1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
|
.. highlightlang:: c
.. _type-structs:
Type Objects
============
Perhaps one of the most important structures of the Python object system is the
structure that defines a new type: the :c:type:`PyTypeObject` structure. Type
objects can be handled using any of the :c:func:`PyObject_\*` or
:c:func:`PyType_\*` functions, but do not offer much that's interesting to most
Python applications. These objects are fundamental to how objects behave, so
they are very important to the interpreter itself and to any extension module
that implements new types.
Type objects are fairly large compared to most of the standard types. The reason
for the size is that each type object stores a large number of values, mostly C
function pointers, each of which implements a small part of the type's
functionality. The fields of the type object are examined in detail in this
section. The fields will be described in the order in which they occur in the
structure.
Typedefs: unaryfunc, binaryfunc, ternaryfunc, inquiry, intargfunc,
intintargfunc, intobjargproc, intintobjargproc, objobjargproc, destructor,
freefunc, printfunc, getattrfunc, getattrofunc, setattrfunc, setattrofunc,
reprfunc, hashfunc
The structure definition for :c:type:`PyTypeObject` can be found in
:file:`Include/object.h`. For convenience of reference, this repeats the
definition found there:
.. literalinclude:: ../includes/typestruct.h
The type object structure extends the :c:type:`PyVarObject` structure. The
:attr:`ob_size` field is used for dynamic types (created by :func:`type_new`,
usually called from a class statement). Note that :c:data:`PyType_Type` (the
metatype) initializes :attr:`tp_itemsize`, which means that its instances (i.e.
type objects) *must* have the :attr:`ob_size` field.
.. c:member:: PyObject* PyObject._ob_next
PyObject* PyObject._ob_prev
These fields are only present when the macro ``Py_TRACE_REFS`` is defined.
Their initialization to *NULL* is taken care of by the ``PyObject_HEAD_INIT``
macro. For statically allocated objects, these fields always remain *NULL*.
For dynamically allocated objects, these two fields are used to link the object
into a doubly-linked list of *all* live objects on the heap. This could be used
for various debugging purposes; currently the only use is to print the objects
that are still alive at the end of a run when the environment variable
:envvar:`PYTHONDUMPREFS` is set.
These fields are not inherited by subtypes.
.. c:member:: Py_ssize_t PyObject.ob_refcnt
This is the type object's reference count, initialized to ``1`` by the
``PyObject_HEAD_INIT`` macro. Note that for statically allocated type objects,
the type's instances (objects whose :attr:`ob_type` points back to the type) do
*not* count as references. But for dynamically allocated type objects, the
instances *do* count as references.
This field is not inherited by subtypes.
.. c:member:: PyTypeObject* PyObject.ob_type
This is the type's type, in other words its metatype. It is initialized by the
argument to the ``PyObject_HEAD_INIT`` macro, and its value should normally be
``&PyType_Type``. However, for dynamically loadable extension modules that must
be usable on Windows (at least), the compiler complains that this is not a valid
initializer. Therefore, the convention is to pass *NULL* to the
``PyObject_HEAD_INIT`` macro and to initialize this field explicitly at the
start of the module's initialization function, before doing anything else. This
is typically done like this::
Foo_Type.ob_type = &PyType_Type;
This should be done before any instances of the type are created.
:c:func:`PyType_Ready` checks if :attr:`ob_type` is *NULL*, and if so,
initializes it to the :attr:`ob_type` field of the base class.
:c:func:`PyType_Ready` will not change this field if it is non-zero.
This field is inherited by subtypes.
.. c:member:: Py_ssize_t PyVarObject.ob_size
For statically allocated type objects, this should be initialized to zero. For
dynamically allocated type objects, this field has a special internal meaning.
This field is not inherited by subtypes.
.. c:member:: char* PyTypeObject.tp_name
Pointer to a NUL-terminated string containing the name of the type. For types
that are accessible as module globals, the string should be the full module
name, followed by a dot, followed by the type name; for built-in types, it
should be just the type name. If the module is a submodule of a package, the
full package name is part of the full module name. For example, a type named
:class:`T` defined in module :mod:`M` in subpackage :mod:`Q` in package :mod:`P`
should have the :attr:`tp_name` initializer ``"P.Q.M.T"``.
For dynamically allocated type objects, this should just be the type name, and
the module name explicitly stored in the type dict as the value for key
``'__module__'``.
For statically allocated type objects, the tp_name field should contain a dot.
Everything before the last dot is made accessible as the :attr:`__module__`
attribute, and everything after the last dot is made accessible as the
:attr:`__name__` attribute.
If no dot is present, the entire :attr:`tp_name` field is made accessible as the
:attr:`__name__` attribute, and the :attr:`__module__` attribute is undefined
(unless explicitly set in the dictionary, as explained above). This means your
type will be impossible to pickle.
This field is not inherited by subtypes.
.. c:member:: Py_ssize_t PyTypeObject.tp_basicsize
Py_ssize_t PyTypeObject.tp_itemsize
These fields allow calculating the size in bytes of instances of the type.
There are two kinds of types: types with fixed-length instances have a zero
:attr:`tp_itemsize` field, types with variable-length instances have a non-zero
:attr:`tp_itemsize` field. For a type with fixed-length instances, all
instances have the same size, given in :attr:`tp_basicsize`.
For a type with variable-length instances, the instances must have an
:attr:`ob_size` field, and the instance size is :attr:`tp_basicsize` plus N
times :attr:`tp_itemsize`, where N is the "length" of the object. The value of
N is typically stored in the instance's :attr:`ob_size` field. There are
exceptions: for example, ints use a negative :attr:`ob_size` to indicate a
negative number, and N is ``abs(ob_size)`` there. Also, the presence of an
:attr:`ob_size` field in the instance layout doesn't mean that the instance
structure is variable-length (for example, the structure for the list type has
fixed-length instances, yet those instances have a meaningful :attr:`ob_size`
field).
The basic size includes the fields in the instance declared by the macro
:c:macro:`PyObject_HEAD` or :c:macro:`PyObject_VAR_HEAD` (whichever is used to
declare the instance struct) and this in turn includes the :attr:`_ob_prev` and
:attr:`_ob_next` fields if they are present. This means that the only correct
way to get an initializer for the :attr:`tp_basicsize` is to use the
``sizeof`` operator on the struct used to declare the instance layout.
The basic size does not include the GC header size.
These fields are inherited separately by subtypes. If the base type has a
non-zero :attr:`tp_itemsize`, it is generally not safe to set
:attr:`tp_itemsize` to a different non-zero value in a subtype (though this
depends on the implementation of the base type).
A note about alignment: if the variable items require a particular alignment,
this should be taken care of by the value of :attr:`tp_basicsize`. Example:
suppose a type implements an array of ``double``. :attr:`tp_itemsize` is
``sizeof(double)``. It is the programmer's responsibility that
:attr:`tp_basicsize` is a multiple of ``sizeof(double)`` (assuming this is the
alignment requirement for ``double``).
.. c:member:: destructor PyTypeObject.tp_dealloc
A pointer to the instance destructor function. This function must be defined
unless the type guarantees that its instances will never be deallocated (as is
the case for the singletons ``None`` and ``Ellipsis``).
The destructor function is called by the :c:func:`Py_DECREF` and
:c:func:`Py_XDECREF` macros when the new reference count is zero. At this point,
the instance is still in existence, but there are no references to it. The
destructor function should free all references which the instance owns, free all
memory buffers owned by the instance (using the freeing function corresponding
to the allocation function used to allocate the buffer), and finally (as its
last action) call the type's :attr:`tp_free` function. If the type is not
subtypable (doesn't have the :const:`Py_TPFLAGS_BASETYPE` flag bit set), it is
permissible to call the object deallocator directly instead of via
:attr:`tp_free`. The object deallocator should be the one used to allocate the
instance; this is normally :c:func:`PyObject_Del` if the instance was allocated
using :c:func:`PyObject_New` or :c:func:`PyObject_VarNew`, or
:c:func:`PyObject_GC_Del` if the instance was allocated using
:c:func:`PyObject_GC_New` or :c:func:`PyObject_GC_NewVar`.
This field is inherited by subtypes.
.. c:member:: printfunc PyTypeObject.tp_print
An optional pointer to the instance print function.
The print function is only called when the instance is printed to a *real* file;
when it is printed to a pseudo-file (like a :class:`StringIO` instance), the
instance's :attr:`tp_repr` or :attr:`tp_str` function is called to convert it to
a string. These are also called when the type's :attr:`tp_print` field is
*NULL*. A type should never implement :attr:`tp_print` in a way that produces
different output than :attr:`tp_repr` or :attr:`tp_str` would.
The print function is called with the same signature as :c:func:`PyObject_Print`:
``int tp_print(PyObject *self, FILE *file, int flags)``. The *self* argument is
the instance to be printed. The *file* argument is the stdio file to which it
is to be printed. The *flags* argument is composed of flag bits. The only flag
bit currently defined is :const:`Py_PRINT_RAW`. When the :const:`Py_PRINT_RAW`
flag bit is set, the instance should be printed the same way as :attr:`tp_str`
would format it; when the :const:`Py_PRINT_RAW` flag bit is clear, the instance
should be printed the same was as :attr:`tp_repr` would format it. It should
return ``-1`` and set an exception condition when an error occurred during the
comparison.
It is possible that the :attr:`tp_print` field will be deprecated. In any case,
it is recommended not to define :attr:`tp_print`, but instead to rely on
:attr:`tp_repr` and :attr:`tp_str` for printing.
This field is inherited by subtypes.
.. c:member:: getattrfunc PyTypeObject.tp_getattr
An optional pointer to the get-attribute-string function.
This field is deprecated. When it is defined, it should point to a function
that acts the same as the :attr:`tp_getattro` function, but taking a C string
instead of a Python string object to give the attribute name. The signature is
the same as for :c:func:`PyObject_GetAttrString`.
This field is inherited by subtypes together with :attr:`tp_getattro`: a subtype
inherits both :attr:`tp_getattr` and :attr:`tp_getattro` from its base type when
the subtype's :attr:`tp_getattr` and :attr:`tp_getattro` are both *NULL*.
.. c:member:: setattrfunc PyTypeObject.tp_setattr
An optional pointer to the set-attribute-string function.
This field is deprecated. When it is defined, it should point to a function
that acts the same as the :attr:`tp_setattro` function, but taking a C string
instead of a Python string object to give the attribute name. The signature is
the same as for :c:func:`PyObject_SetAttrString`.
This field is inherited by subtypes together with :attr:`tp_setattro`: a subtype
inherits both :attr:`tp_setattr` and :attr:`tp_setattro` from its base type when
the subtype's :attr:`tp_setattr` and :attr:`tp_setattro` are both *NULL*.
.. c:member:: void* PyTypeObject.tp_reserved
Reserved slot, formerly known as tp_compare.
.. c:member:: reprfunc PyTypeObject.tp_repr
.. index:: builtin: repr
An optional pointer to a function that implements the built-in function
:func:`repr`.
The signature is the same as for :c:func:`PyObject_Repr`; it must return a string
or a Unicode object. Ideally, this function should return a string that, when
passed to :func:`eval`, given a suitable environment, returns an object with the
same value. If this is not feasible, it should return a string starting with
``'<'`` and ending with ``'>'`` from which both the type and the value of the
object can be deduced.
When this field is not set, a string of the form ``<%s object at %p>`` is
returned, where ``%s`` is replaced by the type name, and ``%p`` by the object's
memory address.
This field is inherited by subtypes.
.. c:member:: PyNumberMethods* tp_as_number
Pointer to an additional structure that contains fields relevant only to
objects which implement the number protocol. These fields are documented in
:ref:`number-structs`.
The :attr:`tp_as_number` field is not inherited, but the contained fields are
inherited individually.
.. c:member:: PySequenceMethods* tp_as_sequence
Pointer to an additional structure that contains fields relevant only to
objects which implement the sequence protocol. These fields are documented
in :ref:`sequence-structs`.
The :attr:`tp_as_sequence` field is not inherited, but the contained fields
are inherited individually.
.. c:member:: PyMappingMethods* tp_as_mapping
Pointer to an additional structure that contains fields relevant only to
objects which implement the mapping protocol. These fields are documented in
:ref:`mapping-structs`.
The :attr:`tp_as_mapping` field is not inherited, but the contained fields
are inherited individually.
.. c:member:: hashfunc PyTypeObject.tp_hash
.. index:: builtin: hash
An optional pointer to a function that implements the built-in function
:func:`hash`.
The signature is the same as for :c:func:`PyObject_Hash`; it must return a
value of the type Py_hash_t. The value ``-1`` should not be returned as a
normal return value; when an error occurs during the computation of the hash
value, the function should set an exception and return ``-1``.
This field can be set explicitly to :c:func:`PyObject_HashNotImplemented` to
block inheritance of the hash method from a parent type. This is interpreted
as the equivalent of ``__hash__ = None`` at the Python level, causing
``isinstance(o, collections.Hashable)`` to correctly return ``False``. Note
that the converse is also true - setting ``__hash__ = None`` on a class at
the Python level will result in the ``tp_hash`` slot being set to
:c:func:`PyObject_HashNotImplemented`.
When this field is not set, an attempt to take the hash of the
object raises :exc:`TypeError`.
This field is inherited by subtypes together with
:attr:`tp_richcompare`: a subtype inherits both of
:attr:`tp_richcompare` and :attr:`tp_hash`, when the subtype's
:attr:`tp_richcompare` and :attr:`tp_hash` are both *NULL*.
.. c:member:: ternaryfunc PyTypeObject.tp_call
An optional pointer to a function that implements calling the object. This
should be *NULL* if the object is not callable. The signature is the same as
for :c:func:`PyObject_Call`.
This field is inherited by subtypes.
.. c:member:: reprfunc PyTypeObject.tp_str
An optional pointer to a function that implements the built-in operation
:func:`str`. (Note that :class:`str` is a type now, and :func:`str` calls the
constructor for that type. This constructor calls :c:func:`PyObject_Str` to do
the actual work, and :c:func:`PyObject_Str` will call this handler.)
The signature is the same as for :c:func:`PyObject_Str`; it must return a string
or a Unicode object. This function should return a "friendly" string
representation of the object, as this is the representation that will be used,
among other things, by the :func:`print` function.
When this field is not set, :c:func:`PyObject_Repr` is called to return a string
representation.
This field is inherited by subtypes.
.. c:member:: getattrofunc PyTypeObject.tp_getattro
An optional pointer to the get-attribute function.
The signature is the same as for :c:func:`PyObject_GetAttr`. It is usually
convenient to set this field to :c:func:`PyObject_GenericGetAttr`, which
implements the normal way of looking for object attributes.
This field is inherited by subtypes together with :attr:`tp_getattr`: a subtype
inherits both :attr:`tp_getattr` and :attr:`tp_getattro` from its base type when
the subtype's :attr:`tp_getattr` and :attr:`tp_getattro` are both *NULL*.
.. c:member:: setattrofunc PyTypeObject.tp_setattro
An optional pointer to the set-attribute function.
The signature is the same as for :c:func:`PyObject_SetAttr`. It is usually
convenient to set this field to :c:func:`PyObject_GenericSetAttr`, which
implements the normal way of setting object attributes.
This field is inherited by subtypes together with :attr:`tp_setattr`: a subtype
inherits both :attr:`tp_setattr` and :attr:`tp_setattro` from its base type when
the subtype's :attr:`tp_setattr` and :attr:`tp_setattro` are both *NULL*.
.. c:member:: PyBufferProcs* PyTypeObject.tp_as_buffer
Pointer to an additional structure that contains fields relevant only to objects
which implement the buffer interface. These fields are documented in
:ref:`buffer-structs`.
The :attr:`tp_as_buffer` field is not inherited, but the contained fields are
inherited individually.
.. c:member:: long PyTypeObject.tp_flags
This field is a bit mask of various flags. Some flags indicate variant
semantics for certain situations; others are used to indicate that certain
fields in the type object (or in the extension structures referenced via
:attr:`tp_as_number`, :attr:`tp_as_sequence`, :attr:`tp_as_mapping`, and
:attr:`tp_as_buffer`) that were historically not always present are valid; if
such a flag bit is clear, the type fields it guards must not be accessed and
must be considered to have a zero or *NULL* value instead.
Inheritance of this field is complicated. Most flag bits are inherited
individually, i.e. if the base type has a flag bit set, the subtype inherits
this flag bit. The flag bits that pertain to extension structures are strictly
inherited if the extension structure is inherited, i.e. the base type's value of
the flag bit is copied into the subtype together with a pointer to the extension
structure. The :const:`Py_TPFLAGS_HAVE_GC` flag bit is inherited together with
the :attr:`tp_traverse` and :attr:`tp_clear` fields, i.e. if the
:const:`Py_TPFLAGS_HAVE_GC` flag bit is clear in the subtype and the
:attr:`tp_traverse` and :attr:`tp_clear` fields in the subtype exist and have
*NULL* values.
The following bit masks are currently defined; these can be ORed together using
the ``|`` operator to form the value of the :attr:`tp_flags` field. The macro
:c:func:`PyType_HasFeature` takes a type and a flags value, *tp* and *f*, and
checks whether ``tp->tp_flags & f`` is non-zero.
.. data:: Py_TPFLAGS_HEAPTYPE
This bit is set when the type object itself is allocated on the heap. In this
case, the :attr:`ob_type` field of its instances is considered a reference to
the type, and the type object is INCREF'ed when a new instance is created, and
DECREF'ed when an instance is destroyed (this does not apply to instances of
subtypes; only the type referenced by the instance's ob_type gets INCREF'ed or
DECREF'ed).
.. data:: Py_TPFLAGS_BASETYPE
This bit is set when the type can be used as the base type of another type. If
this bit is clear, the type cannot be subtyped (similar to a "final" class in
Java).
.. data:: Py_TPFLAGS_READY
This bit is set when the type object has been fully initialized by
:c:func:`PyType_Ready`.
.. data:: Py_TPFLAGS_READYING
This bit is set while :c:func:`PyType_Ready` is in the process of initializing
the type object.
.. data:: Py_TPFLAGS_HAVE_GC
This bit is set when the object supports garbage collection. If this bit
is set, instances must be created using :c:func:`PyObject_GC_New` and
destroyed using :c:func:`PyObject_GC_Del`. More information in section
:ref:`supporting-cycle-detection`. This bit also implies that the
GC-related fields :attr:`tp_traverse` and :attr:`tp_clear` are present in
the type object.
.. data:: Py_TPFLAGS_DEFAULT
This is a bitmask of all the bits that pertain to the existence of certain
fields in the type object and its extension structures. Currently, it includes
the following bits: :const:`Py_TPFLAGS_HAVE_STACKLESS_EXTENSION`,
:const:`Py_TPFLAGS_HAVE_VERSION_TAG`.
.. c:member:: char* PyTypeObject.tp_doc
An optional pointer to a NUL-terminated C string giving the docstring for this
type object. This is exposed as the :attr:`__doc__` attribute on the type and
instances of the type.
This field is *not* inherited by subtypes.
.. c:member:: traverseproc PyTypeObject.tp_traverse
An optional pointer to a traversal function for the garbage collector. This is
only used if the :const:`Py_TPFLAGS_HAVE_GC` flag bit is set. More information
about Python's garbage collection scheme can be found in section
:ref:`supporting-cycle-detection`.
The :attr:`tp_traverse` pointer is used by the garbage collector to detect
reference cycles. A typical implementation of a :attr:`tp_traverse` function
simply calls :c:func:`Py_VISIT` on each of the instance's members that are Python
objects. For example, this is function :c:func:`local_traverse` from the
:mod:`_thread` extension module::
static int
local_traverse(localobject *self, visitproc visit, void *arg)
{
Py_VISIT(self->args);
Py_VISIT(self->kw);
Py_VISIT(self->dict);
return 0;
}
Note that :c:func:`Py_VISIT` is called only on those members that can participate
in reference cycles. Although there is also a ``self->key`` member, it can only
be *NULL* or a Python string and therefore cannot be part of a reference cycle.
On the other hand, even if you know a member can never be part of a cycle, as a
debugging aid you may want to visit it anyway just so the :mod:`gc` module's
:func:`get_referents` function will include it.
Note that :c:func:`Py_VISIT` requires the *visit* and *arg* parameters to
:c:func:`local_traverse` to have these specific names; don't name them just
anything.
This field is inherited by subtypes together with :attr:`tp_clear` and the
:const:`Py_TPFLAGS_HAVE_GC` flag bit: the flag bit, :attr:`tp_traverse`, and
:attr:`tp_clear` are all inherited from the base type if they are all zero in
the subtype.
.. c:member:: inquiry PyTypeObject.tp_clear
An optional pointer to a clear function for the garbage collector. This is only
used if the :const:`Py_TPFLAGS_HAVE_GC` flag bit is set.
The :attr:`tp_clear` member function is used to break reference cycles in cyclic
garbage detected by the garbage collector. Taken together, all :attr:`tp_clear`
functions in the system must combine to break all reference cycles. This is
subtle, and if in any doubt supply a :attr:`tp_clear` function. For example,
the tuple type does not implement a :attr:`tp_clear` function, because it's
possible to prove that no reference cycle can be composed entirely of tuples.
Therefore the :attr:`tp_clear` functions of other types must be sufficient to
break any cycle containing a tuple. This isn't immediately obvious, and there's
rarely a good reason to avoid implementing :attr:`tp_clear`.
Implementations of :attr:`tp_clear` should drop the instance's references to
those of its members that may be Python objects, and set its pointers to those
members to *NULL*, as in the following example::
static int
local_clear(localobject *self)
{
Py_CLEAR(self->key);
Py_CLEAR(self->args);
Py_CLEAR(self->kw);
Py_CLEAR(self->dict);
return 0;
}
The :c:func:`Py_CLEAR` macro should be used, because clearing references is
delicate: the reference to the contained object must not be decremented until
after the pointer to the contained object is set to *NULL*. This is because
decrementing the reference count may cause the contained object to become trash,
triggering a chain of reclamation activity that may include invoking arbitrary
Python code (due to finalizers, or weakref callbacks, associated with the
contained object). If it's possible for such code to reference *self* again,
it's important that the pointer to the contained object be *NULL* at that time,
so that *self* knows the contained object can no longer be used. The
:c:func:`Py_CLEAR` macro performs the operations in a safe order.
Because the goal of :attr:`tp_clear` functions is to break reference cycles,
it's not necessary to clear contained objects like Python strings or Python
integers, which can't participate in reference cycles. On the other hand, it may
be convenient to clear all contained Python objects, and write the type's
:attr:`tp_dealloc` function to invoke :attr:`tp_clear`.
More information about Python's garbage collection scheme can be found in
section :ref:`supporting-cycle-detection`.
This field is inherited by subtypes together with :attr:`tp_traverse` and the
:const:`Py_TPFLAGS_HAVE_GC` flag bit: the flag bit, :attr:`tp_traverse`, and
:attr:`tp_clear` are all inherited from the base type if they are all zero in
the subtype.
.. c:member:: richcmpfunc PyTypeObject.tp_richcompare
An optional pointer to the rich comparison function, whose signature is
``PyObject *tp_richcompare(PyObject *a, PyObject *b, int op)``.
The function should return the result of the comparison (usually ``Py_True``
or ``Py_False``). If the comparison is undefined, it must return
``Py_NotImplemented``, if another error occurred it must return ``NULL`` and
set an exception condition.
.. note::
If you want to implement a type for which only a limited set of
comparisons makes sense (e.g. ``==`` and ``!=``, but not ``<`` and
friends), directly raise :exc:`TypeError` in the rich comparison function.
This field is inherited by subtypes together with :attr:`tp_hash`:
a subtype inherits :attr:`tp_richcompare` and :attr:`tp_hash` when
the subtype's :attr:`tp_richcompare` and :attr:`tp_hash` are both
*NULL*.
The following constants are defined to be used as the third argument for
:attr:`tp_richcompare` and for :c:func:`PyObject_RichCompare`:
+----------------+------------+
| Constant | Comparison |
+================+============+
| :const:`Py_LT` | ``<`` |
+----------------+------------+
| :const:`Py_LE` | ``<=`` |
+----------------+------------+
| :const:`Py_EQ` | ``==`` |
+----------------+------------+
| :const:`Py_NE` | ``!=`` |
+----------------+------------+
| :const:`Py_GT` | ``>`` |
+----------------+------------+
| :const:`Py_GE` | ``>=`` |
+----------------+------------+
.. c:member:: long PyTypeObject.tp_weaklistoffset
If the instances of this type are weakly referenceable, this field is greater
than zero and contains the offset in the instance structure of the weak
reference list head (ignoring the GC header, if present); this offset is used by
:c:func:`PyObject_ClearWeakRefs` and the :c:func:`PyWeakref_\*` functions. The
instance structure needs to include a field of type :c:type:`PyObject\*` which is
initialized to *NULL*.
Do not confuse this field with :attr:`tp_weaklist`; that is the list head for
weak references to the type object itself.
This field is inherited by subtypes, but see the rules listed below. A subtype
may override this offset; this means that the subtype uses a different weak
reference list head than the base type. Since the list head is always found via
:attr:`tp_weaklistoffset`, this should not be a problem.
When a type defined by a class statement has no :attr:`__slots__` declaration,
and none of its base types are weakly referenceable, the type is made weakly
referenceable by adding a weak reference list head slot to the instance layout
and setting the :attr:`tp_weaklistoffset` of that slot's offset.
When a type's :attr:`__slots__` declaration contains a slot named
:attr:`__weakref__`, that slot becomes the weak reference list head for
instances of the type, and the slot's offset is stored in the type's
:attr:`tp_weaklistoffset`.
When a type's :attr:`__slots__` declaration does not contain a slot named
:attr:`__weakref__`, the type inherits its :attr:`tp_weaklistoffset` from its
base type.
.. c:member:: getiterfunc PyTypeObject.tp_iter
An optional pointer to a function that returns an iterator for the object. Its
presence normally signals that the instances of this type are iterable (although
sequences may be iterable without this function).
This function has the same signature as :c:func:`PyObject_GetIter`.
This field is inherited by subtypes.
.. c:member:: iternextfunc PyTypeObject.tp_iternext
An optional pointer to a function that returns the next item in an iterator.
When the iterator is exhausted, it must return *NULL*; a :exc:`StopIteration`
exception may or may not be set. When another error occurs, it must return
*NULL* too. Its presence signals that the instances of this type are
iterators.
Iterator types should also define the :attr:`tp_iter` function, and that
function should return the iterator instance itself (not a new iterator
instance).
This function has the same signature as :c:func:`PyIter_Next`.
This field is inherited by subtypes.
.. c:member:: struct PyMethodDef* PyTypeObject.tp_methods
An optional pointer to a static *NULL*-terminated array of :c:type:`PyMethodDef`
structures, declaring regular methods of this type.
For each entry in the array, an entry is added to the type's dictionary (see
:attr:`tp_dict` below) containing a method descriptor.
This field is not inherited by subtypes (methods are inherited through a
different mechanism).
.. c:member:: struct PyMemberDef* PyTypeObject.tp_members
An optional pointer to a static *NULL*-terminated array of :c:type:`PyMemberDef`
structures, declaring regular data members (fields or slots) of instances of
this type.
For each entry in the array, an entry is added to the type's dictionary (see
:attr:`tp_dict` below) containing a member descriptor.
This field is not inherited by subtypes (members are inherited through a
different mechanism).
.. c:member:: struct PyGetSetDef* PyTypeObject.tp_getset
An optional pointer to a static *NULL*-terminated array of :c:type:`PyGetSetDef`
structures, declaring computed attributes of instances of this type.
For each entry in the array, an entry is added to the type's dictionary (see
:attr:`tp_dict` below) containing a getset descriptor.
This field is not inherited by subtypes (computed attributes are inherited
through a different mechanism).
.. XXX belongs elsewhere
Docs for PyGetSetDef::
typedef PyObject *(*getter)(PyObject *, void *);
typedef int (*setter)(PyObject *, PyObject *, void *);
typedef struct PyGetSetDef {
char *name; /* attribute name */
getter get; /* C function to get the attribute */
setter set; /* C function to set the attribute */
char *doc; /* optional doc string */
void *closure; /* optional additional data for getter and setter */
} PyGetSetDef;
.. c:member:: PyTypeObject* PyTypeObject.tp_base
An optional pointer to a base type from which type properties are inherited. At
this level, only single inheritance is supported; multiple inheritance require
dynamically creating a type object by calling the metatype.
This field is not inherited by subtypes (obviously), but it defaults to
``&PyBaseObject_Type`` (which to Python programmers is known as the type
:class:`object`).
.. c:member:: PyObject* PyTypeObject.tp_dict
The type's dictionary is stored here by :c:func:`PyType_Ready`.
This field should normally be initialized to *NULL* before PyType_Ready is
called; it may also be initialized to a dictionary containing initial attributes
for the type. Once :c:func:`PyType_Ready` has initialized the type, extra
attributes for the type may be added to this dictionary only if they don't
correspond to overloaded operations (like :meth:`__add__`).
This field is not inherited by subtypes (though the attributes defined in here
are inherited through a different mechanism).
.. warning::
It is not safe to use :c:func:`PyDict_SetItem` on or otherwise modify
:attr:`tp_dict` with the dictionary C-API.
.. c:member:: descrgetfunc PyTypeObject.tp_descr_get
An optional pointer to a "descriptor get" function.
The function signature is ::
PyObject * tp_descr_get(PyObject *self, PyObject *obj, PyObject *type);
.. XXX explain.
This field is inherited by subtypes.
.. c:member:: descrsetfunc PyTypeObject.tp_descr_set
An optional pointer to a "descriptor set" function.
The function signature is ::
int tp_descr_set(PyObject *self, PyObject *obj, PyObject *value);
This field is inherited by subtypes.
.. XXX explain.
.. c:member:: long PyTypeObject.tp_dictoffset
If the instances of this type have a dictionary containing instance variables,
this field is non-zero and contains the offset in the instances of the type of
the instance variable dictionary; this offset is used by
:c:func:`PyObject_GenericGetAttr`.
Do not confuse this field with :attr:`tp_dict`; that is the dictionary for
attributes of the type object itself.
If the value of this field is greater than zero, it specifies the offset from
the start of the instance structure. If the value is less than zero, it
specifies the offset from the *end* of the instance structure. A negative
offset is more expensive to use, and should only be used when the instance
structure contains a variable-length part. This is used for example to add an
instance variable dictionary to subtypes of :class:`str` or :class:`tuple`. Note
that the :attr:`tp_basicsize` field should account for the dictionary added to
the end in that case, even though the dictionary is not included in the basic
object layout. On a system with a pointer size of 4 bytes,
:attr:`tp_dictoffset` should be set to ``-4`` to indicate that the dictionary is
at the very end of the structure.
The real dictionary offset in an instance can be computed from a negative
:attr:`tp_dictoffset` as follows::
dictoffset = tp_basicsize + abs(ob_size)*tp_itemsize + tp_dictoffset
if dictoffset is not aligned on sizeof(void*):
round up to sizeof(void*)
where :attr:`tp_basicsize`, :attr:`tp_itemsize` and :attr:`tp_dictoffset` are
taken from the type object, and :attr:`ob_size` is taken from the instance. The
absolute value is taken because ints use the sign of :attr:`ob_size` to
store the sign of the number. (There's never a need to do this calculation
yourself; it is done for you by :c:func:`_PyObject_GetDictPtr`.)
This field is inherited by subtypes, but see the rules listed below. A subtype
may override this offset; this means that the subtype instances store the
dictionary at a difference offset than the base type. Since the dictionary is
always found via :attr:`tp_dictoffset`, this should not be a problem.
When a type defined by a class statement has no :attr:`__slots__` declaration,
and none of its base types has an instance variable dictionary, a dictionary
slot is added to the instance layout and the :attr:`tp_dictoffset` is set to
that slot's offset.
When a type defined by a class statement has a :attr:`__slots__` declaration,
the type inherits its :attr:`tp_dictoffset` from its base type.
(Adding a slot named :attr:`__dict__` to the :attr:`__slots__` declaration does
not have the expected effect, it just causes confusion. Maybe this should be
added as a feature just like :attr:`__weakref__` though.)
.. c:member:: initproc PyTypeObject.tp_init
An optional pointer to an instance initialization function.
This function corresponds to the :meth:`__init__` method of classes. Like
:meth:`__init__`, it is possible to create an instance without calling
:meth:`__init__`, and it is possible to reinitialize an instance by calling its
:meth:`__init__` method again.
The function signature is ::
int tp_init(PyObject *self, PyObject *args, PyObject *kwds)
The self argument is the instance to be initialized; the *args* and *kwds*
arguments represent positional and keyword arguments of the call to
:meth:`__init__`.
The :attr:`tp_init` function, if not *NULL*, is called when an instance is
created normally by calling its type, after the type's :attr:`tp_new` function
has returned an instance of the type. If the :attr:`tp_new` function returns an
instance of some other type that is not a subtype of the original type, no
:attr:`tp_init` function is called; if :attr:`tp_new` returns an instance of a
subtype of the original type, the subtype's :attr:`tp_init` is called.
This field is inherited by subtypes.
.. c:member:: allocfunc PyTypeObject.tp_alloc
An optional pointer to an instance allocation function.
The function signature is ::
PyObject *tp_alloc(PyTypeObject *self, Py_ssize_t nitems)
The purpose of this function is to separate memory allocation from memory
initialization. It should return a pointer to a block of memory of adequate
length for the instance, suitably aligned, and initialized to zeros, but with
:attr:`ob_refcnt` set to ``1`` and :attr:`ob_type` set to the type argument. If
the type's :attr:`tp_itemsize` is non-zero, the object's :attr:`ob_size` field
should be initialized to *nitems* and the length of the allocated memory block
should be ``tp_basicsize + nitems*tp_itemsize``, rounded up to a multiple of
``sizeof(void*)``; otherwise, *nitems* is not used and the length of the block
should be :attr:`tp_basicsize`.
Do not use this function to do any other instance initialization, not even to
allocate additional memory; that should be done by :attr:`tp_new`.
This field is inherited by static subtypes, but not by dynamic subtypes
(subtypes created by a class statement); in the latter, this field is always set
to :c:func:`PyType_GenericAlloc`, to force a standard heap allocation strategy.
That is also the recommended value for statically defined types.
.. c:member:: newfunc PyTypeObject.tp_new
An optional pointer to an instance creation function.
If this function is *NULL* for a particular type, that type cannot be called to
create new instances; presumably there is some other way to create instances,
like a factory function.
The function signature is ::
PyObject *tp_new(PyTypeObject *subtype, PyObject *args, PyObject *kwds)
The subtype argument is the type of the object being created; the *args* and
*kwds* arguments represent positional and keyword arguments of the call to the
type. Note that subtype doesn't have to equal the type whose :attr:`tp_new`
function is called; it may be a subtype of that type (but not an unrelated
type).
The :attr:`tp_new` function should call ``subtype->tp_alloc(subtype, nitems)``
to allocate space for the object, and then do only as much further
initialization as is absolutely necessary. Initialization that can safely be
ignored or repeated should be placed in the :attr:`tp_init` handler. A good
rule of thumb is that for immutable types, all initialization should take place
in :attr:`tp_new`, while for mutable types, most initialization should be
deferred to :attr:`tp_init`.
This field is inherited by subtypes, except it is not inherited by static types
whose :attr:`tp_base` is *NULL* or ``&PyBaseObject_Type``.
.. c:member:: destructor PyTypeObject.tp_free
An optional pointer to an instance deallocation function. Its signature is
:c:type:`freefunc`::
void tp_free(void *)
An initializer that is compatible with this signature is :c:func:`PyObject_Free`.
This field is inherited by static subtypes, but not by dynamic subtypes
(subtypes created by a class statement); in the latter, this field is set to a
deallocator suitable to match :c:func:`PyType_GenericAlloc` and the value of the
:const:`Py_TPFLAGS_HAVE_GC` flag bit.
.. c:member:: inquiry PyTypeObject.tp_is_gc
An optional pointer to a function called by the garbage collector.
The garbage collector needs to know whether a particular object is collectible
or not. Normally, it is sufficient to look at the object's type's
:attr:`tp_flags` field, and check the :const:`Py_TPFLAGS_HAVE_GC` flag bit. But
some types have a mixture of statically and dynamically allocated instances, and
the statically allocated instances are not collectible. Such types should
define this function; it should return ``1`` for a collectible instance, and
``0`` for a non-collectible instance. The signature is ::
int tp_is_gc(PyObject *self)
(The only example of this are types themselves. The metatype,
:c:data:`PyType_Type`, defines this function to distinguish between statically
and dynamically allocated types.)
This field is inherited by subtypes.
.. c:member:: PyObject* PyTypeObject.tp_bases
Tuple of base types.
This is set for types created by a class statement. It should be *NULL* for
statically defined types.
This field is not inherited.
.. c:member:: PyObject* PyTypeObject.tp_mro
Tuple containing the expanded set of base types, starting with the type itself
and ending with :class:`object`, in Method Resolution Order.
This field is not inherited; it is calculated fresh by :c:func:`PyType_Ready`.
.. c:member:: PyObject* PyTypeObject.tp_cache
Unused. Not inherited. Internal use only.
.. c:member:: PyObject* PyTypeObject.tp_subclasses
List of weak references to subclasses. Not inherited. Internal use only.
.. c:member:: PyObject* PyTypeObject.tp_weaklist
Weak reference list head, for weak references to this type object. Not
inherited. Internal use only.
The remaining fields are only defined if the feature test macro
:const:`COUNT_ALLOCS` is defined, and are for internal use only. They are
documented here for completeness. None of these fields are inherited by
subtypes.
.. c:member:: Py_ssize_t PyTypeObject.tp_allocs
Number of allocations.
.. c:member:: Py_ssize_t PyTypeObject.tp_frees
Number of frees.
.. c:member:: Py_ssize_t PyTypeObject.tp_maxalloc
Maximum simultaneously allocated objects.
.. c:member:: PyTypeObject* PyTypeObject.tp_next
Pointer to the next type object with a non-zero :attr:`tp_allocs` field.
Also, note that, in a garbage collected Python, tp_dealloc may be called from
any Python thread, not just the thread which created the object (if the object
becomes part of a refcount cycle, that cycle might be collected by a garbage
collection on any thread). This is not a problem for Python API calls, since
the thread on which tp_dealloc is called will own the Global Interpreter Lock
(GIL). However, if the object being destroyed in turn destroys objects from some
other C or C++ library, care should be taken to ensure that destroying those
objects on the thread which called tp_dealloc will not violate any assumptions
of the library.
.. _number-structs:
Number Object Structures
========================
.. sectionauthor:: Amaury Forgeot d'Arc
.. c:type:: PyNumberMethods
This structure holds pointers to the functions which an object uses to
implement the number protocol. Each function is used by the function of
similar name documented in the :ref:`number` section.
Here is the structure definition::
typedef struct {
binaryfunc nb_add;
binaryfunc nb_subtract;
binaryfunc nb_multiply;
binaryfunc nb_remainder;
binaryfunc nb_divmod;
ternaryfunc nb_power;
unaryfunc nb_negative;
unaryfunc nb_positive;
unaryfunc nb_absolute;
inquiry nb_bool;
unaryfunc nb_invert;
binaryfunc nb_lshift;
binaryfunc nb_rshift;
binaryfunc nb_and;
binaryfunc nb_xor;
binaryfunc nb_or;
unaryfunc nb_int;
void *nb_reserved;
unaryfunc nb_float;
binaryfunc nb_inplace_add;
binaryfunc nb_inplace_subtract;
binaryfunc nb_inplace_multiply;
binaryfunc nb_inplace_remainder;
ternaryfunc nb_inplace_power;
binaryfunc nb_inplace_lshift;
binaryfunc nb_inplace_rshift;
binaryfunc nb_inplace_and;
binaryfunc nb_inplace_xor;
binaryfunc nb_inplace_or;
binaryfunc nb_floor_divide;
binaryfunc nb_true_divide;
binaryfunc nb_inplace_floor_divide;
binaryfunc nb_inplace_true_divide;
unaryfunc nb_index;
} PyNumberMethods;
.. note::
Binary and ternary functions must check the type of all their operands,
and implement the necessary conversions (at least one of the operands is
an instance of the defined type). If the operation is not defined for the
given operands, binary and ternary functions must return
``Py_NotImplemented``, if another error occurred they must return ``NULL``
and set an exception.
.. note::
The :c:data:`nb_reserved` field should always be ``NULL``. It
was previously called :c:data:`nb_long`, and was renamed in
Python 3.0.1.
.. _mapping-structs:
Mapping Object Structures
=========================
.. sectionauthor:: Amaury Forgeot d'Arc
.. c:type:: PyMappingMethods
This structure holds pointers to the functions which an object uses to
implement the mapping protocol. It has three members:
.. c:member:: lenfunc PyMappingMethods.mp_length
This function is used by :c:func:`PyMapping_Length` and
:c:func:`PyObject_Size`, and has the same signature. This slot may be set to
*NULL* if the object has no defined length.
.. c:member:: binaryfunc PyMappingMethods.mp_subscript
This function is used by :c:func:`PyObject_GetItem` and has the same
signature. This slot must be filled for the :c:func:`PyMapping_Check`
function to return ``1``, it can be *NULL* otherwise.
.. c:member:: objobjargproc PyMappingMethods.mp_ass_subscript
This function is used by :c:func:`PyObject_SetItem` and has the same
signature. If this slot is *NULL*, the object does not support item
assignment.
.. _sequence-structs:
Sequence Object Structures
==========================
.. sectionauthor:: Amaury Forgeot d'Arc
.. c:type:: PySequenceMethods
This structure holds pointers to the functions which an object uses to
implement the sequence protocol.
.. c:member:: lenfunc PySequenceMethods.sq_length
This function is used by :c:func:`PySequence_Size` and :c:func:`PyObject_Size`,
and has the same signature.
.. c:member:: binaryfunc PySequenceMethods.sq_concat
This function is used by :c:func:`PySequence_Concat` and has the same
signature. It is also used by the ``+`` operator, after trying the numeric
addition via the :attr:`tp_as_number.nb_add` slot.
.. c:member:: ssizeargfunc PySequenceMethods.sq_repeat
This function is used by :c:func:`PySequence_Repeat` and has the same
signature. It is also used by the ``*`` operator, after trying numeric
multiplication via the :attr:`tp_as_number.nb_mul` slot.
.. c:member:: ssizeargfunc PySequenceMethods.sq_item
This function is used by :c:func:`PySequence_GetItem` and has the same
signature. This slot must be filled for the :c:func:`PySequence_Check`
function to return ``1``, it can be *NULL* otherwise.
Negative indexes are handled as follows: if the :attr:`sq_length` slot is
filled, it is called and the sequence length is used to compute a positive
index which is passed to :attr:`sq_item`. If :attr:`sq_length` is *NULL*,
the index is passed as is to the function.
.. c:member:: ssizeobjargproc PySequenceMethods.sq_ass_item
This function is used by :c:func:`PySequence_SetItem` and has the same
signature. This slot may be left to *NULL* if the object does not support
item assignment.
.. c:member:: objobjproc PySequenceMethods.sq_contains
This function may be used by :c:func:`PySequence_Contains` and has the same
signature. This slot may be left to *NULL*, in this case
:c:func:`PySequence_Contains` simply traverses the sequence until it finds a
match.
.. c:member:: binaryfunc PySequenceMethods.sq_inplace_concat
This function is used by :c:func:`PySequence_InPlaceConcat` and has the same
signature. It should modify its first operand, and return it.
.. c:member:: ssizeargfunc PySequenceMethods.sq_inplace_repeat
This function is used by :c:func:`PySequence_InPlaceRepeat` and has the same
signature. It should modify its first operand, and return it.
.. XXX need to explain precedence between mapping and sequence
.. XXX explains when to implement the sq_inplace_* slots
.. _buffer-structs:
Buffer Object Structures
========================
.. sectionauthor:: Greg J. Stein <greg@lyra.org>
.. sectionauthor:: Benjamin Peterson
The :ref:`buffer interface <bufferobjects>` exports a model where an object can expose its internal
data.
If an object does not export the buffer interface, then its :attr:`tp_as_buffer`
member in the :c:type:`PyTypeObject` structure should be *NULL*. Otherwise, the
:attr:`tp_as_buffer` will point to a :c:type:`PyBufferProcs` structure.
.. c:type:: PyBufferProcs
Structure used to hold the function pointers which define an implementation of
the buffer protocol.
.. c:member:: getbufferproc bf_getbuffer
This should fill a :c:type:`Py_buffer` with the necessary data for
exporting the type. The signature of :data:`getbufferproc` is ``int
(PyObject *obj, Py_buffer *view, int flags)``. *obj* is the object to
export, *view* is the :c:type:`Py_buffer` struct to fill, and *flags* gives
the conditions the caller wants the memory under. (See
:c:func:`PyObject_GetBuffer` for all flags.) :c:member:`bf_getbuffer` is
responsible for filling *view* with the appropriate information.
(:c:func:`PyBuffer_FillView` can be used in simple cases.) See
:c:type:`Py_buffer`\s docs for what needs to be filled in.
.. c:member:: releasebufferproc bf_releasebuffer
This should release the resources of the buffer. The signature of
:c:data:`releasebufferproc` is ``void (PyObject *obj, Py_buffer *view)``.
If the :c:data:`bf_releasebuffer` function is not provided (i.e. it is
*NULL*), then it does not ever need to be called.
The exporter of the buffer interface must make sure that any memory
pointed to in the :c:type:`Py_buffer` structure remains valid until
releasebuffer is called. Exporters will need to define a
:c:data:`bf_releasebuffer` function if they can re-allocate their memory,
strides, shape, suboffsets, or format variables which they might share
through the struct bufferinfo.
See :c:func:`PyBuffer_Release`.
|