summaryrefslogtreecommitdiffstats
path: root/Doc/library/ctypes.rst
blob: 1a52a759059b339f6650612143b8a6025f84b567 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364

:mod:`ctypes` --- A foreign function library for Python.
========================================================

.. module:: ctypes
   :synopsis: A foreign function library for Python.
.. moduleauthor:: Thomas Heller <theller@python.net>


.. versionadded:: 2.5

``ctypes`` is a foreign function library for Python.  It provides C compatible
data types, and allows calling functions in dlls/shared libraries.  It can be
used to wrap these libraries in pure Python.


.. _ctypes-ctypes-tutorial:

ctypes tutorial
---------------

Note: The code samples in this tutorial use ``doctest`` to make sure that they
actually work.  Since some code samples behave differently under Linux, Windows,
or Mac OS X, they contain doctest directives in comments.

Note: Some code sample references the ctypes :class:`c_int` type. This type is
an alias to the :class:`c_long` type on 32-bit systems.  So, you should not be
confused if :class:`c_long` is printed if you would expect :class:`c_int` ---
they are actually the same type.


.. _ctypes-loading-dynamic-link-libraries:

Loading dynamic link libraries
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

``ctypes`` exports the *cdll*, and on Windows also *windll* and *oledll* objects
to load dynamic link libraries.

You load libraries by accessing them as attributes of these objects. *cdll*
loads libraries which export functions using the standard ``cdecl`` calling
convention, while *windll* libraries call functions using the ``stdcall``
calling convention. *oledll* also uses the ``stdcall`` calling convention, and
assumes the functions return a Windows :class:`HRESULT` error code. The error
code is used to automatically raise :class:`WindowsError` Python exceptions when
the function call fails.

Here are some examples for Windows. Note that ``msvcrt`` is the MS standard C
library containing most standard C functions, and uses the cdecl calling
convention::

   >>> from ctypes import *
   >>> print windll.kernel32 # doctest: +WINDOWS
   <WinDLL 'kernel32', handle ... at ...>
   >>> print cdll.msvcrt # doctest: +WINDOWS
   <CDLL 'msvcrt', handle ... at ...>
   >>> libc = cdll.msvcrt # doctest: +WINDOWS
   >>>

Windows appends the usual '.dll' file suffix automatically.

On Linux, it is required to specify the filename *including* the extension to
load a library, so attribute access does not work. Either the
:meth:`LoadLibrary` method of the dll loaders should be used, or you should load
the library by creating an instance of CDLL by calling the constructor::

   >>> cdll.LoadLibrary("libc.so.6") # doctest: +LINUX
   <CDLL 'libc.so.6', handle ... at ...>
   >>> libc = CDLL("libc.so.6")     # doctest: +LINUX
   >>> libc                         # doctest: +LINUX
   <CDLL 'libc.so.6', handle ... at ...>
   >>>

.. % XXX Add section for Mac OS X.


.. _ctypes-accessing-functions-from-loaded-dlls:

Accessing functions from loaded dlls
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Functions are accessed as attributes of dll objects::

   >>> from ctypes import *
   >>> libc.printf
   <_FuncPtr object at 0x...>
   >>> print windll.kernel32.GetModuleHandleA # doctest: +WINDOWS
   <_FuncPtr object at 0x...>
   >>> print windll.kernel32.MyOwnFunction # doctest: +WINDOWS
   Traceback (most recent call last):
     File "<stdin>", line 1, in ?
     File "ctypes.py", line 239, in __getattr__
       func = _StdcallFuncPtr(name, self)
   AttributeError: function 'MyOwnFunction' not found
   >>>

Note that win32 system dlls like ``kernel32`` and ``user32`` often export ANSI
as well as UNICODE versions of a function. The UNICODE version is exported with
an ``W`` appended to the name, while the ANSI version is exported with an ``A``
appended to the name. The win32 ``GetModuleHandle`` function, which returns a
*module handle* for a given module name, has the following C prototype, and a
macro is used to expose one of them as ``GetModuleHandle`` depending on whether
UNICODE is defined or not::

   /* ANSI version */
   HMODULE GetModuleHandleA(LPCSTR lpModuleName);
   /* UNICODE version */
   HMODULE GetModuleHandleW(LPCWSTR lpModuleName);

*windll* does not try to select one of them by magic, you must access the
version you need by specifying ``GetModuleHandleA`` or ``GetModuleHandleW``
explicitly, and then call it with normal strings or unicode strings
respectively.

Sometimes, dlls export functions with names which aren't valid Python
identifiers, like ``"??2@YAPAXI@Z"``. In this case you have to use ``getattr``
to retrieve the function::

   >>> getattr(cdll.msvcrt, "??2@YAPAXI@Z") # doctest: +WINDOWS
   <_FuncPtr object at 0x...>
   >>>

On Windows, some dlls export functions not by name but by ordinal. These
functions can be accessed by indexing the dll object with the ordinal number::

   >>> cdll.kernel32[1] # doctest: +WINDOWS
   <_FuncPtr object at 0x...>
   >>> cdll.kernel32[0] # doctest: +WINDOWS
   Traceback (most recent call last):
     File "<stdin>", line 1, in ?
     File "ctypes.py", line 310, in __getitem__
       func = _StdcallFuncPtr(name, self)
   AttributeError: function ordinal 0 not found
   >>>


.. _ctypes-calling-functions:

Calling functions
^^^^^^^^^^^^^^^^^

You can call these functions like any other Python callable. This example uses
the ``time()`` function, which returns system time in seconds since the Unix
epoch, and the ``GetModuleHandleA()`` function, which returns a win32 module
handle.

This example calls both functions with a NULL pointer (``None`` should be used
as the NULL pointer)::

   >>> print libc.time(None) # doctest: +SKIP
   1150640792
   >>> print hex(windll.kernel32.GetModuleHandleA(None)) # doctest: +WINDOWS
   0x1d000000
   >>>

``ctypes`` tries to protect you from calling functions with the wrong number of
arguments or the wrong calling convention.  Unfortunately this only works on
Windows.  It does this by examining the stack after the function returns, so
although an error is raised the function *has* been called::

   >>> windll.kernel32.GetModuleHandleA() # doctest: +WINDOWS
   Traceback (most recent call last):
     File "<stdin>", line 1, in ?
   ValueError: Procedure probably called with not enough arguments (4 bytes missing)
   >>> windll.kernel32.GetModuleHandleA(0, 0) # doctest: +WINDOWS
   Traceback (most recent call last):
     File "<stdin>", line 1, in ?
   ValueError: Procedure probably called with too many arguments (4 bytes in excess)
   >>>

The same exception is raised when you call an ``stdcall`` function with the
``cdecl`` calling convention, or vice versa::

   >>> cdll.kernel32.GetModuleHandleA(None) # doctest: +WINDOWS
   Traceback (most recent call last):
     File "<stdin>", line 1, in ?
   ValueError: Procedure probably called with not enough arguments (4 bytes missing)
   >>>

   >>> windll.msvcrt.printf("spam") # doctest: +WINDOWS
   Traceback (most recent call last):
     File "<stdin>", line 1, in ?
   ValueError: Procedure probably called with too many arguments (4 bytes in excess)
   >>>

To find out the correct calling convention you have to look into the C header
file or the documentation for the function you want to call.

On Windows, ``ctypes`` uses win32 structured exception handling to prevent
crashes from general protection faults when functions are called with invalid
argument values::

   >>> windll.kernel32.GetModuleHandleA(32) # doctest: +WINDOWS
   Traceback (most recent call last):
     File "<stdin>", line 1, in ?
   WindowsError: exception: access violation reading 0x00000020
   >>>

There are, however, enough ways to crash Python with ``ctypes``, so you should
be careful anyway.

``None``, integers, longs, byte strings and unicode strings are the only native
Python objects that can directly be used as parameters in these function calls.
``None`` is passed as a C ``NULL`` pointer, byte strings and unicode strings are
passed as pointer to the memory block that contains their data (``char *`` or
``wchar_t *``).  Python integers and Python longs are passed as the platforms
default C ``int`` type, their value is masked to fit into the C type.

Before we move on calling functions with other parameter types, we have to learn
more about ``ctypes`` data types.


.. _ctypes-fundamental-data-types:

Fundamental data types
^^^^^^^^^^^^^^^^^^^^^^

``ctypes`` defines a number of primitive C compatible data types :

   +----------------------+--------------------------------+----------------------------+
   | ctypes type          | C type                         | Python type                |
   +======================+================================+============================+
   | :class:`c_char`      | ``char``                       | 1-character string         |
   +----------------------+--------------------------------+----------------------------+
   | :class:`c_wchar`     | ``wchar_t``                    | 1-character unicode string |
   +----------------------+--------------------------------+----------------------------+
   | :class:`c_byte`      | ``char``                       | int/long                   |
   +----------------------+--------------------------------+----------------------------+
   | :class:`c_ubyte`     | ``unsigned char``              | int/long                   |
   +----------------------+--------------------------------+----------------------------+
   | :class:`c_short`     | ``short``                      | int/long                   |
   +----------------------+--------------------------------+----------------------------+
   | :class:`c_ushort`    | ``unsigned short``             | int/long                   |
   +----------------------+--------------------------------+----------------------------+
   | :class:`c_int`       | ``int``                        | int/long                   |
   +----------------------+--------------------------------+----------------------------+
   | :class:`c_uint`      | ``unsigned int``               | int/long                   |
   +----------------------+--------------------------------+----------------------------+
   | :class:`c_long`      | ``long``                       | int/long                   |
   +----------------------+--------------------------------+----------------------------+
   | :class:`c_ulong`     | ``unsigned long``              | int/long                   |
   +----------------------+--------------------------------+----------------------------+
   | :class:`c_longlong`  | ``__int64`` or ``long long``   | int/long                   |
   +----------------------+--------------------------------+----------------------------+
   | :class:`c_ulonglong` | ``unsigned __int64`` or        | int/long                   |
   |                      | ``unsigned long long``         |                            |
   +----------------------+--------------------------------+----------------------------+
   | :class:`c_float`     | ``float``                      | float                      |
   +----------------------+--------------------------------+----------------------------+
   | :class:`c_double`    | ``double``                     | float                      |
   +----------------------+--------------------------------+----------------------------+
   | :class:`c_char_p`    | ``char *`` (NUL terminated)    | string or ``None``         |
   +----------------------+--------------------------------+----------------------------+
   | :class:`c_wchar_p`   | ``wchar_t *`` (NUL terminated) | unicode or ``None``        |
   +----------------------+--------------------------------+----------------------------+
   | :class:`c_void_p`    | ``void *``                     | int/long or ``None``       |
   +----------------------+--------------------------------+----------------------------+


All these types can be created by calling them with an optional initializer of
the correct type and value::

   >>> c_int()
   c_long(0)
   >>> c_char_p("Hello, World")
   c_char_p('Hello, World')
   >>> c_ushort(-3)
   c_ushort(65533)
   >>>

Since these types are mutable, their value can also be changed afterwards::

   >>> i = c_int(42)
   >>> print i
   c_long(42)
   >>> print i.value
   42
   >>> i.value = -99
   >>> print i.value
   -99
   >>>

Assigning a new value to instances of the pointer types :class:`c_char_p`,
:class:`c_wchar_p`, and :class:`c_void_p` changes the *memory location* they
point to, *not the contents* of the memory block (of course not, because Python
strings are immutable)::

   >>> s = "Hello, World"
   >>> c_s = c_char_p(s)
   >>> print c_s
   c_char_p('Hello, World')
   >>> c_s.value = "Hi, there"
   >>> print c_s
   c_char_p('Hi, there')
   >>> print s                 # first string is unchanged
   Hello, World
   >>>

You should be careful, however, not to pass them to functions expecting pointers
to mutable memory. If you need mutable memory blocks, ctypes has a
``create_string_buffer`` function which creates these in various ways.  The
current memory block contents can be accessed (or changed) with the ``raw``
property; if you want to access it as NUL terminated string, use the ``value``
property::

   >>> from ctypes import *
   >>> p = create_string_buffer(3)      # create a 3 byte buffer, initialized to NUL bytes
   >>> print sizeof(p), repr(p.raw)
   3 '\x00\x00\x00'
   >>> p = create_string_buffer("Hello")      # create a buffer containing a NUL terminated string
   >>> print sizeof(p), repr(p.raw)
   6 'Hello\x00'
   >>> print repr(p.value)
   'Hello'
   >>> p = create_string_buffer("Hello", 10)  # create a 10 byte buffer
   >>> print sizeof(p), repr(p.raw)
   10 'Hello\x00\x00\x00\x00\x00'
   >>> p.value = "Hi"      
   >>> print sizeof(p), repr(p.raw)
   10 'Hi\x00lo\x00\x00\x00\x00\x00'
   >>>

The ``create_string_buffer`` function replaces the ``c_buffer`` function (which
is still available as an alias), as well as the ``c_string`` function from
earlier ctypes releases.  To create a mutable memory block containing unicode
characters of the C type ``wchar_t`` use the ``create_unicode_buffer`` function.


.. _ctypes-calling-functions-continued:

Calling functions, continued
^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Note that printf prints to the real standard output channel, *not* to
``sys.stdout``, so these examples will only work at the console prompt, not from
within *IDLE* or *PythonWin*::

   >>> printf = libc.printf
   >>> printf("Hello, %s\n", "World!")
   Hello, World!
   14
   >>> printf("Hello, %S", u"World!")
   Hello, World!
   13
   >>> printf("%d bottles of beer\n", 42)
   42 bottles of beer
   19
   >>> printf("%f bottles of beer\n", 42.5)
   Traceback (most recent call last):
     File "<stdin>", line 1, in ?
   ArgumentError: argument 2: exceptions.TypeError: Don't know how to convert parameter 2
   >>>

As has been mentioned before, all Python types except integers, strings, and
unicode strings have to be wrapped in their corresponding ``ctypes`` type, so
that they can be converted to the required C data type::

   >>> printf("An int %d, a double %f\n", 1234, c_double(3.14))
   Integer 1234, double 3.1400001049
   31
   >>>


.. _ctypes-calling-functions-with-own-custom-data-types:

Calling functions with your own custom data types
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

You can also customize ``ctypes`` argument conversion to allow instances of your
own classes be used as function arguments. ``ctypes`` looks for an
:attr:`_as_parameter_` attribute and uses this as the function argument. Of
course, it must be one of integer, string, or unicode::

   >>> class Bottles(object):
   ...     def __init__(self, number):
   ...         self._as_parameter_ = number
   ...
   >>> bottles = Bottles(42)
   >>> printf("%d bottles of beer\n", bottles)
   42 bottles of beer
   19
   >>>

If you don't want to store the instance's data in the :attr:`_as_parameter_`
instance variable, you could define a ``property`` which makes the data
available.


.. _ctypes-specifying-required-argument-types:

Specifying the required argument types (function prototypes)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

It is possible to specify the required argument types of functions exported from
DLLs by setting the :attr:`argtypes` attribute.

:attr:`argtypes` must be a sequence of C data types (the ``printf`` function is
probably not a good example here, because it takes a variable number and
different types of parameters depending on the format string, on the other hand
this is quite handy to experiment with this feature)::

   >>> printf.argtypes = [c_char_p, c_char_p, c_int, c_double]
   >>> printf("String '%s', Int %d, Double %f\n", "Hi", 10, 2.2)
   String 'Hi', Int 10, Double 2.200000
   37
   >>>

Specifying a format protects against incompatible argument types (just as a
prototype for a C function), and tries to convert the arguments to valid types::

   >>> printf("%d %d %d", 1, 2, 3)
   Traceback (most recent call last):
     File "<stdin>", line 1, in ?
   ArgumentError: argument 2: exceptions.TypeError: wrong type
   >>> printf("%s %d %f", "X", 2, 3)
   X 2 3.00000012
   12
   >>>

If you have defined your own classes which you pass to function calls, you have
to implement a :meth:`from_param` class method for them to be able to use them
in the :attr:`argtypes` sequence. The :meth:`from_param` class method receives
the Python object passed to the function call, it should do a typecheck or
whatever is needed to make sure this object is acceptable, and then return the
object itself, it's :attr:`_as_parameter_` attribute, or whatever you want to
pass as the C function argument in this case. Again, the result should be an
integer, string, unicode, a ``ctypes`` instance, or something having the
:attr:`_as_parameter_` attribute.


.. _ctypes-return-types:

Return types
^^^^^^^^^^^^

By default functions are assumed to return the C ``int`` type.  Other return
types can be specified by setting the :attr:`restype` attribute of the function
object.

Here is a more advanced example, it uses the ``strchr`` function, which expects
a string pointer and a char, and returns a pointer to a string::

   >>> strchr = libc.strchr
   >>> strchr("abcdef", ord("d")) # doctest: +SKIP
   8059983
   >>> strchr.restype = c_char_p # c_char_p is a pointer to a string
   >>> strchr("abcdef", ord("d"))
   'def'
   >>> print strchr("abcdef", ord("x"))
   None
   >>>

If you want to avoid the ``ord("x")`` calls above, you can set the
:attr:`argtypes` attribute, and the second argument will be converted from a
single character Python string into a C char::

   >>> strchr.restype = c_char_p
   >>> strchr.argtypes = [c_char_p, c_char]
   >>> strchr("abcdef", "d")
   'def'
   >>> strchr("abcdef", "def")
   Traceback (most recent call last):
     File "<stdin>", line 1, in ?
   ArgumentError: argument 2: exceptions.TypeError: one character string expected
   >>> print strchr("abcdef", "x")
   None
   >>> strchr("abcdef", "d")
   'def'
   >>>

You can also use a callable Python object (a function or a class for example) as
the :attr:`restype` attribute, if the foreign function returns an integer.  The
callable will be called with the ``integer`` the C function returns, and the
result of this call will be used as the result of your function call. This is
useful to check for error return values and automatically raise an exception::

   >>> GetModuleHandle = windll.kernel32.GetModuleHandleA # doctest: +WINDOWS
   >>> def ValidHandle(value):
   ...     if value == 0:
   ...         raise WinError()
   ...     return value
   ...
   >>>
   >>> GetModuleHandle.restype = ValidHandle # doctest: +WINDOWS
   >>> GetModuleHandle(None) # doctest: +WINDOWS
   486539264
   >>> GetModuleHandle("something silly") # doctest: +WINDOWS
   Traceback (most recent call last):
     File "<stdin>", line 1, in ?
     File "<stdin>", line 3, in ValidHandle
   WindowsError: [Errno 126] The specified module could not be found.
   >>>

``WinError`` is a function which will call Windows ``FormatMessage()`` api to
get the string representation of an error code, and *returns* an exception.
``WinError`` takes an optional error code parameter, if no one is used, it calls
:func:`GetLastError` to retrieve it.

Please note that a much more powerful error checking mechanism is available
through the :attr:`errcheck` attribute; see the reference manual for details.


.. _ctypes-passing-pointers:

Passing pointers (or: passing parameters by reference)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Sometimes a C api function expects a *pointer* to a data type as parameter,
probably to write into the corresponding location, or if the data is too large
to be passed by value. This is also known as *passing parameters by reference*.

``ctypes`` exports the :func:`byref` function which is used to pass parameters
by reference.  The same effect can be achieved with the ``pointer`` function,
although ``pointer`` does a lot more work since it constructs a real pointer
object, so it is faster to use :func:`byref` if you don't need the pointer
object in Python itself::

   >>> i = c_int()
   >>> f = c_float()
   >>> s = create_string_buffer('\000' * 32)
   >>> print i.value, f.value, repr(s.value)
   0 0.0 ''
   >>> libc.sscanf("1 3.14 Hello", "%d %f %s",
   ...             byref(i), byref(f), s)
   3
   >>> print i.value, f.value, repr(s.value)
   1 3.1400001049 'Hello'
   >>>


.. _ctypes-structures-unions:

Structures and unions
^^^^^^^^^^^^^^^^^^^^^

Structures and unions must derive from the :class:`Structure` and :class:`Union`
base classes which are defined in the ``ctypes`` module. Each subclass must
define a :attr:`_fields_` attribute.  :attr:`_fields_` must be a list of
*2-tuples*, containing a *field name* and a *field type*.

The field type must be a ``ctypes`` type like :class:`c_int`, or any other
derived ``ctypes`` type: structure, union, array, pointer.

Here is a simple example of a POINT structure, which contains two integers named
``x`` and ``y``, and also shows how to initialize a structure in the
constructor::

   >>> from ctypes import *
   >>> class POINT(Structure):
   ...     _fields_ = [("x", c_int),
   ...                 ("y", c_int)]
   ...
   >>> point = POINT(10, 20)
   >>> print point.x, point.y
   10 20
   >>> point = POINT(y=5)
   >>> print point.x, point.y
   0 5
   >>> POINT(1, 2, 3)
   Traceback (most recent call last):
     File "<stdin>", line 1, in ?
   ValueError: too many initializers
   >>>

You can, however, build much more complicated structures. Structures can itself
contain other structures by using a structure as a field type.

Here is a RECT structure which contains two POINTs named ``upperleft`` and
``lowerright``  ::

   >>> class RECT(Structure):
   ...     _fields_ = [("upperleft", POINT),
   ...                 ("lowerright", POINT)]
   ...
   >>> rc = RECT(point)
   >>> print rc.upperleft.x, rc.upperleft.y
   0 5
   >>> print rc.lowerright.x, rc.lowerright.y
   0 0
   >>>

Nested structures can also be initialized in the constructor in several ways::

   >>> r = RECT(POINT(1, 2), POINT(3, 4))
   >>> r = RECT((1, 2), (3, 4))

Fields descriptors can be retrieved from the *class*, they are useful for
debugging because they can provide useful information::

   >>> print POINT.x
   <Field type=c_long, ofs=0, size=4>
   >>> print POINT.y
   <Field type=c_long, ofs=4, size=4>
   >>>


.. _ctypes-structureunion-alignment-byte-order:

Structure/union alignment and byte order
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

By default, Structure and Union fields are aligned in the same way the C
compiler does it. It is possible to override this behavior be specifying a
:attr:`_pack_` class attribute in the subclass definition. This must be set to a
positive integer and specifies the maximum alignment for the fields. This is
what ``#pragma pack(n)`` also does in MSVC.

``ctypes`` uses the native byte order for Structures and Unions.  To build
structures with non-native byte order, you can use one of the
BigEndianStructure, LittleEndianStructure, BigEndianUnion, and LittleEndianUnion
base classes.  These classes cannot contain pointer fields.


.. _ctypes-bit-fields-in-structures-unions:

Bit fields in structures and unions
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

It is possible to create structures and unions containing bit fields. Bit fields
are only possible for integer fields, the bit width is specified as the third
item in the :attr:`_fields_` tuples::

   >>> class Int(Structure):
   ...     _fields_ = [("first_16", c_int, 16),
   ...                 ("second_16", c_int, 16)]
   ...
   >>> print Int.first_16
   <Field type=c_long, ofs=0:0, bits=16>
   >>> print Int.second_16
   <Field type=c_long, ofs=0:16, bits=16>
   >>>


.. _ctypes-arrays:

Arrays
^^^^^^

Arrays are sequences, containing a fixed number of instances of the same type.

The recommended way to create array types is by multiplying a data type with a
positive integer::

   TenPointsArrayType = POINT * 10

Here is an example of an somewhat artificial data type, a structure containing 4
POINTs among other stuff::

   >>> from ctypes import *
   >>> class POINT(Structure):
   ...    _fields_ = ("x", c_int), ("y", c_int)
   ...
   >>> class MyStruct(Structure):
   ...    _fields_ = [("a", c_int),
   ...                ("b", c_float),
   ...                ("point_array", POINT * 4)]
   >>>
   >>> print len(MyStruct().point_array)
   4
   >>>

Instances are created in the usual way, by calling the class::

   arr = TenPointsArrayType()
   for pt in arr:
       print pt.x, pt.y

The above code print a series of ``0 0`` lines, because the array contents is
initialized to zeros.

Initializers of the correct type can also be specified::

   >>> from ctypes import *
   >>> TenIntegers = c_int * 10
   >>> ii = TenIntegers(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)
   >>> print ii
   <c_long_Array_10 object at 0x...>
   >>> for i in ii: print i,
   ...
   1 2 3 4 5 6 7 8 9 10
   >>>


.. _ctypes-pointers:

Pointers
^^^^^^^^

Pointer instances are created by calling the ``pointer`` function on a
``ctypes`` type::

   >>> from ctypes import *
   >>> i = c_int(42)
   >>> pi = pointer(i)
   >>>

Pointer instances have a ``contents`` attribute which returns the object to
which the pointer points, the ``i`` object above::

   >>> pi.contents
   c_long(42)
   >>>

Note that ``ctypes`` does not have OOR (original object return), it constructs a
new, equivalent object each time you retrieve an attribute::

   >>> pi.contents is i
   False
   >>> pi.contents is pi.contents
   False
   >>>

Assigning another :class:`c_int` instance to the pointer's contents attribute
would cause the pointer to point to the memory location where this is stored::

   >>> i = c_int(99)
   >>> pi.contents = i
   >>> pi.contents
   c_long(99)
   >>>

Pointer instances can also be indexed with integers::

   >>> pi[0]
   99
   >>>

Assigning to an integer index changes the pointed to value::

   >>> print i
   c_long(99)
   >>> pi[0] = 22
   >>> print i
   c_long(22)
   >>>

It is also possible to use indexes different from 0, but you must know what
you're doing, just as in C: You can access or change arbitrary memory locations.
Generally you only use this feature if you receive a pointer from a C function,
and you *know* that the pointer actually points to an array instead of a single
item.

Behind the scenes, the ``pointer`` function does more than simply create pointer
instances, it has to create pointer *types* first. This is done with the
``POINTER`` function, which accepts any ``ctypes`` type, and returns a new
type::

   >>> PI = POINTER(c_int)
   >>> PI
   <class 'ctypes.LP_c_long'>
   >>> PI(42)
   Traceback (most recent call last):
     File "<stdin>", line 1, in ?
   TypeError: expected c_long instead of int
   >>> PI(c_int(42))
   <ctypes.LP_c_long object at 0x...>
   >>>

Calling the pointer type without an argument creates a ``NULL`` pointer.
``NULL`` pointers have a ``False`` boolean value::

   >>> null_ptr = POINTER(c_int)()
   >>> print bool(null_ptr)
   False
   >>>

``ctypes`` checks for ``NULL`` when dereferencing pointers (but dereferencing
non-\ ``NULL`` pointers would crash Python)::

   >>> null_ptr[0]
   Traceback (most recent call last):
       ....
   ValueError: NULL pointer access
   >>>

   >>> null_ptr[0] = 1234
   Traceback (most recent call last):
       ....
   ValueError: NULL pointer access
   >>>


.. _ctypes-type-conversions:

Type conversions
^^^^^^^^^^^^^^^^

Usually, ctypes does strict type checking.  This means, if you have
``POINTER(c_int)`` in the :attr:`argtypes` list of a function or as the type of
a member field in a structure definition, only instances of exactly the same
type are accepted.  There are some exceptions to this rule, where ctypes accepts
other objects.  For example, you can pass compatible array instances instead of
pointer types.  So, for ``POINTER(c_int)``, ctypes accepts an array of c_int::

   >>> class Bar(Structure):
   ...     _fields_ = [("count", c_int), ("values", POINTER(c_int))]
   ...
   >>> bar = Bar()
   >>> bar.values = (c_int * 3)(1, 2, 3)
   >>> bar.count = 3
   >>> for i in range(bar.count):
   ...     print bar.values[i]
   ...
   1
   2
   3
   >>>

To set a POINTER type field to ``NULL``, you can assign ``None``::

   >>> bar.values = None
   >>>

XXX list other conversions...

Sometimes you have instances of incompatible types.  In ``C``, you can cast one
type into another type.  ``ctypes`` provides a ``cast`` function which can be
used in the same way.  The ``Bar`` structure defined above accepts
``POINTER(c_int)`` pointers or :class:`c_int` arrays for its ``values`` field,
but not instances of other types::

   >>> bar.values = (c_byte * 4)()
   Traceback (most recent call last):
     File "<stdin>", line 1, in ?
   TypeError: incompatible types, c_byte_Array_4 instance instead of LP_c_long instance
   >>>

For these cases, the ``cast`` function is handy.

The ``cast`` function can be used to cast a ctypes instance into a pointer to a
different ctypes data type.  ``cast`` takes two parameters, a ctypes object that
is or can be converted to a pointer of some kind, and a ctypes pointer type.  It
returns an instance of the second argument, which references the same memory
block as the first argument::

   >>> a = (c_byte * 4)()
   >>> cast(a, POINTER(c_int))
   <ctypes.LP_c_long object at ...>
   >>>

So, ``cast`` can be used to assign to the ``values`` field of ``Bar`` the
structure::

   >>> bar = Bar()
   >>> bar.values = cast((c_byte * 4)(), POINTER(c_int))
   >>> print bar.values[0]
   0
   >>>


.. _ctypes-incomplete-types:

Incomplete Types
^^^^^^^^^^^^^^^^

*Incomplete Types* are structures, unions or arrays whose members are not yet
specified. In C, they are specified by forward declarations, which are defined
later::

   struct cell; /* forward declaration */

   struct {
       char *name;
       struct cell *next;
   } cell;

The straightforward translation into ctypes code would be this, but it does not
work::

   >>> class cell(Structure):
   ...     _fields_ = [("name", c_char_p),
   ...                 ("next", POINTER(cell))]
   ...
   Traceback (most recent call last):
     File "<stdin>", line 1, in ?
     File "<stdin>", line 2, in cell
   NameError: name 'cell' is not defined
   >>>

because the new ``class cell`` is not available in the class statement itself.
In ``ctypes``, we can define the ``cell`` class and set the :attr:`_fields_`
attribute later, after the class statement::

   >>> from ctypes import *
   >>> class cell(Structure):
   ...     pass
   ...
   >>> cell._fields_ = [("name", c_char_p),
   ...                  ("next", POINTER(cell))]
   >>>

Lets try it. We create two instances of ``cell``, and let them point to each
other, and finally follow the pointer chain a few times::

   >>> c1 = cell()
   >>> c1.name = "foo"
   >>> c2 = cell()
   >>> c2.name = "bar"
   >>> c1.next = pointer(c2)
   >>> c2.next = pointer(c1)
   >>> p = c1
   >>> for i in range(8):
   ...     print p.name,
   ...     p = p.next[0]
   ...
   foo bar foo bar foo bar foo bar
   >>>    


.. _ctypes-callback-functions:

Callback functions
^^^^^^^^^^^^^^^^^^

``ctypes`` allows to create C callable function pointers from Python callables.
These are sometimes called *callback functions*.

First, you must create a class for the callback function, the class knows the
calling convention, the return type, and the number and types of arguments this
function will receive.

The CFUNCTYPE factory function creates types for callback functions using the
normal cdecl calling convention, and, on Windows, the WINFUNCTYPE factory
function creates types for callback functions using the stdcall calling
convention.

Both of these factory functions are called with the result type as first
argument, and the callback functions expected argument types as the remaining
arguments.

I will present an example here which uses the standard C library's :func:`qsort`
function, this is used to sort items with the help of a callback function.
:func:`qsort` will be used to sort an array of integers::

   >>> IntArray5 = c_int * 5
   >>> ia = IntArray5(5, 1, 7, 33, 99)
   >>> qsort = libc.qsort
   >>> qsort.restype = None
   >>>

:func:`qsort` must be called with a pointer to the data to sort, the number of
items in the data array, the size of one item, and a pointer to the comparison
function, the callback. The callback will then be called with two pointers to
items, and it must return a negative integer if the first item is smaller than
the second, a zero if they are equal, and a positive integer else.

So our callback function receives pointers to integers, and must return an
integer. First we create the ``type`` for the callback function::

   >>> CMPFUNC = CFUNCTYPE(c_int, POINTER(c_int), POINTER(c_int))
   >>>

For the first implementation of the callback function, we simply print the
arguments we get, and return 0 (incremental development ;-)::

   >>> def py_cmp_func(a, b):
   ...     print "py_cmp_func", a, b
   ...     return 0
   ...
   >>>

Create the C callable callback::

   >>> cmp_func = CMPFUNC(py_cmp_func)
   >>>

And we're ready to go::

   >>> qsort(ia, len(ia), sizeof(c_int), cmp_func) # doctest: +WINDOWS
   py_cmp_func <ctypes.LP_c_long object at 0x00...> <ctypes.LP_c_long object at 0x00...>
   py_cmp_func <ctypes.LP_c_long object at 0x00...> <ctypes.LP_c_long object at 0x00...>
   py_cmp_func <ctypes.LP_c_long object at 0x00...> <ctypes.LP_c_long object at 0x00...>
   py_cmp_func <ctypes.LP_c_long object at 0x00...> <ctypes.LP_c_long object at 0x00...>
   py_cmp_func <ctypes.LP_c_long object at 0x00...> <ctypes.LP_c_long object at 0x00...>
   py_cmp_func <ctypes.LP_c_long object at 0x00...> <ctypes.LP_c_long object at 0x00...>
   py_cmp_func <ctypes.LP_c_long object at 0x00...> <ctypes.LP_c_long object at 0x00...>
   py_cmp_func <ctypes.LP_c_long object at 0x00...> <ctypes.LP_c_long object at 0x00...>
   py_cmp_func <ctypes.LP_c_long object at 0x00...> <ctypes.LP_c_long object at 0x00...>
   py_cmp_func <ctypes.LP_c_long object at 0x00...> <ctypes.LP_c_long object at 0x00...>
   >>>

We know how to access the contents of a pointer, so lets redefine our callback::

   >>> def py_cmp_func(a, b):
   ...     print "py_cmp_func", a[0], b[0]
   ...     return 0
   ...
   >>> cmp_func = CMPFUNC(py_cmp_func)
   >>>

Here is what we get on Windows::

   >>> qsort(ia, len(ia), sizeof(c_int), cmp_func) # doctest: +WINDOWS
   py_cmp_func 7 1
   py_cmp_func 33 1
   py_cmp_func 99 1
   py_cmp_func 5 1
   py_cmp_func 7 5
   py_cmp_func 33 5
   py_cmp_func 99 5
   py_cmp_func 7 99
   py_cmp_func 33 99
   py_cmp_func 7 33
   >>>

It is funny to see that on linux the sort function seems to work much more
efficient, it is doing less comparisons::

   >>> qsort(ia, len(ia), sizeof(c_int), cmp_func) # doctest: +LINUX
   py_cmp_func 5 1
   py_cmp_func 33 99
   py_cmp_func 7 33
   py_cmp_func 5 7
   py_cmp_func 1 7
   >>>

Ah, we're nearly done! The last step is to actually compare the two items and
return a useful result::

   >>> def py_cmp_func(a, b):
   ...     print "py_cmp_func", a[0], b[0]
   ...     return a[0] - b[0]
   ...
   >>>

Final run on Windows::

   >>> qsort(ia, len(ia), sizeof(c_int), CMPFUNC(py_cmp_func)) # doctest: +WINDOWS
   py_cmp_func 33 7
   py_cmp_func 99 33
   py_cmp_func 5 99
   py_cmp_func 1 99
   py_cmp_func 33 7
   py_cmp_func 1 33
   py_cmp_func 5 33
   py_cmp_func 5 7
   py_cmp_func 1 7
   py_cmp_func 5 1
   >>>

and on Linux::

   >>> qsort(ia, len(ia), sizeof(c_int), CMPFUNC(py_cmp_func)) # doctest: +LINUX
   py_cmp_func 5 1
   py_cmp_func 33 99
   py_cmp_func 7 33
   py_cmp_func 1 7
   py_cmp_func 5 7
   >>>

It is quite interesting to see that the Windows :func:`qsort` function needs
more comparisons than the linux version!

As we can easily check, our array is sorted now::

   >>> for i in ia: print i,
   ...
   1 5 7 33 99
   >>>

**Important note for callback functions:**

Make sure you keep references to CFUNCTYPE objects as long as they are used from
C code. ``ctypes`` doesn't, and if you don't, they may be garbage collected,
crashing your program when a callback is made.


.. _ctypes-accessing-values-exported-from-dlls:

Accessing values exported from dlls
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Sometimes, a dll not only exports functions, it also exports variables. An
example in the Python library itself is the ``Py_OptimizeFlag``, an integer set
to 0, 1, or 2, depending on the :option:`-O` or :option:`-OO` flag given on
startup.

``ctypes`` can access values like this with the :meth:`in_dll` class methods of
the type.  *pythonapi* is a predefined symbol giving access to the Python C
api::

   >>> opt_flag = c_int.in_dll(pythonapi, "Py_OptimizeFlag")
   >>> print opt_flag
   c_long(0)
   >>>

If the interpreter would have been started with :option:`-O`, the sample would
have printed ``c_long(1)``, or ``c_long(2)`` if :option:`-OO` would have been
specified.

An extended example which also demonstrates the use of pointers accesses the
``PyImport_FrozenModules`` pointer exported by Python.

Quoting the Python docs: *This pointer is initialized to point to an array of
"struct _frozen" records, terminated by one whose members are all NULL or zero.
When a frozen module is imported, it is searched in this table. Third-party code
could play tricks with this to provide a dynamically created collection of
frozen modules.*

So manipulating this pointer could even prove useful. To restrict the example
size, we show only how this table can be read with ``ctypes``::

   >>> from ctypes import *
   >>>
   >>> class struct_frozen(Structure):
   ...     _fields_ = [("name", c_char_p),
   ...                 ("code", POINTER(c_ubyte)),
   ...                 ("size", c_int)]
   ...
   >>>

We have defined the ``struct _frozen`` data type, so we can get the pointer to
the table::

   >>> FrozenTable = POINTER(struct_frozen)
   >>> table = FrozenTable.in_dll(pythonapi, "PyImport_FrozenModules")
   >>>

Since ``table`` is a ``pointer`` to the array of ``struct_frozen`` records, we
can iterate over it, but we just have to make sure that our loop terminates,
because pointers have no size. Sooner or later it would probably crash with an
access violation or whatever, so it's better to break out of the loop when we
hit the NULL entry::

   >>> for item in table:
   ...    print item.name, item.size
   ...    if item.name is None:
   ...        break
   ...
   __hello__ 104
   __phello__ -104
   __phello__.spam 104
   None 0
   >>>

The fact that standard Python has a frozen module and a frozen package
(indicated by the negative size member) is not well known, it is only used for
testing. Try it out with ``import __hello__`` for example.


.. _ctypes-surprises:

Surprises
^^^^^^^^^

There are some edges in ``ctypes`` where you may be expect something else than
what actually happens.

Consider the following example::

   >>> from ctypes import *
   >>> class POINT(Structure):
   ...     _fields_ = ("x", c_int), ("y", c_int)
   ...
   >>> class RECT(Structure):
   ...     _fields_ = ("a", POINT), ("b", POINT)
   ...
   >>> p1 = POINT(1, 2)
   >>> p2 = POINT(3, 4)
   >>> rc = RECT(p1, p2)
   >>> print rc.a.x, rc.a.y, rc.b.x, rc.b.y
   1 2 3 4
   >>> # now swap the two points
   >>> rc.a, rc.b = rc.b, rc.a
   >>> print rc.a.x, rc.a.y, rc.b.x, rc.b.y
   3 4 3 4
   >>>

Hm. We certainly expected the last statement to print ``3 4 1 2``. What
happened? Here are the steps of the ``rc.a, rc.b = rc.b, rc.a`` line above::

   >>> temp0, temp1 = rc.b, rc.a
   >>> rc.a = temp0
   >>> rc.b = temp1
   >>>

Note that ``temp0`` and ``temp1`` are objects still using the internal buffer of
the ``rc`` object above. So executing ``rc.a = temp0`` copies the buffer
contents of ``temp0`` into ``rc`` 's buffer.  This, in turn, changes the
contents of ``temp1``. So, the last assignment ``rc.b = temp1``, doesn't have
the expected effect.

Keep in mind that retrieving sub-objects from Structure, Unions, and Arrays
doesn't *copy* the sub-object, instead it retrieves a wrapper object accessing
the root-object's underlying buffer.

Another example that may behave different from what one would expect is this::

   >>> s = c_char_p()
   >>> s.value = "abc def ghi"
   >>> s.value
   'abc def ghi'
   >>> s.value is s.value
   False
   >>>

Why is it printing ``False``?  ctypes instances are objects containing a memory
block plus some descriptors accessing the contents of the memory.  Storing a
Python object in the memory block does not store the object itself, instead the
``contents`` of the object is stored. Accessing the contents again constructs a
new Python each time!


.. _ctypes-variable-sized-data-types:

Variable-sized data types
^^^^^^^^^^^^^^^^^^^^^^^^^

``ctypes`` provides some support for variable-sized arrays and structures (this
was added in version 0.9.9.7).

The ``resize`` function can be used to resize the memory buffer of an existing
ctypes object.  The function takes the object as first argument, and the
requested size in bytes as the second argument.  The memory block cannot be made
smaller than the natural memory block specified by the objects type, a
``ValueError`` is raised if this is tried::

   >>> short_array = (c_short * 4)()
   >>> print sizeof(short_array)
   8
   >>> resize(short_array, 4)
   Traceback (most recent call last):
       ...
   ValueError: minimum size is 8
   >>> resize(short_array, 32)
   >>> sizeof(short_array)
   32
   >>> sizeof(type(short_array))
   8
   >>>

This is nice and fine, but how would one access the additional elements
contained in this array?  Since the type still only knows about 4 elements, we
get errors accessing other elements::

   >>> short_array[:]
   [0, 0, 0, 0]
   >>> short_array[7]
   Traceback (most recent call last):
       ...
   IndexError: invalid index
   >>>

Another way to use variable-sized data types with ``ctypes`` is to use the
dynamic nature of Python, and (re-)define the data type after the required size
is already known, on a case by case basis.


.. _ctypes-bugs-todo-non-implemented-things:

Bugs, ToDo and non-implemented things
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Enumeration types are not implemented. You can do it easily yourself, using
:class:`c_int` as the base class.

``long double`` is not implemented.

.. % Local Variables:
.. % compile-command: "make.bat"
.. % End:


.. _ctypes-ctypes-reference:

ctypes reference
----------------


.. _ctypes-finding-shared-libraries:

Finding shared libraries
^^^^^^^^^^^^^^^^^^^^^^^^

When programming in a compiled language, shared libraries are accessed when
compiling/linking a program, and when the program is run.

The purpose of the ``find_library`` function is to locate a library in a way
similar to what the compiler does (on platforms with several versions of a
shared library the most recent should be loaded), while the ctypes library
loaders act like when a program is run, and call the runtime loader directly.

The ``ctypes.util`` module provides a function which can help to determine the
library to load.


.. data:: find_library(name)
   :noindex:

   Try to find a library and return a pathname.  *name* is the library name without
   any prefix like *lib*, suffix like ``.so``, ``.dylib`` or version number (this
   is the form used for the posix linker option :option:`-l`).  If no library can
   be found, returns ``None``.

The exact functionality is system dependent.

On Linux, ``find_library`` tries to run external programs (/sbin/ldconfig, gcc,
and objdump) to find the library file.  It returns the filename of the library
file.  Here are some examples::

   >>> from ctypes.util import find_library
   >>> find_library("m")
   'libm.so.6'
   >>> find_library("c")
   'libc.so.6'
   >>> find_library("bz2")
   'libbz2.so.1.0'
   >>>

On OS X, ``find_library`` tries several predefined naming schemes and paths to
locate the library, and returns a full pathname if successful::

   >>> from ctypes.util import find_library
   >>> find_library("c")
   '/usr/lib/libc.dylib'
   >>> find_library("m")
   '/usr/lib/libm.dylib'
   >>> find_library("bz2")
   '/usr/lib/libbz2.dylib'
   >>> find_library("AGL")
   '/System/Library/Frameworks/AGL.framework/AGL'
   >>>

On Windows, ``find_library`` searches along the system search path, and returns
the full pathname, but since there is no predefined naming scheme a call like
``find_library("c")`` will fail and return ``None``.

If wrapping a shared library with ``ctypes``, it *may* be better to determine
the shared library name at development type, and hardcode that into the wrapper
module instead of using ``find_library`` to locate the library at runtime.


.. _ctypes-loading-shared-libraries:

Loading shared libraries
^^^^^^^^^^^^^^^^^^^^^^^^

There are several ways to loaded shared libraries into the Python process.  One
way is to instantiate one of the following classes:


.. class:: CDLL(name, mode=DEFAULT_MODE, handle=None)

   Instances of this class represent loaded shared libraries. Functions in these
   libraries use the standard C calling convention, and are assumed to return
   ``int``.


.. class:: OleDLL(name, mode=DEFAULT_MODE, handle=None)

   Windows only: Instances of this class represent loaded shared libraries,
   functions in these libraries use the ``stdcall`` calling convention, and are
   assumed to return the windows specific :class:`HRESULT` code.  :class:`HRESULT`
   values contain information specifying whether the function call failed or
   succeeded, together with additional error code.  If the return value signals a
   failure, an :class:`WindowsError` is automatically raised.


.. class:: WinDLL(name, mode=DEFAULT_MODE, handle=None)

   Windows only: Instances of this class represent loaded shared libraries,
   functions in these libraries use the ``stdcall`` calling convention, and are
   assumed to return ``int`` by default.

   On Windows CE only the standard calling convention is used, for convenience the
   :class:`WinDLL` and :class:`OleDLL` use the standard calling convention on this
   platform.

The Python GIL is released before calling any function exported by these
libraries, and reacquired afterwards.


.. class:: PyDLL(name, mode=DEFAULT_MODE, handle=None)

   Instances of this class behave like :class:`CDLL` instances, except that the
   Python GIL is *not* released during the function call, and after the function
   execution the Python error flag is checked. If the error flag is set, a Python
   exception is raised.

   Thus, this is only useful to call Python C api functions directly.

All these classes can be instantiated by calling them with at least one
argument, the pathname of the shared library.  If you have an existing handle to
an already loaded shard library, it can be passed as the ``handle`` named
parameter, otherwise the underlying platforms ``dlopen`` or :meth:`LoadLibrary`
function is used to load the library into the process, and to get a handle to
it.

The *mode* parameter can be used to specify how the library is loaded.  For
details, consult the ``dlopen(3)`` manpage, on Windows, *mode* is ignored.


.. data:: RTLD_GLOBAL
   :noindex:

   Flag to use as *mode* parameter.  On platforms where this flag is not available,
   it is defined as the integer zero.


.. data:: RTLD_LOCAL
   :noindex:

   Flag to use as *mode* parameter.  On platforms where this is not available, it
   is the same as *RTLD_GLOBAL*.


.. data:: DEFAULT_MODE
   :noindex:

   The default mode which is used to load shared libraries.  On OSX 10.3, this is
   *RTLD_GLOBAL*, otherwise it is the same as *RTLD_LOCAL*.

Instances of these classes have no public methods, however :meth:`__getattr__`
and :meth:`__getitem__` have special behavior: functions exported by the shared
library can be accessed as attributes of by index.  Please note that both
:meth:`__getattr__` and :meth:`__getitem__` cache their result, so calling them
repeatedly returns the same object each time.

The following public attributes are available, their name starts with an
underscore to not clash with exported function names:


.. attribute:: PyDLL._handle

   The system handle used to access the library.


.. attribute:: PyDLL._name

   The name of the library passed in the constructor.

Shared libraries can also be loaded by using one of the prefabricated objects,
which are instances of the :class:`LibraryLoader` class, either by calling the
:meth:`LoadLibrary` method, or by retrieving the library as attribute of the
loader instance.


.. class:: LibraryLoader(dlltype)

   Class which loads shared libraries.  ``dlltype`` should be one of the
   :class:`CDLL`, :class:`PyDLL`, :class:`WinDLL`, or :class:`OleDLL` types.

   :meth:`__getattr__` has special behavior: It allows to load a shared library by
   accessing it as attribute of a library loader instance.  The result is cached,
   so repeated attribute accesses return the same library each time.


.. method:: LibraryLoader.LoadLibrary(name)

   Load a shared library into the process and return it.  This method always
   returns a new instance of the library.

These prefabricated library loaders are available:


.. data:: cdll
   :noindex:

   Creates :class:`CDLL` instances.


.. data:: windll
   :noindex:

   Windows only: Creates :class:`WinDLL` instances.


.. data:: oledll
   :noindex:

   Windows only: Creates :class:`OleDLL` instances.


.. data:: pydll
   :noindex:

   Creates :class:`PyDLL` instances.

For accessing the C Python api directly, a ready-to-use Python shared library
object is available:


.. data:: pythonapi
   :noindex:

   An instance of :class:`PyDLL` that exposes Python C api functions as attributes.
   Note that all these functions are assumed to return C ``int``, which is of
   course not always the truth, so you have to assign the correct :attr:`restype`
   attribute to use these functions.


.. _ctypes-foreign-functions:

Foreign functions
^^^^^^^^^^^^^^^^^

As explained in the previous section, foreign functions can be accessed as
attributes of loaded shared libraries.  The function objects created in this way
by default accept any number of arguments, accept any ctypes data instances as
arguments, and return the default result type specified by the library loader.
They are instances of a private class:


.. class:: _FuncPtr

   Base class for C callable foreign functions.

Instances of foreign functions are also C compatible data types; they represent
C function pointers.

This behavior can be customized by assigning to special attributes of the
foreign function object.


.. attribute:: _FuncPtr.restype

   Assign a ctypes type to specify the result type of the foreign function.  Use
   ``None`` for ``void`` a function not returning anything.

   It is possible to assign a callable Python object that is not a ctypes type, in
   this case the function is assumed to return a C ``int``, and the callable will
   be called with this integer, allowing to do further processing or error
   checking.  Using this is deprecated, for more flexible post processing or error
   checking use a ctypes data type as :attr:`restype` and assign a callable to the
   :attr:`errcheck` attribute.


.. attribute:: _FuncPtr.argtypes

   Assign a tuple of ctypes types to specify the argument types that the function
   accepts.  Functions using the ``stdcall`` calling convention can only be called
   with the same number of arguments as the length of this tuple; functions using
   the C calling convention accept additional, unspecified arguments as well.

   When a foreign function is called, each actual argument is passed to the
   :meth:`from_param` class method of the items in the :attr:`argtypes` tuple, this
   method allows to adapt the actual argument to an object that the foreign
   function accepts.  For example, a :class:`c_char_p` item in the :attr:`argtypes`
   tuple will convert a unicode string passed as argument into an byte string using
   ctypes conversion rules.

   New: It is now possible to put items in argtypes which are not ctypes types, but
   each item must have a :meth:`from_param` method which returns a value usable as
   argument (integer, string, ctypes instance).  This allows to define adapters
   that can adapt custom objects as function parameters.


.. attribute:: _FuncPtr.errcheck

   Assign a Python function or another callable to this attribute. The callable
   will be called with three or more arguments:


.. function:: callable(result, func, arguments)
   :noindex:

   ``result`` is what the foreign function returns, as specified by the
   :attr:`restype` attribute.

   ``func`` is the foreign function object itself, this allows to reuse the same
   callable object to check or post process the results of several functions.

   ``arguments`` is a tuple containing the parameters originally passed to the
   function call, this allows to specialize the behavior on the arguments used.

   The object that this function returns will be returned from the foreign function
   call, but it can also check the result value and raise an exception if the
   foreign function call failed.


.. exception:: ArgumentError()

   This exception is raised when a foreign function call cannot convert one of the
   passed arguments.


.. _ctypes-function-prototypes:

Function prototypes
^^^^^^^^^^^^^^^^^^^

Foreign functions can also be created by instantiating function prototypes.
Function prototypes are similar to function prototypes in C; they describe a
function (return type, argument types, calling convention) without defining an
implementation.  The factory functions must be called with the desired result
type and the argument types of the function.


.. function:: CFUNCTYPE(restype, *argtypes)

   The returned function prototype creates functions that use the standard C
   calling convention.  The function will release the GIL during the call.


.. function:: WINFUNCTYPE(restype, *argtypes)

   Windows only: The returned function prototype creates functions that use the
   ``stdcall`` calling convention, except on Windows CE where :func:`WINFUNCTYPE`
   is the same as :func:`CFUNCTYPE`.  The function will release the GIL during the
   call.


.. function:: PYFUNCTYPE(restype, *argtypes)

   The returned function prototype creates functions that use the Python calling
   convention.  The function will *not* release the GIL during the call.

Function prototypes created by the factory functions can be instantiated in
different ways, depending on the type and number of the parameters in the call.


.. function:: prototype(address)
   :noindex:

   Returns a foreign function at the specified address.


.. function:: prototype(callable)
   :noindex:

   Create a C callable function (a callback function) from a Python ``callable``.


.. function:: prototype(func_spec[, paramflags])
   :noindex:

   Returns a foreign function exported by a shared library. ``func_spec`` must be a
   2-tuple ``(name_or_ordinal, library)``. The first item is the name of the
   exported function as string, or the ordinal of the exported function as small
   integer.  The second item is the shared library instance.


.. function:: prototype(vtbl_index, name[, paramflags[, iid]])
   :noindex:

   Returns a foreign function that will call a COM method. ``vtbl_index`` is the
   index into the virtual function table, a small non-negative integer. *name* is
   name of the COM method. *iid* is an optional pointer to the interface identifier
   which is used in extended error reporting.

   COM methods use a special calling convention: They require a pointer to the COM
   interface as first argument, in addition to those parameters that are specified
   in the :attr:`argtypes` tuple.

The optional *paramflags* parameter creates foreign function wrappers with much
more functionality than the features described above.

*paramflags* must be a tuple of the same length as :attr:`argtypes`.

Each item in this tuple contains further information about a parameter, it must
be a tuple containing 1, 2, or 3 items.

The first item is an integer containing flags for the parameter:


.. data:: 1
   :noindex:

   Specifies an input parameter to the function.


.. data:: 2
   :noindex:

   Output parameter.  The foreign function fills in a value.


.. data:: 4
   :noindex:

   Input parameter which defaults to the integer zero.

The optional second item is the parameter name as string.  If this is specified,
the foreign function can be called with named parameters.

The optional third item is the default value for this parameter.

This example demonstrates how to wrap the Windows ``MessageBoxA`` function so
that it supports default parameters and named arguments. The C declaration from
the windows header file is this::

   WINUSERAPI int WINAPI
   MessageBoxA(
       HWND hWnd ,
       LPCSTR lpText,
       LPCSTR lpCaption,
       UINT uType);

Here is the wrapping with ``ctypes``:

   ::

      >>> from ctypes import c_int, WINFUNCTYPE, windll
      >>> from ctypes.wintypes import HWND, LPCSTR, UINT
      >>> prototype = WINFUNCTYPE(c_int, HWND, LPCSTR, LPCSTR, UINT)
      >>> paramflags = (1, "hwnd", 0), (1, "text", "Hi"), (1, "caption", None), (1, "flags", 0)
      >>> MessageBox = prototype(("MessageBoxA", windll.user32), paramflags)
      >>>

The MessageBox foreign function can now be called in these ways::

   >>> MessageBox()
   >>> MessageBox(text="Spam, spam, spam")
   >>> MessageBox(flags=2, text="foo bar")
   >>>

A second example demonstrates output parameters.  The win32 ``GetWindowRect``
function retrieves the dimensions of a specified window by copying them into
``RECT`` structure that the caller has to supply.  Here is the C declaration::

   WINUSERAPI BOOL WINAPI
   GetWindowRect(
        HWND hWnd,
        LPRECT lpRect);

Here is the wrapping with ``ctypes``:

   ::

      >>> from ctypes import POINTER, WINFUNCTYPE, windll, WinError
      >>> from ctypes.wintypes import BOOL, HWND, RECT
      >>> prototype = WINFUNCTYPE(BOOL, HWND, POINTER(RECT))
      >>> paramflags = (1, "hwnd"), (2, "lprect")
      >>> GetWindowRect = prototype(("GetWindowRect", windll.user32), paramflags)
      >>>

Functions with output parameters will automatically return the output parameter
value if there is a single one, or a tuple containing the output parameter
values when there are more than one, so the GetWindowRect function now returns a
RECT instance, when called.

Output parameters can be combined with the :attr:`errcheck` protocol to do
further output processing and error checking.  The win32 ``GetWindowRect`` api
function returns a ``BOOL`` to signal success or failure, so this function could
do the error checking, and raises an exception when the api call failed::

   >>> def errcheck(result, func, args):
   ...     if not result:
   ...         raise WinError()
   ...     return args
   >>> GetWindowRect.errcheck = errcheck
   >>>

If the :attr:`errcheck` function returns the argument tuple it receives
unchanged, ``ctypes`` continues the normal processing it does on the output
parameters.  If you want to return a tuple of window coordinates instead of a
``RECT`` instance, you can retrieve the fields in the function and return them
instead, the normal processing will no longer take place::

   >>> def errcheck(result, func, args):
   ...     if not result:
   ...         raise WinError()
   ...     rc = args[1]
   ...     return rc.left, rc.top, rc.bottom, rc.right
   >>>
   >>> GetWindowRect.errcheck = errcheck
   >>>


.. _ctypes-utility-functions:

Utility functions
^^^^^^^^^^^^^^^^^


.. function:: addressof(obj)

   Returns the address of the memory buffer as integer.  ``obj`` must be an
   instance of a ctypes type.


.. function:: alignment(obj_or_type)

   Returns the alignment requirements of a ctypes type. ``obj_or_type`` must be a
   ctypes type or instance.


.. function:: byref(obj)

   Returns a light-weight pointer to ``obj``, which must be an instance of a ctypes
   type. The returned object can only be used as a foreign function call parameter.
   It behaves similar to ``pointer(obj)``, but the construction is a lot faster.


.. function:: cast(obj, type)

   This function is similar to the cast operator in C. It returns a new instance of
   ``type`` which points to the same memory block as ``obj``. ``type`` must be a
   pointer type, and ``obj`` must be an object that can be interpreted as a
   pointer.


.. function:: create_string_buffer(init_or_size[, size])

   This function creates a mutable character buffer. The returned object is a
   ctypes array of :class:`c_char`.

   ``init_or_size`` must be an integer which specifies the size of the array, or a
   string which will be used to initialize the array items.

   If a string is specified as first argument, the buffer is made one item larger
   than the length of the string so that the last element in the array is a NUL
   termination character. An integer can be passed as second argument which allows
   to specify the size of the array if the length of the string should not be used.

   If the first parameter is a unicode string, it is converted into an 8-bit string
   according to ctypes conversion rules.


.. function:: create_unicode_buffer(init_or_size[, size])

   This function creates a mutable unicode character buffer. The returned object is
   a ctypes array of :class:`c_wchar`.

   ``init_or_size`` must be an integer which specifies the size of the array, or a
   unicode string which will be used to initialize the array items.

   If a unicode string is specified as first argument, the buffer is made one item
   larger than the length of the string so that the last element in the array is a
   NUL termination character. An integer can be passed as second argument which
   allows to specify the size of the array if the length of the string should not
   be used.

   If the first parameter is a 8-bit string, it is converted into an unicode string
   according to ctypes conversion rules.


.. function:: DllCanUnloadNow()

   Windows only: This function is a hook which allows to implement in-process COM
   servers with ctypes. It is called from the DllCanUnloadNow function that the
   _ctypes extension dll exports.


.. function:: DllGetClassObject()

   Windows only: This function is a hook which allows to implement in-process COM
   servers with ctypes. It is called from the DllGetClassObject function that the
   ``_ctypes`` extension dll exports.


.. function:: FormatError([code])

   Windows only: Returns a textual description of the error code. If no error code
   is specified, the last error code is used by calling the Windows api function
   GetLastError.


.. function:: GetLastError()

   Windows only: Returns the last error code set by Windows in the calling thread.


.. function:: memmove(dst, src, count)

   Same as the standard C memmove library function: copies *count* bytes from
   ``src`` to *dst*. *dst* and ``src`` must be integers or ctypes instances that
   can be converted to pointers.


.. function:: memset(dst, c, count)

   Same as the standard C memset library function: fills the memory block at
   address *dst* with *count* bytes of value *c*. *dst* must be an integer
   specifying an address, or a ctypes instance.


.. function:: POINTER(type)

   This factory function creates and returns a new ctypes pointer type. Pointer
   types are cached an reused internally, so calling this function repeatedly is
   cheap. type must be a ctypes type.


.. function:: pointer(obj)

   This function creates a new pointer instance, pointing to ``obj``. The returned
   object is of the type POINTER(type(obj)).

   Note: If you just want to pass a pointer to an object to a foreign function
   call, you should use ``byref(obj)`` which is much faster.


.. function:: resize(obj, size)

   This function resizes the internal memory buffer of obj, which must be an
   instance of a ctypes type. It is not possible to make the buffer smaller than
   the native size of the objects type, as given by sizeof(type(obj)), but it is
   possible to enlarge the buffer.


.. function:: set_conversion_mode(encoding, errors)

   This function sets the rules that ctypes objects use when converting between
   8-bit strings and unicode strings. encoding must be a string specifying an
   encoding, like ``'utf-8'`` or ``'mbcs'``, errors must be a string specifying the
   error handling on encoding/decoding errors. Examples of possible values are
   ``"strict"``, ``"replace"``, or ``"ignore"``.

   ``set_conversion_mode`` returns a 2-tuple containing the previous conversion
   rules. On windows, the initial conversion rules are ``('mbcs', 'ignore')``, on
   other systems ``('ascii', 'strict')``.


.. function:: sizeof(obj_or_type)

   Returns the size in bytes of a ctypes type or instance memory buffer. Does the
   same as the C ``sizeof()`` function.


.. function:: string_at(address[, size])

   This function returns the string starting at memory address address. If size
   is specified, it is used as size, otherwise the string is assumed to be
   zero-terminated.


.. function:: WinError(code=None, descr=None)

   Windows only: this function is probably the worst-named thing in ctypes. It
   creates an instance of WindowsError. If *code* is not specified,
   ``GetLastError`` is called to determine the error code. If ``descr`` is not
   specified, :func:`FormatError` is called to get a textual description of the
   error.


.. function:: wstring_at(address)

   This function returns the wide character string starting at memory address
   ``address`` as unicode string. If ``size`` is specified, it is used as the
   number of characters of the string, otherwise the string is assumed to be
   zero-terminated.


.. _ctypes-data-types:

Data types
^^^^^^^^^^


.. class:: _CData

   This non-public class is the common base class of all ctypes data types.  Among
   other things, all ctypes type instances contain a memory block that hold C
   compatible data; the address of the memory block is returned by the
   ``addressof()`` helper function. Another instance variable is exposed as
   :attr:`_objects`; this contains other Python objects that need to be kept alive
   in case the memory block contains pointers.

Common methods of ctypes data types, these are all class methods (to be exact,
they are methods of the metaclass):


.. method:: _CData.from_address(address)

   This method returns a ctypes type instance using the memory specified by address
   which must be an integer.


.. method:: _CData.from_param(obj)

   This method adapts obj to a ctypes type.  It is called with the actual object
   used in a foreign function call, when the type is present in the foreign
   functions :attr:`argtypes` tuple; it must return an object that can be used as
   function call parameter.

   All ctypes data types have a default implementation of this classmethod,
   normally it returns ``obj`` if that is an instance of the type.  Some types
   accept other objects as well.


.. method:: _CData.in_dll(library, name)

   This method returns a ctypes type instance exported by a shared library. *name*
   is the name of the symbol that exports the data, *library* is the loaded shared
   library.

Common instance variables of ctypes data types:


.. attribute:: _CData._b_base_

   Sometimes ctypes data instances do not own the memory block they contain,
   instead they share part of the memory block of a base object.  The
   :attr:`_b_base_` read-only member is the root ctypes object that owns the memory
   block.


.. attribute:: _CData._b_needsfree_

   This read-only variable is true when the ctypes data instance has allocated the
   memory block itself, false otherwise.


.. attribute:: _CData._objects

   This member is either ``None`` or a dictionary containing Python objects that
   need to be kept alive so that the memory block contents is kept valid.  This
   object is only exposed for debugging; never modify the contents of this
   dictionary.


.. _ctypes-fundamental-data-types-2:

Fundamental data types
^^^^^^^^^^^^^^^^^^^^^^


.. class:: _SimpleCData

   This non-public class is the base class of all fundamental ctypes data types. It
   is mentioned here because it contains the common attributes of the fundamental
   ctypes data types.  ``_SimpleCData`` is a subclass of ``_CData``, so it inherits
   their methods and attributes.

Instances have a single attribute:


.. attribute:: _SimpleCData.value

   This attribute contains the actual value of the instance. For integer and
   pointer types, it is an integer, for character types, it is a single character
   string, for character pointer types it is a Python string or unicode string.

   When the ``value`` attribute is retrieved from a ctypes instance, usually a new
   object is returned each time.  ``ctypes`` does *not* implement original object
   return, always a new object is constructed.  The same is true for all other
   ctypes object instances.

Fundamental data types, when returned as foreign function call results, or, for
example, by retrieving structure field members or array items, are transparently
converted to native Python types.  In other words, if a foreign function has a
:attr:`restype` of :class:`c_char_p`, you will always receive a Python string,
*not* a :class:`c_char_p` instance.

Subclasses of fundamental data types do *not* inherit this behavior. So, if a
foreign functions :attr:`restype` is a subclass of :class:`c_void_p`, you will
receive an instance of this subclass from the function call. Of course, you can
get the value of the pointer by accessing the ``value`` attribute.

These are the fundamental ctypes data types:


.. class:: c_byte

   Represents the C signed char datatype, and interprets the value as small
   integer. The constructor accepts an optional integer initializer; no overflow
   checking is done.


.. class:: c_char

   Represents the C char datatype, and interprets the value as a single character.
   The constructor accepts an optional string initializer, the length of the string
   must be exactly one character.


.. class:: c_char_p

   Represents the C char \* datatype, which must be a pointer to a zero-terminated
   string. The constructor accepts an integer address, or a string.


.. class:: c_double

   Represents the C double datatype. The constructor accepts an optional float
   initializer.


.. class:: c_float

   Represents the C double datatype. The constructor accepts an optional float
   initializer.


.. class:: c_int

   Represents the C signed int datatype. The constructor accepts an optional
   integer initializer; no overflow checking is done. On platforms where
   ``sizeof(int) == sizeof(long)`` it is an alias to :class:`c_long`.


.. class:: c_int8

   Represents the C 8-bit ``signed int`` datatype. Usually an alias for
   :class:`c_byte`.


.. class:: c_int16

   Represents the C 16-bit signed int datatype. Usually an alias for
   :class:`c_short`.


.. class:: c_int32

   Represents the C 32-bit signed int datatype. Usually an alias for
   :class:`c_int`.


.. class:: c_int64

   Represents the C 64-bit ``signed int`` datatype. Usually an alias for
   :class:`c_longlong`.


.. class:: c_long

   Represents the C ``signed long`` datatype. The constructor accepts an optional
   integer initializer; no overflow checking is done.


.. class:: c_longlong

   Represents the C ``signed long long`` datatype. The constructor accepts an
   optional integer initializer; no overflow checking is done.


.. class:: c_short

   Represents the C ``signed short`` datatype. The constructor accepts an optional
   integer initializer; no overflow checking is done.


.. class:: c_size_t

   Represents the C ``size_t`` datatype.


.. class:: c_ubyte

   Represents the C ``unsigned char`` datatype, it interprets the value as small
   integer. The constructor accepts an optional integer initializer; no overflow
   checking is done.


.. class:: c_uint

   Represents the C ``unsigned int`` datatype. The constructor accepts an optional
   integer initializer; no overflow checking is done. On platforms where
   ``sizeof(int) == sizeof(long)`` it is an alias for :class:`c_ulong`.


.. class:: c_uint8

   Represents the C 8-bit unsigned int datatype. Usually an alias for
   :class:`c_ubyte`.


.. class:: c_uint16

   Represents the C 16-bit unsigned int datatype. Usually an alias for
   :class:`c_ushort`.


.. class:: c_uint32

   Represents the C 32-bit unsigned int datatype. Usually an alias for
   :class:`c_uint`.


.. class:: c_uint64

   Represents the C 64-bit unsigned int datatype. Usually an alias for
   :class:`c_ulonglong`.


.. class:: c_ulong

   Represents the C ``unsigned long`` datatype. The constructor accepts an optional
   integer initializer; no overflow checking is done.


.. class:: c_ulonglong

   Represents the C ``unsigned long long`` datatype. The constructor accepts an
   optional integer initializer; no overflow checking is done.


.. class:: c_ushort

   Represents the C ``unsigned short`` datatype. The constructor accepts an
   optional integer initializer; no overflow checking is done.


.. class:: c_void_p

   Represents the C ``void *`` type. The value is represented as integer. The
   constructor accepts an optional integer initializer.


.. class:: c_wchar

   Represents the C ``wchar_t`` datatype, and interprets the value as a single
   character unicode string. The constructor accepts an optional string
   initializer, the length of the string must be exactly one character.


.. class:: c_wchar_p

   Represents the C ``wchar_t *`` datatype, which must be a pointer to a
   zero-terminated wide character string. The constructor accepts an integer
   address, or a string.


.. class:: c_bool

   Represent the C ``bool`` datatype (more accurately, _Bool from C99). Its value
   can be True or False, and the constructor accepts any object that has a truth
   value.

   .. versionadded:: 2.6


.. class:: HRESULT

   Windows only: Represents a :class:`HRESULT` value, which contains success or
   error information for a function or method call.


.. class:: py_object

   Represents the C ``PyObject *`` datatype.  Calling this without an argument
   creates a ``NULL`` ``PyObject *`` pointer.

The ``ctypes.wintypes`` module provides quite some other Windows specific data
types, for example ``HWND``, ``WPARAM``, or ``DWORD``. Some useful structures
like ``MSG`` or ``RECT`` are also defined.


.. _ctypes-structured-data-types:

Structured data types
^^^^^^^^^^^^^^^^^^^^^


.. class:: Union(*args, **kw)

   Abstract base class for unions in native byte order.


.. class:: BigEndianStructure(*args, **kw)

   Abstract base class for structures in *big endian* byte order.


.. class:: LittleEndianStructure(*args, **kw)

   Abstract base class for structures in *little endian* byte order.

Structures with non-native byte order cannot contain pointer type fields, or any
other data types containing pointer type fields.


.. class:: Structure(*args, **kw)

   Abstract base class for structures in *native* byte order.

Concrete structure and union types must be created by subclassing one of these
types, and at least define a :attr:`_fields_` class variable. ``ctypes`` will
create descriptors which allow reading and writing the fields by direct
attribute accesses.  These are the


.. attribute:: Structure._fields_

   A sequence defining the structure fields.  The items must be 2-tuples or
   3-tuples.  The first item is the name of the field, the second item specifies
   the type of the field; it can be any ctypes data type.

   For integer type fields like :class:`c_int`, a third optional item can be given.
   It must be a small positive integer defining the bit width of the field.

   Field names must be unique within one structure or union.  This is not checked,
   only one field can be accessed when names are repeated.

   It is possible to define the :attr:`_fields_` class variable *after* the class
   statement that defines the Structure subclass, this allows to create data types
   that directly or indirectly reference themselves::

      class List(Structure):
          pass
      List._fields_ = [("pnext", POINTER(List)),
                       ...
                      ]

   The :attr:`_fields_` class variable must, however, be defined before the type is
   first used (an instance is created, ``sizeof()`` is called on it, and so on).
   Later assignments to the :attr:`_fields_` class variable will raise an
   AttributeError.

   Structure and union subclass constructors accept both positional and named
   arguments.  Positional arguments are used to initialize the fields in the same
   order as they appear in the :attr:`_fields_` definition, named arguments are
   used to initialize the fields with the corresponding name.

   It is possible to defined sub-subclasses of structure types, they inherit the
   fields of the base class plus the :attr:`_fields_` defined in the sub-subclass,
   if any.


.. attribute:: Structure._pack_

   An optional small integer that allows to override the alignment of structure
   fields in the instance.  :attr:`_pack_` must already be defined when
   :attr:`_fields_` is assigned, otherwise it will have no effect.


.. attribute:: Structure._anonymous_

   An optional sequence that lists the names of unnamed (anonymous) fields.
   ``_anonymous_`` must be already defined when :attr:`_fields_` is assigned,
   otherwise it will have no effect.

   The fields listed in this variable must be structure or union type fields.
   ``ctypes`` will create descriptors in the structure type that allows to access
   the nested fields directly, without the need to create the structure or union
   field.

   Here is an example type (Windows)::

      class _U(Union):
          _fields_ = [("lptdesc", POINTER(TYPEDESC)),
                      ("lpadesc", POINTER(ARRAYDESC)),
                      ("hreftype", HREFTYPE)]

      class TYPEDESC(Structure):
          _fields_ = [("u", _U),
                      ("vt", VARTYPE)]

          _anonymous_ = ("u",)

   The ``TYPEDESC`` structure describes a COM data type, the ``vt`` field specifies
   which one of the union fields is valid.  Since the ``u`` field is defined as
   anonymous field, it is now possible to access the members directly off the
   TYPEDESC instance. ``td.lptdesc`` and ``td.u.lptdesc`` are equivalent, but the
   former is faster since it does not need to create a temporary union instance::

      td = TYPEDESC()
      td.vt = VT_PTR
      td.lptdesc = POINTER(some_type)
      td.u.lptdesc = POINTER(some_type)

It is possible to defined sub-subclasses of structures, they inherit the fields
of the base class.  If the subclass definition has a separate :attr:`_fields_`
variable, the fields specified in this are appended to the fields of the base
class.

Structure and union constructors accept both positional and keyword arguments.
Positional arguments are used to initialize member fields in the same order as
they are appear in :attr:`_fields_`.  Keyword arguments in the constructor are
interpreted as attribute assignments, so they will initialize :attr:`_fields_`
with the same name, or create new attributes for names not present in
:attr:`_fields_`.


.. _ctypes-arrays-pointers:

Arrays and pointers
^^^^^^^^^^^^^^^^^^^

Not yet written - please see the sections :ref:`ctypes-pointers` and
section :ref:`ctypes-arrays` in the tutorial.