summaryrefslogtreecommitdiffstats
path: root/Doc/lib/libstdtypes.tex
blob: 49f2daec3cd96259bfb2311c9aec933e4af350f7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
\section{Built-in Types \label{types}}

The following sections describe the standard types that are built into
the interpreter.  Historically, Python's built-in types have differed
from user-defined types because it was not possible to use the built-in
types as the basis for object-oriented inheritance. With the 2.2
release this situation has started to change, although the intended
unification of user-defined and built-in types is as yet far from
complete.

The principal built-in types are numerics, sequences, mappings, files
classes, instances and exceptions.
\indexii{built-in}{types}

Some operations are supported by several object types; in particular,
all objects can be compared, tested for truth value, and converted to
a string (with the \code{`\textrm{\ldots}`} notation).  The latter
conversion is implicitly used when an object is written by the
\keyword{print}\stindex{print} statement.
(Information on \ulink{\keyword{print} statement}{../ref/print.html}
and other language statements can be found in the
\citetitle[../ref/ref.html]{Python Reference Manual} and the
\citetitle[../tut/tut.html]{Python Tutorial}.)


\subsection{Truth Value Testing\label{truth}}

Any object can be tested for truth value, for use in an \keyword{if} or
\keyword{while} condition or as operand of the Boolean operations below.
The following values are considered false:
\stindex{if}
\stindex{while}
\indexii{truth}{value}
\indexii{Boolean}{operations}
\index{false}

\begin{itemize}

\item	\code{None}
        \withsubitem{(Built-in object)}{\ttindex{None}}

\item	\code{False}
        \withsubitem{(Built-in object)}{\ttindex{False}}

\item	zero of any numeric type, for example, \code{0}, \code{0L},
        \code{0.0}, \code{0j}.

\item	any empty sequence, for example, \code{''}, \code{()}, \code{[]}.

\item	any empty mapping, for example, \code{\{\}}.

\item	instances of user-defined classes, if the class defines a
        \method{__nonzero__()} or \method{__len__()} method, when that
        method returns the integer zero or \class{bool} value
        \code{False}.\footnote{Additional 
information on these special methods may be found in the
\citetitle[../ref/ref.html]{Python Reference Manual}.}

\end{itemize}

All other values are considered true --- so objects of many types are
always true.
\index{true}

Operations and built-in functions that have a Boolean result always
return \code{0} or \code{False} for false and \code{1} or \code{True}
for true, unless otherwise stated.  (Important exception: the Boolean
operations \samp{or}\opindex{or} and \samp{and}\opindex{and} always
return one of their operands.)
\index{False}
\index{True}

\subsection{Boolean Operations \label{boolean}}

These are the Boolean operations, ordered by ascending priority:
\indexii{Boolean}{operations}

\begin{tableiii}{c|l|c}{code}{Operation}{Result}{Notes}
  \lineiii{\var{x} or \var{y}}
          {if \var{x} is false, then \var{y}, else \var{x}}{(1)}
  \lineiii{\var{x} and \var{y}}
          {if \var{x} is false, then \var{x}, else \var{y}}{(1)}
  \hline
  \lineiii{not \var{x}}
          {if \var{x} is false, then \code{True}, else \code{False}}{(2)}
\end{tableiii}
\opindex{and}
\opindex{or}
\opindex{not}

\noindent
Notes:

\begin{description}

\item[(1)]
These only evaluate their second argument if needed for their outcome.

\item[(2)]
\samp{not} has a lower priority than non-Boolean operators, so
\code{not \var{a} == \var{b}} is interpreted as \code{not (\var{a} ==
\var{b})}, and \code{\var{a} == not \var{b}} is a syntax error.

\end{description}


\subsection{Comparisons \label{comparisons}}

Comparison operations are supported by all objects.  They all have the
same priority (which is higher than that of the Boolean operations).
Comparisons can be chained arbitrarily; for example, \code{\var{x} <
\var{y} <= \var{z}} is equivalent to \code{\var{x} < \var{y} and
\var{y} <= \var{z}}, except that \var{y} is evaluated only once (but
in both cases \var{z} is not evaluated at all when \code{\var{x} <
\var{y}} is found to be false).
\indexii{chaining}{comparisons}

This table summarizes the comparison operations:

\begin{tableiii}{c|l|c}{code}{Operation}{Meaning}{Notes}
  \lineiii{<}{strictly less than}{}
  \lineiii{<=}{less than or equal}{}
  \lineiii{>}{strictly greater than}{}
  \lineiii{>=}{greater than or equal}{}
  \lineiii{==}{equal}{}
  \lineiii{!=}{not equal}{(1)}
  \lineiii{<>}{not equal}{(1)}
  \lineiii{is}{object identity}{}
  \lineiii{is not}{negated object identity}{}
\end{tableiii}
\indexii{operator}{comparison}
\opindex{==} % XXX *All* others have funny characters < ! >
\opindex{is}
\opindex{is not}

\noindent
Notes:

\begin{description}

\item[(1)]
\code{<>} and \code{!=} are alternate spellings for the same operator.
\code{!=} is the preferred spelling; \code{<>} is obsolescent.

\end{description}

Objects of different types, except different numeric types and different string types, never
compare equal; such objects are ordered consistently but arbitrarily
(so that sorting a heterogeneous array yields a consistent result).
Furthermore, some types (for example, file objects) support only a
degenerate notion of comparison where any two objects of that type are
unequal.  Again, such objects are ordered arbitrarily but
consistently. The \code{<}, \code{<=}, \code{>} and \code{>=}
operators will raise a \exception{TypeError} exception when any operand
is a complex number. 
\indexii{object}{numeric}
\indexii{objects}{comparing}

Instances of a class normally compare as non-equal unless the class
\withsubitem{(instance method)}{\ttindex{__cmp__()}}
defines the \method{__cmp__()} method.  Refer to the
\citetitle[../ref/customization.html]{Python Reference Manual} for
information on the use of this method to effect object comparisons.

\strong{Implementation note:} Objects of different types except
numbers are ordered by their type names; objects of the same types
that don't support proper comparison are ordered by their address.

Two more operations with the same syntactic priority,
\samp{in}\opindex{in} and \samp{not in}\opindex{not in}, are supported
only by sequence types (below).


\subsection{Numeric Types \label{typesnumeric}}

There are four distinct numeric types: \dfn{plain integers},
\dfn{long integers}, 
\dfn{floating point numbers}, and \dfn{complex numbers}.
In addition, Booleans are a subtype of plain integers.
Plain integers (also just called \dfn{integers})
are implemented using \ctype{long} in C, which gives them at least 32
bits of precision.  Long integers have unlimited precision.  Floating
point numbers are implemented using \ctype{double} in C.  All bets on
their precision are off unless you happen to know the machine you are
working with.
\obindex{numeric}
\obindex{Boolean}
\obindex{integer}
\obindex{long integer}
\obindex{floating point}
\obindex{complex number}
\indexii{C}{language}

Complex numbers have a real and imaginary part, which are each
implemented using \ctype{double} in C.  To extract these parts from
a complex number \var{z}, use \code{\var{z}.real} and \code{\var{z}.imag}.

Numbers are created by numeric literals or as the result of built-in
functions and operators.  Unadorned integer literals (including hex
and octal numbers) yield plain integers unless the value they denote
is too large to be represented as a plain integer, in which case
they yield a long integer.  Integer literals with an
\character{L} or \character{l} suffix yield long integers
(\character{L} is preferred because \samp{1l} looks too much like
eleven!).  Numeric literals containing a decimal point or an exponent
sign yield floating point numbers.  Appending \character{j} or
\character{J} to a numeric literal yields a complex number with a
zero real part. A complex numeric literal is the sum of a real and
an imaginary part.
\indexii{numeric}{literals}
\indexii{integer}{literals}
\indexiii{long}{integer}{literals}
\indexii{floating point}{literals}
\indexii{complex number}{literals}
\indexii{hexadecimal}{literals}
\indexii{octal}{literals}

Python fully supports mixed arithmetic: when a binary arithmetic
operator has operands of different numeric types, the operand with the
``narrower'' type is widened to that of the other, where plain
integer is narrower than long integer is narrower than floating point is
narrower than complex.
Comparisons between numbers of mixed type use the same rule.\footnote{
	As a consequence, the list \code{[1, 2]} is considered equal
        to \code{[1.0, 2.0]}, and similarly for tuples.
} The constructors \function{int()}, \function{long()}, \function{float()},
and \function{complex()} can be used
to produce numbers of a specific type.
\index{arithmetic}
\bifuncindex{int}
\bifuncindex{long}
\bifuncindex{float}
\bifuncindex{complex}

All numeric types (except complex) support the following operations,
sorted by ascending priority (operations in the same box have the same
priority; all numeric operations have a higher priority than
comparison operations):

\begin{tableiii}{c|l|c}{code}{Operation}{Result}{Notes}
  \lineiii{\var{x} + \var{y}}{sum of \var{x} and \var{y}}{}
  \lineiii{\var{x} - \var{y}}{difference of \var{x} and \var{y}}{}
  \hline
  \lineiii{\var{x} * \var{y}}{product of \var{x} and \var{y}}{}
  \lineiii{\var{x} / \var{y}}{quotient of \var{x} and \var{y}}{(1)}
  \lineiii{\var{x} \%{} \var{y}}{remainder of \code{\var{x} / \var{y}}}{(4)}
  \hline
  \lineiii{-\var{x}}{\var{x} negated}{}
  \lineiii{+\var{x}}{\var{x} unchanged}{}
  \hline
  \lineiii{abs(\var{x})}{absolute value or magnitude of \var{x}}{}
  \lineiii{int(\var{x})}{\var{x} converted to integer}{(2)}
  \lineiii{long(\var{x})}{\var{x} converted to long integer}{(2)}
  \lineiii{float(\var{x})}{\var{x} converted to floating point}{}
  \lineiii{complex(\var{re},\var{im})}{a complex number with real part \var{re}, imaginary part \var{im}.  \var{im} defaults to zero.}{}
  \lineiii{\var{c}.conjugate()}{conjugate of the complex number \var{c}}{}
  \lineiii{divmod(\var{x}, \var{y})}{the pair \code{(\var{x} / \var{y}, \var{x} \%{} \var{y})}}{(3)(4)}
  \lineiii{pow(\var{x}, \var{y})}{\var{x} to the power \var{y}}{}
  \lineiii{\var{x} ** \var{y}}{\var{x} to the power \var{y}}{}
\end{tableiii}
\indexiii{operations on}{numeric}{types}
\withsubitem{(complex number method)}{\ttindex{conjugate()}}

\noindent
Notes:
\begin{description}

\item[(1)]
For (plain or long) integer division, the result is an integer.
The result is always rounded towards minus infinity: 1/2 is 0,
(-1)/2 is -1, 1/(-2) is -1, and (-1)/(-2) is 0.  Note that the result
is a long integer if either operand is a long integer, regardless of
the numeric value.
\indexii{integer}{division}
\indexiii{long}{integer}{division}

\item[(2)]
Conversion from floating point to (long or plain) integer may round or
truncate as in C; see functions \function{floor()} and
\function{ceil()} in the \refmodule{math}\refbimodindex{math} module
for well-defined conversions.
\withsubitem{(in module math)}{\ttindex{floor()}\ttindex{ceil()}}
\indexii{numeric}{conversions}
\indexii{C}{language}

\item[(3)]
See section \ref{built-in-funcs}, ``Built-in Functions,'' for a full
description.

\item[(4)]
Complex floor division operator, modulo operator, and \function{divmod()}.

\deprecated{2.3}{Instead convert to float using \function{abs()}
if appropriate.}

\end{description}
% XXXJH exceptions: overflow (when? what operations?) zerodivision

\subsubsection{Bit-string Operations on Integer Types \label{bitstring-ops}}
\nodename{Bit-string Operations}

Plain and long integer types support additional operations that make
sense only for bit-strings.  Negative numbers are treated as their 2's
complement value (for long integers, this assumes a sufficiently large
number of bits that no overflow occurs during the operation).

The priorities of the binary bit-wise operations are all lower than
the numeric operations and higher than the comparisons; the unary
operation \samp{\~} has the same priority as the other unary numeric
operations (\samp{+} and \samp{-}).

This table lists the bit-string operations sorted in ascending
priority (operations in the same box have the same priority):

\begin{tableiii}{c|l|c}{code}{Operation}{Result}{Notes}
  \lineiii{\var{x} | \var{y}}{bitwise \dfn{or} of \var{x} and \var{y}}{}
  \lineiii{\var{x} \^{} \var{y}}{bitwise \dfn{exclusive or} of \var{x} and \var{y}}{}
  \lineiii{\var{x} \&{} \var{y}}{bitwise \dfn{and} of \var{x} and \var{y}}{}
  \lineiii{\var{x} << \var{n}}{\var{x} shifted left by \var{n} bits}{(1), (2)}
  \lineiii{\var{x} >> \var{n}}{\var{x} shifted right by \var{n} bits}{(1), (3)}
  \hline
  \lineiii{\~\var{x}}{the bits of \var{x} inverted}{}
\end{tableiii}
\indexiii{operations on}{integer}{types}
\indexii{bit-string}{operations}
\indexii{shifting}{operations}
\indexii{masking}{operations}

\noindent
Notes:
\begin{description}
\item[(1)] Negative shift counts are illegal and cause a
\exception{ValueError} to be raised.
\item[(2)] A left shift by \var{n} bits is equivalent to
multiplication by \code{pow(2, \var{n})} without overflow check.
\item[(3)] A right shift by \var{n} bits is equivalent to
division by \code{pow(2, \var{n})} without overflow check.
\end{description}


\subsection{Iterator Types \label{typeiter}}

\versionadded{2.2}
\index{iterator protocol}
\index{protocol!iterator}
\index{sequence!iteration}
\index{container!iteration over}

Python supports a concept of iteration over containers.  This is
implemented using two distinct methods; these are used to allow
user-defined classes to support iteration.  Sequences, described below
in more detail, always support the iteration methods.

One method needs to be defined for container objects to provide
iteration support:

\begin{methoddesc}[container]{__iter__}{}
  Return an iterator object.  The object is required to support the
  iterator protocol described below.  If a container supports
  different types of iteration, additional methods can be provided to
  specifically request iterators for those iteration types.  (An
  example of an object supporting multiple forms of iteration would be
  a tree structure which supports both breadth-first and depth-first
  traversal.)  This method corresponds to the \member{tp_iter} slot of
  the type structure for Python objects in the Python/C API.
\end{methoddesc}

The iterator objects themselves are required to support the following
two methods, which together form the \dfn{iterator protocol}:

\begin{methoddesc}[iterator]{__iter__}{}
  Return the iterator object itself.  This is required to allow both
  containers and iterators to be used with the \keyword{for} and
  \keyword{in} statements.  This method corresponds to the
  \member{tp_iter} slot of the type structure for Python objects in
  the Python/C API.
\end{methoddesc}

\begin{methoddesc}[iterator]{next}{}
  Return the next item from the container.  If there are no further
  items, raise the \exception{StopIteration} exception.  This method
  corresponds to the \member{tp_iternext} slot of the type structure
  for Python objects in the Python/C API.
\end{methoddesc}

Python defines several iterator objects to support iteration over
general and specific sequence types, dictionaries, and other more
specialized forms.  The specific types are not important beyond their
implementation of the iterator protocol.

The intention of the protocol is that once an iterator's
\method{next()} method raises \exception{StopIteration}, it will
continue to do so on subsequent calls.  Implementations that
do not obey this property are deemed broken.  (This constraint
was added in Python 2.3; in Python 2.2, various iterators are
broken according to this rule.)

Python's generators provide a convenient way to implement the
iterator protocol.  If a container object's \method{__iter__()}
method is implemented as a generator, it will automatically
return an iterator object (technically, a generator object)
supplying the \method{__iter__()} and \method{next()} methods.


\subsection{Sequence Types \label{typesseq}}

There are six sequence types: strings, Unicode strings, lists,
tuples, buffers, and xrange objects.

String literals are written in single or double quotes:
\code{'xyzzy'}, \code{"frobozz"}.  See chapter 2 of the
\citetitle[../ref/strings.html]{Python Reference Manual} for more about
string literals.  Unicode strings are much like strings, but are
specified in the syntax using a preceeding \character{u} character:
\code{u'abc'}, \code{u"def"}.  Lists are constructed with square brackets,
separating items with commas: \code{[a, b, c]}.  Tuples are
constructed by the comma operator (not within square brackets), with
or without enclosing parentheses, but an empty tuple must have the
enclosing parentheses, e.g., \code{a, b, c} or \code{()}.  A single
item tuple must have a trailing comma, e.g., \code{(d,)}.
\obindex{sequence}
\obindex{string}
\obindex{Unicode}
\obindex{tuple}
\obindex{list}

Buffer objects are not directly supported by Python syntax, but can be
created by calling the builtin function
\function{buffer()}.\bifuncindex{buffer}  They don't support
concatenation or repetition.
\obindex{buffer}

Xrange objects are similar to buffers in that there is no specific
syntax to create them, but they are created using the \function{xrange()}
function.\bifuncindex{xrange}  They don't support slicing,
concatenation or repetition, and using \code{in}, \code{not in},
\function{min()} or \function{max()} on them is inefficient.
\obindex{xrange}

Most sequence types support the following operations.  The \samp{in} and
\samp{not in} operations have the same priorities as the comparison
operations.  The \samp{+} and \samp{*} operations have the same
priority as the corresponding numeric operations.\footnote{They must
have since the parser can't tell the type of the operands.}

This table lists the sequence operations sorted in ascending priority
(operations in the same box have the same priority).  In the table,
\var{s} and \var{t} are sequences of the same type; \var{n}, \var{i}
and \var{j} are integers:

\begin{tableiii}{c|l|c}{code}{Operation}{Result}{Notes}
  \lineiii{\var{x} in \var{s}}{\code{1} if an item of \var{s} is equal to \var{x}, else \code{0}}{(1)}
  \lineiii{\var{x} not in \var{s}}{\code{0} if an item of \var{s} is
equal to \var{x}, else \code{1}}{(1)}
  \hline
  \lineiii{\var{s} + \var{t}}{the concatenation of \var{s} and \var{t}}{}
  \lineiii{\var{s} * \var{n}\textrm{,} \var{n} * \var{s}}{\var{n} shallow copies of \var{s} concatenated}{(2)}
  \hline
  \lineiii{\var{s}[\var{i}]}{\var{i}'th item of \var{s}, origin 0}{(3)}
  \lineiii{\var{s}[\var{i}:\var{j}]}{slice of \var{s} from \var{i} to \var{j}}{(3), (4)}
  \lineiii{\var{s}[\var{i}:\var{j}:\var{k}]}{slice of \var{s} from \var{i} to \var{j} with step \var{k}}{(3), (5)}
  \hline
  \lineiii{len(\var{s})}{length of \var{s}}{}
  \lineiii{min(\var{s})}{smallest item of \var{s}}{}
  \lineiii{max(\var{s})}{largest item of \var{s}}{}
\end{tableiii}
\indexiii{operations on}{sequence}{types}
\bifuncindex{len}
\bifuncindex{min}
\bifuncindex{max}
\indexii{concatenation}{operation}
\indexii{repetition}{operation}
\indexii{subscript}{operation}
\indexii{slice}{operation}
\indexii{extended slice}{operation}
\opindex{in}
\opindex{not in}

\noindent
Notes:

\begin{description}
\item[(1)] When \var{s} is a string or Unicode string object the
\code{in} and \code{not in} operations act like a substring test.  In
Python versions before 2.3, \var{x} had to be a string of length 1.
In Python 2.3 and beyond, \var{x} may be a string of any length.

\item[(2)] Values of \var{n} less than \code{0} are treated as
  \code{0} (which yields an empty sequence of the same type as
  \var{s}).  Note also that the copies are shallow; nested structures
  are not copied.  This often haunts new Python programmers; consider:

\begin{verbatim}
>>> lists = [[]] * 3
>>> lists
[[], [], []]
>>> lists[0].append(3)
>>> lists
[[3], [3], [3]]
\end{verbatim}

  What has happened is that \code{lists} is a list containing three
  copies of the list \code{[[]]} (a one-element list containing an
  empty list), but the contained list is shared by each copy.  You can
  create a list of different lists this way:

\begin{verbatim}
>>> lists = [[] for i in range(3)]
>>> lists[0].append(3)
>>> lists[1].append(5)
>>> lists[2].append(7)
>>> lists
[[3], [5], [7]]
\end{verbatim}

\item[(3)] If \var{i} or \var{j} is negative, the index is relative to
  the end of the string: \code{len(\var{s}) + \var{i}} or
  \code{len(\var{s}) + \var{j}} is substituted.  But note that \code{-0} is
  still \code{0}.

\item[(4)] The slice of \var{s} from \var{i} to \var{j} is defined as
  the sequence of items with index \var{k} such that \code{\var{i} <=
  \var{k} < \var{j}}.  If \var{i} or \var{j} is greater than
  \code{len(\var{s})}, use \code{len(\var{s})}.  If \var{i} is omitted,
  use \code{0}.  If \var{j} is omitted, use \code{len(\var{s})}.  If
  \var{i} is greater than or equal to \var{j}, the slice is empty.

\item[(5)] The slice of \var{s} from \var{i} to \var{j} with step
  \var{k} is defined as the sequence of items with index 
  \code{\var{x} = \var{i} + \var{n}*\var{k}} such that \code{0}
  \code{<=} \var{n} \code{<} \code{abs(i-j)}.  If \var{i} or \var{j}
  is greater than \code{len(\var{s})}, use \code{len(\var{s})}.  If
  \var{i} or \var{j} are omitted then they become ``end'' values
  (which end depends on the sign of \var{k}).  Note, \var{k} cannot
  be zero.

\end{description}


\subsubsection{String Methods \label{string-methods}}

These are the string methods which both 8-bit strings and Unicode
objects support:

\begin{methoddesc}[string]{capitalize}{}
Return a copy of the string with only its first character capitalized.
\end{methoddesc}

\begin{methoddesc}[string]{center}{width}
Return centered in a string of length \var{width}. Padding is done
using spaces.
\end{methoddesc}

\begin{methoddesc}[string]{count}{sub\optional{, start\optional{, end}}}
Return the number of occurrences of substring \var{sub} in string
S\code{[\var{start}:\var{end}]}.  Optional arguments \var{start} and
\var{end} are interpreted as in slice notation.
\end{methoddesc}

\begin{methoddesc}[string]{decode}{\optional{encoding\optional{, errors}}}
Decodes the string using the codec registered for \var{encoding}.
\var{encoding} defaults to the default string encoding.  \var{errors}
may be given to set a different error handling scheme.  The default is
\code{'strict'}, meaning that encoding errors raise
\exception{ValueError}.  Other possible values are \code{'ignore'} and
\code{replace'}.
\versionadded{2.2}
\end{methoddesc}

\begin{methoddesc}[string]{encode}{\optional{encoding\optional{,errors}}}
Return an encoded version of the string.  Default encoding is the current
default string encoding.  \var{errors} may be given to set a different
error handling scheme.  The default for \var{errors} is
\code{'strict'}, meaning that encoding errors raise a
\exception{ValueError}.  Other possible values are \code{'ignore'} and
\code{'replace'}.
\versionadded{2.0}
\end{methoddesc}

\begin{methoddesc}[string]{endswith}{suffix\optional{, start\optional{, end}}}
Return \code{True} if the string ends with the specified \var{suffix},
otherwise return \code{False}.  With optional \var{start}, test beginning at
that position.  With optional \var{end}, stop comparing at that position.
\end{methoddesc}

\begin{methoddesc}[string]{expandtabs}{\optional{tabsize}}
Return a copy of the string where all tab characters are expanded
using spaces.  If \var{tabsize} is not given, a tab size of \code{8}
characters is assumed.
\end{methoddesc}

\begin{methoddesc}[string]{find}{sub\optional{, start\optional{, end}}}
Return the lowest index in the string where substring \var{sub} is
found, such that \var{sub} is contained in the range [\var{start},
\var{end}).  Optional arguments \var{start} and \var{end} are
interpreted as in slice notation.  Return \code{-1} if \var{sub} is
not found.
\end{methoddesc}

\begin{methoddesc}[string]{index}{sub\optional{, start\optional{, end}}}
Like \method{find()}, but raise \exception{ValueError} when the
substring is not found.
\end{methoddesc}

\begin{methoddesc}[string]{isalnum}{}
Return true if all characters in the string are alphanumeric and there
is at least one character, false otherwise.
\end{methoddesc}

\begin{methoddesc}[string]{isalpha}{}
Return true if all characters in the string are alphabetic and there
is at least one character, false otherwise.
\end{methoddesc}

\begin{methoddesc}[string]{isdigit}{}
Return true if there are only digit characters, false otherwise.
\end{methoddesc}

\begin{methoddesc}[string]{islower}{}
Return true if all cased characters in the string are lowercase and
there is at least one cased character, false otherwise.
\end{methoddesc}

\begin{methoddesc}[string]{isspace}{}
Return true if there are only whitespace characters in the string and
the string is not empty, false otherwise.
\end{methoddesc}

\begin{methoddesc}[string]{istitle}{}
Return true if the string is a titlecased string: uppercase
characters may only follow uncased characters and lowercase characters
only cased ones.  Return false otherwise.
\end{methoddesc}

\begin{methoddesc}[string]{isupper}{}
Return true if all cased characters in the string are uppercase and
there is at least one cased character, false otherwise.
\end{methoddesc}

\begin{methoddesc}[string]{join}{seq}
Return a string which is the concatenation of the strings in the
sequence \var{seq}.  The separator between elements is the string
providing this method.
\end{methoddesc}

\begin{methoddesc}[string]{ljust}{width}
Return the string left justified in a string of length \var{width}.
Padding is done using spaces.  The original string is returned if
\var{width} is less than \code{len(\var{s})}.
\end{methoddesc}

\begin{methoddesc}[string]{lower}{}
Return a copy of the string converted to lowercase.
\end{methoddesc}

\begin{methoddesc}[string]{lstrip}{\optional{chars}}
Return a copy of the string with leading characters removed.  If
\var{chars} is omitted or \code{None}, whitespace characters are
removed.  If given and not \code{None}, \var{chars} must be a string;
the characters in the string will be stripped from the beginning of
the string this method is called on.
\versionchanged[Support for the \var{chars} argument]{2.2.2}
\end{methoddesc}

\begin{methoddesc}[string]{replace}{old, new\optional{, maxsplit}}
Return a copy of the string with all occurrences of substring
\var{old} replaced by \var{new}.  If the optional argument
\var{maxsplit} is given, only the first \var{maxsplit} occurrences are
replaced.
\end{methoddesc}

\begin{methoddesc}[string]{rfind}{sub \optional{,start \optional{,end}}}
Return the highest index in the string where substring \var{sub} is
found, such that \var{sub} is contained within s[start,end].  Optional
arguments \var{start} and \var{end} are interpreted as in slice
notation.  Return \code{-1} on failure.
\end{methoddesc}

\begin{methoddesc}[string]{rindex}{sub\optional{, start\optional{, end}}}
Like \method{rfind()} but raises \exception{ValueError} when the
substring \var{sub} is not found.
\end{methoddesc}

\begin{methoddesc}[string]{rjust}{width}
Return the string right justified in a string of length \var{width}.
Padding is done using spaces.  The original string is returned if
\var{width} is less than \code{len(\var{s})}.
\end{methoddesc}

\begin{methoddesc}[string]{rstrip}{\optional{chars}}
Return a copy of the string with trailing characters removed.  If
\var{chars} is omitted or \code{None}, whitespace characters are
removed.  If given and not \code{None}, \var{chars} must be a string;
the characters in the string will be stripped from the end of the
string this method is called on.
\versionchanged[Support for the \var{chars} argument]{2.2.2}
\end{methoddesc}

\begin{methoddesc}[string]{split}{\optional{sep \optional{,maxsplit}}}
Return a list of the words in the string, using \var{sep} as the
delimiter string.  If \var{maxsplit} is given, at most \var{maxsplit}
splits are done.  If \var{sep} is not specified or \code{None}, any
whitespace string is a separator.
\end{methoddesc}

\begin{methoddesc}[string]{splitlines}{\optional{keepends}}
Return a list of the lines in the string, breaking at line
boundaries.  Line breaks are not included in the resulting list unless
\var{keepends} is given and true.
\end{methoddesc}

\begin{methoddesc}[string]{startswith}{prefix\optional{,
                                       start\optional{, end}}}
Return \code{True} if string starts with the \var{prefix}, otherwise
return \code{False}.  With optional \var{start}, test string beginning at
that position.  With optional \var{end}, stop comparing string at that
position.
\end{methoddesc}

\begin{methoddesc}[string]{strip}{\optional{chars}}
Return a copy of the string with leading and trailing characters
removed.  If \var{chars} is omitted or \code{None}, whitespace
characters are removed.  If given and not \code{None}, \var{chars}
must be a string; the characters in the string will be stripped from
the both ends of the string this method is called on.
\versionchanged[Support for the \var{chars} argument]{2.2.2}
\end{methoddesc}

\begin{methoddesc}[string]{swapcase}{}
Return a copy of the string with uppercase characters converted to
lowercase and vice versa.
\end{methoddesc}

\begin{methoddesc}[string]{title}{}
Return a titlecased version of the string: words start with uppercase
characters, all remaining cased characters are lowercase.
\end{methoddesc}

\begin{methoddesc}[string]{translate}{table\optional{, deletechars}}
Return a copy of the string where all characters occurring in the
optional argument \var{deletechars} are removed, and the remaining
characters have been mapped through the given translation table, which
must be a string of length 256.

For Unicode objects, the \method{translate()} method does not
accept the optional \var{deletechars} argument.  Instead, it
returns a copy of the \var{s} where all characters have been mapped
through the given translation table which must be a mapping of
Unicode ordinals to Unicode ordinals, Unicode strings or \code{None}.
Unmapped characters are left untouched. Characters mapped to \code{None}
are deleted.  Note, a more flexible approach is to create a custom
character mapping codec using the \refmodule{codecs} module (see
\module{encodings.cp1251} for an example).      
\end{methoddesc}

\begin{methoddesc}[string]{upper}{}
Return a copy of the string converted to uppercase.
\end{methoddesc}

\begin{methoddesc}[string]{zfill}{width}
Return the numeric string left filled with zeros in a string
of length \var{width}. The original string is returned if
\var{width} is less than \code{len(\var{s})}.
\versionadded{2.2.2}
\end{methoddesc}


\subsubsection{String Formatting Operations \label{typesseq-strings}}

\index{formatting, string (\%{})}
\index{interpolation, string (\%{})}
\index{string!formatting}
\index{string!interpolation}
\index{printf-style formatting}
\index{sprintf-style formatting}
\index{\protect\%{} formatting}
\index{\protect\%{} interpolation}

String and Unicode objects have one unique built-in operation: the
\code{\%} operator (modulo).  This is also known as the string
\emph{formatting} or \emph{interpolation} operator.  Given
\code{\var{format} \% \var{values}} (where \var{format} is a string or
Unicode object), \code{\%} conversion specifications in \var{format}
are replaced with zero or more elements of \var{values}.  The effect
is similar to the using \cfunction{sprintf()} in the C language.  If
\var{format} is a Unicode object, or if any of the objects being
converted using the \code{\%s} conversion are Unicode objects, the
result will also be a Unicode object.

If \var{format} requires a single argument, \var{values} may be a
single non-tuple object. \footnote{To format only a tuple you
should therefore provide a singleton tuple whose only element
is the tuple to be formatted.}  Otherwise, \var{values} must be a tuple with
exactly the number of items specified by the format string, or a
single mapping object (for example, a dictionary).

A conversion specifier contains two or more characters and has the
following components, which must occur in this order:

\begin{enumerate}
  \item  The \character{\%} character, which marks the start of the
         specifier.
  \item  Mapping key (optional), consisting of a parenthesised sequence
         of characters (for example, \code{(somename)}).
  \item  Conversion flags (optional), which affect the result of some
         conversion types.
  \item  Minimum field width (optional).  If specified as an
         \character{*} (asterisk), the actual width is read from the
         next element of the tuple in \var{values}, and the object to
         convert comes after the minimum field width and optional
         precision.
  \item  Precision (optional), given as a \character{.} (dot) followed
         by the precision.  If specified as \character{*} (an
         asterisk), the actual width is read from the next element of
         the tuple in \var{values}, and the value to convert comes after
         the precision.
  \item  Length modifier (optional).
  \item  Conversion type.
\end{enumerate}

When the right argument is a dictionary (or other mapping type), then
the formats in the string \emph{must} include a parenthesised mapping key into
that dictionary inserted immediately after the \character{\%}
character. The mapping key selects the value to be formatted from the
mapping.  For example:

\begin{verbatim}
>>> print '%(language)s has %(#)03d quote types.' % \
          {'language': "Python", "#": 2}
Python has 002 quote types.
\end{verbatim}

In this case no \code{*} specifiers may occur in a format (since they
require a sequential parameter list).

The conversion flag characters are:

\begin{tableii}{c|l}{character}{Flag}{Meaning}
  \lineii{\#}{The value conversion will use the ``alternate form''
              (where defined below).}
  \lineii{0}{The conversion will be zero padded for numeric values.}
  \lineii{-}{The converted value is left adjusted (overrides
             the \character{0} conversion if both are given).}
  \lineii{{~}}{(a space) A blank should be left before a positive number
             (or empty string) produced by a signed conversion.}
  \lineii{+}{A sign character (\character{+} or \character{-}) will
             precede the conversion (overrides a "space" flag).}
\end{tableii}

The length modifier may be \code{h}, \code{l}, and \code{L} may be
present, but are ignored as they are not necessary for Python.

The conversion types are:

\begin{tableiii}{c|l|c}{character}{Conversion}{Meaning}{Notes}
  \lineiii{d}{Signed integer decimal.}{}
  \lineiii{i}{Signed integer decimal.}{}
  \lineiii{o}{Unsigned octal.}{(1)}
  \lineiii{u}{Unsigned decimal.}{}
  \lineiii{x}{Unsigned hexidecimal (lowercase).}{(2)}
  \lineiii{X}{Unsigned hexidecimal (uppercase).}{(2)}
  \lineiii{e}{Floating point exponential format (lowercase).}{}
  \lineiii{E}{Floating point exponential format (uppercase).}{}
  \lineiii{f}{Floating point decimal format.}{}
  \lineiii{F}{Floating point decimal format.}{}
  \lineiii{g}{Same as \character{e} if exponent is greater than -4 or
              less than precision, \character{f} otherwise.}{}
  \lineiii{G}{Same as \character{E} if exponent is greater than -4 or
              less than precision, \character{F} otherwise.}{}
  \lineiii{c}{Single character (accepts integer or single character
              string).}{}
  \lineiii{r}{String (converts any python object using
              \function{repr()}).}{(3)}
  \lineiii{s}{String (converts any python object using
              \function{str()}).}{(4)}
  \lineiii{\%}{No argument is converted, results in a \character{\%}
               character in the result.}{}
\end{tableiii}

\noindent
Notes:
\begin{description}
  \item[(1)]
    The alternate form causes a leading zero (\character{0}) to be
    inserted between left-hand padding and the formatting of the
    number if the leading character of the result is not already a
    zero.
  \item[(2)]
    The alternate form causes a leading \code{'0x'} or \code{'0X'}
    (depending on whether the \character{x} or \character{X} format
    was used) to be inserted between left-hand padding and the
    formatting of the number if the leading character of the result is
    not already a zero.
  \item[(3)]
    The \code{\%r} conversion was added in Python 2.0.
  \item[(4)]
    If the object or format provided is a \class{unicode} string,
    the resulting string will also be \class{unicode}.
\end{description}

% XXX Examples?

Since Python strings have an explicit length, \code{\%s} conversions
do not assume that \code{'\e0'} is the end of the string.

For safety reasons, floating point precisions are clipped to 50;
\code{\%f} conversions for numbers whose absolute value is over 1e25
are replaced by \code{\%g} conversions.\footnote{
  These numbers are fairly arbitrary.  They are intended to
  avoid printing endless strings of meaningless digits without hampering
  correct use and without having to know the exact precision of floating
  point values on a particular machine.
}  All other errors raise exceptions.

Additional string operations are defined in standard modules
\refmodule{string}\refstmodindex{string} and
\refmodule{re}.\refstmodindex{re}


\subsubsection{XRange Type \label{typesseq-xrange}}

The xrange\obindex{xrange} type is an immutable sequence which is
commonly used for looping.  The advantage of the xrange type is that an
xrange object will always take the same amount of memory, no matter the
size of the range it represents.  There are no consistent performance
advantages.

XRange objects have very little behavior: they only support indexing,
iteration, and the \function{len()} function.


\subsubsection{Mutable Sequence Types \label{typesseq-mutable}}

List objects support additional operations that allow in-place
modification of the object.
Other mutable sequence types (when added to the language) should
also support these operations.
Strings and tuples are immutable sequence types: such objects cannot
be modified once created.
The following operations are defined on mutable sequence types (where
\var{x} is an arbitrary object):
\indexiii{mutable}{sequence}{types}
\obindex{list}

\begin{tableiii}{c|l|c}{code}{Operation}{Result}{Notes}
  \lineiii{\var{s}[\var{i}] = \var{x}}
	{item \var{i} of \var{s} is replaced by \var{x}}{}
  \lineiii{\var{s}[\var{i}:\var{j}] = \var{t}}
  	{slice of \var{s} from \var{i} to \var{j} is replaced by \var{t}}{}
  \lineiii{del \var{s}[\var{i}:\var{j}]}
	{same as \code{\var{s}[\var{i}:\var{j}] = []}}{}
  \lineiii{\var{s}[\var{i}:\var{j}:\var{k}] = \var{t}}
  	{the elements of \code{\var{s}[\var{i}:\var{j}:\var{k}]} are replaced by those of \var{t}}{(1)}
  \lineiii{del \var{s}[\var{i}:\var{j}:\var{k}]}
	{removes the elements of \code{\var{s}[\var{i}:\var{j}:\var{k}]} from the list}{}
  \lineiii{\var{s}.append(\var{x})}
	{same as \code{\var{s}[len(\var{s}):len(\var{s})] = [\var{x}]}}{(2)}
  \lineiii{\var{s}.extend(\var{x})}
        {same as \code{\var{s}[len(\var{s}):len(\var{s})] = \var{x}}}{(3)}
  \lineiii{\var{s}.count(\var{x})}
    {return number of \var{i}'s for which \code{\var{s}[\var{i}] == \var{x}}}{}
  \lineiii{\var{s}.index(\var{x}\optional{, \var{i}\optional{, \var{j}}})}
    {return smallest \var{k} such that \code{\var{s}[\var{k}] == \var{x}} and
    \code{\var{i} <= \var{k} < \var{j}}}{(4)}
  \lineiii{\var{s}.insert(\var{i}, \var{x})}
	{same as \code{\var{s}[\var{i}:\var{i}] = [\var{x}]}}{(5)}
  \lineiii{\var{s}.pop(\optional{\var{i}})}
    {same as \code{\var{x} = \var{s}[\var{i}]; del \var{s}[\var{i}]; return \var{x}}}{(6)}
  \lineiii{\var{s}.remove(\var{x})}
	{same as \code{del \var{s}[\var{s}.index(\var{x})]}}{(4)}
  \lineiii{\var{s}.reverse()}
	{reverses the items of \var{s} in place}{(7)}
  \lineiii{\var{s}.sort(\optional{\var{cmpfunc=None}})}
	{sort the items of \var{s} in place}{(7), (8), (9), (10)}
\end{tableiii}
\indexiv{operations on}{mutable}{sequence}{types}
\indexiii{operations on}{sequence}{types}
\indexiii{operations on}{list}{type}
\indexii{subscript}{assignment}
\indexii{slice}{assignment}
\indexii{extended slice}{assignment}
\stindex{del}
\withsubitem{(list method)}{
  \ttindex{append()}\ttindex{extend()}\ttindex{count()}\ttindex{index()}
  \ttindex{insert()}\ttindex{pop()}\ttindex{remove()}\ttindex{reverse()}
  \ttindex{sort()}}
\noindent
Notes:
\begin{description}
\item[(1)] \var{t} must have the same length as the slice it is 
  replacing.

\item[(2)] The C implementation of Python has historically accepted
  multiple parameters and implicitly joined them into a tuple; this
  no longer works in Python 2.0.  Use of this misfeature has been
  deprecated since Python 1.4.

\item[(3)] Raises an exception when \var{x} is not a list object.  The
  \method{extend()} method is experimental and not supported by
  mutable sequence types other than lists.

\item[(4)] Raises \exception{ValueError} when \var{x} is not found in
  \var{s}. When a negative index is passed as the second or third parameter
  to the \method{index()} method, the list length is added, as for slice
  indices.  If it is still negative, it is truncated to zero, as for
  slice indices.  \versionchanged[Previously, \method{index()} didn't
  have arguments for specifying start and stop positions]{2.3}

\item[(5)] When a negative index is passed as the first parameter to
  the \method{insert()} method, the list length is added, as for slice
  indices.  If it is still negative, it is truncated to zero, as for
  slice indices.  \versionchanged[Previously, all negative indices
  were truncated to zero]{2.3}

\item[(6)] The \method{pop()} method is only supported by the list and
  array types.  The optional argument \var{i} defaults to \code{-1},
  so that by default the last item is removed and returned.

\item[(7)] The \method{sort()} and \method{reverse()} methods modify the
  list in place for economy of space when sorting or reversing a large
  list.  To remind you that they operate by side effect, they don't return
  the sorted or reversed list.

\item[(8)] The \method{sort()} method takes an optional argument
  specifying a comparison function of two arguments (list items) which
  should return a negative, zero or positive number depending on whether
  the first argument is considered smaller than, equal to, or larger
  than the second argument.  Note that this slows the sorting process
  down considerably; for example to sort a list in reverse order it is much
  faster to call \method{sort()} followed by \method{reverse()}
  than to use \method{sort()} with a comparison function that
  reverses the ordering of the elements.  Passing \constant{None} as the
  comparison function is semantically equivalent to calling
  \method{sort()} with no comparison function.
  \versionchanged[Support for \code{None} as an equivalent to omitting
  \var{cmpfunc} was added]{2.3}

  As an example of using the \var{cmpfunc} argument to the
  \method{sort()} method, consider sorting a list of sequences by the
  second element of that list:

\begin{verbatim}
def mycmp(a, b):
    return cmp(a[1], b[1])

mylist.sort(mycmp)
\end{verbatim}

  A more time-efficient approach for reasonably-sized data structures can
  often be used:

\begin{verbatim}
tmplist = [(x[1], x) for x in mylist]
tmplist.sort()
mylist = [x for (key, x) in tmplist]
\end{verbatim}

\item[(9)] Whether the \method{sort()} method is stable is not defined by
  the language (a sort is stable if it guarantees not to change the
  relative order of elements that compare equal).  In the C
  implementation of Python, sorts were stable only by accident through
  Python 2.2.  The C implementation of Python 2.3 introduced a stable
  \method{sort()} method, but code that intends to be portable across
  implementations and versions must not rely on stability.

\item[(10)] While a list is being sorted, the effect of attempting to
  mutate, or even inspect, the list is undefined.  The C implementation
  of Python 2.3 makes the list appear empty for the duration, and raises
  \exception{ValueError} if it can detect that the list has been
  mutated during a sort.
\end{description}


\subsection{Mapping Types \label{typesmapping}}
\obindex{mapping}
\obindex{dictionary}

A \dfn{mapping} object maps  immutable values to
arbitrary objects.  Mappings are mutable objects.  There is currently
only one standard mapping type, the \dfn{dictionary}.  A dictionary's keys are
almost arbitrary values.  Only values containing lists, dictionaries
or other mutable types (that are compared by value rather than by
object identity) may not be used as keys.
Numeric types used for keys obey the normal rules for numeric
comparison: if two numbers compare equal (e.g. \code{1} and
\code{1.0}) then they can be used interchangeably to index the same
dictionary entry.

Dictionaries are created by placing a comma-separated list of
\code{\var{key}: \var{value}} pairs within braces, for example:
\code{\{'jack': 4098, 'sjoerd': 4127\}} or
\code{\{4098: 'jack', 4127: 'sjoerd'\}}.

The following operations are defined on mappings (where \var{a} and
\var{b} are mappings, \var{k} is a key, and \var{v} and \var{x} are
arbitrary objects):
\indexiii{operations on}{mapping}{types}
\indexiii{operations on}{dictionary}{type}
\stindex{del}
\bifuncindex{len}
\withsubitem{(dictionary method)}{
  \ttindex{clear()}
  \ttindex{copy()}
  \ttindex{has_key()}
  \ttindex{items()}
  \ttindex{keys()}
  \ttindex{update()}
  \ttindex{values()}
  \ttindex{get()}
  \ttindex{setdefault()}
  \ttindex{pop()}
  \ttindex{popitem()}
  \ttindex{iteritems()}
  \ttindex{iterkeys()}
  \ttindex{itervalues()}}

\begin{tableiii}{c|l|c}{code}{Operation}{Result}{Notes}
  \lineiii{len(\var{a})}{the number of items in \var{a}}{}
  \lineiii{\var{a}[\var{k}]}{the item of \var{a} with key \var{k}}{(1)}
  \lineiii{\var{a}[\var{k}] = \var{v}}
          {set \code{\var{a}[\var{k}]} to \var{v}}
          {}
  \lineiii{del \var{a}[\var{k}]}
          {remove \code{\var{a}[\var{k}]} from \var{a}}
          {(1)}
  \lineiii{\var{a}.clear()}{remove all items from \code{a}}{}
  \lineiii{\var{a}.copy()}{a (shallow) copy of \code{a}}{}
  \lineiii{\var{a}.has_key(\var{k})}
          {\code{True} if \var{a} has a key \var{k}, else \code{False}}
          {}
  \lineiii{\var{k} \code{in} \var{a}}
          {Equivalent to \var{a}.has_key(\var{k})}
          {(2)}
  \lineiii{\var{k} not in \var{a}}
          {Equivalent to \code{not} \var{a}.has_key(\var{k})}
          {(2)}
  \lineiii{\var{a}.items()}
          {a copy of \var{a}'s list of (\var{key}, \var{value}) pairs}
          {(3)}
  \lineiii{\var{a}.keys()}{a copy of \var{a}'s list of keys}{(3)}
  \lineiii{\var{a}.update(\var{b})}
          {\code{for \var{k} in \var{b}.keys(): \var{a}[\var{k}] = \var{b}[\var{k}]}}
          {}
  \lineiii{\var{a}.fromkeys(\var{seq}\optional{, \var{value}})}
          {Creates a new dictionary with keys from \var{seq} and values set to \var{value}}
          {(7)}			   
  \lineiii{\var{a}.values()}{a copy of \var{a}'s list of values}{(3)}
  \lineiii{\var{a}.get(\var{k}\optional{, \var{x}})}
          {\code{\var{a}[\var{k}]} if \code{\var{k} in \var{a}},
           else \var{x}}
          {(4)}
  \lineiii{\var{a}.setdefault(\var{k}\optional{, \var{x}})}
          {\code{\var{a}[\var{k}]} if \code{\var{k} in \var{a}},
           else \var{x} (also setting it)}
          {(5)}
  \lineiii{\var{a}.pop(\var{k}\optional{, \var{x}})}
          {\code{\var{a}[\var{k}]} if \code{\var{k} in \var{a}},
           else \var{x} (and remove k)}
          {(8)}
  \lineiii{\var{a}.popitem()}
          {remove and return an arbitrary (\var{key}, \var{value}) pair}
          {(6)}
  \lineiii{\var{a}.iteritems()}
          {return an iterator over (\var{key}, \var{value}) pairs}
          {(2), (3)}
  \lineiii{\var{a}.iterkeys()}
          {return an iterator over the mapping's keys}
          {(2), (3)}
  \lineiii{\var{a}.itervalues()}
          {return an iterator over the mapping's values}
          {(2), (3)}
\end{tableiii}

\noindent
Notes:
\begin{description}
\item[(1)] Raises a \exception{KeyError} exception if \var{k} is not
in the map.

\item[(2)] \versionadded{2.2}

\item[(3)] Keys and values are listed in random order.  If
\method{items()}, \method{keys()}, \method{values()},
\method{iteritems()}, \method{iterkeys()}, and \method{itervalues()}
are called with no intervening modifications to the dictionary, the
lists will directly correspond.  This allows the creation of
\code{(\var{value}, \var{key})} pairs using \function{zip()}:
\samp{pairs = zip(\var{a}.values(), \var{a}.keys())}.  The same
relationship holds for the \method{iterkeys()} and
\method{itervalues()} methods: \samp{pairs = zip(\var{a}.itervalues(),
\var{a}.iterkeys())} provides the same value for \code{pairs}.
Another way to create the same list is \samp{pairs = [(v, k) for (k,
v) in \var{a}.iteritems()]}.

\item[(4)] Never raises an exception if \var{k} is not in the map,
instead it returns \var{x}.  \var{x} is optional; when \var{x} is not
provided and \var{k} is not in the map, \code{None} is returned.

\item[(5)] \function{setdefault()} is like \function{get()}, except
that if \var{k} is missing, \var{x} is both returned and inserted into
the dictionary as the value of \var{k}.

\item[(6)] \function{popitem()} is useful to destructively iterate
over a dictionary, as often used in set algorithms.

\item[(7)] \function{fromkeys()} is a class method that returns a
new dictionary. \var{value} defaults to \code{None}.  \versionadded{2.3}

\item[(8)] \function{pop()} raises a \exception{KeyError} when no default
value is given and the key is not found.  \versionadded{2.3}
\end{description}


\subsection{File Objects
            \label{bltin-file-objects}}

File objects\obindex{file} are implemented using C's \code{stdio}
package and can be created with the built-in constructor
\function{file()}\bifuncindex{file} described in section
\ref{built-in-funcs}, ``Built-in Functions.''\footnote{\function{file()}
is new in Python 2.2.  The older built-in \function{open()} is an
alias for \function{file()}.}
File objects are also returned
by some other built-in functions and methods, such as
\function{os.popen()} and \function{os.fdopen()} and the
\method{makefile()} method of socket objects.
\refstmodindex{os}
\refbimodindex{socket}

When a file operation fails for an I/O-related reason, the exception
\exception{IOError} is raised.  This includes situations where the
operation is not defined for some reason, like \method{seek()} on a tty
device or writing a file opened for reading.

Files have the following methods:


\begin{methoddesc}[file]{close}{}
  Close the file.  A closed file cannot be read or written any more.
  Any operation which requires that the file be open will raise a
  \exception{ValueError} after the file has been closed.  Calling
  \method{close()} more than once is allowed.
\end{methoddesc}

\begin{methoddesc}[file]{flush}{}
  Flush the internal buffer, like \code{stdio}'s
  \cfunction{fflush()}.  This may be a no-op on some file-like
  objects.
\end{methoddesc}

\begin{methoddesc}[file]{fileno}{}
  \index{file descriptor}
  \index{descriptor, file}
  Return the integer ``file descriptor'' that is used by the
  underlying implementation to request I/O operations from the
  operating system.  This can be useful for other, lower level
  interfaces that use file descriptors, such as the
  \refmodule{fcntl}\refbimodindex{fcntl} module or
  \function{os.read()} and friends.  \note{File-like objects
  which do not have a real file descriptor should \emph{not} provide
  this method!}
\end{methoddesc}

\begin{methoddesc}[file]{isatty}{}
  Return \code{True} if the file is connected to a tty(-like) device, else
  \code{False}.  \note{If a file-like object is not associated
  with a real file, this method should \emph{not} be implemented.}
\end{methoddesc}

\begin{methoddesc}[file]{next}{}
A file object is its own iterator, i.e. \code{iter(\var{f})} returns
\var{f} (unless \var{f} is closed).  When a file is used as an
iterator, typically in a \keyword{for} loop (for example,
\code{for line in f: print line}), the \method{next()} method is
called repeatedly.  This method returns the next input line, or raises
\exception{StopIteration} when \EOF{} is hit.  In order to make a
\keyword{for} loop the most efficient way of looping over the lines of
a file (a very common operation), the \method{next()} method uses a
hidden read-ahead buffer.  As a consequence of using a read-ahead
buffer, combining \method{next()} with other file methods (like
\method{readline()}) does not work right.  However, using
\method{seek()} to reposition the file to an absolute position will
flush the read-ahead buffer.
\versionadded{2.3}
\end{methoddesc}

\begin{methoddesc}[file]{read}{\optional{size}}
  Read at most \var{size} bytes from the file (less if the read hits
  \EOF{} before obtaining \var{size} bytes).  If the \var{size}
  argument is negative or omitted, read all data until \EOF{} is
  reached.  The bytes are returned as a string object.  An empty
  string is returned when \EOF{} is encountered immediately.  (For
  certain files, like ttys, it makes sense to continue reading after
  an \EOF{} is hit.)  Note that this method may call the underlying
  C function \cfunction{fread()} more than once in an effort to
  acquire as close to \var{size} bytes as possible. Also note that
  when in non-blocking mode, less data than what was requested may
  be returned, even if no \var{size} parameter was given.
\end{methoddesc}

\begin{methoddesc}[file]{readline}{\optional{size}}
  Read one entire line from the file.  A trailing newline character is
  kept in the string\footnote{
	The advantage of leaving the newline on is that
	returning an empty string is then an unambiguous \EOF{}
	indication.  It is also possible (in cases where it might
	matter, for example, if you
	want to make an exact copy of a file while scanning its lines)
	to tell whether the last line of a file ended in a newline
	or not (yes this happens!).
  } (but may be absent when a file ends with an
  incomplete line).  If the \var{size} argument is present and
  non-negative, it is a maximum byte count (including the trailing
  newline) and an incomplete line may be returned.
  An empty string is returned \emph{only} when \EOF{} is encountered
  immediately.  \note{Unlike \code{stdio}'s \cfunction{fgets()}, the
  returned string contains null characters (\code{'\e 0'}) if they
  occurred in the input.}
\end{methoddesc}

\begin{methoddesc}[file]{readlines}{\optional{sizehint}}
  Read until \EOF{} using \method{readline()} and return a list containing
  the lines thus read.  If the optional \var{sizehint} argument is
  present, instead of reading up to \EOF, whole lines totalling
  approximately \var{sizehint} bytes (possibly after rounding up to an
  internal buffer size) are read.  Objects implementing a file-like
  interface may choose to ignore \var{sizehint} if it cannot be
  implemented, or cannot be implemented efficiently.
\end{methoddesc}

\begin{methoddesc}[file]{xreadlines}{}
  This method returns the same thing as \code{iter(f)}.
  \versionadded{2.1}
  \deprecated{2.3}{Use \code{for line in file} instead.}
\end{methoddesc}

\begin{methoddesc}[file]{seek}{offset\optional{, whence}}
  Set the file's current position, like \code{stdio}'s \cfunction{fseek()}.
  The \var{whence} argument is optional and defaults to \code{0}
  (absolute file positioning); other values are \code{1} (seek
  relative to the current position) and \code{2} (seek relative to the
  file's end).  There is no return value.  Note that if the file is
  opened for appending (mode \code{'a'} or \code{'a+'}), any
  \method{seek()} operations will be undone at the next write.  If the
  file is only opened for writing in append mode (mode \code{'a'}),
  this method is essentially a no-op, but it remains useful for files
  opened in append mode with reading enabled (mode \code{'a+'}).
\end{methoddesc}

\begin{methoddesc}[file]{tell}{}
  Return the file's current position, like \code{stdio}'s
  \cfunction{ftell()}.
\end{methoddesc}

\begin{methoddesc}[file]{truncate}{\optional{size}}
  Truncate the file's size.  If the optional \var{size} argument is
  present, the file is truncated to (at most) that size.  The size
  defaults to the current position.  The current file position is
  not changed.  Note that if a specified size exceeds the file's
  current size, the result is platform-dependent:  possibilities
  include that file may remain unchanged, increase to the specified
  size as if zero-filled, or increase to the specified size with
  undefined new content.
  Availability:  Windows, many \UNIX variants.
\end{methoddesc}

\begin{methoddesc}[file]{write}{str}
  Write a string to the file.  There is no return value.  Due to
  buffering, the string may not actually show up in the file until
  the \method{flush()} or \method{close()} method is called.
\end{methoddesc}

\begin{methoddesc}[file]{writelines}{sequence}
  Write a sequence of strings to the file.  The sequence can be any
  iterable object producing strings, typically a list of strings.
  There is no return value.
  (The name is intended to match \method{readlines()};
  \method{writelines()} does not add line separators.)
\end{methoddesc}


Files support the iterator protocol.  Each iteration returns the same
result as \code{\var{file}.readline()}, and iteration ends when the
\method{readline()} method returns an empty string.


File objects also offer a number of other interesting attributes.
These are not required for file-like objects, but should be
implemented if they make sense for the particular object.

\begin{memberdesc}[file]{closed}
bool indicating the current state of the file object.  This is a
read-only attribute; the \method{close()} method changes the value.
It may not be available on all file-like objects.
\end{memberdesc}

\begin{memberdesc}[file]{encoding}
The encoding that this file uses. When Unicode strings are written
to a file, they will be converted to byte strings using this encoding.
In addition, when the file is connected to a terminal, the attribute
gives the encoding that the terminal is likely to use (that 
information might be incorrect if the user has misconfigured the 
terminal). The attribute is read-only and may not be present on
all file-like objects. It may also be \code{None}, in which case
the file uses the system default encoding for converting Unicode
strings.

\versionadded{2.3}
\end{memberdesc}

\begin{memberdesc}[file]{mode}
The I/O mode for the file.  If the file was created using the
\function{open()} built-in function, this will be the value of the
\var{mode} parameter.  This is a read-only attribute and may not be
present on all file-like objects.
\end{memberdesc}

\begin{memberdesc}[file]{name}
If the file object was created using \function{open()}, the name of
the file.  Otherwise, some string that indicates the source of the
file object, of the form \samp{<\mbox{\ldots}>}.  This is a read-only
attribute and may not be present on all file-like objects.
\end{memberdesc}

\begin{memberdesc}[file]{newlines}
If Python was built with the \code{--with-universal-newlines} option
(the default) this read-only attribute exists, and for files opened in
universal newline read mode it keeps track of the types of newlines
encountered while reading the file. The values it can take are
\code{'\e r'}, \code{'\e n'}, \code{'\e r\e n'}, \code{None} (unknown,
no newlines read yet) or a tuple containing all the newline
types seen, to indicate that multiple
newline conventions were encountered. For files not opened in universal
newline read mode the value of this attribute will be \code{None}.
\end{memberdesc}

\begin{memberdesc}[file]{softspace}
Boolean that indicates whether a space character needs to be printed
before another value when using the \keyword{print} statement.
Classes that are trying to simulate a file object should also have a
writable \member{softspace} attribute, which should be initialized to
zero.  This will be automatic for most classes implemented in Python
(care may be needed for objects that override attribute access); types
implemented in C will have to provide a writable
\member{softspace} attribute.
\note{This attribute is not used to control the
\keyword{print} statement, but to allow the implementation of
\keyword{print} to keep track of its internal state.}
\end{memberdesc}


\subsection{Other Built-in Types \label{typesother}}

The interpreter supports several other kinds of objects.
Most of these support only one or two operations.


\subsubsection{Modules \label{typesmodules}}

The only special operation on a module is attribute access:
\code{\var{m}.\var{name}}, where \var{m} is a module and \var{name}
accesses a name defined in \var{m}'s symbol table.  Module attributes
can be assigned to.  (Note that the \keyword{import} statement is not,
strictly speaking, an operation on a module object; \code{import
\var{foo}} does not require a module object named \var{foo} to exist,
rather it requires an (external) \emph{definition} for a module named
\var{foo} somewhere.)

A special member of every module is \member{__dict__}.
This is the dictionary containing the module's symbol table.
Modifying this dictionary will actually change the module's symbol
table, but direct assignment to the \member{__dict__} attribute is not
possible (you can write \code{\var{m}.__dict__['a'] = 1}, which
defines \code{\var{m}.a} to be \code{1}, but you can't write
\code{\var{m}.__dict__ = \{\}}).

Modules built into the interpreter are written like this:
\code{<module 'sys' (built-in)>}.  If loaded from a file, they are
written as \code{<module 'os' from
'/usr/local/lib/python\shortversion/os.pyc'>}.


\subsubsection{Classes and Class Instances \label{typesobjects}}
\nodename{Classes and Instances}

See chapters 3 and 7 of the \citetitle[../ref/ref.html]{Python
Reference Manual} for these.


\subsubsection{Functions \label{typesfunctions}}

Function objects are created by function definitions.  The only
operation on a function object is to call it:
\code{\var{func}(\var{argument-list})}.

There are really two flavors of function objects: built-in functions
and user-defined functions.  Both support the same operation (to call
the function), but the implementation is different, hence the
different object types.

The implementation adds two special read-only attributes:
\code{\var{f}.func_code} is a function's \dfn{code
object}\obindex{code} (see below) and \code{\var{f}.func_globals} is
the dictionary used as the function's global namespace (this is the
same as \code{\var{m}.__dict__} where \var{m} is the module in which
the function \var{f} was defined).

Function objects also support getting and setting arbitrary
attributes, which can be used to, e.g. attach metadata to functions.
Regular attribute dot-notation is used to get and set such
attributes. \emph{Note that the current implementation only supports
function attributes on user-defined functions.  Function attributes on
built-in functions may be supported in the future.}

Functions have another special attribute \code{\var{f}.__dict__}
(a.k.a. \code{\var{f}.func_dict}) which contains the namespace used to
support function attributes.  \code{__dict__} and \code{func_dict} can
be accessed directly or set to a dictionary object.  A function's
dictionary cannot be deleted.

\subsubsection{Methods \label{typesmethods}}
\obindex{method}

Methods are functions that are called using the attribute notation.
There are two flavors: built-in methods (such as \method{append()} on
lists) and class instance methods.  Built-in methods are described
with the types that support them.

The implementation adds two special read-only attributes to class
instance methods: \code{\var{m}.im_self} is the object on which the
method operates, and \code{\var{m}.im_func} is the function
implementing the method.  Calling \code{\var{m}(\var{arg-1},
\var{arg-2}, \textrm{\ldots}, \var{arg-n})} is completely equivalent to
calling \code{\var{m}.im_func(\var{m}.im_self, \var{arg-1},
\var{arg-2}, \textrm{\ldots}, \var{arg-n})}.

Class instance methods are either \emph{bound} or \emph{unbound},
referring to whether the method was accessed through an instance or a
class, respectively.  When a method is unbound, its \code{im_self}
attribute will be \code{None} and if called, an explicit \code{self}
object must be passed as the first argument.  In this case,
\code{self} must be an instance of the unbound method's class (or a
subclass of that class), otherwise a \code{TypeError} is raised.

Like function objects, methods objects support getting
arbitrary attributes.  However, since method attributes are actually
stored on the underlying function object (\code{meth.im_func}),
setting method attributes on either bound or unbound methods is
disallowed.  Attempting to set a method attribute results in a
\code{TypeError} being raised.  In order to set a method attribute,
you need to explicitly set it on the underlying function object:

\begin{verbatim}
class C:
    def method(self):
        pass

c = C()
c.method.im_func.whoami = 'my name is c'
\end{verbatim}

See the \citetitle[../ref/ref.html]{Python Reference Manual} for more
information.


\subsubsection{Code Objects \label{bltin-code-objects}}
\obindex{code}

Code objects are used by the implementation to represent
``pseudo-compiled'' executable Python code such as a function body.
They differ from function objects because they don't contain a
reference to their global execution environment.  Code objects are
returned by the built-in \function{compile()} function and can be
extracted from function objects through their \member{func_code}
attribute.
\bifuncindex{compile}
\withsubitem{(function object attribute)}{\ttindex{func_code}}

A code object can be executed or evaluated by passing it (instead of a
source string) to the \keyword{exec} statement or the built-in
\function{eval()} function.
\stindex{exec}
\bifuncindex{eval}

See the \citetitle[../ref/ref.html]{Python Reference Manual} for more
information.


\subsubsection{Type Objects \label{bltin-type-objects}}

Type objects represent the various object types.  An object's type is
accessed by the built-in function \function{type()}.  There are no special
operations on types.  The standard module \module{types} defines names
for all standard built-in types.
\bifuncindex{type}
\refstmodindex{types}

Types are written like this: \code{<type 'int'>}.


\subsubsection{The Null Object \label{bltin-null-object}}

This object is returned by functions that don't explicitly return a
value.  It supports no special operations.  There is exactly one null
object, named \code{None} (a built-in name).

It is written as \code{None}.


\subsubsection{The Ellipsis Object \label{bltin-ellipsis-object}}

This object is used by extended slice notation (see the
\citetitle[../ref/ref.html]{Python Reference Manual}).  It supports no
special operations.  There is exactly one ellipsis object, named
\constant{Ellipsis} (a built-in name).

It is written as \code{Ellipsis}.

\subsubsection{Boolean Values}

Boolean values are the two constant objects \code{False} and
\code{True}.  They are used to represent truth values (although other
values can also be considered false or true).  In numeric contexts
(for example when used as the argument to an arithmetic operator),
they behave like the integers 0 and 1, respectively.  The built-in
function \function{bool()} can be used to cast any value to a Boolean,
if the value can be interpreted as a truth value (see section Truth
Value Testing above).

They are written as \code{False} and \code{True}, respectively.
\index{False}
\index{True}
\indexii{Boolean}{values}


\subsubsection{Internal Objects \label{typesinternal}}

See the \citetitle[../ref/ref.html]{Python Reference Manual} for this
information.  It describes stack frame objects, traceback objects, and
slice objects.


\subsection{Special Attributes \label{specialattrs}}

The implementation adds a few special read-only attributes to several
object types, where they are relevant:

\begin{memberdesc}[object]{__dict__}
A dictionary or other mapping object used to store an
object's (writable) attributes.
\end{memberdesc}

\begin{memberdesc}[object]{__methods__}
\deprecated{2.2}{Use the built-in function \function{dir()} to get a
list of an object's attributes.  This attribute is no longer available.}
\end{memberdesc}

\begin{memberdesc}[object]{__members__}
\deprecated{2.2}{Use the built-in function \function{dir()} to get a
list of an object's attributes.  This attribute is no longer available.}
\end{memberdesc}

\begin{memberdesc}[instance]{__class__}
The class to which a class instance belongs.
\end{memberdesc}

\begin{memberdesc}[class]{__bases__}
The tuple of base classes of a class object.  If there are no base
classes, this will be an empty tuple.
\end{memberdesc}