summaryrefslogtreecommitdiffstats
path: root/Doc/includes/dbpickle.py
blob: c021eac6c39f68fae335c90e75aed4bd08883432 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
# Simple example presenting how persistent ID can be used to pickle
# external objects by reference.

import pickle
import sqlite3
from collections import namedtuple

# Simple class representing a record in our database.
MemoRecord = namedtuple("MemoRecord", "key, task")

class DBPickler(pickle.Pickler):

    def persistent_id(self, obj):
        # Instead of pickling MemoRecord as a regular class instance, we emit a
        # persistent ID.
        if isinstance(obj, MemoRecord):
            # Here, our persistent ID is simply a tuple, containing a tag and a
            # key, which refers to a specific record in the database.
            return ("MemoRecord", obj.key)
        else:
            # If obj does not have a persistent ID, return None. This means obj
            # needs to be pickled as usual.
            return None


class DBUnpickler(pickle.Unpickler):

    def __init__(self, file, connection):
        super().__init__(file)
        self.connection = connection

    def persistent_load(self, pid):
        # This method is invoked whenever a persistent ID is encountered.
        # Here, pid is the tuple returned by DBPickler.
        cursor = self.connection.cursor()
        type_tag, key_id = pid
        if type_tag == "MemoRecord":
            # Fetch the referenced record from the database and return it.
            cursor.execute("SELECT * FROM memos WHERE key=?", (str(key_id),))
            key, task = cursor.fetchone()
            return MemoRecord(key, task)
        else:
            # Always raises an error if you cannot return the correct object.
            # Otherwise, the unpickler will think None is the object referenced
            # by the persistent ID.
            raise pickle.UnpicklingError("unsupported persistent object")


def main():
    import io, pprint

    # Initialize and populate our database.
    conn = sqlite3.connect(":memory:")
    cursor = conn.cursor()
    cursor.execute("CREATE TABLE memos(key INTEGER PRIMARY KEY, task TEXT)")
    tasks = (
        'give food to fish',
        'prepare group meeting',
        'fight with a zebra',
        )
    for task in tasks:
        cursor.execute("INSERT INTO memos VALUES(NULL, ?)", (task,))

    # Fetch the records to be pickled.
    cursor.execute("SELECT * FROM memos")
    memos = [MemoRecord(key, task) for key, task in cursor]
    # Save the records using our custom DBPickler.
    file = io.BytesIO()
    DBPickler(file).dump(memos)

    print("Pickled records:")
    pprint.pprint(memos)

    # Update a record, just for good measure.
    cursor.execute("UPDATE memos SET task='learn italian' WHERE key=1")

    # Load the records from the pickle data stream.
    file.seek(0)
    memos = DBUnpickler(file, conn).load()

    print("Unpickled records:")
    pprint.pprint(memos)


if __name__ == '__main__':
    main()