summaryrefslogtreecommitdiffstats
path: root/Doc/lib/libstdtypes.tex
blob: f24da0c98e255d0afa6ca43815ba93c3182f2546 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
\section{Built-in Types \label{types}}

The following sections describe the standard types that are built into
the interpreter.  These are the numeric types, sequence types, and
several others, including types themselves.  There is no explicit
Boolean type; use integers instead.
\indexii{built-in}{types}
\indexii{Boolean}{type}

Some operations are supported by several object types; in particular,
all objects can be compared, tested for truth value, and converted to
a string (with the \code{`\textrm{\ldots}`} notation).  The latter
conversion is implicitly used when an object is written by the
\keyword{print}\stindex{print} statement.


\subsection{Truth Value Testing \label{truth}}

Any object can be tested for truth value, for use in an \keyword{if} or
\keyword{while} condition or as operand of the Boolean operations below.
The following values are considered false:
\stindex{if}
\stindex{while}
\indexii{truth}{value}
\indexii{Boolean}{operations}
\index{false}

\begin{itemize}

\item	\code{None}
	\withsubitem{(Built-in object)}{\ttindex{None}}

\item	zero of any numeric type, e.g., \code{0}, \code{0L}, \code{0.0}.

\item	any empty sequence, e.g., \code{''}, \code{()}, \code{[]}.

\item	any empty mapping, e.g., \code{\{\}}.

\item	instances of user-defined classes, if the class defines a
	\method{__nonzero__()} or \method{__len__()} method, when that
	method returns zero.

\end{itemize}

All other values are considered true --- so objects of many types are
always true.
\index{true}

Operations and built-in functions that have a Boolean result always
return \code{0} for false and \code{1} for true, unless otherwise
stated.  (Important exception: the Boolean operations
\samp{or}\opindex{or} and \samp{and}\opindex{and} always return one of
their operands.)


\subsection{Boolean Operations \label{boolean}}

These are the Boolean operations, ordered by ascending priority:
\indexii{Boolean}{operations}

\begin{tableiii}{c|l|c}{code}{Operation}{Result}{Notes}
  \lineiii{\var{x} or \var{y}}{if \var{x} is false, then \var{y}, else \var{x}}{(1)}
  \lineiii{\var{x} and \var{y}}{if \var{x} is false, then \var{x}, else \var{y}}{(1)}
  \hline
  \lineiii{not \var{x}}{if \var{x} is false, then \code{1}, else \code{0}}{(2)}
\end{tableiii}
\opindex{and}
\opindex{or}
\opindex{not}

\noindent
Notes:

\begin{description}

\item[(1)]
These only evaluate their second argument if needed for their outcome.

\item[(2)]
\samp{not} has a lower priority than non-Boolean operators, so e.g.
\code{not a == b} is interpreted as \code{not(a == b)}, and
\code{a == not b} is a syntax error.

\end{description}


\subsection{Comparisons \label{comparisons}}

Comparison operations are supported by all objects.  They all have the
same priority (which is higher than that of the Boolean operations).
Comparisons can be chained arbitrarily, e.g. \code{x < y <= z} is
equivalent to \code{x < y and y <= z}, except that \code{y} is
evaluated only once (but in both cases \code{z} is not evaluated at
all when \code{x < y} is found to be false).
\indexii{chaining}{comparisons}

This table summarizes the comparison operations:

\begin{tableiii}{c|l|c}{code}{Operation}{Meaning}{Notes}
  \lineiii{<}{strictly less than}{}
  \lineiii{<=}{less than or equal}{}
  \lineiii{>}{strictly greater than}{}
  \lineiii{>=}{greater than or equal}{}
  \lineiii{==}{equal}{}
  \lineiii{<>}{not equal}{(1)}
  \lineiii{!=}{not equal}{(1)}
  \lineiii{is}{object identity}{}
  \lineiii{is not}{negated object identity}{}
\end{tableiii}
\indexii{operator}{comparison}
\opindex{==} % XXX *All* others have funny characters < ! >
\opindex{is}
\opindex{is not}

\noindent
Notes:

\begin{description}

\item[(1)]
\code{<>} and \code{!=} are alternate spellings for the same operator.
(I couldn't choose between \ABC{} and \C{}! :-)
\index{ABC language@\ABC{} language}
\index{language!ABC@\ABC{}}
\indexii{C@\C{}}{language}

\end{description}

Objects of different types, except different numeric types, never
compare equal; such objects are ordered consistently but arbitrarily
(so that sorting a heterogeneous array yields a consistent result).
Furthermore, some types (e.g., windows) support only a degenerate
notion of comparison where any two objects of that type are unequal.
Again, such objects are ordered arbitrarily but consistently.
\indexii{types}{numeric}
\indexii{objects}{comparing}

(Implementation note: objects of different types except numbers are
ordered by their type names; objects of the same types that don't
support proper comparison are ordered by their address.)

Two more operations with the same syntactic priority, \samp{in} and
\samp{not in}, are supported only by sequence types (below).
\opindex{in}
\opindex{not in}


\subsection{Numeric Types \label{typesnumeric}}

There are four numeric types: \dfn{plain integers}, \dfn{long integers}, 
\dfn{floating point numbers}, and \dfn{complex numbers}.
Plain integers (also just called \dfn{integers})
are implemented using \ctype{long} in \C{}, which gives them at least 32
bits of precision.  Long integers have unlimited precision.  Floating
point numbers are implemented using \ctype{double} in \C{}.  All bets on
their precision are off unless you happen to know the machine you are
working with.
\indexii{numeric}{types}
\indexii{integer}{types}
\indexii{integer}{type}
\indexiii{long}{integer}{type}
\indexii{floating point}{type}
\indexii{complex number}{type}
\indexii{C@\C{}}{language}

Complex numbers have a real and imaginary part, which are both
implemented using \ctype{double} in \C{}.  To extract these parts from
a complex number \var{z}, use \code{\var{z}.real} and \code{\var{z}.imag}.  

Numbers are created by numeric literals or as the result of built-in
functions and operators.  Unadorned integer literals (including hex
and octal numbers) yield plain integers.  Integer literals with an \samp{L}
or \samp{l} suffix yield long integers
(\samp{L} is preferred because \samp{1l} looks too much like eleven!).
Numeric literals containing a decimal point or an exponent sign yield
floating point numbers.  Appending \samp{j} or \samp{J} to a numeric
literal yields a complex number.
\indexii{numeric}{literals}
\indexii{integer}{literals}
\indexiii{long}{integer}{literals}
\indexii{floating point}{literals}
\indexii{complex number}{literals}
\indexii{hexadecimal}{literals}
\indexii{octal}{literals}

Python fully supports mixed arithmetic: when a binary arithmetic
operator has operands of different numeric types, the operand with the
``smaller'' type is converted to that of the other, where plain
integer is smaller than long integer is smaller than floating point is
smaller than complex.
Comparisons between numbers of mixed type use the same rule.\footnote{
	As a consequence, the list \code{[1, 2]} is considered equal
        to \code{[1.0, 2.0]}, and similar for tuples.}
The functions \function{int()}, \function{long()}, \function{float()},
and \function{complex()} can be used
to coerce numbers to a specific type.
\index{arithmetic}
\bifuncindex{int}
\bifuncindex{long}
\bifuncindex{float}
\bifuncindex{complex}

All numeric types support the following operations, sorted by
ascending priority (operations in the same box have the same
priority; all numeric operations have a higher priority than
comparison operations):

\begin{tableiii}{c|l|c}{code}{Operation}{Result}{Notes}
  \lineiii{\var{x} + \var{y}}{sum of \var{x} and \var{y}}{}
  \lineiii{\var{x} - \var{y}}{difference of \var{x} and \var{y}}{}
  \hline
  \lineiii{\var{x} * \var{y}}{product of \var{x} and \var{y}}{}
  \lineiii{\var{x} / \var{y}}{quotient of \var{x} and \var{y}}{(1)}
  \lineiii{\var{x} \%{} \var{y}}{remainder of \code{\var{x} / \var{y}}}{}
  \hline
  \lineiii{-\var{x}}{\var{x} negated}{}
  \lineiii{+\var{x}}{\var{x} unchanged}{}
  \hline
  \lineiii{abs(\var{x})}{absolute value or magnitude of \var{x}}{}
  \lineiii{int(\var{x})}{\var{x} converted to integer}{(2)}
  \lineiii{long(\var{x})}{\var{x} converted to long integer}{(2)}
  \lineiii{float(\var{x})}{\var{x} converted to floating point}{}
  \lineiii{complex(\var{re},\var{im})}{a complex number with real part \var{re}, imaginary part \var{im}.  \var{im} defaults to zero.}{}
  \lineiii{\var{c}.conjugate()}{conjugate of the complex number \var{c}}{}
  \lineiii{divmod(\var{x}, \var{y})}{the pair \code{(\var{x} / \var{y}, \var{x} \%{} \var{y})}}{(3)}
  \lineiii{pow(\var{x}, \var{y})}{\var{x} to the power \var{y}}{}
  \lineiii{\var{x} ** \var{y}}{\var{x} to the power \var{y}}{}
\end{tableiii}
\indexiii{operations on}{numeric}{types}
\withsubitem{(complex number method)}{\ttindex{conjugate()}}

\noindent
Notes:
\begin{description}

\item[(1)]
For (plain or long) integer division, the result is an integer.
The result is always rounded towards minus infinity: 1/2 is 0, 
(-1)/2 is -1, 1/(-2) is -1, and (-1)/(-2) is 0.
\indexii{integer}{division}
\indexiii{long}{integer}{division}

\item[(2)]
Conversion from floating point to (long or plain) integer may round or
truncate as in \C{}; see functions \function{floor()} and \function{ceil()} in
module \module{math} for well-defined conversions.
\withsubitem{(in module math)}{\ttindex{floor()}\ttindex{ceil()}}
\indexii{numeric}{conversions}
\refbimodindex{math}
\indexii{C@\C{}}{language}

\item[(3)]
See the section on built-in functions for an exact definition.

\end{description}
% XXXJH exceptions: overflow (when? what operations?) zerodivision

\subsubsection{Bit-string Operations on Integer Types \label{bitstring-ops}}
\nodename{Bit-string Operations}

Plain and long integer types support additional operations that make
sense only for bit-strings.  Negative numbers are treated as their 2's
complement value (for long integers, this assumes a sufficiently large
number of bits that no overflow occurs during the operation).

The priorities of the binary bit-wise operations are all lower than
the numeric operations and higher than the comparisons; the unary
operation \samp{\~} has the same priority as the other unary numeric
operations (\samp{+} and \samp{-}).

This table lists the bit-string operations sorted in ascending
priority (operations in the same box have the same priority):

\begin{tableiii}{c|l|c}{code}{Operation}{Result}{Notes}
  \lineiii{\var{x} | \var{y}}{bitwise \dfn{or} of \var{x} and \var{y}}{}
  \lineiii{\var{x} \^{} \var{y}}{bitwise \dfn{exclusive or} of \var{x} and \var{y}}{}
  \lineiii{\var{x} \&{} \var{y}}{bitwise \dfn{and} of \var{x} and \var{y}}{}
  \lineiii{\var{x} << \var{n}}{\var{x} shifted left by \var{n} bits}{(1), (2)}
  \lineiii{\var{x} >> \var{n}}{\var{x} shifted right by \var{n} bits}{(1), (3)}
  \hline
  \lineiii{\~\var{x}}{the bits of \var{x} inverted}{}
\end{tableiii}
\indexiii{operations on}{integer}{types}
\indexii{bit-string}{operations}
\indexii{shifting}{operations}
\indexii{masking}{operations}

\noindent
Notes:
\begin{description}
\item[(1)] Negative shift counts are illegal and cause a
\exception{ValueError} to be raised.
\item[(2)] A left shift by \var{n} bits is equivalent to
multiplication by \code{pow(2, \var{n})} without overflow check.
\item[(3)] A right shift by \var{n} bits is equivalent to
division by \code{pow(2, \var{n})} without overflow check.
\end{description}


\subsection{Sequence Types \label{typesseq}}

There are three sequence types: strings, lists and tuples.

Strings literals are written in single or double quotes:
\code{'xyzzy'}, \code{"frobozz"}.  See Chapter 2 of the \emph{Python
Reference Manual} for more about string literals.  Lists are
constructed with square brackets, separating items with commas:
\code{[a, b, c]}.  Tuples are constructed by the comma operator (not
within square brackets), with or without enclosing parentheses, but an
empty tuple must have the enclosing parentheses, e.g.,
\code{a, b, c} or \code{()}.  A single item tuple must have a trailing
comma, e.g., \code{(d,)}.
\indexii{sequence}{types}
\indexii{string}{type}
\indexii{tuple}{type}
\indexii{list}{type}

Sequence types support the following operations.  The \samp{in} and
\samp{not in} operations have the same priorities as the comparison
operations.  The \samp{+} and \samp{*} operations have the same
priority as the corresponding numeric operations.\footnote{They must
have since the parser can't tell the type of the operands.}

This table lists the sequence operations sorted in ascending priority
(operations in the same box have the same priority).  In the table,
\var{s} and \var{t} are sequences of the same type; \var{n}, \var{i}
and \var{j} are integers:

\begin{tableiii}{c|l|c}{code}{Operation}{Result}{Notes}
  \lineiii{\var{x} in \var{s}}{\code{1} if an item of \var{s} is equal to \var{x}, else \code{0}}{}
  \lineiii{\var{x} not in \var{s}}{\code{0} if an item of \var{s} is
equal to \var{x}, else \code{1}}{}
  \hline
  \lineiii{\var{s} + \var{t}}{the concatenation of \var{s} and \var{t}}{}
  \lineiii{\var{s} * \var{n}\textrm{,} \var{n} * \var{s}}{\var{n} copies of \var{s} concatenated}{(3)}
  \hline
  \lineiii{\var{s}[\var{i}]}{\var{i}'th item of \var{s}, origin 0}{(1)}
  \lineiii{\var{s}[\var{i}:\var{j}]}{slice of \var{s} from \var{i} to \var{j}}{(1), (2)}
  \hline
  \lineiii{len(\var{s})}{length of \var{s}}{}
  \lineiii{min(\var{s})}{smallest item of \var{s}}{}
  \lineiii{max(\var{s})}{largest item of \var{s}}{}
\end{tableiii}
\indexiii{operations on}{sequence}{types}
\bifuncindex{len}
\bifuncindex{min}
\bifuncindex{max}
\indexii{concatenation}{operation}
\indexii{repetition}{operation}
\indexii{subscript}{operation}
\indexii{slice}{operation}
\opindex{in}
\opindex{not in}

\noindent
Notes:

\begin{description}
  
\item[(1)] If \var{i} or \var{j} is negative, the index is relative to
  the end of the string, i.e., \code{len(\var{s}) + \var{i}} or
  \code{len(\var{s}) + \var{j}} is substituted.  But note that \code{-0} is
  still \code{0}.
  
\item[(2)] The slice of \var{s} from \var{i} to \var{j} is defined as
  the sequence of items with index \var{k} such that \code{\var{i} <=
  \var{k} < \var{j}}.  If \var{i} or \var{j} is greater than
  \code{len(\var{s})}, use \code{len(\var{s})}.  If \var{i} is omitted,
  use \code{0}.  If \var{j} is omitted, use \code{len(\var{s})}.  If
  \var{i} is greater than or equal to \var{j}, the slice is empty.

\item[(3)] Values of \var{n} less than \code{0} are treated as
  \code{0} (which yields an empty sequence of the same type as
  \var{s}).

\end{description}


\subsubsection{More String Operations \label{typesseq-strings}}

String objects have one unique built-in operation: the \code{\%}
operator (modulo) with a string left argument interprets this string
as a \C{} \cfunction{sprintf()} format string to be applied to the
right argument, and returns the string resulting from this formatting
operation.

The right argument should be a tuple with one item for each argument
required by the format string; if the string requires a single
argument, the right argument may also be a single non-tuple
object.\footnote{A tuple object in this case should be a singleton.}
The following format characters are understood:
\code{\%}, \code{c}, \code{s}, \code{i}, \code{d}, \code{u}, \code{o},
\code{x}, \code{X}, \code{e}, \code{E}, \code{f}, \code{g}, \code{G}. 
Width and precision may be a \code{*} to specify that an integer argument
specifies the actual width or precision.  The flag characters
\code{-}, \code{+}, blank, \code{\#} and \code{0} are understood.  The 
size specifiers \code{h}, \code{l} or \code{L} may be present but are
ignored.  The \code{\%s} conversion takes any Python object and
converts it to a string using \code{str()} before formatting it.  The
ANSI features \code{\%p} and \code{\%n} are not supported.  Since
Python strings have an explicit length, \code{\%s} conversions don't
assume that \code{'\e0'} is the end of the string.

For safety reasons, floating point precisions are clipped to 50;
\code{\%f} conversions for numbers whose absolute value is over 1e25
are replaced by \code{\%g} conversions.\footnote{
  These numbers are fairly arbitrary.  They are intended to
  avoid printing endless strings of meaningless digits without hampering
  correct use and without having to know the exact precision of floating
  point values on a particular machine.}
All other errors raise exceptions.

If the right argument is a dictionary (or any kind of mapping), then
the formats in the string must have a parenthesized key into that
dictionary inserted immediately after the \character{\%} character,
and each format formats the corresponding entry from the mapping.
For example:

\begin{verbatim}
>>> count = 2
>>> language = 'Python'
>>> print '%(language)s has %(count)03d quote types.' % vars()
Python has 002 quote types.
\end{verbatim}

In this case no \code{*} specifiers may occur in a format (since they
require a sequential parameter list).

Additional string operations are defined in standard module
\module{string} and in built-in module \module{re}.
\refstmodindex{string}
\refstmodindex{re}

\subsubsection{Mutable Sequence Types \label{typesseq-mutable}}

List objects support additional operations that allow in-place
modification of the object.
These operations would be supported by other mutable sequence types
(when added to the language) as well.
Strings and tuples are immutable sequence types and such objects cannot
be modified once created.
The following operations are defined on mutable sequence types (where
\var{x} is an arbitrary object):
\indexiii{mutable}{sequence}{types}
\indexii{list}{type}

\begin{tableiii}{c|l|c}{code}{Operation}{Result}{Notes}
  \lineiii{\var{s}[\var{i}] = \var{x}}
	{item \var{i} of \var{s} is replaced by \var{x}}{}
  \lineiii{\var{s}[\var{i}:\var{j}] = \var{t}}
  	{slice of \var{s} from \var{i} to \var{j} is replaced by \var{t}}{}
  \lineiii{del \var{s}[\var{i}:\var{j}]}
	{same as \code{\var{s}[\var{i}:\var{j}] = []}}{}
  \lineiii{\var{s}.append(\var{x})}
	{same as \code{\var{s}[len(\var{s}):len(\var{s})] = [\var{x}]}}{}
  \lineiii{\var{s}.extend(\var{x})}
        {same as \code{\var{s}[len(\var{s}):len(\var{s})] = \var{x}}}{(5)}
  \lineiii{\var{s}.count(\var{x})}
    {return number of \var{i}'s for which \code{\var{s}[\var{i}] == \var{x}}}{}
  \lineiii{\var{s}.index(\var{x})}
    {return smallest \var{i} such that \code{\var{s}[\var{i}] == \var{x}}}{(1)}
  \lineiii{\var{s}.insert(\var{i}, \var{x})}
	{same as \code{\var{s}[\var{i}:\var{i}] = [\var{x}]}
	  if \code{\var{i} >= 0}}{}
  \lineiii{\var{s}.pop(\optional{\var{i}})}
    {same as \code{\var{x} = \var{s}[\var{i}]; del \var{s}[\var{i}]; return \var{x}}}{(4)}
  \lineiii{\var{s}.remove(\var{x})}
	{same as \code{del \var{s}[\var{s}.index(\var{x})]}}{(1)}
  \lineiii{\var{s}.reverse()}
	{reverses the items of \var{s} in place}{(3)}
  \lineiii{\var{s}.sort(\optional{\var{cmpfunc}})}
	{sort the items of \var{s} in place}{(2), (3)}
\end{tableiii}
\indexiv{operations on}{mutable}{sequence}{types}
\indexiii{operations on}{sequence}{types}
\indexiii{operations on}{list}{type}
\indexii{subscript}{assignment}
\indexii{slice}{assignment}
\stindex{del}
\withsubitem{(list method)}{
  \ttindex{append()}
  \ttindex{extend()}
  \ttindex{count()}
  \ttindex{index()}
  \ttindex{insert()}
  \ttindex{pop()}
  \ttindex{remove()}
  \ttindex{reverse()}
  \ttindex{sort()}}
\noindent
Notes:
\begin{description}
\item[(1)] Raises an exception when \var{x} is not found in \var{s}.
  
\item[(2)] The \method{sort()} method takes an optional argument
  specifying a comparison function of two arguments (list items) which
  should return \code{-1}, \code{0} or \code{1} depending on whether the
  first argument is considered smaller than, equal to, or larger than the
  second argument.  Note that this slows the sorting process down
  considerably; e.g. to sort a list in reverse order it is much faster
  to use calls to the methods \method{sort()} and \method{reverse()}
  than to use the built-in function \function{sort()} with a
  comparison function that reverses the ordering of the elements.

\item[(3)] The \method{sort()} and \method{reverse()} methods modify the
list in place for economy of space when sorting or reversing a large
list.  They don't return the sorted or reversed list to remind you of
this side effect.

\item[(4)] The \method{pop()} method is experimental and not supported 
by other mutable sequence types than lists.
The optional argument \var{i} defaults to \code{-1}, so that
by default the last item is removed and returned.

\item[(5)] Raises an exception when \var{x} is not a list object.  The 
\method{extend()} method is experimental and not supported by mutable types
other than lists.
\end{description}


\subsection{Mapping Types \label{typesmapping}}

A \dfn{mapping} object maps values of one type (the key type) to
arbitrary objects.  Mappings are mutable objects.  There is currently
only one standard mapping type, the \dfn{dictionary}.  A dictionary's keys are
almost arbitrary values.  The only types of values not acceptable as
keys are values containing lists or dictionaries or other mutable
types that are compared by value rather than by object identity.
Numeric types used for keys obey the normal rules for numeric
comparison: if two numbers compare equal (e.g. \code{1} and
\code{1.0}) then they can be used interchangeably to index the same
dictionary entry.

\indexii{mapping}{types}
\indexii{dictionary}{type}

Dictionaries are created by placing a comma-separated list of
\code{\var{key}: \var{value}} pairs within braces, for example:
\code{\{'jack': 4098, 'sjoerd': 4127\}} or
\code{\{4098: 'jack', 4127: 'sjoerd'\}}.

The following operations are defined on mappings (where \var{a} and
\var{b} are mappings, \var{k} is a key, and \var{v} and \var{x} are
arbitrary objects):
\indexiii{operations on}{mapping}{types}
\indexiii{operations on}{dictionary}{type}
\stindex{del}
\bifuncindex{len}
\withsubitem{(dictionary method)}{
  \ttindex{clear()}
  \ttindex{copy()}
  \ttindex{has_key()}
  \ttindex{items()}
  \ttindex{keys()}
  \ttindex{update()}
  \ttindex{values()}
  \ttindex{get()}}

\begin{tableiii}{c|l|c}{code}{Operation}{Result}{Notes}
  \lineiii{len(\var{a})}{the number of items in \var{a}}{}
  \lineiii{\var{a}[\var{k}]}{the item of \var{a} with key \var{k}}{(1)}
  \lineiii{\var{a}[\var{k}] = \var{x}}
          {set \code{\var{a}[\var{k}]} to \var{x}}
          {}
  \lineiii{del \var{a}[\var{k}]}
          {remove \code{\var{a}[\var{k}]} from \var{a}}
          {(1)}
  \lineiii{\var{a}.clear()}{remove all items from \code{a}}{}
  \lineiii{\var{a}.copy()}{a (shallow) copy of \code{a}}{}
  \lineiii{\var{a}.has_key(\var{k})}
          {\code{1} if \var{a} has a key \var{k}, else \code{0}}
          {}
  \lineiii{\var{a}.items()}
          {a copy of \var{a}'s list of (\var{key}, \var{value}) pairs}
          {(2)}
  \lineiii{\var{a}.keys()}{a copy of \var{a}'s list of keys}{(2)}
  \lineiii{\var{a}.update(\var{b})}
          {\code{for k, v in \var{b}.items(): \var{a}[k] = v}}
          {(3)}
  \lineiii{\var{a}.values()}{a copy of \var{a}'s list of values}{(2)}
  \lineiii{\var{a}.get(\var{k}\optional{, \var{x}})}
          {\code{\var{a}[\var{k}]} if \code{\var{a}.has_key(\var{k})},
           else \var{x}}
          {(4)}
\end{tableiii}

\noindent
Notes:
\begin{description}
\item[(1)] Raises a \exception{KeyError} exception if \var{k} is not
in the map.

\item[(2)] Keys and values are listed in random order.

\item[(3)] \var{b} must be of the same type as \var{a}.

\item[(4)] Never raises an exception if \var{k} is not in the map,
instead it returns \var{f}.  \var{f} is optional; when \var{f} is not
provided and \var{k} is not in the map, \code{None} is returned.
\end{description}


\subsection{Other Built-in Types \label{typesother}}

The interpreter supports several other kinds of objects.
Most of these support only one or two operations.


\subsubsection{Modules \label{typesmodules}}

The only special operation on a module is attribute access:
\code{\var{m}.\var{name}}, where \var{m} is a module and \var{name}
accesses a name defined in \var{m}'s symbol table.  Module attributes
can be assigned to.  (Note that the \keyword{import} statement is not,
strictly speaking, an operation on a module object; \code{import
\var{foo}} does not require a module object named \var{foo} to exist,
rather it requires an (external) \emph{definition} for a module named
\var{foo} somewhere.)

A special member of every module is \member{__dict__}.
This is the dictionary containing the module's symbol table.
Modifying this dictionary will actually change the module's symbol
table, but direct assignment to the \member{__dict__} attribute is not
possible (i.e., you can write \code{\var{m}.__dict__['a'] = 1}, which
defines \code{\var{m}.a} to be \code{1}, but you can't write
\code{\var{m}.__dict__ = \{\}}.

Modules built into the interpreter are written like this:
\code{<module 'sys' (built-in)>}.  If loaded from a file, they are
written as \code{<module 'os' from '/usr/local/lib/python1.5/os.pyc'>}.


\subsubsection{Classes and Class Instances \label{typesobjects}}
\nodename{Classes and Instances}

See Chapters 3 and 7 of the \emph{Python Reference Manual} for these.


\subsubsection{Functions \label{typesfunctions}}

Function objects are created by function definitions.  The only
operation on a function object is to call it:
\code{\var{func}(\var{argument-list})}.

There are really two flavors of function objects: built-in functions
and user-defined functions.  Both support the same operation (to call
the function), but the implementation is different, hence the
different object types.

The implementation adds two special read-only attributes:
\code{\var{f}.func_code} is a function's \dfn{code
object}\obindex{code} (see below) and \code{\var{f}.func_globals} is
the dictionary used as the function's global name space (this is the
same as \code{\var{m}.__dict__} where \var{m} is the module in which
the function \var{f} was defined).


\subsubsection{Methods \label{typesmethods}}
\obindex{method}

Methods are functions that are called using the attribute notation.
There are two flavors: built-in methods (such as \method{append()} on
lists) and class instance methods.  Built-in methods are described
with the types that support them.

The implementation adds two special read-only attributes to class
instance methods: \code{\var{m}.im_self} is the object on which the
method operates, and \code{\var{m}.im_func} is the function
implementing the method.  Calling \code{\var{m}(\var{arg-1},
\var{arg-2}, \textrm{\ldots}, \var{arg-n})} is completely equivalent to
calling \code{\var{m}.im_func(\var{m}.im_self, \var{arg-1},
\var{arg-2}, \textrm{\ldots}, \var{arg-n})}.

See the \emph{Python Reference Manual} for more information.


\subsubsection{Code Objects \label{bltin-code-objects}}
\obindex{code}

Code objects are used by the implementation to represent
``pseudo-compiled'' executable Python code such as a function body.
They differ from function objects because they don't contain a
reference to their global execution environment.  Code objects are
returned by the built-in \function{compile()} function and can be
extracted from function objects through their \member{func_code}
attribute.
\bifuncindex{compile}
\withsubitem{(function object attribute)}{\ttindex{func_code}}

A code object can be executed or evaluated by passing it (instead of a
source string) to the \keyword{exec} statement or the built-in
\function{eval()} function.
\stindex{exec}
\bifuncindex{eval}

See the \emph{Python Reference Manual} for more information.


\subsubsection{Type Objects \label{bltin-type-objects}}

Type objects represent the various object types.  An object's type is
accessed by the built-in function \function{type()}.  There are no special
operations on types.  The standard module \module{types} defines names
for all standard built-in types.
\bifuncindex{type}
\refstmodindex{types}

Types are written like this: \code{<type 'int'>}.


\subsubsection{The Null Object \label{bltin-null-object}}

This object is returned by functions that don't explicitly return a
value.  It supports no special operations.  There is exactly one null
object, named \code{None} (a built-in name).

It is written as \code{None}.


\subsubsection{The Ellipsis Object \label{bltin-ellipsis-object}}

This object is used by extended slice notation (see the \emph{Python
Reference Manual}).  It supports no special operations.  There is
exactly one ellipsis object, named \code{Ellipsis} (a built-in name).

It is written as \code{Ellipsis}.

\subsubsection{File Objects\obindex{file}
               \label{bltin-file-objects}}

File objects are implemented using \C{}'s \code{stdio}
package and can be created with the built-in function
\function{open()}\bifuncindex{open} described section
\ref{built-in-funcs}, ``Built-in Functions.''  They are also returned
by some other built-in functions and methods, e.g.,
\function{posix.popen()} and \function{posix.fdopen()} and the
\method{makefile()} method of socket objects.
\refbimodindex{posix}
\refbimodindex{socket}

When a file operation fails for an I/O-related reason, the exception
\exception{IOError} is raised.  This includes situations where the
operation is not defined for some reason, like \method{seek()} on a tty
device or writing a file opened for reading.

Files have the following methods:


\begin{methoddesc}[file]{close}{}
  Close the file.  A closed file cannot be read or written anymore.
\end{methoddesc}

\begin{methoddesc}[file]{flush}{}
  Flush the internal buffer, like \code{stdio}'s \cfunction{fflush()}.
\end{methoddesc}

\begin{methoddesc}[file]{isatty}{}
  Return \code{1} if the file is connected to a tty(-like) device, else
  \code{0}.
\end{methoddesc}

\begin{methoddesc}[file]{fileno}{}
Return the integer ``file descriptor'' that is used by the underlying
implementation to request I/O operations from the operating system.
This can be useful for other, lower level interfaces that use file
descriptors, e.g. module \module{fcntl} or \function{os.read()} and friends.
\refbimodindex{fcntl}
\end{methoddesc}

\begin{methoddesc}[file]{read}{\optional{size}}
  Read at most \var{size} bytes from the file (less if the read hits
  \EOF{} before obtaining \var{size} bytes).  If the \var{size}
  argument is negative or omitted, read all data until \EOF{} is
  reached.  The bytes are returned as a string object.  An empty
  string is returned when \EOF{} is encountered immediately.  (For
  certain files, like ttys, it makes sense to continue reading after
  an \EOF{} is hit.)  Note that this method may call the underlying
  C function \cfunction{fread()} more than once in an effort to
  acquire as close to \var{size} bytes as possible.
\end{methoddesc}

\begin{methoddesc}[file]{readline}{\optional{size}}
  Read one entire line from the file.  A trailing newline character is
  kept in the string\footnote{
	The advantage of leaving the newline on is that an empty string 
	can be returned to mean \EOF{} without being ambiguous.  Another 
	advantage is that (in cases where it might matter, e.g. if you 
	want to make an exact copy of a file while scanning its lines) 
	you can tell whether the last line of a file ended in a newline
	or not (yes this happens!).}
  (but may be absent when a file ends with an
  incomplete line).  If the \var{size} argument is present and
  non-negative, it is a maximum byte count (including the trailing
  newline) and an incomplete line may be returned.
  An empty string is returned when \EOF{} is hit
  immediately.  Note: unlike \code{stdio}'s \cfunction{fgets()}, the returned
  string contains null characters (\code{'\e 0'}) if they occurred in the
  input.
\end{methoddesc}

\begin{methoddesc}[file]{readlines}{\optional{sizehint}}
  Read until \EOF{} using \method{readline()} and return a list containing
  the lines thus read.  If the optional \var{sizehint} argument is
  present, instead of reading up to \EOF{}, whole lines totalling
  approximately \var{sizehint} bytes (possibly after rounding up to an
  internal buffer size) are read.
\end{methoddesc}

\begin{methoddesc}[file]{seek}{offset\optional{, whence}}
  Set the file's current position, like \code{stdio}'s \cfunction{fseek()}.
  The \var{whence} argument is optional and defaults to \code{0}
  (absolute file positioning); other values are \code{1} (seek
  relative to the current position) and \code{2} (seek relative to the
  file's end).  There is no return value.
\end{methoddesc}

\begin{methoddesc}[file]{tell}{}
  Return the file's current position, like \code{stdio}'s
  \cfunction{ftell()}.
\end{methoddesc}

\begin{methoddesc}[file]{truncate}{\optional{size}}
Truncate the file's size.  If the optional size argument present, the
file is truncated to (at most) that size.  The size defaults to the
current position.  Availability of this function depends on the
operating system version (e.g., not all \UNIX{} versions support this
operation).
\end{methoddesc}

\begin{methoddesc}[file]{write}{str}
Write a string to the file.  There is no return value.  Note: due to
buffering, the string may not actually show up in the file until
the \method{flush()} or \method{close()} method is called.
\end{methoddesc}

\begin{methoddesc}[file]{writelines}{list}
Write a list of strings to the file.  There is no return value.
(The name is intended to match \method{readlines()};
\method{writelines()} does not add line separators.)
\end{methoddesc}


File objects also offer the following attributes:

\begin{memberdesc}[file]{closed}
Boolean indicating the current state of the file object.  This is a
read-only attribute; the \method{close()} method changes the value.
\end{memberdesc}

\begin{memberdesc}[file]{mode}
The I/O mode for the file.  If the file was created using the
\function{open()} built-in function, this will be the value of the
\var{mode} parameter.  This is a read-only attribute.
\end{memberdesc}

\begin{memberdesc}[file]{name}
If the file object was created using \function{open()}, the name of
the file.  Otherwise, some string that indicates the source of the
file object, of the form \samp{<\mbox{\ldots}>}.  This is a read-only
attribute.
\end{memberdesc}

\begin{memberdesc}[file]{softspace}
Boolean that indicates whether a space character needs to be printed
before another value when using the \keyword{print} statement.
Classes that are trying to simulate a file object should also have a
writable \member{softspace} attribute, which should be initialized to
zero.  This will be automatic for classes implemented in Python; types
implemented in \C{} will have to provide a writable \member{softspace}
attribute.
\end{memberdesc}

\subsubsection{Internal Objects \label{typesinternal}}

See the \emph{Python Reference Manual} for this information.  It
describes code objects, stack frame objects, traceback objects, and
slice objects.


\subsection{Special Attributes \label{specialattrs}}

The implementation adds a few special read-only attributes to several
object types, where they are relevant:

\begin{memberdescni}{__dict__}
A dictionary of some sort used to store an
object's (writable) attributes.
\end{memberdescni}

\begin{memberdescni}{__methods__}
List of the methods of many built-in object types,
e.g., \code{[].__methods__} yields
\code{['append', 'count', 'index', 'insert', 'pop', 'remove',
'reverse', 'sort']}.
\end{memberdescni}

\begin{memberdescni}{__members__}
Similar to \member{__methods__}, but lists data attributes.
\end{memberdescni}

\begin{memberdescni}{__class__}
The class to which a class instance belongs.
\end{memberdescni}

\begin{memberdescni}{__bases__}
The tuple of base classes of a class object.
\end{memberdescni}