1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
|
:mod:`decimal` --- Decimal fixed point and floating point arithmetic
====================================================================
.. module:: decimal
:synopsis: Implementation of the General Decimal Arithmetic Specification.
.. moduleauthor:: Eric Price <eprice at tjhsst.edu>
.. moduleauthor:: Facundo Batista <facundo at taniquetil.com.ar>
.. moduleauthor:: Raymond Hettinger <python at rcn.com>
.. moduleauthor:: Aahz <aahz at pobox.com>
.. moduleauthor:: Tim Peters <tim.one at comcast.net>
.. moduleauthor:: Stefan Krah <skrah at bytereef.org>
.. sectionauthor:: Raymond D. Hettinger <python at rcn.com>
**Source code:** :source:`Lib/decimal.py`
.. import modules for testing inline doctests with the Sphinx doctest builder
.. testsetup:: *
import decimal
import math
from decimal import *
# make sure each group gets a fresh context
setcontext(Context())
.. testcleanup:: *
# make sure other tests (outside this file) get a fresh context
setcontext(Context())
--------------
The :mod:`decimal` module provides support for fast correctly-rounded
decimal floating point arithmetic. It offers several advantages over the
:class:`float` datatype:
* Decimal "is based on a floating-point model which was designed with people
in mind, and necessarily has a paramount guiding principle -- computers must
provide an arithmetic that works in the same way as the arithmetic that
people learn at school." -- excerpt from the decimal arithmetic specification.
* Decimal numbers can be represented exactly. In contrast, numbers like
:const:`1.1` and :const:`2.2` do not have exact representations in binary
floating point. End users typically would not expect ``1.1 + 2.2`` to display
as :const:`3.3000000000000003` as it does with binary floating point.
* The exactness carries over into arithmetic. In decimal floating point, ``0.1
+ 0.1 + 0.1 - 0.3`` is exactly equal to zero. In binary floating point, the result
is :const:`5.5511151231257827e-017`. While near to zero, the differences
prevent reliable equality testing and differences can accumulate. For this
reason, decimal is preferred in accounting applications which have strict
equality invariants.
* The decimal module incorporates a notion of significant places so that ``1.30
+ 1.20`` is :const:`2.50`. The trailing zero is kept to indicate significance.
This is the customary presentation for monetary applications. For
multiplication, the "schoolbook" approach uses all the figures in the
multiplicands. For instance, ``1.3 * 1.2`` gives :const:`1.56` while ``1.30 *
1.20`` gives :const:`1.5600`.
* Unlike hardware based binary floating point, the decimal module has a user
alterable precision (defaulting to 28 places) which can be as large as needed for
a given problem:
>>> from decimal import *
>>> getcontext().prec = 6
>>> Decimal(1) / Decimal(7)
Decimal('0.142857')
>>> getcontext().prec = 28
>>> Decimal(1) / Decimal(7)
Decimal('0.1428571428571428571428571429')
* Both binary and decimal floating point are implemented in terms of published
standards. While the built-in float type exposes only a modest portion of its
capabilities, the decimal module exposes all required parts of the standard.
When needed, the programmer has full control over rounding and signal handling.
This includes an option to enforce exact arithmetic by using exceptions
to block any inexact operations.
* The decimal module was designed to support "without prejudice, both exact
unrounded decimal arithmetic (sometimes called fixed-point arithmetic)
and rounded floating-point arithmetic." -- excerpt from the decimal
arithmetic specification.
The module design is centered around three concepts: the decimal number, the
context for arithmetic, and signals.
A decimal number is immutable. It has a sign, coefficient digits, and an
exponent. To preserve significance, the coefficient digits do not truncate
trailing zeros. Decimals also include special values such as
:const:`Infinity`, :const:`-Infinity`, and :const:`NaN`. The standard also
differentiates :const:`-0` from :const:`+0`.
The context for arithmetic is an environment specifying precision, rounding
rules, limits on exponents, flags indicating the results of operations, and trap
enablers which determine whether signals are treated as exceptions. Rounding
options include :const:`ROUND_CEILING`, :const:`ROUND_DOWN`,
:const:`ROUND_FLOOR`, :const:`ROUND_HALF_DOWN`, :const:`ROUND_HALF_EVEN`,
:const:`ROUND_HALF_UP`, :const:`ROUND_UP`, and :const:`ROUND_05UP`.
Signals are groups of exceptional conditions arising during the course of
computation. Depending on the needs of the application, signals may be ignored,
considered as informational, or treated as exceptions. The signals in the
decimal module are: :const:`Clamped`, :const:`InvalidOperation`,
:const:`DivisionByZero`, :const:`Inexact`, :const:`Rounded`, :const:`Subnormal`,
:const:`Overflow`, :const:`Underflow` and :const:`FloatOperation`.
For each signal there is a flag and a trap enabler. When a signal is
encountered, its flag is set to one, then, if the trap enabler is
set to one, an exception is raised. Flags are sticky, so the user needs to
reset them before monitoring a calculation.
.. seealso::
* IBM's General Decimal Arithmetic Specification, `The General Decimal Arithmetic
Specification <http://speleotrove.com/decimal/decarith.html>`_.
.. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
.. _decimal-tutorial:
Quick-start Tutorial
--------------------
The usual start to using decimals is importing the module, viewing the current
context with :func:`getcontext` and, if necessary, setting new values for
precision, rounding, or enabled traps::
>>> from decimal import *
>>> getcontext()
Context(prec=28, rounding=ROUND_HALF_EVEN, Emin=-999999, Emax=999999,
capitals=1, clamp=0, flags=[], traps=[Overflow, DivisionByZero,
InvalidOperation])
>>> getcontext().prec = 7 # Set a new precision
Decimal instances can be constructed from integers, strings, floats, or tuples.
Construction from an integer or a float performs an exact conversion of the
value of that integer or float. Decimal numbers include special values such as
:const:`NaN` which stands for "Not a number", positive and negative
:const:`Infinity`, and :const:`-0`::
>>> getcontext().prec = 28
>>> Decimal(10)
Decimal('10')
>>> Decimal('3.14')
Decimal('3.14')
>>> Decimal(3.14)
Decimal('3.140000000000000124344978758017532527446746826171875')
>>> Decimal((0, (3, 1, 4), -2))
Decimal('3.14')
>>> Decimal(str(2.0 ** 0.5))
Decimal('1.4142135623730951')
>>> Decimal(2) ** Decimal('0.5')
Decimal('1.414213562373095048801688724')
>>> Decimal('NaN')
Decimal('NaN')
>>> Decimal('-Infinity')
Decimal('-Infinity')
If the :exc:`FloatOperation` signal is trapped, accidental mixing of
decimals and floats in constructors or ordering comparisons raises
an exception::
>>> c = getcontext()
>>> c.traps[FloatOperation] = True
>>> Decimal(3.14)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
decimal.FloatOperation: [<class 'decimal.FloatOperation'>]
>>> Decimal('3.5') < 3.7
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
decimal.FloatOperation: [<class 'decimal.FloatOperation'>]
>>> Decimal('3.5') == 3.5
True
.. versionadded:: 3.3
The significance of a new Decimal is determined solely by the number of digits
input. Context precision and rounding only come into play during arithmetic
operations.
.. doctest:: newcontext
>>> getcontext().prec = 6
>>> Decimal('3.0')
Decimal('3.0')
>>> Decimal('3.1415926535')
Decimal('3.1415926535')
>>> Decimal('3.1415926535') + Decimal('2.7182818285')
Decimal('5.85987')
>>> getcontext().rounding = ROUND_UP
>>> Decimal('3.1415926535') + Decimal('2.7182818285')
Decimal('5.85988')
If the internal limits of the C version are exceeded, constructing
a decimal raises :class:`InvalidOperation`::
>>> Decimal("1e9999999999999999999")
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
decimal.InvalidOperation: [<class 'decimal.InvalidOperation'>]
.. versionchanged:: 3.3
Decimals interact well with much of the rest of Python. Here is a small decimal
floating point flying circus:
.. doctest::
:options: +NORMALIZE_WHITESPACE
>>> data = list(map(Decimal, '1.34 1.87 3.45 2.35 1.00 0.03 9.25'.split()))
>>> max(data)
Decimal('9.25')
>>> min(data)
Decimal('0.03')
>>> sorted(data)
[Decimal('0.03'), Decimal('1.00'), Decimal('1.34'), Decimal('1.87'),
Decimal('2.35'), Decimal('3.45'), Decimal('9.25')]
>>> sum(data)
Decimal('19.29')
>>> a,b,c = data[:3]
>>> str(a)
'1.34'
>>> float(a)
1.34
>>> round(a, 1)
Decimal('1.3')
>>> int(a)
1
>>> a * 5
Decimal('6.70')
>>> a * b
Decimal('2.5058')
>>> c % a
Decimal('0.77')
And some mathematical functions are also available to Decimal:
>>> getcontext().prec = 28
>>> Decimal(2).sqrt()
Decimal('1.414213562373095048801688724')
>>> Decimal(1).exp()
Decimal('2.718281828459045235360287471')
>>> Decimal('10').ln()
Decimal('2.302585092994045684017991455')
>>> Decimal('10').log10()
Decimal('1')
The :meth:`quantize` method rounds a number to a fixed exponent. This method is
useful for monetary applications that often round results to a fixed number of
places:
>>> Decimal('7.325').quantize(Decimal('.01'), rounding=ROUND_DOWN)
Decimal('7.32')
>>> Decimal('7.325').quantize(Decimal('1.'), rounding=ROUND_UP)
Decimal('8')
As shown above, the :func:`getcontext` function accesses the current context and
allows the settings to be changed. This approach meets the needs of most
applications.
For more advanced work, it may be useful to create alternate contexts using the
Context() constructor. To make an alternate active, use the :func:`setcontext`
function.
In accordance with the standard, the :mod:`decimal` module provides two ready to
use standard contexts, :const:`BasicContext` and :const:`ExtendedContext`. The
former is especially useful for debugging because many of the traps are
enabled:
.. doctest:: newcontext
:options: +NORMALIZE_WHITESPACE
>>> myothercontext = Context(prec=60, rounding=ROUND_HALF_DOWN)
>>> setcontext(myothercontext)
>>> Decimal(1) / Decimal(7)
Decimal('0.142857142857142857142857142857142857142857142857142857142857')
>>> ExtendedContext
Context(prec=9, rounding=ROUND_HALF_EVEN, Emin=-999999, Emax=999999,
capitals=1, clamp=0, flags=[], traps=[])
>>> setcontext(ExtendedContext)
>>> Decimal(1) / Decimal(7)
Decimal('0.142857143')
>>> Decimal(42) / Decimal(0)
Decimal('Infinity')
>>> setcontext(BasicContext)
>>> Decimal(42) / Decimal(0)
Traceback (most recent call last):
File "<pyshell#143>", line 1, in -toplevel-
Decimal(42) / Decimal(0)
DivisionByZero: x / 0
Contexts also have signal flags for monitoring exceptional conditions
encountered during computations. The flags remain set until explicitly cleared,
so it is best to clear the flags before each set of monitored computations by
using the :meth:`clear_flags` method. ::
>>> setcontext(ExtendedContext)
>>> getcontext().clear_flags()
>>> Decimal(355) / Decimal(113)
Decimal('3.14159292')
>>> getcontext()
Context(prec=9, rounding=ROUND_HALF_EVEN, Emin=-999999, Emax=999999,
capitals=1, clamp=0, flags=[Inexact, Rounded], traps=[])
The *flags* entry shows that the rational approximation to :const:`Pi` was
rounded (digits beyond the context precision were thrown away) and that the
result is inexact (some of the discarded digits were non-zero).
Individual traps are set using the dictionary in the :attr:`traps` field of a
context:
.. doctest:: newcontext
>>> setcontext(ExtendedContext)
>>> Decimal(1) / Decimal(0)
Decimal('Infinity')
>>> getcontext().traps[DivisionByZero] = 1
>>> Decimal(1) / Decimal(0)
Traceback (most recent call last):
File "<pyshell#112>", line 1, in -toplevel-
Decimal(1) / Decimal(0)
DivisionByZero: x / 0
Most programs adjust the current context only once, at the beginning of the
program. And, in many applications, data is converted to :class:`Decimal` with
a single cast inside a loop. With context set and decimals created, the bulk of
the program manipulates the data no differently than with other Python numeric
types.
.. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
.. _decimal-decimal:
Decimal objects
---------------
.. class:: Decimal(value="0", context=None)
Construct a new :class:`Decimal` object based from *value*.
*value* can be an integer, string, tuple, :class:`float`, or another :class:`Decimal`
object. If no *value* is given, returns ``Decimal('0')``. If *value* is a
string, it should conform to the decimal numeric string syntax after leading
and trailing whitespace characters, as well as underscores throughout, are removed::
sign ::= '+' | '-'
digit ::= '0' | '1' | '2' | '3' | '4' | '5' | '6' | '7' | '8' | '9'
indicator ::= 'e' | 'E'
digits ::= digit [digit]...
decimal-part ::= digits '.' [digits] | ['.'] digits
exponent-part ::= indicator [sign] digits
infinity ::= 'Infinity' | 'Inf'
nan ::= 'NaN' [digits] | 'sNaN' [digits]
numeric-value ::= decimal-part [exponent-part] | infinity
numeric-string ::= [sign] numeric-value | [sign] nan
Other Unicode decimal digits are also permitted where ``digit``
appears above. These include decimal digits from various other
alphabets (for example, Arabic-Indic and Devanāgarī digits) along
with the fullwidth digits ``'\uff10'`` through ``'\uff19'``.
If *value* is a :class:`tuple`, it should have three components, a sign
(:const:`0` for positive or :const:`1` for negative), a :class:`tuple` of
digits, and an integer exponent. For example, ``Decimal((0, (1, 4, 1, 4), -3))``
returns ``Decimal('1.414')``.
If *value* is a :class:`float`, the binary floating point value is losslessly
converted to its exact decimal equivalent. This conversion can often require
53 or more digits of precision. For example, ``Decimal(float('1.1'))``
converts to
``Decimal('1.100000000000000088817841970012523233890533447265625')``.
The *context* precision does not affect how many digits are stored. That is
determined exclusively by the number of digits in *value*. For example,
``Decimal('3.00000')`` records all five zeros even if the context precision is
only three.
The purpose of the *context* argument is determining what to do if *value* is a
malformed string. If the context traps :const:`InvalidOperation`, an exception
is raised; otherwise, the constructor returns a new Decimal with the value of
:const:`NaN`.
Once constructed, :class:`Decimal` objects are immutable.
.. versionchanged:: 3.2
The argument to the constructor is now permitted to be a :class:`float`
instance.
.. versionchanged:: 3.3
:class:`float` arguments raise an exception if the :exc:`FloatOperation`
trap is set. By default the trap is off.
.. versionchanged:: 3.6
Underscores are allowed for grouping, as with integral and floating-point
literals in code.
Decimal floating point objects share many properties with the other built-in
numeric types such as :class:`float` and :class:`int`. All of the usual math
operations and special methods apply. Likewise, decimal objects can be
copied, pickled, printed, used as dictionary keys, used as set elements,
compared, sorted, and coerced to another type (such as :class:`float` or
:class:`int`).
There are some small differences between arithmetic on Decimal objects and
arithmetic on integers and floats. When the remainder operator ``%`` is
applied to Decimal objects, the sign of the result is the sign of the
*dividend* rather than the sign of the divisor::
>>> (-7) % 4
1
>>> Decimal(-7) % Decimal(4)
Decimal('-3')
The integer division operator ``//`` behaves analogously, returning the
integer part of the true quotient (truncating towards zero) rather than its
floor, so as to preserve the usual identity ``x == (x // y) * y + x % y``::
>>> -7 // 4
-2
>>> Decimal(-7) // Decimal(4)
Decimal('-1')
The ``%`` and ``//`` operators implement the ``remainder`` and
``divide-integer`` operations (respectively) as described in the
specification.
Decimal objects cannot generally be combined with floats or
instances of :class:`fractions.Fraction` in arithmetic operations:
an attempt to add a :class:`Decimal` to a :class:`float`, for
example, will raise a :exc:`TypeError`. However, it is possible to
use Python's comparison operators to compare a :class:`Decimal`
instance ``x`` with another number ``y``. This avoids confusing results
when doing equality comparisons between numbers of different types.
.. versionchanged:: 3.2
Mixed-type comparisons between :class:`Decimal` instances and other
numeric types are now fully supported.
In addition to the standard numeric properties, decimal floating point
objects also have a number of specialized methods:
.. method:: adjusted()
Return the adjusted exponent after shifting out the coefficient's
rightmost digits until only the lead digit remains:
``Decimal('321e+5').adjusted()`` returns seven. Used for determining the
position of the most significant digit with respect to the decimal point.
.. method:: as_integer_ratio()
Return a pair ``(n, d)`` of integers that represent the given
:class:`Decimal` instance as a fraction, in lowest terms and
with a positive denominator::
>>> Decimal('-3.14').as_integer_ratio()
(-157, 50)
The conversion is exact. Raise OverflowError on infinities and ValueError
on NaNs.
.. versionadded:: 3.6
.. method:: as_tuple()
Return a :term:`named tuple` representation of the number:
``DecimalTuple(sign, digits, exponent)``.
.. method:: canonical()
Return the canonical encoding of the argument. Currently, the encoding of
a :class:`Decimal` instance is always canonical, so this operation returns
its argument unchanged.
.. method:: compare(other, context=None)
Compare the values of two Decimal instances. :meth:`compare` returns a
Decimal instance, and if either operand is a NaN then the result is a
NaN::
a or b is a NaN ==> Decimal('NaN')
a < b ==> Decimal('-1')
a == b ==> Decimal('0')
a > b ==> Decimal('1')
.. method:: compare_signal(other, context=None)
This operation is identical to the :meth:`compare` method, except that all
NaNs signal. That is, if neither operand is a signaling NaN then any
quiet NaN operand is treated as though it were a signaling NaN.
.. method:: compare_total(other, context=None)
Compare two operands using their abstract representation rather than their
numerical value. Similar to the :meth:`compare` method, but the result
gives a total ordering on :class:`Decimal` instances. Two
:class:`Decimal` instances with the same numeric value but different
representations compare unequal in this ordering:
>>> Decimal('12.0').compare_total(Decimal('12'))
Decimal('-1')
Quiet and signaling NaNs are also included in the total ordering. The
result of this function is ``Decimal('0')`` if both operands have the same
representation, ``Decimal('-1')`` if the first operand is lower in the
total order than the second, and ``Decimal('1')`` if the first operand is
higher in the total order than the second operand. See the specification
for details of the total order.
This operation is unaffected by context and is quiet: no flags are changed
and no rounding is performed. As an exception, the C version may raise
InvalidOperation if the second operand cannot be converted exactly.
.. method:: compare_total_mag(other, context=None)
Compare two operands using their abstract representation rather than their
value as in :meth:`compare_total`, but ignoring the sign of each operand.
``x.compare_total_mag(y)`` is equivalent to
``x.copy_abs().compare_total(y.copy_abs())``.
This operation is unaffected by context and is quiet: no flags are changed
and no rounding is performed. As an exception, the C version may raise
InvalidOperation if the second operand cannot be converted exactly.
.. method:: conjugate()
Just returns self, this method is only to comply with the Decimal
Specification.
.. method:: copy_abs()
Return the absolute value of the argument. This operation is unaffected
by the context and is quiet: no flags are changed and no rounding is
performed.
.. method:: copy_negate()
Return the negation of the argument. This operation is unaffected by the
context and is quiet: no flags are changed and no rounding is performed.
.. method:: copy_sign(other, context=None)
Return a copy of the first operand with the sign set to be the same as the
sign of the second operand. For example:
>>> Decimal('2.3').copy_sign(Decimal('-1.5'))
Decimal('-2.3')
This operation is unaffected by context and is quiet: no flags are changed
and no rounding is performed. As an exception, the C version may raise
InvalidOperation if the second operand cannot be converted exactly.
.. method:: exp(context=None)
Return the value of the (natural) exponential function ``e**x`` at the
given number. The result is correctly rounded using the
:const:`ROUND_HALF_EVEN` rounding mode.
>>> Decimal(1).exp()
Decimal('2.718281828459045235360287471')
>>> Decimal(321).exp()
Decimal('2.561702493119680037517373933E+139')
.. method:: from_float(f)
Classmethod that converts a float to a decimal number, exactly.
Note `Decimal.from_float(0.1)` is not the same as `Decimal('0.1')`.
Since 0.1 is not exactly representable in binary floating point, the
value is stored as the nearest representable value which is
`0x1.999999999999ap-4`. That equivalent value in decimal is
`0.1000000000000000055511151231257827021181583404541015625`.
.. note:: From Python 3.2 onwards, a :class:`Decimal` instance
can also be constructed directly from a :class:`float`.
.. doctest::
>>> Decimal.from_float(0.1)
Decimal('0.1000000000000000055511151231257827021181583404541015625')
>>> Decimal.from_float(float('nan'))
Decimal('NaN')
>>> Decimal.from_float(float('inf'))
Decimal('Infinity')
>>> Decimal.from_float(float('-inf'))
Decimal('-Infinity')
.. versionadded:: 3.1
.. method:: fma(other, third, context=None)
Fused multiply-add. Return self*other+third with no rounding of the
intermediate product self*other.
>>> Decimal(2).fma(3, 5)
Decimal('11')
.. method:: is_canonical()
Return :const:`True` if the argument is canonical and :const:`False`
otherwise. Currently, a :class:`Decimal` instance is always canonical, so
this operation always returns :const:`True`.
.. method:: is_finite()
Return :const:`True` if the argument is a finite number, and
:const:`False` if the argument is an infinity or a NaN.
.. method:: is_infinite()
Return :const:`True` if the argument is either positive or negative
infinity and :const:`False` otherwise.
.. method:: is_nan()
Return :const:`True` if the argument is a (quiet or signaling) NaN and
:const:`False` otherwise.
.. method:: is_normal(context=None)
Return :const:`True` if the argument is a *normal* finite number. Return
:const:`False` if the argument is zero, subnormal, infinite or a NaN.
.. method:: is_qnan()
Return :const:`True` if the argument is a quiet NaN, and
:const:`False` otherwise.
.. method:: is_signed()
Return :const:`True` if the argument has a negative sign and
:const:`False` otherwise. Note that zeros and NaNs can both carry signs.
.. method:: is_snan()
Return :const:`True` if the argument is a signaling NaN and :const:`False`
otherwise.
.. method:: is_subnormal(context=None)
Return :const:`True` if the argument is subnormal, and :const:`False`
otherwise.
.. method:: is_zero()
Return :const:`True` if the argument is a (positive or negative) zero and
:const:`False` otherwise.
.. method:: ln(context=None)
Return the natural (base e) logarithm of the operand. The result is
correctly rounded using the :const:`ROUND_HALF_EVEN` rounding mode.
.. method:: log10(context=None)
Return the base ten logarithm of the operand. The result is correctly
rounded using the :const:`ROUND_HALF_EVEN` rounding mode.
.. method:: logb(context=None)
For a nonzero number, return the adjusted exponent of its operand as a
:class:`Decimal` instance. If the operand is a zero then
``Decimal('-Infinity')`` is returned and the :const:`DivisionByZero` flag
is raised. If the operand is an infinity then ``Decimal('Infinity')`` is
returned.
.. method:: logical_and(other, context=None)
:meth:`logical_and` is a logical operation which takes two *logical
operands* (see :ref:`logical_operands_label`). The result is the
digit-wise ``and`` of the two operands.
.. method:: logical_invert(context=None)
:meth:`logical_invert` is a logical operation. The
result is the digit-wise inversion of the operand.
.. method:: logical_or(other, context=None)
:meth:`logical_or` is a logical operation which takes two *logical
operands* (see :ref:`logical_operands_label`). The result is the
digit-wise ``or`` of the two operands.
.. method:: logical_xor(other, context=None)
:meth:`logical_xor` is a logical operation which takes two *logical
operands* (see :ref:`logical_operands_label`). The result is the
digit-wise exclusive or of the two operands.
.. method:: max(other, context=None)
Like ``max(self, other)`` except that the context rounding rule is applied
before returning and that :const:`NaN` values are either signaled or
ignored (depending on the context and whether they are signaling or
quiet).
.. method:: max_mag(other, context=None)
Similar to the :meth:`.max` method, but the comparison is done using the
absolute values of the operands.
.. method:: min(other, context=None)
Like ``min(self, other)`` except that the context rounding rule is applied
before returning and that :const:`NaN` values are either signaled or
ignored (depending on the context and whether they are signaling or
quiet).
.. method:: min_mag(other, context=None)
Similar to the :meth:`.min` method, but the comparison is done using the
absolute values of the operands.
.. method:: next_minus(context=None)
Return the largest number representable in the given context (or in the
current thread's context if no context is given) that is smaller than the
given operand.
.. method:: next_plus(context=None)
Return the smallest number representable in the given context (or in the
current thread's context if no context is given) that is larger than the
given operand.
.. method:: next_toward(other, context=None)
If the two operands are unequal, return the number closest to the first
operand in the direction of the second operand. If both operands are
numerically equal, return a copy of the first operand with the sign set to
be the same as the sign of the second operand.
.. method:: normalize(context=None)
Normalize the number by stripping the rightmost trailing zeros and
converting any result equal to :const:`Decimal('0')` to
:const:`Decimal('0e0')`. Used for producing canonical values for attributes
of an equivalence class. For example, ``Decimal('32.100')`` and
``Decimal('0.321000e+2')`` both normalize to the equivalent value
``Decimal('32.1')``.
.. method:: number_class(context=None)
Return a string describing the *class* of the operand. The returned value
is one of the following ten strings.
* ``"-Infinity"``, indicating that the operand is negative infinity.
* ``"-Normal"``, indicating that the operand is a negative normal number.
* ``"-Subnormal"``, indicating that the operand is negative and subnormal.
* ``"-Zero"``, indicating that the operand is a negative zero.
* ``"+Zero"``, indicating that the operand is a positive zero.
* ``"+Subnormal"``, indicating that the operand is positive and subnormal.
* ``"+Normal"``, indicating that the operand is a positive normal number.
* ``"+Infinity"``, indicating that the operand is positive infinity.
* ``"NaN"``, indicating that the operand is a quiet NaN (Not a Number).
* ``"sNaN"``, indicating that the operand is a signaling NaN.
.. method:: quantize(exp, rounding=None, context=None)
Return a value equal to the first operand after rounding and having the
exponent of the second operand.
>>> Decimal('1.41421356').quantize(Decimal('1.000'))
Decimal('1.414')
Unlike other operations, if the length of the coefficient after the
quantize operation would be greater than precision, then an
:const:`InvalidOperation` is signaled. This guarantees that, unless there
is an error condition, the quantized exponent is always equal to that of
the right-hand operand.
Also unlike other operations, quantize never signals Underflow, even if
the result is subnormal and inexact.
If the exponent of the second operand is larger than that of the first
then rounding may be necessary. In this case, the rounding mode is
determined by the ``rounding`` argument if given, else by the given
``context`` argument; if neither argument is given the rounding mode of
the current thread's context is used.
An error is returned whenever the resulting exponent is greater than
:attr:`Emax` or less than :attr:`Etiny`.
.. method:: radix()
Return ``Decimal(10)``, the radix (base) in which the :class:`Decimal`
class does all its arithmetic. Included for compatibility with the
specification.
.. method:: remainder_near(other, context=None)
Return the remainder from dividing *self* by *other*. This differs from
``self % other`` in that the sign of the remainder is chosen so as to
minimize its absolute value. More precisely, the return value is
``self - n * other`` where ``n`` is the integer nearest to the exact
value of ``self / other``, and if two integers are equally near then the
even one is chosen.
If the result is zero then its sign will be the sign of *self*.
>>> Decimal(18).remainder_near(Decimal(10))
Decimal('-2')
>>> Decimal(25).remainder_near(Decimal(10))
Decimal('5')
>>> Decimal(35).remainder_near(Decimal(10))
Decimal('-5')
.. method:: rotate(other, context=None)
Return the result of rotating the digits of the first operand by an amount
specified by the second operand. The second operand must be an integer in
the range -precision through precision. The absolute value of the second
operand gives the number of places to rotate. If the second operand is
positive then rotation is to the left; otherwise rotation is to the right.
The coefficient of the first operand is padded on the left with zeros to
length precision if necessary. The sign and exponent of the first operand
are unchanged.
.. method:: same_quantum(other, context=None)
Test whether self and other have the same exponent or whether both are
:const:`NaN`.
This operation is unaffected by context and is quiet: no flags are changed
and no rounding is performed. As an exception, the C version may raise
InvalidOperation if the second operand cannot be converted exactly.
.. method:: scaleb(other, context=None)
Return the first operand with exponent adjusted by the second.
Equivalently, return the first operand multiplied by ``10**other``. The
second operand must be an integer.
.. method:: shift(other, context=None)
Return the result of shifting the digits of the first operand by an amount
specified by the second operand. The second operand must be an integer in
the range -precision through precision. The absolute value of the second
operand gives the number of places to shift. If the second operand is
positive then the shift is to the left; otherwise the shift is to the
right. Digits shifted into the coefficient are zeros. The sign and
exponent of the first operand are unchanged.
.. method:: sqrt(context=None)
Return the square root of the argument to full precision.
.. method:: to_eng_string(context=None)
Convert to a string, using engineering notation if an exponent is needed.
Engineering notation has an exponent which is a multiple of 3. This
can leave up to 3 digits to the left of the decimal place and may
require the addition of either one or two trailing zeros.
For example, this converts ``Decimal('123E+1')`` to ``Decimal('1.23E+3')``.
.. method:: to_integral(rounding=None, context=None)
Identical to the :meth:`to_integral_value` method. The ``to_integral``
name has been kept for compatibility with older versions.
.. method:: to_integral_exact(rounding=None, context=None)
Round to the nearest integer, signaling :const:`Inexact` or
:const:`Rounded` as appropriate if rounding occurs. The rounding mode is
determined by the ``rounding`` parameter if given, else by the given
``context``. If neither parameter is given then the rounding mode of the
current context is used.
.. method:: to_integral_value(rounding=None, context=None)
Round to the nearest integer without signaling :const:`Inexact` or
:const:`Rounded`. If given, applies *rounding*; otherwise, uses the
rounding method in either the supplied *context* or the current context.
.. _logical_operands_label:
Logical operands
^^^^^^^^^^^^^^^^
The :meth:`logical_and`, :meth:`logical_invert`, :meth:`logical_or`,
and :meth:`logical_xor` methods expect their arguments to be *logical
operands*. A *logical operand* is a :class:`Decimal` instance whose
exponent and sign are both zero, and whose digits are all either
:const:`0` or :const:`1`.
.. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
.. _decimal-context:
Context objects
---------------
Contexts are environments for arithmetic operations. They govern precision, set
rules for rounding, determine which signals are treated as exceptions, and limit
the range for exponents.
Each thread has its own current context which is accessed or changed using the
:func:`getcontext` and :func:`setcontext` functions:
.. function:: getcontext()
Return the current context for the active thread.
.. function:: setcontext(c)
Set the current context for the active thread to *c*.
You can also use the :keyword:`with` statement and the :func:`localcontext`
function to temporarily change the active context.
.. function:: localcontext(ctx=None)
Return a context manager that will set the current context for the active thread
to a copy of *ctx* on entry to the with-statement and restore the previous context
when exiting the with-statement. If no context is specified, a copy of the
current context is used.
For example, the following code sets the current decimal precision to 42 places,
performs a calculation, and then automatically restores the previous context::
from decimal import localcontext
with localcontext() as ctx:
ctx.prec = 42 # Perform a high precision calculation
s = calculate_something()
s = +s # Round the final result back to the default precision
New contexts can also be created using the :class:`Context` constructor
described below. In addition, the module provides three pre-made contexts:
.. class:: BasicContext
This is a standard context defined by the General Decimal Arithmetic
Specification. Precision is set to nine. Rounding is set to
:const:`ROUND_HALF_UP`. All flags are cleared. All traps are enabled (treated
as exceptions) except :const:`Inexact`, :const:`Rounded`, and
:const:`Subnormal`.
Because many of the traps are enabled, this context is useful for debugging.
.. class:: ExtendedContext
This is a standard context defined by the General Decimal Arithmetic
Specification. Precision is set to nine. Rounding is set to
:const:`ROUND_HALF_EVEN`. All flags are cleared. No traps are enabled (so that
exceptions are not raised during computations).
Because the traps are disabled, this context is useful for applications that
prefer to have result value of :const:`NaN` or :const:`Infinity` instead of
raising exceptions. This allows an application to complete a run in the
presence of conditions that would otherwise halt the program.
.. class:: DefaultContext
This context is used by the :class:`Context` constructor as a prototype for new
contexts. Changing a field (such a precision) has the effect of changing the
default for new contexts created by the :class:`Context` constructor.
This context is most useful in multi-threaded environments. Changing one of the
fields before threads are started has the effect of setting system-wide
defaults. Changing the fields after threads have started is not recommended as
it would require thread synchronization to prevent race conditions.
In single threaded environments, it is preferable to not use this context at
all. Instead, simply create contexts explicitly as described below.
The default values are :attr:`prec`\ =\ :const:`28`,
:attr:`rounding`\ =\ :const:`ROUND_HALF_EVEN`,
and enabled traps for :class:`Overflow`, :class:`InvalidOperation`, and
:class:`DivisionByZero`.
In addition to the three supplied contexts, new contexts can be created with the
:class:`Context` constructor.
.. class:: Context(prec=None, rounding=None, Emin=None, Emax=None, capitals=None, clamp=None, flags=None, traps=None)
Creates a new context. If a field is not specified or is :const:`None`, the
default values are copied from the :const:`DefaultContext`. If the *flags*
field is not specified or is :const:`None`, all flags are cleared.
*prec* is an integer in the range [:const:`1`, :const:`MAX_PREC`] that sets
the precision for arithmetic operations in the context.
The *rounding* option is one of the constants listed in the section
`Rounding Modes`_.
The *traps* and *flags* fields list any signals to be set. Generally, new
contexts should only set traps and leave the flags clear.
The *Emin* and *Emax* fields are integers specifying the outer limits allowable
for exponents. *Emin* must be in the range [:const:`MIN_EMIN`, :const:`0`],
*Emax* in the range [:const:`0`, :const:`MAX_EMAX`].
The *capitals* field is either :const:`0` or :const:`1` (the default). If set to
:const:`1`, exponents are printed with a capital :const:`E`; otherwise, a
lowercase :const:`e` is used: :const:`Decimal('6.02e+23')`.
The *clamp* field is either :const:`0` (the default) or :const:`1`.
If set to :const:`1`, the exponent ``e`` of a :class:`Decimal`
instance representable in this context is strictly limited to the
range ``Emin - prec + 1 <= e <= Emax - prec + 1``. If *clamp* is
:const:`0` then a weaker condition holds: the adjusted exponent of
the :class:`Decimal` instance is at most ``Emax``. When *clamp* is
:const:`1`, a large normal number will, where possible, have its
exponent reduced and a corresponding number of zeros added to its
coefficient, in order to fit the exponent constraints; this
preserves the value of the number but loses information about
significant trailing zeros. For example::
>>> Context(prec=6, Emax=999, clamp=1).create_decimal('1.23e999')
Decimal('1.23000E+999')
A *clamp* value of :const:`1` allows compatibility with the
fixed-width decimal interchange formats specified in IEEE 754.
The :class:`Context` class defines several general purpose methods as well as
a large number of methods for doing arithmetic directly in a given context.
In addition, for each of the :class:`Decimal` methods described above (with
the exception of the :meth:`adjusted` and :meth:`as_tuple` methods) there is
a corresponding :class:`Context` method. For example, for a :class:`Context`
instance ``C`` and :class:`Decimal` instance ``x``, ``C.exp(x)`` is
equivalent to ``x.exp(context=C)``. Each :class:`Context` method accepts a
Python integer (an instance of :class:`int`) anywhere that a
Decimal instance is accepted.
.. method:: clear_flags()
Resets all of the flags to :const:`0`.
.. method:: clear_traps()
Resets all of the traps to :const:`0`.
.. versionadded:: 3.3
.. method:: copy()
Return a duplicate of the context.
.. method:: copy_decimal(num)
Return a copy of the Decimal instance num.
.. method:: create_decimal(num)
Creates a new Decimal instance from *num* but using *self* as
context. Unlike the :class:`Decimal` constructor, the context precision,
rounding method, flags, and traps are applied to the conversion.
This is useful because constants are often given to a greater precision
than is needed by the application. Another benefit is that rounding
immediately eliminates unintended effects from digits beyond the current
precision. In the following example, using unrounded inputs means that
adding zero to a sum can change the result:
.. doctest:: newcontext
>>> getcontext().prec = 3
>>> Decimal('3.4445') + Decimal('1.0023')
Decimal('4.45')
>>> Decimal('3.4445') + Decimal(0) + Decimal('1.0023')
Decimal('4.44')
This method implements the to-number operation of the IBM specification.
If the argument is a string, no leading or trailing whitespace or
underscores are permitted.
.. method:: create_decimal_from_float(f)
Creates a new Decimal instance from a float *f* but rounding using *self*
as the context. Unlike the :meth:`Decimal.from_float` class method,
the context precision, rounding method, flags, and traps are applied to
the conversion.
.. doctest::
>>> context = Context(prec=5, rounding=ROUND_DOWN)
>>> context.create_decimal_from_float(math.pi)
Decimal('3.1415')
>>> context = Context(prec=5, traps=[Inexact])
>>> context.create_decimal_from_float(math.pi)
Traceback (most recent call last):
...
decimal.Inexact: None
.. versionadded:: 3.1
.. method:: Etiny()
Returns a value equal to ``Emin - prec + 1`` which is the minimum exponent
value for subnormal results. When underflow occurs, the exponent is set
to :const:`Etiny`.
.. method:: Etop()
Returns a value equal to ``Emax - prec + 1``.
The usual approach to working with decimals is to create :class:`Decimal`
instances and then apply arithmetic operations which take place within the
current context for the active thread. An alternative approach is to use
context methods for calculating within a specific context. The methods are
similar to those for the :class:`Decimal` class and are only briefly
recounted here.
.. method:: abs(x)
Returns the absolute value of *x*.
.. method:: add(x, y)
Return the sum of *x* and *y*.
.. method:: canonical(x)
Returns the same Decimal object *x*.
.. method:: compare(x, y)
Compares *x* and *y* numerically.
.. method:: compare_signal(x, y)
Compares the values of the two operands numerically.
.. method:: compare_total(x, y)
Compares two operands using their abstract representation.
.. method:: compare_total_mag(x, y)
Compares two operands using their abstract representation, ignoring sign.
.. method:: copy_abs(x)
Returns a copy of *x* with the sign set to 0.
.. method:: copy_negate(x)
Returns a copy of *x* with the sign inverted.
.. method:: copy_sign(x, y)
Copies the sign from *y* to *x*.
.. method:: divide(x, y)
Return *x* divided by *y*.
.. method:: divide_int(x, y)
Return *x* divided by *y*, truncated to an integer.
.. method:: divmod(x, y)
Divides two numbers and returns the integer part of the result.
.. method:: exp(x)
Returns `e ** x`.
.. method:: fma(x, y, z)
Returns *x* multiplied by *y*, plus *z*.
.. method:: is_canonical(x)
Returns ``True`` if *x* is canonical; otherwise returns ``False``.
.. method:: is_finite(x)
Returns ``True`` if *x* is finite; otherwise returns ``False``.
.. method:: is_infinite(x)
Returns ``True`` if *x* is infinite; otherwise returns ``False``.
.. method:: is_nan(x)
Returns ``True`` if *x* is a qNaN or sNaN; otherwise returns ``False``.
.. method:: is_normal(x)
Returns ``True`` if *x* is a normal number; otherwise returns ``False``.
.. method:: is_qnan(x)
Returns ``True`` if *x* is a quiet NaN; otherwise returns ``False``.
.. method:: is_signed(x)
Returns ``True`` if *x* is negative; otherwise returns ``False``.
.. method:: is_snan(x)
Returns ``True`` if *x* is a signaling NaN; otherwise returns ``False``.
.. method:: is_subnormal(x)
Returns ``True`` if *x* is subnormal; otherwise returns ``False``.
.. method:: is_zero(x)
Returns ``True`` if *x* is a zero; otherwise returns ``False``.
.. method:: ln(x)
Returns the natural (base e) logarithm of *x*.
.. method:: log10(x)
Returns the base 10 logarithm of *x*.
.. method:: logb(x)
Returns the exponent of the magnitude of the operand's MSD.
.. method:: logical_and(x, y)
Applies the logical operation *and* between each operand's digits.
.. method:: logical_invert(x)
Invert all the digits in *x*.
.. method:: logical_or(x, y)
Applies the logical operation *or* between each operand's digits.
.. method:: logical_xor(x, y)
Applies the logical operation *xor* between each operand's digits.
.. method:: max(x, y)
Compares two values numerically and returns the maximum.
.. method:: max_mag(x, y)
Compares the values numerically with their sign ignored.
.. method:: min(x, y)
Compares two values numerically and returns the minimum.
.. method:: min_mag(x, y)
Compares the values numerically with their sign ignored.
.. method:: minus(x)
Minus corresponds to the unary prefix minus operator in Python.
.. method:: multiply(x, y)
Return the product of *x* and *y*.
.. method:: next_minus(x)
Returns the largest representable number smaller than *x*.
.. method:: next_plus(x)
Returns the smallest representable number larger than *x*.
.. method:: next_toward(x, y)
Returns the number closest to *x*, in direction towards *y*.
.. method:: normalize(x)
Reduces *x* to its simplest form.
.. method:: number_class(x)
Returns an indication of the class of *x*.
.. method:: plus(x)
Plus corresponds to the unary prefix plus operator in Python. This
operation applies the context precision and rounding, so it is *not* an
identity operation.
.. method:: power(x, y, modulo=None)
Return ``x`` to the power of ``y``, reduced modulo ``modulo`` if given.
With two arguments, compute ``x**y``. If ``x`` is negative then ``y``
must be integral. The result will be inexact unless ``y`` is integral and
the result is finite and can be expressed exactly in 'precision' digits.
The rounding mode of the context is used. Results are always correctly-rounded
in the Python version.
``Decimal(0) ** Decimal(0)`` results in ``InvalidOperation``, and if ``InvalidOperation``
is not trapped, then results in ``Decimal('NaN')``.
.. versionchanged:: 3.3
The C module computes :meth:`power` in terms of the correctly-rounded
:meth:`exp` and :meth:`ln` functions. The result is well-defined but
only "almost always correctly-rounded".
With three arguments, compute ``(x**y) % modulo``. For the three argument
form, the following restrictions on the arguments hold:
- all three arguments must be integral
- ``y`` must be nonnegative
- at least one of ``x`` or ``y`` must be nonzero
- ``modulo`` must be nonzero and have at most 'precision' digits
The value resulting from ``Context.power(x, y, modulo)`` is
equal to the value that would be obtained by computing ``(x**y)
% modulo`` with unbounded precision, but is computed more
efficiently. The exponent of the result is zero, regardless of
the exponents of ``x``, ``y`` and ``modulo``. The result is
always exact.
.. method:: quantize(x, y)
Returns a value equal to *x* (rounded), having the exponent of *y*.
.. method:: radix()
Just returns 10, as this is Decimal, :)
.. method:: remainder(x, y)
Returns the remainder from integer division.
The sign of the result, if non-zero, is the same as that of the original
dividend.
.. method:: remainder_near(x, y)
Returns ``x - y * n``, where *n* is the integer nearest the exact value
of ``x / y`` (if the result is 0 then its sign will be the sign of *x*).
.. method:: rotate(x, y)
Returns a rotated copy of *x*, *y* times.
.. method:: same_quantum(x, y)
Returns ``True`` if the two operands have the same exponent.
.. method:: scaleb (x, y)
Returns the first operand after adding the second value its exp.
.. method:: shift(x, y)
Returns a shifted copy of *x*, *y* times.
.. method:: sqrt(x)
Square root of a non-negative number to context precision.
.. method:: subtract(x, y)
Return the difference between *x* and *y*.
.. method:: to_eng_string(x)
Convert to a string, using engineering notation if an exponent is needed.
Engineering notation has an exponent which is a multiple of 3. This
can leave up to 3 digits to the left of the decimal place and may
require the addition of either one or two trailing zeros.
.. method:: to_integral_exact(x)
Rounds to an integer.
.. method:: to_sci_string(x)
Converts a number to a string using scientific notation.
.. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
.. _decimal-rounding-modes:
Constants
---------
The constants in this section are only relevant for the C module. They
are also included in the pure Python version for compatibility.
+---------------------+---------------------+-------------------------------+
| | 32-bit | 64-bit |
+=====================+=====================+===============================+
| .. data:: MAX_PREC | :const:`425000000` | :const:`999999999999999999` |
+---------------------+---------------------+-------------------------------+
| .. data:: MAX_EMAX | :const:`425000000` | :const:`999999999999999999` |
+---------------------+---------------------+-------------------------------+
| .. data:: MIN_EMIN | :const:`-425000000` | :const:`-999999999999999999` |
+---------------------+---------------------+-------------------------------+
| .. data:: MIN_ETINY | :const:`-849999999` | :const:`-1999999999999999997` |
+---------------------+---------------------+-------------------------------+
.. data:: HAVE_THREADS
The value is ``True``. Deprecated, because Python now always has threads.
.. deprecated:: 3.9
.. data:: HAVE_CONTEXTVAR
The default value is ``True``. If Python is compiled ``--without-decimal-contextvar``,
the C version uses a thread-local rather than a coroutine-local context and the value
is ``False``. This is slightly faster in some nested context scenarios.
.. versionadded:: 3.9 backported to 3.7 and 3.8.
Rounding modes
--------------
.. data:: ROUND_CEILING
Round towards :const:`Infinity`.
.. data:: ROUND_DOWN
Round towards zero.
.. data:: ROUND_FLOOR
Round towards :const:`-Infinity`.
.. data:: ROUND_HALF_DOWN
Round to nearest with ties going towards zero.
.. data:: ROUND_HALF_EVEN
Round to nearest with ties going to nearest even integer.
.. data:: ROUND_HALF_UP
Round to nearest with ties going away from zero.
.. data:: ROUND_UP
Round away from zero.
.. data:: ROUND_05UP
Round away from zero if last digit after rounding towards zero would have
been 0 or 5; otherwise round towards zero.
.. _decimal-signals:
Signals
-------
Signals represent conditions that arise during computation. Each corresponds to
one context flag and one context trap enabler.
The context flag is set whenever the condition is encountered. After the
computation, flags may be checked for informational purposes (for instance, to
determine whether a computation was exact). After checking the flags, be sure to
clear all flags before starting the next computation.
If the context's trap enabler is set for the signal, then the condition causes a
Python exception to be raised. For example, if the :class:`DivisionByZero` trap
is set, then a :exc:`DivisionByZero` exception is raised upon encountering the
condition.
.. class:: Clamped
Altered an exponent to fit representation constraints.
Typically, clamping occurs when an exponent falls outside the context's
:attr:`Emin` and :attr:`Emax` limits. If possible, the exponent is reduced to
fit by adding zeros to the coefficient.
.. class:: DecimalException
Base class for other signals and a subclass of :exc:`ArithmeticError`.
.. class:: DivisionByZero
Signals the division of a non-infinite number by zero.
Can occur with division, modulo division, or when raising a number to a negative
power. If this signal is not trapped, returns :const:`Infinity` or
:const:`-Infinity` with the sign determined by the inputs to the calculation.
.. class:: Inexact
Indicates that rounding occurred and the result is not exact.
Signals when non-zero digits were discarded during rounding. The rounded result
is returned. The signal flag or trap is used to detect when results are
inexact.
.. class:: InvalidOperation
An invalid operation was performed.
Indicates that an operation was requested that does not make sense. If not
trapped, returns :const:`NaN`. Possible causes include::
Infinity - Infinity
0 * Infinity
Infinity / Infinity
x % 0
Infinity % x
sqrt(-x) and x > 0
0 ** 0
x ** (non-integer)
x ** Infinity
.. class:: Overflow
Numerical overflow.
Indicates the exponent is larger than :attr:`Emax` after rounding has
occurred. If not trapped, the result depends on the rounding mode, either
pulling inward to the largest representable finite number or rounding outward
to :const:`Infinity`. In either case, :class:`Inexact` and :class:`Rounded`
are also signaled.
.. class:: Rounded
Rounding occurred though possibly no information was lost.
Signaled whenever rounding discards digits; even if those digits are zero
(such as rounding :const:`5.00` to :const:`5.0`). If not trapped, returns
the result unchanged. This signal is used to detect loss of significant
digits.
.. class:: Subnormal
Exponent was lower than :attr:`Emin` prior to rounding.
Occurs when an operation result is subnormal (the exponent is too small). If
not trapped, returns the result unchanged.
.. class:: Underflow
Numerical underflow with result rounded to zero.
Occurs when a subnormal result is pushed to zero by rounding. :class:`Inexact`
and :class:`Subnormal` are also signaled.
.. class:: FloatOperation
Enable stricter semantics for mixing floats and Decimals.
If the signal is not trapped (default), mixing floats and Decimals is
permitted in the :class:`~decimal.Decimal` constructor,
:meth:`~decimal.Context.create_decimal` and all comparison operators.
Both conversion and comparisons are exact. Any occurrence of a mixed
operation is silently recorded by setting :exc:`FloatOperation` in the
context flags. Explicit conversions with :meth:`~decimal.Decimal.from_float`
or :meth:`~decimal.Context.create_decimal_from_float` do not set the flag.
Otherwise (the signal is trapped), only equality comparisons and explicit
conversions are silent. All other mixed operations raise :exc:`FloatOperation`.
The following table summarizes the hierarchy of signals::
exceptions.ArithmeticError(exceptions.Exception)
DecimalException
Clamped
DivisionByZero(DecimalException, exceptions.ZeroDivisionError)
Inexact
Overflow(Inexact, Rounded)
Underflow(Inexact, Rounded, Subnormal)
InvalidOperation
Rounded
Subnormal
FloatOperation(DecimalException, exceptions.TypeError)
.. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
.. _decimal-notes:
Floating Point Notes
--------------------
Mitigating round-off error with increased precision
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
The use of decimal floating point eliminates decimal representation error
(making it possible to represent :const:`0.1` exactly); however, some operations
can still incur round-off error when non-zero digits exceed the fixed precision.
The effects of round-off error can be amplified by the addition or subtraction
of nearly offsetting quantities resulting in loss of significance. Knuth
provides two instructive examples where rounded floating point arithmetic with
insufficient precision causes the breakdown of the associative and distributive
properties of addition:
.. doctest:: newcontext
# Examples from Seminumerical Algorithms, Section 4.2.2.
>>> from decimal import Decimal, getcontext
>>> getcontext().prec = 8
>>> u, v, w = Decimal(11111113), Decimal(-11111111), Decimal('7.51111111')
>>> (u + v) + w
Decimal('9.5111111')
>>> u + (v + w)
Decimal('10')
>>> u, v, w = Decimal(20000), Decimal(-6), Decimal('6.0000003')
>>> (u*v) + (u*w)
Decimal('0.01')
>>> u * (v+w)
Decimal('0.0060000')
The :mod:`decimal` module makes it possible to restore the identities by
expanding the precision sufficiently to avoid loss of significance:
.. doctest:: newcontext
>>> getcontext().prec = 20
>>> u, v, w = Decimal(11111113), Decimal(-11111111), Decimal('7.51111111')
>>> (u + v) + w
Decimal('9.51111111')
>>> u + (v + w)
Decimal('9.51111111')
>>>
>>> u, v, w = Decimal(20000), Decimal(-6), Decimal('6.0000003')
>>> (u*v) + (u*w)
Decimal('0.0060000')
>>> u * (v+w)
Decimal('0.0060000')
Special values
^^^^^^^^^^^^^^
The number system for the :mod:`decimal` module provides special values
including :const:`NaN`, :const:`sNaN`, :const:`-Infinity`, :const:`Infinity`,
and two zeros, :const:`+0` and :const:`-0`.
Infinities can be constructed directly with: ``Decimal('Infinity')``. Also,
they can arise from dividing by zero when the :exc:`DivisionByZero` signal is
not trapped. Likewise, when the :exc:`Overflow` signal is not trapped, infinity
can result from rounding beyond the limits of the largest representable number.
The infinities are signed (affine) and can be used in arithmetic operations
where they get treated as very large, indeterminate numbers. For instance,
adding a constant to infinity gives another infinite result.
Some operations are indeterminate and return :const:`NaN`, or if the
:exc:`InvalidOperation` signal is trapped, raise an exception. For example,
``0/0`` returns :const:`NaN` which means "not a number". This variety of
:const:`NaN` is quiet and, once created, will flow through other computations
always resulting in another :const:`NaN`. This behavior can be useful for a
series of computations that occasionally have missing inputs --- it allows the
calculation to proceed while flagging specific results as invalid.
A variant is :const:`sNaN` which signals rather than remaining quiet after every
operation. This is a useful return value when an invalid result needs to
interrupt a calculation for special handling.
The behavior of Python's comparison operators can be a little surprising where a
:const:`NaN` is involved. A test for equality where one of the operands is a
quiet or signaling :const:`NaN` always returns :const:`False` (even when doing
``Decimal('NaN')==Decimal('NaN')``), while a test for inequality always returns
:const:`True`. An attempt to compare two Decimals using any of the ``<``,
``<=``, ``>`` or ``>=`` operators will raise the :exc:`InvalidOperation` signal
if either operand is a :const:`NaN`, and return :const:`False` if this signal is
not trapped. Note that the General Decimal Arithmetic specification does not
specify the behavior of direct comparisons; these rules for comparisons
involving a :const:`NaN` were taken from the IEEE 854 standard (see Table 3 in
section 5.7). To ensure strict standards-compliance, use the :meth:`compare`
and :meth:`compare-signal` methods instead.
The signed zeros can result from calculations that underflow. They keep the sign
that would have resulted if the calculation had been carried out to greater
precision. Since their magnitude is zero, both positive and negative zeros are
treated as equal and their sign is informational.
In addition to the two signed zeros which are distinct yet equal, there are
various representations of zero with differing precisions yet equivalent in
value. This takes a bit of getting used to. For an eye accustomed to
normalized floating point representations, it is not immediately obvious that
the following calculation returns a value equal to zero:
>>> 1 / Decimal('Infinity')
Decimal('0E-1000026')
.. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
.. _decimal-threads:
Working with threads
--------------------
The :func:`getcontext` function accesses a different :class:`Context` object for
each thread. Having separate thread contexts means that threads may make
changes (such as ``getcontext().prec=10``) without interfering with other threads.
Likewise, the :func:`setcontext` function automatically assigns its target to
the current thread.
If :func:`setcontext` has not been called before :func:`getcontext`, then
:func:`getcontext` will automatically create a new context for use in the
current thread.
The new context is copied from a prototype context called *DefaultContext*. To
control the defaults so that each thread will use the same values throughout the
application, directly modify the *DefaultContext* object. This should be done
*before* any threads are started so that there won't be a race condition between
threads calling :func:`getcontext`. For example::
# Set applicationwide defaults for all threads about to be launched
DefaultContext.prec = 12
DefaultContext.rounding = ROUND_DOWN
DefaultContext.traps = ExtendedContext.traps.copy()
DefaultContext.traps[InvalidOperation] = 1
setcontext(DefaultContext)
# Afterwards, the threads can be started
t1.start()
t2.start()
t3.start()
. . .
.. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
.. _decimal-recipes:
Recipes
-------
Here are a few recipes that serve as utility functions and that demonstrate ways
to work with the :class:`Decimal` class::
def moneyfmt(value, places=2, curr='', sep=',', dp='.',
pos='', neg='-', trailneg=''):
"""Convert Decimal to a money formatted string.
places: required number of places after the decimal point
curr: optional currency symbol before the sign (may be blank)
sep: optional grouping separator (comma, period, space, or blank)
dp: decimal point indicator (comma or period)
only specify as blank when places is zero
pos: optional sign for positive numbers: '+', space or blank
neg: optional sign for negative numbers: '-', '(', space or blank
trailneg:optional trailing minus indicator: '-', ')', space or blank
>>> d = Decimal('-1234567.8901')
>>> moneyfmt(d, curr='$')
'-$1,234,567.89'
>>> moneyfmt(d, places=0, sep='.', dp='', neg='', trailneg='-')
'1.234.568-'
>>> moneyfmt(d, curr='$', neg='(', trailneg=')')
'($1,234,567.89)'
>>> moneyfmt(Decimal(123456789), sep=' ')
'123 456 789.00'
>>> moneyfmt(Decimal('-0.02'), neg='<', trailneg='>')
'<0.02>'
"""
q = Decimal(10) ** -places # 2 places --> '0.01'
sign, digits, exp = value.quantize(q).as_tuple()
result = []
digits = list(map(str, digits))
build, next = result.append, digits.pop
if sign:
build(trailneg)
for i in range(places):
build(next() if digits else '0')
if places:
build(dp)
if not digits:
build('0')
i = 0
while digits:
build(next())
i += 1
if i == 3 and digits:
i = 0
build(sep)
build(curr)
build(neg if sign else pos)
return ''.join(reversed(result))
def pi():
"""Compute Pi to the current precision.
>>> print(pi())
3.141592653589793238462643383
"""
getcontext().prec += 2 # extra digits for intermediate steps
three = Decimal(3) # substitute "three=3.0" for regular floats
lasts, t, s, n, na, d, da = 0, three, 3, 1, 0, 0, 24
while s != lasts:
lasts = s
n, na = n+na, na+8
d, da = d+da, da+32
t = (t * n) / d
s += t
getcontext().prec -= 2
return +s # unary plus applies the new precision
def exp(x):
"""Return e raised to the power of x. Result type matches input type.
>>> print(exp(Decimal(1)))
2.718281828459045235360287471
>>> print(exp(Decimal(2)))
7.389056098930650227230427461
>>> print(exp(2.0))
7.38905609893
>>> print(exp(2+0j))
(7.38905609893+0j)
"""
getcontext().prec += 2
i, lasts, s, fact, num = 0, 0, 1, 1, 1
while s != lasts:
lasts = s
i += 1
fact *= i
num *= x
s += num / fact
getcontext().prec -= 2
return +s
def cos(x):
"""Return the cosine of x as measured in radians.
The Taylor series approximation works best for a small value of x.
For larger values, first compute x = x % (2 * pi).
>>> print(cos(Decimal('0.5')))
0.8775825618903727161162815826
>>> print(cos(0.5))
0.87758256189
>>> print(cos(0.5+0j))
(0.87758256189+0j)
"""
getcontext().prec += 2
i, lasts, s, fact, num, sign = 0, 0, 1, 1, 1, 1
while s != lasts:
lasts = s
i += 2
fact *= i * (i-1)
num *= x * x
sign *= -1
s += num / fact * sign
getcontext().prec -= 2
return +s
def sin(x):
"""Return the sine of x as measured in radians.
The Taylor series approximation works best for a small value of x.
For larger values, first compute x = x % (2 * pi).
>>> print(sin(Decimal('0.5')))
0.4794255386042030002732879352
>>> print(sin(0.5))
0.479425538604
>>> print(sin(0.5+0j))
(0.479425538604+0j)
"""
getcontext().prec += 2
i, lasts, s, fact, num, sign = 1, 0, x, 1, x, 1
while s != lasts:
lasts = s
i += 2
fact *= i * (i-1)
num *= x * x
sign *= -1
s += num / fact * sign
getcontext().prec -= 2
return +s
.. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
.. _decimal-faq:
Decimal FAQ
-----------
Q. It is cumbersome to type ``decimal.Decimal('1234.5')``. Is there a way to
minimize typing when using the interactive interpreter?
A. Some users abbreviate the constructor to just a single letter:
>>> D = decimal.Decimal
>>> D('1.23') + D('3.45')
Decimal('4.68')
Q. In a fixed-point application with two decimal places, some inputs have many
places and need to be rounded. Others are not supposed to have excess digits
and need to be validated. What methods should be used?
A. The :meth:`quantize` method rounds to a fixed number of decimal places. If
the :const:`Inexact` trap is set, it is also useful for validation:
>>> TWOPLACES = Decimal(10) ** -2 # same as Decimal('0.01')
>>> # Round to two places
>>> Decimal('3.214').quantize(TWOPLACES)
Decimal('3.21')
>>> # Validate that a number does not exceed two places
>>> Decimal('3.21').quantize(TWOPLACES, context=Context(traps=[Inexact]))
Decimal('3.21')
>>> Decimal('3.214').quantize(TWOPLACES, context=Context(traps=[Inexact]))
Traceback (most recent call last):
...
Inexact: None
Q. Once I have valid two place inputs, how do I maintain that invariant
throughout an application?
A. Some operations like addition, subtraction, and multiplication by an integer
will automatically preserve fixed point. Others operations, like division and
non-integer multiplication, will change the number of decimal places and need to
be followed-up with a :meth:`quantize` step:
>>> a = Decimal('102.72') # Initial fixed-point values
>>> b = Decimal('3.17')
>>> a + b # Addition preserves fixed-point
Decimal('105.89')
>>> a - b
Decimal('99.55')
>>> a * 42 # So does integer multiplication
Decimal('4314.24')
>>> (a * b).quantize(TWOPLACES) # Must quantize non-integer multiplication
Decimal('325.62')
>>> (b / a).quantize(TWOPLACES) # And quantize division
Decimal('0.03')
In developing fixed-point applications, it is convenient to define functions
to handle the :meth:`quantize` step:
>>> def mul(x, y, fp=TWOPLACES):
... return (x * y).quantize(fp)
>>> def div(x, y, fp=TWOPLACES):
... return (x / y).quantize(fp)
>>> mul(a, b) # Automatically preserve fixed-point
Decimal('325.62')
>>> div(b, a)
Decimal('0.03')
Q. There are many ways to express the same value. The numbers :const:`200`,
:const:`200.000`, :const:`2E2`, and :const:`.02E+4` all have the same value at
various precisions. Is there a way to transform them to a single recognizable
canonical value?
A. The :meth:`normalize` method maps all equivalent values to a single
representative:
>>> values = map(Decimal, '200 200.000 2E2 .02E+4'.split())
>>> [v.normalize() for v in values]
[Decimal('2E+2'), Decimal('2E+2'), Decimal('2E+2'), Decimal('2E+2')]
Q. Some decimal values always print with exponential notation. Is there a way
to get a non-exponential representation?
A. For some values, exponential notation is the only way to express the number
of significant places in the coefficient. For example, expressing
:const:`5.0E+3` as :const:`5000` keeps the value constant but cannot show the
original's two-place significance.
If an application does not care about tracking significance, it is easy to
remove the exponent and trailing zeroes, losing significance, but keeping the
value unchanged:
>>> def remove_exponent(d):
... return d.quantize(Decimal(1)) if d == d.to_integral() else d.normalize()
>>> remove_exponent(Decimal('5E+3'))
Decimal('5000')
Q. Is there a way to convert a regular float to a :class:`Decimal`?
A. Yes, any binary floating point number can be exactly expressed as a
Decimal though an exact conversion may take more precision than intuition would
suggest:
.. doctest::
>>> Decimal(math.pi)
Decimal('3.141592653589793115997963468544185161590576171875')
Q. Within a complex calculation, how can I make sure that I haven't gotten a
spurious result because of insufficient precision or rounding anomalies.
A. The decimal module makes it easy to test results. A best practice is to
re-run calculations using greater precision and with various rounding modes.
Widely differing results indicate insufficient precision, rounding mode issues,
ill-conditioned inputs, or a numerically unstable algorithm.
Q. I noticed that context precision is applied to the results of operations but
not to the inputs. Is there anything to watch out for when mixing values of
different precisions?
A. Yes. The principle is that all values are considered to be exact and so is
the arithmetic on those values. Only the results are rounded. The advantage
for inputs is that "what you type is what you get". A disadvantage is that the
results can look odd if you forget that the inputs haven't been rounded:
.. doctest:: newcontext
>>> getcontext().prec = 3
>>> Decimal('3.104') + Decimal('2.104')
Decimal('5.21')
>>> Decimal('3.104') + Decimal('0.000') + Decimal('2.104')
Decimal('5.20')
The solution is either to increase precision or to force rounding of inputs
using the unary plus operation:
.. doctest:: newcontext
>>> getcontext().prec = 3
>>> +Decimal('1.23456789') # unary plus triggers rounding
Decimal('1.23')
Alternatively, inputs can be rounded upon creation using the
:meth:`Context.create_decimal` method:
>>> Context(prec=5, rounding=ROUND_DOWN).create_decimal('1.2345678')
Decimal('1.2345')
Q. Is the CPython implementation fast for large numbers?
A. Yes. In the CPython and PyPy3 implementations, the C/CFFI versions of
the decimal module integrate the high speed `libmpdec
<https://www.bytereef.org/mpdecimal/doc/libmpdec/index.html>`_ library for
arbitrary precision correctly-rounded decimal floating point arithmetic [#]_.
``libmpdec`` uses `Karatsuba multiplication
<https://en.wikipedia.org/wiki/Karatsuba_algorithm>`_
for medium-sized numbers and the `Number Theoretic Transform
<https://en.wikipedia.org/wiki/Discrete_Fourier_transform_(general)#Number-theoretic_transform>`_
for very large numbers.
The context must be adapted for exact arbitrary precision arithmetic. :attr:`Emin`
and :attr:`Emax` should always be set to the maximum values, :attr:`clamp`
should always be 0 (the default). Setting :attr:`prec` requires some care.
The easiest approach for trying out bignum arithmetic is to use the maximum
value for :attr:`prec` as well [#]_::
>>> setcontext(Context(prec=MAX_PREC, Emax=MAX_EMAX, Emin=MIN_EMIN))
>>> x = Decimal(2) ** 256
>>> x / 128
Decimal('904625697166532776746648320380374280103671755200316906558262375061821325312')
For inexact results, :attr:`MAX_PREC` is far too large on 64-bit platforms and
the available memory will be insufficient::
>>> Decimal(1) / 3
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
MemoryError
On systems with overallocation (e.g. Linux), a more sophisticated approach is to
adjust :attr:`prec` to the amount of available RAM. Suppose that you have 8GB of
RAM and expect 10 simultaneous operands using a maximum of 500MB each::
>>> import sys
>>>
>>> # Maximum number of digits for a single operand using 500MB in 8-byte words
>>> # with 19 digits per word (4-byte and 9 digits for the 32-bit build):
>>> maxdigits = 19 * ((500 * 1024**2) // 8)
>>>
>>> # Check that this works:
>>> c = Context(prec=maxdigits, Emax=MAX_EMAX, Emin=MIN_EMIN)
>>> c.traps[Inexact] = True
>>> setcontext(c)
>>>
>>> # Fill the available precision with nines:
>>> x = Decimal(0).logical_invert() * 9
>>> sys.getsizeof(x)
524288112
>>> x + 2
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
decimal.Inexact: [<class 'decimal.Inexact'>]
In general (and especially on systems without overallocation), it is recommended
to estimate even tighter bounds and set the :attr:`Inexact` trap if all calculations
are expected to be exact.
.. [#]
.. versionadded:: 3.3
.. [#]
.. versionchanged:: 3.9
This approach now works for all exact results except for non-integer powers.
|