summaryrefslogtreecommitdiffstats
path: root/Doc/howto/descriptor.rst
blob: 8c2e8d562153db6dc445ab917a5cc088e59f4229 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
.. _descriptorhowto:

======================
Descriptor HowTo Guide
======================

:Author: Raymond Hettinger
:Contact: <python at rcn dot com>

.. Contents::


:term:`Descriptors <descriptor>` let objects customize attribute lookup,
storage, and deletion.

This guide has four major sections:

1) The "primer" gives a basic overview, moving gently from simple examples,
   adding one feature at a time.  It is a great place to start.

2) The second section shows a complete, practical descriptor example.  If you
   already know the basics, start there.

3) The third section provides a more technical tutorial that goes into the
   detailed mechanics of how descriptors work.  Most people don't need this
   level of detail.

4) The last section has pure Python equivalents for built-in descriptors that
   are written in C.  Read this if you're curious about how functions turn
   into bound methods or about the implementation of common tools like
   :func:`classmethod`, :func:`staticmethod`, :func:`property`, and
   :term:`__slots__`.


Primer
^^^^^^

In this primer, we start with the most basic possible example and then we'll
add new capabilities one by one.


Simple example: A descriptor that returns a constant
----------------------------------------------------

The :class:`Ten` class is a descriptor that always returns the constant ``10``::


    class Ten:
        def __get__(self, obj, objtype=None):
            return 10

To use the descriptor, it must be stored as a class variable in another class::

    class A:
        x = 5                       # Regular class attribute
        y = Ten()                   # Descriptor instance

An interactive session shows the difference between normal attribute lookup
and descriptor lookup::

    >>> a = A()                     # Make an instance of class A
    >>> a.x                         # Normal attribute lookup
    5
    >>> a.y                         # Descriptor lookup
    10

In the ``a.x`` attribute lookup, the dot operator finds the value ``5`` stored
in the class dictionary.  In the ``a.y`` descriptor lookup, the dot operator
calls the descriptor's :meth:`__get__()` method.  That method returns ``10``.
Note that the value ``10`` is not stored in either the class dictionary or the
instance dictionary.  Instead, the value ``10`` is computed on demand.

This example shows how a simple descriptor works, but it isn't very useful.
For retrieving constants, normal attribute lookup would be better.

In the next section, we'll create something more useful, a dynamic lookup.


Dynamic lookups
---------------

Interesting descriptors typically run computations instead of doing lookups::

    import os

    class DirectorySize:

        def __get__(self, obj, objtype=None):
            return len(os.listdir(obj.dirname))

    class Directory:

        size = DirectorySize()              # Descriptor instance

        def __init__(self, dirname):
            self.dirname = dirname          # Regular instance attribute

An interactive session shows that the lookup is dynamic — it computes
different, updated answers each time::

    >>> g = Directory('games')
    >>> s = Directory('songs')
    >>> g.size                              # The games directory has three files
    3
    >>> os.system('touch games/newfile')    # Add a fourth file to the directory
    0
    >>> g.size                              # Automatically updated
    4
    >>> s.size                              # The songs directory has twenty files
    20

Besides showing how descriptors can run computations, this example also
reveals the purpose of the parameters to :meth:`__get__`.  The *self*
parameter is *size*, an instance of *DirectorySize*.  The *obj* parameter is
either *g* or *s*, an instance of *Directory*.  It is the *obj* parameter that
lets the :meth:`__get__` method learn the target directory.  The *objtype*
parameter is the class *Directory*.


Managed attributes
------------------

A popular use for descriptors is managing access to instance data.  The
descriptor is assigned to a public attribute in the class dictionary while the
actual data is stored as a private attribute in the instance dictionary.  The
descriptor's :meth:`__get__` and :meth:`__set__` methods are triggered when
the public attribute is accessed.

In the following example, *age* is the public attribute and *_age* is the
private attribute.  When the public attribute is accessed, the descriptor logs
the lookup or update::

    import logging

    logging.basicConfig(level=logging.INFO)

    class LoggedAgeAccess:

        def __get__(self, obj, objtype=None):
            value = obj._age
            logging.info('Accessing %r giving %r', 'age', value)
            return value

        def __set__(self, obj, value):
            logging.info('Updating %r to %r', 'age', value)
            obj._age = value

    class Person:

        age = LoggedAgeAccess()             # Descriptor instance

        def __init__(self, name, age):
            self.name = name                # Regular instance attribute
            self.age = age                  # Calls __set__()

        def birthday(self):
            self.age += 1                   # Calls both __get__() and __set__()


An interactive session shows that all access to the managed attribute *age* is
logged, but that the regular attribute *name* is not logged::

    >>> mary = Person('Mary M', 30)         # The initial age update is logged
    INFO:root:Updating 'age' to 30
    >>> dave = Person('David D', 40)
    INFO:root:Updating 'age' to 40

    >>> vars(mary)                          # The actual data is in a private attribute
    {'name': 'Mary M', '_age': 30}
    >>> vars(dave)
    {'name': 'David D', '_age': 40}

    >>> mary.age                            # Access the data and log the lookup
    INFO:root:Accessing 'age' giving 30
    30
    >>> mary.birthday()                     # Updates are logged as well
    INFO:root:Accessing 'age' giving 30
    INFO:root:Updating 'age' to 31

    >>> dave.name                           # Regular attribute lookup isn't logged
    'David D'
    >>> dave.age                            # Only the managed attribute is logged
    INFO:root:Accessing 'age' giving 40
    40

One major issue with this example is that the private name *_age* is hardwired in
the *LoggedAgeAccess* class.  That means that each instance can only have one
logged attribute and that its name is unchangeable.  In the next example,
we'll fix that problem.


Customized names
----------------

When a class uses descriptors, it can inform each descriptor about which
variable name was used.

In this example, the :class:`Person` class has two descriptor instances,
*name* and *age*.  When the :class:`Person` class is defined, it makes a
callback to :meth:`__set_name__` in *LoggedAccess* so that the field names can
be recorded, giving each descriptor its own *public_name* and *private_name*::

    import logging

    logging.basicConfig(level=logging.INFO)

    class LoggedAccess:

        def __set_name__(self, owner, name):
            self.public_name = name
            self.private_name = f'_{name}'

        def __get__(self, obj, objtype=None):
            value = getattr(obj, self.private_name)
            logging.info('Accessing %r giving %r', self.public_name, value)
            return value

        def __set__(self, obj, value):
            logging.info('Updating %r to %r', self.public_name, value)
            setattr(obj, self.private_name, value)

    class Person:

        name = LoggedAccess()                # First descriptor instance
        age = LoggedAccess()                 # Second descriptor instance

        def __init__(self, name, age):
            self.name = name                 # Calls the first descriptor
            self.age = age                   # Calls the second descriptor

        def birthday(self):
            self.age += 1

An interactive session shows that the :class:`Person` class has called
:meth:`__set_name__` so that the field names would be recorded.  Here
we call :func:`vars` to look up the descriptor without triggering it::

    >>> vars(vars(Person)['name'])
    {'public_name': 'name', 'private_name': '_name'}
    >>> vars(vars(Person)['age'])
    {'public_name': 'age', 'private_name': '_age'}

The new class now logs access to both *name* and *age*::

    >>> pete = Person('Peter P', 10)
    INFO:root:Updating 'name' to 'Peter P'
    INFO:root:Updating 'age' to 10
    >>> kate = Person('Catherine C', 20)
    INFO:root:Updating 'name' to 'Catherine C'
    INFO:root:Updating 'age' to 20

The two *Person* instances contain only the private names::

    >>> vars(pete)
    {'_name': 'Peter P', '_age': 10}
    >>> vars(kate)
    {'_name': 'Catherine C', '_age': 20}


Closing thoughts
----------------

A :term:`descriptor` is what we call any object that defines :meth:`__get__`,
:meth:`__set__`, or :meth:`__delete__`.

Optionally, descriptors can have a :meth:`__set_name__` method.  This is only
used in cases where a descriptor needs to know either the class where it was
created or the name of class variable it was assigned to.

Descriptors get invoked by the dot operator during attribute lookup.  If a
descriptor is accessed indirectly with ``vars(some_class)[descriptor_name]``,
the descriptor instance is returned without invoking it.

Descriptors only work when used as class variables.  When put in instances,
they have no effect.

The main motivation for descriptors is to provide a hook allowing objects
stored in class variables to control what happens during dotted lookup.

Traditionally, the calling class controls what happens during lookup.
Descriptors invert that relationship and allow the data being looked-up to
have a say in the matter.

Descriptors are used throughout the language.  It is how functions turn into
bound methods.  Common tools like :func:`classmethod`, :func:`staticmethod`,
:func:`property`, and :func:`functools.cached_property` are all implemented as
descriptors.


Complete Practical Example
^^^^^^^^^^^^^^^^^^^^^^^^^^

In this example, we create a practical and powerful tool for locating
notoriously hard to find data corruption bugs.


Validator class
---------------

A validator is a descriptor for managed attribute access.  Prior to storing
any data, it verifies that the new value meets various type and range
restrictions.  If those restrictions aren't met, it raises an exception to
prevent data corruption at its source.

This :class:`Validator` class is both an :term:`abstract base class` and a
managed attribute descriptor::

    from abc import ABC, abstractmethod

    class Validator(ABC):

        def __set_name__(self, owner, name):
            self.private_name = f'_{name}'

        def __get__(self, obj, objtype=None):
            return getattr(obj, self.private_name)

        def __set__(self, obj, value):
            self.validate(value)
            setattr(obj, self.private_name, value)

        @abstractmethod
        def validate(self, value):
            pass

Custom validators need to inherit from :class:`Validator` and must supply a
:meth:`validate` method to test various restrictions as needed.


Custom validators
-----------------

Here are three practical data validation utilities:

1) :class:`OneOf` verifies that a value is one of a restricted set of options.

2) :class:`Number` verifies that a value is either an :class:`int` or
   :class:`float`.  Optionally, it verifies that a value is between a given
   minimum or maximum.

3) :class:`String` verifies that a value is a :class:`str`.  Optionally, it
   validates a given minimum or maximum length.  It can validate a
   user-defined `predicate
   <https://en.wikipedia.org/wiki/Predicate_(mathematical_logic)>`_ as well.

::

    class OneOf(Validator):

        def __init__(self, *options):
            self.options = set(options)

        def validate(self, value):
            if value not in self.options:
                raise ValueError(f'Expected {value!r} to be one of {self.options!r}')

    class Number(Validator):

        def __init__(self, minvalue=None, maxvalue=None):
            self.minvalue = minvalue
            self.maxvalue = maxvalue

        def validate(self, value):
            if not isinstance(value, (int, float)):
                raise TypeError(f'Expected {value!r} to be an int or float')
            if self.minvalue is not None and value < self.minvalue:
                raise ValueError(
                    f'Expected {value!r} to be at least {self.minvalue!r}'
                )
            if self.maxvalue is not None and value > self.maxvalue:
                raise ValueError(
                    f'Expected {value!r} to be no more than {self.maxvalue!r}'
                )

    class String(Validator):

        def __init__(self, minsize=None, maxsize=None, predicate=None):
            self.minsize = minsize
            self.maxsize = maxsize
            self.predicate = predicate

        def validate(self, value):
            if not isinstance(value, str):
                raise TypeError(f'Expected {value!r} to be an str')
            if self.minsize is not None and len(value) < self.minsize:
                raise ValueError(
                    f'Expected {value!r} to be no smaller than {self.minsize!r}'
                )
            if self.maxsize is not None and len(value) > self.maxsize:
                raise ValueError(
                    f'Expected {value!r} to be no bigger than {self.maxsize!r}'
                )
            if self.predicate is not None and not self.predicate(value):
                raise ValueError(
                    f'Expected {self.predicate} to be true for {value!r}'
                )


Practical use
-------------

Here's how the data validators can be used in a real class::

    class Component:

        name = String(minsize=3, maxsize=10, predicate=str.isupper)
        kind = OneOf('wood', 'metal', 'plastic')
        quantity = Number(minvalue=0)

        def __init__(self, name, kind, quantity):
            self.name = name
            self.kind = kind
            self.quantity = quantity

The descriptors prevent invalid instances from being created::

    Component('WIDGET', 'metal', 5)     # Allowed.
    Component('Widget', 'metal', 5)     # Blocked: 'Widget' is not all uppercase
    Component('WIDGET', 'metle', 5)     # Blocked: 'metle' is misspelled
    Component('WIDGET', 'metal', -5)    # Blocked: -5 is negative
    Component('WIDGET', 'metal', 'V')   # Blocked: 'V' isn't a number


Technical Tutorial
^^^^^^^^^^^^^^^^^^

What follows is a more technical tutorial for the mechanics and details of how
descriptors work.


Abstract
--------

Defines descriptors, summarizes the protocol, and shows how descriptors are
called.  Provides an example showing how object relational mappings work.

Learning about descriptors not only provides access to a larger toolset, it
creates a deeper understanding of how Python works and an appreciation for the
elegance of its design.


Definition and introduction
---------------------------

In general, a descriptor is an object attribute with "binding behavior", one
whose attribute access has been overridden by methods in the descriptor
protocol.  Those methods are :meth:`__get__`, :meth:`__set__`, and
:meth:`__delete__`.  If any of those methods are defined for an object, it is
said to be a :term:`descriptor`.

The default behavior for attribute access is to get, set, or delete the
attribute from an object's dictionary.  For instance, ``a.x`` has a lookup chain
starting with ``a.__dict__['x']``, then ``type(a).__dict__['x']``, and
continuing through the base classes of ``type(a)``. If the
looked-up value is an object defining one of the descriptor methods, then Python
may override the default behavior and invoke the descriptor method instead.
Where this occurs in the precedence chain depends on which descriptor methods
were defined.

Descriptors are a powerful, general purpose protocol.  They are the mechanism
behind properties, methods, static methods, class methods, and
:func:`super()`.  They are used throughout Python itself.  Descriptors
simplify the underlying C code and offer a flexible set of new tools for
everyday Python programs.


Descriptor protocol
-------------------

``descr.__get__(self, obj, type=None) -> value``

``descr.__set__(self, obj, value) -> None``

``descr.__delete__(self, obj) -> None``

That is all there is to it.  Define any of these methods and an object is
considered a descriptor and can override default behavior upon being looked up
as an attribute.

If an object defines :meth:`__set__` or :meth:`__delete__`, it is considered
a data descriptor.  Descriptors that only define :meth:`__get__` are called
non-data descriptors (they are typically used for methods but other uses are
possible).

Data and non-data descriptors differ in how overrides are calculated with
respect to entries in an instance's dictionary.  If an instance's dictionary
has an entry with the same name as a data descriptor, the data descriptor
takes precedence.  If an instance's dictionary has an entry with the same
name as a non-data descriptor, the dictionary entry takes precedence.

To make a read-only data descriptor, define both :meth:`__get__` and
:meth:`__set__` with the :meth:`__set__` raising an :exc:`AttributeError` when
called.  Defining the :meth:`__set__` method with an exception raising
placeholder is enough to make it a data descriptor.


Overview of descriptor invocation
---------------------------------

A descriptor can be called directly with ``desc.__get__(obj)`` or
``desc.__get__(None, cls)``.

But it is more common for a descriptor to be invoked automatically from
attribute access.

The expression ``obj.x`` looks up the attribute ``x`` in the chain of
namespaces for ``obj``.  If the search finds a descriptor, its :meth:`__get__`
method is invoked according to the precedence rules listed below.

The details of invocation depend on whether ``obj`` is an object, class, or
instance of super.


Invocation from an instance
---------------------------

Instance lookup scans through a chain of namespaces giving data descriptors
the highest priority, followed by instance variables, then non-data
descriptors, then class variables, and lastly :meth:`__getattr__` if it is
provided.

If a descriptor is found for ``a.x``, then it is invoked with:
``desc.__get__(a, type(a))``.

The logic for a dotted lookup is in :meth:`object.__getattribute__`.  Here is
a pure Python equivalent::

    def object_getattribute(obj, name):
        "Emulate PyObject_GenericGetAttr() in Objects/object.c"
        null = object()
        objtype = type(obj)
        value = getattr(objtype, name, null)
        if value is not null and hasattr(value, '__get__'):
            if hasattr(value, '__set__') or hasattr(value, '__delete__'):
                return value.__get__(obj, objtype)  # data descriptor
        try:
            return vars(obj)[name]                  # instance variable
        except (KeyError, TypeError):
            pass
        if hasattr(value, '__get__'):
            return value.__get__(obj, objtype)      # non-data descriptor
        if value is not null:
            return value                            # class variable
        # Emulate slot_tp_getattr_hook() in Objects/typeobject.c
        if hasattr(objtype, '__getattr__'):
            return objtype.__getattr__(obj, name)   # __getattr__ hook
        raise AttributeError(name)

The :exc:`TypeError` exception handler is needed because the instance dictionary
doesn't exist when its class defines :term:`__slots__`.


Invocation from a class
-----------------------

The logic for a dotted lookup such as ``A.x`` is in
:meth:`type.__getattribute__`.  The steps are similar to those for
:meth:`object.__getattribute__` but the instance dictionary lookup is replaced
by a search through the class's :term:`method resolution order`.

If a descriptor is found, it is invoked with ``desc.__get__(None, A)``.

The full C implementation can be found in :c:func:`type_getattro()` and
:c:func:`_PyType_Lookup()` in :source:`Objects/typeobject.c`.


Invocation from super
---------------------

The logic for super's dotted lookup is in the :meth:`__getattribute__` method for
object returned by :class:`super()`.

A dotted lookup such as ``super(A, obj).m`` searches ``obj.__class__.__mro__``
for the base class ``B`` immediately following ``A`` and then returns
``B.__dict__['m'].__get__(obj, A)``.  If not a descriptor, ``m`` is returned
unchanged.

The full C implementation can be found in :c:func:`super_getattro()` in
:source:`Objects/typeobject.c`.  A pure Python equivalent can be found in
`Guido's Tutorial
<https://www.python.org/download/releases/2.2.3/descrintro/#cooperation>`_.


Summary of invocation logic
---------------------------

The mechanism for descriptors is embedded in the :meth:`__getattribute__()`
methods for :class:`object`, :class:`type`, and :func:`super`.

The important points to remember are:

* Descriptors are invoked by the :meth:`__getattribute__` method.

* Classes inherit this machinery from :class:`object`, :class:`type`, or
  :func:`super`.

* Overriding :meth:`__getattribute__` prevents automatic descriptor calls
  because all the descriptor logic is in that method.

* :meth:`object.__getattribute__` and :meth:`type.__getattribute__` make
  different calls to :meth:`__get__`.  The first includes the instance and may
  include the class.  The second puts in ``None`` for the instance and always
  includes the class.

* Data descriptors always override instance dictionaries.

* Non-data descriptors may be overridden by instance dictionaries.


Automatic name notification
---------------------------

Sometimes it is desirable for a descriptor to know what class variable name it
was assigned to.  When a new class is created, the :class:`type` metaclass
scans the dictionary of the new class.  If any of the entries are descriptors
and if they define :meth:`__set_name__`, that method is called with two
arguments.  The *owner* is the class where the descriptor is used, and the
*name* is the class variable the descriptor was assigned to.

The implementation details are in :c:func:`type_new()` and
:c:func:`set_names()` in :source:`Objects/typeobject.c`.

Since the update logic is in :meth:`type.__new__`, notifications only take
place at the time of class creation.  If descriptors are added to the class
afterwards, :meth:`__set_name__` will need to be called manually.


ORM example
-----------

The following code is simplified skeleton showing how data descriptors could
be used to implement an `object relational mapping
<https://en.wikipedia.org/wiki/Object%E2%80%93relational_mapping>`_.

The essential idea is that the data is stored in an external database.  The
Python instances only hold keys to the database's tables.  Descriptors take
care of lookups or updates::

    class Field:

        def __set_name__(self, owner, name):
            self.fetch = f'SELECT {name} FROM {owner.table} WHERE {owner.key}=?;'
            self.store = f'UPDATE {owner.table} SET {name}=? WHERE {owner.key}=?;'

        def __get__(self, obj, objtype=None):
            return conn.execute(self.fetch, [obj.key]).fetchone()[0]

        def __set__(self, obj, value):
            conn.execute(self.store, [value, obj.key])
            conn.commit()

We can use the :class:`Field` class to define "models" that describe the schema
for each table in a database::

    class Movie:
        table = 'Movies'                    # Table name
        key = 'title'                       # Primary key
        director = Field()
        year = Field()

        def __init__(self, key):
            self.key = key

    class Song:
        table = 'Music'
        key = 'title'
        artist = Field()
        year = Field()
        genre = Field()

        def __init__(self, key):
            self.key = key

An interactive session shows how data is retrieved from the database and how
it can be updated::

    >>> import sqlite3
    >>> conn = sqlite3.connect('entertainment.db')

    >>> Movie('Star Wars').director
    'George Lucas'
    >>> jaws = Movie('Jaws')
    >>> f'Released in {jaws.year} by {jaws.director}'
    'Released in 1975 by Steven Spielberg'

    >>> Song('Country Roads').artist
    'John Denver'

    >>> Movie('Star Wars').director = 'J.J. Abrams'
    >>> Movie('Star Wars').director
    'J.J. Abrams'

Pure Python Equivalents
^^^^^^^^^^^^^^^^^^^^^^^

The descriptor protocol is simple and offers exciting possibilities.  Several
use cases are so common that they have been prepackaged into built-in tools.
Properties, bound methods, static methods, class methods, and \_\_slots\_\_ are
all based on the descriptor protocol.


Properties
----------

Calling :func:`property` is a succinct way of building a data descriptor that
triggers a function call upon access to an attribute.  Its signature is::

    property(fget=None, fset=None, fdel=None, doc=None) -> property

The documentation shows a typical use to define a managed attribute ``x``::

    class C:
        def getx(self): return self.__x
        def setx(self, value): self.__x = value
        def delx(self): del self.__x
        x = property(getx, setx, delx, "I'm the 'x' property.")

To see how :func:`property` is implemented in terms of the descriptor protocol,
here is a pure Python equivalent::

    class Property:
        "Emulate PyProperty_Type() in Objects/descrobject.c"

        def __init__(self, fget=None, fset=None, fdel=None, doc=None):
            self.fget = fget
            self.fset = fset
            self.fdel = fdel
            if doc is None and fget is not None:
                doc = fget.__doc__
            self.__doc__ = doc

        def __get__(self, obj, objtype=None):
            if obj is None:
                return self
            if self.fget is None:
                raise AttributeError("unreadable attribute")
            return self.fget(obj)

        def __set__(self, obj, value):
            if self.fset is None:
                raise AttributeError("can't set attribute")
            self.fset(obj, value)

        def __delete__(self, obj):
            if self.fdel is None:
                raise AttributeError("can't delete attribute")
            self.fdel(obj)

        def getter(self, fget):
            return type(self)(fget, self.fset, self.fdel, self.__doc__)

        def setter(self, fset):
            return type(self)(self.fget, fset, self.fdel, self.__doc__)

        def deleter(self, fdel):
            return type(self)(self.fget, self.fset, fdel, self.__doc__)

The :func:`property` builtin helps whenever a user interface has granted
attribute access and then subsequent changes require the intervention of a
method.

For instance, a spreadsheet class may grant access to a cell value through
``Cell('b10').value``. Subsequent improvements to the program require the cell
to be recalculated on every access; however, the programmer does not want to
affect existing client code accessing the attribute directly.  The solution is
to wrap access to the value attribute in a property data descriptor::

    class Cell:
        ...

        @property
        def value(self):
            "Recalculate the cell before returning value"
            self.recalc()
            return self._value


Functions and methods
---------------------

Python's object oriented features are built upon a function based environment.
Using non-data descriptors, the two are merged seamlessly.

Functions stored in class dictionaries get turned into methods when invoked.
Methods only differ from regular functions in that the object instance is
prepended to the other arguments.  By convention, the instance is called
*self* but could be called *this* or any other variable name.

Methods can be created manually with :class:`types.MethodType` which is
roughly equivalent to::

    class MethodType:
        "Emulate Py_MethodType in Objects/classobject.c"

        def __init__(self, func, obj):
            self.__func__ = func
            self.__self__ = obj

        def __call__(self, *args, **kwargs):
            func = self.__func__
            obj = self.__self__
            return func(obj, *args, **kwargs)

To support automatic creation of methods, functions include the
:meth:`__get__` method for binding methods during attribute access.  This
means that functions are non-data descriptors that return bound methods
during dotted lookup from an instance.  Here's how it works::

    class Function:
        ...

        def __get__(self, obj, objtype=None):
            "Simulate func_descr_get() in Objects/funcobject.c"
            if obj is None:
                return self
            return MethodType(self, obj)

Running the following class in the interpreter shows how the function
descriptor works in practice::

    class D:
        def f(self, x):
             return x

The function has a :term:`qualified name` attribute to support introspection::

    >>> D.f.__qualname__
    'D.f'

Accessing the function through the class dictionary does not invoke
:meth:`__get__`.  Instead, it just returns the underlying function object::

    >>> D.__dict__['f']
    <function D.f at 0x00C45070>

Dotted access from a class calls :meth:`__get__` which just returns the
underlying function unchanged::

    >>> D.f
    <function D.f at 0x00C45070>

The interesting behavior occurs during dotted access from an instance.  The
dotted lookup calls :meth:`__get__` which returns a bound method object::

    >>> d = D()
    >>> d.f
    <bound method D.f of <__main__.D object at 0x00B18C90>>

Internally, the bound method stores the underlying function and the bound
instance::

    >>> d.f.__func__
    <function D.f at 0x1012e5ae8>

    >>> d.f.__self__
    <__main__.D object at 0x1012e1f98>

If you have ever wondered where *self* comes from in regular methods or where
*cls* comes from in class methods, this is it!


Static methods
--------------

Non-data descriptors provide a simple mechanism for variations on the usual
patterns of binding functions into methods.

To recap, functions have a :meth:`__get__` method so that they can be converted
to a method when accessed as attributes.  The non-data descriptor transforms an
``obj.f(*args)`` call into ``f(obj, *args)``.  Calling ``cls.f(*args)``
becomes ``f(*args)``.

This chart summarizes the binding and its two most useful variants:

      +-----------------+----------------------+------------------+
      | Transformation  | Called from an       | Called from a    |
      |                 | object               | class            |
      +=================+======================+==================+
      | function        | f(obj, \*args)       | f(\*args)        |
      +-----------------+----------------------+------------------+
      | staticmethod    | f(\*args)            | f(\*args)        |
      +-----------------+----------------------+------------------+
      | classmethod     | f(type(obj), \*args) | f(cls, \*args)   |
      +-----------------+----------------------+------------------+

Static methods return the underlying function without changes.  Calling either
``c.f`` or ``C.f`` is the equivalent of a direct lookup into
``object.__getattribute__(c, "f")`` or ``object.__getattribute__(C, "f")``. As a
result, the function becomes identically accessible from either an object or a
class.

Good candidates for static methods are methods that do not reference the
``self`` variable.

For instance, a statistics package may include a container class for
experimental data.  The class provides normal methods for computing the average,
mean, median, and other descriptive statistics that depend on the data. However,
there may be useful functions which are conceptually related but do not depend
on the data.  For instance, ``erf(x)`` is handy conversion routine that comes up
in statistical work but does not directly depend on a particular dataset.
It can be called either from an object or the class:  ``s.erf(1.5) --> .9332`` or
``Sample.erf(1.5) --> .9332``.

Since static methods return the underlying function with no changes, the
example calls are unexciting::

    class E:
        @staticmethod
        def f(x):
            print(x)

    >>> E.f(3)
    3
    >>> E().f(3)
    3

Using the non-data descriptor protocol, a pure Python version of
:func:`staticmethod` would look like this::

    class StaticMethod:
        "Emulate PyStaticMethod_Type() in Objects/funcobject.c"

        def __init__(self, f):
            self.f = f

        def __get__(self, obj, objtype=None):
            return self.f


Class methods
-------------

Unlike static methods, class methods prepend the class reference to the
argument list before calling the function.  This format is the same
for whether the caller is an object or a class::

    class F:
        @classmethod
        def f(cls, x):
            return cls.__name__, x

    >>> print(F.f(3))
    ('F', 3)
    >>> print(F().f(3))
    ('F', 3)

This behavior is useful whenever the method only needs to have a class
reference and does rely on data stored in a specific instance.  One use for
class methods is to create alternate class constructors.  For example, the
classmethod :func:`dict.fromkeys` creates a new dictionary from a list of
keys.  The pure Python equivalent is::

    class Dict:
        ...

        @classmethod
        def fromkeys(cls, iterable, value=None):
            "Emulate dict_fromkeys() in Objects/dictobject.c"
            d = cls()
            for key in iterable:
                d[key] = value
            return d

Now a new dictionary of unique keys can be constructed like this::

    >>> Dict.fromkeys('abracadabra')
    {'a': None, 'r': None, 'b': None, 'c': None, 'd': None}

Using the non-data descriptor protocol, a pure Python version of
:func:`classmethod` would look like this::

    class ClassMethod:
        "Emulate PyClassMethod_Type() in Objects/funcobject.c"

        def __init__(self, f):
            self.f = f

        def __get__(self, obj, cls=None):
            if cls is None:
                cls = type(obj)
            if hasattr(obj, '__get__'):
                return self.f.__get__(cls)
            return MethodType(self.f, cls)

The code path for ``hasattr(obj, '__get__')`` was added in Python 3.9 and
makes it possible for :func:`classmethod` to support chained decorators.
For example, a classmethod and property could be chained together::

    class G:
        @classmethod
        @property
        def __doc__(cls):
            return f'A doc for {cls.__name__!r}'

Member objects and __slots__
----------------------------

When a class defines ``__slots__``, it replaces instance dictionaries with a
fixed-length array of slot values.  From a user point of view that has
several effects:

1. Provides immediate detection of bugs due to misspelled attribute
assignments.  Only attribute names specified in ``__slots__`` are allowed::

        class Vehicle:
            __slots__ = ('id_number', 'make', 'model')

        >>> auto = Vehicle()
        >>> auto.id_nubmer = 'VYE483814LQEX'
        Traceback (most recent call last):
            ...
        AttributeError: 'Vehicle' object has no attribute 'id_nubmer'

2. Helps create immutable objects where descriptors manage access to private
attributes stored in ``__slots__``::

    class Immutable:

        __slots__ = ('_dept', '_name')          # Replace the instance dictionary

        def __init__(self, dept, name):
            self._dept = dept                   # Store to private attribute
            self._name = name                   # Store to private attribute

        @property                               # Read-only descriptor
        def dept(self):
            return self._dept

        @property
        def name(self):                         # Read-only descriptor
            return self._name

    mark = Immutable('Botany', 'Mark Watney')   # Create an immutable instance

3. Saves memory.  On a 64-bit Linux build, an instance with two attributes
takes 48 bytes with ``__slots__`` and 152 bytes without.  This `flyweight
design pattern <https://en.wikipedia.org/wiki/Flyweight_pattern>`_ likely only
matters when a large number of instances are going to be created.

4. Blocks tools like :func:`functools.cached_property` which require an
instance dictionary to function correctly::

    from functools import cached_property

    class CP:
        __slots__ = ()                          # Eliminates the instance dict

        @cached_property                        # Requires an instance dict
        def pi(self):
            return 4 * sum((-1.0)**n / (2.0*n + 1.0)
                           for n in reversed(range(100_000)))

    >>> CP().pi
    Traceback (most recent call last):
      ...
    TypeError: No '__dict__' attribute on 'CP' instance to cache 'pi' property.

It's not possible to create an exact drop-in pure Python version of
``__slots__`` because it requires direct access to C structures and control
over object memory allocation.  However, we can build a mostly faithful
simulation where the actual C structure for slots is emulated by a private
``_slotvalues`` list.  Reads and writes to that private structure are managed
by member descriptors::

    class Member:

        def __init__(self, name, clsname, offset):
            'Emulate PyMemberDef in Include/structmember.h'
            # Also see descr_new() in Objects/descrobject.c
            self.name = name
            self.clsname = clsname
            self.offset = offset

        def __get__(self, obj, objtype=None):
            'Emulate member_get() in Objects/descrobject.c'
            # Also see PyMember_GetOne() in Python/structmember.c
            return obj._slotvalues[self.offset]

        def __set__(self, obj, value):
            'Emulate member_set() in Objects/descrobject.c'
            obj._slotvalues[self.offset] = value

        def __repr__(self):
            'Emulate member_repr() in Objects/descrobject.c'
            return f'<Member {self.name!r} of {self.clsname!r}>'

The :meth:`type.__new__` method takes care of adding member objects to class
variables.  The :meth:`object.__new__` method takes care of creating instances
that have slots instead of an instance dictionary.  Here is a rough equivalent
in pure Python::

    class Type(type):
        'Simulate how the type metaclass adds member objects for slots'

        def __new__(mcls, clsname, bases, mapping):
            'Emuluate type_new() in Objects/typeobject.c'
            # type_new() calls PyTypeReady() which calls add_methods()
            slot_names = mapping.get('slot_names', [])
            for offset, name in enumerate(slot_names):
                mapping[name] = Member(name, clsname, offset)
            return type.__new__(mcls, clsname, bases, mapping)

    class Object:
        'Simulate how object.__new__() allocates memory for __slots__'

        def __new__(cls, *args):
            'Emulate object_new() in Objects/typeobject.c'
            inst = super().__new__(cls)
            if hasattr(cls, 'slot_names'):
                inst._slotvalues = [None] * len(cls.slot_names)
            return inst

To use the simulation in a real class, just inherit from :class:`Object` and
set the :term:`metaclass` to :class:`Type`::

    class H(Object, metaclass=Type):

        slot_names = ['x', 'y']

        def __init__(self, x, y):
            self.x = x
            self.y = y

At this point, the metaclass has loaded member objects for *x* and *y*::

    >>> import pprint
    >>> pprint.pp(dict(vars(H)))
    {'__module__': '__main__',
     'slot_names': ['x', 'y'],
     '__init__': <function H.__init__ at 0x7fb5d302f9d0>,
     'x': <Member 'x' of 'H'>,
     'y': <Member 'y' of 'H'>,
     '__doc__': None}

When instances are created, they have a ``slot_values`` list where the
attributes are stored::

    >>> h = H(10, 20)
    >>> vars(h)
    {'_slotvalues': [10, 20]}
    >>> h.x = 55
    >>> vars(h)
    {'_slotvalues': [55, 20]}

Unlike the real ``__slots__``, this simulation does have an instance
dictionary just to hold the ``_slotvalues`` array.  So, unlike the real code,
this simulation doesn't block assignments to misspelled attributes::

    >>> h.xz = 30   # For actual __slots__ this would raise an AttributeError