1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
|
\chapter{Built-in Types \label{types}}
The following sections describe the standard types that are built into
the interpreter.
\note{Historically (until release 2.2), Python's built-in types have
differed from user-defined types because it was not possible to use
the built-in types as the basis for object-oriented inheritance.
This limitation does not exist any longer.}
The principal built-in types are numerics, sequences, mappings, files,
classes, instances and exceptions.
\indexii{built-in}{types}
Some operations are supported by several object types; in particular,
practically all objects can be compared, tested for truth value,
and converted to a string (with
the \function{repr()} function or the slightly different
\function{str()} function). The latter
function is implicitly used when an object is written by the
\keyword{print}\stindex{print} statement.
(Information on the \ulink{\keyword{print} statement}{../ref/print.html}
and other language statements can be found in the
\citetitle[../ref/ref.html]{Python Reference Manual} and the
\citetitle[../tut/tut.html]{Python Tutorial}.)
\section{Truth Value Testing\label{truth}}
Any object can be tested for truth value, for use in an \keyword{if} or
\keyword{while} condition or as operand of the Boolean operations below.
The following values are considered false:
\stindex{if}
\stindex{while}
\indexii{truth}{value}
\indexii{Boolean}{operations}
\index{false}
\begin{itemize}
\item \code{None}
\withsubitem{(Built-in object)}{\ttindex{None}}
\item \code{False}
\withsubitem{(Built-in object)}{\ttindex{False}}
\item zero of any numeric type, for example, \code{0}, \code{0L},
\code{0.0}, \code{0j}.
\item any empty sequence, for example, \code{''}, \code{()}, \code{[]}.
\item any empty mapping, for example, \code{\{\}}.
\item instances of user-defined classes, if the class defines a
\method{__bool__()} or \method{__len__()} method, when that
method returns the integer zero or \class{bool} value
\code{False}.\footnote{Additional
information on these special methods may be found in the
\citetitle[../ref/ref.html]{Python Reference Manual}.}
\end{itemize}
All other values are considered true --- so objects of many types are
always true.
\index{true}
Operations and built-in functions that have a Boolean result always
return \code{0} or \code{False} for false and \code{1} or \code{True}
for true, unless otherwise stated. (Important exception: the Boolean
operations \samp{or}\opindex{or} and \samp{and}\opindex{and} always
return one of their operands.)
\index{False}
\index{True}
\section{Boolean Operations ---
\keyword{and}, \keyword{or}, \keyword{not}
\label{boolean}}
These are the Boolean operations, ordered by ascending priority:
\indexii{Boolean}{operations}
\begin{tableiii}{c|l|c}{code}{Operation}{Result}{Notes}
\lineiii{\var{x} or \var{y}}
{if \var{x} is false, then \var{y}, else \var{x}}{(1)}
\lineiii{\var{x} and \var{y}}
{if \var{x} is false, then \var{x}, else \var{y}}{(1)}
\hline
\lineiii{not \var{x}}
{if \var{x} is false, then \code{True}, else \code{False}}{(2)}
\end{tableiii}
\opindex{and}
\opindex{or}
\opindex{not}
\noindent
Notes:
\begin{description}
\item[(1)]
These only evaluate their second argument if needed for their outcome.
\item[(2)]
\samp{not} has a lower priority than non-Boolean operators, so
\code{not \var{a} == \var{b}} is interpreted as \code{not (\var{a} ==
\var{b})}, and \code{\var{a} == not \var{b}} is a syntax error.
\end{description}
\section{Comparisons \label{comparisons}}
Comparison operations are supported by all objects. They all have the
same priority (which is higher than that of the Boolean operations).
Comparisons can be chained arbitrarily; for example, \code{\var{x} <
\var{y} <= \var{z}} is equivalent to \code{\var{x} < \var{y} and
\var{y} <= \var{z}}, except that \var{y} is evaluated only once (but
in both cases \var{z} is not evaluated at all when \code{\var{x} <
\var{y}} is found to be false).
\indexii{chaining}{comparisons}
This table summarizes the comparison operations:
\begin{tableiii}{c|l|c}{code}{Operation}{Meaning}{Notes}
\lineiii{<}{strictly less than}{}
\lineiii{<=}{less than or equal}{}
\lineiii{>}{strictly greater than}{}
\lineiii{>=}{greater than or equal}{}
\lineiii{==}{equal}{}
\lineiii{!=}{not equal}{}
\lineiii{is}{object identity}{}
\lineiii{is not}{negated object identity}{}
\end{tableiii}
\indexii{operator}{comparison}
\opindex{==} % XXX *All* others have funny characters < ! >
\opindex{is}
\opindex{is not}
Objects of different types, except different numeric types and different string types, never
compare equal; such objects are ordered consistently but arbitrarily
(so that sorting a heterogeneous array yields a consistent result).
Furthermore, some types (for example, file objects) support only a
degenerate notion of comparison where any two objects of that type are
unequal. Again, such objects are ordered arbitrarily but
consistently. The \code{<}, \code{<=}, \code{>} and \code{>=}
operators will raise a \exception{TypeError} exception when any operand
is a complex number.
\indexii{object}{numeric}
\indexii{objects}{comparing}
Instances of a class normally compare as non-equal unless the class
\withsubitem{(instance method)}{\ttindex{__cmp__()}}
defines the \method{__cmp__()} method. Refer to the
\citetitle[../ref/customization.html]{Python Reference Manual} for
information on the use of this method to effect object comparisons.
\strong{Implementation note:} Objects of different types except
numbers are ordered by their type names; objects of the same types
that don't support proper comparison are ordered by their address.
Two more operations with the same syntactic priority,
\samp{in}\opindex{in} and \samp{not in}\opindex{not in}, are supported
only by sequence types (below).
\section{Numeric Types ---
\class{int}, \class{float}, \class{long}, \class{complex}
\label{typesnumeric}}
There are four distinct numeric types: \dfn{plain integers},
\dfn{long integers},
\dfn{floating point numbers}, and \dfn{complex numbers}.
In addition, Booleans are a subtype of plain integers.
Plain integers (also just called \dfn{integers})
are implemented using \ctype{long} in C, which gives them at least 32
bits of precision (\code{sys.maxint} is always set to the maximum
plain integer value for the current platform, the minimum value is
\code{-sys.maxint - 1}). Long integers have unlimited precision.
Floating point numbers are implemented using \ctype{double} in C.
All bets on their precision are off unless you happen to know the
machine you are working with.
\obindex{numeric}
\obindex{Boolean}
\obindex{integer}
\obindex{long integer}
\obindex{floating point}
\obindex{complex number}
\indexii{C}{language}
Complex numbers have a real and imaginary part, which are each
implemented using \ctype{double} in C. To extract these parts from
a complex number \var{z}, use \code{\var{z}.real} and \code{\var{z}.imag}.
Numbers are created by numeric literals or as the result of built-in
functions and operators. Unadorned integer literals (including hex
and octal numbers) yield plain integers unless the value they denote
is too large to be represented as a plain integer, in which case
they yield a long integer. Integer literals with an
\character{L} or \character{l} suffix yield long integers
(\character{L} is preferred because \samp{1l} looks too much like
eleven!). Numeric literals containing a decimal point or an exponent
sign yield floating point numbers. Appending \character{j} or
\character{J} to a numeric literal yields a complex number with a
zero real part. A complex numeric literal is the sum of a real and
an imaginary part.
\indexii{numeric}{literals}
\indexii{integer}{literals}
\indexiii{long}{integer}{literals}
\indexii{floating point}{literals}
\indexii{complex number}{literals}
\indexii{hexadecimal}{literals}
\indexii{octal}{literals}
Python fully supports mixed arithmetic: when a binary arithmetic
operator has operands of different numeric types, the operand with the
``narrower'' type is widened to that of the other, where plain
integer is narrower than long integer is narrower than floating point is
narrower than complex.
Comparisons between numbers of mixed type use the same rule.\footnote{
As a consequence, the list \code{[1, 2]} is considered equal
to \code{[1.0, 2.0]}, and similarly for tuples.
} The constructors \function{int()}, \function{long()}, \function{float()},
and \function{complex()} can be used
to produce numbers of a specific type.
\index{arithmetic}
\bifuncindex{int}
\bifuncindex{long}
\bifuncindex{float}
\bifuncindex{complex}
All numeric types (except complex) support the following operations,
sorted by ascending priority (operations in the same box have the same
priority; all numeric operations have a higher priority than
comparison operations):
\begin{tableiii}{c|l|c}{code}{Operation}{Result}{Notes}
\lineiii{\var{x} + \var{y}}{sum of \var{x} and \var{y}}{}
\lineiii{\var{x} - \var{y}}{difference of \var{x} and \var{y}}{}
\hline
\lineiii{\var{x} * \var{y}}{product of \var{x} and \var{y}}{}
\lineiii{\var{x} / \var{y}}{quotient of \var{x} and \var{y}}{(1)}
\lineiii{\var{x} // \var{y}}{(floored) quotient of \var{x} and \var{y}}{(5)}
\lineiii{\var{x} \%{} \var{y}}{remainder of \code{\var{x} / \var{y}}}{(4)}
\hline
\lineiii{-\var{x}}{\var{x} negated}{}
\lineiii{+\var{x}}{\var{x} unchanged}{}
\hline
\lineiii{abs(\var{x})}{absolute value or magnitude of \var{x}}{}
\lineiii{int(\var{x})}{\var{x} converted to integer}{(2)}
\lineiii{long(\var{x})}{\var{x} converted to long integer}{(2)}
\lineiii{float(\var{x})}{\var{x} converted to floating point}{}
\lineiii{complex(\var{re},\var{im})}{a complex number with real part \var{re}, imaginary part \var{im}. \var{im} defaults to zero.}{}
\lineiii{\var{c}.conjugate()}{conjugate of the complex number \var{c}}{}
\lineiii{divmod(\var{x}, \var{y})}{the pair \code{(\var{x} // \var{y}, \var{x} \%{} \var{y})}}{(3)(4)}
\lineiii{pow(\var{x}, \var{y})}{\var{x} to the power \var{y}}{}
\lineiii{\var{x} ** \var{y}}{\var{x} to the power \var{y}}{}
\end{tableiii}
\indexiii{operations on}{numeric}{types}
\withsubitem{(complex number method)}{\ttindex{conjugate()}}
\noindent
Notes:
\begin{description}
\item[(1)]
For (plain or long) integer division, the result is an integer.
The result is always rounded towards minus infinity: 1/2 is 0,
(-1)/2 is -1, 1/(-2) is -1, and (-1)/(-2) is 0. Note that the result
is a long integer if either operand is a long integer, regardless of
the numeric value.
\indexii{integer}{division}
\indexiii{long}{integer}{division}
\item[(2)]
Conversion from floating point to (long or plain) integer may round or
truncate as in C; see functions \function{floor()} and
\function{ceil()} in the \refmodule{math}\refbimodindex{math} module
for well-defined conversions.
\withsubitem{(in module math)}{\ttindex{floor()}\ttindex{ceil()}}
\indexii{numeric}{conversions}
\indexii{C}{language}
\item[(3)]
See section \ref{built-in-funcs}, ``Built-in Functions,'' for a full
description.
\item[(4)]
Complex floor division operator, modulo operator, and \function{divmod()}.
\deprecated{2.3}{Instead convert to float using \function{abs()}
if appropriate.}
\item[(5)]
Also referred to as integer division. The resultant value is a whole integer,
though the result's type is not necessarily int.
\end{description}
% XXXJH exceptions: overflow (when? what operations?) zerodivision
\subsection{Bit-string Operations on Integer Types \label{bitstring-ops}}
\nodename{Bit-string Operations}
Plain and long integer types support additional operations that make
sense only for bit-strings. Negative numbers are treated as their 2's
complement value (for long integers, this assumes a sufficiently large
number of bits that no overflow occurs during the operation).
The priorities of the binary bit-wise operations are all lower than
the numeric operations and higher than the comparisons; the unary
operation \samp{\~} has the same priority as the other unary numeric
operations (\samp{+} and \samp{-}).
This table lists the bit-string operations sorted in ascending
priority (operations in the same box have the same priority):
\begin{tableiii}{c|l|c}{code}{Operation}{Result}{Notes}
\lineiii{\var{x} | \var{y}}{bitwise \dfn{or} of \var{x} and \var{y}}{}
\lineiii{\var{x} \^{} \var{y}}{bitwise \dfn{exclusive or} of \var{x} and \var{y}}{}
\lineiii{\var{x} \&{} \var{y}}{bitwise \dfn{and} of \var{x} and \var{y}}{}
% The empty groups below prevent conversion to guillemets.
\lineiii{\var{x} <{}< \var{n}}{\var{x} shifted left by \var{n} bits}{(1), (2)}
\lineiii{\var{x} >{}> \var{n}}{\var{x} shifted right by \var{n} bits}{(1), (3)}
\hline
\lineiii{\~\var{x}}{the bits of \var{x} inverted}{}
\end{tableiii}
\indexiii{operations on}{integer}{types}
\indexii{bit-string}{operations}
\indexii{shifting}{operations}
\indexii{masking}{operations}
\noindent
Notes:
\begin{description}
\item[(1)] Negative shift counts are illegal and cause a
\exception{ValueError} to be raised.
\item[(2)] A left shift by \var{n} bits is equivalent to
multiplication by \code{pow(2, \var{n})} without overflow check.
\item[(3)] A right shift by \var{n} bits is equivalent to
division by \code{pow(2, \var{n})} without overflow check.
\end{description}
\section{Iterator Types \label{typeiter}}
\versionadded{2.2}
\index{iterator protocol}
\index{protocol!iterator}
\index{sequence!iteration}
\index{container!iteration over}
Python supports a concept of iteration over containers. This is
implemented using two distinct methods; these are used to allow
user-defined classes to support iteration. Sequences, described below
in more detail, always support the iteration methods.
One method needs to be defined for container objects to provide
iteration support:
\begin{methoddesc}[container]{__iter__}{}
Return an iterator object. The object is required to support the
iterator protocol described below. If a container supports
different types of iteration, additional methods can be provided to
specifically request iterators for those iteration types. (An
example of an object supporting multiple forms of iteration would be
a tree structure which supports both breadth-first and depth-first
traversal.) This method corresponds to the \member{tp_iter} slot of
the type structure for Python objects in the Python/C API.
\end{methoddesc}
The iterator objects themselves are required to support the following
two methods, which together form the \dfn{iterator protocol}:
\begin{methoddesc}[iterator]{__iter__}{}
Return the iterator object itself. This is required to allow both
containers and iterators to be used with the \keyword{for} and
\keyword{in} statements. This method corresponds to the
\member{tp_iter} slot of the type structure for Python objects in
the Python/C API.
\end{methoddesc}
\begin{methoddesc}[iterator]{next}{}
Return the next item from the container. If there are no further
items, raise the \exception{StopIteration} exception. This method
corresponds to the \member{tp_iternext} slot of the type structure
for Python objects in the Python/C API.
\end{methoddesc}
Python defines several iterator objects to support iteration over
general and specific sequence types, dictionaries, and other more
specialized forms. The specific types are not important beyond their
implementation of the iterator protocol.
The intention of the protocol is that once an iterator's \method{__next__()}
method raises \exception{StopIteration}, it will continue to do so on subsequent
calls. Implementations that do not obey this property are deemed broken. (This
constraint was added in Python 2.3; in Python 2.2, various iterators are broken
according to this rule.)
Python's generators provide a convenient way to implement the iterator protocol.
If a container object's \method{__iter__()} method is implemented as a
generator, it will automatically return an iterator object (technically, a
generator object) supplying the \method{__iter__()} and \method{__next__()}
methods.
\section{Sequence Types ---
\class{str}, \class{unicode}, \class{list},
\class{tuple}, \class{buffer}, \class{range}
\label{typesseq}}
There are six sequence types: strings, Unicode strings, lists,
tuples, buffers, and range objects.
String literals are written in single or double quotes:
\code{'xyzzy'}, \code{"frobozz"}. See chapter 2 of the
\citetitle[../ref/strings.html]{Python Reference Manual} for more about
string literals. Unicode strings are much like strings, but are
specified in the syntax using a preceding \character{u} character:
\code{u'abc'}, \code{u"def"}. Lists are constructed with square brackets,
separating items with commas: \code{[a, b, c]}. Tuples are
constructed by the comma operator (not within square brackets), with
or without enclosing parentheses, but an empty tuple must have the
enclosing parentheses, such as \code{a, b, c} or \code{()}. A single
item tuple must have a trailing comma, such as \code{(d,)}.
\obindex{sequence}
\obindex{string}
\obindex{Unicode}
\obindex{tuple}
\obindex{list}
Buffer objects are not directly supported by Python syntax, but can be
created by calling the builtin function
\function{buffer()}.\bifuncindex{buffer} They don't support
concatenation or repetition.
\obindex{buffer}
Xrange objects are similar to buffers in that there is no specific
syntax to create them, but they are created using the \function{range()}
function.\bifuncindex{range} They don't support slicing,
concatenation or repetition, and using \code{in}, \code{not in},
\function{min()} or \function{max()} on them is inefficient.
\obindex{range}
Most sequence types support the following operations. The \samp{in} and
\samp{not in} operations have the same priorities as the comparison
operations. The \samp{+} and \samp{*} operations have the same
priority as the corresponding numeric operations.\footnote{They must
have since the parser can't tell the type of the operands.}
This table lists the sequence operations sorted in ascending priority
(operations in the same box have the same priority). In the table,
\var{s} and \var{t} are sequences of the same type; \var{n}, \var{i}
and \var{j} are integers:
\begin{tableiii}{c|l|c}{code}{Operation}{Result}{Notes}
\lineiii{\var{x} in \var{s}}{\code{True} if an item of \var{s} is equal to \var{x}, else \code{False}}{(1)}
\lineiii{\var{x} not in \var{s}}{\code{False} if an item of \var{s} is
equal to \var{x}, else \code{True}}{(1)}
\hline
\lineiii{\var{s} + \var{t}}{the concatenation of \var{s} and \var{t}}{(6)}
\lineiii{\var{s} * \var{n}\textrm{,} \var{n} * \var{s}}{\var{n} shallow copies of \var{s} concatenated}{(2)}
\hline
\lineiii{\var{s}[\var{i}]}{\var{i}'th item of \var{s}, origin 0}{(3)}
\lineiii{\var{s}[\var{i}:\var{j}]}{slice of \var{s} from \var{i} to \var{j}}{(3), (4)}
\lineiii{\var{s}[\var{i}:\var{j}:\var{k}]}{slice of \var{s} from \var{i} to \var{j} with step \var{k}}{(3), (5)}
\hline
\lineiii{len(\var{s})}{length of \var{s}}{}
\lineiii{min(\var{s})}{smallest item of \var{s}}{}
\lineiii{max(\var{s})}{largest item of \var{s}}{}
\end{tableiii}
\indexiii{operations on}{sequence}{types}
\bifuncindex{len}
\bifuncindex{min}
\bifuncindex{max}
\indexii{concatenation}{operation}
\indexii{repetition}{operation}
\indexii{subscript}{operation}
\indexii{slice}{operation}
\indexii{extended slice}{operation}
\opindex{in}
\opindex{not in}
\noindent
Notes:
\begin{description}
\item[(1)] When \var{s} is a string or Unicode string object the
\code{in} and \code{not in} operations act like a substring test. In
Python versions before 2.3, \var{x} had to be a string of length 1.
In Python 2.3 and beyond, \var{x} may be a string of any length.
\item[(2)] Values of \var{n} less than \code{0} are treated as
\code{0} (which yields an empty sequence of the same type as
\var{s}). Note also that the copies are shallow; nested structures
are not copied. This often haunts new Python programmers; consider:
\begin{verbatim}
>>> lists = [[]] * 3
>>> lists
[[], [], []]
>>> lists[0].append(3)
>>> lists
[[3], [3], [3]]
\end{verbatim}
What has happened is that \code{[[]]} is a one-element list containing
an empty list, so all three elements of \code{[[]] * 3} are (pointers to)
this single empty list. Modifying any of the elements of \code{lists}
modifies this single list. You can create a list of different lists this
way:
\begin{verbatim}
>>> lists = [[] for i in range(3)]
>>> lists[0].append(3)
>>> lists[1].append(5)
>>> lists[2].append(7)
>>> lists
[[3], [5], [7]]
\end{verbatim}
\item[(3)] If \var{i} or \var{j} is negative, the index is relative to
the end of the string: \code{len(\var{s}) + \var{i}} or
\code{len(\var{s}) + \var{j}} is substituted. But note that \code{-0} is
still \code{0}.
\item[(4)] The slice of \var{s} from \var{i} to \var{j} is defined as
the sequence of items with index \var{k} such that \code{\var{i} <=
\var{k} < \var{j}}. If \var{i} or \var{j} is greater than
\code{len(\var{s})}, use \code{len(\var{s})}. If \var{i} is omitted
or \code{None}, use \code{0}. If \var{j} is omitted or \code{None},
use \code{len(\var{s})}. If \var{i} is greater than or equal to \var{j},
the slice is empty.
\item[(5)] The slice of \var{s} from \var{i} to \var{j} with step
\var{k} is defined as the sequence of items with index
\code{\var{x} = \var{i} + \var{n}*\var{k}} such that
$0 \leq n < \frac{j-i}{k}$. In other words, the indices
are \code{i}, \code{i+k}, \code{i+2*k}, \code{i+3*k} and so on, stopping when
\var{j} is reached (but never including \var{j}). If \var{i} or \var{j}
is greater than \code{len(\var{s})}, use \code{len(\var{s})}. If
\var{i} or \var{j} are omitted or \code{None}, they become ``end'' values
(which end depends on the sign of \var{k}). Note, \var{k} cannot
be zero. If \var{k} is \code{None}, it is treated like \code{1}.
\item[(6)] If \var{s} and \var{t} are both strings, some Python
implementations such as CPython can usually perform an in-place optimization
for assignments of the form \code{\var{s}=\var{s}+\var{t}} or
\code{\var{s}+=\var{t}}. When applicable, this optimization makes
quadratic run-time much less likely. This optimization is both version
and implementation dependent. For performance sensitive code, it is
preferable to use the \method{str.join()} method which assures consistent
linear concatenation performance across versions and implementations.
\versionchanged[Formerly, string concatenation never occurred in-place]{2.4}
\end{description}
\subsection{String Methods \label{string-methods}}
\indexii{string}{methods}
These are the string methods which both 8-bit strings and Unicode
objects support:
\begin{methoddesc}[str]{capitalize}{}
Return a copy of the string with only its first character capitalized.
For 8-bit strings, this method is locale-dependent.
\end{methoddesc}
\begin{methoddesc}[str]{center}{width\optional{, fillchar}}
Return centered in a string of length \var{width}. Padding is done
using the specified \var{fillchar} (default is a space).
\versionchanged[Support for the \var{fillchar} argument]{2.4}
\end{methoddesc}
\begin{methoddesc}[str]{count}{sub\optional{, start\optional{, end}}}
Return the number of occurrences of substring \var{sub} in string
S\code{[\var{start}:\var{end}]}. Optional arguments \var{start} and
\var{end} are interpreted as in slice notation.
\end{methoddesc}
\begin{methoddesc}[str]{decode}{\optional{encoding\optional{, errors}}}
Decodes the string using the codec registered for \var{encoding}.
\var{encoding} defaults to the default string encoding. \var{errors}
may be given to set a different error handling scheme. The default is
\code{'strict'}, meaning that encoding errors raise
\exception{UnicodeError}. Other possible values are \code{'ignore'},
\code{'replace'} and any other name registered via
\function{codecs.register_error}, see section~\ref{codec-base-classes}.
\versionadded{2.2}
\versionchanged[Support for other error handling schemes added]{2.3}
\end{methoddesc}
\begin{methoddesc}[str]{encode}{\optional{encoding\optional{,errors}}}
Return an encoded version of the string. Default encoding is the current
default string encoding. \var{errors} may be given to set a different
error handling scheme. The default for \var{errors} is
\code{'strict'}, meaning that encoding errors raise a
\exception{UnicodeError}. Other possible values are \code{'ignore'},
\code{'replace'}, \code{'xmlcharrefreplace'}, \code{'backslashreplace'}
and any other name registered via \function{codecs.register_error},
see section~\ref{codec-base-classes}.
For a list of possible encodings, see section~\ref{standard-encodings}.
\versionadded{2.0}
\versionchanged[Support for \code{'xmlcharrefreplace'} and
\code{'backslashreplace'} and other error handling schemes added]{2.3}
\end{methoddesc}
\begin{methoddesc}[str]{endswith}{suffix\optional{, start\optional{, end}}}
Return \code{True} if the string ends with the specified \var{suffix},
otherwise return \code{False}. \var{suffix} can also be a tuple of
suffixes to look for. With optional \var{start}, test beginning at
that position. With optional \var{end}, stop comparing at that position.
\versionchanged[Accept tuples as \var{suffix}]{2.5}
\end{methoddesc}
\begin{methoddesc}[str]{expandtabs}{\optional{tabsize}}
Return a copy of the string where all tab characters are expanded
using spaces. If \var{tabsize} is not given, a tab size of \code{8}
characters is assumed.
\end{methoddesc}
\begin{methoddesc}[str]{find}{sub\optional{, start\optional{, end}}}
Return the lowest index in the string where substring \var{sub} is
found, such that \var{sub} is contained in the range [\var{start},
\var{end}]. Optional arguments \var{start} and \var{end} are
interpreted as in slice notation. Return \code{-1} if \var{sub} is
not found.
\end{methoddesc}
\begin{methoddesc}[str]{index}{sub\optional{, start\optional{, end}}}
Like \method{find()}, but raise \exception{ValueError} when the
substring is not found.
\end{methoddesc}
\begin{methoddesc}[str]{isalnum}{}
Return true if all characters in the string are alphanumeric and there
is at least one character, false otherwise.
For 8-bit strings, this method is locale-dependent.
\end{methoddesc}
\begin{methoddesc}[str]{isalpha}{}
Return true if all characters in the string are alphabetic and there
is at least one character, false otherwise.
For 8-bit strings, this method is locale-dependent.
\end{methoddesc}
\begin{methoddesc}[str]{isdigit}{}
Return true if all characters in the string are digits and there
is at least one character, false otherwise.
For 8-bit strings, this method is locale-dependent.
\end{methoddesc}
\begin{methoddesc}[str]{islower}{}
Return true if all cased characters in the string are lowercase and
there is at least one cased character, false otherwise.
For 8-bit strings, this method is locale-dependent.
\end{methoddesc}
\begin{methoddesc}[str]{isspace}{}
Return true if there are only whitespace characters in the string and
there is at least one character, false otherwise.
For 8-bit strings, this method is locale-dependent.
\end{methoddesc}
\begin{methoddesc}[str]{istitle}{}
Return true if the string is a titlecased string and there is at least one
character, for example uppercase characters may only follow uncased
characters and lowercase characters only cased ones. Return false
otherwise.
For 8-bit strings, this method is locale-dependent.
\end{methoddesc}
\begin{methoddesc}[str]{isupper}{}
Return true if all cased characters in the string are uppercase and
there is at least one cased character, false otherwise.
For 8-bit strings, this method is locale-dependent.
\end{methoddesc}
\begin{methoddesc}[str]{join}{seq}
Return a string which is the concatenation of the strings in the
sequence \var{seq}. The separator between elements is the string
providing this method.
\end{methoddesc}
\begin{methoddesc}[str]{ljust}{width\optional{, fillchar}}
Return the string left justified in a string of length \var{width}.
Padding is done using the specified \var{fillchar} (default is a
space). The original string is returned if
\var{width} is less than \code{len(\var{s})}.
\versionchanged[Support for the \var{fillchar} argument]{2.4}
\end{methoddesc}
\begin{methoddesc}[str]{lower}{}
Return a copy of the string converted to lowercase.
For 8-bit strings, this method is locale-dependent.
\end{methoddesc}
\begin{methoddesc}[str]{lstrip}{\optional{chars}}
Return a copy of the string with leading characters removed. The
\var{chars} argument is a string specifying the set of characters
to be removed. If omitted or \code{None}, the \var{chars} argument
defaults to removing whitespace. The \var{chars} argument is not
a prefix; rather, all combinations of its values are stripped:
\begin{verbatim}
>>> ' spacious '.lstrip()
'spacious '
>>> 'www.example.com'.lstrip('cmowz.')
'example.com'
\end{verbatim}
\versionchanged[Support for the \var{chars} argument]{2.2.2}
\end{methoddesc}
\begin{methoddesc}[str]{partition}{sep}
Split the string at the first occurrence of \var{sep}, and return
a 3-tuple containing the part before the separator, the separator
itself, and the part after the separator. If the separator is not
found, return a 3-tuple containing the string itself, followed by
two empty strings.
\versionadded{2.5}
\end{methoddesc}
\begin{methoddesc}[str]{replace}{old, new\optional{, count}}
Return a copy of the string with all occurrences of substring
\var{old} replaced by \var{new}. If the optional argument
\var{count} is given, only the first \var{count} occurrences are
replaced.
\end{methoddesc}
\begin{methoddesc}[str]{rfind}{sub \optional{,start \optional{,end}}}
Return the highest index in the string where substring \var{sub} is
found, such that \var{sub} is contained within s[start,end]. Optional
arguments \var{start} and \var{end} are interpreted as in slice
notation. Return \code{-1} on failure.
\end{methoddesc}
\begin{methoddesc}[str]{rindex}{sub\optional{, start\optional{, end}}}
Like \method{rfind()} but raises \exception{ValueError} when the
substring \var{sub} is not found.
\end{methoddesc}
\begin{methoddesc}[str]{rjust}{width\optional{, fillchar}}
Return the string right justified in a string of length \var{width}.
Padding is done using the specified \var{fillchar} (default is a space).
The original string is returned if
\var{width} is less than \code{len(\var{s})}.
\versionchanged[Support for the \var{fillchar} argument]{2.4}
\end{methoddesc}
\begin{methoddesc}[str]{rpartition}{sep}
Split the string at the last occurrence of \var{sep}, and return
a 3-tuple containing the part before the separator, the separator
itself, and the part after the separator. If the separator is not
found, return a 3-tuple containing two empty strings, followed by
the string itself.
\versionadded{2.5}
\end{methoddesc}
\begin{methoddesc}[str]{rsplit}{\optional{sep \optional{,maxsplit}}}
Return a list of the words in the string, using \var{sep} as the
delimiter string. If \var{maxsplit} is given, at most \var{maxsplit}
splits are done, the \emph{rightmost} ones. If \var{sep} is not specified
or \code{None}, any whitespace string is a separator. Except for splitting
from the right, \method{rsplit()} behaves like \method{split()} which
is described in detail below.
\versionadded{2.4}
\end{methoddesc}
\begin{methoddesc}[str]{rstrip}{\optional{chars}}
Return a copy of the string with trailing characters removed. The
\var{chars} argument is a string specifying the set of characters
to be removed. If omitted or \code{None}, the \var{chars} argument
defaults to removing whitespace. The \var{chars} argument is not
a suffix; rather, all combinations of its values are stripped:
\begin{verbatim}
>>> ' spacious '.rstrip()
' spacious'
>>> 'mississippi'.rstrip('ipz')
'mississ'
\end{verbatim}
\versionchanged[Support for the \var{chars} argument]{2.2.2}
\end{methoddesc}
\begin{methoddesc}[str]{split}{\optional{sep \optional{,maxsplit}}}
Return a list of the words in the string, using \var{sep} as the
delimiter string. If \var{maxsplit} is given, at most \var{maxsplit}
splits are done. (thus, the list will have at most \code{\var{maxsplit}+1}
elements). If \var{maxsplit} is not specified, then there
is no limit on the number of splits (all possible splits are made).
Consecutive delimiters are not grouped together and are
deemed to delimit empty strings (for example, \samp{'1,,2'.split(',')}
returns \samp{['1', '', '2']}). The \var{sep} argument may consist of
multiple characters (for example, \samp{'1, 2, 3'.split(', ')} returns
\samp{['1', '2', '3']}). Splitting an empty string with a specified
separator returns \samp{['']}.
If \var{sep} is not specified or is \code{None}, a different splitting
algorithm is applied. First, whitespace characters (spaces, tabs,
newlines, returns, and formfeeds) are stripped from both ends. Then,
words are separated by arbitrary length strings of whitespace
characters. Consecutive whitespace delimiters are treated as a single
delimiter (\samp{'1 2 3'.split()} returns \samp{['1', '2', '3']}).
Splitting an empty string or a string consisting of just whitespace
returns an empty list.
\end{methoddesc}
\begin{methoddesc}[str]{splitlines}{\optional{keepends}}
Return a list of the lines in the string, breaking at line
boundaries. Line breaks are not included in the resulting list unless
\var{keepends} is given and true.
\end{methoddesc}
\begin{methoddesc}[str]{startswith}{prefix\optional{,
start\optional{, end}}}
Return \code{True} if string starts with the \var{prefix}, otherwise
return \code{False}. \var{prefix} can also be a tuple of
prefixes to look for. With optional \var{start}, test string beginning at
that position. With optional \var{end}, stop comparing string at that
position.
\versionchanged[Accept tuples as \var{prefix}]{2.5}
\end{methoddesc}
\begin{methoddesc}[str]{strip}{\optional{chars}}
Return a copy of the string with the leading and trailing characters
removed. The \var{chars} argument is a string specifying the set of
characters to be removed. If omitted or \code{None}, the \var{chars}
argument defaults to removing whitespace. The \var{chars} argument is not
a prefix or suffix; rather, all combinations of its values are stripped:
\begin{verbatim}
>>> ' spacious '.strip()
'spacious'
>>> 'www.example.com'.strip('cmowz.')
'example'
\end{verbatim}
\versionchanged[Support for the \var{chars} argument]{2.2.2}
\end{methoddesc}
\begin{methoddesc}[str]{swapcase}{}
Return a copy of the string with uppercase characters converted to
lowercase and vice versa.
For 8-bit strings, this method is locale-dependent.
\end{methoddesc}
\begin{methoddesc}[str]{title}{}
Return a titlecased version of the string: words start with uppercase
characters, all remaining cased characters are lowercase.
For 8-bit strings, this method is locale-dependent.
\end{methoddesc}
\begin{methoddesc}[str]{translate}{table\optional{, deletechars}}
Return a copy of the string where all characters occurring in the
optional argument \var{deletechars} are removed, and the remaining
characters have been mapped through the given translation table, which
must be a string of length 256.
You can use the \function{maketrans()} helper function in the
\refmodule{string} module to create a translation table.
For string objects, set the \var{table} argument to \code{None}
for translations that only delete characters:
\begin{verbatim}
>>> 'read this short text'.translate(None, 'aeiou')
'rd ths shrt txt'
\end{verbatim}
\versionadded[Support for a \code{None} \var{table} argument]{2.6}
For Unicode objects, the \method{translate()} method does not
accept the optional \var{deletechars} argument. Instead, it
returns a copy of the \var{s} where all characters have been mapped
through the given translation table which must be a mapping of
Unicode ordinals to Unicode ordinals, Unicode strings or \code{None}.
Unmapped characters are left untouched. Characters mapped to \code{None}
are deleted. Note, a more flexible approach is to create a custom
character mapping codec using the \refmodule{codecs} module (see
\module{encodings.cp1251} for an example).
\end{methoddesc}
\begin{methoddesc}[str]{upper}{}
Return a copy of the string converted to uppercase.
For 8-bit strings, this method is locale-dependent.
\end{methoddesc}
\begin{methoddesc}[str]{zfill}{width}
Return the numeric string left filled with zeros in a string
of length \var{width}. The original string is returned if
\var{width} is less than \code{len(\var{s})}.
\versionadded{2.2.2}
\end{methoddesc}
\subsection{String Formatting Operations \label{typesseq-strings}}
\index{formatting, string (\%{})}
\index{interpolation, string (\%{})}
\index{string!formatting}
\index{string!interpolation}
\index{printf-style formatting}
\index{sprintf-style formatting}
\index{\protect\%{} formatting}
\index{\protect\%{} interpolation}
String and Unicode objects have one unique built-in operation: the
\code{\%} operator (modulo). This is also known as the string
\emph{formatting} or \emph{interpolation} operator. Given
\code{\var{format} \% \var{values}} (where \var{format} is a string or
Unicode object), \code{\%} conversion specifications in \var{format}
are replaced with zero or more elements of \var{values}. The effect
is similar to the using \cfunction{sprintf()} in the C language. If
\var{format} is a Unicode object, or if any of the objects being
converted using the \code{\%s} conversion are Unicode objects, the
result will also be a Unicode object.
If \var{format} requires a single argument, \var{values} may be a
single non-tuple object.\footnote{To format only a tuple you
should therefore provide a singleton tuple whose only element
is the tuple to be formatted.} Otherwise, \var{values} must be a tuple with
exactly the number of items specified by the format string, or a
single mapping object (for example, a dictionary).
A conversion specifier contains two or more characters and has the
following components, which must occur in this order:
\begin{enumerate}
\item The \character{\%} character, which marks the start of the
specifier.
\item Mapping key (optional), consisting of a parenthesised sequence
of characters (for example, \code{(somename)}).
\item Conversion flags (optional), which affect the result of some
conversion types.
\item Minimum field width (optional). If specified as an
\character{*} (asterisk), the actual width is read from the
next element of the tuple in \var{values}, and the object to
convert comes after the minimum field width and optional
precision.
\item Precision (optional), given as a \character{.} (dot) followed
by the precision. If specified as \character{*} (an
asterisk), the actual width is read from the next element of
the tuple in \var{values}, and the value to convert comes after
the precision.
\item Length modifier (optional).
\item Conversion type.
\end{enumerate}
When the right argument is a dictionary (or other mapping type), then
the formats in the string \emph{must} include a parenthesised mapping key into
that dictionary inserted immediately after the \character{\%}
character. The mapping key selects the value to be formatted from the
mapping. For example:
\begin{verbatim}
>>> print '%(language)s has %(#)03d quote types.' % \
{'language': "Python", "#": 2}
Python has 002 quote types.
\end{verbatim}
In this case no \code{*} specifiers may occur in a format (since they
require a sequential parameter list).
The conversion flag characters are:
\begin{tableii}{c|l}{character}{Flag}{Meaning}
\lineii{\#}{The value conversion will use the ``alternate form''
(where defined below).}
\lineii{0}{The conversion will be zero padded for numeric values.}
\lineii{-}{The converted value is left adjusted (overrides
the \character{0} conversion if both are given).}
\lineii{{~}}{(a space) A blank should be left before a positive number
(or empty string) produced by a signed conversion.}
\lineii{+}{A sign character (\character{+} or \character{-}) will
precede the conversion (overrides a "space" flag).}
\end{tableii}
A length modifier (\code{h}, \code{l}, or \code{L}) may be
present, but is ignored as it is not necessary for Python.
The conversion types are:
\begin{tableiii}{c|l|c}{character}{Conversion}{Meaning}{Notes}
\lineiii{d}{Signed integer decimal.}{}
\lineiii{i}{Signed integer decimal.}{}
\lineiii{o}{Unsigned octal.}{(1)}
\lineiii{u}{Unsigned decimal.}{}
\lineiii{x}{Unsigned hexadecimal (lowercase).}{(2)}
\lineiii{X}{Unsigned hexadecimal (uppercase).}{(2)}
\lineiii{e}{Floating point exponential format (lowercase).}{(3)}
\lineiii{E}{Floating point exponential format (uppercase).}{(3)}
\lineiii{f}{Floating point decimal format.}{(3)}
\lineiii{F}{Floating point decimal format.}{(3)}
\lineiii{g}{Floating point format. Uses exponential format
if exponent is greater than -4 or less than precision,
decimal format otherwise.}{(4)}
\lineiii{G}{Floating point format. Uses exponential format
if exponent is greater than -4 or less than precision,
decimal format otherwise.}{(4)}
\lineiii{c}{Single character (accepts integer or single character
string).}{}
\lineiii{r}{String (converts any python object using
\function{repr()}).}{(5)}
\lineiii{s}{String (converts any python object using
\function{str()}).}{(6)}
\lineiii{\%}{No argument is converted, results in a \character{\%}
character in the result.}{}
\end{tableiii}
\noindent
Notes:
\begin{description}
\item[(1)]
The alternate form causes a leading zero (\character{0}) to be
inserted between left-hand padding and the formatting of the
number if the leading character of the result is not already a
zero.
\item[(2)]
The alternate form causes a leading \code{'0x'} or \code{'0X'}
(depending on whether the \character{x} or \character{X} format
was used) to be inserted between left-hand padding and the
formatting of the number if the leading character of the result is
not already a zero.
\item[(3)]
The alternate form causes the result to always contain a decimal
point, even if no digits follow it.
The precision determines the number of digits after the decimal
point and defaults to 6.
\item[(4)]
The alternate form causes the result to always contain a decimal
point, and trailing zeroes are not removed as they would
otherwise be.
The precision determines the number of significant digits before
and after the decimal point and defaults to 6.
\item[(5)]
The \code{\%r} conversion was added in Python 2.0.
The precision determines the maximal number of characters used.
\item[(6)]
If the object or format provided is a \class{unicode} string,
the resulting string will also be \class{unicode}.
The precision determines the maximal number of characters used.
\end{description}
% XXX Examples?
Since Python strings have an explicit length, \code{\%s} conversions
do not assume that \code{'\e0'} is the end of the string.
For safety reasons, floating point precisions are clipped to 50;
\code{\%f} conversions for numbers whose absolute value is over 1e25
are replaced by \code{\%g} conversions.\footnote{
These numbers are fairly arbitrary. They are intended to
avoid printing endless strings of meaningless digits without hampering
correct use and without having to know the exact precision of floating
point values on a particular machine.
} All other errors raise exceptions.
Additional string operations are defined in standard modules
\refmodule{string}\refstmodindex{string}\ and
\refmodule{re}.\refstmodindex{re}
\subsection{XRange Type \label{typesseq-range}}
The \class{range}\obindex{range} type is an immutable sequence which
is commonly used for looping. The advantage of the \class{range}
type is that an \class{range} object will always take the same amount
of memory, no matter the size of the range it represents. There are
no consistent performance advantages.
XRange objects have very little behavior: they only support indexing,
iteration, and the \function{len()} function.
\subsection{Mutable Sequence Types \label{typesseq-mutable}}
List objects support additional operations that allow in-place
modification of the object.
Other mutable sequence types (when added to the language) should
also support these operations.
Strings and tuples are immutable sequence types: such objects cannot
be modified once created.
The following operations are defined on mutable sequence types (where
\var{x} is an arbitrary object):
\indexiii{mutable}{sequence}{types}
\obindex{list}
\begin{tableiii}{c|l|c}{code}{Operation}{Result}{Notes}
\lineiii{\var{s}[\var{i}] = \var{x}}
{item \var{i} of \var{s} is replaced by \var{x}}{}
\lineiii{\var{s}[\var{i}:\var{j}] = \var{t}}
{slice of \var{s} from \var{i} to \var{j}
is replaced by the contents of the iterable \var{t}}{}
\lineiii{del \var{s}[\var{i}:\var{j}]}
{same as \code{\var{s}[\var{i}:\var{j}] = []}}{}
\lineiii{\var{s}[\var{i}:\var{j}:\var{k}] = \var{t}}
{the elements of \code{\var{s}[\var{i}:\var{j}:\var{k}]} are replaced by those of \var{t}}{(1)}
\lineiii{del \var{s}[\var{i}:\var{j}:\var{k}]}
{removes the elements of \code{\var{s}[\var{i}:\var{j}:\var{k}]} from the list}{}
\lineiii{\var{s}.append(\var{x})}
{same as \code{\var{s}[len(\var{s}):len(\var{s})] = [\var{x}]}}{(2)}
\lineiii{\var{s}.extend(\var{x})}
{same as \code{\var{s}[len(\var{s}):len(\var{s})] = \var{x}}}{(3)}
\lineiii{\var{s}.count(\var{x})}
{return number of \var{i}'s for which \code{\var{s}[\var{i}] == \var{x}}}{}
\lineiii{\var{s}.index(\var{x}\optional{, \var{i}\optional{, \var{j}}})}
{return smallest \var{k} such that \code{\var{s}[\var{k}] == \var{x}} and
\code{\var{i} <= \var{k} < \var{j}}}{(4)}
\lineiii{\var{s}.insert(\var{i}, \var{x})}
{same as \code{\var{s}[\var{i}:\var{i}] = [\var{x}]}}{(5)}
\lineiii{\var{s}.pop(\optional{\var{i}})}
{same as \code{\var{x} = \var{s}[\var{i}]; del \var{s}[\var{i}]; return \var{x}}}{(6)}
\lineiii{\var{s}.remove(\var{x})}
{same as \code{del \var{s}[\var{s}.index(\var{x})]}}{(4)}
\lineiii{\var{s}.reverse()}
{reverses the items of \var{s} in place}{(7)}
\lineiii{\var{s}.sort(\optional{\var{cmp}\optional{,
\var{key}\optional{, \var{reverse}}}})}
{sort the items of \var{s} in place}{(7), (8), (9), (10)}
\end{tableiii}
\indexiv{operations on}{mutable}{sequence}{types}
\indexiii{operations on}{sequence}{types}
\indexiii{operations on}{list}{type}
\indexii{subscript}{assignment}
\indexii{slice}{assignment}
\indexii{extended slice}{assignment}
\stindex{del}
\withsubitem{(list method)}{
\ttindex{append()}\ttindex{extend()}\ttindex{count()}\ttindex{index()}
\ttindex{insert()}\ttindex{pop()}\ttindex{remove()}\ttindex{reverse()}
\ttindex{sort()}}
\noindent
Notes:
\begin{description}
\item[(1)] \var{t} must have the same length as the slice it is
replacing.
\item[(2)] The C implementation of Python has historically accepted
multiple parameters and implicitly joined them into a tuple; this
no longer works in Python 2.0. Use of this misfeature has been
deprecated since Python 1.4.
\item[(3)] \var{x} can be any iterable object.
\item[(4)] Raises \exception{ValueError} when \var{x} is not found in
\var{s}. When a negative index is passed as the second or third parameter
to the \method{index()} method, the list length is added, as for slice
indices. If it is still negative, it is truncated to zero, as for
slice indices. \versionchanged[Previously, \method{index()} didn't
have arguments for specifying start and stop positions]{2.3}
\item[(5)] When a negative index is passed as the first parameter to
the \method{insert()} method, the list length is added, as for slice
indices. If it is still negative, it is truncated to zero, as for
slice indices. \versionchanged[Previously, all negative indices
were truncated to zero]{2.3}
\item[(6)] The \method{pop()} method is only supported by the list and
array types. The optional argument \var{i} defaults to \code{-1},
so that by default the last item is removed and returned.
\item[(7)] The \method{sort()} and \method{reverse()} methods modify the
list in place for economy of space when sorting or reversing a large
list. To remind you that they operate by side effect, they don't return
the sorted or reversed list.
\item[(8)] The \method{sort()} method takes optional arguments for
controlling the comparisons.
\var{cmp} specifies a custom comparison function of two arguments
(list items) which should return a negative, zero or positive number
depending on whether the first argument is considered smaller than,
equal to, or larger than the second argument:
\samp{\var{cmp}=\keyword{lambda} \var{x},\var{y}:
\function{cmp}(x.lower(), y.lower())}
\var{key} specifies a function of one argument that is used to
extract a comparison key from each list element:
\samp{\var{key}=\function{str.lower}}
\var{reverse} is a boolean value. If set to \code{True}, then the
list elements are sorted as if each comparison were reversed.
In general, the \var{key} and \var{reverse} conversion processes are
much faster than specifying an equivalent \var{cmp} function. This is
because \var{cmp} is called multiple times for each list element while
\var{key} and \var{reverse} touch each element only once.
\versionchanged[Support for \code{None} as an equivalent to omitting
\var{cmp} was added]{2.3}
\versionchanged[Support for \var{key} and \var{reverse} was added]{2.4}
\item[(9)] Starting with Python 2.3, the \method{sort()} method is
guaranteed to be stable. A sort is stable if it guarantees not to
change the relative order of elements that compare equal --- this is
helpful for sorting in multiple passes (for example, sort by
department, then by salary grade).
\item[(10)] While a list is being sorted, the effect of attempting to
mutate, or even inspect, the list is undefined. The C
implementation of Python 2.3 and newer makes the list appear empty
for the duration, and raises \exception{ValueError} if it can detect
that the list has been mutated during a sort.
\end{description}
\section{Set Types ---
\class{set}, \class{frozenset}
\label{types-set}}
\obindex{set}
A \dfn{set} object is an unordered collection of distinct hashable objects.
Common uses include membership testing, removing duplicates from a sequence,
and computing mathematical operations such as intersection, union, difference,
and symmetric difference.
\versionadded{2.4}
Like other collections, sets support \code{\var{x} in \var{set}},
\code{len(\var{set})}, and \code{for \var{x} in \var{set}}. Being an
unordered collection, sets do not record element position or order of
insertion. Accordingly, sets do not support indexing, slicing, or
other sequence-like behavior.
There are currently two builtin set types, \class{set} and \class{frozenset}.
The \class{set} type is mutable --- the contents can be changed using methods
like \method{add()} and \method{remove()}. Since it is mutable, it has no
hash value and cannot be used as either a dictionary key or as an element of
another set. The \class{frozenset} type is immutable and hashable --- its
contents cannot be altered after is created; however, it can be used as
a dictionary key or as an element of another set.
Instances of \class{set} and \class{frozenset} provide the following operations:
\begin{tableiii}{c|c|l}{code}{Operation}{Equivalent}{Result}
\lineiii{len(\var{s})}{}{cardinality of set \var{s}}
\hline
\lineiii{\var{x} in \var{s}}{}
{test \var{x} for membership in \var{s}}
\lineiii{\var{x} not in \var{s}}{}
{test \var{x} for non-membership in \var{s}}
\lineiii{\var{s}.issubset(\var{t})}{\code{\var{s} <= \var{t}}}
{test whether every element in \var{s} is in \var{t}}
\lineiii{\var{s}.issuperset(\var{t})}{\code{\var{s} >= \var{t}}}
{test whether every element in \var{t} is in \var{s}}
\hline
\lineiii{\var{s}.union(\var{t})}{\var{s} | \var{t}}
{new set with elements from both \var{s} and \var{t}}
\lineiii{\var{s}.intersection(\var{t})}{\var{s} \&\ \var{t}}
{new set with elements common to \var{s} and \var{t}}
\lineiii{\var{s}.difference(\var{t})}{\var{s} - \var{t}}
{new set with elements in \var{s} but not in \var{t}}
\lineiii{\var{s}.symmetric_difference(\var{t})}{\var{s} \^\ \var{t}}
{new set with elements in either \var{s} or \var{t} but not both}
\lineiii{\var{s}.copy()}{}
{new set with a shallow copy of \var{s}}
\end{tableiii}
Note, the non-operator versions of \method{union()}, \method{intersection()},
\method{difference()}, and \method{symmetric_difference()},
\method{issubset()}, and \method{issuperset()} methods will accept any
iterable as an argument. In contrast, their operator based counterparts
require their arguments to be sets. This precludes error-prone constructions
like \code{set('abc') \&\ 'cbs'} in favor of the more readable
\code{set('abc').intersection('cbs')}.
Both \class{set} and \class{frozenset} support set to set comparisons.
Two sets are equal if and only if every element of each set is contained in
the other (each is a subset of the other).
A set is less than another set if and only if the first set is a proper
subset of the second set (is a subset, but is not equal).
A set is greater than another set if and only if the first set is a proper
superset of the second set (is a superset, but is not equal).
Instances of \class{set} are compared to instances of \class{frozenset} based
on their members. For example, \samp{set('abc') == frozenset('abc')} returns
\code{True}.
The subset and equality comparisons do not generalize to a complete
ordering function. For example, any two disjoint sets are not equal and
are not subsets of each other, so \emph{all} of the following return
\code{False}: \code{\var{a}<\var{b}}, \code{\var{a}==\var{b}}, or
\code{\var{a}>\var{b}}.
Accordingly, sets do not implement the \method{__cmp__} method.
Since sets only define partial ordering (subset relationships), the output
of the \method{list.sort()} method is undefined for lists of sets.
Set elements are like dictionary keys; they need to define both
\method{__hash__} and \method{__eq__} methods.
Binary operations that mix \class{set} instances with \class{frozenset}
return the type of the first operand. For example:
\samp{frozenset('ab') | set('bc')} returns an instance of \class{frozenset}.
The following table lists operations available for \class{set}
that do not apply to immutable instances of \class{frozenset}:
\begin{tableiii}{c|c|l}{code}{Operation}{Equivalent}{Result}
\lineiii{\var{s}.update(\var{t})}
{\var{s} |= \var{t}}
{update set \var{s}, adding elements from \var{t}}
\lineiii{\var{s}.intersection_update(\var{t})}
{\var{s} \&= \var{t}}
{update set \var{s}, keeping only elements found in both \var{s} and \var{t}}
\lineiii{\var{s}.difference_update(\var{t})}
{\var{s} -= \var{t}}
{update set \var{s}, removing elements found in \var{t}}
\lineiii{\var{s}.symmetric_difference_update(\var{t})}
{\var{s} \textasciicircum= \var{t}}
{update set \var{s}, keeping only elements found in either \var{s} or \var{t}
but not in both}
\hline
\lineiii{\var{s}.add(\var{x})}{}
{add element \var{x} to set \var{s}}
\lineiii{\var{s}.remove(\var{x})}{}
{remove \var{x} from set \var{s}; raises \exception{KeyError}
if not present}
\lineiii{\var{s}.discard(\var{x})}{}
{removes \var{x} from set \var{s} if present}
\lineiii{\var{s}.pop()}{}
{remove and return an arbitrary element from \var{s}; raises
\exception{KeyError} if empty}
\lineiii{\var{s}.clear()}{}
{remove all elements from set \var{s}}
\end{tableiii}
Note, the non-operator versions of the \method{update()},
\method{intersection_update()}, \method{difference_update()}, and
\method{symmetric_difference_update()} methods will accept any iterable
as an argument.
\section{Mapping Types --- \class{dict} \label{typesmapping}}
\obindex{mapping}
\obindex{dictionary}
A \dfn{mapping} object maps immutable values to
arbitrary objects. Mappings are mutable objects. There is currently
only one standard mapping type, the \dfn{dictionary}. A dictionary's keys are
almost arbitrary values. Only values containing lists, dictionaries
or other mutable types (that are compared by value rather than by
object identity) may not be used as keys.
Numeric types used for keys obey the normal rules for numeric
comparison: if two numbers compare equal (such as \code{1} and
\code{1.0}) then they can be used interchangeably to index the same
dictionary entry.
Dictionaries are created by placing a comma-separated list of
\code{\var{key}: \var{value}} pairs within braces, for example:
\code{\{'jack': 4098, 'sjoerd': 4127\}} or
\code{\{4098: 'jack', 4127: 'sjoerd'\}}.
The following operations are defined on mappings (where \var{a} and
\var{b} are mappings, \var{k} is a key, and \var{v} and \var{x} are
arbitrary objects):
\indexiii{operations on}{mapping}{types}
\indexiii{operations on}{dictionary}{type}
\stindex{del}
\bifuncindex{len}
\withsubitem{(dictionary method)}{
\ttindex{clear()}
\ttindex{copy()}
\ttindex{has_key()}
\ttindex{fromkeys()}
\ttindex{items()}
\ttindex{keys()}
\ttindex{update()}
\ttindex{values()}
\ttindex{get()}
\ttindex{setdefault()}
\ttindex{pop()}
\ttindex{popitem()}
\ttindex{iteritems()}
\ttindex{iterkeys()}
\ttindex{itervalues()}}
\begin{tableiii}{c|l|c}{code}{Operation}{Result}{Notes}
\lineiii{len(\var{a})}{the number of items in \var{a}}{}
\lineiii{\var{a}[\var{k}]}{the item of \var{a} with key \var{k}}{(1), (10)}
\lineiii{\var{a}[\var{k}] = \var{v}}
{set \code{\var{a}[\var{k}]} to \var{v}}
{}
\lineiii{del \var{a}[\var{k}]}
{remove \code{\var{a}[\var{k}]} from \var{a}}
{(1)}
\lineiii{\var{a}.clear()}{remove all items from \code{a}}{}
\lineiii{\var{a}.copy()}{a (shallow) copy of \code{a}}{}
\lineiii{\var{k} in \var{a}}
{\code{True} if \var{a} has a key \var{k}, else \code{False}}
{(2)}
\lineiii{\var{k} not in \var{a}}
{Equivalent to \code{not} \var{k} in \var{a}}
{(2)}
\lineiii{\var{a}.has_key(\var{k})}
{Equivalent to \var{k} \code{in} \var{a}, use that form in new code}
{}
\lineiii{\var{a}.items()}
{a copy of \var{a}'s list of (\var{key}, \var{value}) pairs}
{(3)}
\lineiii{\var{a}.keys()}{a copy of \var{a}'s list of keys}{(3)}
\lineiii{\var{a}.update(\optional{\var{b}})}
{updates \var{a} with key/value pairs from \var{b}, overwriting
existing keys, returns \code{None}}
{(9)}
\lineiii{\var{a}.fromkeys(\var{seq}\optional{, \var{value}})}
{Creates a new dictionary with keys from \var{seq} and values set to \var{value}}
{(7)}
\lineiii{\var{a}.values()}{a copy of \var{a}'s list of values}{(3)}
\lineiii{\var{a}.get(\var{k}\optional{, \var{x}})}
{\code{\var{a}[\var{k}]} if \code{\var{k} in \var{a}},
else \var{x}}
{(4)}
\lineiii{\var{a}.setdefault(\var{k}\optional{, \var{x}})}
{\code{\var{a}[\var{k}]} if \code{\var{k} in \var{a}},
else \var{x} (also setting it)}
{(5)}
\lineiii{\var{a}.pop(\var{k}\optional{, \var{x}})}
{\code{\var{a}[\var{k}]} if \code{\var{k} in \var{a}},
else \var{x} (and remove k)}
{(8)}
\lineiii{\var{a}.popitem()}
{remove and return an arbitrary (\var{key}, \var{value}) pair}
{(6)}
\lineiii{\var{a}.iteritems()}
{return an iterator over (\var{key}, \var{value}) pairs}
{(2), (3)}
\lineiii{\var{a}.iterkeys()}
{return an iterator over the mapping's keys}
{(2), (3)}
\lineiii{\var{a}.itervalues()}
{return an iterator over the mapping's values}
{(2), (3)}
\end{tableiii}
\noindent
Notes:
\begin{description}
\item[(1)] Raises a \exception{KeyError} exception if \var{k} is not
in the map.
\item[(2)] \versionadded{2.2}
\item[(3)] Keys and values are listed in an arbitrary order which is
non-random, varies across Python implementations, and depends on the
dictionary's history of insertions and deletions.
If \method{items()}, \method{keys()}, \method{values()},
\method{iteritems()}, \method{iterkeys()}, and \method{itervalues()}
are called with no intervening modifications to the dictionary, the
lists will directly correspond. This allows the creation of
\code{(\var{value}, \var{key})} pairs using \function{zip()}:
\samp{pairs = zip(\var{a}.values(), \var{a}.keys())}. The same
relationship holds for the \method{iterkeys()} and
\method{itervalues()} methods: \samp{pairs = zip(\var{a}.itervalues(),
\var{a}.iterkeys())} provides the same value for \code{pairs}.
Another way to create the same list is \samp{pairs = [(v, k) for (k,
v) in \var{a}.iteritems()]}.
\item[(4)] Never raises an exception if \var{k} is not in the map,
instead it returns \var{x}. \var{x} is optional; when \var{x} is not
provided and \var{k} is not in the map, \code{None} is returned.
\item[(5)] \function{setdefault()} is like \function{get()}, except
that if \var{k} is missing, \var{x} is both returned and inserted into
the dictionary as the value of \var{k}. \var{x} defaults to \code{None}.
\item[(6)] \function{popitem()} is useful to destructively iterate
over a dictionary, as often used in set algorithms. If the dictionary
is empty, calling \function{popitem()} raises a \exception{KeyError}.
\item[(7)] \function{fromkeys()} is a class method that returns a
new dictionary. \var{value} defaults to \code{None}. \versionadded{2.3}
\item[(8)] \function{pop()} raises a \exception{KeyError} when no default
value is given and the key is not found. \versionadded{2.3}
\item[(9)] \function{update()} accepts either another mapping object
or an iterable of key/value pairs (as a tuple or other iterable of
length two). If keyword arguments are specified, the mapping is
then is updated with those key/value pairs:
\samp{d.update(red=1, blue=2)}.
\versionchanged[Allowed the argument to be an iterable of key/value
pairs and allowed keyword arguments]{2.4}
\item[(10)] If a subclass of dict defines a method \method{__missing__},
if the key \var{k} is not present, the \var{a}[\var{k}] operation calls
that method with the key \var{k} as argument. The \var{a}[\var{k}]
operation then returns or raises whatever is returned or raised by the
\function{__missing__}(\var{k}) call if the key is not present.
No other operations or methods invoke \method{__missing__}().
If \method{__missing__} is not defined, \exception{KeyError} is raised.
\method{__missing__} must be a method; it cannot be an instance variable.
For an example, see \module{collections}.\class{defaultdict}.
\versionadded{2.5}
\end{description}
\section{File Objects
\label{bltin-file-objects}}
File objects\obindex{file} are implemented using C's \code{stdio}
package and can be created with the built-in constructor
\function{file()}\bifuncindex{file} described in section
\ref{built-in-funcs}, ``Built-in Functions.''\footnote{\function{file()}
is new in Python 2.2. The older built-in \function{open()} is an
alias for \function{file()}.} File objects are also returned
by some other built-in functions and methods, such as
\function{os.popen()} and \function{os.fdopen()} and the
\method{makefile()} method of socket objects.
\refstmodindex{os}
\refbimodindex{socket}
When a file operation fails for an I/O-related reason, the exception
\exception{IOError} is raised. This includes situations where the
operation is not defined for some reason, like \method{seek()} on a tty
device or writing a file opened for reading.
Files have the following methods:
\begin{methoddesc}[file]{close}{}
Close the file. A closed file cannot be read or written any more.
Any operation which requires that the file be open will raise a
\exception{ValueError} after the file has been closed. Calling
\method{close()} more than once is allowed.
As of Python 2.5, you can avoid having to call this method explicitly
if you use the \keyword{with} statement. For example, the following
code will automatically close \code{f} when the \keyword{with} block
is exited:
\begin{verbatim}
from __future__ import with_statement
with open("hello.txt") as f:
for line in f:
print line
\end{verbatim}
In older versions of Python, you would have needed to do this to get
the same effect:
\begin{verbatim}
f = open("hello.txt")
try:
for line in f:
print line
finally:
f.close()
\end{verbatim}
\note{Not all ``file-like'' types in Python support use as a context
manager for the \keyword{with} statement. If your code is intended to
work with any file-like object, you can use the \function{closing()}
function in the \module{contextlib} module instead of using the object
directly. See section~\ref{context-closing} for details.}
\end{methoddesc}
\begin{methoddesc}[file]{flush}{}
Flush the internal buffer, like \code{stdio}'s
\cfunction{fflush()}. This may be a no-op on some file-like
objects.
\end{methoddesc}
\begin{methoddesc}[file]{fileno}{}
\index{file descriptor}
\index{descriptor, file}
Return the integer ``file descriptor'' that is used by the
underlying implementation to request I/O operations from the
operating system. This can be useful for other, lower level
interfaces that use file descriptors, such as the
\refmodule{fcntl}\refbimodindex{fcntl} module or
\function{os.read()} and friends. \note{File-like objects
which do not have a real file descriptor should \emph{not} provide
this method!}
\end{methoddesc}
\begin{methoddesc}[file]{isatty}{}
Return \code{True} if the file is connected to a tty(-like) device, else
\code{False}. \note{If a file-like object is not associated
with a real file, this method should \emph{not} be implemented.}
\end{methoddesc}
\begin{methoddesc}[file]{__next__}{}
A file object is its own iterator, for example \code{iter(\var{f})} returns
\var{f} (unless \var{f} is closed). When a file is used as an
iterator, typically in a \keyword{for} loop (for example,
\code{for line in f: print line}), the \method{__next__()} method is
called repeatedly. This method returns the next input line, or raises
\exception{StopIteration} when \EOF{} is hit when the file is open for
reading (behavior is undefined when the file is open for writing). In
order to make a \keyword{for} loop the most efficient way of looping
over the lines of a file (a very common operation), the
\method{__next__()} method uses a hidden read-ahead buffer. As a
consequence of using a read-ahead buffer, combining \method{__next__()}
with other file methods (like \method{readline()}) does not work
right. However, using \method{seek()} to reposition the file to an
absolute position will flush the read-ahead buffer.
\versionadded{2.3}
\end{methoddesc}
\begin{methoddesc}[file]{read}{\optional{size}}
Read at most \var{size} bytes from the file (less if the read hits
\EOF{} before obtaining \var{size} bytes). If the \var{size}
argument is negative or omitted, read all data until \EOF{} is
reached. The bytes are returned as a string object. An empty
string is returned when \EOF{} is encountered immediately. (For
certain files, like ttys, it makes sense to continue reading after
an \EOF{} is hit.) Note that this method may call the underlying
C function \cfunction{fread()} more than once in an effort to
acquire as close to \var{size} bytes as possible. Also note that
when in non-blocking mode, less data than what was requested may
be returned, even if no \var{size} parameter was given.
\end{methoddesc}
\begin{methoddesc}[file]{readline}{\optional{size}}
Read one entire line from the file. A trailing newline character is
kept in the string (but may be absent when a file ends with an
incomplete line).\footnote{
The advantage of leaving the newline on is that
returning an empty string is then an unambiguous \EOF{}
indication. It is also possible (in cases where it might
matter, for example, if you
want to make an exact copy of a file while scanning its lines)
to tell whether the last line of a file ended in a newline
or not (yes this happens!).
} If the \var{size} argument is present and
non-negative, it is a maximum byte count (including the trailing
newline) and an incomplete line may be returned.
An empty string is returned \emph{only} when \EOF{} is encountered
immediately. \note{Unlike \code{stdio}'s \cfunction{fgets()}, the
returned string contains null characters (\code{'\e 0'}) if they
occurred in the input.}
\end{methoddesc}
\begin{methoddesc}[file]{readlines}{\optional{sizehint}}
Read until \EOF{} using \method{readline()} and return a list containing
the lines thus read. If the optional \var{sizehint} argument is
present, instead of reading up to \EOF, whole lines totalling
approximately \var{sizehint} bytes (possibly after rounding up to an
internal buffer size) are read. Objects implementing a file-like
interface may choose to ignore \var{sizehint} if it cannot be
implemented, or cannot be implemented efficiently.
\end{methoddesc}
\begin{methoddesc}[file]{seek}{offset\optional{, whence}}
Set the file's current position, like \code{stdio}'s \cfunction{fseek()}.
The \var{whence} argument is optional and defaults to
\code{os.SEEK_SET} or \code{0}
(absolute file positioning); other values are \code{os.SEEK_CUR} or \code{1}
(seek
relative to the current position) and \code{os.SEEK_END} or \code{2}
(seek relative to the
file's end). There is no return value. Note that if the file is
opened for appending (mode \code{'a'} or \code{'a+'}), any
\method{seek()} operations will be undone at the next write. If the
file is only opened for writing in append mode (mode \code{'a'}),
this method is essentially a no-op, but it remains useful for files
opened in append mode with reading enabled (mode \code{'a+'}). If the
file is opened in text mode (without \code{'b'}), only offsets returned
by \method{tell()} are legal. Use of other offsets causes undefined
behavior.
Note that not all file objects are seekable.
\versionchanged{Passing float values as offset has been deprecated}[2.6]
\end{methoddesc}
\begin{methoddesc}[file]{tell}{}
Return the file's current position, like \code{stdio}'s
\cfunction{ftell()}.
\note{On Windows, \method{tell()} can return illegal values (after an
\cfunction{fgets()}) when reading files with \UNIX{}-style line-endings.
Use binary mode (\code{'rb'}) to circumvent this problem.}
\end{methoddesc}
\begin{methoddesc}[file]{truncate}{\optional{size}}
Truncate the file's size. If the optional \var{size} argument is
present, the file is truncated to (at most) that size. The size
defaults to the current position. The current file position is
not changed. Note that if a specified size exceeds the file's
current size, the result is platform-dependent: possibilities
include that the file may remain unchanged, increase to the specified
size as if zero-filled, or increase to the specified size with
undefined new content.
Availability: Windows, many \UNIX{} variants.
\end{methoddesc}
\begin{methoddesc}[file]{write}{str}
Write a string to the file. There is no return value. Due to
buffering, the string may not actually show up in the file until
the \method{flush()} or \method{close()} method is called.
\end{methoddesc}
\begin{methoddesc}[file]{writelines}{sequence}
Write a sequence of strings to the file. The sequence can be any
iterable object producing strings, typically a list of strings.
There is no return value.
(The name is intended to match \method{readlines()};
\method{writelines()} does not add line separators.)
\end{methoddesc}
Files support the iterator protocol. Each iteration returns the same
result as \code{\var{file}.readline()}, and iteration ends when the
\method{readline()} method returns an empty string.
File objects also offer a number of other interesting attributes.
These are not required for file-like objects, but should be
implemented if they make sense for the particular object.
\begin{memberdesc}[file]{closed}
bool indicating the current state of the file object. This is a
read-only attribute; the \method{close()} method changes the value.
It may not be available on all file-like objects.
\end{memberdesc}
\begin{memberdesc}[file]{encoding}
The encoding that this file uses. When Unicode strings are written
to a file, they will be converted to byte strings using this encoding.
In addition, when the file is connected to a terminal, the attribute
gives the encoding that the terminal is likely to use (that
information might be incorrect if the user has misconfigured the
terminal). The attribute is read-only and may not be present on
all file-like objects. It may also be \code{None}, in which case
the file uses the system default encoding for converting Unicode
strings.
\versionadded{2.3}
\end{memberdesc}
\begin{memberdesc}[file]{mode}
The I/O mode for the file. If the file was created using the
\function{open()} built-in function, this will be the value of the
\var{mode} parameter. This is a read-only attribute and may not be
present on all file-like objects.
\end{memberdesc}
\begin{memberdesc}[file]{name}
If the file object was created using \function{open()}, the name of
the file. Otherwise, some string that indicates the source of the
file object, of the form \samp{<\mbox{\ldots}>}. This is a read-only
attribute and may not be present on all file-like objects.
\end{memberdesc}
\begin{memberdesc}[file]{newlines}
If Python was built with the \longprogramopt{with-universal-newlines}
option to \program{configure} (the default) this read-only attribute
exists, and for files opened in
universal newline read mode it keeps track of the types of newlines
encountered while reading the file. The values it can take are
\code{'\e r'}, \code{'\e n'}, \code{'\e r\e n'}, \code{None} (unknown,
no newlines read yet) or a tuple containing all the newline
types seen, to indicate that multiple
newline conventions were encountered. For files not opened in universal
newline read mode the value of this attribute will be \code{None}.
\end{memberdesc}
\begin{memberdesc}[file]{softspace}
Boolean that indicates whether a space character needs to be printed
before another value when using the \keyword{print} statement.
Classes that are trying to simulate a file object should also have a
writable \member{softspace} attribute, which should be initialized to
zero. This will be automatic for most classes implemented in Python
(care may be needed for objects that override attribute access); types
implemented in C will have to provide a writable
\member{softspace} attribute.
\note{This attribute is not used to control the
\keyword{print} statement, but to allow the implementation of
\keyword{print} to keep track of its internal state.}
\end{memberdesc}
\section{Context Manager Types \label{typecontextmanager}}
\versionadded{2.5}
\index{context manager}
\index{context management protocol}
\index{protocol!context management}
Python's \keyword{with} statement supports the concept of a runtime
context defined by a context manager. This is implemented using
two separate methods that allow user-defined classes to define
a runtime context that is entered before the statement body is
executed and exited when the statement ends.
The \dfn{context management protocol} consists of a pair of
methods that need to be provided for a context manager object to
define a runtime context:
\begin{methoddesc}[context manager]{__enter__}{}
Enter the runtime context and return either this object or another
object related to the runtime context. The value returned by this
method is bound to the identifier in the \keyword{as} clause of
\keyword{with} statements using this context manager.
An example of a context manager that returns itself is a file object.
File objects return themselves from __enter__() to allow
\function{open()} to be used as the context expression in a
\keyword{with} statement.
An example of a context manager that returns a related
object is the one returned by \code{decimal.Context.get_manager()}.
These managers set the active decimal context to a copy of the
original decimal context and then return the copy. This allows
changes to be made to the current decimal context in the body of
the \keyword{with} statement without affecting code outside
the \keyword{with} statement.
\end{methoddesc}
\begin{methoddesc}[context manager]{__exit__}{exc_type, exc_val, exc_tb}
Exit the runtime context and return a Boolean flag indicating if any
expection that occurred should be suppressed. If an exception
occurred while executing the body of the \keyword{with} statement, the
arguments contain the exception type, value and traceback information.
Otherwise, all three arguments are \code{None}.
Returning a true value from this method will cause the \keyword{with}
statement to suppress the exception and continue execution with the
statement immediately following the \keyword{with} statement. Otherwise
the exception continues propagating after this method has finished
executing. Exceptions that occur during execution of this method will
replace any exception that occurred in the body of the \keyword{with}
statement.
The exception passed in should never be reraised explicitly - instead,
this method should return a false value to indicate that the method
completed successfully and does not want to suppress the raised
exception. This allows context management code (such as
\code{contextlib.nested}) to easily detect whether or not an
\method{__exit__()} method has actually failed.
\end{methoddesc}
Python defines several context managers to support easy thread
synchronisation, prompt closure of files or other objects, and
simpler manipulation of the active decimal arithmetic
context. The specific types are not treated specially beyond
their implementation of the context management protocol.
Python's generators and the \code{contextlib.contextfactory} decorator
provide a convenient way to implement these protocols. If a generator
function is decorated with the \code{contextlib.contextfactory}
decorator, it will return a context manager implementing the necessary
\method{__enter__()} and \method{__exit__()} methods, rather than the
iterator produced by an undecorated generator function.
Note that there is no specific slot for any of these methods in the
type structure for Python objects in the Python/C API. Extension
types wanting to define these methods must provide them as a normal
Python accessible method. Compared to the overhead of setting up the
runtime context, the overhead of a single class dictionary lookup
is negligible.
\section{Other Built-in Types \label{typesother}}
The interpreter supports several other kinds of objects.
Most of these support only one or two operations.
\subsection{Modules \label{typesmodules}}
The only special operation on a module is attribute access:
\code{\var{m}.\var{name}}, where \var{m} is a module and \var{name}
accesses a name defined in \var{m}'s symbol table. Module attributes
can be assigned to. (Note that the \keyword{import} statement is not,
strictly speaking, an operation on a module object; \code{import
\var{foo}} does not require a module object named \var{foo} to exist,
rather it requires an (external) \emph{definition} for a module named
\var{foo} somewhere.)
A special member of every module is \member{__dict__}.
This is the dictionary containing the module's symbol table.
Modifying this dictionary will actually change the module's symbol
table, but direct assignment to the \member{__dict__} attribute is not
possible (you can write \code{\var{m}.__dict__['a'] = 1}, which
defines \code{\var{m}.a} to be \code{1}, but you can't write
\code{\var{m}.__dict__ = \{\}}). Modifying \member{__dict__} directly
is not recommended.
Modules built into the interpreter are written like this:
\code{<module 'sys' (built-in)>}. If loaded from a file, they are
written as \code{<module 'os' from
'/usr/local/lib/python\shortversion/os.pyc'>}.
\subsection{Classes and Class Instances \label{typesobjects}}
\nodename{Classes and Instances}
See chapters 3 and 7 of the \citetitle[../ref/ref.html]{Python
Reference Manual} for these.
\subsection{Functions \label{typesfunctions}}
Function objects are created by function definitions. The only
operation on a function object is to call it:
\code{\var{func}(\var{argument-list})}.
There are really two flavors of function objects: built-in functions
and user-defined functions. Both support the same operation (to call
the function), but the implementation is different, hence the
different object types.
See the \citetitle[../ref/ref.html]{Python Reference Manual} for more
information.
\subsection{Methods \label{typesmethods}}
\obindex{method}
Methods are functions that are called using the attribute notation.
There are two flavors: built-in methods (such as \method{append()} on
lists) and class instance methods. Built-in methods are described
with the types that support them.
The implementation adds two special read-only attributes to class
instance methods: \code{\var{m}.im_self} is the object on which the
method operates, and \code{\var{m}.im_func} is the function
implementing the method. Calling \code{\var{m}(\var{arg-1},
\var{arg-2}, \textrm{\ldots}, \var{arg-n})} is completely equivalent to
calling \code{\var{m}.im_func(\var{m}.im_self, \var{arg-1},
\var{arg-2}, \textrm{\ldots}, \var{arg-n})}.
Class instance methods are either \emph{bound} or \emph{unbound},
referring to whether the method was accessed through an instance or a
class, respectively. When a method is unbound, its \code{im_self}
attribute will be \code{None} and if called, an explicit \code{self}
object must be passed as the first argument. In this case,
\code{self} must be an instance of the unbound method's class (or a
subclass of that class), otherwise a \exception{TypeError} is raised.
Like function objects, methods objects support getting
arbitrary attributes. However, since method attributes are actually
stored on the underlying function object (\code{meth.im_func}),
setting method attributes on either bound or unbound methods is
disallowed. Attempting to set a method attribute results in a
\exception{TypeError} being raised. In order to set a method attribute,
you need to explicitly set it on the underlying function object:
\begin{verbatim}
class C:
def method(self):
pass
c = C()
c.method.im_func.whoami = 'my name is c'
\end{verbatim}
See the \citetitle[../ref/ref.html]{Python Reference Manual} for more
information.
\subsection{Code Objects \label{bltin-code-objects}}
\obindex{code}
Code objects are used by the implementation to represent
``pseudo-compiled'' executable Python code such as a function body.
They differ from function objects because they don't contain a
reference to their global execution environment. Code objects are
returned by the built-in \function{compile()} function and can be
extracted from function objects through their \member{__code__}
attribute.
\bifuncindex{compile}
\withsubitem{(function object attribute)}{\ttindex{__code__}}
A code object can be executed or evaluated by passing it (instead of a
source string) to the \function{exec()} or \function{eval()}
built-in functions.
\bifuncindex{exec}
\bifuncindex{eval}
See the \citetitle[../ref/ref.html]{Python Reference Manual} for more
information.
\subsection{Type Objects \label{bltin-type-objects}}
Type objects represent the various object types. An object's type is
accessed by the built-in function \function{type()}. There are no special
operations on types. The standard module \refmodule{types} defines names
for all standard built-in types.
\bifuncindex{type}
\refstmodindex{types}
Types are written like this: \code{<type 'int'>}.
\subsection{The Null Object \label{bltin-null-object}}
This object is returned by functions that don't explicitly return a
value. It supports no special operations. There is exactly one null
object, named \code{None} (a built-in name).
It is written as \code{None}.
\subsection{The Ellipsis Object \label{bltin-ellipsis-object}}
This object is mostly used by extended slice notation (see the
\citetitle[../ref/ref.html]{Python Reference Manual}). It supports no
special operations. There is exactly one ellipsis object, named
\constant{Ellipsis} (a built-in name).
It is written as \code{Ellipsis} or \code{...}.
\subsection{Boolean Values}
Boolean values are the two constant objects \code{False} and
\code{True}. They are used to represent truth values (although other
values can also be considered false or true). In numeric contexts
(for example when used as the argument to an arithmetic operator),
they behave like the integers 0 and 1, respectively. The built-in
function \function{bool()} can be used to cast any value to a Boolean,
if the value can be interpreted as a truth value (see section Truth
Value Testing above).
They are written as \code{False} and \code{True}, respectively.
\index{False}
\index{True}
\indexii{Boolean}{values}
\subsection{Internal Objects \label{typesinternal}}
See the \citetitle[../ref/ref.html]{Python Reference Manual} for this
information. It describes stack frame objects, traceback objects, and
slice objects.
\section{Special Attributes \label{specialattrs}}
The implementation adds a few special read-only attributes to several
object types, where they are relevant. Some of these are not reported
by the \function{dir()} built-in function.
\begin{memberdesc}[object]{__dict__}
A dictionary or other mapping object used to store an
object's (writable) attributes.
\end{memberdesc}
\begin{memberdesc}[instance]{__class__}
The class to which a class instance belongs.
\end{memberdesc}
\begin{memberdesc}[class]{__bases__}
The tuple of base classes of a class object. If there are no base
classes, this will be an empty tuple.
\end{memberdesc}
\begin{memberdesc}[class]{__name__}
The name of the class or type.
\end{memberdesc}
|