1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
|
.. highlight:: c
.. _arg-parsing:
Parsing arguments and building values
=====================================
These functions are useful when creating your own extensions functions and
methods. Additional information and examples are available in
:ref:`extending-index`.
The first three of these functions described, :c:func:`PyArg_ParseTuple`,
:c:func:`PyArg_ParseTupleAndKeywords`, and :c:func:`PyArg_Parse`, all use *format
strings* which are used to tell the function about the expected arguments. The
format strings use the same syntax for each of these functions.
-----------------
Parsing arguments
-----------------
A format string consists of zero or more "format units." A format unit
describes one Python object; it is usually a single character or a parenthesized
sequence of format units. With a few exceptions, a format unit that is not a
parenthesized sequence normally corresponds to a single address argument to
these functions. In the following description, the quoted form is the format
unit; the entry in (round) parentheses is the Python object type that matches
the format unit; and the entry in [square] brackets is the type of the C
variable(s) whose address should be passed.
.. _arg-parsing-string-and-buffers:
Strings and buffers
-------------------
.. note::
On Python 3.12 and older, the macro :c:macro:`!PY_SSIZE_T_CLEAN` must be
defined before including :file:`Python.h` to use all ``#`` variants of
formats (``s#``, ``y#``, etc.) explained below.
This is not necessary on Python 3.13 and later.
These formats allow accessing an object as a contiguous chunk of memory.
You don't have to provide raw storage for the returned unicode or bytes
area.
Unless otherwise stated, buffers are not NUL-terminated.
There are three ways strings and buffers can be converted to C:
* Formats such as ``y*`` and ``s*`` fill a :c:type:`Py_buffer` structure.
This locks the underlying buffer so that the caller can subsequently use
the buffer even inside a :c:type:`Py_BEGIN_ALLOW_THREADS`
block without the risk of mutable data being resized or destroyed.
As a result, **you have to call** :c:func:`PyBuffer_Release` after you have
finished processing the data (or in any early abort case).
* The ``es``, ``es#``, ``et`` and ``et#`` formats allocate the result buffer.
**You have to call** :c:func:`PyMem_Free` after you have finished
processing the data (or in any early abort case).
* .. _c-arg-borrowed-buffer:
Other formats take a :class:`str` or a read-only :term:`bytes-like object`,
such as :class:`bytes`, and provide a ``const char *`` pointer to
its buffer.
In this case the buffer is "borrowed": it is managed by the corresponding
Python object, and shares the lifetime of this object.
You won't have to release any memory yourself.
To ensure that the underlying buffer may be safely borrowed, the object's
:c:member:`PyBufferProcs.bf_releasebuffer` field must be ``NULL``.
This disallows common mutable objects such as :class:`bytearray`,
but also some read-only objects such as :class:`memoryview` of
:class:`bytes`.
Besides this ``bf_releasebuffer`` requirement, there is no check to verify
whether the input object is immutable (e.g. whether it would honor a request
for a writable buffer, or whether another thread can mutate the data).
``s`` (:class:`str`) [const char \*]
Convert a Unicode object to a C pointer to a character string.
A pointer to an existing string is stored in the character pointer
variable whose address you pass. The C string is NUL-terminated.
The Python string must not contain embedded null code points; if it does,
a :exc:`ValueError` exception is raised. Unicode objects are converted
to C strings using ``'utf-8'`` encoding. If this conversion fails, a
:exc:`UnicodeError` is raised.
.. note::
This format does not accept :term:`bytes-like objects
<bytes-like object>`. If you want to accept
filesystem paths and convert them to C character strings, it is
preferable to use the ``O&`` format with :c:func:`PyUnicode_FSConverter`
as *converter*.
.. versionchanged:: 3.5
Previously, :exc:`TypeError` was raised when embedded null code points
were encountered in the Python string.
``s*`` (:class:`str` or :term:`bytes-like object`) [Py_buffer]
This format accepts Unicode objects as well as bytes-like objects.
It fills a :c:type:`Py_buffer` structure provided by the caller.
In this case the resulting C string may contain embedded NUL bytes.
Unicode objects are converted to C strings using ``'utf-8'`` encoding.
``s#`` (:class:`str`, read-only :term:`bytes-like object`) [const char \*, :c:type:`Py_ssize_t`]
Like ``s*``, except that it provides a :ref:`borrowed buffer <c-arg-borrowed-buffer>`.
The result is stored into two C variables,
the first one a pointer to a C string, the second one its length.
The string may contain embedded null bytes. Unicode objects are converted
to C strings using ``'utf-8'`` encoding.
``z`` (:class:`str` or ``None``) [const char \*]
Like ``s``, but the Python object may also be ``None``, in which case the C
pointer is set to ``NULL``.
``z*`` (:class:`str`, :term:`bytes-like object` or ``None``) [Py_buffer]
Like ``s*``, but the Python object may also be ``None``, in which case the
``buf`` member of the :c:type:`Py_buffer` structure is set to ``NULL``.
``z#`` (:class:`str`, read-only :term:`bytes-like object` or ``None``) [const char \*, :c:type:`Py_ssize_t`]
Like ``s#``, but the Python object may also be ``None``, in which case the C
pointer is set to ``NULL``.
``y`` (read-only :term:`bytes-like object`) [const char \*]
This format converts a bytes-like object to a C pointer to a
:ref:`borrowed <c-arg-borrowed-buffer>` character string;
it does not accept Unicode objects. The bytes buffer must not
contain embedded null bytes; if it does, a :exc:`ValueError`
exception is raised.
.. versionchanged:: 3.5
Previously, :exc:`TypeError` was raised when embedded null bytes were
encountered in the bytes buffer.
``y*`` (:term:`bytes-like object`) [Py_buffer]
This variant on ``s*`` doesn't accept Unicode objects, only
bytes-like objects. **This is the recommended way to accept
binary data.**
``y#`` (read-only :term:`bytes-like object`) [const char \*, :c:type:`Py_ssize_t`]
This variant on ``s#`` doesn't accept Unicode objects, only bytes-like
objects.
``S`` (:class:`bytes`) [PyBytesObject \*]
Requires that the Python object is a :class:`bytes` object, without
attempting any conversion. Raises :exc:`TypeError` if the object is not
a bytes object. The C variable may also be declared as :c:expr:`PyObject*`.
``Y`` (:class:`bytearray`) [PyByteArrayObject \*]
Requires that the Python object is a :class:`bytearray` object, without
attempting any conversion. Raises :exc:`TypeError` if the object is not
a :class:`bytearray` object. The C variable may also be declared as :c:expr:`PyObject*`.
``U`` (:class:`str`) [PyObject \*]
Requires that the Python object is a Unicode object, without attempting
any conversion. Raises :exc:`TypeError` if the object is not a Unicode
object. The C variable may also be declared as :c:expr:`PyObject*`.
``w*`` (read-write :term:`bytes-like object`) [Py_buffer]
This format accepts any object which implements the read-write buffer
interface. It fills a :c:type:`Py_buffer` structure provided by the caller.
The buffer may contain embedded null bytes. The caller have to call
:c:func:`PyBuffer_Release` when it is done with the buffer.
``es`` (:class:`str`) [const char \*encoding, char \*\*buffer]
This variant on ``s`` is used for encoding Unicode into a character buffer.
It only works for encoded data without embedded NUL bytes.
This format requires two arguments. The first is only used as input, and
must be a :c:expr:`const char*` which points to the name of an encoding as a
NUL-terminated string, or ``NULL``, in which case ``'utf-8'`` encoding is used.
An exception is raised if the named encoding is not known to Python. The
second argument must be a :c:expr:`char**`; the value of the pointer it
references will be set to a buffer with the contents of the argument text.
The text will be encoded in the encoding specified by the first argument.
:c:func:`PyArg_ParseTuple` will allocate a buffer of the needed size, copy the
encoded data into this buffer and adjust *\*buffer* to reference the newly
allocated storage. The caller is responsible for calling :c:func:`PyMem_Free` to
free the allocated buffer after use.
``et`` (:class:`str`, :class:`bytes` or :class:`bytearray`) [const char \*encoding, char \*\*buffer]
Same as ``es`` except that byte string objects are passed through without
recoding them. Instead, the implementation assumes that the byte string object uses
the encoding passed in as parameter.
``es#`` (:class:`str`) [const char \*encoding, char \*\*buffer, :c:type:`Py_ssize_t` \*buffer_length]
This variant on ``s#`` is used for encoding Unicode into a character buffer.
Unlike the ``es`` format, this variant allows input data which contains NUL
characters.
It requires three arguments. The first is only used as input, and must be a
:c:expr:`const char*` which points to the name of an encoding as a
NUL-terminated string, or ``NULL``, in which case ``'utf-8'`` encoding is used.
An exception is raised if the named encoding is not known to Python. The
second argument must be a :c:expr:`char**`; the value of the pointer it
references will be set to a buffer with the contents of the argument text.
The text will be encoded in the encoding specified by the first argument.
The third argument must be a pointer to an integer; the referenced integer
will be set to the number of bytes in the output buffer.
There are two modes of operation:
If *\*buffer* points a ``NULL`` pointer, the function will allocate a buffer of
the needed size, copy the encoded data into this buffer and set *\*buffer* to
reference the newly allocated storage. The caller is responsible for calling
:c:func:`PyMem_Free` to free the allocated buffer after usage.
If *\*buffer* points to a non-``NULL`` pointer (an already allocated buffer),
:c:func:`PyArg_ParseTuple` will use this location as the buffer and interpret the
initial value of *\*buffer_length* as the buffer size. It will then copy the
encoded data into the buffer and NUL-terminate it. If the buffer is not large
enough, a :exc:`ValueError` will be set.
In both cases, *\*buffer_length* is set to the length of the encoded data
without the trailing NUL byte.
``et#`` (:class:`str`, :class:`bytes` or :class:`bytearray`) [const char \*encoding, char \*\*buffer, :c:type:`Py_ssize_t` \*buffer_length]
Same as ``es#`` except that byte string objects are passed through without recoding
them. Instead, the implementation assumes that the byte string object uses the
encoding passed in as parameter.
.. versionchanged:: 3.12
``u``, ``u#``, ``Z``, and ``Z#`` are removed because they used a legacy
``Py_UNICODE*`` representation.
Numbers
-------
``b`` (:class:`int`) [unsigned char]
Convert a nonnegative Python integer to an unsigned tiny int, stored in a C
:c:expr:`unsigned char`.
``B`` (:class:`int`) [unsigned char]
Convert a Python integer to a tiny int without overflow checking, stored in a C
:c:expr:`unsigned char`.
``h`` (:class:`int`) [short int]
Convert a Python integer to a C :c:expr:`short int`.
``H`` (:class:`int`) [unsigned short int]
Convert a Python integer to a C :c:expr:`unsigned short int`, without overflow
checking.
``i`` (:class:`int`) [int]
Convert a Python integer to a plain C :c:expr:`int`.
``I`` (:class:`int`) [unsigned int]
Convert a Python integer to a C :c:expr:`unsigned int`, without overflow
checking.
``l`` (:class:`int`) [long int]
Convert a Python integer to a C :c:expr:`long int`.
``k`` (:class:`int`) [unsigned long]
Convert a Python integer to a C :c:expr:`unsigned long` without
overflow checking.
``L`` (:class:`int`) [long long]
Convert a Python integer to a C :c:expr:`long long`.
``K`` (:class:`int`) [unsigned long long]
Convert a Python integer to a C :c:expr:`unsigned long long`
without overflow checking.
``n`` (:class:`int`) [:c:type:`Py_ssize_t`]
Convert a Python integer to a C :c:type:`Py_ssize_t`.
``c`` (:class:`bytes` or :class:`bytearray` of length 1) [char]
Convert a Python byte, represented as a :class:`bytes` or
:class:`bytearray` object of length 1, to a C :c:expr:`char`.
.. versionchanged:: 3.3
Allow :class:`bytearray` objects.
``C`` (:class:`str` of length 1) [int]
Convert a Python character, represented as a :class:`str` object of
length 1, to a C :c:expr:`int`.
``f`` (:class:`float`) [float]
Convert a Python floating point number to a C :c:expr:`float`.
``d`` (:class:`float`) [double]
Convert a Python floating point number to a C :c:expr:`double`.
``D`` (:class:`complex`) [Py_complex]
Convert a Python complex number to a C :c:type:`Py_complex` structure.
Other objects
-------------
``O`` (object) [PyObject \*]
Store a Python object (without any conversion) in a C object pointer. The C
program thus receives the actual object that was passed. A new
:term:`strong reference` to the object is not created
(i.e. its reference count is not increased).
The pointer stored is not ``NULL``.
``O!`` (object) [*typeobject*, PyObject \*]
Store a Python object in a C object pointer. This is similar to ``O``, but
takes two C arguments: the first is the address of a Python type object, the
second is the address of the C variable (of type :c:expr:`PyObject*`) into which
the object pointer is stored. If the Python object does not have the required
type, :exc:`TypeError` is raised.
.. _o_ampersand:
``O&`` (object) [*converter*, *anything*]
Convert a Python object to a C variable through a *converter* function. This
takes two arguments: the first is a function, the second is the address of a C
variable (of arbitrary type), converted to :c:expr:`void *`. The *converter*
function in turn is called as follows::
status = converter(object, address);
where *object* is the Python object to be converted and *address* is the
:c:expr:`void*` argument that was passed to the ``PyArg_Parse*`` function.
The returned *status* should be ``1`` for a successful conversion and ``0`` if
the conversion has failed. When the conversion fails, the *converter* function
should raise an exception and leave the content of *address* unmodified.
If the *converter* returns ``Py_CLEANUP_SUPPORTED``, it may get called a
second time if the argument parsing eventually fails, giving the converter a
chance to release any memory that it had already allocated. In this second
call, the *object* parameter will be ``NULL``; *address* will have the same value
as in the original call.
.. versionchanged:: 3.1
``Py_CLEANUP_SUPPORTED`` was added.
``p`` (:class:`bool`) [int]
Tests the value passed in for truth (a boolean **p**\ redicate) and converts
the result to its equivalent C true/false integer value.
Sets the int to ``1`` if the expression was true and ``0`` if it was false.
This accepts any valid Python value. See :ref:`truth` for more
information about how Python tests values for truth.
.. versionadded:: 3.3
``(items)`` (:class:`tuple`) [*matching-items*]
The object must be a Python sequence whose length is the number of format units
in *items*. The C arguments must correspond to the individual format units in
*items*. Format units for sequences may be nested.
It is possible to pass "long" integers (integers whose value exceeds the
platform's :c:macro:`LONG_MAX`) however no proper range checking is done --- the
most significant bits are silently truncated when the receiving field is too
small to receive the value (actually, the semantics are inherited from downcasts
in C --- your mileage may vary).
A few other characters have a meaning in a format string. These may not occur
inside nested parentheses. They are:
``|``
Indicates that the remaining arguments in the Python argument list are optional.
The C variables corresponding to optional arguments should be initialized to
their default value --- when an optional argument is not specified,
:c:func:`PyArg_ParseTuple` does not touch the contents of the corresponding C
variable(s).
``$``
:c:func:`PyArg_ParseTupleAndKeywords` only:
Indicates that the remaining arguments in the Python argument list are
keyword-only. Currently, all keyword-only arguments must also be optional
arguments, so ``|`` must always be specified before ``$`` in the format
string.
.. versionadded:: 3.3
``:``
The list of format units ends here; the string after the colon is used as the
function name in error messages (the "associated value" of the exception that
:c:func:`PyArg_ParseTuple` raises).
``;``
The list of format units ends here; the string after the semicolon is used as
the error message *instead* of the default error message. ``:`` and ``;``
mutually exclude each other.
Note that any Python object references which are provided to the caller are
*borrowed* references; do not release them
(i.e. do not decrement their reference count)!
Additional arguments passed to these functions must be addresses of variables
whose type is determined by the format string; these are used to store values
from the input tuple. There are a few cases, as described in the list of format
units above, where these parameters are used as input values; they should match
what is specified for the corresponding format unit in that case.
For the conversion to succeed, the *arg* object must match the format
and the format must be exhausted. On success, the
``PyArg_Parse*`` functions return true, otherwise they return
false and raise an appropriate exception. When the
``PyArg_Parse*`` functions fail due to conversion failure in one
of the format units, the variables at the addresses corresponding to that
and the following format units are left untouched.
API Functions
-------------
.. c:function:: int PyArg_ParseTuple(PyObject *args, const char *format, ...)
Parse the parameters of a function that takes only positional parameters into
local variables. Returns true on success; on failure, it returns false and
raises the appropriate exception.
.. c:function:: int PyArg_VaParse(PyObject *args, const char *format, va_list vargs)
Identical to :c:func:`PyArg_ParseTuple`, except that it accepts a va_list rather
than a variable number of arguments.
.. c:function:: int PyArg_ParseTupleAndKeywords(PyObject *args, PyObject *kw, const char *format, char *keywords[], ...)
Parse the parameters of a function that takes both positional and keyword
parameters into local variables.
The *keywords* argument is a ``NULL``-terminated array of keyword parameter
names specified as null-terminated ASCII or UTF-8 encoded C strings.
Empty names denote
:ref:`positional-only parameters <positional-only_parameter>`.
Returns true on success; on failure, it returns false and raises the
appropriate exception.
.. versionchanged:: 3.6
Added support for :ref:`positional-only parameters
<positional-only_parameter>`.
.. versionchanged:: 3.13
Added support for non-ASCII keyword parameter names.
.. c:function:: int PyArg_VaParseTupleAndKeywords(PyObject *args, PyObject *kw, const char *format, char *keywords[], va_list vargs)
Identical to :c:func:`PyArg_ParseTupleAndKeywords`, except that it accepts a
va_list rather than a variable number of arguments.
.. c:function:: int PyArg_ValidateKeywordArguments(PyObject *)
Ensure that the keys in the keywords argument dictionary are strings. This
is only needed if :c:func:`PyArg_ParseTupleAndKeywords` is not used, since the
latter already does this check.
.. versionadded:: 3.2
.. c:function:: int PyArg_Parse(PyObject *args, const char *format, ...)
Parse the parameter of a function that takes a single positional parameter
into a local variable. Returns true on success; on failure, it returns
false and raises the appropriate exception.
Example::
// Function using METH_O calling convention
static PyObject*
my_function(PyObject *module, PyObject *arg)
{
int value;
if (!PyArg_Parse(arg, "i:my_function", &value)) {
return NULL;
}
// ... use value ...
}
.. c:function:: int PyArg_UnpackTuple(PyObject *args, const char *name, Py_ssize_t min, Py_ssize_t max, ...)
A simpler form of parameter retrieval which does not use a format string to
specify the types of the arguments. Functions which use this method to retrieve
their parameters should be declared as :c:macro:`METH_VARARGS` in function or
method tables. The tuple containing the actual parameters should be passed as
*args*; it must actually be a tuple. The length of the tuple must be at least
*min* and no more than *max*; *min* and *max* may be equal. Additional
arguments must be passed to the function, each of which should be a pointer to a
:c:expr:`PyObject*` variable; these will be filled in with the values from
*args*; they will contain :term:`borrowed references <borrowed reference>`.
The variables which correspond
to optional parameters not given by *args* will not be filled in; these should
be initialized by the caller. This function returns true on success and false if
*args* is not a tuple or contains the wrong number of elements; an exception
will be set if there was a failure.
This is an example of the use of this function, taken from the sources for the
:mod:`!_weakref` helper module for weak references::
static PyObject *
weakref_ref(PyObject *self, PyObject *args)
{
PyObject *object;
PyObject *callback = NULL;
PyObject *result = NULL;
if (PyArg_UnpackTuple(args, "ref", 1, 2, &object, &callback)) {
result = PyWeakref_NewRef(object, callback);
}
return result;
}
The call to :c:func:`PyArg_UnpackTuple` in this example is entirely equivalent to
this call to :c:func:`PyArg_ParseTuple`::
PyArg_ParseTuple(args, "O|O:ref", &object, &callback)
---------------
Building values
---------------
.. c:function:: PyObject* Py_BuildValue(const char *format, ...)
Create a new value based on a format string similar to those accepted by the
``PyArg_Parse*`` family of functions and a sequence of values. Returns
the value or ``NULL`` in the case of an error; an exception will be raised if
``NULL`` is returned.
:c:func:`Py_BuildValue` does not always build a tuple. It builds a tuple only if
its format string contains two or more format units. If the format string is
empty, it returns ``None``; if it contains exactly one format unit, it returns
whatever object is described by that format unit. To force it to return a tuple
of size 0 or one, parenthesize the format string.
When memory buffers are passed as parameters to supply data to build objects, as
for the ``s`` and ``s#`` formats, the required data is copied. Buffers provided
by the caller are never referenced by the objects created by
:c:func:`Py_BuildValue`. In other words, if your code invokes :c:func:`malloc`
and passes the allocated memory to :c:func:`Py_BuildValue`, your code is
responsible for calling :c:func:`free` for that memory once
:c:func:`Py_BuildValue` returns.
In the following description, the quoted form is the format unit; the entry in
(round) parentheses is the Python object type that the format unit will return;
and the entry in [square] brackets is the type of the C value(s) to be passed.
The characters space, tab, colon and comma are ignored in format strings (but
not within format units such as ``s#``). This can be used to make long format
strings a tad more readable.
``s`` (:class:`str` or ``None``) [const char \*]
Convert a null-terminated C string to a Python :class:`str` object using ``'utf-8'``
encoding. If the C string pointer is ``NULL``, ``None`` is used.
``s#`` (:class:`str` or ``None``) [const char \*, :c:type:`Py_ssize_t`]
Convert a C string and its length to a Python :class:`str` object using ``'utf-8'``
encoding. If the C string pointer is ``NULL``, the length is ignored and
``None`` is returned.
``y`` (:class:`bytes`) [const char \*]
This converts a C string to a Python :class:`bytes` object. If the C
string pointer is ``NULL``, ``None`` is returned.
``y#`` (:class:`bytes`) [const char \*, :c:type:`Py_ssize_t`]
This converts a C string and its lengths to a Python object. If the C
string pointer is ``NULL``, ``None`` is returned.
``z`` (:class:`str` or ``None``) [const char \*]
Same as ``s``.
``z#`` (:class:`str` or ``None``) [const char \*, :c:type:`Py_ssize_t`]
Same as ``s#``.
``u`` (:class:`str`) [const wchar_t \*]
Convert a null-terminated :c:type:`wchar_t` buffer of Unicode (UTF-16 or UCS-4)
data to a Python Unicode object. If the Unicode buffer pointer is ``NULL``,
``None`` is returned.
``u#`` (:class:`str`) [const wchar_t \*, :c:type:`Py_ssize_t`]
Convert a Unicode (UTF-16 or UCS-4) data buffer and its length to a Python
Unicode object. If the Unicode buffer pointer is ``NULL``, the length is ignored
and ``None`` is returned.
``U`` (:class:`str` or ``None``) [const char \*]
Same as ``s``.
``U#`` (:class:`str` or ``None``) [const char \*, :c:type:`Py_ssize_t`]
Same as ``s#``.
``i`` (:class:`int`) [int]
Convert a plain C :c:expr:`int` to a Python integer object.
``b`` (:class:`int`) [char]
Convert a plain C :c:expr:`char` to a Python integer object.
``h`` (:class:`int`) [short int]
Convert a plain C :c:expr:`short int` to a Python integer object.
``l`` (:class:`int`) [long int]
Convert a C :c:expr:`long int` to a Python integer object.
``B`` (:class:`int`) [unsigned char]
Convert a C :c:expr:`unsigned char` to a Python integer object.
``H`` (:class:`int`) [unsigned short int]
Convert a C :c:expr:`unsigned short int` to a Python integer object.
``I`` (:class:`int`) [unsigned int]
Convert a C :c:expr:`unsigned int` to a Python integer object.
``k`` (:class:`int`) [unsigned long]
Convert a C :c:expr:`unsigned long` to a Python integer object.
``L`` (:class:`int`) [long long]
Convert a C :c:expr:`long long` to a Python integer object.
``K`` (:class:`int`) [unsigned long long]
Convert a C :c:expr:`unsigned long long` to a Python integer object.
``n`` (:class:`int`) [:c:type:`Py_ssize_t`]
Convert a C :c:type:`Py_ssize_t` to a Python integer.
``c`` (:class:`bytes` of length 1) [char]
Convert a C :c:expr:`int` representing a byte to a Python :class:`bytes` object of
length 1.
``C`` (:class:`str` of length 1) [int]
Convert a C :c:expr:`int` representing a character to Python :class:`str`
object of length 1.
``d`` (:class:`float`) [double]
Convert a C :c:expr:`double` to a Python floating point number.
``f`` (:class:`float`) [float]
Convert a C :c:expr:`float` to a Python floating point number.
``D`` (:class:`complex`) [Py_complex \*]
Convert a C :c:type:`Py_complex` structure to a Python complex number.
``O`` (object) [PyObject \*]
Pass a Python object untouched but create a new
:term:`strong reference` to it
(i.e. its reference count is incremented by one).
If the object passed in is a ``NULL`` pointer, it is assumed
that this was caused because the call producing the argument found an error and
set an exception. Therefore, :c:func:`Py_BuildValue` will return ``NULL`` but won't
raise an exception. If no exception has been raised yet, :exc:`SystemError` is
set.
``S`` (object) [PyObject \*]
Same as ``O``.
``N`` (object) [PyObject \*]
Same as ``O``, except it doesn't create a new :term:`strong reference`.
Useful when the object is created by a call to an object constructor in the
argument list.
``O&`` (object) [*converter*, *anything*]
Convert *anything* to a Python object through a *converter* function. The
function is called with *anything* (which should be compatible with :c:expr:`void*`)
as its argument and should return a "new" Python object, or ``NULL`` if an
error occurred.
``(items)`` (:class:`tuple`) [*matching-items*]
Convert a sequence of C values to a Python tuple with the same number of items.
``[items]`` (:class:`list`) [*matching-items*]
Convert a sequence of C values to a Python list with the same number of items.
``{items}`` (:class:`dict`) [*matching-items*]
Convert a sequence of C values to a Python dictionary. Each pair of consecutive
C values adds one item to the dictionary, serving as key and value,
respectively.
If there is an error in the format string, the :exc:`SystemError` exception is
set and ``NULL`` returned.
.. c:function:: PyObject* Py_VaBuildValue(const char *format, va_list vargs)
Identical to :c:func:`Py_BuildValue`, except that it accepts a va_list
rather than a variable number of arguments.
|