1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
|
.. currentmodule:: asyncio
.. _asyncio-transports-protocols:
========================
Transports and Protocols
========================
.. rubric:: Preface
Transports and Protocols are used by the **low-level** event loop
APIs such as :meth:`loop.create_connection`. They use
callback-based programming style and enable high-performance
implementations of network or IPC protocols (e.g. HTTP).
Essentially, transports and protocols should only be used in
libraries and frameworks and never in high-level asyncio
applications.
This documentation page covers both `Transports`_ and `Protocols`_.
.. rubric:: Introduction
At the highest level, the transport is concerned with *how* bytes
are transmitted, while the protocol determines *which* bytes to
transmit (and to some extent when).
A different way of saying the same thing: a transport is an
abstraction for a socket (or similar I/O endpoint) while a protocol
is an abstraction for an application, from the transport's point
of view.
Yet another view is the transport and protocol interfaces
together define an abstract interface for using network I/O and
interprocess I/O.
There is always a 1:1 relationship between transport and protocol
objects: the protocol calls transport methods to send data,
while the transport calls protocol methods to pass it data that
has been received.
Most of connection oriented event loop methods
(such as :meth:`loop.create_connection`) usually accept a
*protocol_factory* argument used to create a *Protocol* object
for an accepted connection, represented by a *Transport* object.
Such methods usually return a tuple of ``(transport, protocol)``.
.. rubric:: Contents
This documentation page contains the following sections:
* The `Transports`_ section documents asyncio :class:`BaseTransport`,
:class:`ReadTransport`, :class:`WriteTransport`, :class:`Transport`,
:class:`DatagramTransport`, and :class:`SubprocessTransport`
classes.
* The `Protocols`_ section documents asyncio :class:`BaseProtocol`,
:class:`Protocol`, :class:`BufferedProtocol`,
:class:`DatagramProtocol`, and :class:`SubprocessProtocol` classes.
* The `Examples`_ section showcases how to work with transports,
protocols, and low-level event loop APIs.
.. _asyncio-transport:
Transports
==========
Transports are classes provided by :mod:`asyncio` in order to abstract
various kinds of communication channels.
Transport objects are always instantiated by an
:ref:`asyncio event loop <asyncio-event-loop>`.
asyncio implements transports for TCP, UDP, SSL, and subprocess pipes.
The methods available on a transport depend on the transport's kind.
The transport classes are :ref:`not thread safe <asyncio-multithreading>`.
Transports Hierarchy
--------------------
.. class:: BaseTransport
Base class for all transports. Contains methods that all
asyncio transports share.
.. class:: WriteTransport(BaseTransport)
A base transport for write-only connections.
Instances of the *WriteTransport* class are returned from
the :meth:`loop.connect_write_pipe` event loop method and
are also used by subprocess-related methods like
:meth:`loop.subprocess_exec`.
.. class:: ReadTransport(BaseTransport)
A base transport for read-only connections.
Instances of the *ReadTransport* class are returned from
the :meth:`loop.connect_read_pipe` event loop method and
are also used by subprocess-related methods like
:meth:`loop.subprocess_exec`.
.. class:: Transport(WriteTransport, ReadTransport)
Interface representing a bidirectional transport, such as a
TCP connection.
The user does not instantiate a transport directly; they call a
utility function, passing it a protocol factory and other
information necessary to create the transport and protocol.
Instances of the *Transport* class are returned from or used by
event loop methods like :meth:`loop.create_connection`,
:meth:`loop.create_unix_connection`,
:meth:`loop.create_server`, :meth:`loop.sendfile`, etc.
.. class:: DatagramTransport(BaseTransport)
A transport for datagram (UDP) connections.
Instances of the *DatagramTransport* class are returned from
the :meth:`loop.create_datagram_endpoint` event loop method.
.. class:: SubprocessTransport(BaseTransport)
An abstraction to represent a connection between a parent and its
child OS process.
Instances of the *SubprocessTransport* class are returned from
event loop methods :meth:`loop.subprocess_shell` and
:meth:`loop.subprocess_exec`.
Base Transport
--------------
.. method:: BaseTransport.close()
Close the transport.
If the transport has a buffer for outgoing
data, buffered data will be flushed asynchronously. No more data
will be received. After all buffered data is flushed, the
protocol's :meth:`protocol.connection_lost()
<BaseProtocol.connection_lost>` method will be called with
:const:`None` as its argument.
.. method:: BaseTransport.is_closing()
Return ``True`` if the transport is closing or is closed.
.. method:: BaseTransport.get_extra_info(name, default=None)
Return information about the transport or underlying resources
it uses.
*name* is a string representing the piece of transport-specific
information to get.
*default* is the value to return if the information is not
available, or if the transport does not support querying it
with the given third-party event loop implementation or on the
current platform.
For example, the following code attempts to get the underlying
socket object of the transport::
sock = transport.get_extra_info('socket')
if sock is not None:
print(sock.getsockopt(...))
Categories of information that can be queried on some transports:
* socket:
- ``'peername'``: the remote address to which the socket is
connected, result of :meth:`socket.socket.getpeername`
(``None`` on error)
- ``'socket'``: :class:`socket.socket` instance
- ``'sockname'``: the socket's own address,
result of :meth:`socket.socket.getsockname`
* SSL socket:
- ``'compression'``: the compression algorithm being used as a
string, or ``None`` if the connection isn't compressed; result
of :meth:`ssl.SSLSocket.compression`
- ``'cipher'``: a three-value tuple containing the name of the
cipher being used, the version of the SSL protocol that defines
its use, and the number of secret bits being used; result of
:meth:`ssl.SSLSocket.cipher`
- ``'peercert'``: peer certificate; result of
:meth:`ssl.SSLSocket.getpeercert`
- ``'sslcontext'``: :class:`ssl.SSLContext` instance
- ``'ssl_object'``: :class:`ssl.SSLObject` or
:class:`ssl.SSLSocket` instance
* pipe:
- ``'pipe'``: pipe object
* subprocess:
- ``'subprocess'``: :class:`subprocess.Popen` instance
.. method:: BaseTransport.set_protocol(protocol)
Set a new protocol.
Switching protocol should only be done when both
protocols are documented to support the switch.
.. method:: BaseTransport.get_protocol()
Return the current protocol.
Read-only Transports
--------------------
.. method:: ReadTransport.is_reading()
Return ``True`` if the transport is receiving new data.
.. versionadded:: 3.7
.. method:: ReadTransport.pause_reading()
Pause the receiving end of the transport. No data will be passed to
the protocol's :meth:`protocol.data_received() <Protocol.data_received>`
method until :meth:`resume_reading` is called.
.. versionchanged:: 3.7
The method is idempotent, i.e. it can be called when the
transport is already paused or closed.
.. method:: ReadTransport.resume_reading()
Resume the receiving end. The protocol's
:meth:`protocol.data_received() <Protocol.data_received>` method
will be called once again if some data is available for reading.
.. versionchanged:: 3.7
The method is idempotent, i.e. it can be called when the
transport is already reading.
Write-only Transports
---------------------
.. method:: WriteTransport.abort()
Close the transport immediately, without waiting for pending operations
to complete. Buffered data will be lost. No more data will be received.
The protocol's :meth:`protocol.connection_lost()
<BaseProtocol.connection_lost>` method will eventually be
called with :const:`None` as its argument.
.. method:: WriteTransport.can_write_eof()
Return :const:`True` if the transport supports
:meth:`~WriteTransport.write_eof`, :const:`False` if not.
.. method:: WriteTransport.get_write_buffer_size()
Return the current size of the output buffer used by the transport.
.. method:: WriteTransport.get_write_buffer_limits()
Get the *high* and *low* watermarks for write flow control. Return a
tuple ``(low, high)`` where *low* and *high* are positive number of
bytes.
Use :meth:`set_write_buffer_limits` to set the limits.
.. versionadded:: 3.4.2
.. method:: WriteTransport.set_write_buffer_limits(high=None, low=None)
Set the *high* and *low* watermarks for write flow control.
These two values (measured in number of
bytes) control when the protocol's
:meth:`protocol.pause_writing() <BaseProtocol.pause_writing>`
and :meth:`protocol.resume_writing() <BaseProtocol.resume_writing>`
methods are called. If specified, the low watermark must be less
than or equal to the high watermark. Neither *high* nor *low*
can be negative.
:meth:`~BaseProtocol.pause_writing` is called when the buffer size
becomes greater than or equal to the *high* value. If writing has
been paused, :meth:`~BaseProtocol.resume_writing` is called when
the buffer size becomes less than or equal to the *low* value.
The defaults are implementation-specific. If only the
high watermark is given, the low watermark defaults to an
implementation-specific value less than or equal to the
high watermark. Setting *high* to zero forces *low* to zero as
well, and causes :meth:`~BaseProtocol.pause_writing` to be called
whenever the buffer becomes non-empty. Setting *low* to zero causes
:meth:`~BaseProtocol.resume_writing` to be called only once the
buffer is empty. Use of zero for either limit is generally
sub-optimal as it reduces opportunities for doing I/O and
computation concurrently.
Use :meth:`~WriteTransport.get_write_buffer_limits`
to get the limits.
.. method:: WriteTransport.write(data)
Write some *data* bytes to the transport.
This method does not block; it buffers the data and arranges for it
to be sent out asynchronously.
.. method:: WriteTransport.writelines(list_of_data)
Write a list (or any iterable) of data bytes to the transport.
This is functionally equivalent to calling :meth:`write` on each
element yielded by the iterable, but may be implemented more
efficiently.
.. method:: WriteTransport.write_eof()
Close the write end of the transport after flushing all buffered data.
Data may still be received.
This method can raise :exc:`NotImplementedError` if the transport
(e.g. SSL) doesn't support half-closed connections.
Datagram Transports
-------------------
.. method:: DatagramTransport.sendto(data, addr=None)
Send the *data* bytes to the remote peer given by *addr* (a
transport-dependent target address). If *addr* is :const:`None`,
the data is sent to the target address given on transport
creation.
This method does not block; it buffers the data and arranges
for it to be sent out asynchronously.
.. method:: DatagramTransport.abort()
Close the transport immediately, without waiting for pending
operations to complete. Buffered data will be lost.
No more data will be received. The protocol's
:meth:`protocol.connection_lost() <BaseProtocol.connection_lost>`
method will eventually be called with :const:`None` as its argument.
.. _asyncio-subprocess-transports:
Subprocess Transports
---------------------
.. method:: SubprocessTransport.get_pid()
Return the subprocess process id as an integer.
.. method:: SubprocessTransport.get_pipe_transport(fd)
Return the transport for the communication pipe corresponding to the
integer file descriptor *fd*:
* ``0``: readable streaming transport of the standard input (*stdin*),
or :const:`None` if the subprocess was not created with ``stdin=PIPE``
* ``1``: writable streaming transport of the standard output (*stdout*),
or :const:`None` if the subprocess was not created with ``stdout=PIPE``
* ``2``: writable streaming transport of the standard error (*stderr*),
or :const:`None` if the subprocess was not created with ``stderr=PIPE``
* other *fd*: :const:`None`
.. method:: SubprocessTransport.get_returncode()
Return the subprocess return code as an integer or :const:`None`
if it hasn't returned, which is similar to the
:attr:`subprocess.Popen.returncode` attribute.
.. method:: SubprocessTransport.kill()
Kill the subprocess.
On POSIX systems, the function sends SIGKILL to the subprocess.
On Windows, this method is an alias for :meth:`terminate`.
See also :meth:`subprocess.Popen.kill`.
.. method:: SubprocessTransport.send_signal(signal)
Send the *signal* number to the subprocess, as in
:meth:`subprocess.Popen.send_signal`.
.. method:: SubprocessTransport.terminate()
Stop the subprocess.
On POSIX systems, this method sends SIGTERM to the subprocess.
On Windows, the Windows API function TerminateProcess() is called to
stop the subprocess.
See also :meth:`subprocess.Popen.terminate`.
.. method:: SubprocessTransport.close()
Kill the subprocess by calling the :meth:`kill` method.
If the subprocess hasn't returned yet, and close transports of
*stdin*, *stdout*, and *stderr* pipes.
.. _asyncio-protocol:
Protocols
=========
asyncio provides a set of abstract base classes that should be used
to implement network protocols. Those classes are meant to be used
together with :ref:`transports <asyncio-transport>`.
Subclasses of abstract base protocol classes may implement some or
all methods. All these methods are callbacks: they are called by
transports on certain events, for example when some data is received.
A base protocol method should be called by the corresponding transport.
Base Protocols
--------------
.. class:: BaseProtocol
Base protocol with methods that all protocols share.
.. class:: Protocol(BaseProtocol)
The base class for implementing streaming protocols
(TCP, Unix sockets, etc).
.. class:: BufferedProtocol(BaseProtocol)
A base class for implementing streaming protocols with manual
control of the receive buffer.
.. class:: DatagramProtocol(BaseProtocol)
The base class for implementing datagram (UDP) protocols.
.. class:: SubprocessProtocol(BaseProtocol)
The base class for implementing protocols communicating with child
processes (unidirectional pipes).
Base Protocol
-------------
All asyncio protocols can implement Base Protocol callbacks.
.. rubric:: Connection Callbacks
Connection callbacks are called on all protocols, exactly once per
a successful connection. All other protocol callbacks can only be
called between those two methods.
.. method:: BaseProtocol.connection_made(transport)
Called when a connection is made.
The *transport* argument is the transport representing the
connection. The protocol is responsible for storing the reference
to its transport.
.. method:: BaseProtocol.connection_lost(exc)
Called when the connection is lost or closed.
The argument is either an exception object or :const:`None`.
The latter means a regular EOF is received, or the connection was
aborted or closed by this side of the connection.
.. rubric:: Flow Control Callbacks
Flow control callbacks can be called by transports to pause or
resume writing performed by the protocol.
See the documentation of the :meth:`~WriteTransport.set_write_buffer_limits`
method for more details.
.. method:: BaseProtocol.pause_writing()
Called when the transport's buffer goes over the high watermark.
.. method:: BaseProtocol.resume_writing()
Called when the transport's buffer drains below the low watermark.
If the buffer size equals the high watermark,
:meth:`~BaseProtocol.pause_writing` is not called: the buffer size must
go strictly over.
Conversely, :meth:`~BaseProtocol.resume_writing` is called when the
buffer size is equal or lower than the low watermark. These end
conditions are important to ensure that things go as expected when
either mark is zero.
Streaming Protocols
-------------------
Event methods, such as :meth:`loop.create_server`,
:meth:`loop.create_unix_server`, :meth:`loop.create_connection`,
:meth:`loop.create_unix_connection`, :meth:`loop.connect_accepted_socket`,
:meth:`loop.connect_read_pipe`, and :meth:`loop.connect_write_pipe`
accept factories that return streaming protocols.
.. method:: Protocol.data_received(data)
Called when some data is received. *data* is a non-empty bytes
object containing the incoming data.
Whether the data is buffered, chunked or reassembled depends on
the transport. In general, you shouldn't rely on specific semantics
and instead make your parsing generic and flexible. However,
data is always received in the correct order.
The method can be called an arbitrary number of times while
a connection is open.
However, :meth:`protocol.eof_received() <Protocol.eof_received>`
is called at most once. Once `eof_received()` is called,
``data_received()`` is not called anymore.
.. method:: Protocol.eof_received()
Called when the other end signals it won't send any more data
(for example by calling :meth:`transport.write_eof()
<WriteTransport.write_eof>`, if the other end also uses
asyncio).
This method may return a false value (including ``None``), in which case
the transport will close itself. Conversely, if this method returns a
true value, the protocol used determines whether to close the transport.
Since the default implementation returns ``None``, it implicitly closes the
connection.
Some transports, including SSL, don't support half-closed connections,
in which case returning true from this method will result in the connection
being closed.
State machine:
.. code-block:: none
start -> connection_made
[-> data_received]*
[-> eof_received]?
-> connection_lost -> end
Buffered Streaming Protocols
----------------------------
.. versionadded:: 3.7
**Important:** this has been added to asyncio in Python 3.7
*on a provisional basis*! This is as an experimental API that
might be changed or removed completely in Python 3.8.
Buffered Protocols can be used with any event loop method
that supports `Streaming Protocols`_.
``BufferedProtocol`` implementations allow explicit manual allocation
and control of the receive buffer. Event loops can then use the buffer
provided by the protocol to avoid unnecessary data copies. This
can result in noticeable performance improvement for protocols that
receive big amounts of data. Sophisticated protocol implementations
can significantly reduce the number of buffer allocations.
The following callbacks are called on :class:`BufferedProtocol`
instances:
.. method:: BufferedProtocol.get_buffer(sizehint)
Called to allocate a new receive buffer.
*sizehint* is the recommended minimum size for the returned
buffer. It is acceptable to return smaller or larger buffers
than what *sizehint* suggests. When set to -1, the buffer size
can be arbitrary. It is an error to return a buffer with a zero size.
``get_buffer()`` must return an object implementing the
:ref:`buffer protocol <bufferobjects>`.
.. method:: BufferedProtocol.buffer_updated(nbytes)
Called when the buffer was updated with the received data.
*nbytes* is the total number of bytes that were written to the buffer.
.. method:: BufferedProtocol.eof_received()
See the documentation of the :meth:`protocol.eof_received()
<Protocol.eof_received>` method.
:meth:`~BufferedProtocol.get_buffer` can be called an arbitrary number
of times during a connection. However, :meth:`protocol.eof_received()
<Protocol.eof_received>` is called at most once
and, if called, :meth:`~BufferedProtocol.get_buffer` and
:meth:`~BufferedProtocol.buffer_updated` won't be called after it.
State machine:
.. code-block:: none
start -> connection_made
[-> get_buffer
[-> buffer_updated]?
]*
[-> eof_received]?
-> connection_lost -> end
Datagram Protocols
------------------
Datagram Protocol instances should be constructed by protocol
factories passed to the :meth:`loop.create_datagram_endpoint` method.
.. method:: DatagramProtocol.datagram_received(data, addr)
Called when a datagram is received. *data* is a bytes object containing
the incoming data. *addr* is the address of the peer sending the data;
the exact format depends on the transport.
.. method:: DatagramProtocol.error_received(exc)
Called when a previous send or receive operation raises an
:class:`OSError`. *exc* is the :class:`OSError` instance.
This method is called in rare conditions, when the transport (e.g. UDP)
detects that a datagram could not be delivered to its recipient.
In many conditions though, undeliverable datagrams will be silently
dropped.
.. note::
On BSD systems (macOS, FreeBSD, etc.) flow control is not supported
for datagram protocols, because there is no reliable way to detect send
failures caused by writing too many packets.
The socket always appears 'ready' and excess packets are dropped. An
:class:`OSError` with ``errno`` set to :const:`errno.ENOBUFS` may
or may not be raised; if it is raised, it will be reported to
:meth:`DatagramProtocol.error_received` but otherwise ignored.
.. _asyncio-subprocess-protocols:
Subprocess Protocols
--------------------
Datagram Protocol instances should be constructed by protocol
factories passed to the :meth:`loop.subprocess_exec` and
:meth:`loop.subprocess_shell` methods.
.. method:: SubprocessProtocol.pipe_data_received(fd, data)
Called when the child process writes data into its stdout or stderr
pipe.
*fd* is the integer file descriptor of the pipe.
*data* is a non-empty bytes object containing the received data.
.. method:: SubprocessProtocol.pipe_connection_lost(fd, exc)
Called when one of the pipes communicating with the child process
is closed.
*fd* is the integer file descriptor that was closed.
.. method:: SubprocessProtocol.process_exited()
Called when the child process has exited.
Examples
========
.. _asyncio_example_tcp_echo_server_protocol:
TCP Echo Server
---------------
Create a TCP echo server using the :meth:`loop.create_server` method, send back
received data, and close the connection::
import asyncio
class EchoServerProtocol(asyncio.Protocol):
def connection_made(self, transport):
peername = transport.get_extra_info('peername')
print('Connection from {}'.format(peername))
self.transport = transport
def data_received(self, data):
message = data.decode()
print('Data received: {!r}'.format(message))
print('Send: {!r}'.format(message))
self.transport.write(data)
print('Close the client socket')
self.transport.close()
async def main():
# Get a reference to the event loop as we plan to use
# low-level APIs.
loop = asyncio.get_running_loop()
server = await loop.create_server(
lambda: EchoServerProtocol(),
'127.0.0.1', 8888)
async with server:
await server.serve_forever()
asyncio.run(main())
.. seealso::
The :ref:`TCP echo server using streams <asyncio-tcp-echo-server-streams>`
example uses the high-level :func:`asyncio.start_server` function.
.. _asyncio_example_tcp_echo_client_protocol:
TCP Echo Client
---------------
A TCP echo client using the :meth:`loop.create_connection` method, sends
data, and waits until the connection is closed::
import asyncio
class EchoClientProtocol(asyncio.Protocol):
def __init__(self, message, on_con_lost, loop):
self.message = message
self.loop = loop
self.on_con_lost = on_con_lost
def connection_made(self, transport):
transport.write(self.message.encode())
print('Data sent: {!r}'.format(self.message))
def data_received(self, data):
print('Data received: {!r}'.format(data.decode()))
def connection_lost(self, exc):
print('The server closed the connection')
self.on_con_lost.set_result(True)
async def main():
# Get a reference to the event loop as we plan to use
# low-level APIs.
loop = asyncio.get_running_loop()
on_con_lost = loop.create_future()
message = 'Hello World!'
transport, protocol = await loop.create_connection(
lambda: EchoClientProtocol(message, on_con_lost, loop),
'127.0.0.1', 8888)
# Wait until the protocol signals that the connection
# is lost and close the transport.
try:
await on_con_lost
finally:
transport.close()
asyncio.run(main())
.. seealso::
The :ref:`TCP echo client using streams <asyncio-tcp-echo-client-streams>`
example uses the high-level :func:`asyncio.connect` function.
.. _asyncio-udp-echo-server-protocol:
UDP Echo Server
---------------
A UDP echo server, using the :meth:`loop.create_datagram_endpoint`
method, sends back received data::
import asyncio
class EchoServerProtocol:
def connection_made(self, transport):
self.transport = transport
def datagram_received(self, data, addr):
message = data.decode()
print('Received %r from %s' % (message, addr))
print('Send %r to %s' % (message, addr))
self.transport.sendto(data, addr)
async def main():
print("Starting UDP server")
# Get a reference to the event loop as we plan to use
# low-level APIs.
loop = asyncio.get_running_loop()
# One protocol instance will be created to serve all
# client requests.
transport, protocol = await loop.create_datagram_endpoint(
lambda: EchoServerProtocol(),
local_addr=('127.0.0.1', 9999))
try:
await asyncio.sleep(3600) # Serve for 1 hour.
finally:
transport.close()
asyncio.run(main())
.. _asyncio-udp-echo-client-protocol:
UDP Echo Client
---------------
A UDP echo client, using the :meth:`loop.create_datagram_endpoint`
method, sends data and closes the transport when it receives the answer::
import asyncio
class EchoClientProtocol:
def __init__(self, message, loop):
self.message = message
self.loop = loop
self.transport = None
self.on_con_lost = loop.create_future()
def connection_made(self, transport):
self.transport = transport
print('Send:', self.message)
self.transport.sendto(self.message.encode())
def datagram_received(self, data, addr):
print("Received:", data.decode())
print("Close the socket")
self.transport.close()
def error_received(self, exc):
print('Error received:', exc)
def connection_lost(self, exc):
print("Connection closed")
self.on_con_lost.set_result(True)
async def main():
# Get a reference to the event loop as we plan to use
# low-level APIs.
loop = asyncio.get_running_loop()
message = "Hello World!"
transport, protocol = await loop.create_datagram_endpoint(
lambda: EchoClientProtocol(message, loop),
remote_addr=('127.0.0.1', 9999))
try:
await protocol.on_con_lost
finally:
transport.close()
asyncio.run(main())
.. _asyncio_example_create_connection:
Connecting Existing Sockets
---------------------------
Wait until a socket receives data using the
:meth:`loop.create_connection` method with a protocol::
import asyncio
import socket
class MyProtocol(asyncio.Protocol):
def __init__(self, loop):
self.transport = None
self.on_con_lost = loop.create_future()
def connection_made(self, transport):
self.transport = transport
def data_received(self, data):
print("Received:", data.decode())
# We are done: close the transport;
# connection_lost() will be called automatically.
self.transport.close()
def connection_lost(self, exc):
# The socket has been closed
self.on_con_lost.set_result(True)
async def main():
# Get a reference to the event loop as we plan to use
# low-level APIs.
loop = asyncio.get_running_loop()
# Create a pair of connected sockets
rsock, wsock = socket.socketpair()
# Register the socket to wait for data.
transport, protocol = await loop.create_connection(
lambda: MyProtocol(loop), sock=rsock)
# Simulate the reception of data from the network.
loop.call_soon(wsock.send, 'abc'.encode())
try:
await protocol.on_con_lost
finally:
transport.close()
wsock.close()
asyncio.run(main())
.. seealso::
The :ref:`watch a file descriptor for read events
<asyncio_example_watch_fd>` example uses the low-level
:meth:`loop.add_reader` method to register an FD.
The :ref:`register an open socket to wait for data using streams
<asyncio_example_create_connection-streams>` example uses high-level streams
created by the :func:`asyncio.connect` function in a coroutine.
.. _asyncio_example_subprocess_proto:
loop.subprocess_exec() and SubprocessProtocol
---------------------------------------------
An example of a subprocess protocol used to get the output of a
subprocess and to wait for the subprocess exit.
The subprocess is created by th :meth:`loop.subprocess_exec` method::
import asyncio
import sys
class DateProtocol(asyncio.SubprocessProtocol):
def __init__(self, exit_future):
self.exit_future = exit_future
self.output = bytearray()
def pipe_data_received(self, fd, data):
self.output.extend(data)
def process_exited(self):
self.exit_future.set_result(True)
async def get_date():
# Get a reference to the event loop as we plan to use
# low-level APIs.
loop = asyncio.get_running_loop()
code = 'import datetime; print(datetime.datetime.now())'
exit_future = asyncio.Future(loop=loop)
# Create the subprocess controlled by DateProtocol;
# redirect the standard output into a pipe.
transport, protocol = await loop.subprocess_exec(
lambda: DateProtocol(exit_future),
sys.executable, '-c', code,
stdin=None, stderr=None)
# Wait for the subprocess exit using the process_exited()
# method of the protocol.
await exit_future
# Close the stdout pipe.
transport.close()
# Read the output which was collected by the
# pipe_data_received() method of the protocol.
data = bytes(protocol.output)
return data.decode('ascii').rstrip()
date = asyncio.run(get_date())
print(f"Current date: {date}")
See also the :ref:`same example <asyncio_example_create_subprocess_exec>`
written using high-level APIs.
|