var{seq2} must be an iterable object producing
iterable objects of length 2, viewed as key-value pairs. In case of
duplicate keys, the last wins if \var{override} is true, else the
first wins.
Return \code{0} on success or \code{-1} if an exception
was raised.
Equivalent Python (except for the return value):
\begin{verbatim}
def PyDict_MergeFromSeq2(a, seq2, override):
for key, value in seq2:
if override or key not in a:
a[key] = value
\end{verbatim}
\versionadded{2.2}
\end{cfuncdesc}
\section{Other Objects \label{otherObjects}}
\subsection{Class Objects \label{classObjects}}
\obindex{class}
Note that the class objects described here represent old-style classes,
which will go away in Python 3. When creating new types for extension
modules, you will want to work with type objects (section
\ref{typeObjects}).
\begin{ctypedesc}{PyClassObject}
The C structure of the objects used to describe built-in classes.
\end{ctypedesc}
\begin{cvardesc}{PyObject*}{PyClass_Type}
This is the type object for class objects; it is the same object as
\code{types.ClassType} in the Python layer.
\withsubitem{(in module types)}{\ttindex{ClassType}}
\end{cvardesc}
\begin{cfuncdesc}{int}{PyClass_Check}{PyObject *o}
Return true if the object \var{o} is a class object, including
instances of types derived from the standard class object. Return
false in all other cases.
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PyClass_IsSubclass}{PyObject *klass, PyObject *base}
Return true if \var{klass} is a subclass of \var{base}. Return false in
all other cases.
\end{cfuncdesc}
\subsection{File Objects \label{fileObjects}}
\obindex{file}
Python's built-in file objects are implemented entirely on the
\ctype{FILE*} support from the C standard library. This is an
implementation detail and may change in future releases of Python.
\begin{ctypedesc}{PyFileObject}
This subtype of \ctype{PyObject} represents a Python file object.
\end{ctypedesc}
\begin{cvardesc}{PyTypeObject}{PyFile_Type}
This instance of \ctype{PyTypeObject} represents the Python file
type. This is exposed to Python programs as \code{file} and
\code{types.FileType}.
\withsubitem{(in module types)}{\ttindex{FileType}}
\end{cvardesc}
\begin{cfuncdesc}{int}{PyFile_Check}{PyObject *p}
Return true if its argument is a \ctype{PyFileObject} or a subtype
of \ctype{PyFileObject}.
\versionchanged[Allowed subtypes to be accepted]{2.2}
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PyFile_CheckExact}{PyObject *p}
Return true if its argument is a \ctype{PyFileObject}, but not a
subtype of \ctype{PyFileObject}.
\versionadded{2.2}
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyFile_FromString}{char *filename, char *mode}
On success, return a new file object that is opened on the file
given by \var{filename}, with a file mode given by \var{mode}, where
\var{mode} has the same semantics as the standard C routine
\cfunction{fopen()}\ttindex{fopen()}. On failure, return \NULL{}.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyFile_FromFile}{FILE *fp,
char *name, char *mode,
int (*close)(FILE*)}
Create a new \ctype{PyFileObject} from the already-open standard C
file pointer, \var{fp}. The function \var{close} will be called
when the file should be closed. Return \NULL{} on failure.
\end{cfuncdesc}
\begin{cfuncdesc}{FILE*}{PyFile_AsFile}{PyObject *p}
Return the file object associated with \var{p} as a \ctype{FILE*}.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyFile_GetLine}{PyObject *p, int n}
Equivalent to \code{\var{p}.readline(\optional{\var{n}})}, this
function reads one line from the object \var{p}. \var{p} may be a
file object or any object with a \method{readline()} method. If
\var{n} is \code{0}, exactly one line is read, regardless of the
length of the line. If \var{n} is greater than \code{0}, no more
than \var{n} bytes will be read from the file; a partial line can be
returned. In both cases, an empty string is returned if the end of
the file is reached immediately. If \var{n} is less than \code{0},
however, one line is read regardless of length, but
\exception{EOFError} is raised if the end of the file is reached
immediately.
\withsubitem{(built-in exception)}{\ttindex{EOFError}}
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyFile_Name}{PyObject *p}
Return the name of the file specified by \var{p} as a string
object.
\end{cfuncdesc}
\begin{cfuncdesc}{void}{PyFile_SetBufSize}{PyFileObject *p, int n}
Available on systems with \cfunction{setvbuf()}\ttindex{setvbuf()}
only. This should only be called immediately after file object
creation.
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PyFile_Encoding}{PyFileObject *p, char *enc}
Set the file's encoding for Unicode output to \var{enc}. Return
1 on success and 0 on failure.
\versionadded{2.3}
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PyFile_SoftSpace}{PyObject *p, int newflag}
This function exists for internal use by the interpreter. Set the
\member{softspace} attribute of \var{p} to \var{newflag} and
\withsubitem{(file attribute)}{\ttindex{softspace}}return the
previous value. \var{p} does not have to be a file object for this
function to work properly; any object is supported (thought its only
interesting if the \member{softspace} attribute can be set). This
function clears any errors, and will return \code{0} as the previous
value if the attribute either does not exist or if there were errors
in retrieving it. There is no way to detect errors from this
function, but doing so should not be needed.
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PyFile_WriteObject}{PyObject *obj, PyObject *p,
int flags}
Write object \var{obj} to file object \var{p}. The only supported
flag for \var{flags} is
\constant{Py_PRINT_RAW}\ttindex{Py_PRINT_RAW}; if given, the
\function{str()} of the object is written instead of the
\function{repr()}. Return \code{0} on success or \code{-1} on
failure; the appropriate exception will be set.
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PyFile_WriteString}{const char *s, PyObject *p}
Write string \var{s} to file object \var{p}. Return \code{0} on
success or \code{-1} on failure; the appropriate exception will be
set.
\end{cfuncdesc}
\subsection{Instance Objects \label{instanceObjects}}
\obindex{instance}
There are very few functions specific to instance objects.
\begin{cvardesc}{PyTypeObject}{PyInstance_Type}
Type object for class instances.
\end{cvardesc}
\begin{cfuncdesc}{int}{PyInstance_Check}{PyObject *obj}
Return true if \var{obj} is an instance.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyInstance_New}{PyObject *class,
PyObject *arg,
PyObject *kw}
Create a new instance of a specific class. The parameters \var{arg}
and \var{kw} are used as the positional and keyword parameters to
the object's constructor.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyInstance_NewRaw}{PyObject *class,
PyObject *dict}
Create a new instance of a specific class without calling its
constructor. \var{class} is the class of new object. The
\var{dict} parameter will be used as the object's \member{__dict__};
if \NULL{}, a new dictionary will be created for the instance.
\end{cfuncdesc}
\subsection{Function Objects \label{function-objects}}
\obindex{function}
There are a few functions specific to Python functions.
\begin{ctypedesc}{PyFunctionObject}
The C structure used for functions.
\end{ctypedesc}
\begin{cvardesc}{PyTypeObject}{PyFunction_Type}
This is an instance of \ctype{PyTypeObject} and represents the
Python function type. It is exposed to Python programmers as
\code{types.FunctionType}.
\withsubitem{(in module types)}{\ttindex{MethodType}}
\end{cvardesc}
\begin{cfuncdesc}{int}{PyFunction_Check}{PyObject *o}
Return true if \var{o} is a function object (has type
\cdata{PyFunction_Type}). The parameter must not be \NULL{}.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyFunction_New}{PyObject *code,
PyObject *globals}
Return a new function object associated with the code object
\var{code}. \var{globals} must be a dictionary with the global
variables accessible to the function.
The function's docstring, name and \var{__module__} are retrieved
from the code object, the argument defaults and closure are set to
\NULL{}.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyFunction_GetCode}{PyObject *op}
Return the code object associated with the function object \var{op}.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyFunction_GetGlobals}{PyObject *op}
Return the globals dictionary associated with the function object
\var{op}.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyFunction_GetModule}{PyObject *op}
Return the \var{__module__} attribute of the function object \var{op}.
This is normally a string containing the module name, but can be set
to any other object by Python code.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyFunction_GetDefaults}{PyObject *op}
Return the argument default values of the function object \var{op}.
This can be a tuple of arguments or \NULL{}.
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PyFunction_SetDefaults}{PyObject *op,
PyObject *defaults}
Set the argument default values for the function object \var{op}.
\var{defaults} must be \var{Py_None} or a tuple.
Raises \exception{SystemError} and returns \code{-1} on failure.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyFunction_GetClosure}{PyObject *op}
Return the closure associated with the function object \var{op}.
This can be \NULL{} or a tuple of cell objects.
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PyFunction_SetClosure}{PyObject *op,
PyObject *closure}
Set the closure associated with the function object \var{op}.
\var{closure} must be \var{Py_None} or a tuple of cell objects.
Raises \exception{SystemError} and returns \code{-1} on failure.
\end{cfuncdesc}
\subsection{Method Objects \label{method-objects}}
\obindex{method}
There are some useful functions that are useful for working with
method objects.
\begin{cvardesc}{PyTypeObject}{PyMethod_Type}
This instance of \ctype{PyTypeObject} represents the Python method
type. This is exposed to Python programs as \code{types.MethodType}.
\withsubitem{(in module types)}{\ttindex{MethodType}}
\end{cvardesc}
\begin{cfuncdesc}{int}{PyMethod_Check}{PyObject *o}
Return true if \var{o} is a method object (has type
\cdata{PyMethod_Type}). The parameter must not be \NULL{}.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyMethod_New}{PyObject *func,
PyObject *self, PyObject *class}
Return a new method object, with \var{func} being any callable
object; this is the function that will be called when the method is
called. If this method should be bound to an instance, \var{self}
should be the instance and \var{class} should be the class of
\var{self}, otherwise \var{self} should be \NULL{} and \var{class}
should be the class which provides the unbound method..
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyMethod_Class}{PyObject *meth}
Return the class object from which the method \var{meth} was
created; if this was created from an instance, it will be the class
of the instance.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyMethod_GET_CLASS}{PyObject *meth}
Macro version of \cfunction{PyMethod_Class()} which avoids error
checking.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyMethod_Function}{PyObject *meth}
Return the function object associated with the method \var{meth}.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyMethod_GET_FUNCTION}{PyObject *meth}
Macro version of \cfunction{PyMethod_Function()} which avoids error
checking.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyMethod_Self}{PyObject *meth}
Return the instance associated with the method \var{meth} if it is
bound, otherwise return \NULL{}.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyMethod_GET_SELF}{PyObject *meth}
Macro version of \cfunction{PyMethod_Self()} which avoids error
checking.
\end{cfuncdesc}
\subsection{Module Objects \label{moduleObjects}}
\obindex{module}
There are only a few functions special to module objects.
\begin{cvardesc}{PyTypeObject}{PyModule_Type}
This instance of \ctype{PyTypeObject} represents the Python module
type. This is exposed to Python programs as
\code{types.ModuleType}.
\withsubitem{(in module types)}{\ttindex{ModuleType}}
\end{cvardesc}
\begin{cfuncdesc}{int}{PyModule_Check}{PyObject *p}
Return true if \var{p} is a module object, or a subtype of a module
object.
\versionchanged[Allowed subtypes to be accepted]{2.2}
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PyModule_CheckExact}{PyObject *p}
Return true if \var{p} is a module object, but not a subtype of
\cdata{PyModule_Type}.
\versionadded{2.2}
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyModule_New}{const char *name}
Return a new module object with the \member{__name__} attribute set
to \var{name}. Only the module's \member{__doc__} and
\member{__name__} attributes are filled in; the caller is
responsible for providing a \member{__file__} attribute.
\withsubitem{(module attribute)}{
\ttindex{__name__}\ttindex{__doc__}\ttindex{__file__}}
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyModule_GetDict}{PyObject *module}
Return the dictionary object that implements \var{module}'s
namespace; this object is the same as the \member{__dict__}
attribute of the module object. This function never fails.
\withsubitem{(module attribute)}{\ttindex{__dict__}}
It is recommended extensions use other \cfunction{PyModule_*()}
and \cfunction{PyObject_*()} functions rather than directly
manipulate a module's \member{__dict__}.
\end{cfuncdesc}
\begin{cfuncdesc}{char*}{PyModule_GetName}{PyObject *module}
Return \var{module}'s \member{__name__} value. If the module does
not provide one, or if it is not a string, \exception{SystemError}
is raised and \NULL{} is returned.
\withsubitem{(module attribute)}{\ttindex{__name__}}
\withsubitem{(built-in exception)}{\ttindex{SystemError}}
\end{cfuncdesc}
\begin{cfuncdesc}{char*}{PyModule_GetFilename}{PyObject *module}
Return the name of the file from which \var{module} was loaded using
\var{module}'s \member{__file__} attribute. If this is not defined,
or if it is not a string, raise \exception{SystemError} and return
\NULL{}.
\withsubitem{(module attribute)}{\ttindex{__file__}}
\withsubitem{(built-in exception)}{\ttindex{SystemError}}
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PyModule_AddObject}{PyObject *module,
const char *name, PyObject *value}
Add an object to \var{module} as \var{name}. This is a convenience
function which can be used from the module's initialization
function. This steals a reference to \var{value}. Return
\code{-1} on error, \code{0} on success.
\versionadded{2.0}
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PyModule_AddIntConstant}{PyObject *module,
const char *name, long value}
Add an integer constant to \var{module} as \var{name}. This
convenience function can be used from the module's initialization
function. Return \code{-1} on error, \code{0} on success.
\versionadded{2.0}
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PyModule_AddStringConstant}{PyObject *module,
const char *name, const char *value}
Add a string constant to \var{module} as \var{name}. This
convenience function can be used from the module's initialization
function. The string \var{value} must be null-terminated. Return
\code{-1} on error, \code{0} on success.
\versionadded{2.0}
\end{cfuncdesc}
\subsection{Iterator Objects \label{iterator-objects}}
Python provides two general-purpose iterator objects. The first, a
sequence iterator, works with an arbitrary sequence supporting the
\method{__getitem__()} method. The second works with a callable
object and a sentinel value, calling the callable for each item in the
sequence, and ending the iteration when the sentinel value is
returned.
\begin{cvardesc}{PyTypeObject}{PySeqIter_Type}
Type object for iterator objects returned by
\cfunction{PySeqIter_New()} and the one-argument form of the
\function{iter()} built-in function for built-in sequence types.
\versionadded{2.2}
\end{cvardesc}
\begin{cfuncdesc}{int}{PySeqIter_Check}{op}
Return true if the type of \var{op} is \cdata{PySeqIter_Type}.
\versionadded{2.2}
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PySeqIter_New}{PyObject *seq}
Return an iterator that works with a general sequence object,
\var{seq}. The iteration ends when the sequence raises
\exception{IndexError} for the subscripting operation.
\versionadded{2.2}
\end{cfuncdesc}
\begin{cvardesc}{PyTypeObject}{PyCallIter_Type}
Type object for iterator objects returned by
\cfunction{PyCallIter_New()} and the two-argument form of the
\function{iter()} built-in function.
\versionadded{2.2}
\end{cvardesc}
\begin{cfuncdesc}{int}{PyCallIter_Check}{op}
Return true if the type of \var{op} is \cdata{PyCallIter_Type}.
\versionadded{2.2}
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyCallIter_New}{PyObject *callable,
PyObject *sentinel}
Return a new iterator. The first parameter, \var{callable}, can be
any Python callable object that can be called with no parameters;
each call to it should return the next item in the iteration. When
\var{callable} returns a value equal to \var{sentinel}, the
iteration will be terminated.
\versionadded{2.2}
\end{cfuncdesc}
\subsection{Descriptor Objects \label{descriptor-objects}}
``Descriptors'' are objects that describe some attribute of an object.
They are found in the dictionary of type objects.
\begin{cvardesc}{PyTypeObject}{PyProperty_Type}
The type object for the built-in descriptor types.
\versionadded{2.2}
\end{cvardesc}
\begin{cfuncdesc}{PyObject*}{PyDescr_NewGetSet}{PyTypeObject *type,
struct PyGetSetDef *getset}
\versionadded{2.2}
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyDescr_NewMember}{PyTypeObject *type,
struct PyMemberDef *meth}
\versionadded{2.2}
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyDescr_NewMethod}{PyTypeObject *type,
struct PyMethodDef *meth}
\versionadded{2.2}
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyDescr_NewWrapper}{PyTypeObject *type,
struct wrapperbase *wrapper,
void *wrapped}
\versionadded{2.2}
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyDescr_NewClassMethod}{PyTypeObject *type,
PyMethodDef *method}
\versionadded{2.3}
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PyDescr_IsData}{PyObject *descr}
Return true if the descriptor objects \var{descr} describes a data
attribute, or false if it describes a method. \var{descr} must be a
descriptor object; there is no error checking.
\versionadded{2.2}
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyWrapper_New}{PyObject *, PyObject *}
\versionadded{2.2}
\end{cfuncdesc}
\subsection{Slice Objects \label{slice-objects}}
\begin{cvardesc}{PyTypeObject}{PySlice_Type}
The type object for slice objects. This is the same as
\code{slice} and \code{types.SliceType}.
\withsubitem{(in module types)}{\ttindex{SliceType}}
\end{cvardesc}
\begin{cfuncdesc}{int}{PySlice_Check}{PyObject *ob}
Return true if \var{ob} is a slice object; \var{ob} must not be
\NULL{}.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PySlice_New}{PyObject *start, PyObject *stop,
PyObject *step}
Return a new slice object with the given values. The \var{start},
\var{stop}, and \var{step} parameters are used as the values of the
slice object attributes of the same names. Any of the values may be
\NULL{}, in which case the \code{None} will be used for the
corresponding attribute. Return \NULL{} if the new object could
not be allocated.
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PySlice_GetIndices}{PySliceObject *slice, Py_ssize_t length,
Py_ssize_t *start, Py_ssize_t *stop, Py_ssize_t *step}
Retrieve the start, stop and step indices from the slice object
\var{slice}, assuming a sequence of length \var{length}. Treats
indices greater than \var{length} as errors.
Returns 0 on success and -1 on error with no exception set (unless one
of the indices was not \constant{None} and failed to be converted to
an integer, in which case -1 is returned with an exception set).
You probably do not want to use this function. If you want to use
slice objects in versions of Python prior to 2.3, you would probably
do well to incorporate the source of \cfunction{PySlice_GetIndicesEx},
suitably renamed, in the source of your extension.
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PySlice_GetIndicesEx}{PySliceObject *slice, Py_ssize_t length,
Py_ssize_t *start, Py_ssize_t *stop, Py_ssize_t *step,
Py_ssize_t *slicelength}
Usable replacement for \cfunction{PySlice_GetIndices}. Retrieve the
start, stop, and step indices from the slice object \var{slice}
assuming a sequence of length \var{length}, and store the length of
the slice in \var{slicelength}. Out of bounds indices are clipped in
a manner consistent with the handling of normal slices.
Returns 0 on success and -1 on error with exception set.
\versionadded{2.3}
\end{cfuncdesc}
\subsection{Weak Reference Objects \label{weakref-objects}}
Python supports \emph{weak references} as first-class objects. There
are two specific object types which directly implement weak
references. The first is a simple reference object, and the second
acts as a proxy for the original object as much as it can.
\begin{cfuncdesc}{int}{PyWeakref_Check}{ob}
Return true if \var{ob} is either a reference or proxy object.
\versionadded{2.2}
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PyWeakref_CheckRef}{ob}
Return true if \var{ob} is a reference object.
\versionadded{2.2}
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PyWeakref_CheckProxy}{ob}
Return true if \var{ob} is a proxy object.
\versionadded{2.2}
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyWeakref_NewRef}{PyObject *ob,
PyObject *callback}
Return a weak reference object for the object \var{ob}. This will
always return a new reference, but is not guaranteed to create a new
object; an existing reference object may be returned. The second
parameter, \var{callback}, can be a callable object that receives
notification when \var{ob} is garbage collected; it should accept a
single parameter, which will be the weak reference object itself.
\var{callback} may also be \code{None} or \NULL{}. If \var{ob}
is not a weakly-referencable object, or if \var{callback} is not
callable, \code{None}, or \NULL{}, this will return \NULL{} and
raise \exception{TypeError}.
\versionadded{2.2}
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyWeakref_NewProxy}{PyObject *ob,
PyObject *callback}
Return a weak reference proxy object for the object \var{ob}. This
will always return a new reference, but is not guaranteed to create
a new object; an existing proxy object may be returned. The second
parameter, \var{callback}, can be a callable object that receives
notification when \var{ob} is garbage collected; it should accept a
single parameter, which will be the weak reference object itself.
\var{callback} may also be \code{None} or \NULL{}. If \var{ob} is not
a weakly-referencable object, or if \var{callback} is not callable,
\code{None}, or \NULL{}, this will return \NULL{} and raise
\exception{TypeError}.
\versionadded{2.2}
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyWeakref_GetObject}{PyObject *ref}
Return the referenced object from a weak reference, \var{ref}. If
the referent is no longer live, returns \code{None}.
\versionadded{2.2}
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyWeakref_GET_OBJECT}{PyObject *ref}
Similar to \cfunction{PyWeakref_GetObject()}, but implemented as a
macro that does no error checking.
\versionadded{2.2}
\end{cfuncdesc}
\subsection{CObjects \label{cObjects}}
\obindex{CObject}
Refer to \emph{Extending and Embedding the Python Interpreter},
section~1.12, ``Providing a C API for an Extension Module,'' for more
information on using these objects.
\begin{ctypedesc}{PyCObject}
This subtype of \ctype{PyObject} represents an opaque value, useful
for C extension modules who need to pass an opaque value (as a
\ctype{void*} pointer) through Python code to other C code. It is
often used to make a C function pointer defined in one module
available to other modules, so the regular import mechanism can be
used to access C APIs defined in dynamically loaded modules.
\end{ctypedesc}
\begin{cfuncdesc}{int}{PyCObject_Check}{PyObject *p}
Return true if its argument is a \ctype{PyCObject}.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyCObject_FromVoidPtr}{void* cobj,
void (*destr)(void *)}
Create a \ctype{PyCObject} from the \code{void *}\var{cobj}. The
\var{destr} function will be called when the object is reclaimed,
unless it is \NULL{}.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyCObject_FromVoidPtrAndDesc}{void* cobj,
void* desc, void (*destr)(void *, void *)}
Create a \ctype{PyCObject} from the \ctype{void *}\var{cobj}. The
\var{destr} function will be called when the object is reclaimed.
The \var{desc} argument can be used to pass extra callback data for
the destructor function.
\end{cfuncdesc}
\begin{cfuncdesc}{void*}{PyCObject_AsVoidPtr}{PyObject* self}
Return the object \ctype{void *} that the \ctype{PyCObject}
\var{self} was created with.
\end{cfuncdesc}
\begin{cfuncdesc}{void*}{PyCObject_GetDesc}{PyObject* self}
Return the description \ctype{void *} that the \ctype{PyCObject}
\var{self} was created with.
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PyCObject_SetVoidPtr}{PyObject* self, void* cobj}
Set the void pointer inside \var{self} to \var{cobj}.
The \ctype{PyCObject} must not have an associated destructor.
Return true on success, false on failure.
\end{cfuncdesc}
\subsection{Cell Objects \label{cell-objects}}
``Cell'' objects are used to implement variables referenced by
multiple scopes. For each such variable, a cell object is created to
store the value; the local variables of each stack frame that
references the value contains a reference to the cells from outer
scopes which also use that variable. When the value is accessed, the
value contained in the cell is used instead of the cell object
itself. This de-referencing of the cell object requires support from
the generated byte-code; these are not automatically de-referenced
when accessed. Cell objects are not likely to be useful elsewhere.
\begin{ctypedesc}{PyCellObject}
The C structure used for cell objects.
\end{ctypedesc}
\begin{cvardesc}{PyTypeObject}{PyCell_Type}
The type object corresponding to cell objects.
\end{cvardesc}
\begin{cfuncdesc}{int}{PyCell_Check}{ob}
Return true if \var{ob} is a cell object; \var{ob} must not be
\NULL{}.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyCell_New}{PyObject *ob}
Create and return a new cell object containing the value \var{ob}.
The parameter may be \NULL{}.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyCell_Get}{PyObject *cell}
Return the contents of the cell \var{cell}.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyCell_GET}{PyObject *cell}
Return the contents of the cell \var{cell}, but without checking
that \var{cell} is non-\NULL{} and a cell object.
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PyCell_Set}{PyObject *cell, PyObject *value}
Set the contents of the cell object \var{cell} to \var{value}. This
releases the reference to any current content of the cell.
\var{value} may be \NULL{}. \var{cell} must be non-\NULL{}; if it is
not a cell object, \code{-1} will be returned. On success, \code{0}
will be returned.
\end{cfuncdesc}
\begin{cfuncdesc}{void}{PyCell_SET}{PyObject *cell, PyObject *value}
Sets the value of the cell object \var{cell} to \var{value}. No
reference counts are adjusted, and no checks are made for safety;
\var{cell} must be non-\NULL{} and must be a cell object.
\end{cfuncdesc}
\subsection{Generator Objects \label{gen-objects}}
Generator objects are what Python uses to implement generator iterators.
They are normally created by iterating over a function that yields values,
rather than explicitly calling \cfunction{PyGen_New}.
\begin{ctypedesc}{PyGenObject}
The C structure used for generator objects.
\end{ctypedesc}
\begin{cvardesc}{PyTypeObject}{PyGen_Type}
The type object corresponding to generator objects
\end{cvardesc}
\begin{cfuncdesc}{int}{PyGen_Check}{ob}
Return true if \var{ob} is a generator object; \var{ob} must not be
\NULL{}.
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PyGen_CheckExact}{ob}
Return true if \var{ob}'s type is \var{PyGen_Type}
is a generator object; \var{ob} must not be
\NULL{}.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyGen_New}{PyFrameObject *frame}
Create and return a new generator object based on the \var{frame} object.
A reference to \var{frame} is stolen by this function.
The parameter must not be \NULL{}.
\end{cfuncdesc}
\subsection{DateTime Objects \label{datetime-objects}}
Various date and time objects are supplied by the \module{datetime}
module. Before using any of these functions, the header file
\file{datetime.h} must be included in your source (note that this is
not included by \file{Python.h}), and the macro
\cfunction{PyDateTime_IMPORT} must be invoked. The macro puts a
pointer to a C structure into a static variable,
\code{PyDateTimeAPI}, that is used by the following macros.
Type-check macros:
\begin{cfuncdesc}{int}{PyDate_Check}{PyObject *ob}
Return true if \var{ob} is of type \cdata{PyDateTime_DateType} or
a subtype of \cdata{PyDateTime_DateType}. \var{ob} must not be
\NULL{}.
\versionadded{2.4}
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PyDate_CheckExact}{PyObject *ob}
Return true if \var{ob} is of type \cdata{PyDateTime_DateType}.
\var{ob} must not be \NULL{}.
\versionadded{2.4}
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PyDateTime_Check}{PyObject *ob}
Return true if \var{ob} is of type \cdata{PyDateTime_DateTimeType} or
a subtype of \cdata{PyDateTime_DateTimeType}. \var{ob} must not be
\NULL{}.
\versionadded{2.4}
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PyDateTime_CheckExact}{PyObject *ob}
Return true if \var{ob} is of type \cdata{PyDateTime_DateTimeType}.
\var{ob} must not be \NULL{}.
\versionadded{2.4}
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PyTime_Check}{PyObject *ob}
Return true if \var{ob} is of type \cdata{PyDateTime_TimeType} or
a subtype of \cdata{PyDateTime_TimeType}. \var{ob} must not be
\NULL{}.
\versionadded{2.4}
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PyTime_CheckExact}{PyObject *ob}
Return true if \var{ob} is of type \cdata{PyDateTime_TimeType}.
\var{ob} must not be \NULL{}.
\versionadded{2.4}
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PyDelta_Check}{PyObject *ob}
Return true if \var{ob} is of type \cdata{PyDateTime_DeltaType} or
a subtype of \cdata{PyDateTime_DeltaType}. \var{ob} must not be
\NULL{}.
\versionadded{2.4}
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PyDelta_CheckExact}{PyObject *ob}
Return true if \var{ob} is of type \cdata{PyDateTime_DeltaType}.
\var{ob} must not be \NULL{}.
\versionadded{2.4}
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PyTZInfo_Check}{PyObject *ob}
Return true if \var{ob} is of type \cdata{PyDateTime_TZInfoType} or
a subtype of \cdata{PyDateTime_TZInfoType}. \var{ob} must not be
\NULL{}.
\versionadded{2.4}
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PyTZInfo_CheckExact}{PyObject *ob}
Return true if \var{ob} is of type \cdata{PyDateTime_TZInfoType}.
\var{ob} must not be \NULL{}.
\versionadded{2.4}
\end{cfuncdesc}
Macros to create objects:
\begin{cfuncdesc}{PyObject*}{PyDate_FromDate}{int year, int month, int day}
Return a \code{datetime.date} object with the specified year, month
and day.
\versionadded{2.4}
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyDateTime_FromDateAndTime}{int year, int month,
int day, int hour, int minute, int second, int usecond}
Return a \code{datetime.datetime} object with the specified year, month,
day, hour, minute, second and microsecond.
\versionadded{2.4}
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyTime_FromTime}{int hour, int minute,
int second, int usecond}
Return a \code{datetime.time} object with the specified hour, minute,
second and microsecond.
\versionadded{2.4}
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyDelta_FromDSU}{int days, int seconds,
int useconds}
Return a \code{datetime.timedelta} object representing the given number
of days, seconds and microseconds. Normalization is performed so that
the resulting number of microseconds and seconds lie in the ranges
documented for \code{datetime.timedelta} objects.
\versionadded{2.4}
\end{cfuncdesc}
Macros to extract fields from date objects. The argument must be an
instance of \cdata{PyDateTime_Date}, including subclasses (such as
\cdata{PyDateTime_DateTime}). The argument must not be \NULL{}, and
the type is not checked:
\begin{cfuncdesc}{int}{PyDateTime_GET_YEAR}{PyDateTime_Date *o}
Return the year, as a positive int.
\versionadded{2.4}
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PyDateTime_GET_MONTH}{PyDateTime_Date *o}
Return the month, as an int from 1 through 12.
\versionadded{2.4}
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PyDateTime_GET_DAY}{PyDateTime_Date *o}
Return the day, as an int from 1 through 31.
\versionadded{2.4}
\end{cfuncdesc}
Macros to extract fields from datetime objects. The argument must be an
instance of \cdata{PyDateTime_DateTime}, including subclasses.
The argument must not be \NULL{}, and the type is not checked:
\begin{cfuncdesc}{int}{PyDateTime_DATE_GET_HOUR}{PyDateTime_DateTime *o}
Return the hour, as an int from 0 through 23.
\versionadded{2.4}
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PyDateTime_DATE_GET_MINUTE}{PyDateTime_DateTime *o}
Return the minute, as an int from 0 through 59.
\versionadded{2.4}
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PyDateTime_DATE_GET_SECOND}{PyDateTime_DateTime *o}
Return the second, as an int from 0 through 59.
\versionadded{2.4}
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PyDateTime_DATE_GET_MICROSECOND}{PyDateTime_DateTime *o}
Return the microsecond, as an int from 0 through 999999.
\versionadded{2.4}
\end{cfuncdesc}
Macros to extract fields from time objects. The argument must be an
instance of \cdata{PyDateTime_Time}, including subclasses.
The argument must not be \NULL{}, and the type is not checked:
\begin{cfuncdesc}{int}{PyDateTime_TIME_GET_HOUR}{PyDateTime_Time *o}
Return the hour, as an int from 0 through 23.
\versionadded{2.4}
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PyDateTime_TIME_GET_MINUTE}{PyDateTime_Time *o}
Return the minute, as an int from 0 through 59.
\versionadded{2.4}
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PyDateTime_TIME_GET_SECOND}{PyDateTime_Time *o}
Return the second, as an int from 0 through 59.
\versionadded{2.4}
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PyDateTime_TIME_GET_MICROSECOND}{PyDateTime_Time *o}
Return the microsecond, as an int from 0 through 999999.
\versionadded{2.4}
\end{cfuncdesc}
Macros for the convenience of modules implementing the DB API:
\begin{cfuncdesc}{PyObject*}{PyDateTime_FromTimestamp}{PyObject *args}
Create and return a new \code{datetime.datetime} object given an argument
tuple suitable for passing to \code{datetime.datetime.fromtimestamp()}.
\versionadded{2.4}
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyDate_FromTimestamp}{PyObject *args}
Create and return a new \code{datetime.date} object given an argument
tuple suitable for passing to \code{datetime.date.fromtimestamp()}.
\versionadded{2.4}
\end{cfuncdesc}
\subsection{Set Objects \label{setObjects}}
\sectionauthor{Raymond D. Hettinger}{python@rcn.com}
\obindex{set}
\obindex{frozenset}
\versionadded{2.5}
This section details the public API for \class{set} and \class{frozenset}
objects. Any functionality not listed below is best accessed using the
either the abstract object protocol (including
\cfunction{PyObject_CallMethod()}, \cfunction{PyObject_RichCompareBool()},
\cfunction{PyObject_Hash()}, \cfunction{PyObject_Repr()},
\cfunction{PyObject_IsTrue()}, \cfunction{PyObject_Print()}, and
\cfunction{PyObject_GetIter()})
or the abstract number protocol (including
\cfunction{PyNumber_And()}, \cfunction{PyNumber_Subtract()},
\cfunction{PyNumber_Or()}, \cfunction{PyNumber_Xor()},
\cfunction{PyNumber_InPlaceAnd()}, \cfunction{PyNumber_InPlaceSubtract()},
\cfunction{PyNumber_InPlaceOr()}, and \cfunction{PyNumber_InPlaceXor()}).
\begin{ctypedesc}{PySetObject}
This subtype of \ctype{PyObject} is used to hold the internal data for
both \class{set} and \class{frozenset} objects. It is like a
\ctype{PyDictObject} in that it is a fixed size for small sets
(much like tuple storage) and will point to a separate, variable sized
block of memory for medium and large sized sets (much like list storage).
None of the fields of this structure should be considered public and
are subject to change. All access should be done through the
documented API rather than by manipulating the values in the structure.
\end{ctypedesc}
\begin{cvardesc}{PyTypeObject}{PySet_Type}
This is an instance of \ctype{PyTypeObject} representing the Python
\class{set} type.
\end{cvardesc}
\begin{cvardesc}{PyTypeObject}{PyFrozenSet_Type}
This is an instance of \ctype{PyTypeObject} representing the Python
\class{frozenset} type.
\end{cvardesc}
The following type check macros work on pointers to any Python object.
Likewise, the constructor functions work with any iterable Python object.
\begin{cfuncdesc}{int}{PyAnySet_Check}{PyObject *p}
Return true if \var{p} is a \class{set} object, a \class{frozenset}
object, or an instance of a subtype.
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PyAnySet_CheckExact}{PyObject *p}
Return true if \var{p} is a \class{set} object or a \class{frozenset}
object but not an instance of a subtype.
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PyFrozenSet_CheckExact}{PyObject *p}
Return true if \var{p} is a \class{frozenset} object
but not an instance of a subtype.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PySet_New}{PyObject *iterable}
Return a new \class{set} containing objects returned by the
\var{iterable}. The \var{iterable} may be \NULL{} to create a
new empty set. Return the new set on success or \NULL{} on
failure. Raise \exception{TypeError} if \var{iterable} is
not actually iterable. The constructor is also useful for
copying a set (\code{c=set(s)}).
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PyFrozenSet_New}{PyObject *iterable}
Return a new \class{frozenset} containing objects returned by the
\var{iterable}. The \var{iterable} may be \NULL{} to create a
new empty frozenset. Return the new set on success or \NULL{} on
failure. Raise \exception{TypeError} if \var{iterable} is
not actually iterable.
\end{cfuncdesc}
The following functions and macros are available for instances of
\class{set} or \class{frozenset} or instances of their subtypes.
\begin{cfuncdesc}{int}{PySet_Size}{PyObject *anyset}
Return the length of a \class{set} or \class{frozenset} object.
Equivalent to \samp{len(\var{anyset})}. Raises a
\exception{PyExc_SystemError} if \var{anyset} is not a \class{set},
\class{frozenset}, or an instance of a subtype.
\bifuncindex{len}
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PySet_GET_SIZE}{PyObject *anyset}
Macro form of \cfunction{PySet_Size()} without error checking.
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PySet_Contains}{PyObject *anyset, PyObject *key}
Return 1 if found, 0 if not found, and -1 if an error is
encountered. Unlike the Python \method{__contains__()} method, this
function does not automatically convert unhashable sets into temporary
frozensets. Raise a \exception{TypeError} if the \var{key} is unhashable.
Raise \exception{PyExc_SystemError} if \var{anyset} is not a \class{set},
\class{frozenset}, or an instance of a subtype.
\end{cfuncdesc}
The following functions are available for instances of \class{set} or
its subtypes but not for instances of \class{frozenset} or its subtypes.
\begin{cfuncdesc}{int}{PySet_Add}{PyObject *set, PyObject *key}
Add \var{key} to a \class{set} instance. Does not apply to
\class{frozenset} instances. Return 0 on success or -1 on failure.
Raise a \exception{TypeError} if the \var{key} is unhashable.
Raise a \exception{MemoryError} if there is no room to grow.
Raise a \exception{SystemError} if \var{set} is an not an instance
of \class{set} or its subtype.
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PySet_Discard}{PyObject *set, PyObject *key}
Return 1 if found and removed, 0 if not found (no action taken),
and -1 if an error is encountered. Does not raise \exception{KeyError}
for missing keys. Raise a \exception{TypeError} if the \var{key} is
unhashable. Unlike the Python \method{discard()} method, this function
does not automatically convert unhashable sets into temporary frozensets.
Raise \exception{PyExc_SystemError} if \var{set} is an not an instance
of \class{set} or its subtype.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject*}{PySet_Pop}{PyObject *set}
Return a new reference to an arbitrary object in the \var{set},
and removes the object from the \var{set}. Return \NULL{} on
failure. Raise \exception{KeyError} if the set is empty.
Raise a \exception{SystemError} if \var{set} is an not an instance
of \class{set} or its subtype.
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PySet_Clear}{PyObject *set}
Empty an existing set of all elements.
\end{cfuncdesc}
|